1//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Peephole optimize the CFG.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "simplifycfg"
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SetVector.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/InstructionSimplify.h"
23#include "llvm/Analysis/TargetTransformInfo.h"
24#include "llvm/Analysis/ValueTracking.h"
25#include "llvm/IR/Constants.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/DerivedTypes.h"
28#include "llvm/IR/GlobalVariable.h"
29#include "llvm/IR/IRBuilder.h"
30#include "llvm/IR/Instructions.h"
31#include "llvm/IR/IntrinsicInst.h"
32#include "llvm/IR/LLVMContext.h"
33#include "llvm/IR/MDBuilder.h"
34#include "llvm/IR/Metadata.h"
35#include "llvm/IR/Module.h"
36#include "llvm/IR/Operator.h"
37#include "llvm/IR/Type.h"
38#include "llvm/Support/CFG.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/ConstantRange.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/NoFolder.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/Transforms/Utils/BasicBlockUtils.h"
45#include <algorithm>
46#include <map>
47#include <set>
48using namespace llvm;
49
50static cl::opt<unsigned>
51PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
52   cl::desc("Control the amount of phi node folding to perform (default = 1)"));
53
54static cl::opt<bool>
55DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
56       cl::desc("Duplicate return instructions into unconditional branches"));
57
58static cl::opt<bool>
59SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
60       cl::desc("Sink common instructions down to the end block"));
61
62static cl::opt<bool>
63HoistCondStores("simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
64       cl::desc("Hoist conditional stores if an unconditional store preceeds"));
65
66STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
67STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
68STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block");
69STATISTIC(NumSpeculations, "Number of speculative executed instructions");
70
71namespace {
72  /// ValueEqualityComparisonCase - Represents a case of a switch.
73  struct ValueEqualityComparisonCase {
74    ConstantInt *Value;
75    BasicBlock *Dest;
76
77    ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
78      : Value(Value), Dest(Dest) {}
79
80    bool operator<(ValueEqualityComparisonCase RHS) const {
81      // Comparing pointers is ok as we only rely on the order for uniquing.
82      return Value < RHS.Value;
83    }
84
85    bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
86  };
87
88class SimplifyCFGOpt {
89  const TargetTransformInfo &TTI;
90  const DataLayout *const TD;
91
92  Value *isValueEqualityComparison(TerminatorInst *TI);
93  BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
94                               std::vector<ValueEqualityComparisonCase> &Cases);
95  bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
96                                                     BasicBlock *Pred,
97                                                     IRBuilder<> &Builder);
98  bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
99                                           IRBuilder<> &Builder);
100
101  bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
102  bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
103  bool SimplifyUnreachable(UnreachableInst *UI);
104  bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
105  bool SimplifyIndirectBr(IndirectBrInst *IBI);
106  bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
107  bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
108
109public:
110  SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout *TD)
111      : TTI(TTI), TD(TD) {}
112  bool run(BasicBlock *BB);
113};
114}
115
116/// SafeToMergeTerminators - Return true if it is safe to merge these two
117/// terminator instructions together.
118///
119static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
120  if (SI1 == SI2) return false;  // Can't merge with self!
121
122  // It is not safe to merge these two switch instructions if they have a common
123  // successor, and if that successor has a PHI node, and if *that* PHI node has
124  // conflicting incoming values from the two switch blocks.
125  BasicBlock *SI1BB = SI1->getParent();
126  BasicBlock *SI2BB = SI2->getParent();
127  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
128
129  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
130    if (SI1Succs.count(*I))
131      for (BasicBlock::iterator BBI = (*I)->begin();
132           isa<PHINode>(BBI); ++BBI) {
133        PHINode *PN = cast<PHINode>(BBI);
134        if (PN->getIncomingValueForBlock(SI1BB) !=
135            PN->getIncomingValueForBlock(SI2BB))
136          return false;
137      }
138
139  return true;
140}
141
142/// isProfitableToFoldUnconditional - Return true if it is safe and profitable
143/// to merge these two terminator instructions together, where SI1 is an
144/// unconditional branch. PhiNodes will store all PHI nodes in common
145/// successors.
146///
147static bool isProfitableToFoldUnconditional(BranchInst *SI1,
148                                          BranchInst *SI2,
149                                          Instruction *Cond,
150                                          SmallVectorImpl<PHINode*> &PhiNodes) {
151  if (SI1 == SI2) return false;  // Can't merge with self!
152  assert(SI1->isUnconditional() && SI2->isConditional());
153
154  // We fold the unconditional branch if we can easily update all PHI nodes in
155  // common successors:
156  // 1> We have a constant incoming value for the conditional branch;
157  // 2> We have "Cond" as the incoming value for the unconditional branch;
158  // 3> SI2->getCondition() and Cond have same operands.
159  CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
160  if (!Ci2) return false;
161  if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
162        Cond->getOperand(1) == Ci2->getOperand(1)) &&
163      !(Cond->getOperand(0) == Ci2->getOperand(1) &&
164        Cond->getOperand(1) == Ci2->getOperand(0)))
165    return false;
166
167  BasicBlock *SI1BB = SI1->getParent();
168  BasicBlock *SI2BB = SI2->getParent();
169  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
170  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
171    if (SI1Succs.count(*I))
172      for (BasicBlock::iterator BBI = (*I)->begin();
173           isa<PHINode>(BBI); ++BBI) {
174        PHINode *PN = cast<PHINode>(BBI);
175        if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
176            !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
177          return false;
178        PhiNodes.push_back(PN);
179      }
180  return true;
181}
182
183/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
184/// now be entries in it from the 'NewPred' block.  The values that will be
185/// flowing into the PHI nodes will be the same as those coming in from
186/// ExistPred, an existing predecessor of Succ.
187static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
188                                  BasicBlock *ExistPred) {
189  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
190
191  PHINode *PN;
192  for (BasicBlock::iterator I = Succ->begin();
193       (PN = dyn_cast<PHINode>(I)); ++I)
194    PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
195}
196
197
198/// GetIfCondition - Given a basic block (BB) with two predecessors (and at
199/// least one PHI node in it), check to see if the merge at this block is due
200/// to an "if condition".  If so, return the boolean condition that determines
201/// which entry into BB will be taken.  Also, return by references the block
202/// that will be entered from if the condition is true, and the block that will
203/// be entered if the condition is false.
204///
205/// This does no checking to see if the true/false blocks have large or unsavory
206/// instructions in them.
207static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
208                             BasicBlock *&IfFalse) {
209  PHINode *SomePHI = cast<PHINode>(BB->begin());
210  assert(SomePHI->getNumIncomingValues() == 2 &&
211         "Function can only handle blocks with 2 predecessors!");
212  BasicBlock *Pred1 = SomePHI->getIncomingBlock(0);
213  BasicBlock *Pred2 = SomePHI->getIncomingBlock(1);
214
215  // We can only handle branches.  Other control flow will be lowered to
216  // branches if possible anyway.
217  BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
218  BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
219  if (Pred1Br == 0 || Pred2Br == 0)
220    return 0;
221
222  // Eliminate code duplication by ensuring that Pred1Br is conditional if
223  // either are.
224  if (Pred2Br->isConditional()) {
225    // If both branches are conditional, we don't have an "if statement".  In
226    // reality, we could transform this case, but since the condition will be
227    // required anyway, we stand no chance of eliminating it, so the xform is
228    // probably not profitable.
229    if (Pred1Br->isConditional())
230      return 0;
231
232    std::swap(Pred1, Pred2);
233    std::swap(Pred1Br, Pred2Br);
234  }
235
236  if (Pred1Br->isConditional()) {
237    // The only thing we have to watch out for here is to make sure that Pred2
238    // doesn't have incoming edges from other blocks.  If it does, the condition
239    // doesn't dominate BB.
240    if (Pred2->getSinglePredecessor() == 0)
241      return 0;
242
243    // If we found a conditional branch predecessor, make sure that it branches
244    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
245    if (Pred1Br->getSuccessor(0) == BB &&
246        Pred1Br->getSuccessor(1) == Pred2) {
247      IfTrue = Pred1;
248      IfFalse = Pred2;
249    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
250               Pred1Br->getSuccessor(1) == BB) {
251      IfTrue = Pred2;
252      IfFalse = Pred1;
253    } else {
254      // We know that one arm of the conditional goes to BB, so the other must
255      // go somewhere unrelated, and this must not be an "if statement".
256      return 0;
257    }
258
259    return Pred1Br->getCondition();
260  }
261
262  // Ok, if we got here, both predecessors end with an unconditional branch to
263  // BB.  Don't panic!  If both blocks only have a single (identical)
264  // predecessor, and THAT is a conditional branch, then we're all ok!
265  BasicBlock *CommonPred = Pred1->getSinglePredecessor();
266  if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
267    return 0;
268
269  // Otherwise, if this is a conditional branch, then we can use it!
270  BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
271  if (BI == 0) return 0;
272
273  assert(BI->isConditional() && "Two successors but not conditional?");
274  if (BI->getSuccessor(0) == Pred1) {
275    IfTrue = Pred1;
276    IfFalse = Pred2;
277  } else {
278    IfTrue = Pred2;
279    IfFalse = Pred1;
280  }
281  return BI->getCondition();
282}
283
284/// ComputeSpeculuationCost - Compute an abstract "cost" of speculating the
285/// given instruction, which is assumed to be safe to speculate. 1 means
286/// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive.
287static unsigned ComputeSpeculationCost(const User *I) {
288  assert(isSafeToSpeculativelyExecute(I) &&
289         "Instruction is not safe to speculatively execute!");
290  switch (Operator::getOpcode(I)) {
291  default:
292    // In doubt, be conservative.
293    return UINT_MAX;
294  case Instruction::GetElementPtr:
295    // GEPs are cheap if all indices are constant.
296    if (!cast<GEPOperator>(I)->hasAllConstantIndices())
297      return UINT_MAX;
298    return 1;
299  case Instruction::Load:
300  case Instruction::Add:
301  case Instruction::Sub:
302  case Instruction::And:
303  case Instruction::Or:
304  case Instruction::Xor:
305  case Instruction::Shl:
306  case Instruction::LShr:
307  case Instruction::AShr:
308  case Instruction::ICmp:
309  case Instruction::Trunc:
310  case Instruction::ZExt:
311  case Instruction::SExt:
312    return 1; // These are all cheap.
313
314  case Instruction::Call:
315  case Instruction::Select:
316    return 2;
317  }
318}
319
320/// DominatesMergePoint - If we have a merge point of an "if condition" as
321/// accepted above, return true if the specified value dominates the block.  We
322/// don't handle the true generality of domination here, just a special case
323/// which works well enough for us.
324///
325/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
326/// see if V (which must be an instruction) and its recursive operands
327/// that do not dominate BB have a combined cost lower than CostRemaining and
328/// are non-trapping.  If both are true, the instruction is inserted into the
329/// set and true is returned.
330///
331/// The cost for most non-trapping instructions is defined as 1 except for
332/// Select whose cost is 2.
333///
334/// After this function returns, CostRemaining is decreased by the cost of
335/// V plus its non-dominating operands.  If that cost is greater than
336/// CostRemaining, false is returned and CostRemaining is undefined.
337static bool DominatesMergePoint(Value *V, BasicBlock *BB,
338                                SmallPtrSet<Instruction*, 4> *AggressiveInsts,
339                                unsigned &CostRemaining) {
340  Instruction *I = dyn_cast<Instruction>(V);
341  if (!I) {
342    // Non-instructions all dominate instructions, but not all constantexprs
343    // can be executed unconditionally.
344    if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
345      if (C->canTrap())
346        return false;
347    return true;
348  }
349  BasicBlock *PBB = I->getParent();
350
351  // We don't want to allow weird loops that might have the "if condition" in
352  // the bottom of this block.
353  if (PBB == BB) return false;
354
355  // If this instruction is defined in a block that contains an unconditional
356  // branch to BB, then it must be in the 'conditional' part of the "if
357  // statement".  If not, it definitely dominates the region.
358  BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
359  if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB)
360    return true;
361
362  // If we aren't allowing aggressive promotion anymore, then don't consider
363  // instructions in the 'if region'.
364  if (AggressiveInsts == 0) return false;
365
366  // If we have seen this instruction before, don't count it again.
367  if (AggressiveInsts->count(I)) return true;
368
369  // Okay, it looks like the instruction IS in the "condition".  Check to
370  // see if it's a cheap instruction to unconditionally compute, and if it
371  // only uses stuff defined outside of the condition.  If so, hoist it out.
372  if (!isSafeToSpeculativelyExecute(I))
373    return false;
374
375  unsigned Cost = ComputeSpeculationCost(I);
376
377  if (Cost > CostRemaining)
378    return false;
379
380  CostRemaining -= Cost;
381
382  // Okay, we can only really hoist these out if their operands do
383  // not take us over the cost threshold.
384  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
385    if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining))
386      return false;
387  // Okay, it's safe to do this!  Remember this instruction.
388  AggressiveInsts->insert(I);
389  return true;
390}
391
392/// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
393/// and PointerNullValue. Return NULL if value is not a constant int.
394static ConstantInt *GetConstantInt(Value *V, const DataLayout *TD) {
395  // Normal constant int.
396  ConstantInt *CI = dyn_cast<ConstantInt>(V);
397  if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
398    return CI;
399
400  // This is some kind of pointer constant. Turn it into a pointer-sized
401  // ConstantInt if possible.
402  IntegerType *PtrTy = cast<IntegerType>(TD->getIntPtrType(V->getType()));
403
404  // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
405  if (isa<ConstantPointerNull>(V))
406    return ConstantInt::get(PtrTy, 0);
407
408  // IntToPtr const int.
409  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
410    if (CE->getOpcode() == Instruction::IntToPtr)
411      if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
412        // The constant is very likely to have the right type already.
413        if (CI->getType() == PtrTy)
414          return CI;
415        else
416          return cast<ConstantInt>
417            (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
418      }
419  return 0;
420}
421
422/// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
423/// collection of icmp eq/ne instructions that compare a value against a
424/// constant, return the value being compared, and stick the constant into the
425/// Values vector.
426static Value *
427GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
428                       const DataLayout *TD, bool isEQ, unsigned &UsedICmps) {
429  Instruction *I = dyn_cast<Instruction>(V);
430  if (I == 0) return 0;
431
432  // If this is an icmp against a constant, handle this as one of the cases.
433  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
434    if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
435      if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
436        UsedICmps++;
437        Vals.push_back(C);
438        return I->getOperand(0);
439      }
440
441      // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
442      // the set.
443      ConstantRange Span =
444        ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
445
446      // If this is an and/!= check then we want to optimize "x ugt 2" into
447      // x != 0 && x != 1.
448      if (!isEQ)
449        Span = Span.inverse();
450
451      // If there are a ton of values, we don't want to make a ginormous switch.
452      if (Span.getSetSize().ugt(8) || Span.isEmptySet())
453        return 0;
454
455      for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
456        Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
457      UsedICmps++;
458      return I->getOperand(0);
459    }
460    return 0;
461  }
462
463  // Otherwise, we can only handle an | or &, depending on isEQ.
464  if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
465    return 0;
466
467  unsigned NumValsBeforeLHS = Vals.size();
468  unsigned UsedICmpsBeforeLHS = UsedICmps;
469  if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
470                                          isEQ, UsedICmps)) {
471    unsigned NumVals = Vals.size();
472    unsigned UsedICmpsBeforeRHS = UsedICmps;
473    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
474                                            isEQ, UsedICmps)) {
475      if (LHS == RHS)
476        return LHS;
477      Vals.resize(NumVals);
478      UsedICmps = UsedICmpsBeforeRHS;
479    }
480
481    // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
482    // set it and return success.
483    if (Extra == 0 || Extra == I->getOperand(1)) {
484      Extra = I->getOperand(1);
485      return LHS;
486    }
487
488    Vals.resize(NumValsBeforeLHS);
489    UsedICmps = UsedICmpsBeforeLHS;
490    return 0;
491  }
492
493  // If the LHS can't be folded in, but Extra is available and RHS can, try to
494  // use LHS as Extra.
495  if (Extra == 0 || Extra == I->getOperand(0)) {
496    Value *OldExtra = Extra;
497    Extra = I->getOperand(0);
498    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
499                                            isEQ, UsedICmps))
500      return RHS;
501    assert(Vals.size() == NumValsBeforeLHS);
502    Extra = OldExtra;
503  }
504
505  return 0;
506}
507
508static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
509  Instruction *Cond = 0;
510  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
511    Cond = dyn_cast<Instruction>(SI->getCondition());
512  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
513    if (BI->isConditional())
514      Cond = dyn_cast<Instruction>(BI->getCondition());
515  } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
516    Cond = dyn_cast<Instruction>(IBI->getAddress());
517  }
518
519  TI->eraseFromParent();
520  if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
521}
522
523/// isValueEqualityComparison - Return true if the specified terminator checks
524/// to see if a value is equal to constant integer value.
525Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
526  Value *CV = 0;
527  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
528    // Do not permit merging of large switch instructions into their
529    // predecessors unless there is only one predecessor.
530    if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
531                                             pred_end(SI->getParent())) <= 128)
532      CV = SI->getCondition();
533  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
534    if (BI->isConditional() && BI->getCondition()->hasOneUse())
535      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
536        if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
537             ICI->getPredicate() == ICmpInst::ICMP_NE) &&
538            GetConstantInt(ICI->getOperand(1), TD))
539          CV = ICI->getOperand(0);
540
541  // Unwrap any lossless ptrtoint cast.
542  if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext()))
543    if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV))
544      CV = PTII->getOperand(0);
545  return CV;
546}
547
548/// GetValueEqualityComparisonCases - Given a value comparison instruction,
549/// decode all of the 'cases' that it represents and return the 'default' block.
550BasicBlock *SimplifyCFGOpt::
551GetValueEqualityComparisonCases(TerminatorInst *TI,
552                                std::vector<ValueEqualityComparisonCase>
553                                                                       &Cases) {
554  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
555    Cases.reserve(SI->getNumCases());
556    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
557      Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
558                                                  i.getCaseSuccessor()));
559    return SI->getDefaultDest();
560  }
561
562  BranchInst *BI = cast<BranchInst>(TI);
563  ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
564  BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
565  Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
566                                                             TD),
567                                              Succ));
568  return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
569}
570
571
572/// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
573/// in the list that match the specified block.
574static void EliminateBlockCases(BasicBlock *BB,
575                              std::vector<ValueEqualityComparisonCase> &Cases) {
576  Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
577}
578
579/// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
580/// well.
