1//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Builtin calls as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGObjCRuntime.h"
16#include "CodeGenModule.h"
17#include "TargetInfo.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Decl.h"
20#include "clang/Basic/TargetBuiltins.h"
21#include "clang/Basic/TargetInfo.h"
22#include "llvm/IR/DataLayout.h"
23#include "llvm/IR/Intrinsics.h"
24
25using namespace clang;
26using namespace CodeGen;
27using namespace llvm;
28
29/// getBuiltinLibFunction - Given a builtin id for a function like
30/// "__builtin_fabsf", return a Function* for "fabsf".
31llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
32                                                  unsigned BuiltinID) {
33  assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
34
35  // Get the name, skip over the __builtin_ prefix (if necessary).
36  StringRef Name;
37  GlobalDecl D(FD);
38
39  // If the builtin has been declared explicitly with an assembler label,
40  // use the mangled name. This differs from the plain label on platforms
41  // that prefix labels.
42  if (FD->hasAttr<AsmLabelAttr>())
43    Name = getMangledName(D);
44  else
45    Name = Context.BuiltinInfo.GetName(BuiltinID) + 10;
46
47  llvm::FunctionType *Ty =
48    cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
49
50  return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
51}
52
53/// Emit the conversions required to turn the given value into an
54/// integer of the given size.
55static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
56                        QualType T, llvm::IntegerType *IntType) {
57  V = CGF.EmitToMemory(V, T);
58
59  if (V->getType()->isPointerTy())
60    return CGF.Builder.CreatePtrToInt(V, IntType);
61
62  assert(V->getType() == IntType);
63  return V;
64}
65
66static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
67                          QualType T, llvm::Type *ResultType) {
68  V = CGF.EmitFromMemory(V, T);
69
70  if (ResultType->isPointerTy())
71    return CGF.Builder.CreateIntToPtr(V, ResultType);
72
73  assert(V->getType() == ResultType);
74  return V;
75}
76
77/// Utility to insert an atomic instruction based on Instrinsic::ID
78/// and the expression node.
79static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
80                               llvm::AtomicRMWInst::BinOp Kind,
81                               const CallExpr *E) {
82  QualType T = E->getType();
83  assert(E->getArg(0)->getType()->isPointerType());
84  assert(CGF.getContext().hasSameUnqualifiedType(T,
85                                  E->getArg(0)->getType()->getPointeeType()));
86  assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
87
88  llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
89  unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
90
91  llvm::IntegerType *IntType =
92    llvm::IntegerType::get(CGF.getLLVMContext(),
93                           CGF.getContext().getTypeSize(T));
94  llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
95
96  llvm::Value *Args[2];
97  Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
98  Args[1] = CGF.EmitScalarExpr(E->getArg(1));
99  llvm::Type *ValueType = Args[1]->getType();
100  Args[1] = EmitToInt(CGF, Args[1], T, IntType);
101
102  llvm::Value *Result =
103      CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1],
104                                  llvm::SequentiallyConsistent);
105  Result = EmitFromInt(CGF, Result, T, ValueType);
106  return RValue::get(Result);
107}
108
109/// Utility to insert an atomic instruction based Instrinsic::ID and
110/// the expression node, where the return value is the result of the
111/// operation.
112static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
113                                   llvm::AtomicRMWInst::BinOp Kind,
114                                   const CallExpr *E,
115                                   Instruction::BinaryOps Op) {
116  QualType T = E->getType();
117  assert(E->getArg(0)->getType()->isPointerType());
118  assert(CGF.getContext().hasSameUnqualifiedType(T,
119                                  E->getArg(0)->getType()->getPointeeType()));
120  assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
121
122  llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
123  unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
124
125  llvm::IntegerType *IntType =
126    llvm::IntegerType::get(CGF.getLLVMContext(),
127                           CGF.getContext().getTypeSize(T));
128  llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
129
130  llvm::Value *Args[2];
131  Args[1] = CGF.EmitScalarExpr(E->getArg(1));
132  llvm::Type *ValueType = Args[1]->getType();
133  Args[1] = EmitToInt(CGF, Args[1], T, IntType);
134  Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
135
136  llvm::Value *Result =
137      CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1],
138                                  llvm::SequentiallyConsistent);
139  Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
140  Result = EmitFromInt(CGF, Result, T, ValueType);
141  return RValue::get(Result);
142}
143
144/// EmitFAbs - Emit a call to fabs/fabsf/fabsl, depending on the type of ValTy,
145/// which must be a scalar floating point type.
146static Value *EmitFAbs(CodeGenFunction &CGF, Value *V, QualType ValTy) {
147  const BuiltinType *ValTyP = ValTy->getAs<BuiltinType>();
148  assert(ValTyP && "isn't scalar fp type!");
149
150  StringRef FnName;
151  switch (ValTyP->getKind()) {
152  default: llvm_unreachable("Isn't a scalar fp type!");
153  case BuiltinType::Float:      FnName = "fabsf"; break;
154  case BuiltinType::Double:     FnName = "fabs"; break;
155  case BuiltinType::LongDouble: FnName = "fabsl"; break;
156  }
157
158  // The prototype is something that takes and returns whatever V's type is.
159  llvm::FunctionType *FT = llvm::FunctionType::get(V->getType(), V->getType(),
160                                                   false);
161  llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(FT, FnName);
162
163  return CGF.EmitNounwindRuntimeCall(Fn, V, "abs");
164}
165
166static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *Fn,
167                              const CallExpr *E, llvm::Value *calleeValue) {
168  return CGF.EmitCall(E->getCallee()->getType(), calleeValue,
169                      ReturnValueSlot(), E->arg_begin(), E->arg_end(), Fn);
170}
171
172/// \brief Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
173/// depending on IntrinsicID.
174///
175/// \arg CGF The current codegen function.
176/// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
177/// \arg X The first argument to the llvm.*.with.overflow.*.
178/// \arg Y The second argument to the llvm.*.with.overflow.*.
179/// \arg Carry The carry returned by the llvm.*.with.overflow.*.
180/// \returns The result (i.e. sum/product) returned by the intrinsic.
181static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
182                                          const llvm::Intrinsic::ID IntrinsicID,
183                                          llvm::Value *X, llvm::Value *Y,
184                                          llvm::Value *&Carry) {
185  // Make sure we have integers of the same width.
186  assert(X->getType() == Y->getType() &&
187         "Arguments must be the same type. (Did you forget to make sure both "
188         "arguments have the same integer width?)");
189
190  llvm::Value *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
191  llvm::Value *Tmp = CGF.Builder.CreateCall2(Callee, X, Y);
192  Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
193  return CGF.Builder.CreateExtractValue(Tmp, 0);
194}
195
196RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD,
197                                        unsigned BuiltinID, const CallExpr *E) {
198  // See if we can constant fold this builtin.  If so, don't emit it at all.
199  Expr::EvalResult Result;
200  if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
201      !Result.hasSideEffects()) {
202    if (Result.Val.isInt())
203      return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
204                                                Result.Val.getInt()));
205    if (Result.Val.isFloat())
206      return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
207                                               Result.Val.getFloat()));
208  }
209
210  switch (BuiltinID) {
211  default: break;  // Handle intrinsics and libm functions below.
212  case Builtin::BI__builtin___CFStringMakeConstantString:
213  case Builtin::BI__builtin___NSStringMakeConstantString:
214    return RValue::get(CGM.EmitConstantExpr(E, E->getType(), 0));
215  case Builtin::BI__builtin_stdarg_start:
216  case Builtin::BI__builtin_va_start:
217  case Builtin::BI__builtin_va_end: {
218    Value *ArgValue = EmitVAListRef(E->getArg(0));
219    llvm::Type *DestType = Int8PtrTy;
220    if (ArgValue->getType() != DestType)
221      ArgValue = Builder.CreateBitCast(ArgValue, DestType,
222                                       ArgValue->getName().data());
223
224    Intrinsic::ID inst = (BuiltinID == Builtin::BI__builtin_va_end) ?
225      Intrinsic::vaend : Intrinsic::vastart;
226    return RValue::get(Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue));
227  }
228  case Builtin::BI__builtin_va_copy: {
229    Value *DstPtr = EmitVAListRef(E->getArg(0));
230    Value *SrcPtr = EmitVAListRef(E->getArg(1));
231
232    llvm::Type *Type = Int8PtrTy;
233
234    DstPtr = Builder.CreateBitCast(DstPtr, Type);
235    SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
236    return RValue::get(Builder.CreateCall2(CGM.getIntrinsic(Intrinsic::vacopy),
237                                           DstPtr, SrcPtr));
238  }
239  case Builtin::BI__builtin_abs:
240  case Builtin::BI__builtin_labs:
241  case Builtin::BI__builtin_llabs: {
242    Value *ArgValue = EmitScalarExpr(E->getArg(0));
243
244    Value *NegOp = Builder.CreateNeg(ArgValue, "neg");
245    Value *CmpResult =
246    Builder.CreateICmpSGE(ArgValue,
247                          llvm::Constant::getNullValue(ArgValue->getType()),
248                                                            "abscond");
249    Value *Result =
250      Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs");
251
252    return RValue::get(Result);
253  }
254
255  case Builtin::BI__builtin_conj:
256  case Builtin::BI__builtin_conjf:
257  case Builtin::BI__builtin_conjl: {
258    ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
259    Value *Real = ComplexVal.first;
260    Value *Imag = ComplexVal.second;
261    Value *Zero =
262      Imag->getType()->isFPOrFPVectorTy()
263        ? llvm::ConstantFP::getZeroValueForNegation(Imag->getType())
264        : llvm::Constant::getNullValue(Imag->getType());
265
266    Imag = Builder.CreateFSub(Zero, Imag, "sub");
267    return RValue::getComplex(std::make_pair(Real, Imag));
268  }
269  case Builtin::BI__builtin_creal:
270  case Builtin::BI__builtin_crealf:
271  case Builtin::BI__builtin_creall:
272  case Builtin::BIcreal:
273  case Builtin::BIcrealf:
274  case Builtin::BIcreall: {
275    ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
276    return RValue::get(ComplexVal.first);
277  }
278
279  case Builtin::BI__builtin_cimag:
280  case Builtin::BI__builtin_cimagf:
281  case Builtin::BI__builtin_cimagl:
282  case Builtin::BIcimag:
283  case Builtin::BIcimagf:
284  case Builtin::BIcimagl: {
285    ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
286    return RValue::get(ComplexVal.second);
287  }
288
289  case Builtin::BI__builtin_ctzs:
290  case Builtin::BI__builtin_ctz:
291  case Builtin::BI__builtin_ctzl:
292  case Builtin::BI__builtin_ctzll: {
293    Value *ArgValue = EmitScalarExpr(E->getArg(0));
294
295    llvm::Type *ArgType = ArgValue->getType();
296    Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
297
298    llvm::Type *ResultType = ConvertType(E->getType());
299    Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
300    Value *Result = Builder.CreateCall2(F, ArgValue, ZeroUndef);
301    if (Result->getType() != ResultType)
302      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
303                                     "cast");
304    return RValue::get(Result);
305  }
306  case Builtin::BI__builtin_clzs:
307  case Builtin::BI__builtin_clz:
308  case Builtin::BI__builtin_clzl:
309  case Builtin::BI__builtin_clzll: {
310    Value *ArgValue = EmitScalarExpr(E->getArg(0));
311
312    llvm::Type *ArgType = ArgValue->getType();
313    Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
314
315    llvm::Type *ResultType = ConvertType(E->getType());
316    Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
317    Value *Result = Builder.CreateCall2(F, ArgValue, ZeroUndef);
318    if (Result->getType() != ResultType)
319      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
320                                     "cast");
321    return RValue::get(Result);
322  }
323  case Builtin::BI__builtin_ffs:
324  case Builtin::BI__builtin_ffsl:
325  case Builtin::BI__builtin_ffsll: {
326    // ffs(x) -> x ? cttz(x) + 1 : 0
327    Value *ArgValue = EmitScalarExpr(E->getArg(0));
328
329    llvm::Type *ArgType = ArgValue->getType();
330    Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
331
332    llvm::Type *ResultType = ConvertType(E->getType());
333    Value *Tmp = Builder.CreateAdd(Builder.CreateCall2(F, ArgValue,
334                                                       Builder.getTrue()),
335                                   llvm::ConstantInt::get(ArgType, 1));
336    Value *Zero = llvm::Constant::getNullValue(ArgType);
337    Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
338    Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
339    if (Result->getType() != ResultType)
340      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
341                                     "cast");
342    return RValue::get(Result);
343  }
344  case Builtin::BI__builtin_parity:
345  case Builtin::BI__builtin_parityl:
346  case Builtin::BI__builtin_parityll: {
347    // parity(x) -> ctpop(x) & 1
348    Value *ArgValue = EmitScalarExpr(E->getArg(0));
349
350    llvm::Type *ArgType = ArgValue->getType();
351    Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
352
353    llvm::Type *ResultType = ConvertType(E->getType());
354    Value *Tmp = Builder.CreateCall(F, ArgValue);
355    Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
356    if (Result->getType() != ResultType)
357      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
358                                     "cast");
359    return RValue::get(Result);
360  }
361  case Builtin::BI__builtin_popcount:
362  case Builtin::BI__builtin_popcountl:
363  case Builtin::BI__builtin_popcountll: {
364    Value *ArgValue = EmitScalarExpr(E->getArg(0));
365
366    llvm::Type *ArgType = ArgValue->getType();
367    Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
368
369    llvm::Type *ResultType = ConvertType(E->getType());
370    Value *Result = Builder.CreateCall(F, ArgValue);
371    if (Result->getType() != ResultType)
372      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
373                                     "cast");
374    return RValue::get(Result);
375  }
376  case Builtin::BI__builtin_expect: {
377    Value *ArgValue = EmitScalarExpr(E->getArg(0));
378    llvm::Type *ArgType = ArgValue->getType();
379
380    Value *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
381    Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
382
383    Value *Result = Builder.CreateCall2(FnExpect, ArgValue, ExpectedValue,
384                                        "expval");
385    return RValue::get(Result);
386  }
387  case Builtin::BI__builtin_bswap16:
388  case Builtin::BI__builtin_bswap32:
389  case Builtin::BI__builtin_bswap64: {
390    Value *ArgValue = EmitScalarExpr(E->getArg(0));
391    llvm::Type *ArgType = ArgValue->getType();
392    Value *F = CGM.getIntrinsic(Intrinsic::bswap, ArgType);
393    return RValue::get(Builder.CreateCall(F, ArgValue));
394  }
395  case Builtin::BI__builtin_object_size: {
396    // We rely on constant folding to deal with expressions with side effects.
397    assert(!E->getArg(0)->HasSideEffects(getContext()) &&
398           "should have been constant folded");
399
400    // We pass this builtin onto the optimizer so that it can
401    // figure out the object size in more complex cases.
