1//===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "MCTargetDesc/X86BaseInfo.h"
11#include "llvm/ADT/APFloat.h"
12#include "llvm/ADT/SmallString.h"
13#include "llvm/ADT/SmallVector.h"
14#include "llvm/ADT/StringSwitch.h"
15#include "llvm/ADT/Twine.h"
16#include "llvm/MC/MCContext.h"
17#include "llvm/MC/MCExpr.h"
18#include "llvm/MC/MCInst.h"
19#include "llvm/MC/MCParser/MCAsmLexer.h"
20#include "llvm/MC/MCParser/MCAsmParser.h"
21#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
22#include "llvm/MC/MCRegisterInfo.h"
23#include "llvm/MC/MCStreamer.h"
24#include "llvm/MC/MCSubtargetInfo.h"
25#include "llvm/MC/MCSymbol.h"
26#include "llvm/MC/MCTargetAsmParser.h"
27#include "llvm/Support/SourceMgr.h"
28#include "llvm/Support/TargetRegistry.h"
29#include "llvm/Support/raw_ostream.h"
30
31using namespace llvm;
32
33namespace {
34struct X86Operand;
35
36static const char OpPrecedence[] = {
37  0, // IC_PLUS
38  0, // IC_MINUS
39  1, // IC_MULTIPLY
40  1, // IC_DIVIDE
41  2, // IC_RPAREN
42  3, // IC_LPAREN
43  0, // IC_IMM
44  0  // IC_REGISTER
45};
46
47class X86AsmParser : public MCTargetAsmParser {
48  MCSubtargetInfo &STI;
49  MCAsmParser &Parser;
50  ParseInstructionInfo *InstInfo;
51private:
52  enum InfixCalculatorTok {
53    IC_PLUS = 0,
54    IC_MINUS,
55    IC_MULTIPLY,
56    IC_DIVIDE,
57    IC_RPAREN,
58    IC_LPAREN,
59    IC_IMM,
60    IC_REGISTER
61  };
62
63  class InfixCalculator {
64    typedef std::pair< InfixCalculatorTok, int64_t > ICToken;
65    SmallVector<InfixCalculatorTok, 4> InfixOperatorStack;
66    SmallVector<ICToken, 4> PostfixStack;
67
68  public:
69    int64_t popOperand() {
70      assert (!PostfixStack.empty() && "Poped an empty stack!");
71      ICToken Op = PostfixStack.pop_back_val();
72      assert ((Op.first == IC_IMM || Op.first == IC_REGISTER)
73              && "Expected and immediate or register!");
74      return Op.second;
75    }
76    void pushOperand(InfixCalculatorTok Op, int64_t Val = 0) {
77      assert ((Op == IC_IMM || Op == IC_REGISTER) &&
78              "Unexpected operand!");
79      PostfixStack.push_back(std::make_pair(Op, Val));
80    }
81
82    void popOperator() { InfixOperatorStack.pop_back_val(); }
83    void pushOperator(InfixCalculatorTok Op) {
84      // Push the new operator if the stack is empty.
85      if (InfixOperatorStack.empty()) {
86        InfixOperatorStack.push_back(Op);
87        return;
88      }
89
90      // Push the new operator if it has a higher precedence than the operator
91      // on the top of the stack or the operator on the top of the stack is a
92      // left parentheses.
93      unsigned Idx = InfixOperatorStack.size() - 1;
94      InfixCalculatorTok StackOp = InfixOperatorStack[Idx];
95      if (OpPrecedence[Op] > OpPrecedence[StackOp] || StackOp == IC_LPAREN) {
96        InfixOperatorStack.push_back(Op);
97        return;
98      }
99
100      // The operator on the top of the stack has higher precedence than the
101      // new operator.
102      unsigned ParenCount = 0;
103      while (1) {
104        // Nothing to process.
105        if (InfixOperatorStack.empty())
106          break;
107
108        Idx = InfixOperatorStack.size() - 1;
109        StackOp = InfixOperatorStack[Idx];
110        if (!(OpPrecedence[StackOp] >= OpPrecedence[Op] || ParenCount))
111          break;
112
113        // If we have an even parentheses count and we see a left parentheses,
114        // then stop processing.
115        if (!ParenCount && StackOp == IC_LPAREN)
116          break;
117
118        if (StackOp == IC_RPAREN) {
119          ++ParenCount;
120          InfixOperatorStack.pop_back_val();
121        } else if (StackOp == IC_LPAREN) {
122          --ParenCount;
123          InfixOperatorStack.pop_back_val();
124        } else {
125          InfixOperatorStack.pop_back_val();
126          PostfixStack.push_back(std::make_pair(StackOp, 0));
127        }
128      }
129      // Push the new operator.
130      InfixOperatorStack.push_back(Op);
131    }
132    int64_t execute() {
133      // Push any remaining operators onto the postfix stack.
134      while (!InfixOperatorStack.empty()) {
135        InfixCalculatorTok StackOp = InfixOperatorStack.pop_back_val();
136        if (StackOp != IC_LPAREN && StackOp != IC_RPAREN)
137          PostfixStack.push_back(std::make_pair(StackOp, 0));
138      }
139
140      if (PostfixStack.empty())
141        return 0;
142
143      SmallVector<ICToken, 16> OperandStack;
144      for (unsigned i = 0, e = PostfixStack.size(); i != e; ++i) {
145        ICToken Op = PostfixStack[i];
146        if (Op.first == IC_IMM || Op.first == IC_REGISTER) {
147          OperandStack.push_back(Op);
148        } else {
149          assert (OperandStack.size() > 1 && "Too few operands.");
150          int64_t Val;
151          ICToken Op2 = OperandStack.pop_back_val();
152          ICToken Op1 = OperandStack.pop_back_val();
153          switch (Op.first) {
154          default:
155            report_fatal_error("Unexpected operator!");
156            break;
157          case IC_PLUS:
158            Val = Op1.second + Op2.second;
159            OperandStack.push_back(std::make_pair(IC_IMM, Val));
160            break;
161          case IC_MINUS:
162            Val = Op1.second - Op2.second;
163            OperandStack.push_back(std::make_pair(IC_IMM, Val));
164            break;
165          case IC_MULTIPLY:
166            assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
167                    "Multiply operation with an immediate and a register!");
168            Val = Op1.second * Op2.second;
169            OperandStack.push_back(std::make_pair(IC_IMM, Val));
170            break;
171          case IC_DIVIDE:
172            assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
173                    "Divide operation with an immediate and a register!");
174            assert (Op2.second != 0 && "Division by zero!");
175            Val = Op1.second / Op2.second;
176            OperandStack.push_back(std::make_pair(IC_IMM, Val));
177            break;
178          }
179        }
180      }
181      assert (OperandStack.size() == 1 && "Expected a single result.");
182      return OperandStack.pop_back_val().second;
183    }
184  };
185
186  enum IntelExprState {
187    IES_PLUS,
188    IES_MINUS,
189    IES_MULTIPLY,
190    IES_DIVIDE,
191    IES_LBRAC,
192    IES_RBRAC,
193    IES_LPAREN,
194    IES_RPAREN,
195    IES_REGISTER,
196    IES_INTEGER,
197    IES_IDENTIFIER,
198    IES_ERROR
199  };
200
201  class IntelExprStateMachine {
202    IntelExprState State, PrevState;
203    unsigned BaseReg, IndexReg, TmpReg, Scale;
204    int64_t Imm;
205    const MCExpr *Sym;
206    StringRef SymName;
207    bool StopOnLBrac, AddImmPrefix;
208    InfixCalculator IC;
209    InlineAsmIdentifierInfo Info;
210  public:
211    IntelExprStateMachine(int64_t imm, bool stoponlbrac, bool addimmprefix) :
212      State(IES_PLUS), PrevState(IES_ERROR), BaseReg(0), IndexReg(0), TmpReg(0),
213      Scale(1), Imm(imm), Sym(0), StopOnLBrac(stoponlbrac),
214      AddImmPrefix(addimmprefix) { Info.clear(); }
215
216    unsigned getBaseReg() { return BaseReg; }
217    unsigned getIndexReg() { return IndexReg; }
218    unsigned getScale() { return Scale; }
219    const MCExpr *getSym() { return Sym; }
220    StringRef getSymName() { return SymName; }
221    int64_t getImm() { return Imm + IC.execute(); }
222    bool isValidEndState() { return State == IES_RBRAC; }
223    bool getStopOnLBrac() { return StopOnLBrac; }
224    bool getAddImmPrefix() { return AddImmPrefix; }
225    bool hadError() { return State == IES_ERROR; }
226
227    InlineAsmIdentifierInfo &getIdentifierInfo() {
228      return Info;
229    }
230
231    void onPlus() {
232      IntelExprState CurrState = State;
233      switch (State) {
234      default:
235        State = IES_ERROR;
236        break;
237      case IES_INTEGER:
238      case IES_RPAREN:
239      case IES_REGISTER:
240        State = IES_PLUS;
241        IC.pushOperator(IC_PLUS);
242        if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
243          // If we already have a BaseReg, then assume this is the IndexReg with
244          // a scale of 1.
245          if (!BaseReg) {
246            BaseReg = TmpReg;
247          } else {
248            assert (!IndexReg && "BaseReg/IndexReg already set!");
249            IndexReg = TmpReg;
250            Scale = 1;
251          }
252        }
253        break;
254      }
255      PrevState = CurrState;
256    }
257    void onMinus() {
258      IntelExprState CurrState = State;
259      switch (State) {
260      default:
261        State = IES_ERROR;
262        break;
263      case IES_PLUS:
264      case IES_MULTIPLY:
265      case IES_DIVIDE:
266      case IES_LPAREN:
267      case IES_RPAREN:
268      case IES_LBRAC:
269      case IES_RBRAC:
270      case IES_INTEGER:
271      case IES_REGISTER:
272        State = IES_MINUS;
273        // Only push the minus operator if it is not a unary operator.
274        if (!(CurrState == IES_PLUS || CurrState == IES_MINUS ||
275              CurrState == IES_MULTIPLY || CurrState == IES_DIVIDE ||
276              CurrState == IES_LPAREN || CurrState == IES_LBRAC))
277          IC.pushOperator(IC_MINUS);
278        if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
279          // If we already have a BaseReg, then assume this is the IndexReg with
280          // a scale of 1.
281          if (!BaseReg) {
282            BaseReg = TmpReg;
283          } else {
284            assert (!IndexReg && "BaseReg/IndexReg already set!");
285            IndexReg = TmpReg;
286            Scale = 1;
287          }
288        }
289        break;
290      }
291      PrevState = CurrState;
292    }
293    void onRegister(unsigned Reg) {
294      IntelExprState CurrState = State;
295      switch (State) {
296      default:
297        State = IES_ERROR;
298        break;
299      case IES_PLUS:
300      case IES_LPAREN:
301        State = IES_REGISTER;
302        TmpReg = Reg;
303        IC.pushOperand(IC_REGISTER);
304        break;
305      case IES_MULTIPLY:
306        // Index Register - Scale * Register
307        if (PrevState == IES_INTEGER) {
308          assert (!IndexReg && "IndexReg already set!");
309          State = IES_REGISTER;
310          IndexReg = Reg;
311          // Get the scale and replace the 'Scale * Register' with '0'.