581static bool
582ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
583              std::vector<ValueEqualityComparisonCase > &C2) {
584  std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
585
586  // Make V1 be smaller than V2.
587  if (V1->size() > V2->size())
588    std::swap(V1, V2);
589
590  if (V1->size() == 0) return false;
591  if (V1->size() == 1) {
592    // Just scan V2.
593    ConstantInt *TheVal = (*V1)[0].Value;
594    for (unsigned i = 0, e = V2->size(); i != e; ++i)
595      if (TheVal == (*V2)[i].Value)
596        return true;
597  }
598
599  // Otherwise, just sort both lists and compare element by element.
600  array_pod_sort(V1->begin(), V1->end());
601  array_pod_sort(V2->begin(), V2->end());
602  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
603  while (i1 != e1 && i2 != e2) {
604    if ((*V1)[i1].Value == (*V2)[i2].Value)
605      return true;
606    if ((*V1)[i1].Value < (*V2)[i2].Value)
607      ++i1;
608    else
609      ++i2;
610  }
611  return false;
612}
613
614/// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
615/// terminator instruction and its block is known to only have a single
616/// predecessor block, check to see if that predecessor is also a value
617/// comparison with the same value, and if that comparison determines the
618/// outcome of this comparison.  If so, simplify TI.  This does a very limited
619/// form of jump threading.
620bool SimplifyCFGOpt::
621SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
622                                              BasicBlock *Pred,
623                                              IRBuilder<> &Builder) {
624  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
625  if (!PredVal) return false;  // Not a value comparison in predecessor.
626
627  Value *ThisVal = isValueEqualityComparison(TI);
628  assert(ThisVal && "This isn't a value comparison!!");
629  if (ThisVal != PredVal) return false;  // Different predicates.
630
631  // TODO: Preserve branch weight metadata, similarly to how
632  // FoldValueComparisonIntoPredecessors preserves it.
633
634  // Find out information about when control will move from Pred to TI's block.
635  std::vector<ValueEqualityComparisonCase> PredCases;
636  BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
637                                                        PredCases);
638  EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
639
640  // Find information about how control leaves this block.
641  std::vector<ValueEqualityComparisonCase> ThisCases;
642  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
643  EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
644
645  // If TI's block is the default block from Pred's comparison, potentially
646  // simplify TI based on this knowledge.
647  if (PredDef == TI->getParent()) {
648    // If we are here, we know that the value is none of those cases listed in
649    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
650    // can simplify TI.
651    if (!ValuesOverlap(PredCases, ThisCases))
652      return false;
653
654    if (isa<BranchInst>(TI)) {
655      // Okay, one of the successors of this condbr is dead.  Convert it to a
656      // uncond br.
657      assert(ThisCases.size() == 1 && "Branch can only have one case!");
658      // Insert the new branch.
659      Instruction *NI = Builder.CreateBr(ThisDef);
660      (void) NI;
661
662      // Remove PHI node entries for the dead edge.
663      ThisCases[0].Dest->removePredecessor(TI->getParent());
664
665      DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
666           << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
667
668      EraseTerminatorInstAndDCECond(TI);
669      return true;
670    }
671
672    SwitchInst *SI = cast<SwitchInst>(TI);
673    // Okay, TI has cases that are statically dead, prune them away.
674    SmallPtrSet<Constant*, 16> DeadCases;
675    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
676      DeadCases.insert(PredCases[i].Value);
677
678    DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
679                 << "Through successor TI: " << *TI);
680
681    // Collect branch weights into a vector.
682    SmallVector<uint32_t, 8> Weights;
683    MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
684    bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
685    if (HasWeight)
686      for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
687           ++MD_i) {
688        ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i));
689        assert(CI);
690        Weights.push_back(CI->getValue().getZExtValue());
691      }
692    for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
693      --i;
694      if (DeadCases.count(i.getCaseValue())) {
695        if (HasWeight) {
696          std::swap(Weights[i.getCaseIndex()+1], Weights.back());
697          Weights.pop_back();
698        }
699        i.getCaseSuccessor()->removePredecessor(TI->getParent());
700        SI->removeCase(i);
701      }
702    }
703    if (HasWeight && Weights.size() >= 2)
704      SI->setMetadata(LLVMContext::MD_prof,
705                      MDBuilder(SI->getParent()->getContext()).
706                      createBranchWeights(Weights));
707
708    DEBUG(dbgs() << "Leaving: " << *TI << "\n");
709    return true;
710  }
711
712  // Otherwise, TI's block must correspond to some matched value.  Find out
713  // which value (or set of values) this is.
714  ConstantInt *TIV = 0;
715  BasicBlock *TIBB = TI->getParent();
716  for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
717    if (PredCases[i].Dest == TIBB) {
718      if (TIV != 0)
719        return false;  // Cannot handle multiple values coming to this block.
720      TIV = PredCases[i].Value;
721    }
722  assert(TIV && "No edge from pred to succ?");
723
724  // Okay, we found the one constant that our value can be if we get into TI's
725  // BB.  Find out which successor will unconditionally be branched to.
726  BasicBlock *TheRealDest = 0;
727  for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
728    if (ThisCases[i].Value == TIV) {
729      TheRealDest = ThisCases[i].Dest;
730      break;
731    }
732
733  // If not handled by any explicit cases, it is handled by the default case.
734  if (TheRealDest == 0) TheRealDest = ThisDef;
735
736  // Remove PHI node entries for dead edges.
737  BasicBlock *CheckEdge = TheRealDest;
738  for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
739    if (*SI != CheckEdge)
740      (*SI)->removePredecessor(TIBB);
741    else
742      CheckEdge = 0;
743
744  // Insert the new branch.
745  Instruction *NI = Builder.CreateBr(TheRealDest);
746  (void) NI;
747
748  DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
749            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
750
751  EraseTerminatorInstAndDCECond(TI);
752  return true;
753}
754
755namespace {
756  /// ConstantIntOrdering - This class implements a stable ordering of constant
757  /// integers that does not depend on their address.  This is important for
758  /// applications that sort ConstantInt's to ensure uniqueness.
759  struct ConstantIntOrdering {
760    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
761      return LHS->getValue().ult(RHS->getValue());
762    }
763  };
764}
765
766static int ConstantIntSortPredicate(const void *P1, const void *P2) {
767  const ConstantInt *LHS = *(const ConstantInt*const*)P1;
768  const ConstantInt *RHS = *(const ConstantInt*const*)P2;
769  if (LHS->getValue().ult(RHS->getValue()))
770    return 1;
771  if (LHS->getValue() == RHS->getValue())
772    return 0;
773  return -1;
774}
775
776static inline bool HasBranchWeights(const Instruction* I) {
777  MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof);
778  if (ProfMD && ProfMD->getOperand(0))
779    if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
780      return MDS->getString().equals("branch_weights");
781
782  return false;
783}
784
785/// Get Weights of a given TerminatorInst, the default weight is at the front
786/// of the vector. If TI is a conditional eq, we need to swap the branch-weight
787/// metadata.
788static void GetBranchWeights(TerminatorInst *TI,
789                             SmallVectorImpl<uint64_t> &Weights) {
790  MDNode* MD = TI->getMetadata(LLVMContext::MD_prof);
791  assert(MD);
792  for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
793    ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(i));
794    assert(CI);
795    Weights.push_back(CI->getValue().getZExtValue());
796  }
797
798  // If TI is a conditional eq, the default case is the false case,
799  // and the corresponding branch-weight data is at index 2. We swap the
800  // default weight to be the first entry.
801  if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
802    assert(Weights.size() == 2);
803    ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
804    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
805      std::swap(Weights.front(), Weights.back());
806  }
807}
808
809/// Sees if any of the weights are too big for a uint32_t, and halves all the
810/// weights if any are.
811static void FitWeights(MutableArrayRef<uint64_t> Weights) {
812  bool Halve = false;
813  for (unsigned i = 0; i < Weights.size(); ++i)
814    if (Weights[i] > UINT_MAX) {
815      Halve = true;
816      break;
817    }
818
819  if (! Halve)
820    return;
821
822  for (unsigned i = 0; i < Weights.size(); ++i)
823    Weights[i] /= 2;
824}
825
826/// FoldValueComparisonIntoPredecessors - The specified terminator is a value
827/// equality comparison instruction (either a switch or a branch on "X == c").
828/// See if any of the predecessors of the terminator block are value comparisons
829/// on the same value.  If so, and if safe to do so, fold them together.
830bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
831                                                         IRBuilder<> &Builder) {
832  BasicBlock *BB = TI->getParent();
833  Value *CV = isValueEqualityComparison(TI);  // CondVal
834  assert(CV && "Not a comparison?");
835  bool Changed = false;
836
837  SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
838  while (!Preds.empty()) {
839    BasicBlock *Pred = Preds.pop_back_val();
840
841    // See if the predecessor is a comparison with the same value.
842    TerminatorInst *PTI = Pred->getTerminator();
843    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
844
845    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
846      // Figure out which 'cases' to copy from SI to PSI.
847      std::vector<ValueEqualityComparisonCase> BBCases;
848      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
849
850      std::vector<ValueEqualityComparisonCase> PredCases;
851      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
852
853      // Based on whether the default edge from PTI goes to BB or not, fill in
854      // PredCases and PredDefault with the new switch cases we would like to
855      // build.
856      SmallVector<BasicBlock*, 8> NewSuccessors;
857
858      // Update the branch weight metadata along the way
859      SmallVector<uint64_t, 8> Weights;
860      bool PredHasWeights = HasBranchWeights(PTI);
861      bool SuccHasWeights = HasBranchWeights(TI);
862
863      if (PredHasWeights) {
864        GetBranchWeights(PTI, Weights);
865        // branch-weight metadata is inconsistent here.
866        if (Weights.size() != 1 + PredCases.size())
867          PredHasWeights = SuccHasWeights = false;
868      } else if (SuccHasWeights)
869        // If there are no predecessor weights but there are successor weights,
870        // populate Weights with 1, which will later be scaled to the sum of
871        // successor's weights
872        Weights.assign(1 + PredCases.size(), 1);
873
874      SmallVector<uint64_t, 8> SuccWeights;
875      if (SuccHasWeights) {
876        GetBranchWeights(TI, SuccWeights);
877        // branch-weight metadata is inconsistent here.
878        if (SuccWeights.size() != 1 + BBCases.size())
879          PredHasWeights = SuccHasWeights = false;
880      } else if (PredHasWeights)
881        SuccWeights.assign(1 + BBCases.size(), 1);
882
883      if (PredDefault == BB) {
884        // If this is the default destination from PTI, only the edges in TI
885        // that don't occur in PTI, or that branch to BB will be activated.
886        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
887        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
888          if (PredCases[i].Dest != BB)
889            PTIHandled.insert(PredCases[i].Value);
890          else {
891            // The default destination is BB, we don't need explicit targets.
892            std::swap(PredCases[i], PredCases.back());
893
894            if (PredHasWeights || SuccHasWeights) {
895              // Increase weight for the default case.
896              Weights[0] += Weights[i+1];
897              std::swap(Weights[i+1], Weights.back());
898              Weights.pop_back();
899            }
900
901            PredCases.pop_back();
902            --i; --e;
903          }
904
905        // Reconstruct the new switch statement we will be building.
906        if (PredDefault != BBDefault) {
907          PredDefault->removePredecessor(Pred);
908          PredDefault = BBDefault;
909          NewSuccessors.push_back(BBDefault);
910        }
911
912        unsigned CasesFromPred = Weights.size();
913        uint64_t ValidTotalSuccWeight = 0;
914        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
915          if (!PTIHandled.count(BBCases[i].Value) &&
916              BBCases[i].Dest != BBDefault) {
917            PredCases.push_back(BBCases[i]);
918            NewSuccessors.push_back(BBCases[i].Dest);
919            if (SuccHasWeights || PredHasWeights) {
920              // The default weight is at index 0, so weight for the ith case
921              // should be at index i+1. Scale the cases from successor by
922              // PredDefaultWeight (Weights[0]).
923              Weights.push_back(Weights[0] * SuccWeights[i+1]);
924              ValidTotalSuccWeight += SuccWeights[i+1];
925            }
926          }
927
928        if (SuccHasWeights || PredHasWeights) {
929          ValidTotalSuccWeight += SuccWeights[0];
930          // Scale the cases from predecessor by ValidTotalSuccWeight.
931          for (unsigned i = 1; i < CasesFromPred; ++i)
932            Weights[i] *= ValidTotalSuccWeight;
933          // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
934          Weights[0] *= SuccWeights[0];
935        }
936      } else {
937        // If this is not the default destination from PSI, only the edges
938        // in SI that occur in PSI with a destination of BB will be
939        // activated.
940        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
941        std::map<ConstantInt*, uint64_t> WeightsForHandled;
942        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
943          if (PredCases[i].Dest == BB) {
944            PTIHandled.insert(PredCases[i].Value);
945
946            if (PredHasWeights || SuccHasWeights) {
947              WeightsForHandled[PredCases[i].Value] = Weights[i+1];
948              std::swap(Weights[i+1], Weights.back());
949              Weights.pop_back();
950            }
951
952            std::swap(PredCases[i], PredCases.back());
953            PredCases.pop_back();
954            --i; --e;
955          }
956
957        // Okay, now we know which constants were sent to BB from the
958        // predecessor.  Figure out where they will all go now.
959        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
960          if (PTIHandled.count(BBCases[i].Value)) {
961            // If this is one we are capable of getting...
962            if (PredHasWeights || SuccHasWeights)
963              Weights.push_back(WeightsForHandled[BBCases[i].Value]);
964            PredCases.push_back(BBCases[i]);
965            NewSuccessors.push_back(BBCases[i].Dest);
966            PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
967          }
968
969        // If there are any constants vectored to BB that TI doesn't handle,
970        // they must go to the default destination of TI.
971        for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
972                                    PTIHandled.begin(),
973               E = PTIHandled.end(); I != E; ++I) {
974          if (PredHasWeights || SuccHasWeights)
975            Weights.push_back(WeightsForHandled[*I]);
976          PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
977          NewSuccessors.push_back(BBDefault);
978        }
979      }
980
981      // Okay, at this point, we know which new successor Pred will get.  Make
982      // sure we update the number of entries in the PHI nodes for these
983      // successors.
984      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
985        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
986
987      Builder.SetInsertPoint(PTI);
988      // Convert pointer to int before we switch.
989      if (CV->getType()->isPointerTy()) {
990        assert(TD && "Cannot switch on pointer without DataLayout");
991        CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()),
992                                    "magicptr");
993      }
994
995      // Now that the successors are updated, create the new Switch instruction.
996      SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
997                                               PredCases.size());
998      NewSI->setDebugLoc(PTI->getDebugLoc());
999      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1000        NewSI->addCase(PredCases[i].Value, PredCases[i].Dest);
1001
1002      if (PredHasWeights || SuccHasWeights) {
1003        // Halve the weights if any of them cannot fit in an uint32_t
1004        FitWeights(Weights);
1005
1006        SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1007
1008        NewSI->setMetadata(LLVMContext::MD_prof,
1009                           MDBuilder(BB->getContext()).
1010                           createBranchWeights(MDWeights));
1011      }
1012
1013      EraseTerminatorInstAndDCECond(PTI);
1014
1015      // Okay, last check.  If BB is still a successor of PSI, then we must
1016      // have an infinite loop case.  If so, add an infinitely looping block
1017      // to handle the case to preserve the behavior of the code.
1018      BasicBlock *InfLoopBlock = 0;
1019      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1020        if (NewSI->getSuccessor(i) == BB) {
1021          if (InfLoopBlock == 0) {
1022            // Insert it at the end of the function, because it's either code,
1023            // or it won't matter if it's hot. :)
1024            InfLoopBlock = BasicBlock::Create(BB->getContext(),
1025                                              "infloop", BB->getParent());
1026            BranchInst::Create(InfLoopBlock, InfLoopBlock);
1027          }
1028          NewSI->setSuccessor(i, InfLoopBlock);
1029        }
1030
1031      Changed = true;
1032    }
1033  }
1034  return Changed;
1035}
1036
1037// isSafeToHoistInvoke - If we would need to insert a select that uses the
1038// value of this invoke (comments in HoistThenElseCodeToIf explain why we
1039// would need to do this), we can't hoist the invoke, as there is nowhere
1040// to put the select in this case.
1041static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1042                                Instruction *I1, Instruction *I2) {
1043  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1044    PHINode *PN;
1045    for (BasicBlock::iterator BBI = SI->begin();
1046         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1047      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1048      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1049      if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
1050        return false;
1051      }
1052    }
1053  }
1054  return true;
1055}
1056
1057/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
1058/// BB2, hoist any common code in the two blocks up into the branch block.  The
1059/// caller of this function guarantees that BI's block dominates BB1 and BB2.
1060static bool HoistThenElseCodeToIf(BranchInst *BI) {
1061  // This does very trivial matching, with limited scanning, to find identical
1062  // instructions in the two blocks.  In particular, we don't want to get into
1063  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1064  // such, we currently just scan for obviously identical instructions in an
1065  // identical order.
1066  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
1067  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
1068
1069  BasicBlock::iterator BB1_Itr = BB1->begin();
1070  BasicBlock::iterator BB2_Itr = BB2->begin();
1071
1072  Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
1073  // Skip debug info if it is not identical.
1074  DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1075  DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1076  if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1077    while (isa<DbgInfoIntrinsic>(I1))
1078      I1 = BB1_Itr++;
1079    while (isa<DbgInfoIntrinsic>(I2))
1080      I2 = BB2_Itr++;
1081  }
1082  if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1083      (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1084    return false;
1085
1086  // If we get here, we can hoist at least one instruction.
1087  BasicBlock *BIParent = BI->getParent();
1088
1089  do {
1090    // If we are hoisting the terminator instruction, don't move one (making a
1091    // broken BB), instead clone it, and remove BI.
1092    if (isa<TerminatorInst>(I1))
1093      goto HoistTerminator;
1094
1095    // For a normal instruction, we just move one to right before the branch,
1096    // then replace all uses of the other with the first.  Finally, we remove
1097    // the now redundant second instruction.
1098    BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
1099    if (!I2->use_empty())
1100      I2->replaceAllUsesWith(I1);
1101    I1->intersectOptionalDataWith(I2);
1102    I2->eraseFromParent();
1103
1104    I1 = BB1_Itr++;
1105    I2 = BB2_Itr++;
1106    // Skip debug info if it is not identical.
