1//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implements C++ name mangling according to the Itanium C++ ABI,
11// which is used in GCC 3.2 and newer (and many compilers that are
12// ABI-compatible with GCC):
13//
14//   http://www.codesourcery.com/public/cxx-abi/abi.html
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/Mangle.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/ABI.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/raw_ostream.h"
33
34#define MANGLE_CHECKER 0
35
36#if MANGLE_CHECKER
37#include <cxxabi.h>
38#endif
39
40using namespace clang;
41
42namespace {
43
44/// \brief Retrieve the declaration context that should be used when mangling
45/// the given declaration.
46static const DeclContext *getEffectiveDeclContext(const Decl *D) {
47  // The ABI assumes that lambda closure types that occur within
48  // default arguments live in the context of the function. However, due to
49  // the way in which Clang parses and creates function declarations, this is
50  // not the case: the lambda closure type ends up living in the context
51  // where the function itself resides, because the function declaration itself
52  // had not yet been created. Fix the context here.
53  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
54    if (RD->isLambda())
55      if (ParmVarDecl *ContextParam
56            = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
57        return ContextParam->getDeclContext();
58  }
59
60  return D->getDeclContext();
61}
62
63static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
64  return getEffectiveDeclContext(cast<Decl>(DC));
65}
66
67static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) {
68  const DeclContext *DC = dyn_cast<DeclContext>(ND);
69  if (!DC)
70    DC = getEffectiveDeclContext(ND);
71  while (!DC->isNamespace() && !DC->isTranslationUnit()) {
72    const DeclContext *Parent = getEffectiveDeclContext(cast<Decl>(DC));
73    if (isa<FunctionDecl>(Parent))
74      return dyn_cast<CXXRecordDecl>(DC);
75    DC = Parent;
76  }
77  return 0;
78}
79
80static const FunctionDecl *getStructor(const FunctionDecl *fn) {
81  if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
82    return ftd->getTemplatedDecl();
83
84  return fn;
85}
86
87static const NamedDecl *getStructor(const NamedDecl *decl) {
88  const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
89  return (fn ? getStructor(fn) : decl);
90}
91
92static const unsigned UnknownArity = ~0U;
93
94class ItaniumMangleContext : public MangleContext {
95  llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
96  unsigned Discriminator;
97  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
98
99public:
100  explicit ItaniumMangleContext(ASTContext &Context,
101                                DiagnosticsEngine &Diags)
102    : MangleContext(Context, Diags) { }
103
104  uint64_t getAnonymousStructId(const TagDecl *TD) {
105    std::pair<llvm::DenseMap<const TagDecl *,
106      uint64_t>::iterator, bool> Result =
107      AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
108    return Result.first->second;
109  }
110
111  void startNewFunction() {
112    MangleContext::startNewFunction();
113    mangleInitDiscriminator();
114  }
115
116  /// @name Mangler Entry Points
117  /// @{
118
119  bool shouldMangleDeclName(const NamedDecl *D);
120  void mangleName(const NamedDecl *D, raw_ostream &);
121  void mangleThunk(const CXXMethodDecl *MD,
122                   const ThunkInfo &Thunk,
123                   raw_ostream &);
124  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
125                          const ThisAdjustment &ThisAdjustment,
126                          raw_ostream &);
127  void mangleReferenceTemporary(const VarDecl *D,
128                                raw_ostream &);
129  void mangleCXXVTable(const CXXRecordDecl *RD,
130                       raw_ostream &);
131  void mangleCXXVTT(const CXXRecordDecl *RD,
132                    raw_ostream &);
133  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
134                           const CXXRecordDecl *Type,
135                           raw_ostream &);
136  void mangleCXXRTTI(QualType T, raw_ostream &);
137  void mangleCXXRTTIName(QualType T, raw_ostream &);
138  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
139                     raw_ostream &);
140  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
141                     raw_ostream &);
142
143  void mangleItaniumGuardVariable(const VarDecl *D, raw_ostream &);
144  void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &);
145  void mangleItaniumThreadLocalWrapper(const VarDecl *D, raw_ostream &);
146
147  void mangleInitDiscriminator() {
148    Discriminator = 0;
149  }
150
151  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
152    // Lambda closure types with external linkage (indicated by a
153    // non-zero lambda mangling number) have their own numbering scheme, so
154    // they do not need a discriminator.
155    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND))
156      if (RD->isLambda() && RD->getLambdaManglingNumber() > 0)
157        return false;
158
159    unsigned &discriminator = Uniquifier[ND];
160    if (!discriminator)
161      discriminator = ++Discriminator;
162    if (discriminator == 1)
163      return false;
164    disc = discriminator-2;
165    return true;
166  }
167  /// @}
168};
169
170/// CXXNameMangler - Manage the mangling of a single name.
171class CXXNameMangler {
172  ItaniumMangleContext &Context;
173  raw_ostream &Out;
174
175  /// The "structor" is the top-level declaration being mangled, if
176  /// that's not a template specialization; otherwise it's the pattern
177  /// for that specialization.
178  const NamedDecl *Structor;
179  unsigned StructorType;
180
181  /// SeqID - The next subsitution sequence number.
182  unsigned SeqID;
183
184  class FunctionTypeDepthState {
185    unsigned Bits;
186
187    enum { InResultTypeMask = 1 };
188
189  public:
190    FunctionTypeDepthState() : Bits(0) {}
191
192    /// The number of function types we're inside.
193    unsigned getDepth() const {
194      return Bits >> 1;
195    }
196
197    /// True if we're in the return type of the innermost function type.
198    bool isInResultType() const {
199      return Bits & InResultTypeMask;
200    }
201
202    FunctionTypeDepthState push() {
203      FunctionTypeDepthState tmp = *this;
204      Bits = (Bits & ~InResultTypeMask) + 2;
205      return tmp;
206    }
207
208    void enterResultType() {
209      Bits |= InResultTypeMask;
210    }
211
212    void leaveResultType() {
213      Bits &= ~InResultTypeMask;
214    }
215
216    void pop(FunctionTypeDepthState saved) {
217      assert(getDepth() == saved.getDepth() + 1);
218      Bits = saved.Bits;
219    }
220
221  } FunctionTypeDepth;
222
223  llvm::DenseMap<uintptr_t, unsigned> Substitutions;
224
225  ASTContext &getASTContext() const { return Context.getASTContext(); }
226
227public:
228  CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
229                 const NamedDecl *D = 0)
230    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
231      SeqID(0) {
232    // These can't be mangled without a ctor type or dtor type.
233    assert(!D || (!isa<CXXDestructorDecl>(D) &&
234                  !isa<CXXConstructorDecl>(D)));
235  }
236  CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
237                 const CXXConstructorDecl *D, CXXCtorType Type)
238    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
239      SeqID(0) { }
240  CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
241                 const CXXDestructorDecl *D, CXXDtorType Type)
242    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
243      SeqID(0) { }
244
245#if MANGLE_CHECKER
246  ~CXXNameMangler() {
247    if (Out.str()[0] == '\01')
248      return;
249
250    int status = 0;
251    char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
252    assert(status == 0 && "Could not demangle mangled name!");
253    free(result);
254  }
255#endif
256  raw_ostream &getStream() { return Out; }
257
258  void mangle(const NamedDecl *D, StringRef Prefix = "_Z");
259  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
260  void mangleNumber(const llvm::APSInt &I);
261  void mangleNumber(int64_t Number);
262  void mangleFloat(const llvm::APFloat &F);
263  void mangleFunctionEncoding(const FunctionDecl *FD);
264  void mangleName(const NamedDecl *ND);
265  void mangleType(QualType T);
266  void mangleNameOrStandardSubstitution(const NamedDecl *ND);
267
268private:
269  bool mangleSubstitution(const NamedDecl *ND);
270  bool mangleSubstitution(QualType T);
271  bool mangleSubstitution(TemplateName Template);
272  bool mangleSubstitution(uintptr_t Ptr);
273
274  void mangleExistingSubstitution(QualType type);
275  void mangleExistingSubstitution(TemplateName name);
276
277  bool mangleStandardSubstitution(const NamedDecl *ND);
278
279  void addSubstitution(const NamedDecl *ND) {
280    ND = cast<NamedDecl>(ND->getCanonicalDecl());
281
282    addSubstitution(reinterpret_cast<uintptr_t>(ND));
283  }
284  void addSubstitution(QualType T);
285  void addSubstitution(TemplateName Template);
286  void addSubstitution(uintptr_t Ptr);
287
288  void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
289                              NamedDecl *firstQualifierLookup,
290                              bool recursive = false);
291  void mangleUnresolvedName(NestedNameSpecifier *qualifier,
292                            NamedDecl *firstQualifierLookup,
293                            DeclarationName name,
294                            unsigned KnownArity = UnknownArity);
295
296  void mangleName(const TemplateDecl *TD,
297                  const TemplateArgument *TemplateArgs,
298                  unsigned NumTemplateArgs);
299  void mangleUnqualifiedName(const NamedDecl *ND) {
300    mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
301  }
302  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
303                             unsigned KnownArity);
304  void mangleUnscopedName(const NamedDecl *ND);
305  void mangleUnscopedTemplateName(const TemplateDecl *ND);
306  void mangleUnscopedTemplateName(TemplateName);
307  void mangleSourceName(const IdentifierInfo *II);
308  void mangleLocalName(const NamedDecl *ND);
309  void mangleLambda(const CXXRecordDecl *Lambda);
310  void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
311                        bool NoFunction=false);
312  void mangleNestedName(const TemplateDecl *TD,
313                        const TemplateArgument *TemplateArgs,
314                        unsigned NumTemplateArgs);
315  void manglePrefix(NestedNameSpecifier *qualifier);
316  void manglePrefix(const DeclContext *DC, bool NoFunction=false);
317  void manglePrefix(QualType type);
318  void mangleTemplatePrefix(const TemplateDecl *ND);
319  void mangleTemplatePrefix(TemplateName Template);
320  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
321  void mangleQualifiers(Qualifiers Quals);
322  void mangleRefQualifier(RefQualifierKind RefQualifier);
323
324  void mangleObjCMethodName(const ObjCMethodDecl *MD);
325
326  // Declare manglers for every type class.
327#define ABSTRACT_TYPE(CLASS, PARENT)
328#define NON_CANONICAL_TYPE(CLASS, PARENT)
329#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
330#include "clang/AST/TypeNodes.def"
331
332  void mangleType(const TagType*);
333  void mangleType(TemplateName);
334  void mangleBareFunctionType(const FunctionType *T,
335                              bool MangleReturnType);
336  void mangleNeonVectorType(const VectorType *T);
337
338  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
339  void mangleMemberExpr(const Expr *base, bool isArrow,
340                        NestedNameSpecifier *qualifier,
341                        NamedDecl *firstQualifierLookup,
342                        DeclarationName name,
343                        unsigned knownArity);
344  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
345  void mangleCXXCtorType(CXXCtorType T);
346  void mangleCXXDtorType(CXXDtorType T);
347
348  void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
349  void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
350                          unsigned NumTemplateArgs);
351  void mangleTemplateArgs(const TemplateArgumentList &AL);
352  void mangleTemplateArg(TemplateArgument A);
353
354  void mangleTemplateParameter(unsigned Index);
355
356  void mangleFunctionParam(const ParmVarDecl *parm);
357};
358
359}
360
361bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {
362  // In C, functions with no attributes never need to be mangled. Fastpath them.
363  if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs())
364    return false;
365
366  // Any decl can be declared with __asm("foo") on it, and this takes precedence
367  // over all other naming in the .o file.
368  if (D->hasAttr<AsmLabelAttr>())
369    return true;
370
371  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
372  if (FD) {
373    LanguageLinkage L = FD->getLanguageLinkage();
374    // Overloadable functions need mangling.
375    if (FD->hasAttr<OverloadableAttr>())
376      return true;
377
378    // "main" is not mangled.
379    if (FD->isMain())
380      return false;
381
382    // C++ functions and those whose names are not a simple identifier need
383    // mangling.
384    if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
385      return true;
386
387    // C functions are not mangled.
388    if (L == CLanguageLinkage)
389      return false;
390  }
391
392  // Otherwise, no mangling is done outside C++ mode.
393  if (!getASTContext().getLangOpts().CPlusPlus)
394    return false;
395
396  const VarDecl *VD = dyn_cast<VarDecl>(D);
397  if (VD) {
398    // C variables are not mangled.
399    if (VD->isExternC())
400      return false;
401
402    // Variables at global scope with non-internal linkage are not mangled
403    const DeclContext *DC = getEffectiveDeclContext(D);
404    // Check for extern variable declared locally.
405    if (DC->isFunctionOrMethod() && D->hasLinkage())
406      while (!DC->isNamespace() && !DC->isTranslationUnit())
407        DC = getEffectiveParentContext(DC);
408    if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage)
409      return false;
410  }
411
412  return true;
413}
414
415void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
416  // Any decl can be declared with __asm("foo") on it, and this takes precedence
417  // over all other naming in the .o file.
418  if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
419    // If we have an asm name, then we use it as the mangling.
420
421    // Adding the prefix can cause problems when one file has a "foo" and
422    // another has a "\01foo". That is known to happen on ELF with the
423    // tricks normally used for producing aliases (PR9177). Fortunately the
424    // llvm mangler on ELF is a nop, so we can just avoid adding the \01
425    // marker.  We also avoid adding the marker if this is an alias for an
426    // LLVM intrinsic.
427    StringRef UserLabelPrefix =
428      getASTContext().getTargetInfo().getUserLabelPrefix();
429    if (!UserLabelPrefix.empty() && !ALA->getLabel().startswith("llvm."))
430      Out << '\01';  // LLVM IR Marker for __asm("foo")
431
432    Out << ALA->getLabel();
433    return;
434  }
435
436  // <mangled-name> ::= _Z <encoding>
437  //            ::= <data name>
438  //            ::= <special-name>
439  Out << Prefix;
440  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
441    mangleFunctionEncoding(FD);
442  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
443    mangleName(VD);
444  else
445    mangleName(cast<FieldDecl>(D));
446}
447
448void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
449  // <encoding> ::= <function name> <bare-function-type>
450  mangleName(FD);
451
452  // Don't mangle in the type if this isn't a decl we should typically mangle.
453  if (!Context.shouldMangleDeclName(FD))
454    return;
455
456  // Whether the mangling of a function type includes the return type depends on
457  // the context and the nature of the function. The rules for deciding whether
458  // the return type is included are:
459  //
460  //   1. Template functions (names or types) have return types encoded, with
461  //   the exceptions listed below.
462  //   2. Function types not appearing as part of a function name mangling,
463  //   e.g. parameters, pointer types, etc., have return type encoded, with the
464  //   exceptions listed below.
465  //   3. Non-template function names do not have return types encoded.
466  //
467  // The exceptions mentioned in (1) and (2) above, for which the return type is
468  // never included, are
469  //   1. Constructors.
470  //   2. Destructors.
471  //   3. Conversion operator functions, e.g. operator int.
472  bool MangleReturnType = false;
473  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
474    if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
475          isa<CXXConversionDecl>(FD)))
476      MangleReturnType = true;
477
478    // Mangle the type of the primary template.
479    FD = PrimaryTemplate->getTemplatedDecl();
480  }
481
482  mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
483                         MangleReturnType);
484}
485
486static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
487  while (isa<LinkageSpecDecl>(DC)) {
488    DC = getEffectiveParentContext(DC);
489  }
490
491  return DC;
492}
493
494/// isStd - Return whether a given namespace is the 'std' namespace.
