1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86RegisterInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/SelectionDAGISel.h"
28#include "llvm/IR/Instructions.h"
29#include "llvm/IR/Intrinsics.h"
30#include "llvm/IR/Type.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetMachine.h"
36#include "llvm/Target/TargetOptions.h"
37using namespace llvm;
38
39STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
40
41//===----------------------------------------------------------------------===//
42//                      Pattern Matcher Implementation
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
47  /// SDValue's instead of register numbers for the leaves of the matched
48  /// tree.
49  struct X86ISelAddressMode {
50    enum {
51      RegBase,
52      FrameIndexBase
53    } BaseType;
54
55    // This is really a union, discriminated by BaseType!
56    SDValue Base_Reg;
57    int Base_FrameIndex;
58
59    unsigned Scale;
60    SDValue IndexReg;
61    int32_t Disp;
62    SDValue Segment;
63    const GlobalValue *GV;
64    const Constant *CP;
65    const BlockAddress *BlockAddr;
66    const char *ES;
67    int JT;
68    unsigned Align;    // CP alignment.
69    unsigned char SymbolFlags;  // X86II::MO_*
70
71    X86ISelAddressMode()
72      : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
73        Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0),
74        SymbolFlags(X86II::MO_NO_FLAG) {
75    }
76
77    bool hasSymbolicDisplacement() const {
78      return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0;
79    }
80
81    bool hasBaseOrIndexReg() const {
82      return IndexReg.getNode() != 0 || Base_Reg.getNode() != 0;
83    }
84
85    /// isRIPRelative - Return true if this addressing mode is already RIP
86    /// relative.
87    bool isRIPRelative() const {
88      if (BaseType != RegBase) return false;
89      if (RegisterSDNode *RegNode =
90            dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
91        return RegNode->getReg() == X86::RIP;
92      return false;
93    }
94
95    void setBaseReg(SDValue Reg) {
96      BaseType = RegBase;
97      Base_Reg = Reg;
98    }
99
100#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
101    void dump() {
102      dbgs() << "X86ISelAddressMode " << this << '\n';
103      dbgs() << "Base_Reg ";
104      if (Base_Reg.getNode() != 0)
105        Base_Reg.getNode()->dump();
106      else
107        dbgs() << "nul";
108      dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
109             << " Scale" << Scale << '\n'
110             << "IndexReg ";
111      if (IndexReg.getNode() != 0)
112        IndexReg.getNode()->dump();
113      else
114        dbgs() << "nul";
115      dbgs() << " Disp " << Disp << '\n'
116             << "GV ";
117      if (GV)
118        GV->dump();
119      else
120        dbgs() << "nul";
121      dbgs() << " CP ";
122      if (CP)
123        CP->dump();
124      else
125        dbgs() << "nul";
126      dbgs() << '\n'
127             << "ES ";
128      if (ES)
129        dbgs() << ES;
130      else
131        dbgs() << "nul";
132      dbgs() << " JT" << JT << " Align" << Align << '\n';
133    }
134#endif
135  };
136}
137
138namespace {
139  //===--------------------------------------------------------------------===//
140  /// ISel - X86 specific code to select X86 machine instructions for
141  /// SelectionDAG operations.
142  ///
143  class X86DAGToDAGISel : public SelectionDAGISel {
144    /// X86Lowering - This object fully describes how to lower LLVM code to an
145    /// X86-specific SelectionDAG.
146    const X86TargetLowering &X86Lowering;
147
148    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
149    /// make the right decision when generating code for different targets.
150    const X86Subtarget *Subtarget;
151
152    /// OptForSize - If true, selector should try to optimize for code size
153    /// instead of performance.
154    bool OptForSize;
155
156  public:
157    explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
158      : SelectionDAGISel(tm, OptLevel),
159        X86Lowering(*tm.getTargetLowering()),
160        Subtarget(&tm.getSubtarget<X86Subtarget>()),
161        OptForSize(false) {}
162
163    virtual const char *getPassName() const {
164      return "X86 DAG->DAG Instruction Selection";
165    }
166
167    virtual void EmitFunctionEntryCode();
168
169    virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const;
170
171    virtual void PreprocessISelDAG();
172
173    inline bool immSext8(SDNode *N) const {
174      return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
175    }
176
177    // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
178    // sign extended field.
179    inline bool i64immSExt32(SDNode *N) const {
180      uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
181      return (int64_t)v == (int32_t)v;
182    }
183
184// Include the pieces autogenerated from the target description.
185#include "X86GenDAGISel.inc"
186
187  private:
188    SDNode *Select(SDNode *N);
189    SDNode *SelectGather(SDNode *N, unsigned Opc);
190    SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
191    SDNode *SelectAtomicLoadArith(SDNode *Node, EVT NVT);
192
193    bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
194    bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
195    bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
196    bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
197    bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
198                                 unsigned Depth);
199    bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
200    bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
201                    SDValue &Scale, SDValue &Index, SDValue &Disp,
202                    SDValue &Segment);
203    bool SelectLEAAddr(SDValue N, SDValue &Base,
204                       SDValue &Scale, SDValue &Index, SDValue &Disp,
205                       SDValue &Segment);
206    bool SelectTLSADDRAddr(SDValue N, SDValue &Base,
207                           SDValue &Scale, SDValue &Index, SDValue &Disp,
208                           SDValue &Segment);
209    bool SelectScalarSSELoad(SDNode *Root, SDValue N,
210                             SDValue &Base, SDValue &Scale,
211                             SDValue &Index, SDValue &Disp,
212                             SDValue &Segment,
213                             SDValue &NodeWithChain);
214
215    bool TryFoldLoad(SDNode *P, SDValue N,
216                     SDValue &Base, SDValue &Scale,
217                     SDValue &Index, SDValue &Disp,
218                     SDValue &Segment);
219
220    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
221    /// inline asm expressions.
222    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
223                                              char ConstraintCode,
224                                              std::vector<SDValue> &OutOps);
225
226    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
227
228    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
229                                   SDValue &Scale, SDValue &Index,
230                                   SDValue &Disp, SDValue &Segment) {
231      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
232        CurDAG->getTargetFrameIndex(AM.Base_FrameIndex, TLI.getPointerTy()) :
233        AM.Base_Reg;
234      Scale = getI8Imm(AM.Scale);
235      Index = AM.IndexReg;
236      // These are 32-bit even in 64-bit mode since RIP relative offset
237      // is 32-bit.
238      if (AM.GV)
239        Disp = CurDAG->getTargetGlobalAddress(AM.GV, DebugLoc(),
240                                              MVT::i32, AM.Disp,
241                                              AM.SymbolFlags);
242      else if (AM.CP)
243        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
244                                             AM.Align, AM.Disp, AM.SymbolFlags);
245      else if (AM.ES) {
246        assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
247        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
248      } else if (AM.JT != -1) {
249        assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
250        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
251      } else if (AM.BlockAddr)
252        Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
253                                             AM.SymbolFlags);
254      else
255        Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
256
257      if (AM.Segment.getNode())
258        Segment = AM.Segment;
259      else
260        Segment = CurDAG->getRegister(0, MVT::i32);
261    }
262
263    /// getI8Imm - Return a target constant with the specified value, of type
264    /// i8.
265    inline SDValue getI8Imm(unsigned Imm) {
266      return CurDAG->getTargetConstant(Imm, MVT::i8);
267    }
268
269    /// getI32Imm - Return a target constant with the specified value, of type
270    /// i32.
271    inline SDValue getI32Imm(unsigned Imm) {
272      return CurDAG->getTargetConstant(Imm, MVT::i32);
273    }
274
275    /// getGlobalBaseReg - Return an SDNode that returns the value of
276    /// the global base register. Output instructions required to
277    /// initialize the global base register, if necessary.
278    ///
279    SDNode *getGlobalBaseReg();
280
281    /// getTargetMachine - Return a reference to the TargetMachine, casted
282    /// to the target-specific type.
283    const X86TargetMachine &getTargetMachine() const {
284      return static_cast<const X86TargetMachine &>(TM);
285    }
286
287    /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
288    /// to the target-specific type.
289    const X86InstrInfo *getInstrInfo() const {
290      return getTargetMachine().getInstrInfo();
291    }
292  };
293}
294
295
296bool
297X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
298  if (OptLevel == CodeGenOpt::None) return false;
299
300  if (!N.hasOneUse())
301    return false;
302
303  if (N.getOpcode() != ISD::LOAD)
304    return true;
305
306  // If N is a load, do additional profitability checks.
307  if (U == Root) {
308    switch (U->getOpcode()) {
309    default: break;
310    case X86ISD::ADD:
311    case X86ISD::SUB:
312    case X86ISD::AND:
313    case X86ISD::XOR:
314    case X86ISD::OR:
315    case ISD::ADD:
316    case ISD::ADDC:
317    case ISD::ADDE:
318    case ISD::AND:
319    case ISD::OR:
320    case ISD::XOR: {
321      SDValue Op1 = U->getOperand(1);
322
323      // If the other operand is a 8-bit immediate we should fold the immediate
324      // instead. This reduces code size.
325      // e.g.
326      // movl 4(%esp), %eax
327      // addl $4, %eax
328      // vs.
329      // movl $4, %eax
330      // addl 4(%esp), %eax
331      // The former is 2 bytes shorter. In case where the increment is 1, then
332      // the saving can be 4 bytes (by using incl %eax).
333      if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
334        if (Imm->getAPIntValue().isSignedIntN(8))
335          return false;
336
337      // If the other operand is a TLS address, we should fold it instead.
338      // This produces
339      // movl    %gs:0, %eax
340      // leal    i@NTPOFF(%eax), %eax
341      // instead of
342      // movl    $i@NTPOFF, %eax
343      // addl    %gs:0, %eax
344      // if the block also has an access to a second TLS address this will save
345      // a load.
346      // FIXME: This is probably also true for non TLS addresses.
347      if (Op1.getOpcode() == X86ISD::Wrapper) {
348        SDValue Val = Op1.getOperand(0);
349        if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
350          return false;
351      }
352    }
353    }
354  }
355
356  return true;
357}
358
359/// MoveBelowCallOrigChain - Replace the original chain operand of the call with
360/// load's chain operand and move load below the call's chain operand.
361static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
362                               SDValue Call, SDValue OrigChain) {
363  SmallVector<SDValue, 8> Ops;
364  SDValue Chain = OrigChain.getOperand(0);
365  if (Chain.getNode() == Load.getNode())
366    Ops.push_back(Load.getOperand(0));
367  else {
368    assert(Chain.getOpcode() == ISD::TokenFactor &&
369           "Unexpected chain operand");
370    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
371      if (Chain.getOperand(i).getNode() == Load.getNode())
372        Ops.push_back(Load.getOperand(0));
373      else
374        Ops.push_back(Chain.getOperand(i));
375    SDValue NewChain =
376      CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
377                      MVT::Other, &Ops[0], Ops.size());
378    Ops.clear();
379    Ops.push_back(NewChain);
380  }
381  for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
382    Ops.push_back(OrigChain.getOperand(i));
383  CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size());
384  CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
385                             Load.getOperand(1), Load.getOperand(2));
386
387  unsigned NumOps = Call.getNode()->getNumOperands();
388  Ops.clear();
389  Ops.push_back(SDValue(Load.getNode(), 1));
390  for (unsigned i = 1, e = NumOps; i != e; ++i)
391    Ops.push_back(Call.getOperand(i));
392  CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], NumOps);
393}
394
395/// isCalleeLoad - Return true if call address is a load and it can be
396/// moved below CALLSEQ_START and the chains leading up to the call.
397/// Return the CALLSEQ_START by reference as a second output.
398/// In the case of a tail call, there isn't a callseq node between the call
399/// chain and the load.
400static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
401  // The transformation is somewhat dangerous if the call's chain was glued to
402  // the call. After MoveBelowOrigChain the load is moved between the call and
403  // the chain, this can create a cycle if the load is not folded. So it is
404  // *really* important that we are sure the load will be folded.
405  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
406    return false;
407  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
408  if (!LD ||
409      LD->isVolatile() ||
410      LD->getAddressingMode() != ISD::UNINDEXED ||
411      LD->getExtensionType() != ISD::NON_EXTLOAD)
412    return false;
413
414  // Now let's find the callseq_start.