1107    DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1108    DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1109    if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1110      while (isa<DbgInfoIntrinsic>(I1))
1111        I1 = BB1_Itr++;
1112      while (isa<DbgInfoIntrinsic>(I2))
1113        I2 = BB2_Itr++;
1114    }
1115  } while (I1->isIdenticalToWhenDefined(I2));
1116
1117  return true;
1118
1119HoistTerminator:
1120  // It may not be possible to hoist an invoke.
1121  if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1122    return true;
1123
1124  // Okay, it is safe to hoist the terminator.
1125  Instruction *NT = I1->clone();
1126  BIParent->getInstList().insert(BI, NT);
1127  if (!NT->getType()->isVoidTy()) {
1128    I1->replaceAllUsesWith(NT);
1129    I2->replaceAllUsesWith(NT);
1130    NT->takeName(I1);
1131  }
1132
1133  IRBuilder<true, NoFolder> Builder(NT);
1134  // Hoisting one of the terminators from our successor is a great thing.
1135  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1136  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1137  // nodes, so we insert select instruction to compute the final result.
1138  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
1139  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1140    PHINode *PN;
1141    for (BasicBlock::iterator BBI = SI->begin();
1142         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1143      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1144      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1145      if (BB1V == BB2V) continue;
1146
1147      // These values do not agree.  Insert a select instruction before NT
1148      // that determines the right value.
1149      SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1150      if (SI == 0)
1151        SI = cast<SelectInst>
1152          (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1153                                BB1V->getName()+"."+BB2V->getName()));
1154
1155      // Make the PHI node use the select for all incoming values for BB1/BB2
1156      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1157        if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1158          PN->setIncomingValue(i, SI);
1159    }
1160  }
1161
1162  // Update any PHI nodes in our new successors.
1163  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
1164    AddPredecessorToBlock(*SI, BIParent, BB1);
1165
1166  EraseTerminatorInstAndDCECond(BI);
1167  return true;
1168}
1169
1170/// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd,
1171/// check whether BBEnd has only two predecessors and the other predecessor
1172/// ends with an unconditional branch. If it is true, sink any common code
1173/// in the two predecessors to BBEnd.
1174static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1175  assert(BI1->isUnconditional());
1176  BasicBlock *BB1 = BI1->getParent();
1177  BasicBlock *BBEnd = BI1->getSuccessor(0);
1178
1179  // Check that BBEnd has two predecessors and the other predecessor ends with
1180  // an unconditional branch.
1181  pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
1182  BasicBlock *Pred0 = *PI++;
1183  if (PI == PE) // Only one predecessor.
1184    return false;
1185  BasicBlock *Pred1 = *PI++;
1186  if (PI != PE) // More than two predecessors.
1187    return false;
1188  BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
1189  BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
1190  if (!BI2 || !BI2->isUnconditional())
1191    return false;
1192
1193  // Gather the PHI nodes in BBEnd.
1194  std::map<Value*, std::pair<Value*, PHINode*> > MapValueFromBB1ToBB2;
1195  Instruction *FirstNonPhiInBBEnd = 0;
1196  for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end();
1197       I != E; ++I) {
1198    if (PHINode *PN = dyn_cast<PHINode>(I)) {
1199      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1200      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1201      MapValueFromBB1ToBB2[BB1V] = std::make_pair(BB2V, PN);
1202    } else {
1203      FirstNonPhiInBBEnd = &*I;
1204      break;
1205    }
1206  }
1207  if (!FirstNonPhiInBBEnd)
1208    return false;
1209
1210
1211  // This does very trivial matching, with limited scanning, to find identical
1212  // instructions in the two blocks.  We scan backward for obviously identical
1213  // instructions in an identical order.
1214  BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
1215      RE1 = BB1->getInstList().rend(), RI2 = BB2->getInstList().rbegin(),
1216      RE2 = BB2->getInstList().rend();
1217  // Skip debug info.
1218  while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1219  if (RI1 == RE1)
1220    return false;
1221  while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1222  if (RI2 == RE2)
1223    return false;
1224  // Skip the unconditional branches.
1225  ++RI1;
1226  ++RI2;
1227
1228  bool Changed = false;
1229  while (RI1 != RE1 && RI2 != RE2) {
1230    // Skip debug info.
1231    while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1232    if (RI1 == RE1)
1233      return Changed;
1234    while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1235    if (RI2 == RE2)
1236      return Changed;
1237
1238    Instruction *I1 = &*RI1, *I2 = &*RI2;
1239    // I1 and I2 should have a single use in the same PHI node, and they
1240    // perform the same operation.
1241    // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1242    if (isa<PHINode>(I1) || isa<PHINode>(I2) ||
1243        isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) ||
1244        isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) ||
1245        isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
1246        I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
1247        I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
1248        !I1->hasOneUse() || !I2->hasOneUse() ||
1249        MapValueFromBB1ToBB2.find(I1) == MapValueFromBB1ToBB2.end() ||
1250        MapValueFromBB1ToBB2[I1].first != I2)
1251      return Changed;
1252
1253    // Check whether we should swap the operands of ICmpInst.
1254    ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
1255    bool SwapOpnds = false;
1256    if (ICmp1 && ICmp2 &&
1257        ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
1258        ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
1259        (ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
1260         ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
1261      ICmp2->swapOperands();
1262      SwapOpnds = true;
1263    }
1264    if (!I1->isSameOperationAs(I2)) {
1265      if (SwapOpnds)
1266        ICmp2->swapOperands();
1267      return Changed;
1268    }
1269
1270    // The operands should be either the same or they need to be generated
1271    // with a PHI node after sinking. We only handle the case where there is
1272    // a single pair of different operands.
1273    Value *DifferentOp1 = 0, *DifferentOp2 = 0;
1274    unsigned Op1Idx = 0;
1275    for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
1276      if (I1->getOperand(I) == I2->getOperand(I))
1277        continue;
1278      // Early exit if we have more-than one pair of different operands or
1279      // the different operand is already in MapValueFromBB1ToBB2.
1280      // Early exit if we need a PHI node to replace a constant.
1281      if (DifferentOp1 ||
1282          MapValueFromBB1ToBB2.find(I1->getOperand(I)) !=
1283          MapValueFromBB1ToBB2.end() ||
1284          isa<Constant>(I1->getOperand(I)) ||
1285          isa<Constant>(I2->getOperand(I))) {
1286        // If we can't sink the instructions, undo the swapping.
1287        if (SwapOpnds)
1288          ICmp2->swapOperands();
1289        return Changed;
1290      }
1291      DifferentOp1 = I1->getOperand(I);
1292      Op1Idx = I;
1293      DifferentOp2 = I2->getOperand(I);
1294    }
1295
1296    // We insert the pair of different operands to MapValueFromBB1ToBB2 and
1297    // remove (I1, I2) from MapValueFromBB1ToBB2.
1298    if (DifferentOp1) {
1299      PHINode *NewPN = PHINode::Create(DifferentOp1->getType(), 2,
1300                                       DifferentOp1->getName() + ".sink",
1301                                       BBEnd->begin());
1302      MapValueFromBB1ToBB2[DifferentOp1] = std::make_pair(DifferentOp2, NewPN);
1303      // I1 should use NewPN instead of DifferentOp1.
1304      I1->setOperand(Op1Idx, NewPN);
1305      NewPN->addIncoming(DifferentOp1, BB1);
1306      NewPN->addIncoming(DifferentOp2, BB2);
1307      DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
1308    }
1309    PHINode *OldPN = MapValueFromBB1ToBB2[I1].second;
1310    MapValueFromBB1ToBB2.erase(I1);
1311
1312    DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n";);
1313    DEBUG(dbgs() << "                         " << *I2 << "\n";);
1314    // We need to update RE1 and RE2 if we are going to sink the first
1315    // instruction in the basic block down.
1316    bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin());
1317    // Sink the instruction.
1318    BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1);
1319    if (!OldPN->use_empty())
1320      OldPN->replaceAllUsesWith(I1);
1321    OldPN->eraseFromParent();
1322
1323    if (!I2->use_empty())
1324      I2->replaceAllUsesWith(I1);
1325    I1->intersectOptionalDataWith(I2);
1326    I2->eraseFromParent();
1327
1328    if (UpdateRE1)
1329      RE1 = BB1->getInstList().rend();
1330    if (UpdateRE2)
1331      RE2 = BB2->getInstList().rend();
1332    FirstNonPhiInBBEnd = I1;
1333    NumSinkCommons++;
1334    Changed = true;
1335  }
1336  return Changed;
1337}
1338
1339/// \brief Determine if we can hoist sink a sole store instruction out of a
1340/// conditional block.
1341///
1342/// We are looking for code like the following:
1343///   BrBB:
1344///     store i32 %add, i32* %arrayidx2
1345///     ... // No other stores or function calls (we could be calling a memory
1346///     ... // function).
1347///     %cmp = icmp ult %x, %y
1348///     br i1 %cmp, label %EndBB, label %ThenBB
1349///   ThenBB:
1350///     store i32 %add5, i32* %arrayidx2
1351///     br label EndBB
1352///   EndBB:
1353///     ...
1354///   We are going to transform this into:
1355///   BrBB:
1356///     store i32 %add, i32* %arrayidx2
1357///     ... //
1358///     %cmp = icmp ult %x, %y
1359///     %add.add5 = select i1 %cmp, i32 %add, %add5
1360///     store i32 %add.add5, i32* %arrayidx2
1361///     ...
1362///
1363/// \return The pointer to the value of the previous store if the store can be
1364///         hoisted into the predecessor block. 0 otherwise.
1365Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1366                              BasicBlock *StoreBB, BasicBlock *EndBB) {
1367  StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1368  if (!StoreToHoist)
1369    return 0;
1370
1371  // Volatile or atomic.
1372  if (!StoreToHoist->isSimple())
1373    return 0;
1374
1375  Value *StorePtr = StoreToHoist->getPointerOperand();
1376
1377  // Look for a store to the same pointer in BrBB.
1378  unsigned MaxNumInstToLookAt = 10;
1379  for (BasicBlock::reverse_iterator RI = BrBB->rbegin(),
1380       RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) {
1381    Instruction *CurI = &*RI;
1382
1383    // Could be calling an instruction that effects memory like free().
1384    if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI))
1385      return 0;
1386
1387    StoreInst *SI = dyn_cast<StoreInst>(CurI);
1388    // Found the previous store make sure it stores to the same location.
1389    if (SI && SI->getPointerOperand() == StorePtr)
1390      // Found the previous store, return its value operand.
1391      return SI->getValueOperand();
1392    else if (SI)
1393      return 0; // Unknown store.
1394  }
1395
1396  return 0;
1397}
1398
1399/// \brief Speculate a conditional basic block flattening the CFG.
1400///
1401/// Note that this is a very risky transform currently. Speculating
1402/// instructions like this is most often not desirable. Instead, there is an MI
1403/// pass which can do it with full awareness of the resource constraints.
1404/// However, some cases are "obvious" and we should do directly. An example of
1405/// this is speculating a single, reasonably cheap instruction.
1406///
1407/// There is only one distinct advantage to flattening the CFG at the IR level:
1408/// it makes very common but simplistic optimizations such as are common in
1409/// instcombine and the DAG combiner more powerful by removing CFG edges and
1410/// modeling their effects with easier to reason about SSA value graphs.
1411///
1412///
1413/// An illustration of this transform is turning this IR:
1414/// \code
1415///   BB:
1416///     %cmp = icmp ult %x, %y
1417///     br i1 %cmp, label %EndBB, label %ThenBB
1418///   ThenBB:
1419///     %sub = sub %x, %y
1420///     br label BB2
1421///   EndBB:
1422///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1423///     ...
1424/// \endcode
1425///
1426/// Into this IR:
1427/// \code
1428///   BB:
1429///     %cmp = icmp ult %x, %y
1430///     %sub = sub %x, %y
1431///     %cond = select i1 %cmp, 0, %sub
1432///     ...
1433/// \endcode
1434///
1435/// \returns true if the conditional block is removed.
1436static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB) {
1437  // Be conservative for now. FP select instruction can often be expensive.
1438  Value *BrCond = BI->getCondition();
1439  if (isa<FCmpInst>(BrCond))
1440    return false;
1441
1442  BasicBlock *BB = BI->getParent();
1443  BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1444
1445  // If ThenBB is actually on the false edge of the conditional branch, remember
1446  // to swap the select operands later.
1447  bool Invert = false;
1448  if (ThenBB != BI->getSuccessor(0)) {
1449    assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1450    Invert = true;
1451  }
1452  assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1453
1454  // Keep a count of how many times instructions are used within CondBB when
1455  // they are candidates for sinking into CondBB. Specifically:
1456  // - They are defined in BB, and
1457  // - They have no side effects, and
1458  // - All of their uses are in CondBB.
1459  SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1460
1461  unsigned SpeculationCost = 0;
1462  Value *SpeculatedStoreValue = 0;
1463  StoreInst *SpeculatedStore = 0;
1464  for (BasicBlock::iterator BBI = ThenBB->begin(),
1465                            BBE = llvm::prior(ThenBB->end());
1466       BBI != BBE; ++BBI) {
1467    Instruction *I = BBI;
1468    // Skip debug info.
1469    if (isa<DbgInfoIntrinsic>(I))
1470      continue;
1471
1472    // Only speculatively execution a single instruction (not counting the
1473    // terminator) for now.
1474    ++SpeculationCost;
1475    if (SpeculationCost > 1)
1476      return false;
1477
1478    // Don't hoist the instruction if it's unsafe or expensive.
1479    if (!isSafeToSpeculativelyExecute(I) &&
1480        !(HoistCondStores &&
1481          (SpeculatedStoreValue = isSafeToSpeculateStore(I, BB, ThenBB,
1482                                                         EndBB))))
1483      return false;
1484    if (!SpeculatedStoreValue &&
1485        ComputeSpeculationCost(I) > PHINodeFoldingThreshold)
1486      return false;
1487
1488    // Store the store speculation candidate.
1489    if (SpeculatedStoreValue)
1490      SpeculatedStore = cast<StoreInst>(I);
1491
1492    // Do not hoist the instruction if any of its operands are defined but not
1493    // used in BB. The transformation will prevent the operand from
1494    // being sunk into the use block.
1495    for (User::op_iterator i = I->op_begin(), e = I->op_end();
1496         i != e; ++i) {
1497      Instruction *OpI = dyn_cast<Instruction>(*i);
1498      if (!OpI || OpI->getParent() != BB ||
1499          OpI->mayHaveSideEffects())
1500        continue; // Not a candidate for sinking.
1501
1502      ++SinkCandidateUseCounts[OpI];
1503    }
1504  }
1505
1506  // Consider any sink candidates which are only used in CondBB as costs for
1507  // speculation. Note, while we iterate over a DenseMap here, we are summing
1508  // and so iteration order isn't significant.
1509  for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I =
1510           SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end();
1511       I != E; ++I)
1512    if (I->first->getNumUses() == I->second) {
1513      ++SpeculationCost;
1514      if (SpeculationCost > 1)
1515        return false;
1516    }
1517
1518  // Check that the PHI nodes can be converted to selects.
1519  bool HaveRewritablePHIs = false;
1520  for (BasicBlock::iterator I = EndBB->begin();
1521       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1522    Value *OrigV = PN->getIncomingValueForBlock(BB);
1523    Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
1524
1525    // Skip PHIs which are trivial.
1526    if (ThenV == OrigV)
1527      continue;
1528
1529    HaveRewritablePHIs = true;
1530    ConstantExpr *CE = dyn_cast<ConstantExpr>(ThenV);
1531    if (!CE)
1532      continue; // Known safe and cheap.
1533
1534    if (!isSafeToSpeculativelyExecute(CE))
1535      return false;
1536    if (ComputeSpeculationCost(CE) > PHINodeFoldingThreshold)
1537      return false;
1538
1539    // Account for the cost of an unfolded ConstantExpr which could end up
1540    // getting expanded into Instructions.
1541    // FIXME: This doesn't account for how many operations are combined in the
1542    // constant expression.
1543    ++SpeculationCost;
1544    if (SpeculationCost > 1)
1545      return false;
1546  }
1547
1548  // If there are no PHIs to process, bail early. This helps ensure idempotence
1549  // as well.
1550  if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
1551    return false;
1552
1553  // If we get here, we can hoist the instruction and if-convert.
1554  DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
1555
1556  // Insert a select of the value of the speculated store.
1557  if (SpeculatedStoreValue) {
1558    IRBuilder<true, NoFolder> Builder(BI);
1559    Value *TrueV = SpeculatedStore->getValueOperand();
1560    Value *FalseV = SpeculatedStoreValue;
1561    if (Invert)
1562      std::swap(TrueV, FalseV);
1563    Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() +
1564                                    "." + FalseV->getName());
1565    SpeculatedStore->setOperand(0, S);
1566  }
1567
1568  // Hoist the instructions.
1569  BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(),
1570                           llvm::prior(ThenBB->end()));
1571
1572  // Insert selects and rewrite the PHI operands.
1573  IRBuilder<true, NoFolder> Builder(BI);
1574  for (BasicBlock::iterator I = EndBB->begin();
1575       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1576    unsigned OrigI = PN->getBasicBlockIndex(BB);
1577    unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
1578    Value *OrigV = PN->getIncomingValue(OrigI);
1579    Value *ThenV = PN->getIncomingValue(ThenI);
1580
1581    // Skip PHIs which are trivial.
1582    if (OrigV == ThenV)
1583      continue;
1584
1585    // Create a select whose true value is the speculatively executed value and
1586    // false value is the preexisting value. Swap them if the branch
1587    // destinations were inverted.
1588    Value *TrueV = ThenV, *FalseV = OrigV;
1589    if (Invert)
1590      std::swap(TrueV, FalseV);
1591    Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV,
1592                                    TrueV->getName() + "." + FalseV->getName());
1593    PN->setIncomingValue(OrigI, V);
1594    PN->setIncomingValue(ThenI, V);
1595  }
1596
1597  ++NumSpeculations;
1598  return true;
1599}
1600
1601/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1602/// across this block.
1603static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1604  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1605  unsigned Size = 0;
1606
1607  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1608    if (isa<DbgInfoIntrinsic>(BBI))
1609      continue;
1610    if (Size > 10) return false;  // Don't clone large BB's.
1611    ++Size;
1612
1613    // We can only support instructions that do not define values that are
1614    // live outside of the current basic block.
1615    for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
1616         UI != E; ++UI) {
1617      Instruction *U = cast<Instruction>(*UI);
1618      if (U->getParent() != BB || isa<PHINode>(U)) return false;
1619    }
1620
1621    // Looks ok, continue checking.