495static bool isStd(const NamespaceDecl *NS) {
496  if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
497                                ->isTranslationUnit())
498    return false;
499
500  const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
501  return II && II->isStr("std");
502}
503
504// isStdNamespace - Return whether a given decl context is a toplevel 'std'
505// namespace.
506static bool isStdNamespace(const DeclContext *DC) {
507  if (!DC->isNamespace())
508    return false;
509
510  return isStd(cast<NamespaceDecl>(DC));
511}
512
513static const TemplateDecl *
514isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
515  // Check if we have a function template.
516  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
517    if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
518      TemplateArgs = FD->getTemplateSpecializationArgs();
519      return TD;
520    }
521  }
522
523  // Check if we have a class template.
524  if (const ClassTemplateSpecializationDecl *Spec =
525        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
526    TemplateArgs = &Spec->getTemplateArgs();
527    return Spec->getSpecializedTemplate();
528  }
529
530  return 0;
531}
532
533static bool isLambda(const NamedDecl *ND) {
534  const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
535  if (!Record)
536    return false;
537
538  return Record->isLambda();
539}
540
541void CXXNameMangler::mangleName(const NamedDecl *ND) {
542  //  <name> ::= <nested-name>
543  //         ::= <unscoped-name>
544  //         ::= <unscoped-template-name> <template-args>
545  //         ::= <local-name>
546  //
547  const DeclContext *DC = getEffectiveDeclContext(ND);
548
549  // If this is an extern variable declared locally, the relevant DeclContext
550  // is that of the containing namespace, or the translation unit.
551  // FIXME: This is a hack; extern variables declared locally should have
552  // a proper semantic declaration context!
553  if (isa<FunctionDecl>(DC) && ND->hasLinkage() && !isLambda(ND))
554    while (!DC->isNamespace() && !DC->isTranslationUnit())
555      DC = getEffectiveParentContext(DC);
556  else if (GetLocalClassDecl(ND)) {
557    mangleLocalName(ND);
558    return;
559  }
560
561  DC = IgnoreLinkageSpecDecls(DC);
562
563  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
564    // Check if we have a template.
565    const TemplateArgumentList *TemplateArgs = 0;
566    if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
567      mangleUnscopedTemplateName(TD);
568      mangleTemplateArgs(*TemplateArgs);
569      return;
570    }
571
572    mangleUnscopedName(ND);
573    return;
574  }
575
576  if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) {
577    mangleLocalName(ND);
578    return;
579  }
580
581  mangleNestedName(ND, DC);
582}
583void CXXNameMangler::mangleName(const TemplateDecl *TD,
584                                const TemplateArgument *TemplateArgs,
585                                unsigned NumTemplateArgs) {
586  const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
587
588  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
589    mangleUnscopedTemplateName(TD);
590    mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
591  } else {
592    mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
593  }
594}
595
596void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
597  //  <unscoped-name> ::= <unqualified-name>
598  //                  ::= St <unqualified-name>   # ::std::
599
600  if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
601    Out << "St";
602
603  mangleUnqualifiedName(ND);
604}
605
606void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
607  //     <unscoped-template-name> ::= <unscoped-name>
608  //                              ::= <substitution>
609  if (mangleSubstitution(ND))
610    return;
611
612  // <template-template-param> ::= <template-param>
613  if (const TemplateTemplateParmDecl *TTP
614                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
615    mangleTemplateParameter(TTP->getIndex());
616    return;
617  }
618
619  mangleUnscopedName(ND->getTemplatedDecl());
620  addSubstitution(ND);
621}
622
623void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
624  //     <unscoped-template-name> ::= <unscoped-name>
625  //                              ::= <substitution>
626  if (TemplateDecl *TD = Template.getAsTemplateDecl())
627    return mangleUnscopedTemplateName(TD);
628
629  if (mangleSubstitution(Template))
630    return;
631
632  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
633  assert(Dependent && "Not a dependent template name?");
634  if (const IdentifierInfo *Id = Dependent->getIdentifier())
635    mangleSourceName(Id);
636  else
637    mangleOperatorName(Dependent->getOperator(), UnknownArity);
638
639  addSubstitution(Template);
640}
641
642void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
643  // ABI:
644  //   Floating-point literals are encoded using a fixed-length
645  //   lowercase hexadecimal string corresponding to the internal
646  //   representation (IEEE on Itanium), high-order bytes first,
647  //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
648  //   on Itanium.
649  // The 'without leading zeroes' thing seems to be an editorial
650  // mistake; see the discussion on cxx-abi-dev beginning on
651  // 2012-01-16.
652
653  // Our requirements here are just barely weird enough to justify
654  // using a custom algorithm instead of post-processing APInt::toString().
655
656  llvm::APInt valueBits = f.bitcastToAPInt();
657  unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
658  assert(numCharacters != 0);
659
660  // Allocate a buffer of the right number of characters.
661  SmallVector<char, 20> buffer;
662  buffer.set_size(numCharacters);
663
664  // Fill the buffer left-to-right.
665  for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
666    // The bit-index of the next hex digit.
667    unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
668
669    // Project out 4 bits starting at 'digitIndex'.
670    llvm::integerPart hexDigit
671      = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
672    hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
673    hexDigit &= 0xF;
674
675    // Map that over to a lowercase hex digit.
676    static const char charForHex[16] = {
677      '0', '1', '2', '3', '4', '5', '6', '7',
678      '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
679    };
680    buffer[stringIndex] = charForHex[hexDigit];
681  }
682
683  Out.write(buffer.data(), numCharacters);
684}
685
686void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
687  if (Value.isSigned() && Value.isNegative()) {
688    Out << 'n';
689    Value.abs().print(Out, /*signed*/ false);
690  } else {
691    Value.print(Out, /*signed*/ false);
692  }
693}
694
695void CXXNameMangler::mangleNumber(int64_t Number) {
696  //  <number> ::= [n] <non-negative decimal integer>
697  if (Number < 0) {
698    Out << 'n';
699    Number = -Number;
700  }
701
702  Out << Number;
703}
704
705void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
706  //  <call-offset>  ::= h <nv-offset> _
707  //                 ::= v <v-offset> _
708  //  <nv-offset>    ::= <offset number>        # non-virtual base override
709  //  <v-offset>     ::= <offset number> _ <virtual offset number>
710  //                      # virtual base override, with vcall offset
711  if (!Virtual) {
712    Out << 'h';
713    mangleNumber(NonVirtual);
714    Out << '_';
715    return;
716  }
717
718  Out << 'v';
719  mangleNumber(NonVirtual);
720  Out << '_';
721  mangleNumber(Virtual);
722  Out << '_';
723}
724
725void CXXNameMangler::manglePrefix(QualType type) {
726  if (const TemplateSpecializationType *TST =
727        type->getAs<TemplateSpecializationType>()) {
728    if (!mangleSubstitution(QualType(TST, 0))) {
729      mangleTemplatePrefix(TST->getTemplateName());
730
731      // FIXME: GCC does not appear to mangle the template arguments when
732      // the template in question is a dependent template name. Should we
733      // emulate that badness?
734      mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
735      addSubstitution(QualType(TST, 0));
736    }
737  } else if (const DependentTemplateSpecializationType *DTST
738               = type->getAs<DependentTemplateSpecializationType>()) {
739    TemplateName Template
740      = getASTContext().getDependentTemplateName(DTST->getQualifier(),
741                                                 DTST->getIdentifier());
742    mangleTemplatePrefix(Template);
743
744    // FIXME: GCC does not appear to mangle the template arguments when
745    // the template in question is a dependent template name. Should we
746    // emulate that badness?
747    mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
748  } else {
749    // We use the QualType mangle type variant here because it handles
750    // substitutions.
751    mangleType(type);
752  }
753}
754
755/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
756///
757/// \param firstQualifierLookup - the entity found by unqualified lookup
758///   for the first name in the qualifier, if this is for a member expression
759/// \param recursive - true if this is being called recursively,
760///   i.e. if there is more prefix "to the right".
761void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
762                                            NamedDecl *firstQualifierLookup,
763                                            bool recursive) {
764
765  // x, ::x
766  // <unresolved-name> ::= [gs] <base-unresolved-name>
767
768  // T::x / decltype(p)::x
769  // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
770
771  // T::N::x /decltype(p)::N::x
772  // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
773  //                       <base-unresolved-name>
774
775  // A::x, N::y, A<T>::z; "gs" means leading "::"
776  // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
777  //                       <base-unresolved-name>
778
779  switch (qualifier->getKind()) {
780  case NestedNameSpecifier::Global:
781    Out << "gs";
782
783    // We want an 'sr' unless this is the entire NNS.
784    if (recursive)
785      Out << "sr";
786
787    // We never want an 'E' here.
788    return;
789
790  case NestedNameSpecifier::Namespace:
791    if (qualifier->getPrefix())
792      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
793                             /*recursive*/ true);
794    else
795      Out << "sr";
796    mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
797    break;
798  case NestedNameSpecifier::NamespaceAlias:
799    if (qualifier->getPrefix())
800      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
801                             /*recursive*/ true);
802    else
803      Out << "sr";
804    mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
805    break;
806
807  case NestedNameSpecifier::TypeSpec:
808  case NestedNameSpecifier::TypeSpecWithTemplate: {
809    const Type *type = qualifier->getAsType();
810
811    // We only want to use an unresolved-type encoding if this is one of:
812    //   - a decltype
813    //   - a template type parameter
814    //   - a template template parameter with arguments
815    // In all of these cases, we should have no prefix.
816    if (qualifier->getPrefix()) {
817      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
818                             /*recursive*/ true);
819    } else {
820      // Otherwise, all the cases want this.
821      Out << "sr";
822    }
823
824    // Only certain other types are valid as prefixes;  enumerate them.
825    switch (type->getTypeClass()) {
826    case Type::Builtin:
827    case Type::Complex:
828    case Type::Pointer:
829    case Type::BlockPointer:
830    case Type::LValueReference:
831    case Type::RValueReference:
832    case Type::MemberPointer:
833    case Type::ConstantArray:
834    case Type::IncompleteArray:
835    case Type::VariableArray:
836    case Type::DependentSizedArray:
837    case Type::DependentSizedExtVector:
838    case Type::Vector:
839    case Type::ExtVector:
840    case Type::FunctionProto:
841    case Type::FunctionNoProto:
842    case Type::Enum:
843    case Type::Paren:
844    case Type::Elaborated:
845    case Type::Attributed:
846    case Type::Auto:
847    case Type::PackExpansion:
848    case Type::ObjCObject:
849    case Type::ObjCInterface:
850    case Type::ObjCObjectPointer:
851    case Type::Atomic:
852      llvm_unreachable("type is illegal as a nested name specifier");
853
854    case Type::SubstTemplateTypeParmPack:
855      // FIXME: not clear how to mangle this!
856      // template <class T...> class A {
857      //   template <class U...> void foo(decltype(T::foo(U())) x...);
858      // };
859      Out << "_SUBSTPACK_";
860      break;
861
862    // <unresolved-type> ::= <template-param>
863    //                   ::= <decltype>
864    //                   ::= <template-template-param> <template-args>
865    // (this last is not official yet)
866    case Type::TypeOfExpr:
867    case Type::TypeOf:
868    case Type::Decltype:
869    case Type::TemplateTypeParm:
870    case Type::UnaryTransform:
871    case Type::SubstTemplateTypeParm:
872    unresolvedType:
873      assert(!qualifier->getPrefix());
874
875      // We only get here recursively if we're followed by identifiers.
876      if (recursive) Out << 'N';
877
878      // This seems to do everything we want.  It's not really
879      // sanctioned for a substituted template parameter, though.
880      mangleType(QualType(type, 0));
881
882      // We never want to print 'E' directly after an unresolved-type,
883      // so we return directly.
884      return;
885
886    case Type::Typedef:
887      mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
888      break;
889
890    case Type::UnresolvedUsing:
891      mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
892                         ->getIdentifier());
893      break;
894
895    case Type::Record:
896      mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
897      break;
898
899    case Type::TemplateSpecialization: {
900      const TemplateSpecializationType *tst
901        = cast<TemplateSpecializationType>(type);
902      TemplateName name = tst->getTemplateName();
903      switch (name.getKind()) {
904      case TemplateName::Template:
905      case TemplateName::QualifiedTemplate: {
906        TemplateDecl *temp = name.getAsTemplateDecl();
907
908        // If the base is a template template parameter, this is an
909        // unresolved type.
910        assert(temp && "no template for template specialization type");
911        if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
912
913        mangleSourceName(temp->getIdentifier());
914        break;
915      }
916
917      case TemplateName::OverloadedTemplate:
918      case TemplateName::DependentTemplate:
919        llvm_unreachable("invalid base for a template specialization type");
920
921      case TemplateName::SubstTemplateTemplateParm: {
922        SubstTemplateTemplateParmStorage *subst
923          = name.getAsSubstTemplateTemplateParm();
924        mangleExistingSubstitution(subst->getReplacement());
925        break;
926      }
927
928      case TemplateName::SubstTemplateTemplateParmPack: {
929        // FIXME: not clear how to mangle this!
930        // template <template <class U> class T...> class A {
931        //   template <class U...> void foo(decltype(T<U>::foo) x...);
932        // };
933        Out << "_SUBSTPACK_";
934        break;
935      }
936      }
937
938      mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
939      break;
940    }
941
942    case Type::InjectedClassName:
943      mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
944                         ->getIdentifier());
945      break;
946
947    case Type::DependentName:
948      mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
949      break;
950
951    case Type::DependentTemplateSpecialization: {
952      const DependentTemplateSpecializationType *tst
953        = cast<DependentTemplateSpecializationType>(type);
954      mangleSourceName(tst->getIdentifier());
955      mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
956      break;
957    }
958    }
959    break;
960  }
961
962  case NestedNameSpecifier::Identifier:
963    // Member expressions can have these without prefixes.
964    if (qualifier->getPrefix()) {
965      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
966                             /*recursive*/ true);
967    } else if (firstQualifierLookup) {
968
969      // Try to make a proper qualifier out of the lookup result, and
970      // then just recurse on that.
971      NestedNameSpecifier *newQualifier;
972      if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
973        QualType type = getASTContext().getTypeDeclType(typeDecl);
974
975        // Pretend we had a different nested name specifier.
976        newQualifier = NestedNameSpecifier::Create(getASTContext(),
977                                                   /*prefix*/ 0,
978                                                   /*template*/ false,
979                                                   type.getTypePtr());
980      } else if (NamespaceDecl *nspace =
981                   dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
982        newQualifier = NestedNameSpecifier::Create(getASTContext(),
983                                                   /*prefix*/ 0,
984                                                   nspace);
985      } else if (NamespaceAliasDecl *alias =
986                   dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
987        newQualifier = NestedNameSpecifier::Create(getASTContext(),
988                                                   /*prefix*/ 0,
989                                                   alias);
990      } else {
991        // No sensible mangling to do here.
992        newQualifier = 0;
993      }
994
995      if (newQualifier)
996        return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive);
997
998    } else {
999      Out << "sr";
1000    }
1001
1002    mangleSourceName(qualifier->getAsIdentifier());
1003    break;
1004  }
1005
1006  // If this was the innermost part of the NNS, and we fell out to
1007  // here, append an 'E'.
1008  if (!recursive)
1009    Out << 'E';
1010}
1011
1012/// Mangle an unresolved-name, which is generally used for names which
1013/// weren't resolved to specific entities.