415  while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
416    if (!Chain.hasOneUse())
417      return false;
418    Chain = Chain.getOperand(0);
419  }
420
421  if (!Chain.getNumOperands())
422    return false;
423  // Since we are not checking for AA here, conservatively abort if the chain
424  // writes to memory. It's not safe to move the callee (a load) across a store.
425  if (isa<MemSDNode>(Chain.getNode()) &&
426      cast<MemSDNode>(Chain.getNode())->writeMem())
427    return false;
428  if (Chain.getOperand(0).getNode() == Callee.getNode())
429    return true;
430  if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
431      Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
432      Callee.getValue(1).hasOneUse())
433    return true;
434  return false;
435}
436
437void X86DAGToDAGISel::PreprocessISelDAG() {
438  // OptForSize is used in pattern predicates that isel is matching.
439  OptForSize = MF->getFunction()->getAttributes().
440    hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
441
442  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
443       E = CurDAG->allnodes_end(); I != E; ) {
444    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
445
446    if (OptLevel != CodeGenOpt::None &&
447        // Only does this when target favors doesn't favor register indirect
448        // call.
449        ((N->getOpcode() == X86ISD::CALL && !Subtarget->callRegIndirect()) ||
450         (N->getOpcode() == X86ISD::TC_RETURN &&
451          // Only does this if load can be folded into TC_RETURN.
452          (Subtarget->is64Bit() ||
453           getTargetMachine().getRelocationModel() != Reloc::PIC_)))) {
454      /// Also try moving call address load from outside callseq_start to just
455      /// before the call to allow it to be folded.
456      ///
457      ///     [Load chain]
458      ///         ^
459      ///         |
460      ///       [Load]
461      ///       ^    ^
462      ///       |    |
463      ///      /      \--
464      ///     /          |
465      ///[CALLSEQ_START] |
466      ///     ^          |
467      ///     |          |
468      /// [LOAD/C2Reg]   |
469      ///     |          |
470      ///      \        /
471      ///       \      /
472      ///       [CALL]
473      bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
474      SDValue Chain = N->getOperand(0);
475      SDValue Load  = N->getOperand(1);
476      if (!isCalleeLoad(Load, Chain, HasCallSeq))
477        continue;
478      MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
479      ++NumLoadMoved;
480      continue;
481    }
482
483    // Lower fpround and fpextend nodes that target the FP stack to be store and
484    // load to the stack.  This is a gross hack.  We would like to simply mark
485    // these as being illegal, but when we do that, legalize produces these when
486    // it expands calls, then expands these in the same legalize pass.  We would
487    // like dag combine to be able to hack on these between the call expansion
488    // and the node legalization.  As such this pass basically does "really
489    // late" legalization of these inline with the X86 isel pass.
490    // FIXME: This should only happen when not compiled with -O0.
491    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
492      continue;
493
494    EVT SrcVT = N->getOperand(0).getValueType();
495    EVT DstVT = N->getValueType(0);
496
497    // If any of the sources are vectors, no fp stack involved.
498    if (SrcVT.isVector() || DstVT.isVector())
499      continue;
500
501    // If the source and destination are SSE registers, then this is a legal
502    // conversion that should not be lowered.
503    bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
504    bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
505    if (SrcIsSSE && DstIsSSE)
506      continue;
507
508    if (!SrcIsSSE && !DstIsSSE) {
509      // If this is an FPStack extension, it is a noop.
510      if (N->getOpcode() == ISD::FP_EXTEND)
511        continue;
512      // If this is a value-preserving FPStack truncation, it is a noop.
513      if (N->getConstantOperandVal(1))
514        continue;
515    }
516
517    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
518    // FPStack has extload and truncstore.  SSE can fold direct loads into other
519    // operations.  Based on this, decide what we want to do.
520    EVT MemVT;
521    if (N->getOpcode() == ISD::FP_ROUND)
522      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
523    else
524      MemVT = SrcIsSSE ? SrcVT : DstVT;
525
526    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
527    DebugLoc dl = N->getDebugLoc();
528
529    // FIXME: optimize the case where the src/dest is a load or store?
530    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
531                                          N->getOperand(0),
532                                          MemTmp, MachinePointerInfo(), MemVT,
533                                          false, false, 0);
534    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
535                                        MachinePointerInfo(),
536                                        MemVT, false, false, 0);
537
538    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
539    // extload we created.  This will cause general havok on the dag because
540    // anything below the conversion could be folded into other existing nodes.
541    // To avoid invalidating 'I', back it up to the convert node.
542    --I;
543    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
544
545    // Now that we did that, the node is dead.  Increment the iterator to the
546    // next node to process, then delete N.
547    ++I;
548    CurDAG->DeleteNode(N);
549  }
550}
551
552
553/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
554/// the main function.
555void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
556                                             MachineFrameInfo *MFI) {
557  const TargetInstrInfo *TII = TM.getInstrInfo();
558  if (Subtarget->isTargetCygMing()) {
559    unsigned CallOp =
560      Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32;
561    BuildMI(BB, DebugLoc(),
562            TII->get(CallOp)).addExternalSymbol("__main");
563  }
564}
565
566void X86DAGToDAGISel::EmitFunctionEntryCode() {
567  // If this is main, emit special code for main.
568  if (const Function *Fn = MF->getFunction())
569    if (Fn->hasExternalLinkage() && Fn->getName() == "main")
570      EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
571}
572
573static bool isDispSafeForFrameIndex(int64_t Val) {
574  // On 64-bit platforms, we can run into an issue where a frame index
575  // includes a displacement that, when added to the explicit displacement,
576  // will overflow the displacement field. Assuming that the frame index
577  // displacement fits into a 31-bit integer  (which is only slightly more
578  // aggressive than the current fundamental assumption that it fits into
579  // a 32-bit integer), a 31-bit disp should always be safe.
580  return isInt<31>(Val);
581}
582
583bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset,
584                                            X86ISelAddressMode &AM) {
585  int64_t Val = AM.Disp + Offset;
586  CodeModel::Model M = TM.getCodeModel();
587  if (Subtarget->is64Bit()) {
588    if (!X86::isOffsetSuitableForCodeModel(Val, M,
589                                           AM.hasSymbolicDisplacement()))
590      return true;
591    // In addition to the checks required for a register base, check that
592    // we do not try to use an unsafe Disp with a frame index.
593    if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
594        !isDispSafeForFrameIndex(Val))
595      return true;
596  }
597  AM.Disp = Val;
598  return false;
599
600}
601
602bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
603  SDValue Address = N->getOperand(1);
604
605  // load gs:0 -> GS segment register.
606  // load fs:0 -> FS segment register.
607  //
608  // This optimization is valid because the GNU TLS model defines that
609  // gs:0 (or fs:0 on X86-64) contains its own address.
610  // For more information see http://people.redhat.com/drepper/tls.pdf
611  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
612    if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 &&
613        Subtarget->isTargetLinux())
614      switch (N->getPointerInfo().getAddrSpace()) {
615      case 256:
616        AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
617        return false;
618      case 257:
619        AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
620        return false;
621      }
622
623  return true;
624}
625
626/// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
627/// into an addressing mode.  These wrap things that will resolve down into a
628/// symbol reference.  If no match is possible, this returns true, otherwise it
629/// returns false.
630bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
631  // If the addressing mode already has a symbol as the displacement, we can
632  // never match another symbol.
633  if (AM.hasSymbolicDisplacement())
634    return true;
635
636  SDValue N0 = N.getOperand(0);
637  CodeModel::Model M = TM.getCodeModel();
638
639  // Handle X86-64 rip-relative addresses.  We check this before checking direct
640  // folding because RIP is preferable to non-RIP accesses.
641  if (Subtarget->is64Bit() && N.getOpcode() == X86ISD::WrapperRIP &&
642      // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
643      // they cannot be folded into immediate fields.
644      // FIXME: This can be improved for kernel and other models?
645      (M == CodeModel::Small || M == CodeModel::Kernel)) {
646    // Base and index reg must be 0 in order to use %rip as base.
647    if (AM.hasBaseOrIndexReg())
648      return true;
649    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
650      X86ISelAddressMode Backup = AM;
651      AM.GV = G->getGlobal();
652      AM.SymbolFlags = G->getTargetFlags();
653      if (FoldOffsetIntoAddress(G->getOffset(), AM)) {
654        AM = Backup;
655        return true;
656      }
657    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
658      X86ISelAddressMode Backup = AM;
659      AM.CP = CP->getConstVal();
660      AM.Align = CP->getAlignment();
661      AM.SymbolFlags = CP->getTargetFlags();
662      if (FoldOffsetIntoAddress(CP->getOffset(), AM)) {
663        AM = Backup;
664        return true;
665      }
666    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
667      AM.ES = S->getSymbol();
668      AM.SymbolFlags = S->getTargetFlags();
669    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
670      AM.JT = J->getIndex();
671      AM.SymbolFlags = J->getTargetFlags();
672    } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
673      X86ISelAddressMode Backup = AM;
674      AM.BlockAddr = BA->getBlockAddress();
675      AM.SymbolFlags = BA->getTargetFlags();
676      if (FoldOffsetIntoAddress(BA->getOffset(), AM)) {
677        AM = Backup;
678        return true;
679      }
680    } else
681      llvm_unreachable("Unhandled symbol reference node.");
682
683    if (N.getOpcode() == X86ISD::WrapperRIP)
684      AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
685    return false;
686  }
687
688  // Handle the case when globals fit in our immediate field: This is true for
689  // X86-32 always and X86-64 when in -mcmodel=small mode.  In 64-bit
690  // mode, this only applies to a non-RIP-relative computation.
691  if (!Subtarget->is64Bit() ||
692      M == CodeModel::Small || M == CodeModel::Kernel) {
693    assert(N.getOpcode() != X86ISD::WrapperRIP &&
694           "RIP-relative addressing already handled");
695    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
696      AM.GV = G->getGlobal();
697      AM.Disp += G->getOffset();
698      AM.SymbolFlags = G->getTargetFlags();
699    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
700      AM.CP = CP->getConstVal();
701      AM.Align = CP->getAlignment();
702      AM.Disp += CP->getOffset();
703      AM.SymbolFlags = CP->getTargetFlags();
704    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
705      AM.ES = S->getSymbol();
706      AM.SymbolFlags = S->getTargetFlags();
707    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
708      AM.JT = J->getIndex();
709      AM.SymbolFlags = J->getTargetFlags();
710    } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
711      AM.BlockAddr = BA->getBlockAddress();
712      AM.Disp += BA->getOffset();
713      AM.SymbolFlags = BA->getTargetFlags();
714    } else
715      llvm_unreachable("Unhandled symbol reference node.");
716    return false;
717  }
718
719  return true;
720}
721
722/// MatchAddress - Add the specified node to the specified addressing mode,
723/// returning true if it cannot be done.  This just pattern matches for the
724/// addressing mode.
725bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
726  if (MatchAddressRecursively(N, AM, 0))
727    return true;
728
729  // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
730  // a smaller encoding and avoids a scaled-index.
731  if (AM.Scale == 2 &&
732      AM.BaseType == X86ISelAddressMode::RegBase &&
733      AM.Base_Reg.getNode() == 0) {
734    AM.Base_Reg = AM.IndexReg;
735    AM.Scale = 1;
736  }
737
738  // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
739  // because it has a smaller encoding.
740  // TODO: Which other code models can use this?
741  if (TM.getCodeModel() == CodeModel::Small &&
742      Subtarget->is64Bit() &&
743      AM.Scale == 1 &&
744      AM.BaseType == X86ISelAddressMode::RegBase &&
745      AM.Base_Reg.getNode() == 0 &&
746      AM.IndexReg.getNode() == 0 &&
747      AM.SymbolFlags == X86II::MO_NO_FLAG &&
748      AM.hasSymbolicDisplacement())
749    AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
750
751  return false;
752}
753
754// Insert a node into the DAG at least before the Pos node's position. This
755// will reposition the node as needed, and will assign it a node ID that is <=
756// the Pos node's ID. Note that this does *not* preserve the uniqueness of node
757// IDs! The selection DAG must no longer depend on their uniqueness when this
758// is used.