1622  }
1623
1624  return true;
1625}
1626
1627/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1628/// that is defined in the same block as the branch and if any PHI entries are
1629/// constants, thread edges corresponding to that entry to be branches to their
1630/// ultimate destination.
1631static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *TD) {
1632  BasicBlock *BB = BI->getParent();
1633  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1634  // NOTE: we currently cannot transform this case if the PHI node is used
1635  // outside of the block.
1636  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1637    return false;
1638
1639  // Degenerate case of a single entry PHI.
1640  if (PN->getNumIncomingValues() == 1) {
1641    FoldSingleEntryPHINodes(PN->getParent());
1642    return true;
1643  }
1644
1645  // Now we know that this block has multiple preds and two succs.
1646  if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1647
1648  // Okay, this is a simple enough basic block.  See if any phi values are
1649  // constants.
1650  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1651    ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1652    if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue;
1653
1654    // Okay, we now know that all edges from PredBB should be revectored to
1655    // branch to RealDest.
1656    BasicBlock *PredBB = PN->getIncomingBlock(i);
1657    BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1658
1659    if (RealDest == BB) continue;  // Skip self loops.
1660    // Skip if the predecessor's terminator is an indirect branch.
1661    if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
1662
1663    // The dest block might have PHI nodes, other predecessors and other
1664    // difficult cases.  Instead of being smart about this, just insert a new
1665    // block that jumps to the destination block, effectively splitting
1666    // the edge we are about to create.
1667    BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1668                                            RealDest->getName()+".critedge",
1669                                            RealDest->getParent(), RealDest);
1670    BranchInst::Create(RealDest, EdgeBB);
1671
1672    // Update PHI nodes.
1673    AddPredecessorToBlock(RealDest, EdgeBB, BB);
1674
1675    // BB may have instructions that are being threaded over.  Clone these
1676    // instructions into EdgeBB.  We know that there will be no uses of the
1677    // cloned instructions outside of EdgeBB.
1678    BasicBlock::iterator InsertPt = EdgeBB->begin();
1679    DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
1680    for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1681      if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1682        TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1683        continue;
1684      }
1685      // Clone the instruction.
1686      Instruction *N = BBI->clone();
1687      if (BBI->hasName()) N->setName(BBI->getName()+".c");
1688
1689      // Update operands due to translation.
1690      for (User::op_iterator i = N->op_begin(), e = N->op_end();
1691           i != e; ++i) {
1692        DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1693        if (PI != TranslateMap.end())
1694          *i = PI->second;
1695      }
1696
1697      // Check for trivial simplification.
1698      if (Value *V = SimplifyInstruction(N, TD)) {
1699        TranslateMap[BBI] = V;
1700        delete N;   // Instruction folded away, don't need actual inst
1701      } else {
1702        // Insert the new instruction into its new home.
1703        EdgeBB->getInstList().insert(InsertPt, N);
1704        if (!BBI->use_empty())
1705          TranslateMap[BBI] = N;
1706      }
1707    }
1708
1709    // Loop over all of the edges from PredBB to BB, changing them to branch
1710    // to EdgeBB instead.
1711    TerminatorInst *PredBBTI = PredBB->getTerminator();
1712    for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1713      if (PredBBTI->getSuccessor(i) == BB) {
1714        BB->removePredecessor(PredBB);
1715        PredBBTI->setSuccessor(i, EdgeBB);
1716      }
1717
1718    // Recurse, simplifying any other constants.
1719    return FoldCondBranchOnPHI(BI, TD) | true;
1720  }
1721
1722  return false;
1723}
1724
1725/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1726/// PHI node, see if we can eliminate it.
1727static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *TD) {
1728  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1729  // statement", which has a very simple dominance structure.  Basically, we
1730  // are trying to find the condition that is being branched on, which
1731  // subsequently causes this merge to happen.  We really want control
1732  // dependence information for this check, but simplifycfg can't keep it up
1733  // to date, and this catches most of the cases we care about anyway.
1734  BasicBlock *BB = PN->getParent();
1735  BasicBlock *IfTrue, *IfFalse;
1736  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1737  if (!IfCond ||
1738      // Don't bother if the branch will be constant folded trivially.
1739      isa<ConstantInt>(IfCond))
1740    return false;
1741
1742  // Okay, we found that we can merge this two-entry phi node into a select.
1743  // Doing so would require us to fold *all* two entry phi nodes in this block.
1744  // At some point this becomes non-profitable (particularly if the target
1745  // doesn't support cmov's).  Only do this transformation if there are two or
1746  // fewer PHI nodes in this block.
1747  unsigned NumPhis = 0;
1748  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1749    if (NumPhis > 2)
1750      return false;
1751
1752  // Loop over the PHI's seeing if we can promote them all to select
1753  // instructions.  While we are at it, keep track of the instructions
1754  // that need to be moved to the dominating block.
1755  SmallPtrSet<Instruction*, 4> AggressiveInsts;
1756  unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1757           MaxCostVal1 = PHINodeFoldingThreshold;
1758
1759  for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1760    PHINode *PN = cast<PHINode>(II++);
1761    if (Value *V = SimplifyInstruction(PN, TD)) {
1762      PN->replaceAllUsesWith(V);
1763      PN->eraseFromParent();
1764      continue;
1765    }
1766
1767    if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1768                             MaxCostVal0) ||
1769        !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1770                             MaxCostVal1))
1771      return false;
1772  }
1773
1774  // If we folded the first phi, PN dangles at this point.  Refresh it.  If
1775  // we ran out of PHIs then we simplified them all.
1776  PN = dyn_cast<PHINode>(BB->begin());
1777  if (PN == 0) return true;
1778
1779  // Don't fold i1 branches on PHIs which contain binary operators.  These can
1780  // often be turned into switches and other things.
1781  if (PN->getType()->isIntegerTy(1) &&
1782      (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1783       isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1784       isa<BinaryOperator>(IfCond)))
1785    return false;
1786
1787  // If we all PHI nodes are promotable, check to make sure that all
1788  // instructions in the predecessor blocks can be promoted as well.  If
1789  // not, we won't be able to get rid of the control flow, so it's not
1790  // worth promoting to select instructions.
1791  BasicBlock *DomBlock = 0;
1792  BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1793  BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1794  if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1795    IfBlock1 = 0;
1796  } else {
1797    DomBlock = *pred_begin(IfBlock1);
1798    for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1799      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1800        // This is not an aggressive instruction that we can promote.
1801        // Because of this, we won't be able to get rid of the control
1802        // flow, so the xform is not worth it.
1803        return false;
1804      }
1805  }
1806
1807  if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1808    IfBlock2 = 0;
1809  } else {
1810    DomBlock = *pred_begin(IfBlock2);
1811    for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1812      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1813        // This is not an aggressive instruction that we can promote.
1814        // Because of this, we won't be able to get rid of the control
1815        // flow, so the xform is not worth it.
1816        return false;
1817      }
1818  }
1819
1820  DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1821               << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1822
1823  // If we can still promote the PHI nodes after this gauntlet of tests,
1824  // do all of the PHI's now.
1825  Instruction *InsertPt = DomBlock->getTerminator();
1826  IRBuilder<true, NoFolder> Builder(InsertPt);
1827
1828  // Move all 'aggressive' instructions, which are defined in the
1829  // conditional parts of the if's up to the dominating block.
1830  if (IfBlock1)
1831    DomBlock->getInstList().splice(InsertPt,
1832                                   IfBlock1->getInstList(), IfBlock1->begin(),
1833                                   IfBlock1->getTerminator());
1834  if (IfBlock2)
1835    DomBlock->getInstList().splice(InsertPt,
1836                                   IfBlock2->getInstList(), IfBlock2->begin(),
1837                                   IfBlock2->getTerminator());
1838
1839  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1840    // Change the PHI node into a select instruction.
1841    Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1842    Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1843
1844    SelectInst *NV =
1845      cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
1846    PN->replaceAllUsesWith(NV);
1847    NV->takeName(PN);
1848    PN->eraseFromParent();
1849  }
1850
1851  // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1852  // has been flattened.  Change DomBlock to jump directly to our new block to
1853  // avoid other simplifycfg's kicking in on the diamond.
1854  TerminatorInst *OldTI = DomBlock->getTerminator();
1855  Builder.SetInsertPoint(OldTI);
1856  Builder.CreateBr(BB);
1857  OldTI->eraseFromParent();
1858  return true;
1859}
1860
1861/// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1862/// to two returning blocks, try to merge them together into one return,
1863/// introducing a select if the return values disagree.
1864static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
1865                                           IRBuilder<> &Builder) {
1866  assert(BI->isConditional() && "Must be a conditional branch");
1867  BasicBlock *TrueSucc = BI->getSuccessor(0);
1868  BasicBlock *FalseSucc = BI->getSuccessor(1);
1869  ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1870  ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1871
1872  // Check to ensure both blocks are empty (just a return) or optionally empty
1873  // with PHI nodes.  If there are other instructions, merging would cause extra
1874  // computation on one path or the other.
1875  if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1876    return false;
1877  if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1878    return false;
1879
1880  Builder.SetInsertPoint(BI);
1881  // Okay, we found a branch that is going to two return nodes.  If
1882  // there is no return value for this function, just change the
1883  // branch into a return.
1884  if (FalseRet->getNumOperands() == 0) {
1885    TrueSucc->removePredecessor(BI->getParent());
1886    FalseSucc->removePredecessor(BI->getParent());
1887    Builder.CreateRetVoid();
1888    EraseTerminatorInstAndDCECond(BI);
1889    return true;
1890  }
1891
1892  // Otherwise, figure out what the true and false return values are
1893  // so we can insert a new select instruction.
1894  Value *TrueValue = TrueRet->getReturnValue();
1895  Value *FalseValue = FalseRet->getReturnValue();
1896
1897  // Unwrap any PHI nodes in the return blocks.
1898  if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1899    if (TVPN->getParent() == TrueSucc)
1900      TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1901  if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1902    if (FVPN->getParent() == FalseSucc)
1903      FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1904
1905  // In order for this transformation to be safe, we must be able to
1906  // unconditionally execute both operands to the return.  This is
1907  // normally the case, but we could have a potentially-trapping
1908  // constant expression that prevents this transformation from being
1909  // safe.
1910  if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1911    if (TCV->canTrap())
1912      return false;
1913  if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1914    if (FCV->canTrap())
1915      return false;
1916
1917  // Okay, we collected all the mapped values and checked them for sanity, and
1918  // defined to really do this transformation.  First, update the CFG.
1919  TrueSucc->removePredecessor(BI->getParent());
1920  FalseSucc->removePredecessor(BI->getParent());
1921
1922  // Insert select instructions where needed.
1923  Value *BrCond = BI->getCondition();
1924  if (TrueValue) {
1925    // Insert a select if the results differ.
1926    if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1927    } else if (isa<UndefValue>(TrueValue)) {
1928      TrueValue = FalseValue;
1929    } else {
1930      TrueValue = Builder.CreateSelect(BrCond, TrueValue,
1931                                       FalseValue, "retval");
1932    }
1933  }
1934
1935  Value *RI = !TrueValue ?
1936    Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
1937
1938  (void) RI;
1939
1940  DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1941               << "\n  " << *BI << "NewRet = " << *RI
1942               << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
1943
1944  EraseTerminatorInstAndDCECond(BI);
1945
1946  return true;
1947}
1948
1949/// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the
1950/// probabilities of the branch taking each edge. Fills in the two APInt
1951/// parameters and return true, or returns false if no or invalid metadata was
1952/// found.
1953static bool ExtractBranchMetadata(BranchInst *BI,
1954                                  uint64_t &ProbTrue, uint64_t &ProbFalse) {
1955  assert(BI->isConditional() &&
1956         "Looking for probabilities on unconditional branch?");
1957  MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
1958  if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
1959  ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1));
1960  ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2));
1961  if (!CITrue || !CIFalse) return false;
1962  ProbTrue = CITrue->getValue().getZExtValue();
1963  ProbFalse = CIFalse->getValue().getZExtValue();
1964  return true;
1965}
1966
1967/// checkCSEInPredecessor - Return true if the given instruction is available
1968/// in its predecessor block. If yes, the instruction will be removed.
1969///
1970static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
1971  if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
1972    return false;
1973  for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
1974    Instruction *PBI = &*I;
1975    // Check whether Inst and PBI generate the same value.
1976    if (Inst->isIdenticalTo(PBI)) {
1977      Inst->replaceAllUsesWith(PBI);
1978      Inst->eraseFromParent();
1979      return true;
1980    }
1981  }
1982  return false;
1983}
1984
1985/// FoldBranchToCommonDest - If this basic block is simple enough, and if a
1986/// predecessor branches to us and one of our successors, fold the block into
1987/// the predecessor and use logical operations to pick the right destination.
1988bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
1989  BasicBlock *BB = BI->getParent();
1990
1991  Instruction *Cond = 0;
1992  if (BI->isConditional())
1993    Cond = dyn_cast<Instruction>(BI->getCondition());
1994  else {
1995    // For unconditional branch, check for a simple CFG pattern, where
1996    // BB has a single predecessor and BB's successor is also its predecessor's
1997    // successor. If such pattern exisits, check for CSE between BB and its
1998    // predecessor.
1999    if (BasicBlock *PB = BB->getSinglePredecessor())
2000      if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2001        if (PBI->isConditional() &&
2002            (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2003             BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2004          for (BasicBlock::iterator I = BB->begin(), E = BB->end();
2005               I != E; ) {
2006            Instruction *Curr = I++;
2007            if (isa<CmpInst>(Curr)) {
2008              Cond = Curr;
2009              break;
2010            }
2011            // Quit if we can't remove this instruction.
2012            if (!checkCSEInPredecessor(Curr, PB))
2013              return false;
2014          }
2015        }
2016
2017    if (Cond == 0)
2018      return false;
2019  }
2020
2021  if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2022    Cond->getParent() != BB || !Cond->hasOneUse())
2023  return false;
2024
2025  // Only allow this if the condition is a simple instruction that can be
2026  // executed unconditionally.  It must be in the same block as the branch, and
2027  // must be at the front of the block.
2028  BasicBlock::iterator FrontIt = BB->front();
2029
2030  // Ignore dbg intrinsics.
2031  while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
2032
2033  // Allow a single instruction to be hoisted in addition to the compare
2034  // that feeds the branch.  We later ensure that any values that _it_ uses
2035  // were also live in the predecessor, so that we don't unnecessarily create
2036  // register pressure or inhibit out-of-order execution.
2037  Instruction *BonusInst = 0;
2038  if (&*FrontIt != Cond &&
2039      FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond &&
2040      isSafeToSpeculativelyExecute(FrontIt)) {
2041    BonusInst = &*FrontIt;
2042    ++FrontIt;
2043
2044    // Ignore dbg intrinsics.
2045    while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
2046  }
2047
2048  // Only a single bonus inst is allowed.
2049  if (&*FrontIt != Cond)
2050    return false;
2051
2052  // Make sure the instruction after the condition is the cond branch.
2053  BasicBlock::iterator CondIt = Cond; ++CondIt;
2054
2055  // Ingore dbg intrinsics.
2056  while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
2057
2058  if (&*CondIt != BI)
2059    return false;
2060
2061  // Cond is known to be a compare or binary operator.  Check to make sure that
2062  // neither operand is a potentially-trapping constant expression.
2063  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2064    if (CE->canTrap())
2065      return false;
2066  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2067    if (CE->canTrap())
2068      return false;
2069
2070  // Finally, don't infinitely unroll conditional loops.
2071  BasicBlock *TrueDest  = BI->getSuccessor(0);
2072  BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : 0;
2073  if (TrueDest == BB || FalseDest == BB)
2074    return false;
2075
2076  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2077    BasicBlock *PredBlock = *PI;
2078    BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2079
2080    // Check that we have two conditional branches.  If there is a PHI node in
2081    // the common successor, verify that the same value flows in from both
2082    // blocks.
2083    SmallVector<PHINode*, 4> PHIs;
2084    if (PBI == 0 || PBI->isUnconditional() ||
2085        (BI->isConditional() &&
2086         !SafeToMergeTerminators(BI, PBI)) ||
2087        (!BI->isConditional() &&
2088         !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2089      continue;
2090
2091    // Determine if the two branches share a common destination.
2092    Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2093    bool InvertPredCond = false;
2094
2095    if (BI->isConditional()) {
2096      if (PBI->getSuccessor(0) == TrueDest)
2097        Opc = Instruction::Or;
2098      else if (PBI->getSuccessor(1) == FalseDest)
2099        Opc = Instruction::And;
2100      else if (PBI->getSuccessor(0) == FalseDest)
2101        Opc = Instruction::And, InvertPredCond = true;
2102      else if (PBI->getSuccessor(1) == TrueDest)
2103        Opc = Instruction::Or, InvertPredCond = true;
2104      else
2105        continue;
2106    } else {
2107      if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2108        continue;
2109    }
2110
2111    // Ensure that any values used in the bonus instruction are also used
2112    // by the terminator of the predecessor.  This means that those values
2113    // must already have been resolved, so we won't be inhibiting the
2114    // out-of-order core by speculating them earlier.
2115    if (BonusInst) {
2116      // Collect the values used by the bonus inst
2117      SmallPtrSet<Value*, 4> UsedValues;
2118      for (Instruction::op_iterator OI = BonusInst->op_begin(),
2119           OE = BonusInst->op_end(); OI != OE; ++OI) {
2120        Value *V = *OI;
2121        if (!isa<Constant>(V))
2122          UsedValues.insert(V);
2123      }
2124
2125      SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
2126      Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
2127
2128      // Walk up to four levels back up the use-def chain of the predecessor's
2129      // terminator to see if all those values were used.  The choice of four
2130      // levels is arbitrary, to provide a compile-time-cost bound.
2131      while (!Worklist.empty()) {
2132        std::pair<Value*, unsigned> Pair = Worklist.back();
2133        Worklist.pop_back();
2134
2135        if (Pair.second >= 4) continue;
2136        UsedValues.erase(Pair.first);
2137        if (UsedValues.empty()) break;
2138
2139        if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
2140          for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
2141               OI != OE; ++OI)
2142            Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
2143        }
2144      }
2145
2146      if (!UsedValues.empty()) return false;
2147    }
2148
2149    DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2150    IRBuilder<> Builder(PBI);
2151
2152    // If we need to invert the condition in the pred block to match, do so now.