312          Scale = IC.popOperand();
313          IC.pushOperand(IC_IMM);
314          IC.popOperator();
315        } else {
316          State = IES_ERROR;
317        }
318        break;
319      }
320      PrevState = CurrState;
321    }
322    void onIdentifierExpr(const MCExpr *SymRef, StringRef SymRefName) {
323      PrevState = State;
324      switch (State) {
325      default:
326        State = IES_ERROR;
327        break;
328      case IES_PLUS:
329      case IES_MINUS:
330        State = IES_INTEGER;
331        Sym = SymRef;
332        SymName = SymRefName;
333        IC.pushOperand(IC_IMM);
334        break;
335      }
336    }
337    void onInteger(int64_t TmpInt) {
338      IntelExprState CurrState = State;
339      switch (State) {
340      default:
341        State = IES_ERROR;
342        break;
343      case IES_PLUS:
344      case IES_MINUS:
345      case IES_DIVIDE:
346      case IES_MULTIPLY:
347      case IES_LPAREN:
348        State = IES_INTEGER;
349        if (PrevState == IES_REGISTER && CurrState == IES_MULTIPLY) {
350          // Index Register - Register * Scale
351          assert (!IndexReg && "IndexReg already set!");
352          IndexReg = TmpReg;
353          Scale = TmpInt;
354          // Get the scale and replace the 'Register * Scale' with '0'.
355          IC.popOperator();
356        } else if ((PrevState == IES_PLUS || PrevState == IES_MINUS ||
357                    PrevState == IES_MULTIPLY || PrevState == IES_DIVIDE ||
358                    PrevState == IES_LPAREN || PrevState == IES_LBRAC) &&
359                   CurrState == IES_MINUS) {
360          // Unary minus.  No need to pop the minus operand because it was never
361          // pushed.
362          IC.pushOperand(IC_IMM, -TmpInt); // Push -Imm.
363        } else {
364          IC.pushOperand(IC_IMM, TmpInt);
365        }
366        break;
367      }
368      PrevState = CurrState;
369    }
370    void onStar() {
371      PrevState = State;
372      switch (State) {
373      default:
374        State = IES_ERROR;
375        break;
376      case IES_INTEGER:
377      case IES_REGISTER:
378      case IES_RPAREN:
379        State = IES_MULTIPLY;
380        IC.pushOperator(IC_MULTIPLY);
381        break;
382      }
383    }
384    void onDivide() {
385      PrevState = State;
386      switch (State) {
387      default:
388        State = IES_ERROR;
389        break;
390      case IES_INTEGER:
391      case IES_RPAREN:
392        State = IES_DIVIDE;
393        IC.pushOperator(IC_DIVIDE);
394        break;
395      }
396    }
397    void onLBrac() {
398      PrevState = State;
399      switch (State) {
400      default:
401        State = IES_ERROR;
402        break;
403      case IES_RBRAC:
404        State = IES_PLUS;
405        IC.pushOperator(IC_PLUS);
406        break;
407      }
408    }
409    void onRBrac() {
410      IntelExprState CurrState = State;
411      switch (State) {
412      default:
413        State = IES_ERROR;
414        break;
415      case IES_INTEGER:
416      case IES_REGISTER:
417      case IES_RPAREN:
418        State = IES_RBRAC;
419        if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
420          // If we already have a BaseReg, then assume this is the IndexReg with
421          // a scale of 1.
422          if (!BaseReg) {
423            BaseReg = TmpReg;
424          } else {
425            assert (!IndexReg && "BaseReg/IndexReg already set!");
426            IndexReg = TmpReg;
427            Scale = 1;
428          }
429        }
430        break;
431      }
432      PrevState = CurrState;
433    }
434    void onLParen() {
435      IntelExprState CurrState = State;
436      switch (State) {
437      default:
438        State = IES_ERROR;
439        break;
440      case IES_PLUS:
441      case IES_MINUS:
442      case IES_MULTIPLY:
443      case IES_DIVIDE:
444      case IES_LPAREN:
445        // FIXME: We don't handle this type of unary minus, yet.
446        if ((PrevState == IES_PLUS || PrevState == IES_MINUS ||
447            PrevState == IES_MULTIPLY || PrevState == IES_DIVIDE ||
448            PrevState == IES_LPAREN || PrevState == IES_LBRAC) &&
449            CurrState == IES_MINUS) {
450          State = IES_ERROR;
451          break;
452        }
453        State = IES_LPAREN;
454        IC.pushOperator(IC_LPAREN);
455        break;
456      }
457      PrevState = CurrState;
458    }
459    void onRParen() {
460      PrevState = State;
461      switch (State) {
462      default:
463        State = IES_ERROR;
464        break;
465      case IES_INTEGER:
466      case IES_REGISTER:
467      case IES_RPAREN:
468        State = IES_RPAREN;
469        IC.pushOperator(IC_RPAREN);
470        break;
471      }
472    }
473  };
474
475  MCAsmParser &getParser() const { return Parser; }
476
477  MCAsmLexer &getLexer() const { return Parser.getLexer(); }
478
479  bool Error(SMLoc L, const Twine &Msg,
480             ArrayRef<SMRange> Ranges = None,
481             bool MatchingInlineAsm = false) {
482    if (MatchingInlineAsm) return true;
483    return Parser.Error(L, Msg, Ranges);
484  }
485
486  X86Operand *ErrorOperand(SMLoc Loc, StringRef Msg) {
487    Error(Loc, Msg);
488    return 0;
489  }
490
491  X86Operand *ParseOperand();
492  X86Operand *ParseATTOperand();
493  X86Operand *ParseIntelOperand();
494  X86Operand *ParseIntelOffsetOfOperator();
495  X86Operand *ParseIntelDotOperator(const MCExpr *Disp, const MCExpr *&NewDisp);
496  X86Operand *ParseIntelOperator(unsigned OpKind);
497  X86Operand *ParseIntelMemOperand(unsigned SegReg, int64_t ImmDisp,
498                                   SMLoc StartLoc);
499  X86Operand *ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End);
500  X86Operand *ParseIntelBracExpression(unsigned SegReg, SMLoc Start,
501                                       int64_t ImmDisp, unsigned Size);
502  X86Operand *ParseIntelIdentifier(const MCExpr *&Val, StringRef &Identifier,
503                                   InlineAsmIdentifierInfo &Info,
504                                   bool IsUnevaluatedOperand, SMLoc &End);
505
506  X86Operand *ParseMemOperand(unsigned SegReg, SMLoc StartLoc);
507
508  X86Operand *CreateMemForInlineAsm(unsigned SegReg, const MCExpr *Disp,
509                                    unsigned BaseReg, unsigned IndexReg,
510                                    unsigned Scale, SMLoc Start, SMLoc End,
511                                    unsigned Size, StringRef Identifier,
512                                    InlineAsmIdentifierInfo &Info);
513
514  bool ParseDirectiveWord(unsigned Size, SMLoc L);
515  bool ParseDirectiveCode(StringRef IDVal, SMLoc L);
516
517  bool processInstruction(MCInst &Inst,
518                          const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
519
520  bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
521                               SmallVectorImpl<MCParsedAsmOperand*> &Operands,
522                               MCStreamer &Out, unsigned &ErrorInfo,
523                               bool MatchingInlineAsm);
524
525  /// isSrcOp - Returns true if operand is either (%rsi) or %ds:%(rsi)
526  /// in 64bit mode or (%esi) or %es:(%esi) in 32bit mode.
527  bool isSrcOp(X86Operand &Op);
528
529  /// isDstOp - Returns true if operand is either (%rdi) or %es:(%rdi)
530  /// in 64bit mode or (%edi) or %es:(%edi) in 32bit mode.
531  bool isDstOp(X86Operand &Op);
532
533  bool is64BitMode() const {
534    // FIXME: Can tablegen auto-generate this?
535    return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
536  }
537  void SwitchMode() {
538    unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(X86::Mode64Bit));
539    setAvailableFeatures(FB);
540  }
541
542  bool isParsingIntelSyntax() {
543    return getParser().getAssemblerDialect();
544  }
545
546  /// @name Auto-generated Matcher Functions
547  /// {
548
549#define GET_ASSEMBLER_HEADER
550#include "X86GenAsmMatcher.inc"
551
552  /// }
553
554public:
555  X86AsmParser(MCSubtargetInfo &sti, MCAsmParser &parser)
556    : MCTargetAsmParser(), STI(sti), Parser(parser), InstInfo(0) {
557
558    // Initialize the set of available features.
559    setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
560  }
561  virtual bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
562
563  virtual bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
564                                SMLoc NameLoc,
565                                SmallVectorImpl<MCParsedAsmOperand*> &Operands);
566
567  virtual bool ParseDirective(AsmToken DirectiveID);
568};
569} // end anonymous namespace
570
571/// @name Auto-generated Match Functions
572/// {
573
574static unsigned MatchRegisterName(StringRef Name);
575
576/// }
577
578static bool isImmSExti16i8Value(uint64_t Value) {
579  return ((                                  Value <= 0x000000000000007FULL)||
580          (0x000000000000FF80ULL <= Value && Value <= 0x000000000000FFFFULL)||
581          (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
582}
583
584static bool isImmSExti32i8Value(uint64_t Value) {
585  return ((                                  Value <= 0x000000000000007FULL)||
586          (0x00000000FFFFFF80ULL <= Value && Value <= 0x00000000FFFFFFFFULL)||
587          (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
588}
589
590static bool isImmZExtu32u8Value(uint64_t Value) {
591    return (Value <= 0x00000000000000FFULL);
592}
593
594static bool isImmSExti64i8Value(uint64_t Value) {
595  return ((                                  Value <= 0x000000000000007FULL)||
596          (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
597}
598
599static bool isImmSExti64i32Value(uint64_t Value) {
600  return ((                                  Value <= 0x000000007FFFFFFFULL)||
601          (0xFFFFFFFF80000000ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
602}
603namespace {
604
605/// X86Operand - Instances of this class represent a parsed X86 machine
606/// instruction.
607struct X86Operand : public MCParsedAsmOperand {
608  enum KindTy {
609    Token,
610    Register,
611    Immediate,
612    Memory
613  } Kind;
614
615  SMLoc StartLoc, EndLoc;
616  SMLoc OffsetOfLoc;
617  StringRef SymName;
618  void *OpDecl;
619  bool AddressOf;
620
621  struct TokOp {
622    const char *Data;
623    unsigned Length;
624  };
625
626  struct RegOp {
627    unsigned RegNo;
628  };
629
630  struct ImmOp {
631    const MCExpr *Val;
632  };
633
634  struct MemOp {
635    unsigned SegReg;
636    const MCExpr *Disp;
637    unsigned BaseReg;
638    unsigned IndexReg;
639    unsigned Scale;
640    unsigned Size;
641  };
642
643  union {
644    struct TokOp Tok;
645    struct RegOp Reg;
646    struct ImmOp Imm;
647    struct MemOp Mem;
648  };
649
650  X86Operand(KindTy K, SMLoc Start, SMLoc End)
651    : Kind(K), StartLoc(Start), EndLoc(End) {}
652
653  StringRef getSymName() { return SymName; }
654  void *getOpDecl() { return OpDecl; }
655
656  /// getStartLoc - Get the location of the first token of this operand.