759static void InsertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
760  if (N.getNode()->getNodeId() == -1 ||
761      N.getNode()->getNodeId() > Pos.getNode()->getNodeId()) {
762    DAG.RepositionNode(Pos.getNode(), N.getNode());
763    N.getNode()->setNodeId(Pos.getNode()->getNodeId());
764  }
765}
766
767// Transform "(X >> (8-C1)) & C2" to "(X >> 8) & 0xff)" if safe. This
768// allows us to convert the shift and and into an h-register extract and
769// a scaled index. Returns false if the simplification is performed.
770static bool FoldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
771                                      uint64_t Mask,
772                                      SDValue Shift, SDValue X,
773                                      X86ISelAddressMode &AM) {
774  if (Shift.getOpcode() != ISD::SRL ||
775      !isa<ConstantSDNode>(Shift.getOperand(1)) ||
776      !Shift.hasOneUse())
777    return true;
778
779  int ScaleLog = 8 - Shift.getConstantOperandVal(1);
780  if (ScaleLog <= 0 || ScaleLog >= 4 ||
781      Mask != (0xffu << ScaleLog))
782    return true;
783
784  EVT VT = N.getValueType();
785  DebugLoc DL = N.getDebugLoc();
786  SDValue Eight = DAG.getConstant(8, MVT::i8);
787  SDValue NewMask = DAG.getConstant(0xff, VT);
788  SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
789  SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
790  SDValue ShlCount = DAG.getConstant(ScaleLog, MVT::i8);
791  SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
792
793  // Insert the new nodes into the topological ordering. We must do this in
794  // a valid topological ordering as nothing is going to go back and re-sort
795  // these nodes. We continually insert before 'N' in sequence as this is
796  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
797  // hierarchy left to express.
798  InsertDAGNode(DAG, N, Eight);
799  InsertDAGNode(DAG, N, Srl);
800  InsertDAGNode(DAG, N, NewMask);
801  InsertDAGNode(DAG, N, And);
802  InsertDAGNode(DAG, N, ShlCount);
803  InsertDAGNode(DAG, N, Shl);
804  DAG.ReplaceAllUsesWith(N, Shl);
805  AM.IndexReg = And;
806  AM.Scale = (1 << ScaleLog);
807  return false;
808}
809
810// Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
811// allows us to fold the shift into this addressing mode. Returns false if the
812// transform succeeded.
813static bool FoldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
814                                        uint64_t Mask,
815                                        SDValue Shift, SDValue X,
816                                        X86ISelAddressMode &AM) {
817  if (Shift.getOpcode() != ISD::SHL ||
818      !isa<ConstantSDNode>(Shift.getOperand(1)))
819    return true;
820
821  // Not likely to be profitable if either the AND or SHIFT node has more
822  // than one use (unless all uses are for address computation). Besides,
823  // isel mechanism requires their node ids to be reused.
824  if (!N.hasOneUse() || !Shift.hasOneUse())
825    return true;
826
827  // Verify that the shift amount is something we can fold.
828  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
829  if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
830    return true;
831
832  EVT VT = N.getValueType();
833  DebugLoc DL = N.getDebugLoc();
834  SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, VT);
835  SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
836  SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
837
838  // Insert the new nodes into the topological ordering. We must do this in
839  // a valid topological ordering as nothing is going to go back and re-sort
840  // these nodes. We continually insert before 'N' in sequence as this is
841  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
842  // hierarchy left to express.
843  InsertDAGNode(DAG, N, NewMask);
844  InsertDAGNode(DAG, N, NewAnd);
845  InsertDAGNode(DAG, N, NewShift);
846  DAG.ReplaceAllUsesWith(N, NewShift);
847
848  AM.Scale = 1 << ShiftAmt;
849  AM.IndexReg = NewAnd;
850  return false;
851}
852
853// Implement some heroics to detect shifts of masked values where the mask can
854// be replaced by extending the shift and undoing that in the addressing mode
855// scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
856// (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
857// the addressing mode. This results in code such as:
858//
859//   int f(short *y, int *lookup_table) {
860//     ...
861//     return *y + lookup_table[*y >> 11];
862//   }
863//
864// Turning into:
865//   movzwl (%rdi), %eax
866//   movl %eax, %ecx
867//   shrl $11, %ecx
868//   addl (%rsi,%rcx,4), %eax
869//
870// Instead of:
871//   movzwl (%rdi), %eax
872//   movl %eax, %ecx
873//   shrl $9, %ecx
874//   andl $124, %rcx
875//   addl (%rsi,%rcx), %eax
876//
877// Note that this function assumes the mask is provided as a mask *after* the
878// value is shifted. The input chain may or may not match that, but computing
879// such a mask is trivial.
880static bool FoldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
881                                    uint64_t Mask,
882                                    SDValue Shift, SDValue X,
883                                    X86ISelAddressMode &AM) {
884  if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
885      !isa<ConstantSDNode>(Shift.getOperand(1)))
886    return true;
887
888  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
889  unsigned MaskLZ = CountLeadingZeros_64(Mask);
890  unsigned MaskTZ = CountTrailingZeros_64(Mask);
891
892  // The amount of shift we're trying to fit into the addressing mode is taken
893  // from the trailing zeros of the mask.
894  unsigned AMShiftAmt = MaskTZ;
895
896  // There is nothing we can do here unless the mask is removing some bits.
897  // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
898  if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;
899
900  // We also need to ensure that mask is a continuous run of bits.
901  if (CountTrailingOnes_64(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
902
903  // Scale the leading zero count down based on the actual size of the value.
904  // Also scale it down based on the size of the shift.
905  MaskLZ -= (64 - X.getValueSizeInBits()) + ShiftAmt;
906
907  // The final check is to ensure that any masked out high bits of X are
908  // already known to be zero. Otherwise, the mask has a semantic impact
909  // other than masking out a couple of low bits. Unfortunately, because of
910  // the mask, zero extensions will be removed from operands in some cases.
911  // This code works extra hard to look through extensions because we can
912  // replace them with zero extensions cheaply if necessary.
913  bool ReplacingAnyExtend = false;
914  if (X.getOpcode() == ISD::ANY_EXTEND) {
915    unsigned ExtendBits =
916      X.getValueSizeInBits() - X.getOperand(0).getValueSizeInBits();
917    // Assume that we'll replace the any-extend with a zero-extend, and
918    // narrow the search to the extended value.
919    X = X.getOperand(0);
920    MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
921    ReplacingAnyExtend = true;
922  }
923  APInt MaskedHighBits = APInt::getHighBitsSet(X.getValueSizeInBits(),
924                                               MaskLZ);
925  APInt KnownZero, KnownOne;
926  DAG.ComputeMaskedBits(X, KnownZero, KnownOne);
927  if (MaskedHighBits != KnownZero) return true;
928
929  // We've identified a pattern that can be transformed into a single shift
930  // and an addressing mode. Make it so.
931  EVT VT = N.getValueType();
932  if (ReplacingAnyExtend) {
933    assert(X.getValueType() != VT);
934    // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
935    SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, X.getDebugLoc(), VT, X);
936    InsertDAGNode(DAG, N, NewX);
937    X = NewX;
938  }
939  DebugLoc DL = N.getDebugLoc();
940  SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, MVT::i8);
941  SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
942  SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, MVT::i8);
943  SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
944
945  // Insert the new nodes into the topological ordering. We must do this in
946  // a valid topological ordering as nothing is going to go back and re-sort
947  // these nodes. We continually insert before 'N' in sequence as this is
948  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
949  // hierarchy left to express.
950  InsertDAGNode(DAG, N, NewSRLAmt);
951  InsertDAGNode(DAG, N, NewSRL);
952  InsertDAGNode(DAG, N, NewSHLAmt);
953  InsertDAGNode(DAG, N, NewSHL);
954  DAG.ReplaceAllUsesWith(N, NewSHL);
955
956  AM.Scale = 1 << AMShiftAmt;
957  AM.IndexReg = NewSRL;
958  return false;
959}
960
961bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
962                                              unsigned Depth) {
963  DebugLoc dl = N.getDebugLoc();
964  DEBUG({
965      dbgs() << "MatchAddress: ";
966      AM.dump();
967    });
968  // Limit recursion.
969  if (Depth > 5)
970    return MatchAddressBase(N, AM);
971
972  // If this is already a %rip relative address, we can only merge immediates
973  // into it.  Instead of handling this in every case, we handle it here.
974  // RIP relative addressing: %rip + 32-bit displacement!
975  if (AM.isRIPRelative()) {
976    // FIXME: JumpTable and ExternalSymbol address currently don't like
977    // displacements.  It isn't very important, but this should be fixed for
978    // consistency.
979    if (!AM.ES && AM.JT != -1) return true;
980
981    if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
982      if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM))
983        return false;
984    return true;
985  }
986
987  switch (N.getOpcode()) {
988  default: break;
989  case ISD::Constant: {
990    uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
991    if (!FoldOffsetIntoAddress(Val, AM))
992      return false;
993    break;
994  }
995
996  case X86ISD::Wrapper:
997  case X86ISD::WrapperRIP:
998    if (!MatchWrapper(N, AM))
999      return false;
1000    break;
1001
1002  case ISD::LOAD:
1003    if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM))
1004      return false;
1005    break;
1006
1007  case ISD::FrameIndex:
1008    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1009        AM.Base_Reg.getNode() == 0 &&
1010        (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
1011      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
1012      AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
1013      return false;
1014    }
1015    break;
1016
1017  case ISD::SHL:
1018    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
1019      break;
1020
1021    if (ConstantSDNode
1022          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
1023      unsigned Val = CN->getZExtValue();
1024      // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
1025      // that the base operand remains free for further matching. If
1026      // the base doesn't end up getting used, a post-processing step
1027      // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
1028      if (Val == 1 || Val == 2 || Val == 3) {
1029        AM.Scale = 1 << Val;
1030        SDValue ShVal = N.getNode()->getOperand(0);
1031
1032        // Okay, we know that we have a scale by now.  However, if the scaled
1033        // value is an add of something and a constant, we can fold the
1034        // constant into the disp field here.
1035        if (CurDAG->isBaseWithConstantOffset(ShVal)) {
1036          AM.IndexReg = ShVal.getNode()->getOperand(0);
1037          ConstantSDNode *AddVal =
1038            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
1039          uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
1040          if (!FoldOffsetIntoAddress(Disp, AM))
1041            return false;
1042        }
1043
1044        AM.IndexReg = ShVal;
1045        return false;
1046      }
1047    }
1048    break;
1049
1050  case ISD::SRL: {
1051    // Scale must not be used already.
1052    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1053
1054    SDValue And = N.getOperand(0);
1055    if (And.getOpcode() != ISD::AND) break;
1056    SDValue X = And.getOperand(0);
1057
1058    // We only handle up to 64-bit values here as those are what matter for
1059    // addressing mode optimizations.
1060    if (X.getValueSizeInBits() > 64) break;
1061
1062    // The mask used for the transform is expected to be post-shift, but we
1063    // found the shift first so just apply the shift to the mask before passing
1064    // it down.
1065    if (!isa<ConstantSDNode>(N.getOperand(1)) ||
1066        !isa<ConstantSDNode>(And.getOperand(1)))
1067      break;
1068    uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
1069
1070    // Try to fold the mask and shift into the scale, and return false if we
1071    // succeed.
1072    if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
1073      return false;
1074    break;
1075  }
1076
1077  case ISD::SMUL_LOHI:
1078  case ISD::UMUL_LOHI:
1079    // A mul_lohi where we need the low part can be folded as a plain multiply.
1080    if (N.getResNo() != 0) break;
1081    // FALL THROUGH
1082  case ISD::MUL:
1083  case X86ISD::MUL_IMM:
1084    // X*[3,5,9] -> X+X*[2,4,8]
1085    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1086        AM.Base_Reg.getNode() == 0 &&
1087        AM.IndexReg.getNode() == 0) {
1088      if (ConstantSDNode
1089            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
1090        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
1091            CN->getZExtValue() == 9) {
1092          AM.Scale = unsigned(CN->getZExtValue())-1;
1093
1094          SDValue MulVal = N.getNode()->getOperand(0);
1095          SDValue Reg;
1096
1097          // Okay, we know that we have a scale by now.  However, if the scaled
1098          // value is an add of something and a constant, we can fold the
1099          // constant into the disp field here.