1014void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
1015                                          NamedDecl *firstQualifierLookup,
1016                                          DeclarationName name,
1017                                          unsigned knownArity) {
1018  if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
1019  mangleUnqualifiedName(0, name, knownArity);
1020}
1021
1022static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
1023  assert(RD->isAnonymousStructOrUnion() &&
1024         "Expected anonymous struct or union!");
1025
1026  for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
1027       I != E; ++I) {
1028    if (I->getIdentifier())
1029      return *I;
1030
1031    if (const RecordType *RT = I->getType()->getAs<RecordType>())
1032      if (const FieldDecl *NamedDataMember =
1033          FindFirstNamedDataMember(RT->getDecl()))
1034        return NamedDataMember;
1035    }
1036
1037  // We didn't find a named data member.
1038  return 0;
1039}
1040
1041void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1042                                           DeclarationName Name,
1043                                           unsigned KnownArity) {
1044  //  <unqualified-name> ::= <operator-name>
1045  //                     ::= <ctor-dtor-name>
1046  //                     ::= <source-name>
1047  switch (Name.getNameKind()) {
1048  case DeclarationName::Identifier: {
1049    if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
1050      // We must avoid conflicts between internally- and externally-
1051      // linked variable and function declaration names in the same TU:
1052      //   void test() { extern void foo(); }
1053      //   static void foo();
1054      // This naming convention is the same as that followed by GCC,
1055      // though it shouldn't actually matter.
1056      if (ND && ND->getLinkage() == InternalLinkage &&
1057          getEffectiveDeclContext(ND)->isFileContext())
1058        Out << 'L';
1059
1060      mangleSourceName(II);
1061      break;
1062    }
1063
1064    // Otherwise, an anonymous entity.  We must have a declaration.
1065    assert(ND && "mangling empty name without declaration");
1066
1067    if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1068      if (NS->isAnonymousNamespace()) {
1069        // This is how gcc mangles these names.
1070        Out << "12_GLOBAL__N_1";
1071        break;
1072      }
1073    }
1074
1075    if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1076      // We must have an anonymous union or struct declaration.
1077      const RecordDecl *RD =
1078        cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
1079
1080      // Itanium C++ ABI 5.1.2:
1081      //
1082      //   For the purposes of mangling, the name of an anonymous union is
1083      //   considered to be the name of the first named data member found by a
1084      //   pre-order, depth-first, declaration-order walk of the data members of
1085      //   the anonymous union. If there is no such data member (i.e., if all of
1086      //   the data members in the union are unnamed), then there is no way for
1087      //   a program to refer to the anonymous union, and there is therefore no
1088      //   need to mangle its name.
1089      const FieldDecl *FD = FindFirstNamedDataMember(RD);
1090
1091      // It's actually possible for various reasons for us to get here
1092      // with an empty anonymous struct / union.  Fortunately, it
1093      // doesn't really matter what name we generate.
1094      if (!FD) break;
1095      assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1096
1097      mangleSourceName(FD->getIdentifier());
1098      break;
1099    }
1100
1101    // Class extensions have no name as a category, and it's possible
1102    // for them to be the semantic parent of certain declarations
1103    // (primarily, tag decls defined within declarations).  Such
1104    // declarations will always have internal linkage, so the name
1105    // doesn't really matter, but we shouldn't crash on them.  For
1106    // safety, just handle all ObjC containers here.
1107    if (isa<ObjCContainerDecl>(ND))
1108      break;
1109
1110    // We must have an anonymous struct.
1111    const TagDecl *TD = cast<TagDecl>(ND);
1112    if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1113      assert(TD->getDeclContext() == D->getDeclContext() &&
1114             "Typedef should not be in another decl context!");
1115      assert(D->getDeclName().getAsIdentifierInfo() &&
1116             "Typedef was not named!");
1117      mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1118      break;
1119    }
1120
1121    // <unnamed-type-name> ::= <closure-type-name>
1122    //
1123    // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1124    // <lambda-sig> ::= <parameter-type>+   # Parameter types or 'v' for 'void'.
1125    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1126      if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1127        mangleLambda(Record);
1128        break;
1129      }
1130    }
1131
1132    int UnnamedMangle = Context.getASTContext().getUnnamedTagManglingNumber(TD);
1133    if (UnnamedMangle != -1) {
1134      Out << "Ut";
1135      if (UnnamedMangle != 0)
1136        Out << llvm::utostr(UnnamedMangle - 1);
1137      Out << '_';
1138      break;
1139    }
1140
1141    // Get a unique id for the anonymous struct.
1142    uint64_t AnonStructId = Context.getAnonymousStructId(TD);
1143
1144    // Mangle it as a source name in the form
1145    // [n] $_<id>
1146    // where n is the length of the string.
1147    SmallString<8> Str;
1148    Str += "$_";
1149    Str += llvm::utostr(AnonStructId);
1150
1151    Out << Str.size();
1152    Out << Str.str();
1153    break;
1154  }
1155
1156  case DeclarationName::ObjCZeroArgSelector:
1157  case DeclarationName::ObjCOneArgSelector:
1158  case DeclarationName::ObjCMultiArgSelector:
1159    llvm_unreachable("Can't mangle Objective-C selector names here!");
1160
1161  case DeclarationName::CXXConstructorName:
1162    if (ND == Structor)
1163      // If the named decl is the C++ constructor we're mangling, use the type
1164      // we were given.
1165      mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
1166    else
1167      // Otherwise, use the complete constructor name. This is relevant if a
1168      // class with a constructor is declared within a constructor.
1169      mangleCXXCtorType(Ctor_Complete);
1170    break;
1171
1172  case DeclarationName::CXXDestructorName:
1173    if (ND == Structor)
1174      // If the named decl is the C++ destructor we're mangling, use the type we
1175      // were given.
1176      mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1177    else
1178      // Otherwise, use the complete destructor name. This is relevant if a
1179      // class with a destructor is declared within a destructor.
1180      mangleCXXDtorType(Dtor_Complete);
1181    break;
1182
1183  case DeclarationName::CXXConversionFunctionName:
1184    // <operator-name> ::= cv <type>    # (cast)
1185    Out << "cv";
1186    mangleType(Name.getCXXNameType());
1187    break;
1188
1189  case DeclarationName::CXXOperatorName: {
1190    unsigned Arity;
1191    if (ND) {
1192      Arity = cast<FunctionDecl>(ND)->getNumParams();
1193
1194      // If we have a C++ member function, we need to include the 'this' pointer.
1195      // FIXME: This does not make sense for operators that are static, but their
1196      // names stay the same regardless of the arity (operator new for instance).
1197      if (isa<CXXMethodDecl>(ND))
1198        Arity++;
1199    } else
1200      Arity = KnownArity;
1201
1202    mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
1203    break;
1204  }
1205
1206  case DeclarationName::CXXLiteralOperatorName:
1207    // FIXME: This mangling is not yet official.
1208    Out << "li";
1209    mangleSourceName(Name.getCXXLiteralIdentifier());
1210    break;
1211
1212  case DeclarationName::CXXUsingDirective:
1213    llvm_unreachable("Can't mangle a using directive name!");
1214  }
1215}
1216
1217void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1218  // <source-name> ::= <positive length number> <identifier>
1219  // <number> ::= [n] <non-negative decimal integer>
1220  // <identifier> ::= <unqualified source code identifier>
1221  Out << II->getLength() << II->getName();
1222}
1223
1224void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1225                                      const DeclContext *DC,
1226                                      bool NoFunction) {
1227  // <nested-name>
1228  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1229  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1230  //       <template-args> E
1231
1232  Out << 'N';
1233  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1234    mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
1235    mangleRefQualifier(Method->getRefQualifier());
1236  }
1237
1238  // Check if we have a template.
1239  const TemplateArgumentList *TemplateArgs = 0;
1240  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1241    mangleTemplatePrefix(TD);
1242    mangleTemplateArgs(*TemplateArgs);
1243  }
1244  else {
1245    manglePrefix(DC, NoFunction);
1246    mangleUnqualifiedName(ND);
1247  }
1248
1249  Out << 'E';
1250}
1251void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1252                                      const TemplateArgument *TemplateArgs,
1253                                      unsigned NumTemplateArgs) {
1254  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1255
1256  Out << 'N';
1257
1258  mangleTemplatePrefix(TD);
1259  mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1260
1261  Out << 'E';
1262}
1263
1264void CXXNameMangler::mangleLocalName(const NamedDecl *ND) {
1265  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1266  //              := Z <function encoding> E s [<discriminator>]
1267  // <local-name> := Z <function encoding> E d [ <parameter number> ]
1268  //                 _ <entity name>
1269  // <discriminator> := _ <non-negative number>
1270  const DeclContext *DC = getEffectiveDeclContext(ND);
1271  if (isa<ObjCMethodDecl>(DC) && isa<FunctionDecl>(ND)) {
1272    // Don't add objc method name mangling to locally declared function
1273    mangleUnqualifiedName(ND);
1274    return;
1275  }
1276
1277  Out << 'Z';
1278
1279  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) {
1280   mangleObjCMethodName(MD);
1281  } else if (const CXXRecordDecl *RD = GetLocalClassDecl(ND)) {
1282    mangleFunctionEncoding(cast<FunctionDecl>(getEffectiveDeclContext(RD)));
1283    Out << 'E';
1284
1285    // The parameter number is omitted for the last parameter, 0 for the
1286    // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1287    // <entity name> will of course contain a <closure-type-name>: Its
1288    // numbering will be local to the particular argument in which it appears
1289    // -- other default arguments do not affect its encoding.
1290    bool SkipDiscriminator = false;
1291    if (RD->isLambda()) {
1292      if (const ParmVarDecl *Parm
1293                 = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) {
1294        if (const FunctionDecl *Func
1295              = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1296          Out << 'd';
1297          unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1298          if (Num > 1)
1299            mangleNumber(Num - 2);
1300          Out << '_';
1301          SkipDiscriminator = true;
1302        }
1303      }
1304    }
1305
1306    // Mangle the name relative to the closest enclosing function.
1307    if (ND == RD) // equality ok because RD derived from ND above
1308      mangleUnqualifiedName(ND);
1309    else
1310      mangleNestedName(ND, DC, true /*NoFunction*/);
1311
1312    if (!SkipDiscriminator) {
1313      unsigned disc;
1314      if (Context.getNextDiscriminator(RD, disc)) {
1315        if (disc < 10)
1316          Out << '_' << disc;
1317        else
1318          Out << "__" << disc << '_';
1319      }
1320    }
1321
1322    return;
1323  }
1324  else
1325    mangleFunctionEncoding(cast<FunctionDecl>(DC));
1326
1327  Out << 'E';
1328  mangleUnqualifiedName(ND);
1329}
1330
1331void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1332  // If the context of a closure type is an initializer for a class member
1333  // (static or nonstatic), it is encoded in a qualified name with a final
1334  // <prefix> of the form:
1335  //
1336  //   <data-member-prefix> := <member source-name> M
1337  //
1338  // Technically, the data-member-prefix is part of the <prefix>. However,
1339  // since a closure type will always be mangled with a prefix, it's easier
1340  // to emit that last part of the prefix here.
1341  if (Decl *Context = Lambda->getLambdaContextDecl()) {
1342    if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1343        Context->getDeclContext()->isRecord()) {
1344      if (const IdentifierInfo *Name
1345            = cast<NamedDecl>(Context)->getIdentifier()) {
1346        mangleSourceName(Name);
1347        Out << 'M';
1348      }
1349    }
1350  }
1351
1352  Out << "Ul";
1353  const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
1354                                   getAs<FunctionProtoType>();
1355  mangleBareFunctionType(Proto, /*MangleReturnType=*/false);
1356  Out << "E";
1357
1358  // The number is omitted for the first closure type with a given
1359  // <lambda-sig> in a given context; it is n-2 for the nth closure type
1360  // (in lexical order) with that same <lambda-sig> and context.
1361  //
1362  // The AST keeps track of the number for us.
1363  unsigned Number = Lambda->getLambdaManglingNumber();
1364  assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1365  if (Number > 1)
1366    mangleNumber(Number - 2);
1367  Out << '_';
1368}
1369
1370void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1371  switch (qualifier->getKind()) {
1372  case NestedNameSpecifier::Global:
1373    // nothing
1374    return;
1375
1376  case NestedNameSpecifier::Namespace:
1377    mangleName(qualifier->getAsNamespace());
1378    return;
1379
1380  case NestedNameSpecifier::NamespaceAlias:
1381    mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1382    return;
1383
1384  case NestedNameSpecifier::TypeSpec:
1385  case NestedNameSpecifier::TypeSpecWithTemplate:
1386    manglePrefix(QualType(qualifier->getAsType(), 0));
1387    return;
1388
1389  case NestedNameSpecifier::Identifier:
1390    // Member expressions can have these without prefixes, but that
1391    // should end up in mangleUnresolvedPrefix instead.
1392    assert(qualifier->getPrefix());
1393    manglePrefix(qualifier->getPrefix());
1394
1395    mangleSourceName(qualifier->getAsIdentifier());
1396    return;
1397  }
1398
1399  llvm_unreachable("unexpected nested name specifier");
1400}
1401
1402void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1403  //  <prefix> ::= <prefix> <unqualified-name>
1404  //           ::= <template-prefix> <template-args>
1405  //           ::= <template-param>
1406  //           ::= # empty
1407  //           ::= <substitution>
1408
1409  DC = IgnoreLinkageSpecDecls(DC);
1410
1411  if (DC->isTranslationUnit())
1412    return;
1413
1414  if (const BlockDecl *Block = dyn_cast<BlockDecl>(DC)) {
1415    manglePrefix(getEffectiveParentContext(DC), NoFunction);
1416    SmallString<64> Name;
1417    llvm::raw_svector_ostream NameStream(Name);
1418    Context.mangleBlock(Block, NameStream);
1419    NameStream.flush();
1420    Out << Name.size() << Name;
1421    return;
1422  }
1423
1424  const NamedDecl *ND = cast<NamedDecl>(DC);
1425  if (mangleSubstitution(ND))
1426    return;
1427
1428  // Check if we have a template.
1429  const TemplateArgumentList *TemplateArgs = 0;
1430  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1431    mangleTemplatePrefix(TD);
1432    mangleTemplateArgs(*TemplateArgs);
1433  }
1434  else if(NoFunction && (isa<FunctionDecl>(ND) || isa<ObjCMethodDecl>(ND)))
1435    return;
1436  else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(ND))
1437    mangleObjCMethodName(Method);
1438  else {
1439    manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1440    mangleUnqualifiedName(ND);
1441  }
1442
1443  addSubstitution(ND);
1444}
1445
1446void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1447  // <template-prefix> ::= <prefix> <template unqualified-name>
1448  //                   ::= <template-param>
1449  //                   ::= <substitution>
1450  if (TemplateDecl *TD = Template.getAsTemplateDecl())
1451    return mangleTemplatePrefix(TD);
1452
1453  if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1454    manglePrefix(Qualified->getQualifier());
1455
1456  if (OverloadedTemplateStorage *Overloaded
1457                                      = Template.getAsOverloadedTemplate()) {
1458    mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
1459                          UnknownArity);
1460    return;
1461  }
1462
1463  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1464  assert(Dependent && "Unknown template name kind?");
1465  manglePrefix(Dependent->getQualifier());
1466  mangleUnscopedTemplateName(Template);
1467}
1468
1469void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) {
1470  // <template-prefix> ::= <prefix> <template unqualified-name>
1471  //                   ::= <template-param>
1472  //                   ::= <substitution>
1473  // <template-template-param> ::= <template-param>
1474  //                               <substitution>
1475
1476  if (mangleSubstitution(ND))
1477    return;
1478
1479  // <template-template-param> ::= <template-param>
1480  if (const TemplateTemplateParmDecl *TTP
1481                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1482    mangleTemplateParameter(TTP->getIndex());
1483    return;
1484  }
1485
1486  manglePrefix(getEffectiveDeclContext(ND));
1487  mangleUnqualifiedName(ND->getTemplatedDecl());
1488  addSubstitution(ND);
1489}
1490
1491/// Mangles a template name under the production <type>.  Required for
1492/// template template arguments.