402    llvm::Type *ResType = ConvertType(E->getType());
403
404    // LLVM only supports 0 and 2, make sure that we pass along that
405    // as a boolean.
406    Value *Ty = EmitScalarExpr(E->getArg(1));
407    ConstantInt *CI = dyn_cast<ConstantInt>(Ty);
408    assert(CI);
409    uint64_t val = CI->getZExtValue();
410    CI = ConstantInt::get(Builder.getInt1Ty(), (val & 0x2) >> 1);
411
412    Value *F = CGM.getIntrinsic(Intrinsic::objectsize, ResType);
413    return RValue::get(Builder.CreateCall2(F, EmitScalarExpr(E->getArg(0)),CI));
414  }
415  case Builtin::BI__builtin_prefetch: {
416    Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
417    // FIXME: Technically these constants should of type 'int', yes?
418    RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
419      llvm::ConstantInt::get(Int32Ty, 0);
420    Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
421      llvm::ConstantInt::get(Int32Ty, 3);
422    Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
423    Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
424    return RValue::get(Builder.CreateCall4(F, Address, RW, Locality, Data));
425  }
426  case Builtin::BI__builtin_readcyclecounter: {
427    Value *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
428    return RValue::get(Builder.CreateCall(F));
429  }
430  case Builtin::BI__builtin_trap: {
431    Value *F = CGM.getIntrinsic(Intrinsic::trap);
432    return RValue::get(Builder.CreateCall(F));
433  }
434  case Builtin::BI__debugbreak: {
435    Value *F = CGM.getIntrinsic(Intrinsic::debugtrap);
436    return RValue::get(Builder.CreateCall(F));
437  }
438  case Builtin::BI__builtin_unreachable: {
439    if (SanOpts->Unreachable)
440      EmitCheck(Builder.getFalse(), "builtin_unreachable",
441                EmitCheckSourceLocation(E->getExprLoc()),
442                ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
443    else
444      Builder.CreateUnreachable();
445
446    // We do need to preserve an insertion point.
447    EmitBlock(createBasicBlock("unreachable.cont"));
448
449    return RValue::get(0);
450  }
451
452  case Builtin::BI__builtin_powi:
453  case Builtin::BI__builtin_powif:
454  case Builtin::BI__builtin_powil: {
455    Value *Base = EmitScalarExpr(E->getArg(0));
456    Value *Exponent = EmitScalarExpr(E->getArg(1));
457    llvm::Type *ArgType = Base->getType();
458    Value *F = CGM.getIntrinsic(Intrinsic::powi, ArgType);
459    return RValue::get(Builder.CreateCall2(F, Base, Exponent));
460  }
461
462  case Builtin::BI__builtin_isgreater:
463  case Builtin::BI__builtin_isgreaterequal:
464  case Builtin::BI__builtin_isless:
465  case Builtin::BI__builtin_islessequal:
466  case Builtin::BI__builtin_islessgreater:
467  case Builtin::BI__builtin_isunordered: {
468    // Ordered comparisons: we know the arguments to these are matching scalar
469    // floating point values.
470    Value *LHS = EmitScalarExpr(E->getArg(0));
471    Value *RHS = EmitScalarExpr(E->getArg(1));
472
473    switch (BuiltinID) {
474    default: llvm_unreachable("Unknown ordered comparison");
475    case Builtin::BI__builtin_isgreater:
476      LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
477      break;
478    case Builtin::BI__builtin_isgreaterequal:
479      LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
480      break;
481    case Builtin::BI__builtin_isless:
482      LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
483      break;
484    case Builtin::BI__builtin_islessequal:
485      LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
486      break;
487    case Builtin::BI__builtin_islessgreater:
488      LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
489      break;
490    case Builtin::BI__builtin_isunordered:
491      LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
492      break;
493    }
494    // ZExt bool to int type.
495    return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
496  }
497  case Builtin::BI__builtin_isnan: {
498    Value *V = EmitScalarExpr(E->getArg(0));
499    V = Builder.CreateFCmpUNO(V, V, "cmp");
500    return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
501  }
502
503  case Builtin::BI__builtin_isinf: {
504    // isinf(x) --> fabs(x) == infinity
505    Value *V = EmitScalarExpr(E->getArg(0));
506    V = EmitFAbs(*this, V, E->getArg(0)->getType());
507
508    V = Builder.CreateFCmpOEQ(V, ConstantFP::getInfinity(V->getType()),"isinf");
509    return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
510  }
511
512  // TODO: BI__builtin_isinf_sign
513  //   isinf_sign(x) -> isinf(x) ? (signbit(x) ? -1 : 1) : 0
514
515  case Builtin::BI__builtin_isnormal: {
516    // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
517    Value *V = EmitScalarExpr(E->getArg(0));
518    Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
519
520    Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
521    Value *IsLessThanInf =
522      Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
523    APFloat Smallest = APFloat::getSmallestNormalized(
524                   getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
525    Value *IsNormal =
526      Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
527                            "isnormal");
528    V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
529    V = Builder.CreateAnd(V, IsNormal, "and");
530    return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
531  }
532
533  case Builtin::BI__builtin_isfinite: {
534    // isfinite(x) --> x == x && fabs(x) != infinity;
535    Value *V = EmitScalarExpr(E->getArg(0));
536    Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
537
538    Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
539    Value *IsNotInf =
540      Builder.CreateFCmpUNE(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
541
542    V = Builder.CreateAnd(Eq, IsNotInf, "and");
543    return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
544  }
545
546  case Builtin::BI__builtin_fpclassify: {
547    Value *V = EmitScalarExpr(E->getArg(5));
548    llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
549
550    // Create Result
551    BasicBlock *Begin = Builder.GetInsertBlock();
552    BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
553    Builder.SetInsertPoint(End);
554    PHINode *Result =
555      Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
556                        "fpclassify_result");
557
558    // if (V==0) return FP_ZERO
559    Builder.SetInsertPoint(Begin);
560    Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
561                                          "iszero");
562    Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
563    BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
564    Builder.CreateCondBr(IsZero, End, NotZero);
565    Result->addIncoming(ZeroLiteral, Begin);
566
567    // if (V != V) return FP_NAN
568    Builder.SetInsertPoint(NotZero);
569    Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
570    Value *NanLiteral = EmitScalarExpr(E->getArg(0));
571    BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
572    Builder.CreateCondBr(IsNan, End, NotNan);
573    Result->addIncoming(NanLiteral, NotZero);
574
575    // if (fabs(V) == infinity) return FP_INFINITY
576    Builder.SetInsertPoint(NotNan);
577    Value *VAbs = EmitFAbs(*this, V, E->getArg(5)->getType());
578    Value *IsInf =
579      Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
580                            "isinf");
581    Value *InfLiteral = EmitScalarExpr(E->getArg(1));
582    BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
583    Builder.CreateCondBr(IsInf, End, NotInf);
584    Result->addIncoming(InfLiteral, NotNan);
585
586    // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
587    Builder.SetInsertPoint(NotInf);
588    APFloat Smallest = APFloat::getSmallestNormalized(
589        getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
590    Value *IsNormal =
591      Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
592                            "isnormal");
593    Value *NormalResult =
594      Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
595                           EmitScalarExpr(E->getArg(3)));
596    Builder.CreateBr(End);
597    Result->addIncoming(NormalResult, NotInf);
598
599    // return Result
600    Builder.SetInsertPoint(End);
601    return RValue::get(Result);
602  }
603
604  case Builtin::BIalloca:
605  case Builtin::BI__builtin_alloca: {
606    Value *Size = EmitScalarExpr(E->getArg(0));
607    return RValue::get(Builder.CreateAlloca(Builder.getInt8Ty(), Size));
608  }
609  case Builtin::BIbzero:
610  case Builtin::BI__builtin_bzero: {
611    std::pair<llvm::Value*, unsigned> Dest =
612        EmitPointerWithAlignment(E->getArg(0));
613    Value *SizeVal = EmitScalarExpr(E->getArg(1));
614    Builder.CreateMemSet(Dest.first, Builder.getInt8(0), SizeVal,
615                         Dest.second, false);
616    return RValue::get(Dest.first);
617  }
618  case Builtin::BImemcpy:
619  case Builtin::BI__builtin_memcpy: {
620    std::pair<llvm::Value*, unsigned> Dest =
621        EmitPointerWithAlignment(E->getArg(0));
622    std::pair<llvm::Value*, unsigned> Src =
623        EmitPointerWithAlignment(E->getArg(1));
624    Value *SizeVal = EmitScalarExpr(E->getArg(2));
625    unsigned Align = std::min(Dest.second, Src.second);
626    Builder.CreateMemCpy(Dest.first, Src.first, SizeVal, Align, false);
627    return RValue::get(Dest.first);
628  }
629
630  case Builtin::BI__builtin___memcpy_chk: {
631    // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
632    llvm::APSInt Size, DstSize;
633    if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
634        !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
635      break;
636    if (Size.ugt(DstSize))
637      break;
638    std::pair<llvm::Value*, unsigned> Dest =
639        EmitPointerWithAlignment(E->getArg(0));
640    std::pair<llvm::Value*, unsigned> Src =
641        EmitPointerWithAlignment(E->getArg(1));
642    Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
643    unsigned Align = std::min(Dest.second, Src.second);
644    Builder.CreateMemCpy(Dest.first, Src.first, SizeVal, Align, false);
645    return RValue::get(Dest.first);
646  }
647
648  case Builtin::BI__builtin_objc_memmove_collectable: {
649    Value *Address = EmitScalarExpr(E->getArg(0));
650    Value *SrcAddr = EmitScalarExpr(E->getArg(1));
651    Value *SizeVal = EmitScalarExpr(E->getArg(2));
652    CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
653                                                  Address, SrcAddr, SizeVal);
654    return RValue::get(Address);
655  }
656
657  case Builtin::BI__builtin___memmove_chk: {
658    // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
659    llvm::APSInt Size, DstSize;
660    if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
661        !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
662      break;
663    if (Size.ugt(DstSize))
664      break;
665    std::pair<llvm::Value*, unsigned> Dest =
666        EmitPointerWithAlignment(E->getArg(0));
667    std::pair<llvm::Value*, unsigned> Src =
668        EmitPointerWithAlignment(E->getArg(1));
669    Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
670    unsigned Align = std::min(Dest.second, Src.second);
671    Builder.CreateMemMove(Dest.first, Src.first, SizeVal, Align, false);
672    return RValue::get(Dest.first);
673  }
674
675  case Builtin::BImemmove:
676  case Builtin::BI__builtin_memmove: {
677    std::pair<llvm::Value*, unsigned> Dest =
678        EmitPointerWithAlignment(E->getArg(0));
679    std::pair<llvm::Value*, unsigned> Src =
680        EmitPointerWithAlignment(E->getArg(1));
681    Value *SizeVal = EmitScalarExpr(E->getArg(2));
682    unsigned Align = std::min(Dest.second, Src.second);
683    Builder.CreateMemMove(Dest.first, Src.first, SizeVal, Align, false);
684    return RValue::get(Dest.first);
685  }
686  case Builtin::BImemset:
687  case Builtin::BI__builtin_memset: {
688    std::pair<llvm::Value*, unsigned> Dest =
689        EmitPointerWithAlignment(E->getArg(0));
690    Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
691                                         Builder.getInt8Ty());
692    Value *SizeVal = EmitScalarExpr(E->getArg(2));
693    Builder.CreateMemSet(Dest.first, ByteVal, SizeVal, Dest.second, false);
694    return RValue::get(Dest.first);
695  }
696  case Builtin::BI__builtin___memset_chk: {
697    // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
698    llvm::APSInt Size, DstSize;
699    if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
700        !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
701      break;
702    if (Size.ugt(DstSize))
703      break;
704    std::pair<llvm::Value*, unsigned> Dest =
705        EmitPointerWithAlignment(E->getArg(0));
706    Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
707                                         Builder.getInt8Ty());
708    Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
709    Builder.CreateMemSet(Dest.first, ByteVal, SizeVal, Dest.second, false);
710    return RValue::get(Dest.first);
711  }
712  case Builtin::BI__builtin_dwarf_cfa: {
713    // The offset in bytes from the first argument to the CFA.
714    //
715    // Why on earth is this in the frontend?  Is there any reason at
716    // all that the backend can't reasonably determine this while
717    // lowering llvm.eh.dwarf.cfa()?
718    //
719    // TODO: If there's a satisfactory reason, add a target hook for
720    // this instead of hard-coding 0, which is correct for most targets.
721    int32_t Offset = 0;
722
723    Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
724    return RValue::get(Builder.CreateCall(F,
725                                      llvm::ConstantInt::get(Int32Ty, Offset)));
726  }
727  case Builtin::BI__builtin_return_address: {
728    Value *Depth = EmitScalarExpr(E->getArg(0));
729    Depth = Builder.CreateIntCast(Depth, Int32Ty, false);
730    Value *F = CGM.getIntrinsic(Intrinsic::returnaddress);
731    return RValue::get(Builder.CreateCall(F, Depth));
732  }
733  case Builtin::BI__builtin_frame_address: {
734    Value *Depth = EmitScalarExpr(E->getArg(0));
735    Depth = Builder.CreateIntCast(Depth, Int32Ty, false);
736    Value *F = CGM.getIntrinsic(Intrinsic::frameaddress);
737    return RValue::get(Builder.CreateCall(F, Depth));
738  }
739  case Builtin::BI__builtin_extract_return_addr: {
740    Value *Address = EmitScalarExpr(E->getArg(0));
741    Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
742    return RValue::get(Result);
743  }
744  case Builtin::BI__builtin_frob_return_addr: {
745    Value *Address = EmitScalarExpr(E->getArg(0));
746    Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
747    return RValue::get(Result);
748  }
749  case Builtin::BI__builtin_dwarf_sp_column: {
750    llvm::IntegerType *Ty
751      = cast<llvm::IntegerType>(ConvertType(E->getType()));
752    int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
753    if (Column == -1) {
754      CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
755      return RValue::get(llvm::UndefValue::get(Ty));
756    }
757    return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
758  }
759  case Builtin::BI__builtin_init_dwarf_reg_size_table: {
760    Value *Address = EmitScalarExpr(E->getArg(0));
761    if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
762      CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
763    return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
764  }
765  case Builtin::BI__builtin_eh_return: {
766    Value *Int = EmitScalarExpr(E->getArg(0));
767    Value *Ptr = EmitScalarExpr(E->getArg(1));
768
769    llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
770    assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
771           "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
772    Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32
773                                  ? Intrinsic::eh_return_i32
774                                  : Intrinsic::eh_return_i64);
775    Builder.CreateCall2(F, Int, Ptr);
776    Builder.CreateUnreachable();
777
778    // We do need to preserve an insertion point.