1100          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
1101              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
1102            Reg = MulVal.getNode()->getOperand(0);
1103            ConstantSDNode *AddVal =
1104              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
1105            uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
1106            if (FoldOffsetIntoAddress(Disp, AM))
1107              Reg = N.getNode()->getOperand(0);
1108          } else {
1109            Reg = N.getNode()->getOperand(0);
1110          }
1111
1112          AM.IndexReg = AM.Base_Reg = Reg;
1113          return false;
1114        }
1115    }
1116    break;
1117
1118  case ISD::SUB: {
1119    // Given A-B, if A can be completely folded into the address and
1120    // the index field with the index field unused, use -B as the index.
1121    // This is a win if a has multiple parts that can be folded into
1122    // the address. Also, this saves a mov if the base register has
1123    // other uses, since it avoids a two-address sub instruction, however
1124    // it costs an additional mov if the index register has other uses.
1125
1126    // Add an artificial use to this node so that we can keep track of
1127    // it if it gets CSE'd with a different node.
1128    HandleSDNode Handle(N);
1129
1130    // Test if the LHS of the sub can be folded.
1131    X86ISelAddressMode Backup = AM;
1132    if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
1133      AM = Backup;
1134      break;
1135    }
1136    // Test if the index field is free for use.
1137    if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
1138      AM = Backup;
1139      break;
1140    }
1141
1142    int Cost = 0;
1143    SDValue RHS = Handle.getValue().getNode()->getOperand(1);
1144    // If the RHS involves a register with multiple uses, this
1145    // transformation incurs an extra mov, due to the neg instruction
1146    // clobbering its operand.
1147    if (!RHS.getNode()->hasOneUse() ||
1148        RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
1149        RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
1150        RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
1151        (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
1152         RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
1153      ++Cost;
1154    // If the base is a register with multiple uses, this
1155    // transformation may save a mov.
1156    if ((AM.BaseType == X86ISelAddressMode::RegBase &&
1157         AM.Base_Reg.getNode() &&
1158         !AM.Base_Reg.getNode()->hasOneUse()) ||
1159        AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1160      --Cost;
1161    // If the folded LHS was interesting, this transformation saves
1162    // address arithmetic.
1163    if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
1164        ((AM.Disp != 0) && (Backup.Disp == 0)) +
1165        (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
1166      --Cost;
1167    // If it doesn't look like it may be an overall win, don't do it.
1168    if (Cost >= 0) {
1169      AM = Backup;
1170      break;
1171    }
1172
1173    // Ok, the transformation is legal and appears profitable. Go for it.
1174    SDValue Zero = CurDAG->getConstant(0, N.getValueType());
1175    SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
1176    AM.IndexReg = Neg;
1177    AM.Scale = 1;
1178
1179    // Insert the new nodes into the topological ordering.
1180    InsertDAGNode(*CurDAG, N, Zero);
1181    InsertDAGNode(*CurDAG, N, Neg);
1182    return false;
1183  }
1184
1185  case ISD::ADD: {
1186    // Add an artificial use to this node so that we can keep track of
1187    // it if it gets CSE'd with a different node.
1188    HandleSDNode Handle(N);
1189
1190    X86ISelAddressMode Backup = AM;
1191    if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1192        !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
1193      return false;
1194    AM = Backup;
1195
1196    // Try again after commuting the operands.
1197    if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&&
1198        !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
1199      return false;
1200    AM = Backup;
1201
1202    // If we couldn't fold both operands into the address at the same time,
1203    // see if we can just put each operand into a register and fold at least
1204    // the add.
1205    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1206        !AM.Base_Reg.getNode() &&
1207        !AM.IndexReg.getNode()) {
1208      N = Handle.getValue();
1209      AM.Base_Reg = N.getOperand(0);
1210      AM.IndexReg = N.getOperand(1);
1211      AM.Scale = 1;
1212      return false;
1213    }
1214    N = Handle.getValue();
1215    break;
1216  }
1217
1218  case ISD::OR:
1219    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
1220    if (CurDAG->isBaseWithConstantOffset(N)) {
1221      X86ISelAddressMode Backup = AM;
1222      ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
1223
1224      // Start with the LHS as an addr mode.
1225      if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1226          !FoldOffsetIntoAddress(CN->getSExtValue(), AM))
1227        return false;
1228      AM = Backup;
1229    }
1230    break;
1231
1232  case ISD::AND: {
1233    // Perform some heroic transforms on an and of a constant-count shift
1234    // with a constant to enable use of the scaled offset field.
1235
1236    // Scale must not be used already.
1237    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1238
1239    SDValue Shift = N.getOperand(0);
1240    if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break;
1241    SDValue X = Shift.getOperand(0);
1242
1243    // We only handle up to 64-bit values here as those are what matter for
1244    // addressing mode optimizations.
1245    if (X.getValueSizeInBits() > 64) break;
1246
1247    if (!isa<ConstantSDNode>(N.getOperand(1)))
1248      break;
1249    uint64_t Mask = N.getConstantOperandVal(1);
1250
1251    // Try to fold the mask and shift into an extract and scale.
1252    if (!FoldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
1253      return false;
1254
1255    // Try to fold the mask and shift directly into the scale.
1256    if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
1257      return false;
1258
1259    // Try to swap the mask and shift to place shifts which can be done as
1260    // a scale on the outside of the mask.
1261    if (!FoldMaskedShiftToScaledMask(*CurDAG, N, Mask, Shift, X, AM))
1262      return false;
1263    break;
1264  }
1265  }
1266
1267  return MatchAddressBase(N, AM);
1268}
1269
1270/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1271/// specified addressing mode without any further recursion.
1272bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1273  // Is the base register already occupied?
1274  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
1275    // If so, check to see if the scale index register is set.
1276    if (AM.IndexReg.getNode() == 0) {
1277      AM.IndexReg = N;
1278      AM.Scale = 1;
1279      return false;
1280    }
1281
1282    // Otherwise, we cannot select it.
1283    return true;
1284  }
1285
1286  // Default, generate it as a register.
1287  AM.BaseType = X86ISelAddressMode::RegBase;
1288  AM.Base_Reg = N;
1289  return false;
1290}
1291
1292/// SelectAddr - returns true if it is able pattern match an addressing mode.
1293/// It returns the operands which make up the maximal addressing mode it can
1294/// match by reference.
1295///
1296/// Parent is the parent node of the addr operand that is being matched.  It
1297/// is always a load, store, atomic node, or null.  It is only null when
1298/// checking memory operands for inline asm nodes.
1299bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
1300                                 SDValue &Scale, SDValue &Index,
1301                                 SDValue &Disp, SDValue &Segment) {
1302  X86ISelAddressMode AM;
1303
1304  if (Parent &&
1305      // This list of opcodes are all the nodes that have an "addr:$ptr" operand
1306      // that are not a MemSDNode, and thus don't have proper addrspace info.
1307      Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
1308      Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
1309      Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
1310      Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
1311      Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
1312    unsigned AddrSpace =
1313      cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
1314    // AddrSpace 256 -> GS, 257 -> FS.
1315    if (AddrSpace == 256)
1316      AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1317    if (AddrSpace == 257)
1318      AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1319  }
1320
1321  if (MatchAddress(N, AM))
1322    return false;
1323
1324  EVT VT = N.getValueType();
1325  if (AM.BaseType == X86ISelAddressMode::RegBase) {
1326    if (!AM.Base_Reg.getNode())
1327      AM.Base_Reg = CurDAG->getRegister(0, VT);
1328  }
1329
1330  if (!AM.IndexReg.getNode())
1331    AM.IndexReg = CurDAG->getRegister(0, VT);
1332
1333  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1334  return true;
1335}
1336
1337/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
1338/// match a load whose top elements are either undef or zeros.  The load flavor
1339/// is derived from the type of N, which is either v4f32 or v2f64.
1340///
1341/// We also return:
1342///   PatternChainNode: this is the matched node that has a chain input and
1343///   output.
1344bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
1345                                          SDValue N, SDValue &Base,
1346                                          SDValue &Scale, SDValue &Index,
1347                                          SDValue &Disp, SDValue &Segment,
1348                                          SDValue &PatternNodeWithChain) {
1349  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1350    PatternNodeWithChain = N.getOperand(0);
1351    if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
1352        PatternNodeWithChain.hasOneUse() &&
1353        IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1354        IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1355      LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
1356      if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1357        return false;
1358      return true;
1359    }
1360  }
1361
1362  // Also handle the case where we explicitly require zeros in the top
1363  // elements.  This is a vector shuffle from the zero vector.
1364  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1365      // Check to see if the top elements are all zeros (or bitcast of zeros).
1366      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1367      N.getOperand(0).getNode()->hasOneUse() &&
1368      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1369      N.getOperand(0).getOperand(0).hasOneUse() &&
1370      IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1371      IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1372    // Okay, this is a zero extending load.  Fold it.
1373    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1374    if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1375      return false;
1376    PatternNodeWithChain = SDValue(LD, 0);
1377    return true;
1378  }
1379  return false;
1380}
1381
1382
1383/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1384/// mode it matches can be cost effectively emitted as an LEA instruction.
1385bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
1386                                    SDValue &Base, SDValue &Scale,
1387                                    SDValue &Index, SDValue &Disp,
1388                                    SDValue &Segment) {
1389  X86ISelAddressMode AM;
1390
1391  // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1392  // segments.
1393  SDValue Copy = AM.Segment;
1394  SDValue T = CurDAG->getRegister(0, MVT::i32);
1395  AM.Segment = T;
1396  if (MatchAddress(N, AM))
1397    return false;
1398  assert (T == AM.Segment);
1399  AM.Segment = Copy;
1400
1401  EVT VT = N.getValueType();
1402  unsigned Complexity = 0;
1403  if (AM.BaseType == X86ISelAddressMode::RegBase)
1404    if (AM.Base_Reg.getNode())
1405      Complexity = 1;
1406    else
1407      AM.Base_Reg = CurDAG->getRegister(0, VT);
1408  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1409    Complexity = 4;
1410
1411  if (AM.IndexReg.getNode())
1412    Complexity++;
1413  else
1414    AM.IndexReg = CurDAG->getRegister(0, VT);
1415
1416  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1417  // a simple shift.
1418  if (AM.Scale > 1)
1419    Complexity++;
1420
1421  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1422  // to a LEA. This is determined with some expermentation but is by no means
1423  // optimal (especially for code size consideration). LEA is nice because of
1424  // its three-address nature. Tweak the cost function again when we can run
1425  // convertToThreeAddress() at register allocation time.
1426  if (AM.hasSymbolicDisplacement()) {
1427    // For X86-64, we should always use lea to materialize RIP relative
1428    // addresses.
1429    if (Subtarget->is64Bit())
1430      Complexity = 4;
1431    else
1432      Complexity += 2;
1433  }
1434
1435  if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
1436    Complexity++;
1437
1438  // If it isn't worth using an LEA, reject it.
1439  if (Complexity <= 2)
1440    return false;
1441
1442  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1443  return true;
1444}
1445
1446/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
1447bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
1448                                        SDValue &Scale, SDValue &Index,
1449                                        SDValue &Disp, SDValue &Segment) {
1450  assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1451  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1452
1453  X86ISelAddressMode AM;
1454  AM.GV = GA->getGlobal();
1455  AM.Disp += GA->getOffset();
1456  AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
1457  AM.SymbolFlags = GA->getTargetFlags();
1458
1459  if (N.getValueType() == MVT::i32) {
1460    AM.Scale = 1;
1461    AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1462  } else {
1463    AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1464  }
1465
1466  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1467  return true;
1468}
1469
1470
1471bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
1472                                  SDValue &Base, SDValue &Scale,
1473                                  SDValue &Index, SDValue &Disp,
1474                                  SDValue &Segment) {
1475  if (!ISD::isNON_EXTLoad(N.getNode()) ||
1476      !IsProfitableToFold(N, P, P) ||
1477      !IsLegalToFold(N, P, P, OptLevel))
1478    return false;
1479
1480  return SelectAddr(N.getNode(),
1481                    N.getOperand(1), Base, Scale, Index, Disp, Segment);
1482}
1483
1484/// getGlobalBaseReg - Return an SDNode that returns the value of
1485/// the global base register. Output instructions required to
1486/// initialize the global base register, if necessary.