657  SMLoc getStartLoc() const { return StartLoc; }
658  /// getEndLoc - Get the location of the last token of this operand.
659  SMLoc getEndLoc() const { return EndLoc; }
660  /// getLocRange - Get the range between the first and last token of this
661  /// operand.
662  SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
663  /// getOffsetOfLoc - Get the location of the offset operator.
664  SMLoc getOffsetOfLoc() const { return OffsetOfLoc; }
665
666  virtual void print(raw_ostream &OS) const {}
667
668  StringRef getToken() const {
669    assert(Kind == Token && "Invalid access!");
670    return StringRef(Tok.Data, Tok.Length);
671  }
672  void setTokenValue(StringRef Value) {
673    assert(Kind == Token && "Invalid access!");
674    Tok.Data = Value.data();
675    Tok.Length = Value.size();
676  }
677
678  unsigned getReg() const {
679    assert(Kind == Register && "Invalid access!");
680    return Reg.RegNo;
681  }
682
683  const MCExpr *getImm() const {
684    assert(Kind == Immediate && "Invalid access!");
685    return Imm.Val;
686  }
687
688  const MCExpr *getMemDisp() const {
689    assert(Kind == Memory && "Invalid access!");
690    return Mem.Disp;
691  }
692  unsigned getMemSegReg() const {
693    assert(Kind == Memory && "Invalid access!");
694    return Mem.SegReg;
695  }
696  unsigned getMemBaseReg() const {
697    assert(Kind == Memory && "Invalid access!");
698    return Mem.BaseReg;
699  }
700  unsigned getMemIndexReg() const {
701    assert(Kind == Memory && "Invalid access!");
702    return Mem.IndexReg;
703  }
704  unsigned getMemScale() const {
705    assert(Kind == Memory && "Invalid access!");
706    return Mem.Scale;
707  }
708
709  bool isToken() const {return Kind == Token; }
710
711  bool isImm() const { return Kind == Immediate; }
712
713  bool isImmSExti16i8() const {
714    if (!isImm())
715      return false;
716
717    // If this isn't a constant expr, just assume it fits and let relaxation
718    // handle it.
719    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
720    if (!CE)
721      return true;
722
723    // Otherwise, check the value is in a range that makes sense for this
724    // extension.
725    return isImmSExti16i8Value(CE->getValue());
726  }
727  bool isImmSExti32i8() const {
728    if (!isImm())
729      return false;
730
731    // If this isn't a constant expr, just assume it fits and let relaxation
732    // handle it.
733    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
734    if (!CE)
735      return true;
736
737    // Otherwise, check the value is in a range that makes sense for this
738    // extension.
739    return isImmSExti32i8Value(CE->getValue());
740  }
741  bool isImmZExtu32u8() const {
742    if (!isImm())
743      return false;
744
745    // If this isn't a constant expr, just assume it fits and let relaxation
746    // handle it.
747    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
748    if (!CE)
749      return true;
750
751    // Otherwise, check the value is in a range that makes sense for this
752    // extension.
753    return isImmZExtu32u8Value(CE->getValue());
754  }
755  bool isImmSExti64i8() const {
756    if (!isImm())
757      return false;
758
759    // If this isn't a constant expr, just assume it fits and let relaxation
760    // handle it.
761    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
762    if (!CE)
763      return true;
764
765    // Otherwise, check the value is in a range that makes sense for this
766    // extension.
767    return isImmSExti64i8Value(CE->getValue());
768  }
769  bool isImmSExti64i32() const {
770    if (!isImm())
771      return false;
772
773    // If this isn't a constant expr, just assume it fits and let relaxation
774    // handle it.
775    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
776    if (!CE)
777      return true;
778
779    // Otherwise, check the value is in a range that makes sense for this
780    // extension.
781    return isImmSExti64i32Value(CE->getValue());
782  }
783
784  bool isOffsetOf() const {
785    return OffsetOfLoc.getPointer();
786  }
787
788  bool needAddressOf() const {
789    return AddressOf;
790  }
791
792  bool isMem() const { return Kind == Memory; }
793  bool isMem8() const {
794    return Kind == Memory && (!Mem.Size || Mem.Size == 8);
795  }
796  bool isMem16() const {
797    return Kind == Memory && (!Mem.Size || Mem.Size == 16);
798  }
799  bool isMem32() const {
800    return Kind == Memory && (!Mem.Size || Mem.Size == 32);
801  }
802  bool isMem64() const {
803    return Kind == Memory && (!Mem.Size || Mem.Size == 64);
804  }
805  bool isMem80() const {
806    return Kind == Memory && (!Mem.Size || Mem.Size == 80);
807  }
808  bool isMem128() const {
809    return Kind == Memory && (!Mem.Size || Mem.Size == 128);
810  }
811  bool isMem256() const {
812    return Kind == Memory && (!Mem.Size || Mem.Size == 256);
813  }
814
815  bool isMemVX32() const {
816    return Kind == Memory && (!Mem.Size || Mem.Size == 32) &&
817      getMemIndexReg() >= X86::XMM0 && getMemIndexReg() <= X86::XMM15;
818  }
819  bool isMemVY32() const {
820    return Kind == Memory && (!Mem.Size || Mem.Size == 32) &&
821      getMemIndexReg() >= X86::YMM0 && getMemIndexReg() <= X86::YMM15;
822  }
823  bool isMemVX64() const {
824    return Kind == Memory && (!Mem.Size || Mem.Size == 64) &&
825      getMemIndexReg() >= X86::XMM0 && getMemIndexReg() <= X86::XMM15;
826  }
827  bool isMemVY64() const {
828    return Kind == Memory && (!Mem.Size || Mem.Size == 64) &&
829      getMemIndexReg() >= X86::YMM0 && getMemIndexReg() <= X86::YMM15;
830  }
831
832  bool isAbsMem() const {
833    return Kind == Memory && !getMemSegReg() && !getMemBaseReg() &&
834      !getMemIndexReg() && getMemScale() == 1;
835  }
836
837  bool isReg() const { return Kind == Register; }
838
839  void addExpr(MCInst &Inst, const MCExpr *Expr) const {
840    // Add as immediates when possible.
841    if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
842      Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
843    else
844      Inst.addOperand(MCOperand::CreateExpr(Expr));
845  }
846
847  void addRegOperands(MCInst &Inst, unsigned N) const {
848    assert(N == 1 && "Invalid number of operands!");
849    Inst.addOperand(MCOperand::CreateReg(getReg()));
850  }
851
852  void addImmOperands(MCInst &Inst, unsigned N) const {
853    assert(N == 1 && "Invalid number of operands!");
854    addExpr(Inst, getImm());
855  }
856
857  void addMem8Operands(MCInst &Inst, unsigned N) const {
858    addMemOperands(Inst, N);
859  }
860  void addMem16Operands(MCInst &Inst, unsigned N) const {
861    addMemOperands(Inst, N);
862  }
863  void addMem32Operands(MCInst &Inst, unsigned N) const {
864    addMemOperands(Inst, N);
865  }
866  void addMem64Operands(MCInst &Inst, unsigned N) const {
867    addMemOperands(Inst, N);
868  }
869  void addMem80Operands(MCInst &Inst, unsigned N) const {
870    addMemOperands(Inst, N);
871  }
872  void addMem128Operands(MCInst &Inst, unsigned N) const {
873    addMemOperands(Inst, N);
874  }
875  void addMem256Operands(MCInst &Inst, unsigned N) const {
876    addMemOperands(Inst, N);
877  }
878  void addMemVX32Operands(MCInst &Inst, unsigned N) const {
879    addMemOperands(Inst, N);
880  }
881  void addMemVY32Operands(MCInst &Inst, unsigned N) const {
882    addMemOperands(Inst, N);
883  }
884  void addMemVX64Operands(MCInst &Inst, unsigned N) const {
885    addMemOperands(Inst, N);
886  }
887  void addMemVY64Operands(MCInst &Inst, unsigned N) const {
888    addMemOperands(Inst, N);
889  }
890
891  void addMemOperands(MCInst &Inst, unsigned N) const {
892    assert((N == 5) && "Invalid number of operands!");
893    Inst.addOperand(MCOperand::CreateReg(getMemBaseReg()));
894    Inst.addOperand(MCOperand::CreateImm(getMemScale()));
895    Inst.addOperand(MCOperand::CreateReg(getMemIndexReg()));
896    addExpr(Inst, getMemDisp());
897    Inst.addOperand(MCOperand::CreateReg(getMemSegReg()));
898  }
899
900  void addAbsMemOperands(MCInst &Inst, unsigned N) const {
901    assert((N == 1) && "Invalid number of operands!");
902    // Add as immediates when possible.
903    if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemDisp()))
904      Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
905    else
906      Inst.addOperand(MCOperand::CreateExpr(getMemDisp()));
907  }
908
909  static X86Operand *CreateToken(StringRef Str, SMLoc Loc) {
910    SMLoc EndLoc = SMLoc::getFromPointer(Loc.getPointer() + Str.size());
911    X86Operand *Res = new X86Operand(Token, Loc, EndLoc);
912    Res->Tok.Data = Str.data();
913    Res->Tok.Length = Str.size();
914    return Res;
915  }
916
917  static X86Operand *CreateReg(unsigned RegNo, SMLoc StartLoc, SMLoc EndLoc,
918                               bool AddressOf = false,
919                               SMLoc OffsetOfLoc = SMLoc(),
920                               StringRef SymName = StringRef(),
921                               void *OpDecl = 0) {
922    X86Operand *Res = new X86Operand(Register, StartLoc, EndLoc);
923    Res->Reg.RegNo = RegNo;
924    Res->AddressOf = AddressOf;
925    Res->OffsetOfLoc = OffsetOfLoc;
926    Res->SymName = SymName;
927    Res->OpDecl = OpDecl;
928    return Res;
929  }
930
931  static X86Operand *CreateImm(const MCExpr *Val, SMLoc StartLoc, SMLoc EndLoc){
932    X86Operand *Res = new X86Operand(Immediate, StartLoc, EndLoc);
933    Res->Imm.Val = Val;
934    return Res;
935  }
936
937  /// Create an absolute memory operand.
938  static X86Operand *CreateMem(const MCExpr *Disp, SMLoc StartLoc, SMLoc EndLoc,
939                               unsigned Size = 0, StringRef SymName = StringRef(),
940                               void *OpDecl = 0) {
941    X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc);
942    Res->Mem.SegReg   = 0;
943    Res->Mem.Disp     = Disp;
944    Res->Mem.BaseReg  = 0;
945    Res->Mem.IndexReg = 0;
946    Res->Mem.Scale    = 1;
947    Res->Mem.Size     = Size;
948    Res->SymName      = SymName;
949    Res->OpDecl       = OpDecl;
950    Res->AddressOf    = false;
951    return Res;
952  }
953
954  /// Create a generalized memory operand.