779    EmitBlock(createBasicBlock("builtin_eh_return.cont"));
780
781    return RValue::get(0);
782  }
783  case Builtin::BI__builtin_unwind_init: {
784    Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
785    return RValue::get(Builder.CreateCall(F));
786  }
787  case Builtin::BI__builtin_extend_pointer: {
788    // Extends a pointer to the size of an _Unwind_Word, which is
789    // uint64_t on all platforms.  Generally this gets poked into a
790    // register and eventually used as an address, so if the
791    // addressing registers are wider than pointers and the platform
792    // doesn't implicitly ignore high-order bits when doing
793    // addressing, we need to make sure we zext / sext based on
794    // the platform's expectations.
795    //
796    // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
797
798    // Cast the pointer to intptr_t.
799    Value *Ptr = EmitScalarExpr(E->getArg(0));
800    Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
801
802    // If that's 64 bits, we're done.
803    if (IntPtrTy->getBitWidth() == 64)
804      return RValue::get(Result);
805
806    // Otherwise, ask the codegen data what to do.
807    if (getTargetHooks().extendPointerWithSExt())
808      return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
809    else
810      return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
811  }
812  case Builtin::BI__builtin_setjmp: {
813    // Buffer is a void**.
814    Value *Buf = EmitScalarExpr(E->getArg(0));
815
816    // Store the frame pointer to the setjmp buffer.
817    Value *FrameAddr =
818      Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
819                         ConstantInt::get(Int32Ty, 0));
820    Builder.CreateStore(FrameAddr, Buf);
821
822    // Store the stack pointer to the setjmp buffer.
823    Value *StackAddr =
824      Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
825    Value *StackSaveSlot =
826      Builder.CreateGEP(Buf, ConstantInt::get(Int32Ty, 2));
827    Builder.CreateStore(StackAddr, StackSaveSlot);
828
829    // Call LLVM's EH setjmp, which is lightweight.
830    Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
831    Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
832    return RValue::get(Builder.CreateCall(F, Buf));
833  }
834  case Builtin::BI__builtin_longjmp: {
835    Value *Buf = EmitScalarExpr(E->getArg(0));
836    Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
837
838    // Call LLVM's EH longjmp, which is lightweight.
839    Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
840
841    // longjmp doesn't return; mark this as unreachable.
842    Builder.CreateUnreachable();
843
844    // We do need to preserve an insertion point.
845    EmitBlock(createBasicBlock("longjmp.cont"));
846
847    return RValue::get(0);
848  }
849  case Builtin::BI__sync_fetch_and_add:
850  case Builtin::BI__sync_fetch_and_sub:
851  case Builtin::BI__sync_fetch_and_or:
852  case Builtin::BI__sync_fetch_and_and:
853  case Builtin::BI__sync_fetch_and_xor:
854  case Builtin::BI__sync_add_and_fetch:
855  case Builtin::BI__sync_sub_and_fetch:
856  case Builtin::BI__sync_and_and_fetch:
857  case Builtin::BI__sync_or_and_fetch:
858  case Builtin::BI__sync_xor_and_fetch:
859  case Builtin::BI__sync_val_compare_and_swap:
860  case Builtin::BI__sync_bool_compare_and_swap:
861  case Builtin::BI__sync_lock_test_and_set:
862  case Builtin::BI__sync_lock_release:
863  case Builtin::BI__sync_swap:
864    llvm_unreachable("Shouldn't make it through sema");
865  case Builtin::BI__sync_fetch_and_add_1:
866  case Builtin::BI__sync_fetch_and_add_2:
867  case Builtin::BI__sync_fetch_and_add_4:
868  case Builtin::BI__sync_fetch_and_add_8:
869  case Builtin::BI__sync_fetch_and_add_16:
870    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
871  case Builtin::BI__sync_fetch_and_sub_1:
872  case Builtin::BI__sync_fetch_and_sub_2:
873  case Builtin::BI__sync_fetch_and_sub_4:
874  case Builtin::BI__sync_fetch_and_sub_8:
875  case Builtin::BI__sync_fetch_and_sub_16:
876    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
877  case Builtin::BI__sync_fetch_and_or_1:
878  case Builtin::BI__sync_fetch_and_or_2:
879  case Builtin::BI__sync_fetch_and_or_4:
880  case Builtin::BI__sync_fetch_and_or_8:
881  case Builtin::BI__sync_fetch_and_or_16:
882    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
883  case Builtin::BI__sync_fetch_and_and_1:
884  case Builtin::BI__sync_fetch_and_and_2:
885  case Builtin::BI__sync_fetch_and_and_4:
886  case Builtin::BI__sync_fetch_and_and_8:
887  case Builtin::BI__sync_fetch_and_and_16:
888    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
889  case Builtin::BI__sync_fetch_and_xor_1:
890  case Builtin::BI__sync_fetch_and_xor_2:
891  case Builtin::BI__sync_fetch_and_xor_4:
892  case Builtin::BI__sync_fetch_and_xor_8:
893  case Builtin::BI__sync_fetch_and_xor_16:
894    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
895
896  // Clang extensions: not overloaded yet.
897  case Builtin::BI__sync_fetch_and_min:
898    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
899  case Builtin::BI__sync_fetch_and_max:
900    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
901  case Builtin::BI__sync_fetch_and_umin:
902    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
903  case Builtin::BI__sync_fetch_and_umax:
904    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
905
906  case Builtin::BI__sync_add_and_fetch_1:
907  case Builtin::BI__sync_add_and_fetch_2:
908  case Builtin::BI__sync_add_and_fetch_4:
909  case Builtin::BI__sync_add_and_fetch_8:
910  case Builtin::BI__sync_add_and_fetch_16:
911    return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
912                                llvm::Instruction::Add);
913  case Builtin::BI__sync_sub_and_fetch_1:
914  case Builtin::BI__sync_sub_and_fetch_2:
915  case Builtin::BI__sync_sub_and_fetch_4:
916  case Builtin::BI__sync_sub_and_fetch_8:
917  case Builtin::BI__sync_sub_and_fetch_16:
918    return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
919                                llvm::Instruction::Sub);
920  case Builtin::BI__sync_and_and_fetch_1:
921  case Builtin::BI__sync_and_and_fetch_2:
922  case Builtin::BI__sync_and_and_fetch_4:
923  case Builtin::BI__sync_and_and_fetch_8:
924  case Builtin::BI__sync_and_and_fetch_16:
925    return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
926                                llvm::Instruction::And);
927  case Builtin::BI__sync_or_and_fetch_1:
928  case Builtin::BI__sync_or_and_fetch_2:
929  case Builtin::BI__sync_or_and_fetch_4:
930  case Builtin::BI__sync_or_and_fetch_8:
931  case Builtin::BI__sync_or_and_fetch_16:
932    return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
933                                llvm::Instruction::Or);
934  case Builtin::BI__sync_xor_and_fetch_1:
935  case Builtin::BI__sync_xor_and_fetch_2:
936  case Builtin::BI__sync_xor_and_fetch_4:
937  case Builtin::BI__sync_xor_and_fetch_8:
938  case Builtin::BI__sync_xor_and_fetch_16:
939    return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
940                                llvm::Instruction::Xor);
941
942  case Builtin::BI__sync_val_compare_and_swap_1:
943  case Builtin::BI__sync_val_compare_and_swap_2:
944  case Builtin::BI__sync_val_compare_and_swap_4:
945  case Builtin::BI__sync_val_compare_and_swap_8:
946  case Builtin::BI__sync_val_compare_and_swap_16: {
947    QualType T = E->getType();
948    llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
949    unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
950
951    llvm::IntegerType *IntType =
952      llvm::IntegerType::get(getLLVMContext(),
953                             getContext().getTypeSize(T));
954    llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
955
956    Value *Args[3];
957    Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
958    Args[1] = EmitScalarExpr(E->getArg(1));
959    llvm::Type *ValueType = Args[1]->getType();
960    Args[1] = EmitToInt(*this, Args[1], T, IntType);
961    Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
962
963    Value *Result = Builder.CreateAtomicCmpXchg(Args[0], Args[1], Args[2],
964                                                llvm::SequentiallyConsistent);
965    Result = EmitFromInt(*this, Result, T, ValueType);
966    return RValue::get(Result);
967  }
968
969  case Builtin::BI__sync_bool_compare_and_swap_1:
970  case Builtin::BI__sync_bool_compare_and_swap_2:
971  case Builtin::BI__sync_bool_compare_and_swap_4:
972  case Builtin::BI__sync_bool_compare_and_swap_8:
973  case Builtin::BI__sync_bool_compare_and_swap_16: {
974    QualType T = E->getArg(1)->getType();
975    llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
976    unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
977
978    llvm::IntegerType *IntType =
979      llvm::IntegerType::get(getLLVMContext(),
980                             getContext().getTypeSize(T));
981    llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
982
983    Value *Args[3];
984    Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
985    Args[1] = EmitToInt(*this, EmitScalarExpr(E->getArg(1)), T, IntType);
986    Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
987
988    Value *OldVal = Args[1];
989    Value *PrevVal = Builder.CreateAtomicCmpXchg(Args[0], Args[1], Args[2],
990                                                 llvm::SequentiallyConsistent);
991    Value *Result = Builder.CreateICmpEQ(PrevVal, OldVal);
992    // zext bool to int.
993    Result = Builder.CreateZExt(Result, ConvertType(E->getType()));
994    return RValue::get(Result);
995  }
996
997  case Builtin::BI__sync_swap_1:
998  case Builtin::BI__sync_swap_2:
999  case Builtin::BI__sync_swap_4:
1000  case Builtin::BI__sync_swap_8:
1001  case Builtin::BI__sync_swap_16:
1002    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
1003
1004  case Builtin::BI__sync_lock_test_and_set_1:
1005  case Builtin::BI__sync_lock_test_and_set_2:
1006  case Builtin::BI__sync_lock_test_and_set_4:
1007  case Builtin::BI__sync_lock_test_and_set_8:
1008  case Builtin::BI__sync_lock_test_and_set_16:
1009    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
1010
1011  case Builtin::BI__sync_lock_release_1:
1012  case Builtin::BI__sync_lock_release_2:
1013  case Builtin::BI__sync_lock_release_4:
1014  case Builtin::BI__sync_lock_release_8:
1015  case Builtin::BI__sync_lock_release_16: {
1016    Value *Ptr = EmitScalarExpr(E->getArg(0));
1017    QualType ElTy = E->getArg(0)->getType()->getPointeeType();
1018    CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
1019    llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
1020                                             StoreSize.getQuantity() * 8);
1021    Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
1022    llvm::StoreInst *Store =
1023      Builder.CreateStore(llvm::Constant::getNullValue(ITy), Ptr);
1024    Store->setAlignment(StoreSize.getQuantity());
1025    Store->setAtomic(llvm::Release);
1026    return RValue::get(0);
1027  }
1028
1029  case Builtin::BI__sync_synchronize: {
1030    // We assume this is supposed to correspond to a C++0x-style
1031    // sequentially-consistent fence (i.e. this is only usable for
1032    // synchonization, not device I/O or anything like that). This intrinsic
1033    // is really badly designed in the sense that in theory, there isn't
1034    // any way to safely use it... but in practice, it mostly works
1035    // to use it with non-atomic loads and stores to get acquire/release
1036    // semantics.
1037    Builder.CreateFence(llvm::SequentiallyConsistent);
1038    return RValue::get(0);
1039  }
1040
1041  case Builtin::BI__c11_atomic_is_lock_free:
1042  case Builtin::BI__atomic_is_lock_free: {
1043    // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
1044    // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
1045    // _Atomic(T) is always properly-aligned.
1046    const char *LibCallName = "__atomic_is_lock_free";
1047    CallArgList Args;
1048    Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
1049             getContext().getSizeType());
1050    if (BuiltinID == Builtin::BI__atomic_is_lock_free)
1051      Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
1052               getContext().VoidPtrTy);
1053    else
1054      Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
1055               getContext().VoidPtrTy);
1056    const CGFunctionInfo &FuncInfo =
1057        CGM.getTypes().arrangeFreeFunctionCall(E->getType(), Args,
1058                                               FunctionType::ExtInfo(),
1059                                               RequiredArgs::All);
1060    llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
1061    llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
1062    return EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
1063  }
1064
1065  case Builtin::BI__atomic_test_and_set: {
1066    // Look at the argument type to determine whether this is a volatile
1067    // operation. The parameter type is always volatile.