1493///   <type> ::= <class-enum-type>
1494///          ::= <template-param>
1495///          ::= <substitution>
1496void CXXNameMangler::mangleType(TemplateName TN) {
1497  if (mangleSubstitution(TN))
1498    return;
1499
1500  TemplateDecl *TD = 0;
1501
1502  switch (TN.getKind()) {
1503  case TemplateName::QualifiedTemplate:
1504    TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1505    goto HaveDecl;
1506
1507  case TemplateName::Template:
1508    TD = TN.getAsTemplateDecl();
1509    goto HaveDecl;
1510
1511  HaveDecl:
1512    if (isa<TemplateTemplateParmDecl>(TD))
1513      mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1514    else
1515      mangleName(TD);
1516    break;
1517
1518  case TemplateName::OverloadedTemplate:
1519    llvm_unreachable("can't mangle an overloaded template name as a <type>");
1520
1521  case TemplateName::DependentTemplate: {
1522    const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1523    assert(Dependent->isIdentifier());
1524
1525    // <class-enum-type> ::= <name>
1526    // <name> ::= <nested-name>
1527    mangleUnresolvedPrefix(Dependent->getQualifier(), 0);
1528    mangleSourceName(Dependent->getIdentifier());
1529    break;
1530  }
1531
1532  case TemplateName::SubstTemplateTemplateParm: {
1533    // Substituted template parameters are mangled as the substituted
1534    // template.  This will check for the substitution twice, which is
1535    // fine, but we have to return early so that we don't try to *add*
1536    // the substitution twice.
1537    SubstTemplateTemplateParmStorage *subst
1538      = TN.getAsSubstTemplateTemplateParm();
1539    mangleType(subst->getReplacement());
1540    return;
1541  }
1542
1543  case TemplateName::SubstTemplateTemplateParmPack: {
1544    // FIXME: not clear how to mangle this!
1545    // template <template <class> class T...> class A {
1546    //   template <template <class> class U...> void foo(B<T,U> x...);
1547    // };
1548    Out << "_SUBSTPACK_";
1549    break;
1550  }
1551  }
1552
1553  addSubstitution(TN);
1554}
1555
1556void
1557CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1558  switch (OO) {
1559  // <operator-name> ::= nw     # new
1560  case OO_New: Out << "nw"; break;
1561  //              ::= na        # new[]
1562  case OO_Array_New: Out << "na"; break;
1563  //              ::= dl        # delete
1564  case OO_Delete: Out << "dl"; break;
1565  //              ::= da        # delete[]
1566  case OO_Array_Delete: Out << "da"; break;
1567  //              ::= ps        # + (unary)
1568  //              ::= pl        # + (binary or unknown)
1569  case OO_Plus:
1570    Out << (Arity == 1? "ps" : "pl"); break;
1571  //              ::= ng        # - (unary)
1572  //              ::= mi        # - (binary or unknown)
1573  case OO_Minus:
1574    Out << (Arity == 1? "ng" : "mi"); break;
1575  //              ::= ad        # & (unary)
1576  //              ::= an        # & (binary or unknown)
1577  case OO_Amp:
1578    Out << (Arity == 1? "ad" : "an"); break;
1579  //              ::= de        # * (unary)
1580  //              ::= ml        # * (binary or unknown)
1581  case OO_Star:
1582    // Use binary when unknown.
1583    Out << (Arity == 1? "de" : "ml"); break;
1584  //              ::= co        # ~
1585  case OO_Tilde: Out << "co"; break;
1586  //              ::= dv        # /
1587  case OO_Slash: Out << "dv"; break;
1588  //              ::= rm        # %
1589  case OO_Percent: Out << "rm"; break;
1590  //              ::= or        # |
1591  case OO_Pipe: Out << "or"; break;
1592  //              ::= eo        # ^
1593  case OO_Caret: Out << "eo"; break;
1594  //              ::= aS        # =
1595  case OO_Equal: Out << "aS"; break;
1596  //              ::= pL        # +=
1597  case OO_PlusEqual: Out << "pL"; break;
1598  //              ::= mI        # -=
1599  case OO_MinusEqual: Out << "mI"; break;
1600  //              ::= mL        # *=
1601  case OO_StarEqual: Out << "mL"; break;
1602  //              ::= dV        # /=
1603  case OO_SlashEqual: Out << "dV"; break;
1604  //              ::= rM        # %=
1605  case OO_PercentEqual: Out << "rM"; break;
1606  //              ::= aN        # &=
1607  case OO_AmpEqual: Out << "aN"; break;
1608  //              ::= oR        # |=
1609  case OO_PipeEqual: Out << "oR"; break;
1610  //              ::= eO        # ^=
1611  case OO_CaretEqual: Out << "eO"; break;
1612  //              ::= ls        # <<
1613  case OO_LessLess: Out << "ls"; break;
1614  //              ::= rs        # >>
1615  case OO_GreaterGreater: Out << "rs"; break;
1616  //              ::= lS        # <<=
1617  case OO_LessLessEqual: Out << "lS"; break;
1618  //              ::= rS        # >>=
1619  case OO_GreaterGreaterEqual: Out << "rS"; break;
1620  //              ::= eq        # ==
1621  case OO_EqualEqual: Out << "eq"; break;
1622  //              ::= ne        # !=
1623  case OO_ExclaimEqual: Out << "ne"; break;
1624  //              ::= lt        # <
1625  case OO_Less: Out << "lt"; break;
1626  //              ::= gt        # >
1627  case OO_Greater: Out << "gt"; break;
1628  //              ::= le        # <=
1629  case OO_LessEqual: Out << "le"; break;
1630  //              ::= ge        # >=
1631  case OO_GreaterEqual: Out << "ge"; break;
1632  //              ::= nt        # !
1633  case OO_Exclaim: Out << "nt"; break;
1634  //              ::= aa        # &&
1635  case OO_AmpAmp: Out << "aa"; break;
1636  //              ::= oo        # ||
1637  case OO_PipePipe: Out << "oo"; break;
1638  //              ::= pp        # ++
1639  case OO_PlusPlus: Out << "pp"; break;
1640  //              ::= mm        # --
1641  case OO_MinusMinus: Out << "mm"; break;
1642  //              ::= cm        # ,
1643  case OO_Comma: Out << "cm"; break;
1644  //              ::= pm        # ->*
1645  case OO_ArrowStar: Out << "pm"; break;
1646  //              ::= pt        # ->
1647  case OO_Arrow: Out << "pt"; break;
1648  //              ::= cl        # ()
1649  case OO_Call: Out << "cl"; break;
1650  //              ::= ix        # []
1651  case OO_Subscript: Out << "ix"; break;
1652
1653  //              ::= qu        # ?
1654  // The conditional operator can't be overloaded, but we still handle it when
1655  // mangling expressions.
1656  case OO_Conditional: Out << "qu"; break;
1657
1658  case OO_None:
1659  case NUM_OVERLOADED_OPERATORS:
1660    llvm_unreachable("Not an overloaded operator");
1661  }
1662}
1663
1664void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1665  // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
1666  if (Quals.hasRestrict())
1667    Out << 'r';
1668  if (Quals.hasVolatile())
1669    Out << 'V';
1670  if (Quals.hasConst())
1671    Out << 'K';
1672
1673  if (Quals.hasAddressSpace()) {
1674    // Extension:
1675    //
1676    //   <type> ::= U <address-space-number>
1677    //
1678    // where <address-space-number> is a source name consisting of 'AS'
1679    // followed by the address space <number>.
1680    SmallString<64> ASString;
1681    ASString = "AS" + llvm::utostr_32(
1682        Context.getASTContext().getTargetAddressSpace(Quals.getAddressSpace()));
1683    Out << 'U' << ASString.size() << ASString;
1684  }
1685
1686  StringRef LifetimeName;
1687  switch (Quals.getObjCLifetime()) {
1688  // Objective-C ARC Extension:
1689  //
1690  //   <type> ::= U "__strong"
1691  //   <type> ::= U "__weak"
1692  //   <type> ::= U "__autoreleasing"
1693  case Qualifiers::OCL_None:
1694    break;
1695
1696  case Qualifiers::OCL_Weak:
1697    LifetimeName = "__weak";
1698    break;
1699
1700  case Qualifiers::OCL_Strong:
1701    LifetimeName = "__strong";
1702    break;
1703
1704  case Qualifiers::OCL_Autoreleasing:
1705    LifetimeName = "__autoreleasing";
1706    break;
1707
1708  case Qualifiers::OCL_ExplicitNone:
1709    // The __unsafe_unretained qualifier is *not* mangled, so that
1710    // __unsafe_unretained types in ARC produce the same manglings as the
1711    // equivalent (but, naturally, unqualified) types in non-ARC, providing
1712    // better ABI compatibility.
1713    //
1714    // It's safe to do this because unqualified 'id' won't show up
1715    // in any type signatures that need to be mangled.
1716    break;
1717  }
1718  if (!LifetimeName.empty())
1719    Out << 'U' << LifetimeName.size() << LifetimeName;
1720}
1721
1722void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1723  // <ref-qualifier> ::= R                # lvalue reference
1724  //                 ::= O                # rvalue-reference
1725  // Proposal to Itanium C++ ABI list on 1/26/11
1726  switch (RefQualifier) {
1727  case RQ_None:
1728    break;
1729
1730  case RQ_LValue:
1731    Out << 'R';
1732    break;
1733
1734  case RQ_RValue:
1735    Out << 'O';
1736    break;
1737  }
1738}
1739
1740void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1741  Context.mangleObjCMethodName(MD, Out);
1742}
1743
1744void CXXNameMangler::mangleType(QualType T) {
1745  // If our type is instantiation-dependent but not dependent, we mangle
1746  // it as it was written in the source, removing any top-level sugar.
1747  // Otherwise, use the canonical type.
1748  //
1749  // FIXME: This is an approximation of the instantiation-dependent name
1750  // mangling rules, since we should really be using the type as written and
1751  // augmented via semantic analysis (i.e., with implicit conversions and
1752  // default template arguments) for any instantiation-dependent type.
1753  // Unfortunately, that requires several changes to our AST:
1754  //   - Instantiation-dependent TemplateSpecializationTypes will need to be
1755  //     uniqued, so that we can handle substitutions properly
1756  //   - Default template arguments will need to be represented in the
1757  //     TemplateSpecializationType, since they need to be mangled even though
1758  //     they aren't written.
1759  //   - Conversions on non-type template arguments need to be expressed, since
1760  //     they can affect the mangling of sizeof/alignof.
1761  if (!T->isInstantiationDependentType() || T->isDependentType())
1762    T = T.getCanonicalType();
1763  else {
1764    // Desugar any types that are purely sugar.
1765    do {
1766      // Don't desugar through template specialization types that aren't
1767      // type aliases. We need to mangle the template arguments as written.
1768      if (const TemplateSpecializationType *TST
1769                                      = dyn_cast<TemplateSpecializationType>(T))
1770        if (!TST->isTypeAlias())
1771          break;
1772
1773      QualType Desugared
1774        = T.getSingleStepDesugaredType(Context.getASTContext());
1775      if (Desugared == T)
1776        break;
1777
1778      T = Desugared;
1779    } while (true);
1780  }
1781  SplitQualType split = T.split();
1782  Qualifiers quals = split.Quals;
1783  const Type *ty = split.Ty;
1784
1785  bool isSubstitutable = quals || !isa<BuiltinType>(T);
1786  if (isSubstitutable && mangleSubstitution(T))
1787    return;
1788
1789  // If we're mangling a qualified array type, push the qualifiers to
1790  // the element type.
1791  if (quals && isa<ArrayType>(T)) {
1792    ty = Context.getASTContext().getAsArrayType(T);
1793    quals = Qualifiers();
1794
1795    // Note that we don't update T: we want to add the
1796    // substitution at the original type.
1797  }
1798
1799  if (quals) {
1800    mangleQualifiers(quals);
1801    // Recurse:  even if the qualified type isn't yet substitutable,
1802    // the unqualified type might be.
1803    mangleType(QualType(ty, 0));
1804  } else {
1805    switch (ty->getTypeClass()) {
1806#define ABSTRACT_TYPE(CLASS, PARENT)
1807#define NON_CANONICAL_TYPE(CLASS, PARENT) \
1808    case Type::CLASS: \
1809      llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1810      return;
1811#define TYPE(CLASS, PARENT) \
1812    case Type::CLASS: \
1813      mangleType(static_cast<const CLASS##Type*>(ty)); \
1814      break;
1815#include "clang/AST/TypeNodes.def"
1816    }
1817  }
1818
1819  // Add the substitution.