1487///
1488SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1489  unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1490  return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
1491}
1492
1493SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1494  SDValue Chain = Node->getOperand(0);
1495  SDValue In1 = Node->getOperand(1);
1496  SDValue In2L = Node->getOperand(2);
1497  SDValue In2H = Node->getOperand(3);
1498
1499  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1500  if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1501    return NULL;
1502  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1503  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1504  const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
1505  SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
1506                                           MVT::i32, MVT::i32, MVT::Other, Ops);
1507  cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
1508  return ResNode;
1509}
1510
1511/// Atomic opcode table
1512///
1513enum AtomicOpc {
1514  ADD,
1515  SUB,
1516  INC,
1517  DEC,
1518  OR,
1519  AND,
1520  XOR,
1521  AtomicOpcEnd
1522};
1523
1524enum AtomicSz {
1525  ConstantI8,
1526  I8,
1527  SextConstantI16,
1528  ConstantI16,
1529  I16,
1530  SextConstantI32,
1531  ConstantI32,
1532  I32,
1533  SextConstantI64,
1534  ConstantI64,
1535  I64,
1536  AtomicSzEnd
1537};
1538
1539static const uint16_t AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = {
1540  {
1541    X86::LOCK_ADD8mi,
1542    X86::LOCK_ADD8mr,
1543    X86::LOCK_ADD16mi8,
1544    X86::LOCK_ADD16mi,
1545    X86::LOCK_ADD16mr,
1546    X86::LOCK_ADD32mi8,
1547    X86::LOCK_ADD32mi,
1548    X86::LOCK_ADD32mr,
1549    X86::LOCK_ADD64mi8,
1550    X86::LOCK_ADD64mi32,
1551    X86::LOCK_ADD64mr,
1552  },
1553  {
1554    X86::LOCK_SUB8mi,
1555    X86::LOCK_SUB8mr,
1556    X86::LOCK_SUB16mi8,
1557    X86::LOCK_SUB16mi,
1558    X86::LOCK_SUB16mr,
1559    X86::LOCK_SUB32mi8,
1560    X86::LOCK_SUB32mi,
1561    X86::LOCK_SUB32mr,
1562    X86::LOCK_SUB64mi8,
1563    X86::LOCK_SUB64mi32,
1564    X86::LOCK_SUB64mr,
1565  },
1566  {
1567    0,
1568    X86::LOCK_INC8m,
1569    0,
1570    0,
1571    X86::LOCK_INC16m,
1572    0,
1573    0,
1574    X86::LOCK_INC32m,
1575    0,
1576    0,
1577    X86::LOCK_INC64m,
1578  },
1579  {
1580    0,
1581    X86::LOCK_DEC8m,
1582    0,
1583    0,
1584    X86::LOCK_DEC16m,
1585    0,
1586    0,
1587    X86::LOCK_DEC32m,
1588    0,
1589    0,
1590    X86::LOCK_DEC64m,
1591  },
1592  {
1593    X86::LOCK_OR8mi,
1594    X86::LOCK_OR8mr,
1595    X86::LOCK_OR16mi8,
1596    X86::LOCK_OR16mi,
1597    X86::LOCK_OR16mr,
1598    X86::LOCK_OR32mi8,
1599    X86::LOCK_OR32mi,
1600    X86::LOCK_OR32mr,
1601    X86::LOCK_OR64mi8,
1602    X86::LOCK_OR64mi32,
1603    X86::LOCK_OR64mr,
1604  },
1605  {
1606    X86::LOCK_AND8mi,
1607    X86::LOCK_AND8mr,
1608    X86::LOCK_AND16mi8,
1609    X86::LOCK_AND16mi,
1610    X86::LOCK_AND16mr,
1611    X86::LOCK_AND32mi8,
1612    X86::LOCK_AND32mi,
1613    X86::LOCK_AND32mr,
1614    X86::LOCK_AND64mi8,
1615    X86::LOCK_AND64mi32,
1616    X86::LOCK_AND64mr,
1617  },
1618  {
1619    X86::LOCK_XOR8mi,
1620    X86::LOCK_XOR8mr,
1621    X86::LOCK_XOR16mi8,
1622    X86::LOCK_XOR16mi,
1623    X86::LOCK_XOR16mr,
1624    X86::LOCK_XOR32mi8,
1625    X86::LOCK_XOR32mi,
1626    X86::LOCK_XOR32mr,
1627    X86::LOCK_XOR64mi8,
1628    X86::LOCK_XOR64mi32,
1629    X86::LOCK_XOR64mr,
1630  }
1631};
1632
1633// Return the target constant operand for atomic-load-op and do simple
1634// translations, such as from atomic-load-add to lock-sub. The return value is
1635// one of the following 3 cases:
1636// + target-constant, the operand could be supported as a target constant.
1637// + empty, the operand is not needed any more with the new op selected.
1638// + non-empty, otherwise.
1639static SDValue getAtomicLoadArithTargetConstant(SelectionDAG *CurDAG,
1640                                                DebugLoc dl,
1641                                                enum AtomicOpc &Op, EVT NVT,
1642                                                SDValue Val) {
1643  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val)) {
1644    int64_t CNVal = CN->getSExtValue();
1645    // Quit if not 32-bit imm.
1646    if ((int32_t)CNVal != CNVal)
1647      return Val;
1648    // For atomic-load-add, we could do some optimizations.
1649    if (Op == ADD) {
1650      // Translate to INC/DEC if ADD by 1 or -1.
1651      if ((CNVal == 1) || (CNVal == -1)) {
1652        Op = (CNVal == 1) ? INC : DEC;
1653        // No more constant operand after being translated into INC/DEC.
1654        return SDValue();
1655      }
1656      // Translate to SUB if ADD by negative value.
1657      if (CNVal < 0) {
1658        Op = SUB;
1659        CNVal = -CNVal;
1660      }
1661    }
1662    return CurDAG->getTargetConstant(CNVal, NVT);
1663  }
1664
1665  // If the value operand is single-used, try to optimize it.
1666  if (Op == ADD && Val.hasOneUse()) {
1667    // Translate (atomic-load-add ptr (sub 0 x)) back to (lock-sub x).
1668    if (Val.getOpcode() == ISD::SUB && X86::isZeroNode(Val.getOperand(0))) {
1669      Op = SUB;
1670      return Val.getOperand(1);
1671    }
1672    // A special case for i16, which needs truncating as, in most cases, it's
1673    // promoted to i32. We will translate
1674    // (atomic-load-add (truncate (sub 0 x))) to (lock-sub (EXTRACT_SUBREG x))
1675    if (Val.getOpcode() == ISD::TRUNCATE && NVT == MVT::i16 &&
1676        Val.getOperand(0).getOpcode() == ISD::SUB &&
1677        X86::isZeroNode(Val.getOperand(0).getOperand(0))) {
1678      Op = SUB;
1679      Val = Val.getOperand(0);
1680      return CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, NVT,
1681                                            Val.getOperand(1));
1682    }
1683  }
1684
1685  return Val;
1686}
1687
1688SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, EVT NVT) {
1689  if (Node->hasAnyUseOfValue(0))
1690    return 0;
1691
1692  DebugLoc dl = Node->getDebugLoc();
1693
1694  // Optimize common patterns for __sync_or_and_fetch and similar arith
1695  // operations where the result is not used. This allows us to use the "lock"
1696  // version of the arithmetic instruction.
1697  SDValue Chain = Node->getOperand(0);
1698  SDValue Ptr = Node->getOperand(1);
1699  SDValue Val = Node->getOperand(2);
1700  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1701  if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1702    return 0;
1703
1704  // Which index into the table.
1705  enum AtomicOpc Op;
1706  switch (Node->getOpcode()) {
1707    default:
1708      return 0;
1709    case ISD::ATOMIC_LOAD_OR:
1710      Op = OR;
1711      break;
1712    case ISD::ATOMIC_LOAD_AND:
1713      Op = AND;
1714      break;
1715    case ISD::ATOMIC_LOAD_XOR:
1716      Op = XOR;
1717      break;
1718    case ISD::ATOMIC_LOAD_ADD:
1719      Op = ADD;
1720      break;
1721  }
1722
1723  Val = getAtomicLoadArithTargetConstant(CurDAG, dl, Op, NVT, Val);
1724  bool isUnOp = !Val.getNode();
1725  bool isCN = Val.getNode() && (Val.getOpcode() == ISD::TargetConstant);
1726
1727  unsigned Opc = 0;
1728  switch (NVT.getSimpleVT().SimpleTy) {
1729    default: return 0;
1730    case MVT::i8:
1731      if (isCN)
1732        Opc = AtomicOpcTbl[Op][ConstantI8];
1733      else
1734        Opc = AtomicOpcTbl[Op][I8];
1735      break;
1736    case MVT::i16:
1737      if (isCN) {
1738        if (immSext8(Val.getNode()))
1739          Opc = AtomicOpcTbl[Op][SextConstantI16];
1740        else
1741          Opc = AtomicOpcTbl[Op][ConstantI16];
1742      } else
1743        Opc = AtomicOpcTbl[Op][I16];
1744      break;
1745    case MVT::i32:
1746      if (isCN) {
1747        if (immSext8(Val.getNode()))
1748          Opc = AtomicOpcTbl[Op][SextConstantI32];
1749        else
1750          Opc = AtomicOpcTbl[Op][ConstantI32];
1751      } else
1752        Opc = AtomicOpcTbl[Op][I32];
1753      break;
1754    case MVT::i64:
1755      Opc = AtomicOpcTbl[Op][I64];
1756      if (isCN) {
1757        if (immSext8(Val.getNode()))
1758          Opc = AtomicOpcTbl[Op][SextConstantI64];
1759        else if (i64immSExt32(Val.getNode()))
1760          Opc = AtomicOpcTbl[Op][ConstantI64];
1761      }
1762      break;
1763  }
1764
1765  assert(Opc != 0 && "Invalid arith lock transform!");
1766
1767  SDValue Ret;
1768  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1769                                                 dl, NVT), 0);
1770  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1771  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1772  if (isUnOp) {
1773    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
1774    Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0);
1775  } else {
1776    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1777    Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0);
1778  }
1779  cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1780  SDValue RetVals[] = { Undef, Ret };
1781  return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1782}
1783
1784/// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
1785/// any uses which require the SF or OF bits to be accurate.
1786static bool HasNoSignedComparisonUses(SDNode *N) {
1787  // Examine each user of the node.
1788  for (SDNode::use_iterator UI = N->use_begin(),
1789         UE = N->use_end(); UI != UE; ++UI) {
1790    // Only examine CopyToReg uses.
1791    if (UI->getOpcode() != ISD::CopyToReg)
1792      return false;
1793    // Only examine CopyToReg uses that copy to EFLAGS.
1794    if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
1795          X86::EFLAGS)
1796      return false;
1797    // Examine each user of the CopyToReg use.
1798    for (SDNode::use_iterator FlagUI = UI->use_begin(),
1799           FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
1800      // Only examine the Flag result.
1801      if (FlagUI.getUse().getResNo() != 1) continue;
1802      // Anything unusual: assume conservatively.
1803      if (!FlagUI->isMachineOpcode()) return false;
1804      // Examine the opcode of the user.
1805      switch (FlagUI->getMachineOpcode()) {
1806      // These comparisons don't treat the most significant bit specially.