1068    QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
1069    bool Volatile =
1070        PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
1071
1072    Value *Ptr = EmitScalarExpr(E->getArg(0));
1073    unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
1074    Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
1075    Value *NewVal = Builder.getInt8(1);
1076    Value *Order = EmitScalarExpr(E->getArg(1));
1077    if (isa<llvm::ConstantInt>(Order)) {
1078      int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
1079      AtomicRMWInst *Result = 0;
1080      switch (ord) {
1081      case 0:  // memory_order_relaxed
1082      default: // invalid order
1083        Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1084                                         Ptr, NewVal,
1085                                         llvm::Monotonic);
1086        break;
1087      case 1:  // memory_order_consume
1088      case 2:  // memory_order_acquire
1089        Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1090                                         Ptr, NewVal,
1091                                         llvm::Acquire);
1092        break;
1093      case 3:  // memory_order_release
1094        Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1095                                         Ptr, NewVal,
1096                                         llvm::Release);
1097        break;
1098      case 4:  // memory_order_acq_rel
1099        Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1100                                         Ptr, NewVal,
1101                                         llvm::AcquireRelease);
1102        break;
1103      case 5:  // memory_order_seq_cst
1104        Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1105                                         Ptr, NewVal,
1106                                         llvm::SequentiallyConsistent);
1107        break;
1108      }
1109      Result->setVolatile(Volatile);
1110      return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
1111    }
1112
1113    llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
1114
1115    llvm::BasicBlock *BBs[5] = {
1116      createBasicBlock("monotonic", CurFn),
1117      createBasicBlock("acquire", CurFn),
1118      createBasicBlock("release", CurFn),
1119      createBasicBlock("acqrel", CurFn),
1120      createBasicBlock("seqcst", CurFn)
1121    };
1122    llvm::AtomicOrdering Orders[5] = {
1123      llvm::Monotonic, llvm::Acquire, llvm::Release,
1124      llvm::AcquireRelease, llvm::SequentiallyConsistent
1125    };
1126
1127    Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
1128    llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
1129
1130    Builder.SetInsertPoint(ContBB);
1131    PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
1132
1133    for (unsigned i = 0; i < 5; ++i) {
1134      Builder.SetInsertPoint(BBs[i]);
1135      AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1136                                                   Ptr, NewVal, Orders[i]);
1137      RMW->setVolatile(Volatile);
1138      Result->addIncoming(RMW, BBs[i]);
1139      Builder.CreateBr(ContBB);
1140    }
1141
1142    SI->addCase(Builder.getInt32(0), BBs[0]);
1143    SI->addCase(Builder.getInt32(1), BBs[1]);
1144    SI->addCase(Builder.getInt32(2), BBs[1]);
1145    SI->addCase(Builder.getInt32(3), BBs[2]);
1146    SI->addCase(Builder.getInt32(4), BBs[3]);
1147    SI->addCase(Builder.getInt32(5), BBs[4]);
1148
1149    Builder.SetInsertPoint(ContBB);
1150    return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
1151  }
1152
1153  case Builtin::BI__atomic_clear: {
1154    QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
1155    bool Volatile =
1156        PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
1157
1158    Value *Ptr = EmitScalarExpr(E->getArg(0));
1159    unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
1160    Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
1161    Value *NewVal = Builder.getInt8(0);
1162    Value *Order = EmitScalarExpr(E->getArg(1));
1163    if (isa<llvm::ConstantInt>(Order)) {
1164      int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
1165      StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
1166      Store->setAlignment(1);
1167      switch (ord) {
1168      case 0:  // memory_order_relaxed
1169      default: // invalid order
1170        Store->setOrdering(llvm::Monotonic);
1171        break;
1172      case 3:  // memory_order_release
1173        Store->setOrdering(llvm::Release);
1174        break;
1175      case 5:  // memory_order_seq_cst
1176        Store->setOrdering(llvm::SequentiallyConsistent);
1177        break;
1178      }
1179      return RValue::get(0);
1180    }
1181
1182    llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
1183
1184    llvm::BasicBlock *BBs[3] = {
1185      createBasicBlock("monotonic", CurFn),
1186      createBasicBlock("release", CurFn),
1187      createBasicBlock("seqcst", CurFn)
1188    };
1189    llvm::AtomicOrdering Orders[3] = {
1190      llvm::Monotonic, llvm::Release, llvm::SequentiallyConsistent
1191    };
1192
1193    Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
1194    llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
1195
1196    for (unsigned i = 0; i < 3; ++i) {
1197      Builder.SetInsertPoint(BBs[i]);
1198      StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
1199      Store->setAlignment(1);
1200      Store->setOrdering(Orders[i]);
1201      Builder.CreateBr(ContBB);
1202    }
1203
1204    SI->addCase(Builder.getInt32(0), BBs[0]);
1205    SI->addCase(Builder.getInt32(3), BBs[1]);
1206    SI->addCase(Builder.getInt32(5), BBs[2]);
1207
1208    Builder.SetInsertPoint(ContBB);
1209    return RValue::get(0);
1210  }
1211
1212  case Builtin::BI__atomic_thread_fence:
1213  case Builtin::BI__atomic_signal_fence:
1214  case Builtin::BI__c11_atomic_thread_fence:
1215  case Builtin::BI__c11_atomic_signal_fence: {
1216    llvm::SynchronizationScope Scope;
1217    if (BuiltinID == Builtin::BI__atomic_signal_fence ||
1218        BuiltinID == Builtin::BI__c11_atomic_signal_fence)
1219      Scope = llvm::SingleThread;
1220    else
1221      Scope = llvm::CrossThread;
1222    Value *Order = EmitScalarExpr(E->getArg(0));
1223    if (isa<llvm::ConstantInt>(Order)) {
1224      int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
1225      switch (ord) {
1226      case 0:  // memory_order_relaxed
1227      default: // invalid order
1228        break;
1229      case 1:  // memory_order_consume
1230      case 2:  // memory_order_acquire
1231        Builder.CreateFence(llvm::Acquire, Scope);
1232        break;
1233      case 3:  // memory_order_release
1234        Builder.CreateFence(llvm::Release, Scope);
1235        break;
1236      case 4:  // memory_order_acq_rel
1237        Builder.CreateFence(llvm::AcquireRelease, Scope);
1238        break;
1239      case 5:  // memory_order_seq_cst
1240        Builder.CreateFence(llvm::SequentiallyConsistent, Scope);
1241        break;
1242      }
1243      return RValue::get(0);
1244    }
1245
1246    llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
1247    AcquireBB = createBasicBlock("acquire", CurFn);
1248    ReleaseBB = createBasicBlock("release", CurFn);
1249    AcqRelBB = createBasicBlock("acqrel", CurFn);
1250    SeqCstBB = createBasicBlock("seqcst", CurFn);
1251    llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
1252
1253    Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
1254    llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
1255
1256    Builder.SetInsertPoint(AcquireBB);
1257    Builder.CreateFence(llvm::Acquire, Scope);
1258    Builder.CreateBr(ContBB);
1259    SI->addCase(Builder.getInt32(1), AcquireBB);
1260    SI->addCase(Builder.getInt32(2), AcquireBB);
1261
1262    Builder.SetInsertPoint(ReleaseBB);
1263    Builder.CreateFence(llvm::Release, Scope);
1264    Builder.CreateBr(ContBB);
1265    SI->addCase(Builder.getInt32(3), ReleaseBB);
1266
1267    Builder.SetInsertPoint(AcqRelBB);
1268    Builder.CreateFence(llvm::AcquireRelease, Scope);
1269    Builder.CreateBr(ContBB);
1270    SI->addCase(Builder.getInt32(4), AcqRelBB);
1271
1272    Builder.SetInsertPoint(SeqCstBB);
1273    Builder.CreateFence(llvm::SequentiallyConsistent, Scope);
1274    Builder.CreateBr(ContBB);
1275    SI->addCase(Builder.getInt32(5), SeqCstBB);
1276
1277    Builder.SetInsertPoint(ContBB);
1278    return RValue::get(0);
1279  }
1280
1281    // Library functions with special handling.
1282  case Builtin::BIsqrt:
1283  case Builtin::BIsqrtf:
1284  case Builtin::BIsqrtl: {
1285    // TODO: there is currently no set of optimizer flags
1286    // sufficient for us to rewrite sqrt to @llvm.sqrt.
1287    // -fmath-errno=0 is not good enough; we need finiteness.
1288    // We could probably precondition the call with an ult
1289    // against 0, but is that worth the complexity?
1290    break;
1291  }
1292
1293  case Builtin::BIpow:
1294  case Builtin::BIpowf:
1295  case Builtin::BIpowl: {
1296    // Rewrite sqrt to intrinsic if allowed.
1297    if (!FD->hasAttr<ConstAttr>())
1298      break;
1299    Value *Base = EmitScalarExpr(E->getArg(0));
1300    Value *Exponent = EmitScalarExpr(E->getArg(1));
1301    llvm::Type *ArgType = Base->getType();
1302    Value *F = CGM.getIntrinsic(Intrinsic::pow, ArgType);
1303    return RValue::get(Builder.CreateCall2(F, Base, Exponent));
1304  }
1305
1306  case Builtin::BIfma:
1307  case Builtin::BIfmaf:
1308  case Builtin::BIfmal:
1309  case Builtin::BI__builtin_fma:
1310  case Builtin::BI__builtin_fmaf:
1311  case Builtin::BI__builtin_fmal: {
1312    // Rewrite fma to intrinsic.
1313    Value *FirstArg = EmitScalarExpr(E->getArg(0));
1314    llvm::Type *ArgType = FirstArg->getType();
1315    Value *F = CGM.getIntrinsic(Intrinsic::fma, ArgType);
1316    return RValue::get(Builder.CreateCall3(F, FirstArg,
1317                                              EmitScalarExpr(E->getArg(1)),
1318                                              EmitScalarExpr(E->getArg(2))));
1319  }
1320
1321  case Builtin::BI__builtin_signbit:
1322  case Builtin::BI__builtin_signbitf:
1323  case Builtin::BI__builtin_signbitl: {
1324    LLVMContext &C = CGM.getLLVMContext();
1325
1326    Value *Arg = EmitScalarExpr(E->getArg(0));
1327    llvm::Type *ArgTy = Arg->getType();
1328    if (ArgTy->isPPC_FP128Ty())
1329      break; // FIXME: I'm not sure what the right implementation is here.
1330    int ArgWidth = ArgTy->getPrimitiveSizeInBits();
1331    llvm::Type *ArgIntTy = llvm::IntegerType::get(C, ArgWidth);
1332    Value *BCArg = Builder.CreateBitCast(Arg, ArgIntTy);
1333    Value *ZeroCmp = llvm::Constant::getNullValue(ArgIntTy);
1334    Value *Result = Builder.CreateICmpSLT(BCArg, ZeroCmp);
1335    return RValue::get(Builder.CreateZExt(Result, ConvertType(E->getType())));
1336  }
1337  case Builtin::BI__builtin_annotation: {
1338    llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
1339    llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
1340                                      AnnVal->getType());
1341
1342    // Get the annotation string, go through casts. Sema requires this to be a
1343    // non-wide string literal, potentially casted, so the cast<> is safe.
1344    const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
1345    StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
1346    return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc()));
1347  }
1348  case Builtin::BI__builtin_addcs:
1349  case Builtin::BI__builtin_addc:
1350  case Builtin::BI__builtin_addcl:
1351  case Builtin::BI__builtin_addcll:
1352  case Builtin::BI__builtin_subcs:
1353  case Builtin::BI__builtin_subc:
1354  case Builtin::BI__builtin_subcl:
1355  case Builtin::BI__builtin_subcll: {
1356
1357    // We translate all of these builtins from expressions of the form:
1358    //   int x = ..., y = ..., carryin = ..., carryout, result;
1359    //   result = __builtin_addc(x, y, carryin, &carryout);
1360    //
1361    // to LLVM IR of the form:
1362    //
1363    //   %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
1364    //   %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
1365    //   %carry1 = extractvalue {i32, i1} %tmp1, 1
1366    //   %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
1367    //                                                       i32 %carryin)
1368    //   %result = extractvalue {i32, i1} %tmp2, 0
1369    //   %carry2 = extractvalue {i32, i1} %tmp2, 1
1370    //   %tmp3 = or i1 %carry1, %carry2
1371    //   %tmp4 = zext i1 %tmp3 to i32
1372    //   store i32 %tmp4, i32* %carryout
1373
1374    // Scalarize our inputs.
1375    llvm::Value *X = EmitScalarExpr(E->getArg(0));
1376    llvm::Value *Y = EmitScalarExpr(E->getArg(1));
1377    llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
1378    std::pair<llvm::Value*, unsigned> CarryOutPtr =
1379      EmitPointerWithAlignment(E->getArg(3));
1380
1381    // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
1382    llvm::Intrinsic::ID IntrinsicId;
1383    switch (BuiltinID) {
1384    default: llvm_unreachable("Unknown multiprecision builtin id.");
1385    case Builtin::BI__builtin_addcs:
1386    case Builtin::BI__builtin_addc:
1387    case Builtin::BI__builtin_addcl:
1388    case Builtin::BI__builtin_addcll:
1389      IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
1390      break;
1391    case Builtin::BI__builtin_subcs:
1392    case Builtin::BI__builtin_subc:
1393    case Builtin::BI__builtin_subcl:
1394    case Builtin::BI__builtin_subcll:
1395      IntrinsicId = llvm::Intrinsic::usub_with_overflow;
1396      break;
1397    }
1398
1399    // Construct our resulting LLVM IR expression.
1400    llvm::Value *Carry1;
1401    llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
1402                                              X, Y, Carry1);
1403    llvm::Value *Carry2;
1404    llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
1405                                              Sum1, Carryin, Carry2);
1406    llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
1407                                               X->getType());
1408    llvm::StoreInst *CarryOutStore = Builder.CreateStore(CarryOut,
1409                                                         CarryOutPtr.first);
1410    CarryOutStore->setAlignment(CarryOutPtr.second);
1411    return RValue::get(Sum2);
1412  }
1413  case Builtin::BI__noop:
1414    return RValue::get(0);
1415  }
1416
1417  // If this is an alias for a lib function (e.g. __builtin_sin), emit
1418  // the call using the normal call path, but using the unmangled
1419  // version of the function name.
1420  if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
1421    return emitLibraryCall(*this, FD, E,
1422                           CGM.getBuiltinLibFunction(FD, BuiltinID));
1423
1424  // If this is a predefined lib function (e.g. malloc), emit the call
1425  // using exactly the normal call path.
1426  if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
1427    return emitLibraryCall(*this, FD, E, EmitScalarExpr(E->getCallee()));
1428
1429  // See if we have a target specific intrinsic.
1430  const char *Name = getContext().BuiltinInfo.GetName(BuiltinID);
1431  Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
1432  if (const char *Prefix =
1433      llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch()))
1434    IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix, Name);
1435
1436  if (IntrinsicID != Intrinsic::not_intrinsic) {
1437    SmallVector<Value*, 16> Args;
1438
1439    // Find out if any arguments are required to be integer constant
1440    // expressions.
1441    unsigned ICEArguments = 0;
1442    ASTContext::GetBuiltinTypeError Error;
1443    getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
1444    assert(Error == ASTContext::GE_None && "Should not codegen an error");
1445
1446    Function *F = CGM.getIntrinsic(IntrinsicID);
1447    llvm::FunctionType *FTy = F->getFunctionType();
1448
1449    for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
1450      Value *ArgValue;
1451      // If this is a normal argument, just emit it as a scalar.
1452      if ((ICEArguments & (1 << i)) == 0) {
1453        ArgValue = EmitScalarExpr(E->getArg(i));
1454      } else {
1455        // If this is required to be a constant, constant fold it so that we
1456        // know that the generated intrinsic gets a ConstantInt.
1457        llvm::APSInt Result;
1458        bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
1459        assert(IsConst && "Constant arg isn't actually constant?");
1460        (void)IsConst;
1461        ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
1462      }
1463
1464      // If the intrinsic arg type is different from the builtin arg type
1465      // we need to do a bit cast.
1466      llvm::Type *PTy = FTy->getParamType(i);
1467      if (PTy != ArgValue->getType()) {
1468        assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
1469               "Must be able to losslessly bit cast to param");
1470        ArgValue = Builder.CreateBitCast(ArgValue, PTy);
1471      }
1472
1473      Args.push_back(ArgValue);
1474    }
1475
1476    Value *V = Builder.CreateCall(F, Args);
1477    QualType BuiltinRetType = E->getType();
1478
1479    llvm::Type *RetTy = VoidTy;
1480    if (!BuiltinRetType->isVoidType())
1481      RetTy = ConvertType(BuiltinRetType);
1482
1483    if (RetTy != V->getType()) {
1484      assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
1485             "Must be able to losslessly bit cast result type");
1486      V = Builder.CreateBitCast(V, RetTy);
1487    }
1488
1489    return RValue::get(V);
1490  }
1491
1492  // See if we have a target specific builtin that needs to be lowered.
1493  if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
1494    return RValue::get(V);
1495
1496  ErrorUnsupported(E, "builtin function");
1497
1498  // Unknown builtin, for now just dump it out and return undef.