955  static X86Operand *CreateMem(unsigned SegReg, const MCExpr *Disp,
956                               unsigned BaseReg, unsigned IndexReg,
957                               unsigned Scale, SMLoc StartLoc, SMLoc EndLoc,
958                               unsigned Size = 0,
959                               StringRef SymName = StringRef(),
960                               void *OpDecl = 0) {
961    // We should never just have a displacement, that should be parsed as an
962    // absolute memory operand.
963    assert((SegReg || BaseReg || IndexReg) && "Invalid memory operand!");
964
965    // The scale should always be one of {1,2,4,8}.
966    assert(((Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8)) &&
967           "Invalid scale!");
968    X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc);
969    Res->Mem.SegReg   = SegReg;
970    Res->Mem.Disp     = Disp;
971    Res->Mem.BaseReg  = BaseReg;
972    Res->Mem.IndexReg = IndexReg;
973    Res->Mem.Scale    = Scale;
974    Res->Mem.Size     = Size;
975    Res->SymName      = SymName;
976    Res->OpDecl       = OpDecl;
977    Res->AddressOf    = false;
978    return Res;
979  }
980};
981
982} // end anonymous namespace.
983
984bool X86AsmParser::isSrcOp(X86Operand &Op) {
985  unsigned basereg = is64BitMode() ? X86::RSI : X86::ESI;
986
987  return (Op.isMem() &&
988    (Op.Mem.SegReg == 0 || Op.Mem.SegReg == X86::DS) &&
989    isa<MCConstantExpr>(Op.Mem.Disp) &&
990    cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
991    Op.Mem.BaseReg == basereg && Op.Mem.IndexReg == 0);
992}
993
994bool X86AsmParser::isDstOp(X86Operand &Op) {
995  unsigned basereg = is64BitMode() ? X86::RDI : X86::EDI;
996
997  return Op.isMem() &&
998    (Op.Mem.SegReg == 0 || Op.Mem.SegReg == X86::ES) &&
999    isa<MCConstantExpr>(Op.Mem.Disp) &&
1000    cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
1001    Op.Mem.BaseReg == basereg && Op.Mem.IndexReg == 0;
1002}
1003
1004bool X86AsmParser::ParseRegister(unsigned &RegNo,
1005                                 SMLoc &StartLoc, SMLoc &EndLoc) {
1006  RegNo = 0;
1007  const AsmToken &PercentTok = Parser.getTok();
1008  StartLoc = PercentTok.getLoc();
1009
1010  // If we encounter a %, ignore it. This code handles registers with and
1011  // without the prefix, unprefixed registers can occur in cfi directives.
1012  if (!isParsingIntelSyntax() && PercentTok.is(AsmToken::Percent))
1013    Parser.Lex(); // Eat percent token.
1014
1015  const AsmToken &Tok = Parser.getTok();
1016  EndLoc = Tok.getEndLoc();
1017
1018  if (Tok.isNot(AsmToken::Identifier)) {
1019    if (isParsingIntelSyntax()) return true;
1020    return Error(StartLoc, "invalid register name",
1021                 SMRange(StartLoc, EndLoc));
1022  }
1023
1024  RegNo = MatchRegisterName(Tok.getString());
1025
1026  // If the match failed, try the register name as lowercase.
1027  if (RegNo == 0)
1028    RegNo = MatchRegisterName(Tok.getString().lower());
1029
1030  if (!is64BitMode()) {
1031    // FIXME: This should be done using Requires<In32BitMode> and
1032    // Requires<In64BitMode> so "eiz" usage in 64-bit instructions can be also
1033    // checked.
1034    // FIXME: Check AH, CH, DH, BH cannot be used in an instruction requiring a
1035    // REX prefix.
1036    if (RegNo == X86::RIZ ||
1037        X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo) ||
1038        X86II::isX86_64NonExtLowByteReg(RegNo) ||
1039        X86II::isX86_64ExtendedReg(RegNo))
1040      return Error(StartLoc, "register %"
1041                   + Tok.getString() + " is only available in 64-bit mode",
1042                   SMRange(StartLoc, EndLoc));
1043  }
1044
1045  // Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens.
1046  if (RegNo == 0 && (Tok.getString() == "st" || Tok.getString() == "ST")) {
1047    RegNo = X86::ST0;
1048    Parser.Lex(); // Eat 'st'
1049
1050    // Check to see if we have '(4)' after %st.
1051    if (getLexer().isNot(AsmToken::LParen))
1052      return false;
1053    // Lex the paren.
1054    getParser().Lex();
1055
1056    const AsmToken &IntTok = Parser.getTok();
1057    if (IntTok.isNot(AsmToken::Integer))
1058      return Error(IntTok.getLoc(), "expected stack index");
1059    switch (IntTok.getIntVal()) {
1060    case 0: RegNo = X86::ST0; break;
1061    case 1: RegNo = X86::ST1; break;
1062    case 2: RegNo = X86::ST2; break;
1063    case 3: RegNo = X86::ST3; break;
1064    case 4: RegNo = X86::ST4; break;
1065    case 5: RegNo = X86::ST5; break;
1066    case 6: RegNo = X86::ST6; break;
1067    case 7: RegNo = X86::ST7; break;
1068    default: return Error(IntTok.getLoc(), "invalid stack index");
1069    }
1070
1071    if (getParser().Lex().isNot(AsmToken::RParen))
1072      return Error(Parser.getTok().getLoc(), "expected ')'");
1073
1074    EndLoc = Parser.getTok().getEndLoc();
1075    Parser.Lex(); // Eat ')'
1076    return false;
1077  }
1078
1079  EndLoc = Parser.getTok().getEndLoc();
1080
1081  // If this is "db[0-7]", match it as an alias
1082  // for dr[0-7].
1083  if (RegNo == 0 && Tok.getString().size() == 3 &&
1084      Tok.getString().startswith("db")) {
1085    switch (Tok.getString()[2]) {
1086    case '0': RegNo = X86::DR0; break;
1087    case '1': RegNo = X86::DR1; break;
1088    case '2': RegNo = X86::DR2; break;
1089    case '3': RegNo = X86::DR3; break;
1090    case '4': RegNo = X86::DR4; break;
1091    case '5': RegNo = X86::DR5; break;
1092    case '6': RegNo = X86::DR6; break;
1093    case '7': RegNo = X86::DR7; break;
1094    }
1095
1096    if (RegNo != 0) {
1097      EndLoc = Parser.getTok().getEndLoc();
1098      Parser.Lex(); // Eat it.
1099      return false;
1100    }
1101  }
1102
1103  if (RegNo == 0) {
1104    if (isParsingIntelSyntax()) return true;
1105    return Error(StartLoc, "invalid register name",
1106                 SMRange(StartLoc, EndLoc));
1107  }
1108
1109  Parser.Lex(); // Eat identifier token.
1110  return false;
1111}
1112
1113X86Operand *X86AsmParser::ParseOperand() {
1114  if (isParsingIntelSyntax())
1115    return ParseIntelOperand();
1116  return ParseATTOperand();
1117}
1118
1119/// getIntelMemOperandSize - Return intel memory operand size.
1120static unsigned getIntelMemOperandSize(StringRef OpStr) {
1121  unsigned Size = StringSwitch<unsigned>(OpStr)
1122    .Cases("BYTE", "byte", 8)
1123    .Cases("WORD", "word", 16)
1124    .Cases("DWORD", "dword", 32)
1125    .Cases("QWORD", "qword", 64)
1126    .Cases("XWORD", "xword", 80)
1127    .Cases("XMMWORD", "xmmword", 128)
1128    .Cases("YMMWORD", "ymmword", 256)
1129    .Default(0);
1130  return Size;
1131}
1132
1133X86Operand *
1134X86AsmParser::CreateMemForInlineAsm(unsigned SegReg, const MCExpr *Disp,
1135                                    unsigned BaseReg, unsigned IndexReg,
1136                                    unsigned Scale, SMLoc Start, SMLoc End,
1137                                    unsigned Size, StringRef Identifier,
1138                                    InlineAsmIdentifierInfo &Info){
1139  if (isa<MCSymbolRefExpr>(Disp)) {
1140    // If this is not a VarDecl then assume it is a FuncDecl or some other label
1141    // reference.  We need an 'r' constraint here, so we need to create register
1142    // operand to ensure proper matching.  Just pick a GPR based on the size of
1143    // a pointer.
1144    if (!Info.IsVarDecl) {
1145      unsigned RegNo = is64BitMode() ? X86::RBX : X86::EBX;
1146      return X86Operand::CreateReg(RegNo, Start, End, /*AddressOf=*/true,
1147                                   SMLoc(), Identifier, Info.OpDecl);
1148    }
1149    if (!Size) {
1150      Size = Info.Type * 8; // Size is in terms of bits in this context.
1151      if (Size)
1152        InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_SizeDirective, Start,
1153                                                    /*Len=*/0, Size));
1154    }
1155  }
1156
1157  // When parsing inline assembly we set the base register to a non-zero value
1158  // if we don't know the actual value at this time.  This is necessary to
1159  // get the matching correct in some cases.
1160  BaseReg = BaseReg ? BaseReg : 1;
1161  return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale, Start,
1162                               End, Size, Identifier, Info.OpDecl);
1163}
1164
1165static void
1166RewriteIntelBracExpression(SmallVectorImpl<AsmRewrite> *AsmRewrites,
1167                           StringRef SymName, int64_t ImmDisp,
1168                           int64_t FinalImmDisp, SMLoc &BracLoc,
1169                           SMLoc &StartInBrac, SMLoc &End) {
1170  // Remove the '[' and ']' from the IR string.
1171  AsmRewrites->push_back(AsmRewrite(AOK_Skip, BracLoc, 1));
1172  AsmRewrites->push_back(AsmRewrite(AOK_Skip, End, 1));
1173
1174  // If ImmDisp is non-zero, then we parsed a displacement before the
1175  // bracketed expression (i.e., ImmDisp [ BaseReg + Scale*IndexReg + Disp])
1176  // If ImmDisp doesn't match the displacement computed by the state machine
1177  // then we have an additional displacement in the bracketed expression.
1178  if (ImmDisp != FinalImmDisp) {
1179    if (ImmDisp) {
1180      // We have an immediate displacement before the bracketed expression.
1181      // Adjust this to match the final immediate displacement.