1820  if (isSubstitutable)
1821    addSubstitution(T);
1822}
1823
1824void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1825  if (!mangleStandardSubstitution(ND))
1826    mangleName(ND);
1827}
1828
1829void CXXNameMangler::mangleType(const BuiltinType *T) {
1830  //  <type>         ::= <builtin-type>
1831  //  <builtin-type> ::= v  # void
1832  //                 ::= w  # wchar_t
1833  //                 ::= b  # bool
1834  //                 ::= c  # char
1835  //                 ::= a  # signed char
1836  //                 ::= h  # unsigned char
1837  //                 ::= s  # short
1838  //                 ::= t  # unsigned short
1839  //                 ::= i  # int
1840  //                 ::= j  # unsigned int
1841  //                 ::= l  # long
1842  //                 ::= m  # unsigned long
1843  //                 ::= x  # long long, __int64
1844  //                 ::= y  # unsigned long long, __int64
1845  //                 ::= n  # __int128
1846  // UNSUPPORTED:    ::= o  # unsigned __int128
1847  //                 ::= f  # float
1848  //                 ::= d  # double
1849  //                 ::= e  # long double, __float80
1850  // UNSUPPORTED:    ::= g  # __float128
1851  // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
1852  // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
1853  // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
1854  //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
1855  //                 ::= Di # char32_t
1856  //                 ::= Ds # char16_t
1857  //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1858  //                 ::= u <source-name>    # vendor extended type
1859  switch (T->getKind()) {
1860  case BuiltinType::Void: Out << 'v'; break;
1861  case BuiltinType::Bool: Out << 'b'; break;
1862  case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1863  case BuiltinType::UChar: Out << 'h'; break;
1864  case BuiltinType::UShort: Out << 't'; break;
1865  case BuiltinType::UInt: Out << 'j'; break;
1866  case BuiltinType::ULong: Out << 'm'; break;
1867  case BuiltinType::ULongLong: Out << 'y'; break;
1868  case BuiltinType::UInt128: Out << 'o'; break;
1869  case BuiltinType::SChar: Out << 'a'; break;
1870  case BuiltinType::WChar_S:
1871  case BuiltinType::WChar_U: Out << 'w'; break;
1872  case BuiltinType::Char16: Out << "Ds"; break;
1873  case BuiltinType::Char32: Out << "Di"; break;
1874  case BuiltinType::Short: Out << 's'; break;
1875  case BuiltinType::Int: Out << 'i'; break;
1876  case BuiltinType::Long: Out << 'l'; break;
1877  case BuiltinType::LongLong: Out << 'x'; break;
1878  case BuiltinType::Int128: Out << 'n'; break;
1879  case BuiltinType::Half: Out << "Dh"; break;
1880  case BuiltinType::Float: Out << 'f'; break;
1881  case BuiltinType::Double: Out << 'd'; break;
1882  case BuiltinType::LongDouble: Out << 'e'; break;
1883  case BuiltinType::NullPtr: Out << "Dn"; break;
1884
1885#define BUILTIN_TYPE(Id, SingletonId)
1886#define PLACEHOLDER_TYPE(Id, SingletonId) \
1887  case BuiltinType::Id:
1888#include "clang/AST/BuiltinTypes.def"
1889  case BuiltinType::Dependent:
1890    llvm_unreachable("mangling a placeholder type");
1891  case BuiltinType::ObjCId: Out << "11objc_object"; break;
1892  case BuiltinType::ObjCClass: Out << "10objc_class"; break;
1893  case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
1894  case BuiltinType::OCLImage1d: Out << "11ocl_image1d"; break;
1895  case BuiltinType::OCLImage1dArray: Out << "16ocl_image1darray"; break;
1896  case BuiltinType::OCLImage1dBuffer: Out << "17ocl_image1dbuffer"; break;
1897  case BuiltinType::OCLImage2d: Out << "11ocl_image2d"; break;
1898  case BuiltinType::OCLImage2dArray: Out << "16ocl_image2darray"; break;
1899  case BuiltinType::OCLImage3d: Out << "11ocl_image3d"; break;
1900  case BuiltinType::OCLSampler: Out << "11ocl_sampler"; break;
1901  case BuiltinType::OCLEvent: Out << "9ocl_event"; break;
1902  }
1903}
1904
1905// <type>          ::= <function-type>
1906// <function-type> ::= [<CV-qualifiers>] F [Y]
1907//                      <bare-function-type> [<ref-qualifier>] E
1908// (Proposal to cxx-abi-dev, 2012-05-11)
1909void CXXNameMangler::mangleType(const FunctionProtoType *T) {
1910  // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
1911  // e.g. "const" in "int (A::*)() const".
1912  mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
1913
1914  Out << 'F';
1915
1916  // FIXME: We don't have enough information in the AST to produce the 'Y'
1917  // encoding for extern "C" function types.
1918  mangleBareFunctionType(T, /*MangleReturnType=*/true);
1919
1920  // Mangle the ref-qualifier, if present.
1921  mangleRefQualifier(T->getRefQualifier());
1922
1923  Out << 'E';
1924}
1925void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
1926  llvm_unreachable("Can't mangle K&R function prototypes");
1927}
1928void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
1929                                            bool MangleReturnType) {
1930  // We should never be mangling something without a prototype.
1931  const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1932
1933  // Record that we're in a function type.  See mangleFunctionParam
1934  // for details on what we're trying to achieve here.
1935  FunctionTypeDepthState saved = FunctionTypeDepth.push();
1936
1937  // <bare-function-type> ::= <signature type>+
1938  if (MangleReturnType) {
1939    FunctionTypeDepth.enterResultType();
1940    mangleType(Proto->getResultType());
1941    FunctionTypeDepth.leaveResultType();
1942  }
1943
1944  if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
1945    //   <builtin-type> ::= v   # void
1946    Out << 'v';
1947
1948    FunctionTypeDepth.pop(saved);
1949    return;
1950  }
1951
1952  for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1953                                         ArgEnd = Proto->arg_type_end();
1954       Arg != ArgEnd; ++Arg)
1955    mangleType(Context.getASTContext().getSignatureParameterType(*Arg));
1956
1957  FunctionTypeDepth.pop(saved);
1958
1959  // <builtin-type>      ::= z  # ellipsis
1960  if (Proto->isVariadic())
1961    Out << 'z';
1962}
1963
1964// <type>            ::= <class-enum-type>
1965// <class-enum-type> ::= <name>
1966void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
1967  mangleName(T->getDecl());
1968}
1969
1970// <type>            ::= <class-enum-type>
1971// <class-enum-type> ::= <name>
1972void CXXNameMangler::mangleType(const EnumType *T) {
1973  mangleType(static_cast<const TagType*>(T));
1974}
1975void CXXNameMangler::mangleType(const RecordType *T) {
1976  mangleType(static_cast<const TagType*>(T));
1977}
1978void CXXNameMangler::mangleType(const TagType *T) {
1979  mangleName(T->getDecl());
1980}
1981
1982// <type>       ::= <array-type>
1983// <array-type> ::= A <positive dimension number> _ <element type>
1984//              ::= A [<dimension expression>] _ <element type>
1985void CXXNameMangler::mangleType(const ConstantArrayType *T) {
1986  Out << 'A' << T->getSize() << '_';
1987  mangleType(T->getElementType());
1988}
1989void CXXNameMangler::mangleType(const VariableArrayType *T) {
1990  Out << 'A';
1991  // decayed vla types (size 0) will just be skipped.
1992  if (T->getSizeExpr())
1993    mangleExpression(T->getSizeExpr());
1994  Out << '_';
1995  mangleType(T->getElementType());
1996}
1997void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
1998  Out << 'A';
1999  mangleExpression(T->getSizeExpr());
2000  Out << '_';
2001  mangleType(T->getElementType());
2002}
2003void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
2004  Out << "A_";
2005  mangleType(T->getElementType());
2006}
2007
2008// <type>                   ::= <pointer-to-member-type>
2009// <pointer-to-member-type> ::= M <class type> <member type>
2010void CXXNameMangler::mangleType(const MemberPointerType *T) {
2011  Out << 'M';
2012  mangleType(QualType(T->getClass(), 0));
2013  QualType PointeeType = T->getPointeeType();
2014  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2015    mangleType(FPT);
2016
2017    // Itanium C++ ABI 5.1.8:
2018    //
2019    //   The type of a non-static member function is considered to be different,
2020    //   for the purposes of substitution, from the type of a namespace-scope or
2021    //   static member function whose type appears similar. The types of two
2022    //   non-static member functions are considered to be different, for the
2023    //   purposes of substitution, if the functions are members of different
2024    //   classes. In other words, for the purposes of substitution, the class of
2025    //   which the function is a member is considered part of the type of
2026    //   function.
2027
2028    // Given that we already substitute member function pointers as a
2029    // whole, the net effect of this rule is just to unconditionally
2030    // suppress substitution on the function type in a member pointer.
2031    // We increment the SeqID here to emulate adding an entry to the
2032    // substitution table.
2033    ++SeqID;
2034  } else
2035    mangleType(PointeeType);
2036}
2037
2038// <type>           ::= <template-param>
2039void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2040  mangleTemplateParameter(T->getIndex());
2041}
2042
2043// <type>           ::= <template-param>
2044void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2045  // FIXME: not clear how to mangle this!
2046  // template <class T...> class A {
2047  //   template <class U...> void foo(T(*)(U) x...);
2048  // };
2049  Out << "_SUBSTPACK_";
2050}
2051
2052// <type> ::= P <type>   # pointer-to
2053void CXXNameMangler::mangleType(const PointerType *T) {
2054  Out << 'P';
2055  mangleType(T->getPointeeType());
2056}
2057void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2058  Out << 'P';
2059  mangleType(T->getPointeeType());
2060}
2061
2062// <type> ::= R <type>   # reference-to
2063void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2064  Out << 'R';
2065  mangleType(T->getPointeeType());
2066}
2067
2068// <type> ::= O <type>   # rvalue reference-to (C++0x)
2069void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2070  Out << 'O';
2071  mangleType(T->getPointeeType());
2072}
2073
2074// <type> ::= C <type>   # complex pair (C 2000)
2075void CXXNameMangler::mangleType(const ComplexType *T) {
2076  Out << 'C';
2077  mangleType(T->getElementType());
2078}
2079
2080// ARM's ABI for Neon vector types specifies that they should be mangled as
2081// if they are structs (to match ARM's initial implementation).  The
2082// vector type must be one of the special types predefined by ARM.
2083void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2084  QualType EltType = T->getElementType();
2085  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2086  const char *EltName = 0;
2087  if (T->getVectorKind() == VectorType::NeonPolyVector) {
2088    switch (cast<BuiltinType>(EltType)->getKind()) {
2089    case BuiltinType::SChar:     EltName = "poly8_t"; break;
2090    case BuiltinType::Short:     EltName = "poly16_t"; break;
2091    default: llvm_unreachable("unexpected Neon polynomial vector element type");
2092    }
2093  } else {
2094    switch (cast<BuiltinType>(EltType)->getKind()) {
2095    case BuiltinType::SChar:     EltName = "int8_t"; break;
2096    case BuiltinType::UChar:     EltName = "uint8_t"; break;
2097    case BuiltinType::Short:     EltName = "int16_t"; break;
2098    case BuiltinType::UShort:    EltName = "uint16_t"; break;
2099    case BuiltinType::Int:       EltName = "int32_t"; break;
2100    case BuiltinType::UInt:      EltName = "uint32_t"; break;
2101    case BuiltinType::LongLong:  EltName = "int64_t"; break;
2102    case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2103    case BuiltinType::Float:     EltName = "float32_t"; break;
2104    default: llvm_unreachable("unexpected Neon vector element type");
2105    }
2106  }
2107  const char *BaseName = 0;
2108  unsigned BitSize = (T->getNumElements() *
2109                      getASTContext().getTypeSize(EltType));
2110  if (BitSize == 64)
2111    BaseName = "__simd64_";
2112  else {
2113    assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
2114    BaseName = "__simd128_";
2115  }
2116  Out << strlen(BaseName) + strlen(EltName);
2117  Out << BaseName << EltName;
2118}
2119
2120// GNU extension: vector types
2121// <type>                  ::= <vector-type>
2122// <vector-type>           ::= Dv <positive dimension number> _
2123//                                    <extended element type>
2124//                         ::= Dv [<dimension expression>] _ <element type>
2125// <extended element type> ::= <element type>
2126//                         ::= p # AltiVec vector pixel
2127//                         ::= b # Altivec vector bool
2128void CXXNameMangler::mangleType(const VectorType *T) {
2129  if ((T->getVectorKind() == VectorType::NeonVector ||
2130       T->getVectorKind() == VectorType::NeonPolyVector)) {
2131    mangleNeonVectorType(T);
2132    return;
2133  }
2134  Out << "Dv" << T->getNumElements() << '_';
2135  if (T->getVectorKind() == VectorType::AltiVecPixel)
2136    Out << 'p';
2137  else if (T->getVectorKind() == VectorType::AltiVecBool)
2138    Out << 'b';
2139  else
2140    mangleType(T->getElementType());
2141}
2142void CXXNameMangler::mangleType(const ExtVectorType *T) {
2143  mangleType(static_cast<const VectorType*>(T));
2144}
2145void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
2146  Out << "Dv";
2147  mangleExpression(T->getSizeExpr());
2148  Out << '_';
2149  mangleType(T->getElementType());
2150}
2151
2152void CXXNameMangler::mangleType(const PackExpansionType *T) {
2153  // <type>  ::= Dp <type>          # pack expansion (C++0x)
2154  Out << "Dp";
2155  mangleType(T->getPattern());
2156}
2157
2158void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
2159  mangleSourceName(T->getDecl()->getIdentifier());
2160}
2161
2162void CXXNameMangler::mangleType(const ObjCObjectType *T) {
2163  // We don't allow overloading by different protocol qualification,
2164  // so mangling them isn't necessary.
2165  mangleType(T->getBaseType());
2166}
2167
2168void CXXNameMangler::mangleType(const BlockPointerType *T) {
2169  Out << "U13block_pointer";
2170  mangleType(T->getPointeeType());
2171}
2172
2173void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
2174  // Mangle injected class name types as if the user had written the
2175  // specialization out fully.  It may not actually be possible to see
2176  // this mangling, though.
2177  mangleType(T->getInjectedSpecializationType());
2178}
2179
2180void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
2181  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
2182    mangleName(TD, T->getArgs(), T->getNumArgs());
2183  } else {
2184    if (mangleSubstitution(QualType(T, 0)))
2185      return;
2186
2187    mangleTemplatePrefix(T->getTemplateName());
2188
2189    // FIXME: GCC does not appear to mangle the template arguments when
2190    // the template in question is a dependent template name. Should we
2191    // emulate that badness?
2192    mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2193    addSubstitution(QualType(T, 0));
2194  }
2195}
2196
2197void CXXNameMangler::mangleType(const DependentNameType *T) {
2198  // Typename types are always nested
2199  Out << 'N';
2200  manglePrefix(T->getQualifier());
2201  mangleSourceName(T->getIdentifier());
2202  Out << 'E';
2203}
2204
2205void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
2206  // Dependently-scoped template types are nested if they have a prefix.
2207  Out << 'N';
2208
2209  // TODO: avoid making this TemplateName.
2210  TemplateName Prefix =
2211    getASTContext().getDependentTemplateName(T->getQualifier(),
2212                                             T->getIdentifier());
2213  mangleTemplatePrefix(Prefix);
2214
2215  // FIXME: GCC does not appear to mangle the template arguments when
2216  // the template in question is a dependent template name. Should we
2217  // emulate that badness?
2218  mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2219  Out << 'E';
2220}
2221
2222void CXXNameMangler::mangleType(const TypeOfType *T) {
2223  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2224  // "extension with parameters" mangling.
2225  Out << "u6typeof";
2226}
2227
2228void CXXNameMangler::mangleType(const TypeOfExprType *T) {
2229  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2230  // "extension with parameters" mangling.
2231  Out << "u6typeof";
2232}
2233
2234void CXXNameMangler::mangleType(const DecltypeType *T) {
2235  Expr *E = T->getUnderlyingExpr();
2236
2237  // type ::= Dt <expression> E  # decltype of an id-expression
2238  //                             #   or class member access
2239  //      ::= DT <expression> E  # decltype of an expression
2240
2241  // This purports to be an exhaustive list of id-expressions and
2242  // class member accesses.  Note that we do not ignore parentheses;
2243  // parentheses change the semantics of decltype for these
2244  // expressions (and cause the mangler to use the other form).
2245  if (isa<DeclRefExpr>(E) ||
2246      isa<MemberExpr>(E) ||
2247      isa<UnresolvedLookupExpr>(E) ||
2248      isa<DependentScopeDeclRefExpr>(E) ||
2249      isa<CXXDependentScopeMemberExpr>(E) ||
2250      isa<UnresolvedMemberExpr>(E))
2251    Out << "Dt";
2252  else
2253    Out << "DT";
2254  mangleExpression(E);
2255  Out << 'E';
2256}
2257
2258void CXXNameMangler::mangleType(const UnaryTransformType *T) {
2259  // If this is dependent, we need to record that. If not, we simply
2260  // mangle it as the underlying type since they are equivalent.