1499  return GetUndefRValue(E->getType());
1500}
1501
1502Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
1503                                              const CallExpr *E) {
1504  switch (getTarget().getTriple().getArch()) {
1505  case llvm::Triple::aarch64:
1506    return EmitAArch64BuiltinExpr(BuiltinID, E);
1507  case llvm::Triple::arm:
1508  case llvm::Triple::thumb:
1509    return EmitARMBuiltinExpr(BuiltinID, E);
1510  case llvm::Triple::x86:
1511  case llvm::Triple::x86_64:
1512    return EmitX86BuiltinExpr(BuiltinID, E);
1513  case llvm::Triple::ppc:
1514  case llvm::Triple::ppc64:
1515    return EmitPPCBuiltinExpr(BuiltinID, E);
1516  default:
1517    return 0;
1518  }
1519}
1520
1521static llvm::VectorType *GetNeonType(CodeGenFunction *CGF,
1522                                     NeonTypeFlags TypeFlags) {
1523  int IsQuad = TypeFlags.isQuad();
1524  switch (TypeFlags.getEltType()) {
1525  case NeonTypeFlags::Int8:
1526  case NeonTypeFlags::Poly8:
1527    return llvm::VectorType::get(CGF->Int8Ty, 8 << IsQuad);
1528  case NeonTypeFlags::Int16:
1529  case NeonTypeFlags::Poly16:
1530  case NeonTypeFlags::Float16:
1531    return llvm::VectorType::get(CGF->Int16Ty, 4 << IsQuad);
1532  case NeonTypeFlags::Int32:
1533    return llvm::VectorType::get(CGF->Int32Ty, 2 << IsQuad);
1534  case NeonTypeFlags::Int64:
1535    return llvm::VectorType::get(CGF->Int64Ty, 1 << IsQuad);
1536  case NeonTypeFlags::Float32:
1537    return llvm::VectorType::get(CGF->FloatTy, 2 << IsQuad);
1538  }
1539  llvm_unreachable("Invalid NeonTypeFlags element type!");
1540}
1541
1542Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
1543  unsigned nElts = cast<llvm::VectorType>(V->getType())->getNumElements();
1544  Value* SV = llvm::ConstantVector::getSplat(nElts, C);
1545  return Builder.CreateShuffleVector(V, V, SV, "lane");
1546}
1547
1548Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
1549                                     const char *name,
1550                                     unsigned shift, bool rightshift) {
1551  unsigned j = 0;
1552  for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
1553       ai != ae; ++ai, ++j)
1554    if (shift > 0 && shift == j)
1555      Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
1556    else
1557      Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
1558
1559  return Builder.CreateCall(F, Ops, name);
1560}
1561
1562Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
1563                                            bool neg) {
1564  int SV = cast<ConstantInt>(V)->getSExtValue();
1565
1566  llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
1567  llvm::Constant *C = ConstantInt::get(VTy->getElementType(), neg ? -SV : SV);
1568  return llvm::ConstantVector::getSplat(VTy->getNumElements(), C);
1569}
1570
1571/// GetPointeeAlignment - Given an expression with a pointer type, find the
1572/// alignment of the type referenced by the pointer.  Skip over implicit
1573/// casts.
1574std::pair<llvm::Value*, unsigned>
1575CodeGenFunction::EmitPointerWithAlignment(const Expr *Addr) {
1576  assert(Addr->getType()->isPointerType());
1577  Addr = Addr->IgnoreParens();
1578  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Addr)) {
1579    if ((ICE->getCastKind() == CK_BitCast || ICE->getCastKind() == CK_NoOp) &&
1580        ICE->getSubExpr()->getType()->isPointerType()) {
1581      std::pair<llvm::Value*, unsigned> Ptr =
1582          EmitPointerWithAlignment(ICE->getSubExpr());
1583      Ptr.first = Builder.CreateBitCast(Ptr.first,
1584                                        ConvertType(Addr->getType()));
1585      return Ptr;
1586    } else if (ICE->getCastKind() == CK_ArrayToPointerDecay) {
1587      LValue LV = EmitLValue(ICE->getSubExpr());
1588      unsigned Align = LV.getAlignment().getQuantity();
1589      if (!Align) {
1590        // FIXME: Once LValues are fixed to always set alignment,
1591        // zap this code.
1592        QualType PtTy = ICE->getSubExpr()->getType();
1593        if (!PtTy->isIncompleteType())
1594          Align = getContext().getTypeAlignInChars(PtTy).getQuantity();
1595        else
1596          Align = 1;
1597      }
1598      return std::make_pair(LV.getAddress(), Align);
1599    }
1600  }
1601  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Addr)) {
1602    if (UO->getOpcode() == UO_AddrOf) {
1603      LValue LV = EmitLValue(UO->getSubExpr());
1604      unsigned Align = LV.getAlignment().getQuantity();
1605      if (!Align) {
1606        // FIXME: Once LValues are fixed to always set alignment,
1607        // zap this code.
1608        QualType PtTy = UO->getSubExpr()->getType();
1609        if (!PtTy->isIncompleteType())
1610          Align = getContext().getTypeAlignInChars(PtTy).getQuantity();
1611        else
1612          Align = 1;
1613      }
1614      return std::make_pair(LV.getAddress(), Align);
1615    }
1616  }
1617
1618  unsigned Align = 1;
1619  QualType PtTy = Addr->getType()->getPointeeType();
1620  if (!PtTy->isIncompleteType())
1621    Align = getContext().getTypeAlignInChars(PtTy).getQuantity();
1622
1623  return std::make_pair(EmitScalarExpr(Addr), Align);
1624}
1625
1626Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
1627                                               const CallExpr *E) {
1628  if (BuiltinID == AArch64::BI__clear_cache) {
1629    assert(E->getNumArgs() == 2 &&
1630           "Variadic __clear_cache slipped through on AArch64");
1631
1632    const FunctionDecl *FD = E->getDirectCallee();
1633    SmallVector<Value *, 2> Ops;
1634    for (unsigned i = 0; i < E->getNumArgs(); i++)
1635      Ops.push_back(EmitScalarExpr(E->getArg(i)));
1636    llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
1637    llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
1638    StringRef Name = FD->getName();
1639    return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
1640  }
1641
1642  return 0;
1643}
1644
1645Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
1646                                           const CallExpr *E) {
1647  if (BuiltinID == ARM::BI__clear_cache) {
1648    const FunctionDecl *FD = E->getDirectCallee();
1649    // Oddly people write this call without args on occasion and gcc accepts
1650    // it - it's also marked as varargs in the description file.
1651    SmallVector<Value*, 2> Ops;
1652    for (unsigned i = 0; i < E->getNumArgs(); i++)
1653      Ops.push_back(EmitScalarExpr(E->getArg(i)));
1654    llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
1655    llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
1656    StringRef Name = FD->getName();
1657    return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
1658  }
1659
1660  if (BuiltinID == ARM::BI__builtin_arm_ldrexd) {
1661    Function *F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
1662
1663    Value *LdPtr = EmitScalarExpr(E->getArg(0));
1664    Value *Val = Builder.CreateCall(F, LdPtr, "ldrexd");
1665
1666    Value *Val0 = Builder.CreateExtractValue(Val, 1);
1667    Value *Val1 = Builder.CreateExtractValue(Val, 0);
1668    Val0 = Builder.CreateZExt(Val0, Int64Ty);
1669    Val1 = Builder.CreateZExt(Val1, Int64Ty);
1670
1671    Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
1672    Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
1673    return Builder.CreateOr(Val, Val1);
1674  }
1675
1676  if (BuiltinID == ARM::BI__builtin_arm_strexd) {
1677    Function *F = CGM.getIntrinsic(Intrinsic::arm_strexd);
1678    llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, NULL);
1679
1680    Value *One = llvm::ConstantInt::get(Int32Ty, 1);
1681    Value *Tmp = Builder.CreateAlloca(Int64Ty, One);
1682    Value *Val = EmitScalarExpr(E->getArg(0));
1683    Builder.CreateStore(Val, Tmp);
1684
1685    Value *LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
1686    Val = Builder.CreateLoad(LdPtr);
1687
1688    Value *Arg0 = Builder.CreateExtractValue(Val, 0);
1689    Value *Arg1 = Builder.CreateExtractValue(Val, 1);
1690    Value *StPtr = EmitScalarExpr(E->getArg(1));
1691    return Builder.CreateCall3(F, Arg0, Arg1, StPtr, "strexd");
1692  }
1693
1694  SmallVector<Value*, 4> Ops;
1695  llvm::Value *Align = 0;
1696  for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
1697    if (i == 0) {
1698      switch (BuiltinID) {
1699      case ARM::BI__builtin_neon_vld1_v:
1700      case ARM::BI__builtin_neon_vld1q_v:
1701      case ARM::BI__builtin_neon_vld1q_lane_v:
1702      case ARM::BI__builtin_neon_vld1_lane_v:
1703      case ARM::BI__builtin_neon_vld1_dup_v:
1704      case ARM::BI__builtin_neon_vld1q_dup_v:
1705      case ARM::BI__builtin_neon_vst1_v:
1706      case ARM::BI__builtin_neon_vst1q_v:
1707      case ARM::BI__builtin_neon_vst1q_lane_v:
1708      case ARM::BI__builtin_neon_vst1_lane_v:
1709      case ARM::BI__builtin_neon_vst2_v:
1710      case ARM::BI__builtin_neon_vst2q_v:
1711      case ARM::BI__builtin_neon_vst2_lane_v:
1712      case ARM::BI__builtin_neon_vst2q_lane_v:
1713      case ARM::BI__builtin_neon_vst3_v:
1714      case ARM::BI__builtin_neon_vst3q_v:
1715      case ARM::BI__builtin_neon_vst3_lane_v:
1716      case ARM::BI__builtin_neon_vst3q_lane_v:
1717      case ARM::BI__builtin_neon_vst4_v:
1718      case ARM::BI__builtin_neon_vst4q_v:
1719      case ARM::BI__builtin_neon_vst4_lane_v:
1720      case ARM::BI__builtin_neon_vst4q_lane_v:
1721        // Get the alignment for the argument in addition to the value;
1722        // we'll use it later.
1723        std::pair<llvm::Value*, unsigned> Src =
1724            EmitPointerWithAlignment(E->getArg(0));
1725        Ops.push_back(Src.first);
1726        Align = Builder.getInt32(Src.second);
1727        continue;
1728      }
1729    }
1730    if (i == 1) {
1731      switch (BuiltinID) {
1732      case ARM::BI__builtin_neon_vld2_v:
1733      case ARM::BI__builtin_neon_vld2q_v:
1734      case ARM::BI__builtin_neon_vld3_v:
1735      case ARM::BI__builtin_neon_vld3q_v:
1736      case ARM::BI__builtin_neon_vld4_v:
1737      case ARM::BI__builtin_neon_vld4q_v:
1738      case ARM::BI__builtin_neon_vld2_lane_v:
1739      case ARM::BI__builtin_neon_vld2q_lane_v:
1740      case ARM::BI__builtin_neon_vld3_lane_v:
1741      case ARM::BI__builtin_neon_vld3q_lane_v:
1742      case ARM::BI__builtin_neon_vld4_lane_v:
1743      case ARM::BI__builtin_neon_vld4q_lane_v:
1744      case ARM::BI__builtin_neon_vld2_dup_v:
1745      case ARM::BI__builtin_neon_vld3_dup_v:
1746      case ARM::BI__builtin_neon_vld4_dup_v:
1747        // Get the alignment for the argument in addition to the value;
1748        // we'll use it later.
1749        std::pair<llvm::Value*, unsigned> Src =
1750            EmitPointerWithAlignment(E->getArg(1));
1751        Ops.push_back(Src.first);
1752        Align = Builder.getInt32(Src.second);
1753        continue;
1754      }
1755    }
1756    Ops.push_back(EmitScalarExpr(E->getArg(i)));
1757  }
1758
1759  // vget_lane and vset_lane are not overloaded and do not have an extra
1760  // argument that specifies the vector type.
1761  switch (BuiltinID) {
1762  default: break;
1763  case ARM::BI__builtin_neon_vget_lane_i8:
1764  case ARM::BI__builtin_neon_vget_lane_i16:
1765  case ARM::BI__builtin_neon_vget_lane_i32:
1766  case ARM::BI__builtin_neon_vget_lane_i64:
1767  case ARM::BI__builtin_neon_vget_lane_f32:
1768  case ARM::BI__builtin_neon_vgetq_lane_i8:
1769  case ARM::BI__builtin_neon_vgetq_lane_i16:
1770  case ARM::BI__builtin_neon_vgetq_lane_i32:
1771  case ARM::BI__builtin_neon_vgetq_lane_i64:
1772  case ARM::BI__builtin_neon_vgetq_lane_f32:
1773    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
1774                                        "vget_lane");
1775  case ARM::BI__builtin_neon_vset_lane_i8:
1776  case ARM::BI__builtin_neon_vset_lane_i16:
1777  case ARM::BI__builtin_neon_vset_lane_i32:
1778  case ARM::BI__builtin_neon_vset_lane_i64:
1779  case ARM::BI__builtin_neon_vset_lane_f32:
1780  case ARM::BI__builtin_neon_vsetq_lane_i8:
1781  case ARM::BI__builtin_neon_vsetq_lane_i16:
1782  case ARM::BI__builtin_neon_vsetq_lane_i32:
1783  case ARM::BI__builtin_neon_vsetq_lane_i64:
1784  case ARM::BI__builtin_neon_vsetq_lane_f32:
1785    Ops.push_back(EmitScalarExpr(E->getArg(2)));
1786    return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
1787  }
1788
1789  // Get the last argument, which specifies the vector type.
1790  llvm::APSInt Result;
1791  const Expr *Arg = E->getArg(E->getNumArgs()-1);
1792  if (!Arg->isIntegerConstantExpr(Result, getContext()))
1793    return 0;
1794
1795  if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
1796      BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
1797    // Determine the overloaded type of this builtin.
1798    llvm::Type *Ty;
1799    if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
1800      Ty = FloatTy;
1801    else
1802      Ty = DoubleTy;
1803
1804    // Determine whether this is an unsigned conversion or not.
1805    bool usgn = Result.getZExtValue() == 1;
1806    unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
1807
1808    // Call the appropriate intrinsic.
1809    Function *F = CGM.getIntrinsic(Int, Ty);
1810    return Builder.CreateCall(F, Ops, "vcvtr");
1811  }
1812
1813  // Determine the type of this overloaded NEON intrinsic.