1182      bool Found = false;
1183      for (SmallVectorImpl<AsmRewrite>::iterator I = AsmRewrites->begin(),
1184             E = AsmRewrites->end(); I != E; ++I) {
1185        if ((*I).Loc.getPointer() > BracLoc.getPointer())
1186          continue;
1187        if ((*I).Kind == AOK_ImmPrefix || (*I).Kind == AOK_Imm) {
1188          assert (!Found && "ImmDisp already rewritten.");
1189          (*I).Kind = AOK_Imm;
1190          (*I).Len = BracLoc.getPointer() - (*I).Loc.getPointer();
1191          (*I).Val = FinalImmDisp;
1192          Found = true;
1193          break;
1194        }
1195      }
1196      assert (Found && "Unable to rewrite ImmDisp.");
1197    } else {
1198      // We have a symbolic and an immediate displacement, but no displacement
1199      // before the bracketed expression.  Put the immediate displacement
1200      // before the bracketed expression.
1201      AsmRewrites->push_back(AsmRewrite(AOK_Imm, BracLoc, 0, FinalImmDisp));
1202    }
1203  }
1204  // Remove all the ImmPrefix rewrites within the brackets.
1205  for (SmallVectorImpl<AsmRewrite>::iterator I = AsmRewrites->begin(),
1206         E = AsmRewrites->end(); I != E; ++I) {
1207    if ((*I).Loc.getPointer() < StartInBrac.getPointer())
1208      continue;
1209    if ((*I).Kind == AOK_ImmPrefix)
1210      (*I).Kind = AOK_Delete;
1211  }
1212  const char *SymLocPtr = SymName.data();
1213  // Skip everything before the symbol.
1214  if (unsigned Len = SymLocPtr - StartInBrac.getPointer()) {
1215    assert(Len > 0 && "Expected a non-negative length.");
1216    AsmRewrites->push_back(AsmRewrite(AOK_Skip, StartInBrac, Len));
1217  }
1218  // Skip everything after the symbol.
1219  if (unsigned Len = End.getPointer() - (SymLocPtr + SymName.size())) {
1220    SMLoc Loc = SMLoc::getFromPointer(SymLocPtr + SymName.size());
1221    assert(Len > 0 && "Expected a non-negative length.");
1222    AsmRewrites->push_back(AsmRewrite(AOK_Skip, Loc, Len));
1223  }
1224}
1225
1226X86Operand *
1227X86AsmParser::ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End) {
1228  const AsmToken &Tok = Parser.getTok();
1229
1230  bool Done = false;
1231  while (!Done) {
1232    bool UpdateLocLex = true;
1233
1234    // The period in the dot operator (e.g., [ebx].foo.bar) is parsed as an
1235    // identifier.  Don't try an parse it as a register.
1236    if (Tok.getString().startswith("."))
1237      break;
1238
1239    // If we're parsing an immediate expression, we don't expect a '['.
1240    if (SM.getStopOnLBrac() && getLexer().getKind() == AsmToken::LBrac)
1241      break;
1242
1243    switch (getLexer().getKind()) {
1244    default: {
1245      if (SM.isValidEndState()) {
1246        Done = true;
1247        break;
1248      }
1249      return ErrorOperand(Tok.getLoc(), "Unexpected token!");
1250    }
1251    case AsmToken::EndOfStatement: {
1252      Done = true;
1253      break;
1254    }
1255    case AsmToken::Identifier: {
1256      // This could be a register or a symbolic displacement.
1257      unsigned TmpReg;
1258      const MCExpr *Val;
1259      SMLoc IdentLoc = Tok.getLoc();
1260      StringRef Identifier = Tok.getString();
1261      if(!ParseRegister(TmpReg, IdentLoc, End)) {
1262        SM.onRegister(TmpReg);
1263        UpdateLocLex = false;
1264        break;
1265      } else {
1266        if (!isParsingInlineAsm()) {
1267          if (getParser().parsePrimaryExpr(Val, End))
1268            return ErrorOperand(Tok.getLoc(), "Unexpected identifier!");
1269        } else {
1270          InlineAsmIdentifierInfo &Info = SM.getIdentifierInfo();
1271          if (X86Operand *Err = ParseIntelIdentifier(Val, Identifier, Info,
1272                                                     /*Unevaluated*/ false, End))
1273            return Err;
1274        }
1275        SM.onIdentifierExpr(Val, Identifier);
1276        UpdateLocLex = false;
1277        break;
1278      }
1279      return ErrorOperand(Tok.getLoc(), "Unexpected identifier!");
1280    }
1281    case AsmToken::Integer:
1282      if (isParsingInlineAsm() && SM.getAddImmPrefix())
1283        InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_ImmPrefix,
1284                                                    Tok.getLoc()));
1285      SM.onInteger(Tok.getIntVal());
1286      break;
1287    case AsmToken::Plus:    SM.onPlus(); break;
1288    case AsmToken::Minus:   SM.onMinus(); break;
1289    case AsmToken::Star:    SM.onStar(); break;
1290    case AsmToken::Slash:   SM.onDivide(); break;
1291    case AsmToken::LBrac:   SM.onLBrac(); break;
1292    case AsmToken::RBrac:   SM.onRBrac(); break;
1293    case AsmToken::LParen:  SM.onLParen(); break;
1294    case AsmToken::RParen:  SM.onRParen(); break;
1295    }
1296    if (SM.hadError())
1297      return ErrorOperand(Tok.getLoc(), "Unexpected token!");
1298
1299    if (!Done && UpdateLocLex) {
1300      End = Tok.getLoc();
1301      Parser.Lex(); // Consume the token.
1302    }
1303  }
1304  return 0;
1305}
1306
1307X86Operand *X86AsmParser::ParseIntelBracExpression(unsigned SegReg, SMLoc Start,
1308                                                   int64_t ImmDisp,
1309                                                   unsigned Size) {
1310  const AsmToken &Tok = Parser.getTok();
1311  SMLoc BracLoc = Tok.getLoc(), End = Tok.getEndLoc();
1312  if (getLexer().isNot(AsmToken::LBrac))
1313    return ErrorOperand(BracLoc, "Expected '[' token!");
1314  Parser.Lex(); // Eat '['
1315
1316  SMLoc StartInBrac = Tok.getLoc();
1317  // Parse [ Symbol + ImmDisp ] and [ BaseReg + Scale*IndexReg + ImmDisp ].  We
1318  // may have already parsed an immediate displacement before the bracketed
1319  // expression.
1320  IntelExprStateMachine SM(ImmDisp, /*StopOnLBrac=*/false, /*AddImmPrefix=*/true);
1321  if (X86Operand *Err = ParseIntelExpression(SM, End))
1322    return Err;
1323
1324  const MCExpr *Disp;
1325  if (const MCExpr *Sym = SM.getSym()) {
1326    // A symbolic displacement.
1327    Disp = Sym;
1328    if (isParsingInlineAsm())
1329      RewriteIntelBracExpression(InstInfo->AsmRewrites, SM.getSymName(),
1330                                 ImmDisp, SM.getImm(), BracLoc, StartInBrac,
1331                                 End);
1332  } else {
1333    // An immediate displacement only.
1334    Disp = MCConstantExpr::Create(SM.getImm(), getContext());
1335  }
1336
1337  // Parse the dot operator (e.g., [ebx].foo.bar).
1338  if (Tok.getString().startswith(".")) {
1339    const MCExpr *NewDisp;
1340    if (X86Operand *Err = ParseIntelDotOperator(Disp, NewDisp))
1341      return Err;
1342
1343    End = Tok.getEndLoc();
1344    Parser.Lex();  // Eat the field.
1345    Disp = NewDisp;
1346  }
1347
1348  int BaseReg = SM.getBaseReg();
1349  int IndexReg = SM.getIndexReg();
1350  int Scale = SM.getScale();
1351  if (!isParsingInlineAsm()) {
1352    // handle [-42]
1353    if (!BaseReg && !IndexReg) {
1354      if (!SegReg)
1355        return X86Operand::CreateMem(Disp, Start, End, Size);
1356      else
1357        return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, Start, End, Size);
1358    }
1359    return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale, Start,
1360                                 End, Size);
1361  }
1362
1363  InlineAsmIdentifierInfo &Info = SM.getIdentifierInfo();
1364  return CreateMemForInlineAsm(SegReg, Disp, BaseReg, IndexReg, Scale, Start,
1365                               End, Size, SM.getSymName(), Info);
1366}
1367
1368// Inline assembly may use variable names with namespace alias qualifiers.
1369X86Operand *X86AsmParser::ParseIntelIdentifier(const MCExpr *&Val,
1370                                               StringRef &Identifier,
1371                                               InlineAsmIdentifierInfo &Info,
1372                                               bool IsUnevaluatedOperand,
1373                                               SMLoc &End) {
1374  assert (isParsingInlineAsm() && "Expected to be parsing inline assembly.");
1375  Val = 0;
1376
1377  StringRef LineBuf(Identifier.data());
1378  SemaCallback->LookupInlineAsmIdentifier(LineBuf, Info, IsUnevaluatedOperand);
1379
1380  const AsmToken &Tok = Parser.getTok();
1381
1382  // Advance the token stream until the end of the current token is
1383  // after the end of what the frontend claimed.
1384  const char *EndPtr = Tok.getLoc().getPointer() + LineBuf.size();
1385  while (true) {
1386    End = Tok.getEndLoc();
1387    getLexer().Lex();
1388
1389    assert(End.getPointer() <= EndPtr && "frontend claimed part of a token?");
1390    if (End.getPointer() == EndPtr) break;
1391  }
1392
1393  // Create the symbol reference.
1394  Identifier = LineBuf;
1395  MCSymbol *Sym = getContext().GetOrCreateSymbol(Identifier);
1396  MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
1397  Val = MCSymbolRefExpr::Create(Sym, Variant, getParser().getContext());
1398  return 0;
1399}
1400
1401/// ParseIntelMemOperand - Parse intel style memory operand.
1402X86Operand *X86AsmParser::ParseIntelMemOperand(unsigned SegReg,
1403                                               int64_t ImmDisp,
1404                                               SMLoc Start) {
1405  const AsmToken &Tok = Parser.getTok();
1406  SMLoc End;
1407
1408  unsigned Size = getIntelMemOperandSize(Tok.getString());
1409  if (Size) {
1410    Parser.Lex(); // Eat operand size (e.g., byte, word).
1411    if (Tok.getString() != "PTR" && Tok.getString() != "ptr")
1412      return ErrorOperand(Start, "Expected 'PTR' or 'ptr' token!");
1413    Parser.Lex(); // Eat ptr.
1414  }
1415
1416  // Parse ImmDisp [ BaseReg + Scale*IndexReg + Disp ].