2153    if (InvertPredCond) {
2154      Value *NewCond = PBI->getCondition();
2155
2156      if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2157        CmpInst *CI = cast<CmpInst>(NewCond);
2158        CI->setPredicate(CI->getInversePredicate());
2159      } else {
2160        NewCond = Builder.CreateNot(NewCond,
2161                                    PBI->getCondition()->getName()+".not");
2162      }
2163
2164      PBI->setCondition(NewCond);
2165      PBI->swapSuccessors();
2166    }
2167
2168    // If we have a bonus inst, clone it into the predecessor block.
2169    Instruction *NewBonus = 0;
2170    if (BonusInst) {
2171      NewBonus = BonusInst->clone();
2172      PredBlock->getInstList().insert(PBI, NewBonus);
2173      NewBonus->takeName(BonusInst);
2174      BonusInst->setName(BonusInst->getName()+".old");
2175    }
2176
2177    // Clone Cond into the predecessor basic block, and or/and the
2178    // two conditions together.
2179    Instruction *New = Cond->clone();
2180    if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
2181    PredBlock->getInstList().insert(PBI, New);
2182    New->takeName(Cond);
2183    Cond->setName(New->getName()+".old");
2184
2185    if (BI->isConditional()) {
2186      Instruction *NewCond =
2187        cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
2188                                            New, "or.cond"));
2189      PBI->setCondition(NewCond);
2190
2191      uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2192      bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2193                                                  PredFalseWeight);
2194      bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2195                                                  SuccFalseWeight);
2196      SmallVector<uint64_t, 8> NewWeights;
2197
2198      if (PBI->getSuccessor(0) == BB) {
2199        if (PredHasWeights && SuccHasWeights) {
2200          // PBI: br i1 %x, BB, FalseDest
2201          // BI:  br i1 %y, TrueDest, FalseDest
2202          //TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2203          NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2204          //FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2205          //               TrueWeight for PBI * FalseWeight for BI.
2206          // We assume that total weights of a BranchInst can fit into 32 bits.
2207          // Therefore, we will not have overflow using 64-bit arithmetic.
2208          NewWeights.push_back(PredFalseWeight * (SuccFalseWeight +
2209               SuccTrueWeight) + PredTrueWeight * SuccFalseWeight);
2210        }
2211        AddPredecessorToBlock(TrueDest, PredBlock, BB);
2212        PBI->setSuccessor(0, TrueDest);
2213      }
2214      if (PBI->getSuccessor(1) == BB) {
2215        if (PredHasWeights && SuccHasWeights) {
2216          // PBI: br i1 %x, TrueDest, BB
2217          // BI:  br i1 %y, TrueDest, FalseDest
2218          //TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2219          //              FalseWeight for PBI * TrueWeight for BI.
2220          NewWeights.push_back(PredTrueWeight * (SuccFalseWeight +
2221              SuccTrueWeight) + PredFalseWeight * SuccTrueWeight);
2222          //FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2223          NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2224        }
2225        AddPredecessorToBlock(FalseDest, PredBlock, BB);
2226        PBI->setSuccessor(1, FalseDest);
2227      }
2228      if (NewWeights.size() == 2) {
2229        // Halve the weights if any of them cannot fit in an uint32_t
2230        FitWeights(NewWeights);
2231
2232        SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end());
2233        PBI->setMetadata(LLVMContext::MD_prof,
2234                         MDBuilder(BI->getContext()).
2235                         createBranchWeights(MDWeights));
2236      } else
2237        PBI->setMetadata(LLVMContext::MD_prof, NULL);
2238    } else {
2239      // Update PHI nodes in the common successors.
2240      for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2241        ConstantInt *PBI_C = cast<ConstantInt>(
2242          PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2243        assert(PBI_C->getType()->isIntegerTy(1));
2244        Instruction *MergedCond = 0;
2245        if (PBI->getSuccessor(0) == TrueDest) {
2246          // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2247          // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2248          //       is false: !PBI_Cond and BI_Value
2249          Instruction *NotCond =
2250            cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2251                                "not.cond"));
2252          MergedCond =
2253            cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2254                                NotCond, New,
2255                                "and.cond"));
2256          if (PBI_C->isOne())
2257            MergedCond =
2258              cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2259                                  PBI->getCondition(), MergedCond,
2260                                  "or.cond"));
2261        } else {
2262          // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2263          // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2264          //       is false: PBI_Cond and BI_Value
2265          MergedCond =
2266            cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2267                                PBI->getCondition(), New,
2268                                "and.cond"));
2269          if (PBI_C->isOne()) {
2270            Instruction *NotCond =
2271              cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2272                                  "not.cond"));
2273            MergedCond =
2274              cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2275                                  NotCond, MergedCond,
2276                                  "or.cond"));
2277          }
2278        }
2279        // Update PHI Node.
2280        PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2281                                  MergedCond);
2282      }
2283      // Change PBI from Conditional to Unconditional.
2284      BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2285      EraseTerminatorInstAndDCECond(PBI);
2286      PBI = New_PBI;
2287    }
2288
2289    // TODO: If BB is reachable from all paths through PredBlock, then we
2290    // could replace PBI's branch probabilities with BI's.
2291
2292    // Copy any debug value intrinsics into the end of PredBlock.
2293    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
2294      if (isa<DbgInfoIntrinsic>(*I))
2295        I->clone()->insertBefore(PBI);
2296
2297    return true;
2298  }
2299  return false;
2300}
2301
2302/// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
2303/// predecessor of another block, this function tries to simplify it.  We know
2304/// that PBI and BI are both conditional branches, and BI is in one of the
2305/// successor blocks of PBI - PBI branches to BI.
2306static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
2307  assert(PBI->isConditional() && BI->isConditional());
2308  BasicBlock *BB = BI->getParent();
2309
2310  // If this block ends with a branch instruction, and if there is a
2311  // predecessor that ends on a branch of the same condition, make
2312  // this conditional branch redundant.
2313  if (PBI->getCondition() == BI->getCondition() &&
2314      PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2315    // Okay, the outcome of this conditional branch is statically
2316    // knowable.  If this block had a single pred, handle specially.
2317    if (BB->getSinglePredecessor()) {
2318      // Turn this into a branch on constant.
2319      bool CondIsTrue = PBI->getSuccessor(0) == BB;
2320      BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2321                                        CondIsTrue));
2322      return true;  // Nuke the branch on constant.
2323    }
2324
2325    // Otherwise, if there are multiple predecessors, insert a PHI that merges
2326    // in the constant and simplify the block result.  Subsequent passes of
2327    // simplifycfg will thread the block.
2328    if (BlockIsSimpleEnoughToThreadThrough(BB)) {
2329      pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
2330      PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
2331                                       std::distance(PB, PE),
2332                                       BI->getCondition()->getName() + ".pr",
2333                                       BB->begin());
2334      // Okay, we're going to insert the PHI node.  Since PBI is not the only
2335      // predecessor, compute the PHI'd conditional value for all of the preds.
2336      // Any predecessor where the condition is not computable we keep symbolic.
2337      for (pred_iterator PI = PB; PI != PE; ++PI) {
2338        BasicBlock *P = *PI;
2339        if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
2340            PBI != BI && PBI->isConditional() &&
2341            PBI->getCondition() == BI->getCondition() &&
2342            PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2343          bool CondIsTrue = PBI->getSuccessor(0) == BB;
2344          NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2345                                              CondIsTrue), P);
2346        } else {
2347          NewPN->addIncoming(BI->getCondition(), P);
2348        }
2349      }
2350
2351      BI->setCondition(NewPN);
2352      return true;
2353    }
2354  }
2355
2356  // If this is a conditional branch in an empty block, and if any
2357  // predecessors is a conditional branch to one of our destinations,
2358  // fold the conditions into logical ops and one cond br.
2359  BasicBlock::iterator BBI = BB->begin();
2360  // Ignore dbg intrinsics.
2361  while (isa<DbgInfoIntrinsic>(BBI))
2362    ++BBI;
2363  if (&*BBI != BI)
2364    return false;
2365
2366
2367  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
2368    if (CE->canTrap())
2369      return false;
2370
2371  int PBIOp, BIOp;
2372  if (PBI->getSuccessor(0) == BI->getSuccessor(0))
2373    PBIOp = BIOp = 0;
2374  else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
2375    PBIOp = 0, BIOp = 1;
2376  else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
2377    PBIOp = 1, BIOp = 0;
2378  else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
2379    PBIOp = BIOp = 1;
2380  else
2381    return false;
2382
2383  // Check to make sure that the other destination of this branch
2384  // isn't BB itself.  If so, this is an infinite loop that will
2385  // keep getting unwound.
2386  if (PBI->getSuccessor(PBIOp) == BB)
2387    return false;
2388
2389  // Do not perform this transformation if it would require
2390  // insertion of a large number of select instructions. For targets
2391  // without predication/cmovs, this is a big pessimization.
2392  BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
2393
2394  unsigned NumPhis = 0;
2395  for (BasicBlock::iterator II = CommonDest->begin();
2396       isa<PHINode>(II); ++II, ++NumPhis)
2397    if (NumPhis > 2) // Disable this xform.
2398      return false;
2399
2400  // Finally, if everything is ok, fold the branches to logical ops.
2401  BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
2402
2403  DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
2404               << "AND: " << *BI->getParent());
2405
2406
2407  // If OtherDest *is* BB, then BB is a basic block with a single conditional
2408  // branch in it, where one edge (OtherDest) goes back to itself but the other
2409  // exits.  We don't *know* that the program avoids the infinite loop
2410  // (even though that seems likely).  If we do this xform naively, we'll end up
2411  // recursively unpeeling the loop.  Since we know that (after the xform is
2412  // done) that the block *is* infinite if reached, we just make it an obviously
2413  // infinite loop with no cond branch.
2414  if (OtherDest == BB) {
2415    // Insert it at the end of the function, because it's either code,
2416    // or it won't matter if it's hot. :)
2417    BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
2418                                                  "infloop", BB->getParent());
2419    BranchInst::Create(InfLoopBlock, InfLoopBlock);
2420    OtherDest = InfLoopBlock;
2421  }
2422
2423  DEBUG(dbgs() << *PBI->getParent()->getParent());
2424
2425  // BI may have other predecessors.  Because of this, we leave
2426  // it alone, but modify PBI.
2427
2428  // Make sure we get to CommonDest on True&True directions.
2429  Value *PBICond = PBI->getCondition();
2430  IRBuilder<true, NoFolder> Builder(PBI);
2431  if (PBIOp)
2432    PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
2433
2434  Value *BICond = BI->getCondition();
2435  if (BIOp)
2436    BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
2437
2438  // Merge the conditions.
2439  Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
2440
2441  // Modify PBI to branch on the new condition to the new dests.
2442  PBI->setCondition(Cond);
2443  PBI->setSuccessor(0, CommonDest);
2444  PBI->setSuccessor(1, OtherDest);
2445
2446  // Update branch weight for PBI.
2447  uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2448  bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2449                                              PredFalseWeight);
2450  bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2451                                              SuccFalseWeight);
2452  if (PredHasWeights && SuccHasWeights) {
2453    uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
2454    uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight;
2455    uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
2456    uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
2457    // The weight to CommonDest should be PredCommon * SuccTotal +
2458    //                                    PredOther * SuccCommon.
2459    // The weight to OtherDest should be PredOther * SuccOther.
2460    SmallVector<uint64_t, 2> NewWeights;
2461    NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) +
2462                         PredOther * SuccCommon);
2463    NewWeights.push_back(PredOther * SuccOther);
2464    // Halve the weights if any of them cannot fit in an uint32_t
2465    FitWeights(NewWeights);
2466
2467    SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end());
2468    PBI->setMetadata(LLVMContext::MD_prof,
2469                     MDBuilder(BI->getContext()).
2470                     createBranchWeights(MDWeights));
2471  }
2472
2473  // OtherDest may have phi nodes.  If so, add an entry from PBI's
2474  // block that are identical to the entries for BI's block.
2475  AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
2476
2477  // We know that the CommonDest already had an edge from PBI to
2478  // it.  If it has PHIs though, the PHIs may have different
2479  // entries for BB and PBI's BB.  If so, insert a select to make
2480  // them agree.
2481  PHINode *PN;
2482  for (BasicBlock::iterator II = CommonDest->begin();
2483       (PN = dyn_cast<PHINode>(II)); ++II) {
2484    Value *BIV = PN->getIncomingValueForBlock(BB);
2485    unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2486    Value *PBIV = PN->getIncomingValue(PBBIdx);
2487    if (BIV != PBIV) {
2488      // Insert a select in PBI to pick the right value.
2489      Value *NV = cast<SelectInst>
2490        (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
2491      PN->setIncomingValue(PBBIdx, NV);
2492    }
2493  }
2494
2495  DEBUG(dbgs() << "INTO: " << *PBI->getParent());
2496  DEBUG(dbgs() << *PBI->getParent()->getParent());
2497
2498  // This basic block is probably dead.  We know it has at least
2499  // one fewer predecessor.
2500  return true;
2501}
2502
2503// SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
2504// branch to TrueBB if Cond is true or to FalseBB if Cond is false.
2505// Takes care of updating the successors and removing the old terminator.
2506// Also makes sure not to introduce new successors by assuming that edges to
2507// non-successor TrueBBs and FalseBBs aren't reachable.
2508static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
2509                                       BasicBlock *TrueBB, BasicBlock *FalseBB,
2510                                       uint32_t TrueWeight,
2511                                       uint32_t FalseWeight){
2512  // Remove any superfluous successor edges from the CFG.
2513  // First, figure out which successors to preserve.
2514  // If TrueBB and FalseBB are equal, only try to preserve one copy of that
2515  // successor.
2516  BasicBlock *KeepEdge1 = TrueBB;
2517  BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0;
2518
2519  // Then remove the rest.
2520  for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
2521    BasicBlock *Succ = OldTerm->getSuccessor(I);
2522    // Make sure only to keep exactly one copy of each edge.
2523    if (Succ == KeepEdge1)
2524      KeepEdge1 = 0;
2525    else if (Succ == KeepEdge2)
2526      KeepEdge2 = 0;
2527    else
2528      Succ->removePredecessor(OldTerm->getParent());
2529  }
2530
2531  IRBuilder<> Builder(OldTerm);
2532  Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
2533
2534  // Insert an appropriate new terminator.
2535  if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) {
2536    if (TrueBB == FalseBB)
2537      // We were only looking for one successor, and it was present.
2538      // Create an unconditional branch to it.
2539      Builder.CreateBr(TrueBB);
2540    else {
2541      // We found both of the successors we were looking for.
2542      // Create a conditional branch sharing the condition of the select.
2543      BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
2544      if (TrueWeight != FalseWeight)
2545        NewBI->setMetadata(LLVMContext::MD_prof,
2546                           MDBuilder(OldTerm->getContext()).
2547                           createBranchWeights(TrueWeight, FalseWeight));
2548    }
2549  } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
2550    // Neither of the selected blocks were successors, so this
2551    // terminator must be unreachable.
2552    new UnreachableInst(OldTerm->getContext(), OldTerm);
2553  } else {
2554    // One of the selected values was a successor, but the other wasn't.
2555    // Insert an unconditional branch to the one that was found;
2556    // the edge to the one that wasn't must be unreachable.
2557    if (KeepEdge1 == 0)
2558      // Only TrueBB was found.
2559      Builder.CreateBr(TrueBB);
2560    else
2561      // Only FalseBB was found.
2562      Builder.CreateBr(FalseBB);
2563  }
2564
2565  EraseTerminatorInstAndDCECond(OldTerm);
2566  return true;
2567}
2568
2569// SimplifySwitchOnSelect - Replaces
2570//   (switch (select cond, X, Y)) on constant X, Y
2571// with a branch - conditional if X and Y lead to distinct BBs,
2572// unconditional otherwise.
2573static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
2574  // Check for constant integer values in the select.
2575  ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
2576  ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
2577  if (!TrueVal || !FalseVal)
2578    return false;
2579
2580  // Find the relevant condition and destinations.
2581  Value *Condition = Select->getCondition();
2582  BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
2583  BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
2584
2585  // Get weight for TrueBB and FalseBB.
2586  uint32_t TrueWeight = 0, FalseWeight = 0;
2587  SmallVector<uint64_t, 8> Weights;
2588  bool HasWeights = HasBranchWeights(SI);
2589  if (HasWeights) {
2590    GetBranchWeights(SI, Weights);
2591    if (Weights.size() == 1 + SI->getNumCases()) {
2592      TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal).
2593                                     getSuccessorIndex()];
2594      FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal).
2595                                      getSuccessorIndex()];
2596    }
2597  }
2598
2599  // Perform the actual simplification.
2600  return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB,
2601                                    TrueWeight, FalseWeight);
2602}
2603
2604// SimplifyIndirectBrOnSelect - Replaces
2605//   (indirectbr (select cond, blockaddress(@fn, BlockA),
2606//                             blockaddress(@fn, BlockB)))
2607// with
2608//   (br cond, BlockA, BlockB).
2609static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
2610  // Check that both operands of the select are block addresses.
2611  BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
2612  BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
2613  if (!TBA || !FBA)
2614    return false;
2615
2616  // Extract the actual blocks.
2617  BasicBlock *TrueBB = TBA->getBasicBlock();
2618  BasicBlock *FalseBB = FBA->getBasicBlock();
2619
2620  // Perform the actual simplification.
2621  return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB,
2622                                    0, 0);
2623}
2624
2625/// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
2626/// instruction (a seteq/setne with a constant) as the only instruction in a
2627/// block that ends with an uncond branch.  We are looking for a very specific
2628/// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
2629/// this case, we merge the first two "or's of icmp" into a switch, but then the
2630/// default value goes to an uncond block with a seteq in it, we get something
2631/// like:
2632///
2633///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
2634/// DEFAULT:
2635///   %tmp = icmp eq i8 %A, 92
2636///   br label %end
2637/// end:
2638///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
2639///
2640/// We prefer to split the edge to 'end' so that there is a true/false entry to
2641/// the PHI, merging the third icmp into the switch.
2642static bool TryToSimplifyUncondBranchWithICmpInIt(
2643    ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI,
2644    const DataLayout *TD) {
2645  BasicBlock *BB = ICI->getParent();
2646
2647  // If the block has any PHIs in it or the icmp has multiple uses, it is too
2648  // complex.
2649  if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
2650
2651  Value *V = ICI->getOperand(0);
2652  ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
2653
2654  // The pattern we're looking for is where our only predecessor is a switch on
2655  // 'V' and this block is the default case for the switch.  In this case we can
2656  // fold the compared value into the switch to simplify things.