1814  NeonTypeFlags Type(Result.getZExtValue());
1815  bool usgn = Type.isUnsigned();
1816  bool quad = Type.isQuad();
1817  bool rightShift = false;
1818
1819  llvm::VectorType *VTy = GetNeonType(this, Type);
1820  llvm::Type *Ty = VTy;
1821  if (!Ty)
1822    return 0;
1823
1824  unsigned Int;
1825  switch (BuiltinID) {
1826  default: return 0;
1827  case ARM::BI__builtin_neon_vbsl_v:
1828  case ARM::BI__builtin_neon_vbslq_v:
1829    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vbsl, Ty),
1830                        Ops, "vbsl");
1831  case ARM::BI__builtin_neon_vabd_v:
1832  case ARM::BI__builtin_neon_vabdq_v:
1833    Int = usgn ? Intrinsic::arm_neon_vabdu : Intrinsic::arm_neon_vabds;
1834    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
1835  case ARM::BI__builtin_neon_vabs_v:
1836  case ARM::BI__builtin_neon_vabsq_v:
1837    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vabs, Ty),
1838                        Ops, "vabs");
1839  case ARM::BI__builtin_neon_vaddhn_v:
1840    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vaddhn, Ty),
1841                        Ops, "vaddhn");
1842  case ARM::BI__builtin_neon_vcale_v:
1843    std::swap(Ops[0], Ops[1]);
1844  case ARM::BI__builtin_neon_vcage_v: {
1845    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacged);
1846    return EmitNeonCall(F, Ops, "vcage");
1847  }
1848  case ARM::BI__builtin_neon_vcaleq_v:
1849    std::swap(Ops[0], Ops[1]);
1850  case ARM::BI__builtin_neon_vcageq_v: {
1851    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgeq);
1852    return EmitNeonCall(F, Ops, "vcage");
1853  }
1854  case ARM::BI__builtin_neon_vcalt_v:
1855    std::swap(Ops[0], Ops[1]);
1856  case ARM::BI__builtin_neon_vcagt_v: {
1857    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtd);
1858    return EmitNeonCall(F, Ops, "vcagt");
1859  }
1860  case ARM::BI__builtin_neon_vcaltq_v:
1861    std::swap(Ops[0], Ops[1]);
1862  case ARM::BI__builtin_neon_vcagtq_v: {
1863    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtq);
1864    return EmitNeonCall(F, Ops, "vcagt");
1865  }
1866  case ARM::BI__builtin_neon_vcls_v:
1867  case ARM::BI__builtin_neon_vclsq_v: {
1868    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcls, Ty);
1869    return EmitNeonCall(F, Ops, "vcls");
1870  }
1871  case ARM::BI__builtin_neon_vclz_v:
1872  case ARM::BI__builtin_neon_vclzq_v: {
1873    // Generate target-independent intrinsic; also need to add second argument
1874    // for whether or not clz of zero is undefined; on ARM it isn't.
1875    Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ty);
1876    Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
1877    return EmitNeonCall(F, Ops, "vclz");
1878  }
1879  case ARM::BI__builtin_neon_vcnt_v:
1880  case ARM::BI__builtin_neon_vcntq_v: {
1881    // generate target-independent intrinsic
1882    Function *F = CGM.getIntrinsic(Intrinsic::ctpop, Ty);
1883    return EmitNeonCall(F, Ops, "vctpop");
1884  }
1885  case ARM::BI__builtin_neon_vcvt_f16_v: {
1886    assert(Type.getEltType() == NeonTypeFlags::Float16 && !quad &&
1887           "unexpected vcvt_f16_v builtin");
1888    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcvtfp2hf);
1889    return EmitNeonCall(F, Ops, "vcvt");
1890  }
1891  case ARM::BI__builtin_neon_vcvt_f32_f16: {
1892    assert(Type.getEltType() == NeonTypeFlags::Float16 && !quad &&
1893           "unexpected vcvt_f32_f16 builtin");
1894    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcvthf2fp);
1895    return EmitNeonCall(F, Ops, "vcvt");
1896  }
1897  case ARM::BI__builtin_neon_vcvt_f32_v:
1898  case ARM::BI__builtin_neon_vcvtq_f32_v:
1899    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1900    Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad));
1901    return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
1902                : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
1903  case ARM::BI__builtin_neon_vcvt_s32_v:
1904  case ARM::BI__builtin_neon_vcvt_u32_v:
1905  case ARM::BI__builtin_neon_vcvtq_s32_v:
1906  case ARM::BI__builtin_neon_vcvtq_u32_v: {
1907    llvm::Type *FloatTy =
1908      GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad));
1909    Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
1910    return usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
1911                : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
1912  }
1913  case ARM::BI__builtin_neon_vcvt_n_f32_v:
1914  case ARM::BI__builtin_neon_vcvtq_n_f32_v: {
1915    llvm::Type *FloatTy =
1916      GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad));
1917    llvm::Type *Tys[2] = { FloatTy, Ty };
1918    Int = usgn ? Intrinsic::arm_neon_vcvtfxu2fp
1919               : Intrinsic::arm_neon_vcvtfxs2fp;
1920    Function *F = CGM.getIntrinsic(Int, Tys);
1921    return EmitNeonCall(F, Ops, "vcvt_n");
1922  }
1923  case ARM::BI__builtin_neon_vcvt_n_s32_v:
1924  case ARM::BI__builtin_neon_vcvt_n_u32_v:
1925  case ARM::BI__builtin_neon_vcvtq_n_s32_v:
1926  case ARM::BI__builtin_neon_vcvtq_n_u32_v: {
1927    llvm::Type *FloatTy =
1928      GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad));
1929    llvm::Type *Tys[2] = { Ty, FloatTy };
1930    Int = usgn ? Intrinsic::arm_neon_vcvtfp2fxu
1931               : Intrinsic::arm_neon_vcvtfp2fxs;
1932    Function *F = CGM.getIntrinsic(Int, Tys);
1933    return EmitNeonCall(F, Ops, "vcvt_n");
1934  }
1935  case ARM::BI__builtin_neon_vext_v:
1936  case ARM::BI__builtin_neon_vextq_v: {
1937    int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
1938    SmallVector<Constant*, 16> Indices;
1939    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
1940      Indices.push_back(ConstantInt::get(Int32Ty, i+CV));
1941
1942    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1943    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1944    Value *SV = llvm::ConstantVector::get(Indices);
1945    return Builder.CreateShuffleVector(Ops[0], Ops[1], SV, "vext");
1946  }
1947  case ARM::BI__builtin_neon_vhadd_v:
1948  case ARM::BI__builtin_neon_vhaddq_v:
1949    Int = usgn ? Intrinsic::arm_neon_vhaddu : Intrinsic::arm_neon_vhadds;
1950    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vhadd");
1951  case ARM::BI__builtin_neon_vhsub_v:
1952  case ARM::BI__builtin_neon_vhsubq_v:
1953    Int = usgn ? Intrinsic::arm_neon_vhsubu : Intrinsic::arm_neon_vhsubs;
1954    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vhsub");
1955  case ARM::BI__builtin_neon_vld1_v:
1956  case ARM::BI__builtin_neon_vld1q_v:
1957    Ops.push_back(Align);
1958    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Ty),
1959                        Ops, "vld1");
1960  case ARM::BI__builtin_neon_vld1q_lane_v:
1961    // Handle 64-bit integer elements as a special case.  Use shuffles of
1962    // one-element vectors to avoid poor code for i64 in the backend.
1963    if (VTy->getElementType()->isIntegerTy(64)) {
1964      // Extract the other lane.
1965      Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1966      int Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
1967      Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
1968      Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
1969      // Load the value as a one-element vector.
1970      Ty = llvm::VectorType::get(VTy->getElementType(), 1);
1971      Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Ty);
1972      Value *Ld = Builder.CreateCall2(F, Ops[0], Align);
1973      // Combine them.
1974      SmallVector<Constant*, 2> Indices;
1975      Indices.push_back(ConstantInt::get(Int32Ty, 1-Lane));
1976      Indices.push_back(ConstantInt::get(Int32Ty, Lane));
1977      SV = llvm::ConstantVector::get(Indices);
1978      return Builder.CreateShuffleVector(Ops[1], Ld, SV, "vld1q_lane");
1979    }
1980    // fall through
1981  case ARM::BI__builtin_neon_vld1_lane_v: {
1982    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1983    Ty = llvm::PointerType::getUnqual(VTy->getElementType());
1984    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1985    LoadInst *Ld = Builder.CreateLoad(Ops[0]);
1986    Ld->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
1987    return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
1988  }
1989  case ARM::BI__builtin_neon_vld1_dup_v:
1990  case ARM::BI__builtin_neon_vld1q_dup_v: {
1991    Value *V = UndefValue::get(Ty);
1992    Ty = llvm::PointerType::getUnqual(VTy->getElementType());
1993    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1994    LoadInst *Ld = Builder.CreateLoad(Ops[0]);
1995    Ld->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
1996    llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
1997    Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
1998    return EmitNeonSplat(Ops[0], CI);
1999  }
2000  case ARM::BI__builtin_neon_vld2_v:
2001  case ARM::BI__builtin_neon_vld2q_v: {
2002    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2, Ty);
2003    Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld2");
2004    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
2005    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2006    return Builder.CreateStore(Ops[1], Ops[0]);
2007  }
2008  case ARM::BI__builtin_neon_vld3_v:
2009  case ARM::BI__builtin_neon_vld3q_v: {
2010    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3, Ty);
2011    Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld3");
2012    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
2013    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2014    return Builder.CreateStore(Ops[1], Ops[0]);
2015  }
2016  case ARM::BI__builtin_neon_vld4_v:
2017  case ARM::BI__builtin_neon_vld4q_v: {
2018    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4, Ty);
2019    Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld4");
2020    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
2021    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2022    return Builder.CreateStore(Ops[1], Ops[0]);
2023  }
2024  case ARM::BI__builtin_neon_vld2_lane_v:
2025  case ARM::BI__builtin_neon_vld2q_lane_v: {
2026    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2lane, Ty);
2027    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
2028    Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
2029    Ops.push_back(Align);
2030    Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
2031    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
2032    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2033    return Builder.CreateStore(Ops[1], Ops[0]);
2034  }
2035  case ARM::BI__builtin_neon_vld3_lane_v:
2036  case ARM::BI__builtin_neon_vld3q_lane_v: {
2037    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3lane, Ty);
2038    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
2039    Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
2040    Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
2041    Ops.push_back(Align);
2042    Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
2043    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
2044    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2045    return Builder.CreateStore(Ops[1], Ops[0]);
2046  }
2047  case ARM::BI__builtin_neon_vld4_lane_v:
2048  case ARM::BI__builtin_neon_vld4q_lane_v: {
2049    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4lane, Ty);
2050    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
2051    Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
2052    Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
2053    Ops[5] = Builder.CreateBitCast(Ops[5], Ty);
2054    Ops.push_back(Align);
2055    Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
2056    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
2057    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2058    return Builder.CreateStore(Ops[1], Ops[0]);
2059  }
2060  case ARM::BI__builtin_neon_vld2_dup_v:
2061  case ARM::BI__builtin_neon_vld3_dup_v:
2062  case ARM::BI__builtin_neon_vld4_dup_v: {
2063    // Handle 64-bit elements as a special-case.  There is no "dup" needed.
2064    if (VTy->getElementType()->getPrimitiveSizeInBits() == 64) {
2065      switch (BuiltinID) {
2066      case ARM::BI__builtin_neon_vld2_dup_v:
2067        Int = Intrinsic::arm_neon_vld2;
2068        break;
2069      case ARM::BI__builtin_neon_vld3_dup_v:
2070        Int = Intrinsic::arm_neon_vld3;
2071        break;
2072      case ARM::BI__builtin_neon_vld4_dup_v:
2073        Int = Intrinsic::arm_neon_vld4;
2074        break;
2075      default: llvm_unreachable("unknown vld_dup intrinsic?");
2076      }
2077      Function *F = CGM.getIntrinsic(Int, Ty);
2078      Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld_dup");
2079      Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
2080      Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2081      return Builder.CreateStore(Ops[1], Ops[0]);
2082    }
2083    switch (BuiltinID) {
2084    case ARM::BI__builtin_neon_vld2_dup_v:
2085      Int = Intrinsic::arm_neon_vld2lane;
2086      break;
2087    case ARM::BI__builtin_neon_vld3_dup_v:
2088      Int = Intrinsic::arm_neon_vld3lane;
2089      break;
2090    case ARM::BI__builtin_neon_vld4_dup_v:
2091      Int = Intrinsic::arm_neon_vld4lane;
2092      break;
2093    default: llvm_unreachable("unknown vld_dup intrinsic?");
2094    }
2095    Function *F = CGM.getIntrinsic(Int, Ty);
2096    llvm::StructType *STy = cast<llvm::StructType>(F->getReturnType());
2097
2098    SmallVector<Value*, 6> Args;
2099    Args.push_back(Ops[1]);
2100    Args.append(STy->getNumElements(), UndefValue::get(Ty));
2101
2102    llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
2103    Args.push_back(CI);
2104    Args.push_back(Align);
2105
2106    Ops[1] = Builder.CreateCall(F, Args, "vld_dup");
2107    // splat lane 0 to all elts in each vector of the result.
2108    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2109      Value *Val = Builder.CreateExtractValue(Ops[1], i);
2110      Value *Elt = Builder.CreateBitCast(Val, Ty);
2111      Elt = EmitNeonSplat(Elt, CI);
2112      Elt = Builder.CreateBitCast(Elt, Val->getType());
2113      Ops[1] = Builder.CreateInsertValue(Ops[1], Elt, i);
2114    }
2115    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
2116    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2117    return Builder.CreateStore(Ops[1], Ops[0]);
2118  }
2119  case ARM::BI__builtin_neon_vmax_v:
2120  case ARM::BI__builtin_neon_vmaxq_v:
2121    Int = usgn ? Intrinsic::arm_neon_vmaxu : Intrinsic::arm_neon_vmaxs;
2122    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
2123  case ARM::BI__builtin_neon_vmin_v:
2124  case ARM::BI__builtin_neon_vminq_v:
2125    Int = usgn ? Intrinsic::arm_neon_vminu : Intrinsic::arm_neon_vmins;
2126    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
2127  case ARM::BI__builtin_neon_vmovl_v: {
2128    llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
2129    Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
2130    if (usgn)
2131      return Builder.CreateZExt(Ops[0], Ty, "vmovl");
2132    return Builder.CreateSExt(Ops[0], Ty, "vmovl");
2133  }
2134  case ARM::BI__builtin_neon_vmovn_v: {
2135    llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
2136    Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
2137    return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
2138  }
2139  case ARM::BI__builtin_neon_vmul_v:
2140  case ARM::BI__builtin_neon_vmulq_v:
2141    assert(Type.isPoly() && "vmul builtin only supported for polynomial types");
2142    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vmulp, Ty),
2143                        Ops, "vmul");
2144  case ARM::BI__builtin_neon_vmull_v:
2145    Int = usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
2146    Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
2147    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
2148  case ARM::BI__builtin_neon_vfma_v:
2149  case ARM::BI__builtin_neon_vfmaq_v: {
2150    Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
2151    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2152    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
2153    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
2154
2155    // NEON intrinsic puts accumulator first, unlike the LLVM fma.