1417  if (getLexer().is(AsmToken::Integer)) {
1418    if (isParsingInlineAsm())
1419      InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_ImmPrefix,
1420                                                  Tok.getLoc()));
1421    int64_t ImmDisp = Tok.getIntVal();
1422    Parser.Lex(); // Eat the integer.
1423    if (getLexer().isNot(AsmToken::LBrac))
1424      return ErrorOperand(Start, "Expected '[' token!");
1425    return ParseIntelBracExpression(SegReg, Start, ImmDisp, Size);
1426  }
1427
1428  if (getLexer().is(AsmToken::LBrac))
1429    return ParseIntelBracExpression(SegReg, Start, ImmDisp, Size);
1430
1431  if (!ParseRegister(SegReg, Start, End)) {
1432    // Handel SegReg : [ ... ]
1433    if (getLexer().isNot(AsmToken::Colon))
1434      return ErrorOperand(Start, "Expected ':' token!");
1435    Parser.Lex(); // Eat :
1436    if (getLexer().isNot(AsmToken::LBrac))
1437      return ErrorOperand(Start, "Expected '[' token!");
1438    return ParseIntelBracExpression(SegReg, Start, ImmDisp, Size);
1439  }
1440
1441  const MCExpr *Val;
1442  if (!isParsingInlineAsm()) {
1443    if (getParser().parsePrimaryExpr(Val, End))
1444      return ErrorOperand(Tok.getLoc(), "Unexpected token!");
1445
1446    return X86Operand::CreateMem(Val, Start, End, Size);
1447  }
1448
1449  InlineAsmIdentifierInfo Info;
1450  StringRef Identifier = Tok.getString();
1451  if (X86Operand *Err = ParseIntelIdentifier(Val, Identifier, Info,
1452                                             /*Unevaluated*/ false, End))
1453    return Err;
1454  return CreateMemForInlineAsm(/*SegReg=*/0, Val, /*BaseReg=*/0,/*IndexReg=*/0,
1455                               /*Scale=*/1, Start, End, Size, Identifier, Info);
1456}
1457
1458/// Parse the '.' operator.
1459X86Operand *X86AsmParser::ParseIntelDotOperator(const MCExpr *Disp,
1460                                                const MCExpr *&NewDisp) {
1461  const AsmToken &Tok = Parser.getTok();
1462  int64_t OrigDispVal, DotDispVal;
1463
1464  // FIXME: Handle non-constant expressions.
1465  if (const MCConstantExpr *OrigDisp = dyn_cast<MCConstantExpr>(Disp))
1466    OrigDispVal = OrigDisp->getValue();
1467  else
1468    return ErrorOperand(Tok.getLoc(), "Non-constant offsets are not supported!");
1469
1470  // Drop the '.'.
1471  StringRef DotDispStr = Tok.getString().drop_front(1);
1472
1473  // .Imm gets lexed as a real.
1474  if (Tok.is(AsmToken::Real)) {
1475    APInt DotDisp;
1476    DotDispStr.getAsInteger(10, DotDisp);
1477    DotDispVal = DotDisp.getZExtValue();
1478  } else if (isParsingInlineAsm() && Tok.is(AsmToken::Identifier)) {
1479    unsigned DotDisp;
1480    std::pair<StringRef, StringRef> BaseMember = DotDispStr.split('.');
1481    if (SemaCallback->LookupInlineAsmField(BaseMember.first, BaseMember.second,
1482                                           DotDisp))
1483      return ErrorOperand(Tok.getLoc(), "Unable to lookup field reference!");
1484    DotDispVal = DotDisp;
1485  } else
1486    return ErrorOperand(Tok.getLoc(), "Unexpected token type!");
1487
1488  if (isParsingInlineAsm() && Tok.is(AsmToken::Identifier)) {
1489    SMLoc Loc = SMLoc::getFromPointer(DotDispStr.data());
1490    unsigned Len = DotDispStr.size();
1491    unsigned Val = OrigDispVal + DotDispVal;
1492    InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_DotOperator, Loc, Len,
1493                                                Val));
1494  }
1495
1496  NewDisp = MCConstantExpr::Create(OrigDispVal + DotDispVal, getContext());
1497  return 0;
1498}
1499
1500/// Parse the 'offset' operator.  This operator is used to specify the
1501/// location rather then the content of a variable.
1502X86Operand *X86AsmParser::ParseIntelOffsetOfOperator() {
1503  const AsmToken &Tok = Parser.getTok();
1504  SMLoc OffsetOfLoc = Tok.getLoc();
1505  Parser.Lex(); // Eat offset.
1506
1507  const MCExpr *Val;
1508  InlineAsmIdentifierInfo Info;
1509  SMLoc Start = Tok.getLoc(), End;
1510  StringRef Identifier = Tok.getString();
1511  if (X86Operand *Err = ParseIntelIdentifier(Val, Identifier, Info,
1512                                             /*Unevaluated*/ false, End))
1513    return Err;
1514
1515  // Don't emit the offset operator.
1516  InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Skip, OffsetOfLoc, 7));
1517
1518  // The offset operator will have an 'r' constraint, thus we need to create
1519  // register operand to ensure proper matching.  Just pick a GPR based on
1520  // the size of a pointer.
1521  unsigned RegNo = is64BitMode() ? X86::RBX : X86::EBX;
1522  return X86Operand::CreateReg(RegNo, Start, End, /*GetAddress=*/true,
1523                               OffsetOfLoc, Identifier, Info.OpDecl);
1524}
1525
1526enum IntelOperatorKind {
1527  IOK_LENGTH,
1528  IOK_SIZE,
1529  IOK_TYPE
1530};
1531
1532/// Parse the 'LENGTH', 'TYPE' and 'SIZE' operators.  The LENGTH operator
1533/// returns the number of elements in an array.  It returns the value 1 for
1534/// non-array variables.  The SIZE operator returns the size of a C or C++
1535/// variable.  A variable's size is the product of its LENGTH and TYPE.  The
1536/// TYPE operator returns the size of a C or C++ type or variable. If the
1537/// variable is an array, TYPE returns the size of a single element.
1538X86Operand *X86AsmParser::ParseIntelOperator(unsigned OpKind) {
1539  const AsmToken &Tok = Parser.getTok();
1540  SMLoc TypeLoc = Tok.getLoc();
1541  Parser.Lex(); // Eat operator.
1542
1543  const MCExpr *Val = 0;
1544  InlineAsmIdentifierInfo Info;
1545  SMLoc Start = Tok.getLoc(), End;
1546  StringRef Identifier = Tok.getString();
1547  if (X86Operand *Err = ParseIntelIdentifier(Val, Identifier, Info,
1548                                             /*Unevaluated*/ true, End))
1549    return Err;
1550
1551  unsigned CVal = 0;
1552  switch(OpKind) {
1553  default: llvm_unreachable("Unexpected operand kind!");
1554  case IOK_LENGTH: CVal = Info.Length; break;
1555  case IOK_SIZE: CVal = Info.Size; break;
1556  case IOK_TYPE: CVal = Info.Type; break;
1557  }
1558
1559  // Rewrite the type operator and the C or C++ type or variable in terms of an
1560  // immediate.  E.g. TYPE foo -> $$4
1561  unsigned Len = End.getPointer() - TypeLoc.getPointer();
1562  InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Imm, TypeLoc, Len, CVal));
1563
1564  const MCExpr *Imm = MCConstantExpr::Create(CVal, getContext());
1565  return X86Operand::CreateImm(Imm, Start, End);
1566}
1567
1568X86Operand *X86AsmParser::ParseIntelOperand() {
1569  const AsmToken &Tok = Parser.getTok();
1570  SMLoc Start = Tok.getLoc(), End;
1571
1572  // Offset, length, type and size operators.
1573  if (isParsingInlineAsm()) {
1574    StringRef AsmTokStr = Tok.getString();
1575    if (AsmTokStr == "offset" || AsmTokStr == "OFFSET")
1576      return ParseIntelOffsetOfOperator();
1577    if (AsmTokStr == "length" || AsmTokStr == "LENGTH")
1578      return ParseIntelOperator(IOK_LENGTH);
1579    if (AsmTokStr == "size" || AsmTokStr == "SIZE")
1580      return ParseIntelOperator(IOK_SIZE);
1581    if (AsmTokStr == "type" || AsmTokStr == "TYPE")
1582      return ParseIntelOperator(IOK_TYPE);
1583  }
1584
1585  // Immediate.
1586  if (getLexer().is(AsmToken::Integer) || getLexer().is(AsmToken::Minus) ||
1587      getLexer().is(AsmToken::LParen)) {
1588    AsmToken StartTok = Tok;
1589    IntelExprStateMachine SM(/*Imm=*/0, /*StopOnLBrac=*/true,
1590                             /*AddImmPrefix=*/false);
1591    if (X86Operand *Err = ParseIntelExpression(SM, End))
1592      return Err;
1593
1594    int64_t Imm = SM.getImm();
1595    if (isParsingInlineAsm()) {
1596      unsigned Len = Tok.getLoc().getPointer() - Start.getPointer();
1597      if (StartTok.getString().size() == Len)
1598        // Just add a prefix if this wasn't a complex immediate expression.
1599        InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_ImmPrefix, Start));
1600      else
1601        // Otherwise, rewrite the complex expression as a single immediate.
1602        InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Imm, Start, Len, Imm));
1603    }
1604
1605    if (getLexer().isNot(AsmToken::LBrac)) {
1606      const MCExpr *ImmExpr = MCConstantExpr::Create(Imm, getContext());
1607      return X86Operand::CreateImm(ImmExpr, Start, End);
1608    }
1609
1610    // Only positive immediates are valid.
1611    if (Imm < 0)
1612      return ErrorOperand(Start, "expected a positive immediate displacement "
1613                          "before bracketed expr.");
1614
1615    // Parse ImmDisp [ BaseReg + Scale*IndexReg + Disp ].
1616    return ParseIntelMemOperand(/*SegReg=*/0, Imm, Start);
1617  }
1618
1619  // Register.
1620  unsigned RegNo = 0;
1621  if (!ParseRegister(RegNo, Start, End)) {
1622    // If this is a segment register followed by a ':', then this is the start
1623    // of a memory reference, otherwise this is a normal register reference.
1624    if (getLexer().isNot(AsmToken::Colon))
1625      return X86Operand::CreateReg(RegNo, Start, End);
1626
1627    getParser().Lex(); // Eat the colon.
1628    return ParseIntelMemOperand(/*SegReg=*/RegNo, /*Disp=*/0, Start);
1629  }
1630
1631  // Memory operand.
1632  return ParseIntelMemOperand(/*SegReg=*/0, /*Disp=*/0, Start);
1633}
1634
1635X86Operand *X86AsmParser::ParseATTOperand() {
1636  switch (getLexer().getKind()) {
1637  default:
1638    // Parse a memory operand with no segment register.
1639    return ParseMemOperand(0, Parser.getTok().getLoc());
1640  case AsmToken::Percent: {
1641    // Read the register.
1642    unsigned RegNo;
1643    SMLoc Start, End;
1644    if (ParseRegister(RegNo, Start, End)) return 0;
1645    if (RegNo == X86::EIZ || RegNo == X86::RIZ) {
1646      Error(Start, "%eiz and %riz can only be used as index registers",
1647            SMRange(Start, End));
1648      return 0;
1649    }
1650
1651    // If this is a segment register followed by a ':', then this is the start
1652    // of a memory reference, otherwise this is a normal register reference.
1653    if (getLexer().isNot(AsmToken::Colon))
1654      return X86Operand::CreateReg(RegNo, Start, End);
1655
1656    getParser().Lex(); // Eat the colon.