2657  BasicBlock *Pred = BB->getSinglePredecessor();
2658  if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false;
2659
2660  SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
2661  if (SI->getCondition() != V)
2662    return false;
2663
2664  // If BB is reachable on a non-default case, then we simply know the value of
2665  // V in this block.  Substitute it and constant fold the icmp instruction
2666  // away.
2667  if (SI->getDefaultDest() != BB) {
2668    ConstantInt *VVal = SI->findCaseDest(BB);
2669    assert(VVal && "Should have a unique destination value");
2670    ICI->setOperand(0, VVal);
2671
2672    if (Value *V = SimplifyInstruction(ICI, TD)) {
2673      ICI->replaceAllUsesWith(V);
2674      ICI->eraseFromParent();
2675    }
2676    // BB is now empty, so it is likely to simplify away.
2677    return SimplifyCFG(BB, TTI, TD) | true;
2678  }
2679
2680  // Ok, the block is reachable from the default dest.  If the constant we're
2681  // comparing exists in one of the other edges, then we can constant fold ICI
2682  // and zap it.
2683  if (SI->findCaseValue(Cst) != SI->case_default()) {
2684    Value *V;
2685    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2686      V = ConstantInt::getFalse(BB->getContext());
2687    else
2688      V = ConstantInt::getTrue(BB->getContext());
2689
2690    ICI->replaceAllUsesWith(V);
2691    ICI->eraseFromParent();
2692    // BB is now empty, so it is likely to simplify away.
2693    return SimplifyCFG(BB, TTI, TD) | true;
2694  }
2695
2696  // The use of the icmp has to be in the 'end' block, by the only PHI node in
2697  // the block.
2698  BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
2699  PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back());
2700  if (PHIUse == 0 || PHIUse != &SuccBlock->front() ||
2701      isa<PHINode>(++BasicBlock::iterator(PHIUse)))
2702    return false;
2703
2704  // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
2705  // true in the PHI.
2706  Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
2707  Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
2708
2709  if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2710    std::swap(DefaultCst, NewCst);
2711
2712  // Replace ICI (which is used by the PHI for the default value) with true or
2713  // false depending on if it is EQ or NE.
2714  ICI->replaceAllUsesWith(DefaultCst);
2715  ICI->eraseFromParent();
2716
2717  // Okay, the switch goes to this block on a default value.  Add an edge from
2718  // the switch to the merge point on the compared value.
2719  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
2720                                         BB->getParent(), BB);
2721  SmallVector<uint64_t, 8> Weights;
2722  bool HasWeights = HasBranchWeights(SI);
2723  if (HasWeights) {
2724    GetBranchWeights(SI, Weights);
2725    if (Weights.size() == 1 + SI->getNumCases()) {
2726      // Split weight for default case to case for "Cst".
2727      Weights[0] = (Weights[0]+1) >> 1;
2728      Weights.push_back(Weights[0]);
2729
2730      SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
2731      SI->setMetadata(LLVMContext::MD_prof,
2732                      MDBuilder(SI->getContext()).
2733                      createBranchWeights(MDWeights));
2734    }
2735  }
2736  SI->addCase(Cst, NewBB);
2737
2738  // NewBB branches to the phi block, add the uncond branch and the phi entry.
2739  Builder.SetInsertPoint(NewBB);
2740  Builder.SetCurrentDebugLocation(SI->getDebugLoc());
2741  Builder.CreateBr(SuccBlock);
2742  PHIUse->addIncoming(NewCst, NewBB);
2743  return true;
2744}
2745
2746/// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
2747/// Check to see if it is branching on an or/and chain of icmp instructions, and
2748/// fold it into a switch instruction if so.
2749static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *TD,
2750                                      IRBuilder<> &Builder) {
2751  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
2752  if (Cond == 0) return false;
2753
2754
2755  // Change br (X == 0 | X == 1), T, F into a switch instruction.
2756  // If this is a bunch of seteq's or'd together, or if it's a bunch of
2757  // 'setne's and'ed together, collect them.
2758  Value *CompVal = 0;
2759  std::vector<ConstantInt*> Values;
2760  bool TrueWhenEqual = true;
2761  Value *ExtraCase = 0;
2762  unsigned UsedICmps = 0;
2763
2764  if (Cond->getOpcode() == Instruction::Or) {
2765    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true,
2766                                     UsedICmps);
2767  } else if (Cond->getOpcode() == Instruction::And) {
2768    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false,
2769                                     UsedICmps);
2770    TrueWhenEqual = false;
2771  }
2772
2773  // If we didn't have a multiply compared value, fail.
2774  if (CompVal == 0) return false;
2775
2776  // Avoid turning single icmps into a switch.
2777  if (UsedICmps <= 1)
2778    return false;
2779
2780  // There might be duplicate constants in the list, which the switch
2781  // instruction can't handle, remove them now.
2782  array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
2783  Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2784
2785  // If Extra was used, we require at least two switch values to do the
2786  // transformation.  A switch with one value is just an cond branch.
2787  if (ExtraCase && Values.size() < 2) return false;
2788
2789  // TODO: Preserve branch weight metadata, similarly to how
2790  // FoldValueComparisonIntoPredecessors preserves it.
2791
2792  // Figure out which block is which destination.
2793  BasicBlock *DefaultBB = BI->getSuccessor(1);
2794  BasicBlock *EdgeBB    = BI->getSuccessor(0);
2795  if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2796
2797  BasicBlock *BB = BI->getParent();
2798
2799  DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
2800               << " cases into SWITCH.  BB is:\n" << *BB);
2801
2802  // If there are any extra values that couldn't be folded into the switch
2803  // then we evaluate them with an explicit branch first.  Split the block
2804  // right before the condbr to handle it.
2805  if (ExtraCase) {
2806    BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
2807    // Remove the uncond branch added to the old block.
2808    TerminatorInst *OldTI = BB->getTerminator();
2809    Builder.SetInsertPoint(OldTI);
2810
2811    if (TrueWhenEqual)
2812      Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
2813    else
2814      Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
2815
2816    OldTI->eraseFromParent();
2817
2818    // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
2819    // for the edge we just added.
2820    AddPredecessorToBlock(EdgeBB, BB, NewBB);
2821
2822    DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
2823          << "\nEXTRABB = " << *BB);
2824    BB = NewBB;
2825  }
2826
2827  Builder.SetInsertPoint(BI);
2828  // Convert pointer to int before we switch.
2829  if (CompVal->getType()->isPointerTy()) {
2830    assert(TD && "Cannot switch on pointer without DataLayout");
2831    CompVal = Builder.CreatePtrToInt(CompVal,
2832                                     TD->getIntPtrType(CompVal->getContext()),
2833                                     "magicptr");
2834  }
2835
2836  // Create the new switch instruction now.
2837  SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
2838
2839  // Add all of the 'cases' to the switch instruction.
2840  for (unsigned i = 0, e = Values.size(); i != e; ++i)
2841    New->addCase(Values[i], EdgeBB);
2842
2843  // We added edges from PI to the EdgeBB.  As such, if there were any
2844  // PHI nodes in EdgeBB, they need entries to be added corresponding to
2845  // the number of edges added.
2846  for (BasicBlock::iterator BBI = EdgeBB->begin();
2847       isa<PHINode>(BBI); ++BBI) {
2848    PHINode *PN = cast<PHINode>(BBI);
2849    Value *InVal = PN->getIncomingValueForBlock(BB);
2850    for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2851      PN->addIncoming(InVal, BB);
2852  }
2853
2854  // Erase the old branch instruction.
2855  EraseTerminatorInstAndDCECond(BI);
2856
2857  DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
2858  return true;
2859}
2860
2861bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
2862  // If this is a trivial landing pad that just continues unwinding the caught
2863  // exception then zap the landing pad, turning its invokes into calls.
2864  BasicBlock *BB = RI->getParent();
2865  LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
2866  if (RI->getValue() != LPInst)
2867    // Not a landing pad, or the resume is not unwinding the exception that
2868    // caused control to branch here.
2869    return false;
2870
2871  // Check that there are no other instructions except for debug intrinsics.
2872  BasicBlock::iterator I = LPInst, E = RI;
2873  while (++I != E)
2874    if (!isa<DbgInfoIntrinsic>(I))
2875      return false;
2876
2877  // Turn all invokes that unwind here into calls and delete the basic block.
2878  bool InvokeRequiresTableEntry = false;
2879  bool Changed = false;
2880  for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
2881    InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
2882
2883    if (II->hasFnAttr(Attribute::UWTable)) {
2884      // Don't remove an `invoke' instruction if the ABI requires an entry into
2885      // the table.
2886      InvokeRequiresTableEntry = true;
2887      continue;
2888    }
2889
2890    SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
2891
2892    // Insert a call instruction before the invoke.
2893    CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
2894    Call->takeName(II);
2895    Call->setCallingConv(II->getCallingConv());
2896    Call->setAttributes(II->getAttributes());
2897    Call->setDebugLoc(II->getDebugLoc());
2898
2899    // Anything that used the value produced by the invoke instruction now uses
2900    // the value produced by the call instruction.  Note that we do this even
2901    // for void functions and calls with no uses so that the callgraph edge is
2902    // updated.
2903    II->replaceAllUsesWith(Call);
2904    BB->removePredecessor(II->getParent());
2905
2906    // Insert a branch to the normal destination right before the invoke.
2907    BranchInst::Create(II->getNormalDest(), II);
2908
2909    // Finally, delete the invoke instruction!
2910    II->eraseFromParent();
2911    Changed = true;
2912  }
2913
2914  if (!InvokeRequiresTableEntry)
2915    // The landingpad is now unreachable.  Zap it.
2916    BB->eraseFromParent();
2917
2918  return Changed;
2919}
2920
2921bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
2922  BasicBlock *BB = RI->getParent();
2923  if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2924
2925  // Find predecessors that end with branches.
2926  SmallVector<BasicBlock*, 8> UncondBranchPreds;
2927  SmallVector<BranchInst*, 8> CondBranchPreds;
2928  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2929    BasicBlock *P = *PI;
2930    TerminatorInst *PTI = P->getTerminator();
2931    if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
2932      if (BI->isUnconditional())
2933        UncondBranchPreds.push_back(P);
2934      else
2935        CondBranchPreds.push_back(BI);
2936    }
2937  }
2938
2939  // If we found some, do the transformation!
2940  if (!UncondBranchPreds.empty() && DupRet) {
2941    while (!UncondBranchPreds.empty()) {
2942      BasicBlock *Pred = UncondBranchPreds.pop_back_val();
2943      DEBUG(dbgs() << "FOLDING: " << *BB
2944            << "INTO UNCOND BRANCH PRED: " << *Pred);
2945      (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
2946    }
2947
2948    // If we eliminated all predecessors of the block, delete the block now.
2949    if (pred_begin(BB) == pred_end(BB))
2950      // We know there are no successors, so just nuke the block.
2951      BB->eraseFromParent();
2952
2953    return true;
2954  }
2955
2956  // Check out all of the conditional branches going to this return
2957  // instruction.  If any of them just select between returns, change the
2958  // branch itself into a select/return pair.
2959  while (!CondBranchPreds.empty()) {
2960    BranchInst *BI = CondBranchPreds.pop_back_val();
2961
2962    // Check to see if the non-BB successor is also a return block.
2963    if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
2964        isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
2965        SimplifyCondBranchToTwoReturns(BI, Builder))
2966      return true;
2967  }
2968  return false;
2969}
2970
2971bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
2972  BasicBlock *BB = UI->getParent();
2973
2974  bool Changed = false;
2975
2976  // If there are any instructions immediately before the unreachable that can
2977  // be removed, do so.
2978  while (UI != BB->begin()) {
2979    BasicBlock::iterator BBI = UI;
2980    --BBI;
2981    // Do not delete instructions that can have side effects which might cause
2982    // the unreachable to not be reachable; specifically, calls and volatile
2983    // operations may have this effect.
2984    if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
2985
2986    if (BBI->mayHaveSideEffects()) {
2987      if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
2988        if (SI->isVolatile())
2989          break;
2990      } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
2991        if (LI->isVolatile())
2992          break;
2993      } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
2994        if (RMWI->isVolatile())
2995          break;
2996      } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
2997        if (CXI->isVolatile())
2998          break;
2999      } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
3000                 !isa<LandingPadInst>(BBI)) {
3001        break;
3002      }
3003      // Note that deleting LandingPad's here is in fact okay, although it
3004      // involves a bit of subtle reasoning. If this inst is a LandingPad,
3005      // all the predecessors of this block will be the unwind edges of Invokes,
3006      // and we can therefore guarantee this block will be erased.
3007    }
3008
3009    // Delete this instruction (any uses are guaranteed to be dead)
3010    if (!BBI->use_empty())
3011      BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
3012    BBI->eraseFromParent();
3013    Changed = true;
3014  }
3015
3016  // If the unreachable instruction is the first in the block, take a gander
3017  // at all of the predecessors of this instruction, and simplify them.
3018  if (&BB->front() != UI) return Changed;
3019
3020  SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
3021  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
3022    TerminatorInst *TI = Preds[i]->getTerminator();
3023    IRBuilder<> Builder(TI);
3024    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3025      if (BI->isUnconditional()) {
3026        if (BI->getSuccessor(0) == BB) {
3027          new UnreachableInst(TI->getContext(), TI);
3028          TI->eraseFromParent();
3029          Changed = true;
3030        }
3031      } else {
3032        if (BI->getSuccessor(0) == BB) {
3033          Builder.CreateBr(BI->getSuccessor(1));
3034          EraseTerminatorInstAndDCECond(BI);
3035        } else if (BI->getSuccessor(1) == BB) {
3036          Builder.CreateBr(BI->getSuccessor(0));
3037          EraseTerminatorInstAndDCECond(BI);
3038          Changed = true;
3039        }
3040      }
3041    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3042      for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3043           i != e; ++i)
3044        if (i.getCaseSuccessor() == BB) {
3045          BB->removePredecessor(SI->getParent());
3046          SI->removeCase(i);
3047          --i; --e;
3048          Changed = true;
3049        }
3050      // If the default value is unreachable, figure out the most popular
3051      // destination and make it the default.
3052      if (SI->getDefaultDest() == BB) {
3053        std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
3054        for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3055             i != e; ++i) {
3056          std::pair<unsigned, unsigned> &entry =
3057              Popularity[i.getCaseSuccessor()];
3058          if (entry.first == 0) {
3059            entry.first = 1;
3060            entry.second = i.getCaseIndex();
3061          } else {
3062            entry.first++;
3063          }
3064        }
3065
3066        // Find the most popular block.
3067        unsigned MaxPop = 0;
3068        unsigned MaxIndex = 0;
3069        BasicBlock *MaxBlock = 0;
3070        for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
3071             I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
3072          if (I->second.first > MaxPop ||
3073              (I->second.first == MaxPop && MaxIndex > I->second.second)) {
3074            MaxPop = I->second.first;
3075            MaxIndex = I->second.second;
3076            MaxBlock = I->first;
3077          }
3078        }
3079        if (MaxBlock) {
3080          // Make this the new default, allowing us to delete any explicit
3081          // edges to it.
3082          SI->setDefaultDest(MaxBlock);
3083          Changed = true;
3084
3085          // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
3086          // it.
3087          if (isa<PHINode>(MaxBlock->begin()))
3088            for (unsigned i = 0; i != MaxPop-1; ++i)
3089              MaxBlock->removePredecessor(SI->getParent());
3090
3091          for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3092               i != e; ++i)
3093            if (i.getCaseSuccessor() == MaxBlock) {
3094              SI->removeCase(i);
3095              --i; --e;
3096            }
3097        }
3098      }
3099    } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
3100      if (II->getUnwindDest() == BB) {
3101        // Convert the invoke to a call instruction.  This would be a good
3102        // place to note that the call does not throw though.
3103        BranchInst *BI = Builder.CreateBr(II->getNormalDest());
3104        II->removeFromParent();   // Take out of symbol table
3105
3106        // Insert the call now...
3107        SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
3108        Builder.SetInsertPoint(BI);
3109        CallInst *CI = Builder.CreateCall(II->getCalledValue(),
3110                                          Args, II->getName());
3111        CI->setCallingConv(II->getCallingConv());
3112        CI->setAttributes(II->getAttributes());
3113        // If the invoke produced a value, the call does now instead.
3114        II->replaceAllUsesWith(CI);
3115        delete II;
3116        Changed = true;
3117      }
3118    }
3119  }
3120
3121  // If this block is now dead, remove it.
3122  if (pred_begin(BB) == pred_end(BB) &&
3123      BB != &BB->getParent()->getEntryBlock()) {
3124    // We know there are no successors, so just nuke the block.
3125    BB->eraseFromParent();
3126    return true;
3127  }
3128
3129  return Changed;
3130}
3131
3132/// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
3133/// integer range comparison into a sub, an icmp and a branch.
3134static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
3135  assert(SI->getNumCases() > 1 && "Degenerate switch?");
3136
3137  // Make sure all cases point to the same destination and gather the values.
3138  SmallVector<ConstantInt *, 16> Cases;
3139  SwitchInst::CaseIt I = SI->case_begin();
3140  Cases.push_back(I.getCaseValue());
3141  SwitchInst::CaseIt PrevI = I++;
3142  for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) {
3143    if (PrevI.getCaseSuccessor() != I.getCaseSuccessor())
3144      return false;
3145    Cases.push_back(I.getCaseValue());
3146  }
3147  assert(Cases.size() == SI->getNumCases() && "Not all cases gathered");
3148
3149  // Sort the case values, then check if they form a range we can transform.
3150  array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
3151  for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
3152    if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
3153      return false;
3154  }
3155
3156  Constant *Offset = ConstantExpr::getNeg(Cases.back());
3157  Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases());
3158
3159  Value *Sub = SI->getCondition();
3160  if (!Offset->isNullValue())
3161    Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
3162  Value *Cmp;
3163  // If NumCases overflowed, then all possible values jump to the successor.
3164  if (NumCases->isNullValue() && SI->getNumCases() != 0)
3165    Cmp = ConstantInt::getTrue(SI->getContext());
3166  else
3167    Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
3168  BranchInst *NewBI = Builder.CreateCondBr(
3169      Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest());
3170
3171  // Update weight for the newly-created conditional branch.
3172  SmallVector<uint64_t, 8> Weights;
3173  bool HasWeights = HasBranchWeights(SI);
3174  if (HasWeights) {
3175    GetBranchWeights(SI, Weights);
3176    if (Weights.size() == 1 + SI->getNumCases()) {
3177      // Combine all weights for the cases to be the true weight of NewBI.