2156    return Builder.CreateCall3(F, Ops[1], Ops[2], Ops[0]);
2157  }
2158  case ARM::BI__builtin_neon_vpadal_v:
2159  case ARM::BI__builtin_neon_vpadalq_v: {
2160    Int = usgn ? Intrinsic::arm_neon_vpadalu : Intrinsic::arm_neon_vpadals;
2161    // The source operand type has twice as many elements of half the size.
2162    unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
2163    llvm::Type *EltTy =
2164      llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
2165    llvm::Type *NarrowTy =
2166      llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
2167    llvm::Type *Tys[2] = { Ty, NarrowTy };
2168    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpadal");
2169  }
2170  case ARM::BI__builtin_neon_vpadd_v:
2171    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vpadd, Ty),
2172                        Ops, "vpadd");
2173  case ARM::BI__builtin_neon_vpaddl_v:
2174  case ARM::BI__builtin_neon_vpaddlq_v: {
2175    Int = usgn ? Intrinsic::arm_neon_vpaddlu : Intrinsic::arm_neon_vpaddls;
2176    // The source operand type has twice as many elements of half the size.
2177    unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
2178    llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
2179    llvm::Type *NarrowTy =
2180      llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
2181    llvm::Type *Tys[2] = { Ty, NarrowTy };
2182    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
2183  }
2184  case ARM::BI__builtin_neon_vpmax_v:
2185    Int = usgn ? Intrinsic::arm_neon_vpmaxu : Intrinsic::arm_neon_vpmaxs;
2186    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
2187  case ARM::BI__builtin_neon_vpmin_v:
2188    Int = usgn ? Intrinsic::arm_neon_vpminu : Intrinsic::arm_neon_vpmins;
2189    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
2190  case ARM::BI__builtin_neon_vqabs_v:
2191  case ARM::BI__builtin_neon_vqabsq_v:
2192    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqabs, Ty),
2193                        Ops, "vqabs");
2194  case ARM::BI__builtin_neon_vqadd_v:
2195  case ARM::BI__builtin_neon_vqaddq_v:
2196    Int = usgn ? Intrinsic::arm_neon_vqaddu : Intrinsic::arm_neon_vqadds;
2197    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqadd");
2198  case ARM::BI__builtin_neon_vqdmlal_v:
2199    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmlal, Ty),
2200                        Ops, "vqdmlal");
2201  case ARM::BI__builtin_neon_vqdmlsl_v:
2202    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmlsl, Ty),
2203                        Ops, "vqdmlsl");
2204  case ARM::BI__builtin_neon_vqdmulh_v:
2205  case ARM::BI__builtin_neon_vqdmulhq_v:
2206    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmulh, Ty),
2207                        Ops, "vqdmulh");
2208  case ARM::BI__builtin_neon_vqdmull_v:
2209    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmull, Ty),
2210                        Ops, "vqdmull");
2211  case ARM::BI__builtin_neon_vqmovn_v:
2212    Int = usgn ? Intrinsic::arm_neon_vqmovnu : Intrinsic::arm_neon_vqmovns;
2213    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqmovn");
2214  case ARM::BI__builtin_neon_vqmovun_v:
2215    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqmovnsu, Ty),
2216                        Ops, "vqdmull");
2217  case ARM::BI__builtin_neon_vqneg_v:
2218  case ARM::BI__builtin_neon_vqnegq_v:
2219    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqneg, Ty),
2220                        Ops, "vqneg");
2221  case ARM::BI__builtin_neon_vqrdmulh_v:
2222  case ARM::BI__builtin_neon_vqrdmulhq_v:
2223    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrdmulh, Ty),
2224                        Ops, "vqrdmulh");
2225  case ARM::BI__builtin_neon_vqrshl_v:
2226  case ARM::BI__builtin_neon_vqrshlq_v:
2227    Int = usgn ? Intrinsic::arm_neon_vqrshiftu : Intrinsic::arm_neon_vqrshifts;
2228    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshl");
2229  case ARM::BI__builtin_neon_vqrshrn_n_v:
2230    Int =
2231      usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
2232    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
2233                        1, true);
2234  case ARM::BI__builtin_neon_vqrshrun_n_v:
2235    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
2236                        Ops, "vqrshrun_n", 1, true);
2237  case ARM::BI__builtin_neon_vqshl_v:
2238  case ARM::BI__builtin_neon_vqshlq_v:
2239    Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts;
2240    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl");
2241  case ARM::BI__builtin_neon_vqshl_n_v:
2242  case ARM::BI__builtin_neon_vqshlq_n_v:
2243    Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts;
2244    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
2245                        1, false);
2246  case ARM::BI__builtin_neon_vqshlu_n_v:
2247  case ARM::BI__builtin_neon_vqshluq_n_v:
2248    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftsu, Ty),
2249                        Ops, "vqshlu", 1, false);
2250  case ARM::BI__builtin_neon_vqshrn_n_v:
2251    Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
2252    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
2253                        1, true);
2254  case ARM::BI__builtin_neon_vqshrun_n_v:
2255    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
2256                        Ops, "vqshrun_n", 1, true);
2257  case ARM::BI__builtin_neon_vqsub_v:
2258  case ARM::BI__builtin_neon_vqsubq_v:
2259    Int = usgn ? Intrinsic::arm_neon_vqsubu : Intrinsic::arm_neon_vqsubs;
2260    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqsub");
2261  case ARM::BI__builtin_neon_vraddhn_v:
2262    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vraddhn, Ty),
2263                        Ops, "vraddhn");
2264  case ARM::BI__builtin_neon_vrecpe_v:
2265  case ARM::BI__builtin_neon_vrecpeq_v:
2266    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
2267                        Ops, "vrecpe");
2268  case ARM::BI__builtin_neon_vrecps_v:
2269  case ARM::BI__builtin_neon_vrecpsq_v:
2270    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecps, Ty),
2271                        Ops, "vrecps");
2272  case ARM::BI__builtin_neon_vrhadd_v:
2273  case ARM::BI__builtin_neon_vrhaddq_v:
2274    Int = usgn ? Intrinsic::arm_neon_vrhaddu : Intrinsic::arm_neon_vrhadds;
2275    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrhadd");
2276  case ARM::BI__builtin_neon_vrshl_v:
2277  case ARM::BI__builtin_neon_vrshlq_v:
2278    Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
2279    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshl");
2280  case ARM::BI__builtin_neon_vrshrn_n_v:
2281    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
2282                        Ops, "vrshrn_n", 1, true);
2283  case ARM::BI__builtin_neon_vrshr_n_v:
2284  case ARM::BI__builtin_neon_vrshrq_n_v:
2285    Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
2286    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n", 1, true);
2287  case ARM::BI__builtin_neon_vrsqrte_v:
2288  case ARM::BI__builtin_neon_vrsqrteq_v:
2289    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrte, Ty),
2290                        Ops, "vrsqrte");
2291  case ARM::BI__builtin_neon_vrsqrts_v:
2292  case ARM::BI__builtin_neon_vrsqrtsq_v:
2293    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrts, Ty),
2294                        Ops, "vrsqrts");
2295  case ARM::BI__builtin_neon_vrsra_n_v:
2296  case ARM::BI__builtin_neon_vrsraq_n_v:
2297    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2298    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
2299    Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
2300    Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
2301    Ops[1] = Builder.CreateCall2(CGM.getIntrinsic(Int, Ty), Ops[1], Ops[2]);
2302    return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
2303  case ARM::BI__builtin_neon_vrsubhn_v:
2304    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsubhn, Ty),
2305                        Ops, "vrsubhn");
2306  case ARM::BI__builtin_neon_vshl_v:
2307  case ARM::BI__builtin_neon_vshlq_v:
2308    Int = usgn ? Intrinsic::arm_neon_vshiftu : Intrinsic::arm_neon_vshifts;
2309    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vshl");
2310  case ARM::BI__builtin_neon_vshll_n_v:
2311    Int = usgn ? Intrinsic::arm_neon_vshiftlu : Intrinsic::arm_neon_vshiftls;
2312    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vshll", 1);
2313  case ARM::BI__builtin_neon_vshl_n_v:
2314  case ARM::BI__builtin_neon_vshlq_n_v:
2315    Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
2316    return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
2317                             "vshl_n");
2318  case ARM::BI__builtin_neon_vshrn_n_v:
2319    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftn, Ty),
2320                        Ops, "vshrn_n", 1, true);
2321  case ARM::BI__builtin_neon_vshr_n_v:
2322  case ARM::BI__builtin_neon_vshrq_n_v:
2323    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2324    Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
2325    if (usgn)
2326      return Builder.CreateLShr(Ops[0], Ops[1], "vshr_n");
2327    else
2328      return Builder.CreateAShr(Ops[0], Ops[1], "vshr_n");
2329  case ARM::BI__builtin_neon_vsri_n_v:
2330  case ARM::BI__builtin_neon_vsriq_n_v:
2331    rightShift = true;
2332  case ARM::BI__builtin_neon_vsli_n_v:
2333  case ARM::BI__builtin_neon_vsliq_n_v:
2334    Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
2335    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
2336                        Ops, "vsli_n");
2337  case ARM::BI__builtin_neon_vsra_n_v:
2338  case ARM::BI__builtin_neon_vsraq_n_v:
2339    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2340    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
2341    Ops[2] = EmitNeonShiftVector(Ops[2], Ty, false);
2342    if (usgn)
2343      Ops[1] = Builder.CreateLShr(Ops[1], Ops[2], "vsra_n");
2344    else
2345      Ops[1] = Builder.CreateAShr(Ops[1], Ops[2], "vsra_n");
2346    return Builder.CreateAdd(Ops[0], Ops[1]);
2347  case ARM::BI__builtin_neon_vst1_v:
2348  case ARM::BI__builtin_neon_vst1q_v:
2349    Ops.push_back(Align);
2350    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1, Ty),
2351                        Ops, "");
2352  case ARM::BI__builtin_neon_vst1q_lane_v:
2353    // Handle 64-bit integer elements as a special case.  Use a shuffle to get
2354    // a one-element vector and avoid poor code for i64 in the backend.
2355    if (VTy->getElementType()->isIntegerTy(64)) {
2356      Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
2357      Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
2358      Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
2359      Ops[2] = Align;
2360      return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
2361                                                 Ops[1]->getType()), Ops);
2362    }
2363    // fall through
2364  case ARM::BI__builtin_neon_vst1_lane_v: {
2365    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
2366    Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
2367    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
2368    StoreInst *St = Builder.CreateStore(Ops[1],
2369                                        Builder.CreateBitCast(Ops[0], Ty));
2370    St->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
2371    return St;
2372  }
2373  case ARM::BI__builtin_neon_vst2_v:
2374  case ARM::BI__builtin_neon_vst2q_v:
2375    Ops.push_back(Align);
2376    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2, Ty),
2377                        Ops, "");
2378  case ARM::BI__builtin_neon_vst2_lane_v:
2379  case ARM::BI__builtin_neon_vst2q_lane_v:
2380    Ops.push_back(Align);
2381    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2lane, Ty),
2382                        Ops, "");
2383  case ARM::BI__builtin_neon_vst3_v:
2384  case ARM::BI__builtin_neon_vst3q_v:
2385    Ops.push_back(Align);
2386    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3, Ty),
2387                        Ops, "");
2388  case ARM::BI__builtin_neon_vst3_lane_v:
2389  case ARM::BI__builtin_neon_vst3q_lane_v:
2390    Ops.push_back(Align);
2391    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3lane, Ty),
2392                        Ops, "");
2393  case ARM::BI__builtin_neon_vst4_v:
2394  case ARM::BI__builtin_neon_vst4q_v:
2395    Ops.push_back(Align);
2396    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4, Ty),
2397                        Ops, "");
2398  case ARM::BI__builtin_neon_vst4_lane_v:
2399  case ARM::BI__builtin_neon_vst4q_lane_v:
2400    Ops.push_back(Align);
2401    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4lane, Ty),
2402                        Ops, "");
2403  case ARM::BI__builtin_neon_vsubhn_v:
2404    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vsubhn, Ty),
2405                        Ops, "vsubhn");
2406  case ARM::BI__builtin_neon_vtbl1_v:
2407    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
2408                        Ops, "vtbl1");
2409  case ARM::BI__builtin_neon_vtbl2_v:
2410    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
2411                        Ops, "vtbl2");
2412  case ARM::BI__builtin_neon_vtbl3_v:
2413    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
2414                        Ops, "vtbl3");
2415  case ARM::BI__builtin_neon_vtbl4_v:
2416    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
2417                        Ops, "vtbl4");
2418  case ARM::BI__builtin_neon_vtbx1_v:
2419    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
2420                        Ops, "vtbx1");
2421  case ARM::BI__builtin_neon_vtbx2_v:
2422    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
2423                        Ops, "vtbx2");
2424  case ARM::BI__builtin_neon_vtbx3_v:
2425    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
2426                        Ops, "vtbx3");
2427  case ARM::BI__builtin_neon_vtbx4_v:
2428    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
2429                        Ops, "vtbx4");
2430  case ARM::BI__builtin_neon_vtst_v:
2431  case ARM::BI__builtin_neon_vtstq_v: {
2432    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2433    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
2434    Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
2435    Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
2436                                ConstantAggregateZero::get(Ty));
2437    return Builder.CreateSExt(Ops[0], Ty, "vtst");
2438  }
2439  case ARM::BI__builtin_neon_vtrn_v:
2440  case ARM::BI__builtin_neon_vtrnq_v: {
2441    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
2442    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
2443    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
2444    Value *SV = 0;
2445
2446    for (unsigned vi = 0; vi != 2; ++vi) {
2447      SmallVector<Constant*, 16> Indices;
2448      for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
2449        Indices.push_back(Builder.getInt32(i+vi));
2450        Indices.push_back(Builder.getInt32(i+e+vi));
2451      }
2452      Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
2453      SV = llvm::ConstantVector::get(Indices);
2454      SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vtrn");
2455      SV = Builder.CreateStore(SV, Addr);
2456    }
2457    return SV;
2458  }
2459  case ARM::BI__builtin_neon_vuzp_v:
2460  case ARM::BI__builtin_neon_vuzpq_v: {
2461    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
2462    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
2463    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
2464    Value *SV = 0;
2465
2466    for (unsigned vi = 0; vi != 2; ++vi) {
2467      SmallVector<Constant*, 16> Indices;
2468      for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
2469        Indices.push_back(ConstantInt::get(Int32Ty, 2*i+vi));
2470
2471      Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
2472      SV = llvm::ConstantVector::get(Indices);
2473      SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vuzp");
2474      SV = Builder.CreateStore(SV, Addr);
2475    }
2476    return SV;
2477  }
2478  case ARM::BI__builtin_neon_vzip_v:
2479  case ARM::BI__builtin_neon_vzipq_v: {
2480    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
2481    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
2482    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
2483    Value *SV = 0;
2484
2485    for (unsigned vi = 0; vi != 2; ++vi) {
2486      SmallVector<Constant*, 16> Indices;
2487      for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
2488        Indices.push_back(ConstantInt::get(Int32Ty, (i + vi*e) >> 1));
2489        Indices.push_back(ConstantInt::get(Int32Ty, ((i + vi*e) >> 1)+e));
2490      }
2491      Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
2492      SV = llvm::ConstantVector::get(Indices);
2493      SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vzip");
2494      SV = Builder.CreateStore(SV, Addr);
2495    }
2496    return SV;
2497  }
2498  }
2499}
2500
2501llvm::Value *CodeGenFunction::
2502BuildVector(ArrayRef<llvm::Value*> Ops) {
2503  assert((Ops.size() & (Ops.size() - 1)) == 0 &&
2504         "Not a power-of-two sized vector!");
2505  bool AllConstants = true;
2506  for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
2507    AllConstants &= isa<Constant>(Ops[i]);
2508
2509  // If this is a constant vector, create a ConstantVector.