1807      case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
1808      case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
1809      case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
1810      case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
1811      case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
1812      case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
1813      case X86::CMOVA16rr: case X86::CMOVA16rm:
1814      case X86::CMOVA32rr: case X86::CMOVA32rm:
1815      case X86::CMOVA64rr: case X86::CMOVA64rm:
1816      case X86::CMOVAE16rr: case X86::CMOVAE16rm:
1817      case X86::CMOVAE32rr: case X86::CMOVAE32rm:
1818      case X86::CMOVAE64rr: case X86::CMOVAE64rm:
1819      case X86::CMOVB16rr: case X86::CMOVB16rm:
1820      case X86::CMOVB32rr: case X86::CMOVB32rm:
1821      case X86::CMOVB64rr: case X86::CMOVB64rm:
1822      case X86::CMOVBE16rr: case X86::CMOVBE16rm:
1823      case X86::CMOVBE32rr: case X86::CMOVBE32rm:
1824      case X86::CMOVBE64rr: case X86::CMOVBE64rm:
1825      case X86::CMOVE16rr: case X86::CMOVE16rm:
1826      case X86::CMOVE32rr: case X86::CMOVE32rm:
1827      case X86::CMOVE64rr: case X86::CMOVE64rm:
1828      case X86::CMOVNE16rr: case X86::CMOVNE16rm:
1829      case X86::CMOVNE32rr: case X86::CMOVNE32rm:
1830      case X86::CMOVNE64rr: case X86::CMOVNE64rm:
1831      case X86::CMOVNP16rr: case X86::CMOVNP16rm:
1832      case X86::CMOVNP32rr: case X86::CMOVNP32rm:
1833      case X86::CMOVNP64rr: case X86::CMOVNP64rm:
1834      case X86::CMOVP16rr: case X86::CMOVP16rm:
1835      case X86::CMOVP32rr: case X86::CMOVP32rm:
1836      case X86::CMOVP64rr: case X86::CMOVP64rm:
1837        continue;
1838      // Anything else: assume conservatively.
1839      default: return false;
1840      }
1841    }
1842  }
1843  return true;
1844}
1845
1846/// isLoadIncOrDecStore - Check whether or not the chain ending in StoreNode
1847/// is suitable for doing the {load; increment or decrement; store} to modify
1848/// transformation.
1849static bool isLoadIncOrDecStore(StoreSDNode *StoreNode, unsigned Opc,
1850                                SDValue StoredVal, SelectionDAG *CurDAG,
1851                                LoadSDNode* &LoadNode, SDValue &InputChain) {
1852
1853  // is the value stored the result of a DEC or INC?
1854  if (!(Opc == X86ISD::DEC || Opc == X86ISD::INC)) return false;
1855
1856  // is the stored value result 0 of the load?
1857  if (StoredVal.getResNo() != 0) return false;
1858
1859  // are there other uses of the loaded value than the inc or dec?
1860  if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
1861
1862  // is the store non-extending and non-indexed?
1863  if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
1864    return false;
1865
1866  SDValue Load = StoredVal->getOperand(0);
1867  // Is the stored value a non-extending and non-indexed load?
1868  if (!ISD::isNormalLoad(Load.getNode())) return false;
1869
1870  // Return LoadNode by reference.
1871  LoadNode = cast<LoadSDNode>(Load);
1872  // is the size of the value one that we can handle? (i.e. 64, 32, 16, or 8)
1873  EVT LdVT = LoadNode->getMemoryVT();
1874  if (LdVT != MVT::i64 && LdVT != MVT::i32 && LdVT != MVT::i16 &&
1875      LdVT != MVT::i8)
1876    return false;
1877
1878  // Is store the only read of the loaded value?
1879  if (!Load.hasOneUse())
1880    return false;
1881
1882  // Is the address of the store the same as the load?
1883  if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
1884      LoadNode->getOffset() != StoreNode->getOffset())
1885    return false;
1886
1887  // Check if the chain is produced by the load or is a TokenFactor with
1888  // the load output chain as an operand. Return InputChain by reference.
1889  SDValue Chain = StoreNode->getChain();
1890
1891  bool ChainCheck = false;
1892  if (Chain == Load.getValue(1)) {
1893    ChainCheck = true;
1894    InputChain = LoadNode->getChain();
1895  } else if (Chain.getOpcode() == ISD::TokenFactor) {
1896    SmallVector<SDValue, 4> ChainOps;
1897    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
1898      SDValue Op = Chain.getOperand(i);
1899      if (Op == Load.getValue(1)) {
1900        ChainCheck = true;
1901        continue;
1902      }
1903
1904      // Make sure using Op as part of the chain would not cause a cycle here.
1905      // In theory, we could check whether the chain node is a predecessor of
1906      // the load. But that can be very expensive. Instead visit the uses and
1907      // make sure they all have smaller node id than the load.
1908      int LoadId = LoadNode->getNodeId();
1909      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
1910             UE = UI->use_end(); UI != UE; ++UI) {
1911        if (UI.getUse().getResNo() != 0)
1912          continue;
1913        if (UI->getNodeId() > LoadId)
1914          return false;
1915      }
1916
1917      ChainOps.push_back(Op);
1918    }
1919
1920    if (ChainCheck)
1921      // Make a new TokenFactor with all the other input chains except
1922      // for the load.
1923      InputChain = CurDAG->getNode(ISD::TokenFactor, Chain.getDebugLoc(),
1924                                   MVT::Other, &ChainOps[0], ChainOps.size());
1925  }
1926  if (!ChainCheck)
1927    return false;
1928
1929  return true;
1930}
1931
1932/// getFusedLdStOpcode - Get the appropriate X86 opcode for an in memory
1933/// increment or decrement. Opc should be X86ISD::DEC or X86ISD::INC.
1934static unsigned getFusedLdStOpcode(EVT &LdVT, unsigned Opc) {
1935  if (Opc == X86ISD::DEC) {
1936    if (LdVT == MVT::i64) return X86::DEC64m;
1937    if (LdVT == MVT::i32) return X86::DEC32m;
1938    if (LdVT == MVT::i16) return X86::DEC16m;
1939    if (LdVT == MVT::i8)  return X86::DEC8m;
1940  } else {
1941    assert(Opc == X86ISD::INC && "unrecognized opcode");
1942    if (LdVT == MVT::i64) return X86::INC64m;
1943    if (LdVT == MVT::i32) return X86::INC32m;
1944    if (LdVT == MVT::i16) return X86::INC16m;
1945    if (LdVT == MVT::i8)  return X86::INC8m;
1946  }
1947  llvm_unreachable("unrecognized size for LdVT");
1948}
1949
1950/// SelectGather - Customized ISel for GATHER operations.
1951///
1952SDNode *X86DAGToDAGISel::SelectGather(SDNode *Node, unsigned Opc) {
1953  // Operands of Gather: VSrc, Base, VIdx, VMask, Scale
1954  SDValue Chain = Node->getOperand(0);
1955  SDValue VSrc = Node->getOperand(2);
1956  SDValue Base = Node->getOperand(3);
1957  SDValue VIdx = Node->getOperand(4);
1958  SDValue VMask = Node->getOperand(5);
1959  ConstantSDNode *Scale = dyn_cast<ConstantSDNode>(Node->getOperand(6));
1960  if (!Scale)
1961    return 0;
1962
1963  SDVTList VTs = CurDAG->getVTList(VSrc.getValueType(), VSrc.getValueType(),
1964                                   MVT::Other);
1965
1966  // Memory Operands: Base, Scale, Index, Disp, Segment
1967  SDValue Disp = CurDAG->getTargetConstant(0, MVT::i32);
1968  SDValue Segment = CurDAG->getRegister(0, MVT::i32);
1969  const SDValue Ops[] = { VSrc, Base, getI8Imm(Scale->getSExtValue()), VIdx,
1970                          Disp, Segment, VMask, Chain};
1971  SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(), VTs, Ops);
1972  // Node has 2 outputs: VDst and MVT::Other.
1973  // ResNode has 3 outputs: VDst, VMask_wb, and MVT::Other.
1974  // We replace VDst of Node with VDst of ResNode, and Other of Node with Other
1975  // of ResNode.
1976  ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0));
1977  ReplaceUses(SDValue(Node, 1), SDValue(ResNode, 2));
1978  return ResNode;
1979}
1980
1981SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
1982  EVT NVT = Node->getValueType(0);
1983  unsigned Opc, MOpc;
1984  unsigned Opcode = Node->getOpcode();
1985  DebugLoc dl = Node->getDebugLoc();
1986
1987  DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
1988
1989  if (Node->isMachineOpcode()) {
1990    DEBUG(dbgs() << "== ";  Node->dump(CurDAG); dbgs() << '\n');
1991    Node->setNodeId(-1);
1992    return NULL;   // Already selected.
1993  }
1994
1995  switch (Opcode) {
1996  default: break;
1997  case ISD::INTRINSIC_W_CHAIN: {
1998    unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
1999    switch (IntNo) {
2000    default: break;
2001    case Intrinsic::x86_avx2_gather_d_pd:
2002    case Intrinsic::x86_avx2_gather_d_pd_256:
2003    case Intrinsic::x86_avx2_gather_q_pd:
2004    case Intrinsic::x86_avx2_gather_q_pd_256:
2005    case Intrinsic::x86_avx2_gather_d_ps:
2006    case Intrinsic::x86_avx2_gather_d_ps_256:
2007    case Intrinsic::x86_avx2_gather_q_ps:
2008    case Intrinsic::x86_avx2_gather_q_ps_256:
2009    case Intrinsic::x86_avx2_gather_d_q:
2010    case Intrinsic::x86_avx2_gather_d_q_256:
2011    case Intrinsic::x86_avx2_gather_q_q:
2012    case Intrinsic::x86_avx2_gather_q_q_256:
2013    case Intrinsic::x86_avx2_gather_d_d:
2014    case Intrinsic::x86_avx2_gather_d_d_256:
2015    case Intrinsic::x86_avx2_gather_q_d:
2016    case Intrinsic::x86_avx2_gather_q_d_256: {
2017      unsigned Opc;
2018      switch (IntNo) {
2019      default: llvm_unreachable("Impossible intrinsic");
2020      case Intrinsic::x86_avx2_gather_d_pd:     Opc = X86::VGATHERDPDrm;  break;
2021      case Intrinsic::x86_avx2_gather_d_pd_256: Opc = X86::VGATHERDPDYrm; break;
2022      case Intrinsic::x86_avx2_gather_q_pd:     Opc = X86::VGATHERQPDrm;  break;
2023      case Intrinsic::x86_avx2_gather_q_pd_256: Opc = X86::VGATHERQPDYrm; break;
2024      case Intrinsic::x86_avx2_gather_d_ps:     Opc = X86::VGATHERDPSrm;  break;
2025      case Intrinsic::x86_avx2_gather_d_ps_256: Opc = X86::VGATHERDPSYrm; break;
2026      case Intrinsic::x86_avx2_gather_q_ps:     Opc = X86::VGATHERQPSrm;  break;
2027      case Intrinsic::x86_avx2_gather_q_ps_256: Opc = X86::VGATHERQPSYrm; break;
2028      case Intrinsic::x86_avx2_gather_d_q:      Opc = X86::VPGATHERDQrm;  break;
2029      case Intrinsic::x86_avx2_gather_d_q_256:  Opc = X86::VPGATHERDQYrm; break;
2030      case Intrinsic::x86_avx2_gather_q_q:      Opc = X86::VPGATHERQQrm;  break;
2031      case Intrinsic::x86_avx2_gather_q_q_256:  Opc = X86::VPGATHERQQYrm; break;
2032      case Intrinsic::x86_avx2_gather_d_d:      Opc = X86::VPGATHERDDrm;  break;
2033      case Intrinsic::x86_avx2_gather_d_d_256:  Opc = X86::VPGATHERDDYrm; break;
2034      case Intrinsic::x86_avx2_gather_q_d:      Opc = X86::VPGATHERQDrm;  break;
2035      case Intrinsic::x86_avx2_gather_q_d_256:  Opc = X86::VPGATHERQDYrm; break;
2036      }
2037      SDNode *RetVal = SelectGather(Node, Opc);
2038      if (RetVal)
2039        // We already called ReplaceUses inside SelectGather.