3178      // We assume that the sum of all weights for a Terminator can fit into 32
3179      // bits.
3180      uint32_t NewTrueWeight = 0;
3181      for (unsigned I = 1, E = Weights.size(); I != E; ++I)
3182        NewTrueWeight += (uint32_t)Weights[I];
3183      NewBI->setMetadata(LLVMContext::MD_prof,
3184                         MDBuilder(SI->getContext()).
3185                         createBranchWeights(NewTrueWeight,
3186                                             (uint32_t)Weights[0]));
3187    }
3188  }
3189
3190  // Prune obsolete incoming values off the successor's PHI nodes.
3191  for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin();
3192       isa<PHINode>(BBI); ++BBI) {
3193    for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I)
3194      cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3195  }
3196  SI->eraseFromParent();
3197
3198  return true;
3199}
3200
3201/// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
3202/// and use it to remove dead cases.
3203static bool EliminateDeadSwitchCases(SwitchInst *SI) {
3204  Value *Cond = SI->getCondition();
3205  unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth();
3206  APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
3207  ComputeMaskedBits(Cond, KnownZero, KnownOne);
3208
3209  // Gather dead cases.
3210  SmallVector<ConstantInt*, 8> DeadCases;
3211  for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3212    if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
3213        (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
3214      DeadCases.push_back(I.getCaseValue());
3215      DEBUG(dbgs() << "SimplifyCFG: switch case '"
3216                   << I.getCaseValue() << "' is dead.\n");
3217    }
3218  }
3219
3220  SmallVector<uint64_t, 8> Weights;
3221  bool HasWeight = HasBranchWeights(SI);
3222  if (HasWeight) {
3223    GetBranchWeights(SI, Weights);
3224    HasWeight = (Weights.size() == 1 + SI->getNumCases());
3225  }
3226
3227  // Remove dead cases from the switch.
3228  for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
3229    SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
3230    assert(Case != SI->case_default() &&
3231           "Case was not found. Probably mistake in DeadCases forming.");
3232    if (HasWeight) {
3233      std::swap(Weights[Case.getCaseIndex()+1], Weights.back());
3234      Weights.pop_back();
3235    }
3236
3237    // Prune unused values from PHI nodes.
3238    Case.getCaseSuccessor()->removePredecessor(SI->getParent());
3239    SI->removeCase(Case);
3240  }
3241  if (HasWeight) {
3242    SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3243    SI->setMetadata(LLVMContext::MD_prof,
3244                    MDBuilder(SI->getParent()->getContext()).
3245                    createBranchWeights(MDWeights));
3246  }
3247
3248  return !DeadCases.empty();
3249}
3250
3251/// FindPHIForConditionForwarding - If BB would be eligible for simplification
3252/// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
3253/// by an unconditional branch), look at the phi node for BB in the successor
3254/// block and see if the incoming value is equal to CaseValue. If so, return
3255/// the phi node, and set PhiIndex to BB's index in the phi node.
3256static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
3257                                              BasicBlock *BB,
3258                                              int *PhiIndex) {
3259  if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
3260    return NULL; // BB must be empty to be a candidate for simplification.
3261  if (!BB->getSinglePredecessor())
3262    return NULL; // BB must be dominated by the switch.
3263
3264  BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
3265  if (!Branch || !Branch->isUnconditional())
3266    return NULL; // Terminator must be unconditional branch.
3267
3268  BasicBlock *Succ = Branch->getSuccessor(0);
3269
3270  BasicBlock::iterator I = Succ->begin();
3271  while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3272    int Idx = PHI->getBasicBlockIndex(BB);
3273    assert(Idx >= 0 && "PHI has no entry for predecessor?");
3274
3275    Value *InValue = PHI->getIncomingValue(Idx);
3276    if (InValue != CaseValue) continue;
3277
3278    *PhiIndex = Idx;
3279    return PHI;
3280  }
3281
3282  return NULL;
3283}
3284
3285/// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
3286/// instruction to a phi node dominated by the switch, if that would mean that
3287/// some of the destination blocks of the switch can be folded away.
3288/// Returns true if a change is made.
3289static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
3290  typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
3291  ForwardingNodesMap ForwardingNodes;
3292
3293  for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3294    ConstantInt *CaseValue = I.getCaseValue();
3295    BasicBlock *CaseDest = I.getCaseSuccessor();
3296
3297    int PhiIndex;
3298    PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
3299                                                 &PhiIndex);
3300    if (!PHI) continue;
3301
3302    ForwardingNodes[PHI].push_back(PhiIndex);
3303  }
3304
3305  bool Changed = false;
3306
3307  for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
3308       E = ForwardingNodes.end(); I != E; ++I) {
3309    PHINode *Phi = I->first;
3310    SmallVector<int,4> &Indexes = I->second;
3311
3312    if (Indexes.size() < 2) continue;
3313
3314    for (size_t I = 0, E = Indexes.size(); I != E; ++I)
3315      Phi->setIncomingValue(Indexes[I], SI->getCondition());
3316    Changed = true;
3317  }
3318
3319  return Changed;
3320}
3321
3322/// ValidLookupTableConstant - Return true if the backend will be able to handle
3323/// initializing an array of constants like C.
3324static bool ValidLookupTableConstant(Constant *C) {
3325  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
3326    return CE->isGEPWithNoNotionalOverIndexing();
3327
3328  return isa<ConstantFP>(C) ||
3329      isa<ConstantInt>(C) ||
3330      isa<ConstantPointerNull>(C) ||
3331      isa<GlobalValue>(C) ||
3332      isa<UndefValue>(C);
3333}
3334
3335/// LookupConstant - If V is a Constant, return it. Otherwise, try to look up
3336/// its constant value in ConstantPool, returning 0 if it's not there.
3337static Constant *LookupConstant(Value *V,
3338                         const SmallDenseMap<Value*, Constant*>& ConstantPool) {
3339  if (Constant *C = dyn_cast<Constant>(V))
3340    return C;
3341  return ConstantPool.lookup(V);
3342}
3343
3344/// ConstantFold - Try to fold instruction I into a constant. This works for
3345/// simple instructions such as binary operations where both operands are
3346/// constant or can be replaced by constants from the ConstantPool. Returns the
3347/// resulting constant on success, 0 otherwise.
3348static Constant *ConstantFold(Instruction *I,
3349                         const SmallDenseMap<Value*, Constant*>& ConstantPool) {
3350  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
3351    Constant *A = LookupConstant(BO->getOperand(0), ConstantPool);
3352    if (!A)
3353      return 0;
3354    Constant *B = LookupConstant(BO->getOperand(1), ConstantPool);
3355    if (!B)
3356      return 0;
3357    return ConstantExpr::get(BO->getOpcode(), A, B);
3358  }
3359
3360  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
3361    Constant *A = LookupConstant(I->getOperand(0), ConstantPool);
3362    if (!A)
3363      return 0;
3364    Constant *B = LookupConstant(I->getOperand(1), ConstantPool);
3365    if (!B)
3366      return 0;
3367    return ConstantExpr::getCompare(Cmp->getPredicate(), A, B);
3368  }
3369
3370  if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
3371    Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
3372    if (!A)
3373      return 0;
3374    if (A->isAllOnesValue())
3375      return LookupConstant(Select->getTrueValue(), ConstantPool);
3376    if (A->isNullValue())
3377      return LookupConstant(Select->getFalseValue(), ConstantPool);
3378    return 0;
3379  }
3380
3381  if (CastInst *Cast = dyn_cast<CastInst>(I)) {
3382    Constant *A = LookupConstant(I->getOperand(0), ConstantPool);
3383    if (!A)
3384      return 0;
3385    return ConstantExpr::getCast(Cast->getOpcode(), A, Cast->getDestTy());
3386  }
3387
3388  return 0;
3389}
3390
3391/// GetCaseResults - Try to determine the resulting constant values in phi nodes
3392/// at the common destination basic block, *CommonDest, for one of the case
3393/// destionations CaseDest corresponding to value CaseVal (0 for the default
3394/// case), of a switch instruction SI.
3395static bool GetCaseResults(SwitchInst *SI,
3396                           ConstantInt *CaseVal,
3397                           BasicBlock *CaseDest,
3398                           BasicBlock **CommonDest,
3399                           SmallVector<std::pair<PHINode*,Constant*>, 4> &Res) {
3400  // The block from which we enter the common destination.
3401  BasicBlock *Pred = SI->getParent();
3402
3403  // If CaseDest is empty except for some side-effect free instructions through
3404  // which we can constant-propagate the CaseVal, continue to its successor.
3405  SmallDenseMap<Value*, Constant*> ConstantPool;
3406  ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
3407  for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
3408       ++I) {
3409    if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
3410      // If the terminator is a simple branch, continue to the next block.
3411      if (T->getNumSuccessors() != 1)
3412        return false;
3413      Pred = CaseDest;
3414      CaseDest = T->getSuccessor(0);
3415    } else if (isa<DbgInfoIntrinsic>(I)) {
3416      // Skip debug intrinsic.
3417      continue;
3418    } else if (Constant *C = ConstantFold(I, ConstantPool)) {
3419      // Instruction is side-effect free and constant.
3420      ConstantPool.insert(std::make_pair(I, C));
3421    } else {
3422      break;
3423    }
3424  }
3425
3426  // If we did not have a CommonDest before, use the current one.
3427  if (!*CommonDest)
3428    *CommonDest = CaseDest;
3429  // If the destination isn't the common one, abort.
3430  if (CaseDest != *CommonDest)
3431    return false;
3432
3433  // Get the values for this case from phi nodes in the destination block.
3434  BasicBlock::iterator I = (*CommonDest)->begin();
3435  while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3436    int Idx = PHI->getBasicBlockIndex(Pred);
3437    if (Idx == -1)
3438      continue;
3439
3440    Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx),
3441                                        ConstantPool);
3442    if (!ConstVal)
3443      return false;
3444
3445    // Note: If the constant comes from constant-propagating the case value
3446    // through the CaseDest basic block, it will be safe to remove the
3447    // instructions in that block. They cannot be used (except in the phi nodes
3448    // we visit) outside CaseDest, because that block does not dominate its
3449    // successor. If it did, we would not be in this phi node.
3450
3451    // Be conservative about which kinds of constants we support.
3452    if (!ValidLookupTableConstant(ConstVal))
3453      return false;
3454
3455    Res.push_back(std::make_pair(PHI, ConstVal));
3456  }
3457
3458  return true;
3459}
3460
3461namespace {
3462  /// SwitchLookupTable - This class represents a lookup table that can be used
3463  /// to replace a switch.
3464  class SwitchLookupTable {
3465  public:
3466    /// SwitchLookupTable - Create a lookup table to use as a switch replacement
3467    /// with the contents of Values, using DefaultValue to fill any holes in the
3468    /// table.
3469    SwitchLookupTable(Module &M,
3470                      uint64_t TableSize,
3471                      ConstantInt *Offset,
3472               const SmallVector<std::pair<ConstantInt*, Constant*>, 4>& Values,
3473                      Constant *DefaultValue,
3474                      const DataLayout *TD);
3475
3476    /// BuildLookup - Build instructions with Builder to retrieve the value at
3477    /// the position given by Index in the lookup table.
3478    Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
3479
3480    /// WouldFitInRegister - Return true if a table with TableSize elements of
3481    /// type ElementType would fit in a target-legal register.
3482    static bool WouldFitInRegister(const DataLayout *TD,
3483                                   uint64_t TableSize,
3484                                   const Type *ElementType);
3485
3486  private:
3487    // Depending on the contents of the table, it can be represented in
3488    // different ways.
3489    enum {
3490      // For tables where each element contains the same value, we just have to
3491      // store that single value and return it for each lookup.
3492      SingleValueKind,
3493
3494      // For small tables with integer elements, we can pack them into a bitmap
3495      // that fits into a target-legal register. Values are retrieved by
3496      // shift and mask operations.
3497      BitMapKind,
3498
3499      // The table is stored as an array of values. Values are retrieved by load
3500      // instructions from the table.
3501      ArrayKind
3502    } Kind;
3503
3504    // For SingleValueKind, this is the single value.
3505    Constant *SingleValue;
3506
3507    // For BitMapKind, this is the bitmap.
3508    ConstantInt *BitMap;
3509    IntegerType *BitMapElementTy;
3510
3511    // For ArrayKind, this is the array.
3512    GlobalVariable *Array;
3513  };
3514}
3515
3516SwitchLookupTable::SwitchLookupTable(Module &M,
3517                                     uint64_t TableSize,
3518                                     ConstantInt *Offset,
3519               const SmallVector<std::pair<ConstantInt*, Constant*>, 4>& Values,
3520                                     Constant *DefaultValue,
3521                                     const DataLayout *TD)
3522    : SingleValue(0), BitMap(0), BitMapElementTy(0), Array(0) {
3523  assert(Values.size() && "Can't build lookup table without values!");
3524  assert(TableSize >= Values.size() && "Can't fit values in table!");
3525
3526  // If all values in the table are equal, this is that value.
3527  SingleValue = Values.begin()->second;
3528
3529  // Build up the table contents.
3530  SmallVector<Constant*, 64> TableContents(TableSize);
3531  for (size_t I = 0, E = Values.size(); I != E; ++I) {
3532    ConstantInt *CaseVal = Values[I].first;
3533    Constant *CaseRes = Values[I].second;
3534    assert(CaseRes->getType() == DefaultValue->getType());
3535
3536    uint64_t Idx = (CaseVal->getValue() - Offset->getValue())
3537                   .getLimitedValue();
3538    TableContents[Idx] = CaseRes;
3539
3540    if (CaseRes != SingleValue)
3541      SingleValue = 0;
3542  }
3543
3544  // Fill in any holes in the table with the default result.
3545  if (Values.size() < TableSize) {
3546    for (uint64_t I = 0; I < TableSize; ++I) {
3547      if (!TableContents[I])
3548        TableContents[I] = DefaultValue;
3549    }
3550
3551    if (DefaultValue != SingleValue)
3552      SingleValue = 0;
3553  }
3554
3555  // If each element in the table contains the same value, we only need to store
3556  // that single value.
3557  if (SingleValue) {
3558    Kind = SingleValueKind;
3559    return;
3560  }
3561
3562  // If the type is integer and the table fits in a register, build a bitmap.
3563  if (WouldFitInRegister(TD, TableSize, DefaultValue->getType())) {
3564    IntegerType *IT = cast<IntegerType>(DefaultValue->getType());
3565    APInt TableInt(TableSize * IT->getBitWidth(), 0);
3566    for (uint64_t I = TableSize; I > 0; --I) {
3567      TableInt <<= IT->getBitWidth();
3568      // Insert values into the bitmap. Undef values are set to zero.
3569      if (!isa<UndefValue>(TableContents[I - 1])) {
3570        ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
3571        TableInt |= Val->getValue().zext(TableInt.getBitWidth());
3572      }
3573    }
3574    BitMap = ConstantInt::get(M.getContext(), TableInt);
3575    BitMapElementTy = IT;
3576    Kind = BitMapKind;
3577    ++NumBitMaps;
3578    return;
3579  }
3580
3581  // Store the table in an array.
3582  ArrayType *ArrayTy = ArrayType::get(DefaultValue->getType(), TableSize);
3583  Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
3584
3585  Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true,
3586                             GlobalVariable::PrivateLinkage,
3587                             Initializer,
3588                             "switch.table");
3589  Array->setUnnamedAddr(true);
3590  Kind = ArrayKind;
3591}
3592
3593Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
3594  switch (Kind) {
3595    case SingleValueKind:
3596      return SingleValue;
3597    case BitMapKind: {
3598      // Type of the bitmap (e.g. i59).
3599      IntegerType *MapTy = BitMap->getType();
3600
3601      // Cast Index to the same type as the bitmap.
3602      // Note: The Index is <= the number of elements in the table, so
3603      // truncating it to the width of the bitmask is safe.
3604      Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
3605
3606      // Multiply the shift amount by the element width.
3607      ShiftAmt = Builder.CreateMul(ShiftAmt,
3608                      ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
3609                                   "switch.shiftamt");
3610
3611      // Shift down.
3612      Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt,
3613                                              "switch.downshift");
3614      // Mask off.
3615      return Builder.CreateTrunc(DownShifted, BitMapElementTy,
3616                                 "switch.masked");
3617    }
3618    case ArrayKind: {
3619      Value *GEPIndices[] = { Builder.getInt32(0), Index };
3620      Value *GEP = Builder.CreateInBoundsGEP(Array, GEPIndices,
3621                                             "switch.gep");
3622      return Builder.CreateLoad(GEP, "switch.load");
3623    }
3624  }
3625  llvm_unreachable("Unknown lookup table kind!");
3626}
3627
3628bool SwitchLookupTable::WouldFitInRegister(const DataLayout *TD,
3629                                           uint64_t TableSize,
3630                                           const Type *ElementType) {
3631  if (!TD)
3632    return false;
3633  const IntegerType *IT = dyn_cast<IntegerType>(ElementType);
3634  if (!IT)
3635    return false;
3636  // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
3637  // are <= 15, we could try to narrow the type.
3638
3639  // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
3640  if (TableSize >= UINT_MAX/IT->getBitWidth())
3641    return false;
3642  return TD->fitsInLegalInteger(TableSize * IT->getBitWidth());
3643}
3644
3645/// ShouldBuildLookupTable - Determine whether a lookup table should be built
3646/// for this switch, based on the number of caes, size of the table and the
3647/// types of the results.
3648static bool ShouldBuildLookupTable(SwitchInst *SI,
3649                                   uint64_t TableSize,
3650                                   const TargetTransformInfo &TTI,
3651                                   const DataLayout *TD,
3652                            const SmallDenseMap<PHINode*, Type*>& ResultTypes) {
3653  if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
3654    return false; // TableSize overflowed, or mul below might overflow.
3655
3656  bool AllTablesFitInRegister = true;
3657  bool HasIllegalType = false;
3658  for (SmallDenseMap<PHINode*, Type*>::const_iterator I = ResultTypes.begin(),
3659       E = ResultTypes.end(); I != E; ++I) {
3660    Type *Ty = I->second;
3661
3662    // Saturate this flag to true.
3663    HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
3664
3665    // Saturate this flag to false.
3666    AllTablesFitInRegister = AllTablesFitInRegister &&
3667      SwitchLookupTable::WouldFitInRegister(TD, TableSize, Ty);
3668
3669    // If both flags saturate, we're done. NOTE: This *only* works with
3670    // saturating flags, and all flags have to saturate first due to the
3671    // non-deterministic behavior of iterating over a dense map.