2510  if (AllConstants) {
2511    SmallVector<llvm::Constant*, 16> CstOps;
2512    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2513      CstOps.push_back(cast<Constant>(Ops[i]));
2514    return llvm::ConstantVector::get(CstOps);
2515  }
2516
2517  // Otherwise, insertelement the values to build the vector.
2518  Value *Result =
2519    llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
2520
2521  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2522    Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
2523
2524  return Result;
2525}
2526
2527Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
2528                                           const CallExpr *E) {
2529  SmallVector<Value*, 4> Ops;
2530
2531  // Find out if any arguments are required to be integer constant expressions.
2532  unsigned ICEArguments = 0;
2533  ASTContext::GetBuiltinTypeError Error;
2534  getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
2535  assert(Error == ASTContext::GE_None && "Should not codegen an error");
2536
2537  for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
2538    // If this is a normal argument, just emit it as a scalar.
2539    if ((ICEArguments & (1 << i)) == 0) {
2540      Ops.push_back(EmitScalarExpr(E->getArg(i)));
2541      continue;
2542    }
2543
2544    // If this is required to be a constant, constant fold it so that we know
2545    // that the generated intrinsic gets a ConstantInt.
2546    llvm::APSInt Result;
2547    bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
2548    assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
2549    Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
2550  }
2551
2552  switch (BuiltinID) {
2553  default: return 0;
2554  case X86::BI__builtin_ia32_vec_init_v8qi:
2555  case X86::BI__builtin_ia32_vec_init_v4hi:
2556  case X86::BI__builtin_ia32_vec_init_v2si:
2557    return Builder.CreateBitCast(BuildVector(Ops),
2558                                 llvm::Type::getX86_MMXTy(getLLVMContext()));
2559  case X86::BI__builtin_ia32_vec_ext_v2si:
2560    return Builder.CreateExtractElement(Ops[0],
2561                                  llvm::ConstantInt::get(Ops[1]->getType(), 0));
2562  case X86::BI__builtin_ia32_ldmxcsr: {
2563    llvm::Type *PtrTy = Int8PtrTy;
2564    Value *One = llvm::ConstantInt::get(Int32Ty, 1);
2565    Value *Tmp = Builder.CreateAlloca(Int32Ty, One);
2566    Builder.CreateStore(Ops[0], Tmp);
2567    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
2568                              Builder.CreateBitCast(Tmp, PtrTy));
2569  }
2570  case X86::BI__builtin_ia32_stmxcsr: {
2571    llvm::Type *PtrTy = Int8PtrTy;
2572    Value *One = llvm::ConstantInt::get(Int32Ty, 1);
2573    Value *Tmp = Builder.CreateAlloca(Int32Ty, One);
2574    Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
2575                       Builder.CreateBitCast(Tmp, PtrTy));
2576    return Builder.CreateLoad(Tmp, "stmxcsr");
2577  }
2578  case X86::BI__builtin_ia32_storehps:
2579  case X86::BI__builtin_ia32_storelps: {
2580    llvm::Type *PtrTy = llvm::PointerType::getUnqual(Int64Ty);
2581    llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
2582
2583    // cast val v2i64
2584    Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast");
2585
2586    // extract (0, 1)
2587    unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1;
2588    llvm::Value *Idx = llvm::ConstantInt::get(Int32Ty, Index);
2589    Ops[1] = Builder.CreateExtractElement(Ops[1], Idx, "extract");
2590
2591    // cast pointer to i64 & store
2592    Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy);
2593    return Builder.CreateStore(Ops[1], Ops[0]);
2594  }
2595  case X86::BI__builtin_ia32_palignr: {
2596    unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
2597
2598    // If palignr is shifting the pair of input vectors less than 9 bytes,
2599    // emit a shuffle instruction.
2600    if (shiftVal <= 8) {
2601      SmallVector<llvm::Constant*, 8> Indices;
2602      for (unsigned i = 0; i != 8; ++i)
2603        Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
2604
2605      Value* SV = llvm::ConstantVector::get(Indices);
2606      return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
2607    }
2608
2609    // If palignr is shifting the pair of input vectors more than 8 but less
2610    // than 16 bytes, emit a logical right shift of the destination.
2611    if (shiftVal < 16) {
2612      // MMX has these as 1 x i64 vectors for some odd optimization reasons.
2613      llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 1);
2614
2615      Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
2616      Ops[1] = llvm::ConstantInt::get(VecTy, (shiftVal-8) * 8);
2617
2618      // create i32 constant
2619      llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_mmx_psrl_q);
2620      return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr");
2621    }
2622
2623    // If palignr is shifting the pair of vectors more than 16 bytes, emit zero.
2624    return llvm::Constant::getNullValue(ConvertType(E->getType()));
2625  }
2626  case X86::BI__builtin_ia32_palignr128: {
2627    unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
2628
2629    // If palignr is shifting the pair of input vectors less than 17 bytes,
2630    // emit a shuffle instruction.
2631    if (shiftVal <= 16) {
2632      SmallVector<llvm::Constant*, 16> Indices;
2633      for (unsigned i = 0; i != 16; ++i)
2634        Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
2635
2636      Value* SV = llvm::ConstantVector::get(Indices);
2637      return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
2638    }
2639
2640    // If palignr is shifting the pair of input vectors more than 16 but less
2641    // than 32 bytes, emit a logical right shift of the destination.
2642    if (shiftVal < 32) {
2643      llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
2644
2645      Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
2646      Ops[1] = llvm::ConstantInt::get(Int32Ty, (shiftVal-16) * 8);
2647
2648      // create i32 constant
2649      llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_psrl_dq);
2650      return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr");
2651    }
2652
2653    // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
2654    return llvm::Constant::getNullValue(ConvertType(E->getType()));
2655  }
2656  case X86::BI__builtin_ia32_palignr256: {
2657    unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
2658
2659    // If palignr is shifting the pair of input vectors less than 17 bytes,
2660    // emit a shuffle instruction.
2661    if (shiftVal <= 16) {
2662      SmallVector<llvm::Constant*, 32> Indices;
2663      // 256-bit palignr operates on 128-bit lanes so we need to handle that
2664      for (unsigned l = 0; l != 2; ++l) {
2665        unsigned LaneStart = l * 16;
2666        unsigned LaneEnd = (l+1) * 16;
2667        for (unsigned i = 0; i != 16; ++i) {
2668          unsigned Idx = shiftVal + i + LaneStart;
2669          if (Idx >= LaneEnd) Idx += 16; // end of lane, switch operand
2670          Indices.push_back(llvm::ConstantInt::get(Int32Ty, Idx));
2671        }
2672      }
2673
2674      Value* SV = llvm::ConstantVector::get(Indices);
2675      return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
2676    }
2677
2678    // If palignr is shifting the pair of input vectors more than 16 but less
2679    // than 32 bytes, emit a logical right shift of the destination.
2680    if (shiftVal < 32) {
2681      llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 4);
2682
2683      Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
2684      Ops[1] = llvm::ConstantInt::get(Int32Ty, (shiftVal-16) * 8);
2685
2686      // create i32 constant
2687      llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_avx2_psrl_dq);
2688      return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr");
2689    }
2690
2691    // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
2692    return llvm::Constant::getNullValue(ConvertType(E->getType()));
2693  }
2694  case X86::BI__builtin_ia32_movntps:
2695  case X86::BI__builtin_ia32_movntps256:
2696  case X86::BI__builtin_ia32_movntpd:
2697  case X86::BI__builtin_ia32_movntpd256:
2698  case X86::BI__builtin_ia32_movntdq:
2699  case X86::BI__builtin_ia32_movntdq256:
2700  case X86::BI__builtin_ia32_movnti: {
2701    llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(),
2702                                           Builder.getInt32(1));
2703
2704    // Convert the type of the pointer to a pointer to the stored type.
2705    Value *BC = Builder.CreateBitCast(Ops[0],
2706                                llvm::PointerType::getUnqual(Ops[1]->getType()),
2707                                      "cast");
2708    StoreInst *SI = Builder.CreateStore(Ops[1], BC);
2709    SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
2710    SI->setAlignment(16);
2711    return SI;
2712  }
2713  // 3DNow!
2714  case X86::BI__builtin_ia32_pswapdsf:
2715  case X86::BI__builtin_ia32_pswapdsi: {
2716    const char *name = 0;
2717    Intrinsic::ID ID = Intrinsic::not_intrinsic;
2718    switch(BuiltinID) {
2719    default: llvm_unreachable("Unsupported intrinsic!");
2720    case X86::BI__builtin_ia32_pswapdsf:
2721    case X86::BI__builtin_ia32_pswapdsi:
2722      name = "pswapd";
2723      ID = Intrinsic::x86_3dnowa_pswapd;
2724      break;
2725    }
2726    llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
2727    Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
2728    llvm::Function *F = CGM.getIntrinsic(ID);
2729    return Builder.CreateCall(F, Ops, name);
2730  }
2731  case X86::BI__builtin_ia32_rdrand16_step:
2732  case X86::BI__builtin_ia32_rdrand32_step:
2733  case X86::BI__builtin_ia32_rdrand64_step:
2734  case X86::BI__builtin_ia32_rdseed16_step:
2735  case X86::BI__builtin_ia32_rdseed32_step:
2736  case X86::BI__builtin_ia32_rdseed64_step: {
2737    Intrinsic::ID ID;
2738    switch (BuiltinID) {
2739    default: llvm_unreachable("Unsupported intrinsic!");
2740    case X86::BI__builtin_ia32_rdrand16_step:
2741      ID = Intrinsic::x86_rdrand_16;
2742      break;
2743    case X86::BI__builtin_ia32_rdrand32_step:
2744      ID = Intrinsic::x86_rdrand_32;
2745      break;
2746    case X86::BI__builtin_ia32_rdrand64_step:
2747      ID = Intrinsic::x86_rdrand_64;
2748      break;
2749    case X86::BI__builtin_ia32_rdseed16_step:
2750      ID = Intrinsic::x86_rdseed_16;
2751      break;
2752    case X86::BI__builtin_ia32_rdseed32_step:
2753      ID = Intrinsic::x86_rdseed_32;
2754      break;
2755    case X86::BI__builtin_ia32_rdseed64_step:
2756      ID = Intrinsic::x86_rdseed_64;
2757      break;
2758    }
2759
2760    Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
2761    Builder.CreateStore(Builder.CreateExtractValue(Call, 0), Ops[0]);
2762    return Builder.CreateExtractValue(Call, 1);
2763  }
2764  }
2765}
2766
2767
2768Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
2769                                           const CallExpr *E) {
2770  SmallVector<Value*, 4> Ops;
2771
2772  for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
2773    Ops.push_back(EmitScalarExpr(E->getArg(i)));
2774
2775  Intrinsic::ID ID = Intrinsic::not_intrinsic;
2776
2777  switch (BuiltinID) {
2778  default: return 0;
2779
2780  // vec_ld, vec_lvsl, vec_lvsr
2781  case PPC::BI__builtin_altivec_lvx:
2782  case PPC::BI__builtin_altivec_lvxl:
2783  case PPC::BI__builtin_altivec_lvebx:
2784  case PPC::BI__builtin_altivec_lvehx:
2785  case PPC::BI__builtin_altivec_lvewx:
2786  case PPC::BI__builtin_altivec_lvsl:
2787  case PPC::BI__builtin_altivec_lvsr:
2788  {
2789    Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
2790
2791    Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
2792    Ops.pop_back();
2793
2794    switch (BuiltinID) {
2795    default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
2796    case PPC::BI__builtin_altivec_lvx:
2797      ID = Intrinsic::ppc_altivec_lvx;
2798      break;
2799    case PPC::BI__builtin_altivec_lvxl:
2800      ID = Intrinsic::ppc_altivec_lvxl;
2801      break;
2802    case PPC::BI__builtin_altivec_lvebx:
2803      ID = Intrinsic::ppc_altivec_lvebx;
2804      break;
2805    case PPC::BI__builtin_altivec_lvehx:
2806      ID = Intrinsic::ppc_altivec_lvehx;
2807      break;
2808    case PPC::BI__builtin_altivec_lvewx:
2809      ID = Intrinsic::ppc_altivec_lvewx;
2810      break;
2811    case PPC::BI__builtin_altivec_lvsl:
2812      ID = Intrinsic::ppc_altivec_lvsl;
2813      break;
2814    case PPC::BI__builtin_altivec_lvsr:
2815      ID = Intrinsic::ppc_altivec_lvsr;
2816      break;
2817    }
2818    llvm::Function *F = CGM.getIntrinsic(ID);
2819    return Builder.CreateCall(F, Ops, "");
2820  }
2821
2822  // vec_st
2823  case PPC::BI__builtin_altivec_stvx:
2824  case PPC::BI__builtin_altivec_stvxl:
2825  case PPC::BI__builtin_altivec_stvebx:
2826  case PPC::BI__builtin_altivec_stvehx:
2827  case PPC::BI__builtin_altivec_stvewx:
2828  {
2829    Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
2830    Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
2831    Ops.pop_back();
2832
2833    switch (BuiltinID) {
2834    default: llvm_unreachable("Unsupported st intrinsic!");
2835    case PPC::BI__builtin_altivec_stvx:
2836      ID = Intrinsic::ppc_altivec_stvx;
2837      break;
2838    case PPC::BI__builtin_altivec_stvxl:
2839      ID = Intrinsic::ppc_altivec_stvxl;
2840      break;
2841    case PPC::BI__builtin_altivec_stvebx:
2842      ID = Intrinsic::ppc_altivec_stvebx;
2843      break;
2844    case PPC::BI__builtin_altivec_stvehx:
2845      ID = Intrinsic::ppc_altivec_stvehx;
2846      break;
2847    case PPC::BI__builtin_altivec_stvewx:
2848      ID = Intrinsic::ppc_altivec_stvewx;
2849      break;
2850    }
2851    llvm::Function *F = CGM.getIntrinsic(ID);
2852    return Builder.CreateCall(F, Ops, "");
2853  }
2854  }
2855}
2856