2040        return NULL;
2041      break;
2042    }
2043    }
2044    break;
2045  }
2046  case X86ISD::GlobalBaseReg:
2047    return getGlobalBaseReg();
2048
2049
2050  case X86ISD::ATOMOR64_DAG:
2051  case X86ISD::ATOMXOR64_DAG:
2052  case X86ISD::ATOMADD64_DAG:
2053  case X86ISD::ATOMSUB64_DAG:
2054  case X86ISD::ATOMNAND64_DAG:
2055  case X86ISD::ATOMAND64_DAG:
2056  case X86ISD::ATOMMAX64_DAG:
2057  case X86ISD::ATOMMIN64_DAG:
2058  case X86ISD::ATOMUMAX64_DAG:
2059  case X86ISD::ATOMUMIN64_DAG:
2060  case X86ISD::ATOMSWAP64_DAG: {
2061    unsigned Opc;
2062    switch (Opcode) {
2063    default: llvm_unreachable("Impossible opcode");
2064    case X86ISD::ATOMOR64_DAG:   Opc = X86::ATOMOR6432;   break;
2065    case X86ISD::ATOMXOR64_DAG:  Opc = X86::ATOMXOR6432;  break;
2066    case X86ISD::ATOMADD64_DAG:  Opc = X86::ATOMADD6432;  break;
2067    case X86ISD::ATOMSUB64_DAG:  Opc = X86::ATOMSUB6432;  break;
2068    case X86ISD::ATOMNAND64_DAG: Opc = X86::ATOMNAND6432; break;
2069    case X86ISD::ATOMAND64_DAG:  Opc = X86::ATOMAND6432;  break;
2070    case X86ISD::ATOMMAX64_DAG:  Opc = X86::ATOMMAX6432;  break;
2071    case X86ISD::ATOMMIN64_DAG:  Opc = X86::ATOMMIN6432;  break;
2072    case X86ISD::ATOMUMAX64_DAG: Opc = X86::ATOMUMAX6432; break;
2073    case X86ISD::ATOMUMIN64_DAG: Opc = X86::ATOMUMIN6432; break;
2074    case X86ISD::ATOMSWAP64_DAG: Opc = X86::ATOMSWAP6432; break;
2075    }
2076    SDNode *RetVal = SelectAtomic64(Node, Opc);
2077    if (RetVal)
2078      return RetVal;
2079    break;
2080  }
2081
2082  case ISD::ATOMIC_LOAD_XOR:
2083  case ISD::ATOMIC_LOAD_AND:
2084  case ISD::ATOMIC_LOAD_OR:
2085  case ISD::ATOMIC_LOAD_ADD: {
2086    SDNode *RetVal = SelectAtomicLoadArith(Node, NVT);
2087    if (RetVal)
2088      return RetVal;
2089    break;
2090  }
2091  case ISD::AND:
2092  case ISD::OR:
2093  case ISD::XOR: {
2094    // For operations of the form (x << C1) op C2, check if we can use a smaller
2095    // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
2096    SDValue N0 = Node->getOperand(0);
2097    SDValue N1 = Node->getOperand(1);
2098
2099    if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse())
2100      break;
2101
2102    // i8 is unshrinkable, i16 should be promoted to i32.
2103    if (NVT != MVT::i32 && NVT != MVT::i64)
2104      break;
2105
2106    ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
2107    ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
2108    if (!Cst || !ShlCst)
2109      break;
2110
2111    int64_t Val = Cst->getSExtValue();
2112    uint64_t ShlVal = ShlCst->getZExtValue();
2113
2114    // Make sure that we don't change the operation by removing bits.
2115    // This only matters for OR and XOR, AND is unaffected.
2116    uint64_t RemovedBitsMask = (1ULL << ShlVal) - 1;
2117    if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
2118      break;
2119
2120    unsigned ShlOp, Op;
2121    EVT CstVT = NVT;
2122
2123    // Check the minimum bitwidth for the new constant.
2124    // TODO: AND32ri is the same as AND64ri32 with zext imm.
2125    // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr
2126    // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
2127    if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal))
2128      CstVT = MVT::i8;
2129    else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal))
2130      CstVT = MVT::i32;
2131
2132    // Bail if there is no smaller encoding.
2133    if (NVT == CstVT)
2134      break;
2135
2136    switch (NVT.getSimpleVT().SimpleTy) {
2137    default: llvm_unreachable("Unsupported VT!");
2138    case MVT::i32:
2139      assert(CstVT == MVT::i8);
2140      ShlOp = X86::SHL32ri;
2141
2142      switch (Opcode) {
2143      default: llvm_unreachable("Impossible opcode");
2144      case ISD::AND: Op = X86::AND32ri8; break;
2145      case ISD::OR:  Op =  X86::OR32ri8; break;
2146      case ISD::XOR: Op = X86::XOR32ri8; break;
2147      }
2148      break;
2149    case MVT::i64:
2150      assert(CstVT == MVT::i8 || CstVT == MVT::i32);
2151      ShlOp = X86::SHL64ri;
2152
2153      switch (Opcode) {
2154      default: llvm_unreachable("Impossible opcode");
2155      case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break;
2156      case ISD::OR:  Op = CstVT==MVT::i8?  X86::OR64ri8 :  X86::OR64ri32; break;
2157      case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break;
2158      }
2159      break;
2160    }
2161
2162    // Emit the smaller op and the shift.
2163    SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT);
2164    SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst);
2165    return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
2166                                getI8Imm(ShlVal));
2167  }
2168  case X86ISD::UMUL: {
2169    SDValue N0 = Node->getOperand(0);
2170    SDValue N1 = Node->getOperand(1);
2171
2172    unsigned LoReg;
2173    switch (NVT.getSimpleVT().SimpleTy) {
2174    default: llvm_unreachable("Unsupported VT!");
2175    case MVT::i8:  LoReg = X86::AL;  Opc = X86::MUL8r; break;
2176    case MVT::i16: LoReg = X86::AX;  Opc = X86::MUL16r; break;
2177    case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
2178    case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
2179    }
2180
2181    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
2182                                          N0, SDValue()).getValue(1);
2183
2184    SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
2185    SDValue Ops[] = {N1, InFlag};
2186    SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2187
2188    ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
2189    ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
2190    ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2));
2191    return NULL;
2192  }
2193
2194  case ISD::SMUL_LOHI:
2195  case ISD::UMUL_LOHI: {
2196    SDValue N0 = Node->getOperand(0);
2197    SDValue N1 = Node->getOperand(1);
2198
2199    bool isSigned = Opcode == ISD::SMUL_LOHI;
2200    bool hasBMI2 = Subtarget->hasBMI2();
2201    if (!isSigned) {
2202      switch (NVT.getSimpleVT().SimpleTy) {
2203      default: llvm_unreachable("Unsupported VT!");
2204      case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
2205      case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
2206      case MVT::i32: Opc = hasBMI2 ? X86::MULX32rr : X86::MUL32r;
2207                     MOpc = hasBMI2 ? X86::MULX32rm : X86::MUL32m; break;
2208      case MVT::i64: Opc = hasBMI2 ? X86::MULX64rr : X86::MUL64r;
2209                     MOpc = hasBMI2 ? X86::MULX64rm : X86::MUL64m; break;
2210      }
2211    } else {
2212      switch (NVT.getSimpleVT().SimpleTy) {
2213      default: llvm_unreachable("Unsupported VT!");
2214      case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
2215      case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
2216      case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
2217      case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
2218      }
2219    }
2220
2221    unsigned SrcReg, LoReg, HiReg;
2222    switch (Opc) {
2223    default: llvm_unreachable("Unknown MUL opcode!");
2224    case X86::IMUL8r:
2225    case X86::MUL8r:
2226      SrcReg = LoReg = X86::AL; HiReg = X86::AH;
2227      break;
2228    case X86::IMUL16r:
2229    case X86::MUL16r:
2230      SrcReg = LoReg = X86::AX; HiReg = X86::DX;
2231      break;
2232    case X86::IMUL32r:
2233    case X86::MUL32r:
2234      SrcReg = LoReg = X86::EAX; HiReg = X86::EDX;
2235      break;
2236    case X86::IMUL64r:
2237    case X86::MUL64r:
2238      SrcReg = LoReg = X86::RAX; HiReg = X86::RDX;
2239      break;
2240    case X86::MULX32rr:
2241      SrcReg = X86::EDX; LoReg = HiReg = 0;
2242      break;
2243    case X86::MULX64rr:
2244      SrcReg = X86::RDX; LoReg = HiReg = 0;
2245      break;
2246    }
2247
2248    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2249    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2250    // Multiply is commmutative.
2251    if (!foldedLoad) {
2252      foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2253      if (foldedLoad)
2254        std::swap(N0, N1);
2255    }
2256
2257    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg,
2258                                          N0, SDValue()).getValue(1);
2259    SDValue ResHi, ResLo;
2260
2261    if (foldedLoad) {
2262      SDValue Chain;
2263      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2264                        InFlag };
2265      if (MOpc == X86::MULX32rm || MOpc == X86::MULX64rm) {
2266        SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other, MVT::Glue);
2267        SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
2268        ResHi = SDValue(CNode, 0);
2269        ResLo = SDValue(CNode, 1);
2270        Chain = SDValue(CNode, 2);
2271        InFlag = SDValue(CNode, 3);
2272      } else {
2273        SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
2274        SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
2275        Chain = SDValue(CNode, 0);
2276        InFlag = SDValue(CNode, 1);
2277      }
2278
2279      // Update the chain.
2280      ReplaceUses(N1.getValue(1), Chain);
2281    } else {
2282      SDValue Ops[] = { N1, InFlag };
2283      if (Opc == X86::MULX32rr || Opc == X86::MULX64rr) {
2284        SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Glue);
2285        SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2286        ResHi = SDValue(CNode, 0);
2287        ResLo = SDValue(CNode, 1);
2288        InFlag = SDValue(CNode, 2);
2289      } else {
2290        SDVTList VTs = CurDAG->getVTList(MVT::Glue);
2291        SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2292        InFlag = SDValue(CNode, 0);
2293      }
2294    }
2295
2296    // Prevent use of AH in a REX instruction by referencing AX instead.
2297    if (HiReg == X86::AH && Subtarget->is64Bit() &&
2298        !SDValue(Node, 1).use_empty()) {
2299      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2300                                              X86::AX, MVT::i16, InFlag);
2301      InFlag = Result.getValue(2);
2302      // Get the low part if needed. Don't use getCopyFromReg for aliasing
2303      // registers.
2304      if (!SDValue(Node, 0).use_empty())
2305        ReplaceUses(SDValue(Node, 1),
2306          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2307
2308      // Shift AX down 8 bits.
2309      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2310                                              Result,
2311                                     CurDAG->getTargetConstant(8, MVT::i8)), 0);
2312      // Then truncate it down to i8.
2313      ReplaceUses(SDValue(Node, 1),
2314        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2315    }
2316    // Copy the low half of the result, if it is needed.
2317    if (!SDValue(Node, 0).use_empty()) {
2318      if (ResLo.getNode() == 0) {
2319        assert(LoReg && "Register for low half is not defined!");
2320        ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, NVT,
2321                                       InFlag);
2322        InFlag = ResLo.getValue(2);
2323      }
2324      ReplaceUses(SDValue(Node, 0), ResLo);
2325      DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG); dbgs() << '\n');
2326    }
2327    // Copy the high half of the result, if it is needed.
2328    if (!SDValue(Node, 1).use_empty()) {
2329      if (ResHi.getNode() == 0) {
2330        assert(HiReg && "Register for high half is not defined!");
2331        ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, NVT,
2332                                       InFlag);
2333        InFlag = ResHi.getValue(2);
2334      }
2335      ReplaceUses(SDValue(Node, 1), ResHi);
2336      DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG); dbgs() << '\n');
2337    }
2338
2339    // Propagate ordering to the last node, for now.