1657    return ParseMemOperand(RegNo, Start);
1658  }
1659  case AsmToken::Dollar: {
1660    // $42 -> immediate.
1661    SMLoc Start = Parser.getTok().getLoc(), End;
1662    Parser.Lex();
1663    const MCExpr *Val;
1664    if (getParser().parseExpression(Val, End))
1665      return 0;
1666    return X86Operand::CreateImm(Val, Start, End);
1667  }
1668  }
1669}
1670
1671/// ParseMemOperand: segment: disp(basereg, indexreg, scale).  The '%ds:' prefix
1672/// has already been parsed if present.
1673X86Operand *X86AsmParser::ParseMemOperand(unsigned SegReg, SMLoc MemStart) {
1674
1675  // We have to disambiguate a parenthesized expression "(4+5)" from the start
1676  // of a memory operand with a missing displacement "(%ebx)" or "(,%eax)".  The
1677  // only way to do this without lookahead is to eat the '(' and see what is
1678  // after it.
1679  const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext());
1680  if (getLexer().isNot(AsmToken::LParen)) {
1681    SMLoc ExprEnd;
1682    if (getParser().parseExpression(Disp, ExprEnd)) return 0;
1683
1684    // After parsing the base expression we could either have a parenthesized
1685    // memory address or not.  If not, return now.  If so, eat the (.
1686    if (getLexer().isNot(AsmToken::LParen)) {
1687      // Unless we have a segment register, treat this as an immediate.
1688      if (SegReg == 0)
1689        return X86Operand::CreateMem(Disp, MemStart, ExprEnd);
1690      return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
1691    }
1692
1693    // Eat the '('.
1694    Parser.Lex();
1695  } else {
1696    // Okay, we have a '('.  We don't know if this is an expression or not, but
1697    // so we have to eat the ( to see beyond it.
1698    SMLoc LParenLoc = Parser.getTok().getLoc();
1699    Parser.Lex(); // Eat the '('.
1700
1701    if (getLexer().is(AsmToken::Percent) || getLexer().is(AsmToken::Comma)) {
1702      // Nothing to do here, fall into the code below with the '(' part of the
1703      // memory operand consumed.
1704    } else {
1705      SMLoc ExprEnd;
1706
1707      // It must be an parenthesized expression, parse it now.
1708      if (getParser().parseParenExpression(Disp, ExprEnd))
1709        return 0;
1710
1711      // After parsing the base expression we could either have a parenthesized
1712      // memory address or not.  If not, return now.  If so, eat the (.
1713      if (getLexer().isNot(AsmToken::LParen)) {
1714        // Unless we have a segment register, treat this as an immediate.
1715        if (SegReg == 0)
1716          return X86Operand::CreateMem(Disp, LParenLoc, ExprEnd);
1717        return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
1718      }
1719
1720      // Eat the '('.
1721      Parser.Lex();
1722    }
1723  }
1724
1725  // If we reached here, then we just ate the ( of the memory operand.  Process
1726  // the rest of the memory operand.
1727  unsigned BaseReg = 0, IndexReg = 0, Scale = 1;
1728  SMLoc IndexLoc;
1729
1730  if (getLexer().is(AsmToken::Percent)) {
1731    SMLoc StartLoc, EndLoc;
1732    if (ParseRegister(BaseReg, StartLoc, EndLoc)) return 0;
1733    if (BaseReg == X86::EIZ || BaseReg == X86::RIZ) {
1734      Error(StartLoc, "eiz and riz can only be used as index registers",
1735            SMRange(StartLoc, EndLoc));
1736      return 0;
1737    }
1738  }
1739
1740  if (getLexer().is(AsmToken::Comma)) {
1741    Parser.Lex(); // Eat the comma.
1742    IndexLoc = Parser.getTok().getLoc();
1743
1744    // Following the comma we should have either an index register, or a scale
1745    // value. We don't support the later form, but we want to parse it
1746    // correctly.
1747    //
1748    // Not that even though it would be completely consistent to support syntax
1749    // like "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this.
1750    if (getLexer().is(AsmToken::Percent)) {
1751      SMLoc L;
1752      if (ParseRegister(IndexReg, L, L)) return 0;
1753
1754      if (getLexer().isNot(AsmToken::RParen)) {
1755        // Parse the scale amount:
1756        //  ::= ',' [scale-expression]
1757        if (getLexer().isNot(AsmToken::Comma)) {
1758          Error(Parser.getTok().getLoc(),
1759                "expected comma in scale expression");
1760          return 0;
1761        }
1762        Parser.Lex(); // Eat the comma.
1763
1764        if (getLexer().isNot(AsmToken::RParen)) {
1765          SMLoc Loc = Parser.getTok().getLoc();
1766
1767          int64_t ScaleVal;
1768          if (getParser().parseAbsoluteExpression(ScaleVal)){
1769            Error(Loc, "expected scale expression");
1770            return 0;
1771          }
1772
1773          // Validate the scale amount.
1774          if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8){
1775            Error(Loc, "scale factor in address must be 1, 2, 4 or 8");
1776            return 0;
1777          }
1778          Scale = (unsigned)ScaleVal;
1779        }
1780      }
1781    } else if (getLexer().isNot(AsmToken::RParen)) {
1782      // A scale amount without an index is ignored.
1783      // index.
1784      SMLoc Loc = Parser.getTok().getLoc();
1785
1786      int64_t Value;
1787      if (getParser().parseAbsoluteExpression(Value))
1788        return 0;
1789
1790      if (Value != 1)
1791        Warning(Loc, "scale factor without index register is ignored");
1792      Scale = 1;
1793    }
1794  }
1795
1796  // Ok, we've eaten the memory operand, verify we have a ')' and eat it too.
1797  if (getLexer().isNot(AsmToken::RParen)) {
1798    Error(Parser.getTok().getLoc(), "unexpected token in memory operand");
1799    return 0;
1800  }
1801  SMLoc MemEnd = Parser.getTok().getEndLoc();
1802  Parser.Lex(); // Eat the ')'.
1803
1804  // If we have both a base register and an index register make sure they are
1805  // both 64-bit or 32-bit registers.
1806  // To support VSIB, IndexReg can be 128-bit or 256-bit registers.
1807  if (BaseReg != 0 && IndexReg != 0) {
1808    if (X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg) &&
1809        (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
1810         X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg)) &&
1811        IndexReg != X86::RIZ) {
1812      Error(IndexLoc, "index register is 32-bit, but base register is 64-bit");
1813      return 0;
1814    }
1815    if (X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) &&
1816        (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
1817         X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) &&
1818        IndexReg != X86::EIZ){
1819      Error(IndexLoc, "index register is 64-bit, but base register is 32-bit");
1820      return 0;
1821    }
1822  }
1823
1824  return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale,
1825                               MemStart, MemEnd);
1826}
1827
1828bool X86AsmParser::
1829ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc,
1830                 SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
1831  InstInfo = &Info;
1832  StringRef PatchedName = Name;
1833
1834  // FIXME: Hack to recognize setneb as setne.
1835  if (PatchedName.startswith("set") && PatchedName.endswith("b") &&
1836      PatchedName != "setb" && PatchedName != "setnb")
1837    PatchedName = PatchedName.substr(0, Name.size()-1);
1838
1839  // FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}.
1840  const MCExpr *ExtraImmOp = 0;
1841  if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) &&
1842      (PatchedName.endswith("ss") || PatchedName.endswith("sd") ||
1843       PatchedName.endswith("ps") || PatchedName.endswith("pd"))) {
1844    bool IsVCMP = PatchedName[0] == 'v';
1845    unsigned SSECCIdx = IsVCMP ? 4 : 3;
1846    unsigned SSEComparisonCode = StringSwitch<unsigned>(
1847      PatchedName.slice(SSECCIdx, PatchedName.size() - 2))
1848      .Case("eq",       0x00)
1849      .Case("lt",       0x01)
1850      .Case("le",       0x02)
1851      .Case("unord",    0x03)
1852      .Case("neq",      0x04)
1853      .Case("nlt",      0x05)
1854      .Case("nle",      0x06)
1855      .Case("ord",      0x07)
1856      /* AVX only from here */
1857      .Case("eq_uq",    0x08)
1858      .Case("nge",      0x09)
1859      .Case("ngt",      0x0A)
1860      .Case("false",    0x0B)
1861      .Case("neq_oq",   0x0C)
1862      .Case("ge",       0x0D)
1863      .Case("gt",       0x0E)
1864      .Case("true",     0x0F)
1865      .Case("eq_os",    0x10)
1866      .Case("lt_oq",    0x11)
1867      .Case("le_oq",    0x12)
1868      .Case("unord_s",  0x13)
1869      .Case("neq_us",   0x14)
1870      .Case("nlt_uq",   0x15)
1871      .Case("nle_uq",   0x16)
1872      .Case("ord_s",    0x17)
1873      .Case("eq_us",    0x18)
1874      .Case("nge_uq",   0x19)
1875      .Case("ngt_uq",   0x1A)
1876      .Case("false_os", 0x1B)
1877      .Case("neq_os",   0x1C)
1878      .Case("ge_oq",    0x1D)
1879      .Case("gt_oq",    0x1E)
1880      .Case("true_us",  0x1F)
1881      .Default(~0U);
1882    if (SSEComparisonCode != ~0U && (IsVCMP || SSEComparisonCode < 8)) {
1883      ExtraImmOp = MCConstantExpr::Create(SSEComparisonCode,
1884                                          getParser().getContext());
1885      if (PatchedName.endswith("ss")) {
1886        PatchedName = IsVCMP ? "vcmpss" : "cmpss";
1887      } else if (PatchedName.endswith("sd")) {
1888        PatchedName = IsVCMP ? "vcmpsd" : "cmpsd";
1889      } else if (PatchedName.endswith("ps")) {
1890        PatchedName = IsVCMP ? "vcmpps" : "cmpps";
1891      } else {
1892        assert(PatchedName.endswith("pd") && "Unexpected mnemonic!");
1893        PatchedName = IsVCMP ? "vcmppd" : "cmppd";
1894      }
1895    }
1896  }
1897
1898  Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc));
1899
1900  if (ExtraImmOp && !isParsingIntelSyntax())
1901    Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc));
1902
1903  // Determine whether this is an instruction prefix.
1904  bool isPrefix =
1905    Name == "lock" || Name == "rep" ||
1906    Name == "repe" || Name == "repz" ||
1907    Name == "repne" || Name == "repnz" ||
1908    Name == "rex64" || Name == "data16";
1909
1910
1911  // This does the actual operand parsing.  Don't parse any more if we have a
1912  // prefix juxtaposed with an operation like "lock incl 4(%rax)", because we
1913  // just want to parse the "lock" as the first instruction and the "incl" as
1914  // the next one.
1915  if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) {
1916
1917    // Parse '*' modifier.
1918    if (getLexer().is(AsmToken::Star)) {
1919      SMLoc Loc = Parser.getTok().getLoc();
1920      Operands.push_back(X86Operand::CreateToken("*", Loc));
1921      Parser.Lex(); // Eat the star.
1922    }
1923
1924    // Read the first operand.