2261  if (T->isDependentType()) {
2262    Out << 'U';
2263
2264    switch (T->getUTTKind()) {
2265      case UnaryTransformType::EnumUnderlyingType:
2266        Out << "3eut";
2267        break;
2268    }
2269  }
2270
2271  mangleType(T->getUnderlyingType());
2272}
2273
2274void CXXNameMangler::mangleType(const AutoType *T) {
2275  QualType D = T->getDeducedType();
2276  // <builtin-type> ::= Da  # dependent auto
2277  if (D.isNull())
2278    Out << (T->isDecltypeAuto() ? "Dc" : "Da");
2279  else
2280    mangleType(D);
2281}
2282
2283void CXXNameMangler::mangleType(const AtomicType *T) {
2284  // <type> ::= U <source-name> <type>	# vendor extended type qualifier
2285  // (Until there's a standardized mangling...)
2286  Out << "U7_Atomic";
2287  mangleType(T->getValueType());
2288}
2289
2290void CXXNameMangler::mangleIntegerLiteral(QualType T,
2291                                          const llvm::APSInt &Value) {
2292  //  <expr-primary> ::= L <type> <value number> E # integer literal
2293  Out << 'L';
2294
2295  mangleType(T);
2296  if (T->isBooleanType()) {
2297    // Boolean values are encoded as 0/1.
2298    Out << (Value.getBoolValue() ? '1' : '0');
2299  } else {
2300    mangleNumber(Value);
2301  }
2302  Out << 'E';
2303
2304}
2305
2306/// Mangles a member expression.
2307void CXXNameMangler::mangleMemberExpr(const Expr *base,
2308                                      bool isArrow,
2309                                      NestedNameSpecifier *qualifier,
2310                                      NamedDecl *firstQualifierLookup,
2311                                      DeclarationName member,
2312                                      unsigned arity) {
2313  // <expression> ::= dt <expression> <unresolved-name>
2314  //              ::= pt <expression> <unresolved-name>
2315  if (base) {
2316    if (base->isImplicitCXXThis()) {
2317      // Note: GCC mangles member expressions to the implicit 'this' as
2318      // *this., whereas we represent them as this->. The Itanium C++ ABI
2319      // does not specify anything here, so we follow GCC.
2320      Out << "dtdefpT";
2321    } else {
2322      Out << (isArrow ? "pt" : "dt");
2323      mangleExpression(base);
2324    }
2325  }
2326  mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
2327}
2328
2329/// Look at the callee of the given call expression and determine if
2330/// it's a parenthesized id-expression which would have triggered ADL
2331/// otherwise.
2332static bool isParenthesizedADLCallee(const CallExpr *call) {
2333  const Expr *callee = call->getCallee();
2334  const Expr *fn = callee->IgnoreParens();
2335
2336  // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
2337  // too, but for those to appear in the callee, it would have to be
2338  // parenthesized.
2339  if (callee == fn) return false;
2340
2341  // Must be an unresolved lookup.
2342  const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
2343  if (!lookup) return false;
2344
2345  assert(!lookup->requiresADL());
2346
2347  // Must be an unqualified lookup.
2348  if (lookup->getQualifier()) return false;
2349
2350  // Must not have found a class member.  Note that if one is a class
2351  // member, they're all class members.
2352  if (lookup->getNumDecls() > 0 &&
2353      (*lookup->decls_begin())->isCXXClassMember())
2354    return false;
2355
2356  // Otherwise, ADL would have been triggered.
2357  return true;
2358}
2359
2360void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
2361  // <expression> ::= <unary operator-name> <expression>
2362  //              ::= <binary operator-name> <expression> <expression>
2363  //              ::= <trinary operator-name> <expression> <expression> <expression>
2364  //              ::= cv <type> expression           # conversion with one argument
2365  //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
2366  //              ::= st <type>                      # sizeof (a type)
2367  //              ::= at <type>                      # alignof (a type)
2368  //              ::= <template-param>
2369  //              ::= <function-param>
2370  //              ::= sr <type> <unqualified-name>                   # dependent name
2371  //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
2372  //              ::= ds <expression> <expression>                   # expr.*expr
2373  //              ::= sZ <template-param>                            # size of a parameter pack
2374  //              ::= sZ <function-param>    # size of a function parameter pack
2375  //              ::= <expr-primary>
2376  // <expr-primary> ::= L <type> <value number> E    # integer literal
2377  //                ::= L <type <value float> E      # floating literal
2378  //                ::= L <mangled-name> E           # external name
2379  //                ::= fpT                          # 'this' expression
2380  QualType ImplicitlyConvertedToType;
2381
2382recurse:
2383  switch (E->getStmtClass()) {
2384  case Expr::NoStmtClass:
2385#define ABSTRACT_STMT(Type)
2386#define EXPR(Type, Base)
2387#define STMT(Type, Base) \
2388  case Expr::Type##Class:
2389#include "clang/AST/StmtNodes.inc"
2390    // fallthrough
2391
2392  // These all can only appear in local or variable-initialization
2393  // contexts and so should never appear in a mangling.
2394  case Expr::AddrLabelExprClass:
2395  case Expr::DesignatedInitExprClass:
2396  case Expr::ImplicitValueInitExprClass:
2397  case Expr::ParenListExprClass:
2398  case Expr::LambdaExprClass:
2399  case Expr::MSPropertyRefExprClass:
2400    llvm_unreachable("unexpected statement kind");
2401
2402  // FIXME: invent manglings for all these.
2403  case Expr::BlockExprClass:
2404  case Expr::CXXPseudoDestructorExprClass:
2405  case Expr::ChooseExprClass:
2406  case Expr::CompoundLiteralExprClass:
2407  case Expr::ExtVectorElementExprClass:
2408  case Expr::GenericSelectionExprClass:
2409  case Expr::ObjCEncodeExprClass:
2410  case Expr::ObjCIsaExprClass:
2411  case Expr::ObjCIvarRefExprClass:
2412  case Expr::ObjCMessageExprClass:
2413  case Expr::ObjCPropertyRefExprClass:
2414  case Expr::ObjCProtocolExprClass:
2415  case Expr::ObjCSelectorExprClass:
2416  case Expr::ObjCStringLiteralClass:
2417  case Expr::ObjCBoxedExprClass:
2418  case Expr::ObjCArrayLiteralClass:
2419  case Expr::ObjCDictionaryLiteralClass:
2420  case Expr::ObjCSubscriptRefExprClass:
2421  case Expr::ObjCIndirectCopyRestoreExprClass:
2422  case Expr::OffsetOfExprClass:
2423  case Expr::PredefinedExprClass:
2424  case Expr::ShuffleVectorExprClass:
2425  case Expr::StmtExprClass:
2426  case Expr::UnaryTypeTraitExprClass:
2427  case Expr::BinaryTypeTraitExprClass:
2428  case Expr::TypeTraitExprClass:
2429  case Expr::ArrayTypeTraitExprClass:
2430  case Expr::ExpressionTraitExprClass:
2431  case Expr::VAArgExprClass:
2432  case Expr::CXXUuidofExprClass:
2433  case Expr::CUDAKernelCallExprClass:
2434  case Expr::AsTypeExprClass:
2435  case Expr::PseudoObjectExprClass:
2436  case Expr::AtomicExprClass:
2437  {
2438    // As bad as this diagnostic is, it's better than crashing.
2439    DiagnosticsEngine &Diags = Context.getDiags();
2440    unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2441                                     "cannot yet mangle expression type %0");
2442    Diags.Report(E->getExprLoc(), DiagID)
2443      << E->getStmtClassName() << E->getSourceRange();
2444    break;
2445  }
2446
2447  // Even gcc-4.5 doesn't mangle this.
2448  case Expr::BinaryConditionalOperatorClass: {
2449    DiagnosticsEngine &Diags = Context.getDiags();
2450    unsigned DiagID =
2451      Diags.getCustomDiagID(DiagnosticsEngine::Error,
2452                "?: operator with omitted middle operand cannot be mangled");
2453    Diags.Report(E->getExprLoc(), DiagID)
2454      << E->getStmtClassName() << E->getSourceRange();
2455    break;
2456  }
2457
2458  // These are used for internal purposes and cannot be meaningfully mangled.
2459  case Expr::OpaqueValueExprClass:
2460    llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
2461
2462  case Expr::InitListExprClass: {
2463    // Proposal by Jason Merrill, 2012-01-03
2464    Out << "il";
2465    const InitListExpr *InitList = cast<InitListExpr>(E);
2466    for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2467      mangleExpression(InitList->getInit(i));
2468    Out << "E";
2469    break;
2470  }
2471
2472  case Expr::CXXDefaultArgExprClass:
2473    mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
2474    break;
2475
2476  case Expr::CXXDefaultInitExprClass:
2477    mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
2478    break;
2479
2480  case Expr::SubstNonTypeTemplateParmExprClass:
2481    mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
2482                     Arity);
2483    break;
2484
2485  case Expr::UserDefinedLiteralClass:
2486    // We follow g++'s approach of mangling a UDL as a call to the literal
2487    // operator.
2488  case Expr::CXXMemberCallExprClass: // fallthrough
2489  case Expr::CallExprClass: {
2490    const CallExpr *CE = cast<CallExpr>(E);
2491
2492    // <expression> ::= cp <simple-id> <expression>* E
2493    // We use this mangling only when the call would use ADL except
2494    // for being parenthesized.  Per discussion with David
2495    // Vandervoorde, 2011.04.25.
2496    if (isParenthesizedADLCallee(CE)) {
2497      Out << "cp";
2498      // The callee here is a parenthesized UnresolvedLookupExpr with
2499      // no qualifier and should always get mangled as a <simple-id>
2500      // anyway.
2501
2502    // <expression> ::= cl <expression>* E
2503    } else {
2504      Out << "cl";
2505    }
2506
2507    mangleExpression(CE->getCallee(), CE->getNumArgs());
2508    for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
2509      mangleExpression(CE->getArg(I));
2510    Out << 'E';
2511    break;
2512  }
2513
2514  case Expr::CXXNewExprClass: {
2515    const CXXNewExpr *New = cast<CXXNewExpr>(E);
2516    if (New->isGlobalNew()) Out << "gs";
2517    Out << (New->isArray() ? "na" : "nw");
2518    for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
2519           E = New->placement_arg_end(); I != E; ++I)
2520      mangleExpression(*I);
2521    Out << '_';
2522    mangleType(New->getAllocatedType());
2523    if (New->hasInitializer()) {
2524      // Proposal by Jason Merrill, 2012-01-03
2525      if (New->getInitializationStyle() == CXXNewExpr::ListInit)
2526        Out << "il";
2527      else
2528        Out << "pi";
2529      const Expr *Init = New->getInitializer();
2530      if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
2531        // Directly inline the initializers.
2532        for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
2533                                                  E = CCE->arg_end();
2534             I != E; ++I)
2535          mangleExpression(*I);
2536      } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
2537        for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
2538          mangleExpression(PLE->getExpr(i));
2539      } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
2540                 isa<InitListExpr>(Init)) {
2541        // Only take InitListExprs apart for list-initialization.
2542        const InitListExpr *InitList = cast<InitListExpr>(Init);
2543        for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2544          mangleExpression(InitList->getInit(i));
2545      } else
2546        mangleExpression(Init);
2547    }
2548    Out << 'E';
2549    break;
2550  }
2551
2552  case Expr::MemberExprClass: {
2553    const MemberExpr *ME = cast<MemberExpr>(E);
2554    mangleMemberExpr(ME->getBase(), ME->isArrow(),
2555                     ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(),
2556                     Arity);
2557    break;
2558  }
2559
2560  case Expr::UnresolvedMemberExprClass: {
2561    const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
2562    mangleMemberExpr(ME->getBase(), ME->isArrow(),
2563                     ME->getQualifier(), 0, ME->getMemberName(),
2564                     Arity);
2565    if (ME->hasExplicitTemplateArgs())
2566      mangleTemplateArgs(ME->getExplicitTemplateArgs());
2567    break;
2568  }
2569
2570  case Expr::CXXDependentScopeMemberExprClass: {
2571    const CXXDependentScopeMemberExpr *ME
2572      = cast<CXXDependentScopeMemberExpr>(E);
2573    mangleMemberExpr(ME->getBase(), ME->isArrow(),
2574                     ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
2575                     ME->getMember(), Arity);
2576    if (ME->hasExplicitTemplateArgs())
2577      mangleTemplateArgs(ME->getExplicitTemplateArgs());
2578    break;
2579  }
2580
2581  case Expr::UnresolvedLookupExprClass: {
2582    const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
2583    mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity);
2584
2585    // All the <unresolved-name> productions end in a
2586    // base-unresolved-name, where <template-args> are just tacked
2587    // onto the end.
2588    if (ULE->hasExplicitTemplateArgs())
2589      mangleTemplateArgs(ULE->getExplicitTemplateArgs());
2590    break;
2591  }
2592
2593  case Expr::CXXUnresolvedConstructExprClass: {
2594    const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
2595    unsigned N = CE->arg_size();
2596
2597    Out << "cv";
2598    mangleType(CE->getType());
2599    if (N != 1) Out << '_';
2600    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2601    if (N != 1) Out << 'E';
2602    break;
2603  }
2604
2605  case Expr::CXXTemporaryObjectExprClass:
2606  case Expr::CXXConstructExprClass: {
2607    const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
2608    unsigned N = CE->getNumArgs();
2609
2610    // Proposal by Jason Merrill, 2012-01-03
2611    if (CE->isListInitialization())
2612      Out << "tl";
2613    else
2614      Out << "cv";
2615    mangleType(CE->getType());
2616    if (N != 1) Out << '_';
2617    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2618    if (N != 1) Out << 'E';
2619    break;
2620  }
2621
2622  case Expr::CXXScalarValueInitExprClass:
2623    Out <<"cv";
2624    mangleType(E->getType());
2625    Out <<"_E";
2626    break;
2627
2628  case Expr::CXXNoexceptExprClass:
2629    Out << "nx";
2630    mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
2631    break;
2632
2633  case Expr::UnaryExprOrTypeTraitExprClass: {
2634    const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
2635
2636    if (!SAE->isInstantiationDependent()) {
2637      // Itanium C++ ABI:
2638      //   If the operand of a sizeof or alignof operator is not
2639      //   instantiation-dependent it is encoded as an integer literal
2640      //   reflecting the result of the operator.
2641      //
2642      //   If the result of the operator is implicitly converted to a known
2643      //   integer type, that type is used for the literal; otherwise, the type
2644      //   of std::size_t or std::ptrdiff_t is used.
2645      QualType T = (ImplicitlyConvertedToType.isNull() ||
2646                    !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
2647                                                    : ImplicitlyConvertedToType;
2648      llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
2649      mangleIntegerLiteral(T, V);
2650      break;
2651    }
2652
2653    switch(SAE->getKind()) {
2654    case UETT_SizeOf:
2655      Out << 's';
2656      break;
2657    case UETT_AlignOf:
2658      Out << 'a';
2659      break;
2660    case UETT_VecStep:
2661      DiagnosticsEngine &Diags = Context.getDiags();
2662      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2663                                     "cannot yet mangle vec_step expression");
2664      Diags.Report(DiagID);
2665      return;
2666    }
2667    if (SAE->isArgumentType()) {
2668      Out << 't';
2669      mangleType(SAE->getArgumentType());
2670    } else {
2671      Out << 'z';
2672      mangleExpression(SAE->getArgumentExpr());
2673    }
2674    break;
2675  }
2676
2677  case Expr::CXXThrowExprClass: {
2678    const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
2679
2680    // Proposal from David Vandervoorde, 2010.06.30
2681    if (TE->getSubExpr()) {
2682      Out << "tw";
2683      mangleExpression(TE->getSubExpr());
2684    } else {
2685      Out << "tr";
2686    }
2687    break;
2688  }
2689
2690  case Expr::CXXTypeidExprClass: {
2691    const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
2692
2693    // Proposal from David Vandervoorde, 2010.06.30
2694    if (TIE->isTypeOperand()) {
2695      Out << "ti";
2696      mangleType(TIE->getTypeOperand());
2697    } else {
2698      Out << "te";
2699      mangleExpression(TIE->getExprOperand());
2700    }
2701    break;
2702  }
2703
2704  case Expr::CXXDeleteExprClass: {
2705    const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
2706
2707    // Proposal from David Vandervoorde, 2010.06.30
2708    if (DE->isGlobalDelete()) Out << "gs";
2709    Out << (DE->isArrayForm() ? "da" : "dl");
2710    mangleExpression(DE->getArgument());
2711    break;
2712  }
2713
2714  case Expr::UnaryOperatorClass: {
2715    const UnaryOperator *UO = cast<UnaryOperator>(E);
2716    mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
2717                       /*Arity=*/1);
2718    mangleExpression(UO->getSubExpr());
2719    break;
2720  }
2721
2722  case Expr::ArraySubscriptExprClass: {
2723    const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
2724
2725    // Array subscript is treated as a syntactically weird form of
2726    // binary operator.