2340    CurDAG->AssignOrdering(InFlag.getNode(), CurDAG->GetOrdering(Node));
2341
2342    return NULL;
2343  }
2344
2345  case ISD::SDIVREM:
2346  case ISD::UDIVREM: {
2347    SDValue N0 = Node->getOperand(0);
2348    SDValue N1 = Node->getOperand(1);
2349
2350    bool isSigned = Opcode == ISD::SDIVREM;
2351    if (!isSigned) {
2352      switch (NVT.getSimpleVT().SimpleTy) {
2353      default: llvm_unreachable("Unsupported VT!");
2354      case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
2355      case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
2356      case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
2357      case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
2358      }
2359    } else {
2360      switch (NVT.getSimpleVT().SimpleTy) {
2361      default: llvm_unreachable("Unsupported VT!");
2362      case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
2363      case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
2364      case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
2365      case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
2366      }
2367    }
2368
2369    unsigned LoReg, HiReg, ClrReg;
2370    unsigned ClrOpcode, SExtOpcode;
2371    switch (NVT.getSimpleVT().SimpleTy) {
2372    default: llvm_unreachable("Unsupported VT!");
2373    case MVT::i8:
2374      LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
2375      ClrOpcode  = 0;
2376      SExtOpcode = X86::CBW;
2377      break;
2378    case MVT::i16:
2379      LoReg = X86::AX;  HiReg = X86::DX;
2380      ClrOpcode  = X86::MOV16r0; ClrReg = X86::DX;
2381      SExtOpcode = X86::CWD;
2382      break;
2383    case MVT::i32:
2384      LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
2385      ClrOpcode  = X86::MOV32r0;
2386      SExtOpcode = X86::CDQ;
2387      break;
2388    case MVT::i64:
2389      LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
2390      ClrOpcode  = X86::MOV64r0;
2391      SExtOpcode = X86::CQO;
2392      break;
2393    }
2394
2395    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2396    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2397    bool signBitIsZero = CurDAG->SignBitIsZero(N0);
2398
2399    SDValue InFlag;
2400    if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
2401      // Special case for div8, just use a move with zero extension to AX to
2402      // clear the upper 8 bits (AH).
2403      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
2404      if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
2405        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
2406        Move =
2407          SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32,
2408                                         MVT::Other, Ops), 0);
2409        Chain = Move.getValue(1);
2410        ReplaceUses(N0.getValue(1), Chain);
2411      } else {
2412        Move =
2413          SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0);
2414        Chain = CurDAG->getEntryNode();
2415      }
2416      Chain  = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue());
2417      InFlag = Chain.getValue(1);
2418    } else {
2419      InFlag =
2420        CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
2421                             LoReg, N0, SDValue()).getValue(1);
2422      if (isSigned && !signBitIsZero) {
2423        // Sign extend the low part into the high part.
2424        InFlag =
2425          SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
2426      } else {
2427        // Zero out the high part, effectively zero extending the input.
2428        SDValue ClrNode =
2429          SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0);
2430        InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
2431                                      ClrNode, InFlag).getValue(1);
2432      }
2433    }
2434
2435    if (foldedLoad) {
2436      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2437                        InFlag };
2438      SDNode *CNode =
2439        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops);
2440      InFlag = SDValue(CNode, 1);
2441      // Update the chain.
2442      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
2443    } else {
2444      InFlag =
2445        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
2446    }
2447
2448    // Prevent use of AH in a REX instruction by referencing AX instead.
2449    // Shift it down 8 bits.
2450    if (HiReg == X86::AH && Subtarget->is64Bit() &&
2451        !SDValue(Node, 1).use_empty()) {
2452      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2453                                              X86::AX, MVT::i16, InFlag);
2454      InFlag = Result.getValue(2);
2455
2456      // If we also need AL (the quotient), get it by extracting a subreg from
2457      // Result. The fast register allocator does not like multiple CopyFromReg
2458      // nodes using aliasing registers.
2459      if (!SDValue(Node, 0).use_empty())
2460        ReplaceUses(SDValue(Node, 0),
2461          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2462
2463      // Shift AX right by 8 bits instead of using AH.
2464      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2465                                         Result,
2466                                         CurDAG->getTargetConstant(8, MVT::i8)),
2467                       0);
2468      ReplaceUses(SDValue(Node, 1),
2469        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2470    }
2471    // Copy the division (low) result, if it is needed.
2472    if (!SDValue(Node, 0).use_empty()) {
2473      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2474                                                LoReg, NVT, InFlag);
2475      InFlag = Result.getValue(2);
2476      ReplaceUses(SDValue(Node, 0), Result);
2477      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2478    }
2479    // Copy the remainder (high) result, if it is needed.
2480    if (!SDValue(Node, 1).use_empty()) {
2481      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2482                                              HiReg, NVT, InFlag);
2483      InFlag = Result.getValue(2);
2484      ReplaceUses(SDValue(Node, 1), Result);
2485      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2486    }
2487    return NULL;
2488  }
2489
2490  case X86ISD::CMP:
2491  case X86ISD::SUB: {
2492    // Sometimes a SUB is used to perform comparison.
2493    if (Opcode == X86ISD::SUB && Node->hasAnyUseOfValue(0))
2494      // This node is not a CMP.
2495      break;
2496    SDValue N0 = Node->getOperand(0);
2497    SDValue N1 = Node->getOperand(1);
2498
2499    // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
2500    // use a smaller encoding.
2501    if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
2502        HasNoSignedComparisonUses(Node))
2503      // Look past the truncate if CMP is the only use of it.
2504      N0 = N0.getOperand(0);
2505    if ((N0.getNode()->getOpcode() == ISD::AND ||
2506         (N0.getResNo() == 0 && N0.getNode()->getOpcode() == X86ISD::AND)) &&
2507        N0.getNode()->hasOneUse() &&
2508        N0.getValueType() != MVT::i8 &&
2509        X86::isZeroNode(N1)) {
2510      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
2511      if (!C) break;
2512
2513      // For example, convert "testl %eax, $8" to "testb %al, $8"
2514      if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
2515          (!(C->getZExtValue() & 0x80) ||
2516           HasNoSignedComparisonUses(Node))) {
2517        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
2518        SDValue Reg = N0.getNode()->getOperand(0);
2519
2520        // On x86-32, only the ABCD registers have 8-bit subregisters.
2521        if (!Subtarget->is64Bit()) {
2522          const TargetRegisterClass *TRC;
2523          switch (N0.getValueType().getSimpleVT().SimpleTy) {
2524          case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2525          case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2526          default: llvm_unreachable("Unsupported TEST operand type!");
2527          }
2528          SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2529          Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2530                                               Reg.getValueType(), Reg, RC), 0);
2531        }
2532
2533        // Extract the l-register.
2534        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
2535                                                        MVT::i8, Reg);
2536
2537        // Emit a testb.
2538        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
2539                                                 Subreg, Imm);
2540        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2541        // one, do not call ReplaceAllUsesWith.
2542        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2543                    SDValue(NewNode, 0));
2544        return NULL;
2545      }
2546
2547      // For example, "testl %eax, $2048" to "testb %ah, $8".
2548      if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
2549          (!(C->getZExtValue() & 0x8000) ||
2550           HasNoSignedComparisonUses(Node))) {
2551        // Shift the immediate right by 8 bits.
2552        SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
2553                                                       MVT::i8);
2554        SDValue Reg = N0.getNode()->getOperand(0);
2555
2556        // Put the value in an ABCD register.
2557        const TargetRegisterClass *TRC;
2558        switch (N0.getValueType().getSimpleVT().SimpleTy) {
2559        case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
2560        case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2561        case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2562        default: llvm_unreachable("Unsupported TEST operand type!");
2563        }
2564        SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2565        Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2566                                             Reg.getValueType(), Reg, RC), 0);
2567
2568        // Extract the h-register.
2569        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
2570                                                        MVT::i8, Reg);
2571
2572        // Emit a testb.  The EXTRACT_SUBREG becomes a COPY that can only
2573        // target GR8_NOREX registers, so make sure the register class is
2574        // forced.
2575        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl,
2576                                                 MVT::i32, Subreg, ShiftedImm);
2577        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2578        // one, do not call ReplaceAllUsesWith.
2579        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2580                    SDValue(NewNode, 0));
2581        return NULL;
2582      }
2583
2584      // For example, "testl %eax, $32776" to "testw %ax, $32776".
2585      if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
2586          N0.getValueType() != MVT::i16 &&
2587          (!(C->getZExtValue() & 0x8000) ||
2588           HasNoSignedComparisonUses(Node))) {
2589        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
2590        SDValue Reg = N0.getNode()->getOperand(0);
2591
2592        // Extract the 16-bit subregister.
2593        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
2594                                                        MVT::i16, Reg);
2595
2596        // Emit a testw.
2597        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32,
2598                                                 Subreg, Imm);
2599        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2600        // one, do not call ReplaceAllUsesWith.
2601        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2602                    SDValue(NewNode, 0));
2603        return NULL;
2604      }
2605
2606      // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
2607      if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
2608          N0.getValueType() == MVT::i64 &&
2609          (!(C->getZExtValue() & 0x80000000) ||
2610           HasNoSignedComparisonUses(Node))) {
2611        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
2612        SDValue Reg = N0.getNode()->getOperand(0);
2613
2614        // Extract the 32-bit subregister.
2615        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
2616                                                        MVT::i32, Reg);
2617
2618        // Emit a testl.
2619        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32,
2620                                                 Subreg, Imm);
2621        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2622        // one, do not call ReplaceAllUsesWith.
2623        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2624                    SDValue(NewNode, 0));
2625        return NULL;
2626      }
2627    }
2628    break;
2629  }
2630  case ISD::STORE: {
2631    // Change a chain of {load; incr or dec; store} of the same value into
2632    // a simple increment or decrement through memory of that value, if the
2633    // uses of the modified value and its address are suitable.
2634    // The DEC64m tablegen pattern is currently not able to match the case where
2635    // the EFLAGS on the original DEC are used. (This also applies to
2636    // {INC,DEC}X{64,32,16,8}.)
2637    // We'll need to improve tablegen to allow flags to be transferred from a
2638    // node in the pattern to the result node.  probably with a new keyword
2639    // for example, we have this
2640    // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2641    //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2642    //   (implicit EFLAGS)]>;
2643    // but maybe need something like this
2644    // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2645    //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2646    //   (transferrable EFLAGS)]>;
2647
2648    StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
2649    SDValue StoredVal = StoreNode->getOperand(1);
2650    unsigned Opc = StoredVal->getOpcode();
2651
2652    LoadSDNode *LoadNode = 0;
2653    SDValue InputChain;
2654    if (!isLoadIncOrDecStore(StoreNode, Opc, StoredVal, CurDAG,
2655                             LoadNode, InputChain))
2656      break;
2657
2658    SDValue Base, Scale, Index, Disp, Segment;
2659    if (!SelectAddr(LoadNode, LoadNode->getBasePtr(),
2660                    Base, Scale, Index, Disp, Segment))
2661      break;
2662
2663    MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2);
2664    MemOp[0] = StoreNode->getMemOperand();
2665    MemOp[1] = LoadNode->getMemOperand();
2666    const SDValue Ops[] = { Base, Scale, Index, Disp, Segment, InputChain };
2667    EVT LdVT = LoadNode->getMemoryVT();
2668    unsigned newOpc = getFusedLdStOpcode(LdVT, Opc);
2669    MachineSDNode *Result = CurDAG->getMachineNode(newOpc,
2670                                                   Node->getDebugLoc(),
2671                                                   MVT::i32, MVT::Other, Ops);
2672    Result->setMemRefs(MemOp, MemOp + 2);
2673
2674    ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
2675    ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
2676
2677    return Result;
2678  }
2679  }
2680
2681  SDNode *ResNode = SelectCode(Node);
2682
2683  DEBUG(dbgs() << "=> ";
2684        if (ResNode == NULL || ResNode == Node)
2685          Node->dump(CurDAG);
2686        else
2687          ResNode->dump(CurDAG);
2688        dbgs() << '\n');
2689
2690  return ResNode;
2691}
2692
2693bool X86DAGToDAGISel::
2694SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
2695                             std::vector<SDValue> &OutOps) {
2696  SDValue Op0, Op1, Op2, Op3, Op4;
2697  switch (ConstraintCode) {
2698  case 'o':   // offsetable        ??
2699  case 'v':   // not offsetable    ??
2700  default: return true;
2701  case 'm':   // memory
2702    if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4))
2703      return true;
2704    break;
2705  }
2706
2707  OutOps.push_back(Op0);
2708  OutOps.push_back(Op1);
2709  OutOps.push_back(Op2);
2710  OutOps.push_back(Op3);
2711  OutOps.push_back(Op4);
2712  return false;
2713}
2714
2715/// createX86ISelDag - This pass converts a legalized DAG into a
2716/// X86-specific DAG, ready for instruction scheduling.
2717///
2718FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
2719                                     CodeGenOpt::Level OptLevel) {
2720  return new X86DAGToDAGISel(TM, OptLevel);
2721}
2722