3672    if (HasIllegalType && !AllTablesFitInRegister)
3673      break;
3674  }
3675
3676  // If each table would fit in a register, we should build it anyway.
3677  if (AllTablesFitInRegister)
3678    return true;
3679
3680  // Don't build a table that doesn't fit in-register if it has illegal types.
3681  if (HasIllegalType)
3682    return false;
3683
3684  // The table density should be at least 40%. This is the same criterion as for
3685  // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
3686  // FIXME: Find the best cut-off.
3687  return SI->getNumCases() * 10 >= TableSize * 4;
3688}
3689
3690/// SwitchToLookupTable - If the switch is only used to initialize one or more
3691/// phi nodes in a common successor block with different constant values,
3692/// replace the switch with lookup tables.
3693static bool SwitchToLookupTable(SwitchInst *SI,
3694                                IRBuilder<> &Builder,
3695                                const TargetTransformInfo &TTI,
3696                                const DataLayout* TD) {
3697  assert(SI->getNumCases() > 1 && "Degenerate switch?");
3698
3699  // Only build lookup table when we have a target that supports it.
3700  if (!TTI.shouldBuildLookupTables())
3701    return false;
3702
3703  // FIXME: If the switch is too sparse for a lookup table, perhaps we could
3704  // split off a dense part and build a lookup table for that.
3705
3706  // FIXME: This creates arrays of GEPs to constant strings, which means each
3707  // GEP needs a runtime relocation in PIC code. We should just build one big
3708  // string and lookup indices into that.
3709
3710  // Ignore the switch if the number of cases is too small.
3711  // This is similar to the check when building jump tables in
3712  // SelectionDAGBuilder::handleJTSwitchCase.
3713  // FIXME: Determine the best cut-off.
3714  if (SI->getNumCases() < 4)
3715    return false;
3716
3717  // Figure out the corresponding result for each case value and phi node in the
3718  // common destination, as well as the the min and max case values.
3719  assert(SI->case_begin() != SI->case_end());
3720  SwitchInst::CaseIt CI = SI->case_begin();
3721  ConstantInt *MinCaseVal = CI.getCaseValue();
3722  ConstantInt *MaxCaseVal = CI.getCaseValue();
3723
3724  BasicBlock *CommonDest = 0;
3725  typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy;
3726  SmallDenseMap<PHINode*, ResultListTy> ResultLists;
3727  SmallDenseMap<PHINode*, Constant*> DefaultResults;
3728  SmallDenseMap<PHINode*, Type*> ResultTypes;
3729  SmallVector<PHINode*, 4> PHIs;
3730
3731  for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
3732    ConstantInt *CaseVal = CI.getCaseValue();
3733    if (CaseVal->getValue().slt(MinCaseVal->getValue()))
3734      MinCaseVal = CaseVal;
3735    if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
3736      MaxCaseVal = CaseVal;
3737
3738    // Resulting value at phi nodes for this case value.
3739    typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy;
3740    ResultsTy Results;
3741    if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
3742                        Results))
3743      return false;
3744
3745    // Append the result from this case to the list for each phi.
3746    for (ResultsTy::iterator I = Results.begin(), E = Results.end(); I!=E; ++I) {
3747      if (!ResultLists.count(I->first))
3748        PHIs.push_back(I->first);
3749      ResultLists[I->first].push_back(std::make_pair(CaseVal, I->second));
3750    }
3751  }
3752
3753  // Get the resulting values for the default case.
3754  SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
3755  if (!GetCaseResults(SI, 0, SI->getDefaultDest(), &CommonDest,
3756                      DefaultResultsList))
3757    return false;
3758  for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) {
3759    PHINode *PHI = DefaultResultsList[I].first;
3760    Constant *Result = DefaultResultsList[I].second;
3761    DefaultResults[PHI] = Result;
3762    ResultTypes[PHI] = Result->getType();
3763  }
3764
3765  APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
3766  uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
3767  if (!ShouldBuildLookupTable(SI, TableSize, TTI, TD, ResultTypes))
3768    return false;
3769
3770  // Create the BB that does the lookups.
3771  Module &Mod = *CommonDest->getParent()->getParent();
3772  BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(),
3773                                            "switch.lookup",
3774                                            CommonDest->getParent(),
3775                                            CommonDest);
3776
3777  // Check whether the condition value is within the case range, and branch to
3778  // the new BB.
3779  Builder.SetInsertPoint(SI);
3780  Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
3781                                        "switch.tableidx");
3782  Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get(
3783      MinCaseVal->getType(), TableSize));
3784  Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
3785
3786  // Populate the BB that does the lookups.
3787  Builder.SetInsertPoint(LookupBB);
3788  bool ReturnedEarly = false;
3789  for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
3790    PHINode *PHI = PHIs[I];
3791
3792    SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultLists[PHI],
3793                            DefaultResults[PHI], TD);
3794
3795    Value *Result = Table.BuildLookup(TableIndex, Builder);
3796
3797    // If the result is used to return immediately from the function, we want to
3798    // do that right here.
3799    if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->use_begin()) &&
3800        *PHI->use_begin() == CommonDest->getFirstNonPHIOrDbg()) {
3801      Builder.CreateRet(Result);
3802      ReturnedEarly = true;
3803      break;
3804    }
3805
3806    PHI->addIncoming(Result, LookupBB);
3807  }
3808
3809  if (!ReturnedEarly)
3810    Builder.CreateBr(CommonDest);
3811
3812  // Remove the switch.
3813  for (unsigned i = 0; i < SI->getNumSuccessors(); ++i) {
3814    BasicBlock *Succ = SI->getSuccessor(i);
3815    if (Succ == SI->getDefaultDest()) continue;
3816    Succ->removePredecessor(SI->getParent());
3817  }
3818  SI->eraseFromParent();
3819
3820  ++NumLookupTables;
3821  return true;
3822}
3823
3824bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
3825  BasicBlock *BB = SI->getParent();
3826
3827  if (isValueEqualityComparison(SI)) {
3828    // If we only have one predecessor, and if it is a branch on this value,
3829    // see if that predecessor totally determines the outcome of this switch.
3830    if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
3831      if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
3832        return SimplifyCFG(BB, TTI, TD) | true;
3833
3834    Value *Cond = SI->getCondition();
3835    if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
3836      if (SimplifySwitchOnSelect(SI, Select))
3837        return SimplifyCFG(BB, TTI, TD) | true;
3838
3839    // If the block only contains the switch, see if we can fold the block
3840    // away into any preds.
3841    BasicBlock::iterator BBI = BB->begin();
3842    // Ignore dbg intrinsics.
3843    while (isa<DbgInfoIntrinsic>(BBI))
3844      ++BBI;
3845    if (SI == &*BBI)
3846      if (FoldValueComparisonIntoPredecessors(SI, Builder))
3847        return SimplifyCFG(BB, TTI, TD) | true;
3848  }
3849
3850  // Try to transform the switch into an icmp and a branch.
3851  if (TurnSwitchRangeIntoICmp(SI, Builder))
3852    return SimplifyCFG(BB, TTI, TD) | true;
3853
3854  // Remove unreachable cases.
3855  if (EliminateDeadSwitchCases(SI))
3856    return SimplifyCFG(BB, TTI, TD) | true;
3857
3858  if (ForwardSwitchConditionToPHI(SI))
3859    return SimplifyCFG(BB, TTI, TD) | true;
3860
3861  if (SwitchToLookupTable(SI, Builder, TTI, TD))
3862    return SimplifyCFG(BB, TTI, TD) | true;
3863
3864  return false;
3865}
3866
3867bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
3868  BasicBlock *BB = IBI->getParent();
3869  bool Changed = false;
3870
3871  // Eliminate redundant destinations.
3872  SmallPtrSet<Value *, 8> Succs;
3873  for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
3874    BasicBlock *Dest = IBI->getDestination(i);
3875    if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
3876      Dest->removePredecessor(BB);
3877      IBI->removeDestination(i);
3878      --i; --e;
3879      Changed = true;
3880    }
3881  }
3882
3883  if (IBI->getNumDestinations() == 0) {
3884    // If the indirectbr has no successors, change it to unreachable.
3885    new UnreachableInst(IBI->getContext(), IBI);
3886    EraseTerminatorInstAndDCECond(IBI);
3887    return true;
3888  }
3889
3890  if (IBI->getNumDestinations() == 1) {
3891    // If the indirectbr has one successor, change it to a direct branch.
3892    BranchInst::Create(IBI->getDestination(0), IBI);
3893    EraseTerminatorInstAndDCECond(IBI);
3894    return true;
3895  }
3896
3897  if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
3898    if (SimplifyIndirectBrOnSelect(IBI, SI))
3899      return SimplifyCFG(BB, TTI, TD) | true;
3900  }
3901  return Changed;
3902}
3903
3904bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
3905  BasicBlock *BB = BI->getParent();
3906
3907  if (SinkCommon && SinkThenElseCodeToEnd(BI))
3908    return true;
3909
3910  // If the Terminator is the only non-phi instruction, simplify the block.
3911  BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime();
3912  if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
3913      TryToSimplifyUncondBranchFromEmptyBlock(BB))
3914    return true;
3915
3916  // If the only instruction in the block is a seteq/setne comparison
3917  // against a constant, try to simplify the block.
3918  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
3919    if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
3920      for (++I; isa<DbgInfoIntrinsic>(I); ++I)
3921        ;
3922      if (I->isTerminator() &&
3923          TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI, TD))
3924        return true;
3925    }
3926
3927  // If this basic block is ONLY a compare and a branch, and if a predecessor
3928  // branches to us and our successor, fold the comparison into the
3929  // predecessor and use logical operations to update the incoming value
3930  // for PHI nodes in common successor.
3931  if (FoldBranchToCommonDest(BI))
3932    return SimplifyCFG(BB, TTI, TD) | true;
3933  return false;
3934}
3935
3936
3937bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
3938  BasicBlock *BB = BI->getParent();
3939
3940  // Conditional branch
3941  if (isValueEqualityComparison(BI)) {
3942    // If we only have one predecessor, and if it is a branch on this value,
3943    // see if that predecessor totally determines the outcome of this
3944    // switch.
3945    if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
3946      if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
3947        return SimplifyCFG(BB, TTI, TD) | true;
3948
3949    // This block must be empty, except for the setcond inst, if it exists.
3950    // Ignore dbg intrinsics.
3951    BasicBlock::iterator I = BB->begin();
3952    // Ignore dbg intrinsics.
3953    while (isa<DbgInfoIntrinsic>(I))
3954      ++I;
3955    if (&*I == BI) {
3956      if (FoldValueComparisonIntoPredecessors(BI, Builder))
3957        return SimplifyCFG(BB, TTI, TD) | true;
3958    } else if (&*I == cast<Instruction>(BI->getCondition())){
3959      ++I;
3960      // Ignore dbg intrinsics.
3961      while (isa<DbgInfoIntrinsic>(I))
3962        ++I;
3963      if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
3964        return SimplifyCFG(BB, TTI, TD) | true;
3965    }
3966  }
3967
3968  // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
3969  if (SimplifyBranchOnICmpChain(BI, TD, Builder))
3970    return true;
3971
3972  // If this basic block is ONLY a compare and a branch, and if a predecessor
3973  // branches to us and one of our successors, fold the comparison into the
3974  // predecessor and use logical operations to pick the right destination.
3975  if (FoldBranchToCommonDest(BI))
3976    return SimplifyCFG(BB, TTI, TD) | true;
3977
3978  // We have a conditional branch to two blocks that are only reachable
3979  // from BI.  We know that the condbr dominates the two blocks, so see if
3980  // there is any identical code in the "then" and "else" blocks.  If so, we
3981  // can hoist it up to the branching block.
3982  if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
3983    if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
3984      if (HoistThenElseCodeToIf(BI))
3985        return SimplifyCFG(BB, TTI, TD) | true;
3986    } else {
3987      // If Successor #1 has multiple preds, we may be able to conditionally
3988      // execute Successor #0 if it branches to successor #1.
3989      TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
3990      if (Succ0TI->getNumSuccessors() == 1 &&
3991          Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
3992        if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
3993          return SimplifyCFG(BB, TTI, TD) | true;
3994    }
3995  } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
3996    // If Successor #0 has multiple preds, we may be able to conditionally
3997    // execute Successor #1 if it branches to successor #0.
3998    TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
3999    if (Succ1TI->getNumSuccessors() == 1 &&
4000        Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
4001      if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
4002        return SimplifyCFG(BB, TTI, TD) | true;
4003  }
4004
4005  // If this is a branch on a phi node in the current block, thread control
4006  // through this block if any PHI node entries are constants.
4007  if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
4008    if (PN->getParent() == BI->getParent())
4009      if (FoldCondBranchOnPHI(BI, TD))
4010        return SimplifyCFG(BB, TTI, TD) | true;
4011
4012  // Scan predecessor blocks for conditional branches.
4013  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
4014    if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
4015      if (PBI != BI && PBI->isConditional())
4016        if (SimplifyCondBranchToCondBranch(PBI, BI))
4017          return SimplifyCFG(BB, TTI, TD) | true;
4018
4019  return false;
4020}
4021
4022/// Check if passing a value to an instruction will cause undefined behavior.
4023static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
4024  Constant *C = dyn_cast<Constant>(V);
4025  if (!C)
4026    return false;
4027
4028  if (I->use_empty())
4029    return false;
4030
4031  if (C->isNullValue()) {
4032    // Only look at the first use, avoid hurting compile time with long uselists
4033    User *Use = *I->use_begin();
4034
4035    // Now make sure that there are no instructions in between that can alter
4036    // control flow (eg. calls)
4037    for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
4038      if (i == I->getParent()->end() || i->mayHaveSideEffects())
4039        return false;
4040
4041    // Look through GEPs. A load from a GEP derived from NULL is still undefined
4042    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
4043      if (GEP->getPointerOperand() == I)
4044        return passingValueIsAlwaysUndefined(V, GEP);
4045
4046    // Look through bitcasts.
4047    if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
4048      return passingValueIsAlwaysUndefined(V, BC);
4049
4050    // Load from null is undefined.
4051    if (LoadInst *LI = dyn_cast<LoadInst>(Use))
4052      if (!LI->isVolatile())
4053        return LI->getPointerAddressSpace() == 0;
4054
4055    // Store to null is undefined.
4056    if (StoreInst *SI = dyn_cast<StoreInst>(Use))
4057      if (!SI->isVolatile())
4058        return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
4059  }
4060  return false;
4061}
4062
4063/// If BB has an incoming value that will always trigger undefined behavior
4064/// (eg. null pointer dereference), remove the branch leading here.
4065static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
4066  for (BasicBlock::iterator i = BB->begin();
4067       PHINode *PHI = dyn_cast<PHINode>(i); ++i)
4068    for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
4069      if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
4070        TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
4071        IRBuilder<> Builder(T);
4072        if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
4073          BB->removePredecessor(PHI->getIncomingBlock(i));
4074          // Turn uncoditional branches into unreachables and remove the dead
4075          // destination from conditional branches.
4076          if (BI->isUnconditional())
4077            Builder.CreateUnreachable();
4078          else
4079            Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
4080                                                         BI->getSuccessor(0));
4081          BI->eraseFromParent();
4082          return true;
4083        }
4084        // TODO: SwitchInst.
4085      }
4086
4087  return false;
4088}
4089
4090bool SimplifyCFGOpt::run(BasicBlock *BB) {
4091  bool Changed = false;
4092
4093  assert(BB && BB->getParent() && "Block not embedded in function!");
4094  assert(BB->getTerminator() && "Degenerate basic block encountered!");
4095
4096  // Remove basic blocks that have no predecessors (except the entry block)...
4097  // or that just have themself as a predecessor.  These are unreachable.
4098  if ((pred_begin(BB) == pred_end(BB) &&
4099       BB != &BB->getParent()->getEntryBlock()) ||
4100      BB->getSinglePredecessor() == BB) {
4101    DEBUG(dbgs() << "Removing BB: \n" << *BB);
4102    DeleteDeadBlock(BB);
4103    return true;
4104  }
4105
4106  // Check to see if we can constant propagate this terminator instruction
4107  // away...
4108  Changed |= ConstantFoldTerminator(BB, true);
4109
4110  // Check for and eliminate duplicate PHI nodes in this block.
4111  Changed |= EliminateDuplicatePHINodes(BB);
4112
4113  // Check for and remove branches that will always cause undefined behavior.
4114  Changed |= removeUndefIntroducingPredecessor(BB);
4115
4116  // Merge basic blocks into their predecessor if there is only one distinct
4117  // pred, and if there is only one distinct successor of the predecessor, and
4118  // if there are no PHI nodes.
4119  //
4120  if (MergeBlockIntoPredecessor(BB))
4121    return true;
4122
4123  IRBuilder<> Builder(BB);
4124
4125  // If there is a trivial two-entry PHI node in this basic block, and we can
4126  // eliminate it, do so now.
4127  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
4128    if (PN->getNumIncomingValues() == 2)
4129      Changed |= FoldTwoEntryPHINode(PN, TD);
4130
4131  Builder.SetInsertPoint(BB->getTerminator());
4132  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
4133    if (BI->isUnconditional()) {
4134      if (SimplifyUncondBranch(BI, Builder)) return true;
4135    } else {
4136      if (SimplifyCondBranch(BI, Builder)) return true;
4137    }
4138  } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
4139    if (SimplifyReturn(RI, Builder)) return true;
4140  } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
4141    if (SimplifyResume(RI, Builder)) return true;
4142  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
4143    if (SimplifySwitch(SI, Builder)) return true;
4144  } else if (UnreachableInst *UI =
4145               dyn_cast<UnreachableInst>(BB->getTerminator())) {
4146    if (SimplifyUnreachable(UI)) return true;
4147  } else if (IndirectBrInst *IBI =
4148               dyn_cast<IndirectBrInst>(BB->getTerminator())) {
4149    if (SimplifyIndirectBr(IBI)) return true;
4150  }
4151
4152  return Changed;
4153}
4154
4155/// SimplifyCFG - This function is used to do simplification of a CFG.  For
4156/// example, it adjusts branches to branches to eliminate the extra hop, it
4157/// eliminates unreachable basic blocks, and does other "peephole" optimization
4158/// of the CFG.  It returns true if a modification was made.
4159///
4160bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
4161                       const DataLayout *TD) {
4162  return SimplifyCFGOpt(TTI, TD).run(BB);
4163}
4164