2727    Out << "ix";
2728    mangleExpression(AE->getLHS());
2729    mangleExpression(AE->getRHS());
2730    break;
2731  }
2732
2733  case Expr::CompoundAssignOperatorClass: // fallthrough
2734  case Expr::BinaryOperatorClass: {
2735    const BinaryOperator *BO = cast<BinaryOperator>(E);
2736    if (BO->getOpcode() == BO_PtrMemD)
2737      Out << "ds";
2738    else
2739      mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
2740                         /*Arity=*/2);
2741    mangleExpression(BO->getLHS());
2742    mangleExpression(BO->getRHS());
2743    break;
2744  }
2745
2746  case Expr::ConditionalOperatorClass: {
2747    const ConditionalOperator *CO = cast<ConditionalOperator>(E);
2748    mangleOperatorName(OO_Conditional, /*Arity=*/3);
2749    mangleExpression(CO->getCond());
2750    mangleExpression(CO->getLHS(), Arity);
2751    mangleExpression(CO->getRHS(), Arity);
2752    break;
2753  }
2754
2755  case Expr::ImplicitCastExprClass: {
2756    ImplicitlyConvertedToType = E->getType();
2757    E = cast<ImplicitCastExpr>(E)->getSubExpr();
2758    goto recurse;
2759  }
2760
2761  case Expr::ObjCBridgedCastExprClass: {
2762    // Mangle ownership casts as a vendor extended operator __bridge,
2763    // __bridge_transfer, or __bridge_retain.
2764    StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
2765    Out << "v1U" << Kind.size() << Kind;
2766  }
2767  // Fall through to mangle the cast itself.
2768
2769  case Expr::CStyleCastExprClass:
2770  case Expr::CXXStaticCastExprClass:
2771  case Expr::CXXDynamicCastExprClass:
2772  case Expr::CXXReinterpretCastExprClass:
2773  case Expr::CXXConstCastExprClass:
2774  case Expr::CXXFunctionalCastExprClass: {
2775    const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
2776    Out << "cv";
2777    mangleType(ECE->getType());
2778    mangleExpression(ECE->getSubExpr());
2779    break;
2780  }
2781
2782  case Expr::CXXOperatorCallExprClass: {
2783    const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
2784    unsigned NumArgs = CE->getNumArgs();
2785    mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
2786    // Mangle the arguments.
2787    for (unsigned i = 0; i != NumArgs; ++i)
2788      mangleExpression(CE->getArg(i));
2789    break;
2790  }
2791
2792  case Expr::ParenExprClass:
2793    mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
2794    break;
2795
2796  case Expr::DeclRefExprClass: {
2797    const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
2798
2799    switch (D->getKind()) {
2800    default:
2801      //  <expr-primary> ::= L <mangled-name> E # external name
2802      Out << 'L';
2803      mangle(D, "_Z");
2804      Out << 'E';
2805      break;
2806
2807    case Decl::ParmVar:
2808      mangleFunctionParam(cast<ParmVarDecl>(D));
2809      break;
2810
2811    case Decl::EnumConstant: {
2812      const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
2813      mangleIntegerLiteral(ED->getType(), ED->getInitVal());
2814      break;
2815    }
2816
2817    case Decl::NonTypeTemplateParm: {
2818      const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
2819      mangleTemplateParameter(PD->getIndex());
2820      break;
2821    }
2822
2823    }
2824
2825    break;
2826  }
2827
2828  case Expr::SubstNonTypeTemplateParmPackExprClass:
2829    // FIXME: not clear how to mangle this!
2830    // template <unsigned N...> class A {
2831    //   template <class U...> void foo(U (&x)[N]...);
2832    // };
2833    Out << "_SUBSTPACK_";
2834    break;
2835
2836  case Expr::FunctionParmPackExprClass: {
2837    // FIXME: not clear how to mangle this!
2838    const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
2839    Out << "v110_SUBSTPACK";
2840    mangleFunctionParam(FPPE->getParameterPack());
2841    break;
2842  }
2843
2844  case Expr::DependentScopeDeclRefExprClass: {
2845    const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
2846    mangleUnresolvedName(DRE->getQualifier(), 0, DRE->getDeclName(), Arity);
2847
2848    // All the <unresolved-name> productions end in a
2849    // base-unresolved-name, where <template-args> are just tacked
2850    // onto the end.
2851    if (DRE->hasExplicitTemplateArgs())
2852      mangleTemplateArgs(DRE->getExplicitTemplateArgs());
2853    break;
2854  }
2855
2856  case Expr::CXXBindTemporaryExprClass:
2857    mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
2858    break;
2859
2860  case Expr::ExprWithCleanupsClass:
2861    mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
2862    break;
2863
2864  case Expr::FloatingLiteralClass: {
2865    const FloatingLiteral *FL = cast<FloatingLiteral>(E);
2866    Out << 'L';
2867    mangleType(FL->getType());
2868    mangleFloat(FL->getValue());
2869    Out << 'E';
2870    break;
2871  }
2872
2873  case Expr::CharacterLiteralClass:
2874    Out << 'L';
2875    mangleType(E->getType());
2876    Out << cast<CharacterLiteral>(E)->getValue();
2877    Out << 'E';
2878    break;
2879
2880  // FIXME. __objc_yes/__objc_no are mangled same as true/false
2881  case Expr::ObjCBoolLiteralExprClass:
2882    Out << "Lb";
2883    Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2884    Out << 'E';
2885    break;
2886
2887  case Expr::CXXBoolLiteralExprClass:
2888    Out << "Lb";
2889    Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2890    Out << 'E';
2891    break;
2892
2893  case Expr::IntegerLiteralClass: {
2894    llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
2895    if (E->getType()->isSignedIntegerType())
2896      Value.setIsSigned(true);
2897    mangleIntegerLiteral(E->getType(), Value);
2898    break;
2899  }
2900
2901  case Expr::ImaginaryLiteralClass: {
2902    const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
2903    // Mangle as if a complex literal.
2904    // Proposal from David Vandevoorde, 2010.06.30.
2905    Out << 'L';
2906    mangleType(E->getType());
2907    if (const FloatingLiteral *Imag =
2908          dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
2909      // Mangle a floating-point zero of the appropriate type.
2910      mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
2911      Out << '_';
2912      mangleFloat(Imag->getValue());
2913    } else {
2914      Out << "0_";
2915      llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
2916      if (IE->getSubExpr()->getType()->isSignedIntegerType())
2917        Value.setIsSigned(true);
2918      mangleNumber(Value);
2919    }
2920    Out << 'E';
2921    break;
2922  }
2923
2924  case Expr::StringLiteralClass: {
2925    // Revised proposal from David Vandervoorde, 2010.07.15.
2926    Out << 'L';
2927    assert(isa<ConstantArrayType>(E->getType()));
2928    mangleType(E->getType());
2929    Out << 'E';
2930    break;
2931  }
2932
2933  case Expr::GNUNullExprClass:
2934    // FIXME: should this really be mangled the same as nullptr?
2935    // fallthrough
2936
2937  case Expr::CXXNullPtrLiteralExprClass: {
2938    // Proposal from David Vandervoorde, 2010.06.30, as
2939    // modified by ABI list discussion.
2940    Out << "LDnE";
2941    break;
2942  }
2943
2944  case Expr::PackExpansionExprClass:
2945    Out << "sp";
2946    mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
2947    break;
2948
2949  case Expr::SizeOfPackExprClass: {
2950    Out << "sZ";
2951    const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
2952    if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
2953      mangleTemplateParameter(TTP->getIndex());
2954    else if (const NonTypeTemplateParmDecl *NTTP
2955                = dyn_cast<NonTypeTemplateParmDecl>(Pack))
2956      mangleTemplateParameter(NTTP->getIndex());
2957    else if (const TemplateTemplateParmDecl *TempTP
2958                                    = dyn_cast<TemplateTemplateParmDecl>(Pack))
2959      mangleTemplateParameter(TempTP->getIndex());
2960    else
2961      mangleFunctionParam(cast<ParmVarDecl>(Pack));
2962    break;
2963  }
2964
2965  case Expr::MaterializeTemporaryExprClass: {
2966    mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
2967    break;
2968  }
2969
2970  case Expr::CXXThisExprClass:
2971    Out << "fpT";
2972    break;
2973  }
2974}
2975
2976/// Mangle an expression which refers to a parameter variable.
2977///
2978/// <expression>     ::= <function-param>
2979/// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
2980/// <function-param> ::= fp <top-level CV-qualifiers>
2981///                      <parameter-2 non-negative number> _ # L == 0, I > 0
2982/// <function-param> ::= fL <L-1 non-negative number>
2983///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
2984/// <function-param> ::= fL <L-1 non-negative number>
2985///                      p <top-level CV-qualifiers>
2986///                      <I-1 non-negative number> _         # L > 0, I > 0
2987///
2988/// L is the nesting depth of the parameter, defined as 1 if the
2989/// parameter comes from the innermost function prototype scope
2990/// enclosing the current context, 2 if from the next enclosing
2991/// function prototype scope, and so on, with one special case: if
2992/// we've processed the full parameter clause for the innermost
2993/// function type, then L is one less.  This definition conveniently
2994/// makes it irrelevant whether a function's result type was written
2995/// trailing or leading, but is otherwise overly complicated; the
2996/// numbering was first designed without considering references to
2997/// parameter in locations other than return types, and then the
2998/// mangling had to be generalized without changing the existing
2999/// manglings.
3000///
3001/// I is the zero-based index of the parameter within its parameter
3002/// declaration clause.  Note that the original ABI document describes
3003/// this using 1-based ordinals.
3004void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
3005  unsigned parmDepth = parm->getFunctionScopeDepth();
3006  unsigned parmIndex = parm->getFunctionScopeIndex();
3007
3008  // Compute 'L'.
3009  // parmDepth does not include the declaring function prototype.
3010  // FunctionTypeDepth does account for that.
3011  assert(parmDepth < FunctionTypeDepth.getDepth());
3012  unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
3013  if (FunctionTypeDepth.isInResultType())
3014    nestingDepth--;
3015
3016  if (nestingDepth == 0) {
3017    Out << "fp";
3018  } else {
3019    Out << "fL" << (nestingDepth - 1) << 'p';
3020  }
3021
3022  // Top-level qualifiers.  We don't have to worry about arrays here,
3023  // because parameters declared as arrays should already have been
3024  // transformed to have pointer type. FIXME: apparently these don't
3025  // get mangled if used as an rvalue of a known non-class type?
3026  assert(!parm->getType()->isArrayType()
3027         && "parameter's type is still an array type?");
3028  mangleQualifiers(parm->getType().getQualifiers());
3029
3030  // Parameter index.
3031  if (parmIndex != 0) {
3032    Out << (parmIndex - 1);
3033  }
3034  Out << '_';
3035}
3036
3037void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
3038  // <ctor-dtor-name> ::= C1  # complete object constructor
3039  //                  ::= C2  # base object constructor
3040  //                  ::= C3  # complete object allocating constructor
3041  //
3042  switch (T) {
3043  case Ctor_Complete:
3044    Out << "C1";
3045    break;
3046  case Ctor_Base:
3047    Out << "C2";
3048    break;
3049  case Ctor_CompleteAllocating:
3050    Out << "C3";
3051    break;
3052  }
3053}
3054
3055void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
3056  // <ctor-dtor-name> ::= D0  # deleting destructor
3057  //                  ::= D1  # complete object destructor
3058  //                  ::= D2  # base object destructor
3059  //
3060  switch (T) {
3061  case Dtor_Deleting:
3062    Out << "D0";
3063    break;
3064  case Dtor_Complete:
3065    Out << "D1";
3066    break;
3067  case Dtor_Base:
3068    Out << "D2";
3069    break;
3070  }
3071}
3072
3073void CXXNameMangler::mangleTemplateArgs(
3074                          const ASTTemplateArgumentListInfo &TemplateArgs) {
3075  // <template-args> ::= I <template-arg>+ E
3076  Out << 'I';
3077  for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
3078    mangleTemplateArg(TemplateArgs.getTemplateArgs()[i].getArgument());
3079  Out << 'E';
3080}
3081
3082void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
3083  // <template-args> ::= I <template-arg>+ E
3084  Out << 'I';
3085  for (unsigned i = 0, e = AL.size(); i != e; ++i)
3086    mangleTemplateArg(AL[i]);
3087  Out << 'E';
3088}
3089
3090void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
3091                                        unsigned NumTemplateArgs) {
3092  // <template-args> ::= I <template-arg>+ E
3093  Out << 'I';
3094  for (unsigned i = 0; i != NumTemplateArgs; ++i)
3095    mangleTemplateArg(TemplateArgs[i]);
3096  Out << 'E';
3097}
3098
3099void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
3100  // <template-arg> ::= <type>              # type or template
3101  //                ::= X <expression> E    # expression
3102  //                ::= <expr-primary>      # simple expressions
3103  //                ::= J <template-arg>* E # argument pack
3104  //                ::= sp <expression>     # pack expansion of (C++0x)
3105  if (!A.isInstantiationDependent() || A.isDependent())
3106    A = Context.getASTContext().getCanonicalTemplateArgument(A);
3107
3108  switch (A.getKind()) {
3109  case TemplateArgument::Null:
3110    llvm_unreachable("Cannot mangle NULL template argument");
3111
3112  case TemplateArgument::Type:
3113    mangleType(A.getAsType());
3114    break;
3115  case TemplateArgument::Template:
3116    // This is mangled as <type>.
3117    mangleType(A.getAsTemplate());
3118    break;
3119  case TemplateArgument::TemplateExpansion:
3120    // <type>  ::= Dp <type>          # pack expansion (C++0x)
3121    Out << "Dp";
3122    mangleType(A.getAsTemplateOrTemplatePattern());
3123    break;
3124  case TemplateArgument::Expression: {
3125    // It's possible to end up with a DeclRefExpr here in certain
3126    // dependent cases, in which case we should mangle as a
3127    // declaration.
3128    const Expr *E = A.getAsExpr()->IgnoreParens();
3129    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3130      const ValueDecl *D = DRE->getDecl();
3131      if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
3132        Out << "L";
3133        mangle(D, "_Z");
3134        Out << 'E';
3135        break;
3136      }
3137    }
3138
3139    Out << 'X';
3140    mangleExpression(E);
3141    Out << 'E';
3142    break;
3143  }
3144  case TemplateArgument::Integral:
3145    mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
3146    break;
3147  case TemplateArgument::Declaration: {
3148    //  <expr-primary> ::= L <mangled-name> E # external name
3149    // Clang produces AST's where pointer-to-member-function expressions
3150    // and pointer-to-function expressions are represented as a declaration not
3151    // an expression. We compensate for it here to produce the correct mangling.
3152    ValueDecl *D = A.getAsDecl();
3153    bool compensateMangling = !A.isDeclForReferenceParam();
3154    if (compensateMangling) {
3155      Out << 'X';
3156      mangleOperatorName(OO_Amp, 1);
3157    }
3158
3159    Out << 'L';
3160    // References to external entities use the mangled name; if the name would
3161    // not normally be manged then mangle it as unqualified.
3162    //
3163    // FIXME: The ABI specifies that external names here should have _Z, but
3164    // gcc leaves this off.
3165    if (compensateMangling)
3166      mangle(D, "_Z");
3167    else
3168      mangle(D, "Z");
3169    Out << 'E';
3170
3171    if (compensateMangling)
3172      Out << 'E';
3173
3174    break;
3175  }
3176  case TemplateArgument::NullPtr: {
3177    //  <expr-primary> ::= L <type> 0 E
3178    Out << 'L';
3179    mangleType(A.getNullPtrType());
3180    Out << "0E";
3181    break;
3182  }
3183  case TemplateArgument::Pack: {
3184    // Note: proposal by Mike Herrick on 12/20/10
3185    Out << 'J';
3186    for (TemplateArgument::pack_iterator PA = A.pack_begin(),
3187                                      PAEnd = A.pack_end();
3188         PA != PAEnd; ++PA)
3189      mangleTemplateArg(*PA);
3190    Out << 'E';
3191  }
3192  }
3193}
3194
3195void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
3196  // <template-param> ::= T_    # first template parameter
3197  //                  ::= T <parameter-2 non-negative number> _
3198  if (Index == 0)
3199    Out << "T_";
3200  else
3201    Out << 'T' << (Index - 1) << '_';
3202}
3203
3204void CXXNameMangler::mangleExistingSubstitution(QualType type) {
3205  bool result = mangleSubstitution(type);
3206  assert(result && "no existing substitution for type");
3207  (void) result;
3208}
3209
3210void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
3211  bool result = mangleSubstitution(tname);
3212  assert(result && "no existing substitution for template name");
3213  (void) result;
3214}
3215
3216// <substitution> ::= S <seq-id> _
3217//                ::= S_
3218bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
3219  // Try one of the standard substitutions first.
3220  if (mangleStandardSubstitution(ND))
3221    return true;
3222
3223  ND = cast<NamedDecl>(ND->getCanonicalDecl());
3224  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
3225}
3226
3227/// \brief Determine whether the given type has any qualifiers that are
3228/// relevant for substitutions.
3229static bool hasMangledSubstitutionQualifiers(QualType T) {
3230  Qualifiers Qs = T.getQualifiers();
3231  return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
3232}
3233
3234bool CXXNameMangler::mangleSubstitution(QualType T) {
3235  if (!hasMangledSubstitutionQualifiers(T)) {
3236    if (const RecordType *RT = T->getAs<RecordType>())
3237      return mangleSubstitution(RT->getDecl());
3238  }
3239
3240  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3241
3242  return mangleSubstitution(TypePtr);
3243}
3244
3245bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
3246  if (TemplateDecl *TD = Template.getAsTemplateDecl())
3247    return mangleSubstitution(TD);
3248
3249  Template = Context.getASTContext().getCanonicalTemplateName(Template);
3250  return mangleSubstitution(
3251                      reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3252}
3253
3254bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
3255  llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
3256  if (I == Substitutions.end())
3257    return false;
3258
3259  unsigned SeqID = I->second;
3260  if (SeqID == 0)
3261    Out << "S_";
3262  else {
3263    SeqID--;
3264
3265    // <seq-id> is encoded in base-36, using digits and upper case letters.
3266    char Buffer[10];
3267    char *BufferPtr = llvm::array_endof(Buffer);
3268
3269    if (SeqID == 0) *--BufferPtr = '0';
3270
3271    while (SeqID) {
3272      assert(BufferPtr > Buffer && "Buffer overflow!");
3273
3274      char c = static_cast<char>(SeqID % 36);
3275
3276      *--BufferPtr =  (c < 10 ? '0' + c : 'A' + c - 10);
3277      SeqID /= 36;
3278    }
3279
3280    Out << 'S'
3281        << StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
3282        << '_';
3283  }
3284
3285  return true;
3286}
3287
3288static bool isCharType(QualType T) {
3289  if (T.isNull())
3290    return false;
3291
3292  return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
3293    T->isSpecificBuiltinType(BuiltinType::Char_U);
3294}
3295
3296/// isCharSpecialization - Returns whether a given type is a template
3297/// specialization of a given name with a single argument of type char.
3298static bool isCharSpecialization(QualType T, const char *Name) {
3299  if (T.isNull())
3300    return false;
3301
3302  const RecordType *RT = T->getAs<RecordType>();
3303  if (!RT)
3304    return false;
3305
3306  const ClassTemplateSpecializationDecl *SD =
3307    dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
3308  if (!SD)
3309    return false;
3310
3311  if (!isStdNamespace(getEffectiveDeclContext(SD)))
3312    return false;
3313
3314  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3315  if (TemplateArgs.size() != 1)
3316    return false;
3317
3318  if (!isCharType(TemplateArgs[0].getAsType()))
3319    return false;
3320
3321  return SD->getIdentifier()->getName() == Name;
3322}
3323
3324template <std::size_t StrLen>
3325static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
3326                                       const char (&Str)[StrLen]) {
3327  if (!SD->getIdentifier()->isStr(Str))
3328    return false;
3329
3330  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3331  if (TemplateArgs.size() != 2)
3332    return false;
3333
3334  if (!isCharType(TemplateArgs[0].getAsType()))
3335    return false;
3336
3337  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3338    return false;
3339
3340  return true;
3341}
3342
3343bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
3344  // <substitution> ::= St # ::std::
3345  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
3346    if (isStd(NS)) {
3347      Out << "St";
3348      return true;
3349    }
3350  }
3351
3352  if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
3353    if (!isStdNamespace(getEffectiveDeclContext(TD)))
3354      return false;
3355
3356    // <substitution> ::= Sa # ::std::allocator
3357    if (TD->getIdentifier()->isStr("allocator")) {
3358      Out << "Sa";
3359      return true;
3360    }
3361
3362    // <<substitution> ::= Sb # ::std::basic_string
3363    if (TD->getIdentifier()->isStr("basic_string")) {
3364      Out << "Sb";
3365      return true;
3366    }
3367  }
3368
3369  if (const ClassTemplateSpecializationDecl *SD =
3370        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
3371    if (!isStdNamespace(getEffectiveDeclContext(SD)))
3372      return false;
3373
3374    //    <substitution> ::= Ss # ::std::basic_string<char,
3375    //                            ::std::char_traits<char>,
3376    //                            ::std::allocator<char> >
3377    if (SD->getIdentifier()->isStr("basic_string")) {
3378      const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3379
3380      if (TemplateArgs.size() != 3)
3381        return false;
3382
3383      if (!isCharType(TemplateArgs[0].getAsType()))
3384        return false;
3385
3386      if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3387        return false;
3388
3389      if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
3390        return false;
3391
3392      Out << "Ss";
3393      return true;
3394    }
3395
3396    //    <substitution> ::= Si # ::std::basic_istream<char,
3397    //                            ::std::char_traits<char> >
3398    if (isStreamCharSpecialization(SD, "basic_istream")) {
3399      Out << "Si";
3400      return true;
3401    }
3402
3403    //    <substitution> ::= So # ::std::basic_ostream<char,
3404    //                            ::std::char_traits<char> >
3405    if (isStreamCharSpecialization(SD, "basic_ostream")) {
3406      Out << "So";
3407      return true;
3408    }
3409
3410    //    <substitution> ::= Sd # ::std::basic_iostream<char,
3411    //                            ::std::char_traits<char> >
3412    if (isStreamCharSpecialization(SD, "basic_iostream")) {
3413      Out << "Sd";
3414      return true;
3415    }
3416  }
3417  return false;
3418}
3419
3420void CXXNameMangler::addSubstitution(QualType T) {
3421  if (!hasMangledSubstitutionQualifiers(T)) {
3422    if (const RecordType *RT = T->getAs<RecordType>()) {
3423      addSubstitution(RT->getDecl());
3424      return;
3425    }
3426  }
3427
3428  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3429  addSubstitution(TypePtr);
3430}
3431
3432void CXXNameMangler::addSubstitution(TemplateName Template) {
3433  if (TemplateDecl *TD = Template.getAsTemplateDecl())
3434    return addSubstitution(TD);
3435
3436  Template = Context.getASTContext().getCanonicalTemplateName(Template);
3437  addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3438}
3439
3440void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
3441  assert(!Substitutions.count(Ptr) && "Substitution already exists!");
3442  Substitutions[Ptr] = SeqID++;
3443}
3444
3445//
3446
3447/// \brief Mangles the name of the declaration D and emits that name to the
3448/// given output stream.
3449///
3450/// If the declaration D requires a mangled name, this routine will emit that
3451/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
3452/// and this routine will return false. In this case, the caller should just
3453/// emit the identifier of the declaration (\c D->getIdentifier()) as its
3454/// name.
3455void ItaniumMangleContext::mangleName(const NamedDecl *D,
3456                                      raw_ostream &Out) {
3457  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
3458          "Invalid mangleName() call, argument is not a variable or function!");
3459  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
3460         "Invalid mangleName() call on 'structor decl!");
3461
3462  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
3463                                 getASTContext().getSourceManager(),
3464                                 "Mangling declaration");
3465
3466  CXXNameMangler Mangler(*this, Out, D);
3467  return Mangler.mangle(D);
3468}
3469
3470void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
3471                                         CXXCtorType Type,
3472                                         raw_ostream &Out) {
3473  CXXNameMangler Mangler(*this, Out, D, Type);
3474  Mangler.mangle(D);
3475}
3476
3477void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
3478                                         CXXDtorType Type,
3479                                         raw_ostream &Out) {
3480  CXXNameMangler Mangler(*this, Out, D, Type);
3481  Mangler.mangle(D);
3482}
3483
3484void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,
3485                                       const ThunkInfo &Thunk,
3486                                       raw_ostream &Out) {
3487  //  <special-name> ::= T <call-offset> <base encoding>
3488  //                      # base is the nominal target function of thunk
3489  //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
3490  //                      # base is the nominal target function of thunk
3491  //                      # first call-offset is 'this' adjustment
3492  //                      # second call-offset is result adjustment
3493
3494  assert(!isa<CXXDestructorDecl>(MD) &&
3495         "Use mangleCXXDtor for destructor decls!");
3496  CXXNameMangler Mangler(*this, Out);
3497  Mangler.getStream() << "_ZT";
3498  if (!Thunk.Return.isEmpty())
3499    Mangler.getStream() << 'c';
3500
3501  // Mangle the 'this' pointer adjustment.
3502  Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
3503
3504  // Mangle the return pointer adjustment if there is one.
3505  if (!Thunk.Return.isEmpty())
3506    Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
3507                             Thunk.Return.VBaseOffsetOffset);
3508
3509  Mangler.mangleFunctionEncoding(MD);
3510}
3511
3512void
3513ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
3514                                         CXXDtorType Type,
3515                                         const ThisAdjustment &ThisAdjustment,
3516                                         raw_ostream &Out) {
3517  //  <special-name> ::= T <call-offset> <base encoding>
3518  //                      # base is the nominal target function of thunk
3519  CXXNameMangler Mangler(*this, Out, DD, Type);
3520  Mangler.getStream() << "_ZT";
3521
3522  // Mangle the 'this' pointer adjustment.
3523  Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
3524                           ThisAdjustment.VCallOffsetOffset);
3525
3526  Mangler.mangleFunctionEncoding(DD);
3527}
3528
3529/// mangleGuardVariable - Returns the mangled name for a guard variable
3530/// for the passed in VarDecl.
3531void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,
3532                                                      raw_ostream &Out) {
3533  //  <special-name> ::= GV <object name>       # Guard variable for one-time
3534  //                                            # initialization
3535  CXXNameMangler Mangler(*this, Out);
3536  Mangler.getStream() << "_ZGV";
3537  Mangler.mangleName(D);
3538}
3539
3540void ItaniumMangleContext::mangleItaniumThreadLocalInit(const VarDecl *D,
3541                                                        raw_ostream &Out) {
3542  //  <special-name> ::= TH <object name>
3543  CXXNameMangler Mangler(*this, Out);
3544  Mangler.getStream() << "_ZTH";
3545  Mangler.mangleName(D);
3546}
3547
3548void ItaniumMangleContext::mangleItaniumThreadLocalWrapper(const VarDecl *D,
3549                                                           raw_ostream &Out) {
3550  //  <special-name> ::= TW <object name>
3551  CXXNameMangler Mangler(*this, Out);
3552  Mangler.getStream() << "_ZTW";
3553  Mangler.mangleName(D);
3554}
3555
3556void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,
3557                                                    raw_ostream &Out) {
3558  // We match the GCC mangling here.
3559  //  <special-name> ::= GR <object name>
3560  CXXNameMangler Mangler(*this, Out);
3561  Mangler.getStream() << "_ZGR";
3562  Mangler.mangleName(D);
3563}
3564
3565void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
3566                                           raw_ostream &Out) {
3567  // <special-name> ::= TV <type>  # virtual table
3568  CXXNameMangler Mangler(*this, Out);
3569  Mangler.getStream() << "_ZTV";
3570  Mangler.mangleNameOrStandardSubstitution(RD);
3571}
3572
3573void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
3574                                        raw_ostream &Out) {
3575  // <special-name> ::= TT <type>  # VTT structure
3576  CXXNameMangler Mangler(*this, Out);
3577  Mangler.getStream() << "_ZTT";
3578  Mangler.mangleNameOrStandardSubstitution(RD);
3579}
3580
3581void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
3582                                               int64_t Offset,
3583                                               const CXXRecordDecl *Type,
3584                                               raw_ostream &Out) {
3585  // <special-name> ::= TC <type> <offset number> _ <base type>
3586  CXXNameMangler Mangler(*this, Out);
3587  Mangler.getStream() << "_ZTC";
3588  Mangler.mangleNameOrStandardSubstitution(RD);
3589  Mangler.getStream() << Offset;
3590  Mangler.getStream() << '_';
3591  Mangler.mangleNameOrStandardSubstitution(Type);
3592}
3593
3594void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,
3595                                         raw_ostream &Out) {
3596  // <special-name> ::= TI <type>  # typeinfo structure
3597  assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
3598  CXXNameMangler Mangler(*this, Out);
3599  Mangler.getStream() << "_ZTI";
3600  Mangler.mangleType(Ty);
3601}
3602
3603void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,
3604                                             raw_ostream &Out) {
3605  // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
3606  CXXNameMangler Mangler(*this, Out);
3607  Mangler.getStream() << "_ZTS";
3608  Mangler.mangleType(Ty);
3609}
3610
3611MangleContext *clang::createItaniumMangleContext(ASTContext &Context,
3612                                                 DiagnosticsEngine &Diags) {
3613  return new ItaniumMangleContext(Context, Diags);
3614}
3615