1925    if (X86Operand *Op = ParseOperand())
1926      Operands.push_back(Op);
1927    else {
1928      Parser.eatToEndOfStatement();
1929      return true;
1930    }
1931
1932    while (getLexer().is(AsmToken::Comma)) {
1933      Parser.Lex();  // Eat the comma.
1934
1935      // Parse and remember the operand.
1936      if (X86Operand *Op = ParseOperand())
1937        Operands.push_back(Op);
1938      else {
1939        Parser.eatToEndOfStatement();
1940        return true;
1941      }
1942    }
1943
1944    if (getLexer().isNot(AsmToken::EndOfStatement)) {
1945      SMLoc Loc = getLexer().getLoc();
1946      Parser.eatToEndOfStatement();
1947      return Error(Loc, "unexpected token in argument list");
1948    }
1949  }
1950
1951  if (getLexer().is(AsmToken::EndOfStatement))
1952    Parser.Lex(); // Consume the EndOfStatement
1953  else if (isPrefix && getLexer().is(AsmToken::Slash))
1954    Parser.Lex(); // Consume the prefix separator Slash
1955
1956  if (ExtraImmOp && isParsingIntelSyntax())
1957    Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc));
1958
1959  // This is a terrible hack to handle "out[bwl]? %al, (%dx)" ->
1960  // "outb %al, %dx".  Out doesn't take a memory form, but this is a widely
1961  // documented form in various unofficial manuals, so a lot of code uses it.
1962  if ((Name == "outb" || Name == "outw" || Name == "outl" || Name == "out") &&
1963      Operands.size() == 3) {
1964    X86Operand &Op = *(X86Operand*)Operands.back();
1965    if (Op.isMem() && Op.Mem.SegReg == 0 &&
1966        isa<MCConstantExpr>(Op.Mem.Disp) &&
1967        cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
1968        Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
1969      SMLoc Loc = Op.getEndLoc();
1970      Operands.back() = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
1971      delete &Op;
1972    }
1973  }
1974  // Same hack for "in[bwl]? (%dx), %al" -> "inb %dx, %al".
1975  if ((Name == "inb" || Name == "inw" || Name == "inl" || Name == "in") &&
1976      Operands.size() == 3) {
1977    X86Operand &Op = *(X86Operand*)Operands.begin()[1];
1978    if (Op.isMem() && Op.Mem.SegReg == 0 &&
1979        isa<MCConstantExpr>(Op.Mem.Disp) &&
1980        cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
1981        Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
1982      SMLoc Loc = Op.getEndLoc();
1983      Operands.begin()[1] = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
1984      delete &Op;
1985    }
1986  }
1987  // Transform "ins[bwl] %dx, %es:(%edi)" into "ins[bwl]"
1988  if (Name.startswith("ins") && Operands.size() == 3 &&
1989      (Name == "insb" || Name == "insw" || Name == "insl")) {
1990    X86Operand &Op = *(X86Operand*)Operands.begin()[1];
1991    X86Operand &Op2 = *(X86Operand*)Operands.begin()[2];
1992    if (Op.isReg() && Op.getReg() == X86::DX && isDstOp(Op2)) {
1993      Operands.pop_back();
1994      Operands.pop_back();
1995      delete &Op;
1996      delete &Op2;
1997    }
1998  }
1999
2000  // Transform "outs[bwl] %ds:(%esi), %dx" into "out[bwl]"
2001  if (Name.startswith("outs") && Operands.size() == 3 &&
2002      (Name == "outsb" || Name == "outsw" || Name == "outsl")) {
2003    X86Operand &Op = *(X86Operand*)Operands.begin()[1];
2004    X86Operand &Op2 = *(X86Operand*)Operands.begin()[2];
2005    if (isSrcOp(Op) && Op2.isReg() && Op2.getReg() == X86::DX) {
2006      Operands.pop_back();
2007      Operands.pop_back();
2008      delete &Op;
2009      delete &Op2;
2010    }
2011  }
2012
2013  // Transform "movs[bwl] %ds:(%esi), %es:(%edi)" into "movs[bwl]"
2014  if (Name.startswith("movs") && Operands.size() == 3 &&
2015      (Name == "movsb" || Name == "movsw" || Name == "movsl" ||
2016       (is64BitMode() && Name == "movsq"))) {
2017    X86Operand &Op = *(X86Operand*)Operands.begin()[1];
2018    X86Operand &Op2 = *(X86Operand*)Operands.begin()[2];
2019    if (isSrcOp(Op) && isDstOp(Op2)) {
2020      Operands.pop_back();
2021      Operands.pop_back();
2022      delete &Op;
2023      delete &Op2;
2024    }
2025  }
2026  // Transform "lods[bwl] %ds:(%esi),{%al,%ax,%eax,%rax}" into "lods[bwl]"
2027  if (Name.startswith("lods") && Operands.size() == 3 &&
2028      (Name == "lods" || Name == "lodsb" || Name == "lodsw" ||
2029       Name == "lodsl" || (is64BitMode() && Name == "lodsq"))) {
2030    X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
2031    X86Operand *Op2 = static_cast<X86Operand*>(Operands[2]);
2032    if (isSrcOp(*Op1) && Op2->isReg()) {
2033      const char *ins;
2034      unsigned reg = Op2->getReg();
2035      bool isLods = Name == "lods";
2036      if (reg == X86::AL && (isLods || Name == "lodsb"))
2037        ins = "lodsb";
2038      else if (reg == X86::AX && (isLods || Name == "lodsw"))
2039        ins = "lodsw";
2040      else if (reg == X86::EAX && (isLods || Name == "lodsl"))
2041        ins = "lodsl";
2042      else if (reg == X86::RAX && (isLods || Name == "lodsq"))
2043        ins = "lodsq";
2044      else
2045        ins = NULL;
2046      if (ins != NULL) {
2047        Operands.pop_back();
2048        Operands.pop_back();
2049        delete Op1;
2050        delete Op2;
2051        if (Name != ins)
2052          static_cast<X86Operand*>(Operands[0])->setTokenValue(ins);
2053      }
2054    }
2055  }
2056  // Transform "stos[bwl] {%al,%ax,%eax,%rax},%es:(%edi)" into "stos[bwl]"
2057  if (Name.startswith("stos") && Operands.size() == 3 &&
2058      (Name == "stos" || Name == "stosb" || Name == "stosw" ||
2059       Name == "stosl" || (is64BitMode() && Name == "stosq"))) {
2060    X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
2061    X86Operand *Op2 = static_cast<X86Operand*>(Operands[2]);
2062    if (isDstOp(*Op2) && Op1->isReg()) {
2063      const char *ins;
2064      unsigned reg = Op1->getReg();
2065      bool isStos = Name == "stos";
2066      if (reg == X86::AL && (isStos || Name == "stosb"))
2067        ins = "stosb";
2068      else if (reg == X86::AX && (isStos || Name == "stosw"))
2069        ins = "stosw";
2070      else if (reg == X86::EAX && (isStos || Name == "stosl"))
2071        ins = "stosl";
2072      else if (reg == X86::RAX && (isStos || Name == "stosq"))
2073        ins = "stosq";
2074      else
2075        ins = NULL;
2076      if (ins != NULL) {
2077        Operands.pop_back();
2078        Operands.pop_back();
2079        delete Op1;
2080        delete Op2;
2081        if (Name != ins)
2082          static_cast<X86Operand*>(Operands[0])->setTokenValue(ins);
2083      }
2084    }
2085  }
2086
2087  // FIXME: Hack to handle recognize s{hr,ar,hl} $1, <op>.  Canonicalize to
2088  // "shift <op>".
2089  if ((Name.startswith("shr") || Name.startswith("sar") ||
2090       Name.startswith("shl") || Name.startswith("sal") ||
2091       Name.startswith("rcl") || Name.startswith("rcr") ||
2092       Name.startswith("rol") || Name.startswith("ror")) &&
2093      Operands.size() == 3) {
2094    if (isParsingIntelSyntax()) {
2095      // Intel syntax
2096      X86Operand *Op1 = static_cast<X86Operand*>(Operands[2]);
2097      if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) &&
2098          cast<MCConstantExpr>(Op1->getImm())->getValue() == 1) {
2099        delete Operands[2];
2100        Operands.pop_back();
2101      }
2102    } else {
2103      X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
2104      if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) &&
2105          cast<MCConstantExpr>(Op1->getImm())->getValue() == 1) {
2106        delete Operands[1];
2107        Operands.erase(Operands.begin() + 1);
2108      }
2109    }
2110  }
2111
2112  // Transforms "int $3" into "int3" as a size optimization.  We can't write an
2113  // instalias with an immediate operand yet.
2114  if (Name == "int" && Operands.size() == 2) {
2115    X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
2116    if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) &&
2117        cast<MCConstantExpr>(Op1->getImm())->getValue() == 3) {
2118      delete Operands[1];
2119      Operands.erase(Operands.begin() + 1);
2120      static_cast<X86Operand*>(Operands[0])->setTokenValue("int3");
2121    }
2122  }
2123
2124  return false;
2125}
2126
2127static bool convertToSExti8(MCInst &Inst, unsigned Opcode, unsigned Reg,
2128                            bool isCmp) {
2129  MCInst TmpInst;
2130  TmpInst.setOpcode(Opcode);
2131  if (!isCmp)
2132    TmpInst.addOperand(MCOperand::CreateReg(Reg));
2133  TmpInst.addOperand(MCOperand::CreateReg(Reg));
2134  TmpInst.addOperand(Inst.getOperand(0));
2135  Inst = TmpInst;
2136  return true;
2137}
2138
2139static bool convert16i16to16ri8(MCInst &Inst, unsigned Opcode,
2140                                bool isCmp = false) {
2141  if (!Inst.getOperand(0).isImm() ||
2142      !isImmSExti16i8Value(Inst.getOperand(0).getImm()))
2143    return false;
2144
2145  return convertToSExti8(Inst, Opcode, X86::AX, isCmp);
2146}
2147
2148static bool convert32i32to32ri8(MCInst &Inst, unsigned Opcode,
2149                                bool isCmp = false) {
2150  if (!Inst.getOperand(0).isImm() ||
2151      !isImmSExti32i8Value(Inst.getOperand(0).getImm()))
2152    return false;
2153
2154  return convertToSExti8(Inst, Opcode, X86::EAX, isCmp);
2155}
2156
2157static bool convert64i32to64ri8(MCInst &Inst, unsigned Opcode,
2158                                bool isCmp = false) {
2159  if (!Inst.getOperand(0).isImm() ||
2160      !isImmSExti64i8Value(Inst.getOperand(0).getImm()))
2161    return false;
2162
2163  return convertToSExti8(Inst, Opcode, X86::RAX, isCmp);
2164}
2165
2166bool X86AsmParser::
2167processInstruction(MCInst &Inst,
2168                   const SmallVectorImpl<MCParsedAsmOperand*> &Ops) {
2169  switch (Inst.getOpcode()) {
2170  default: return false;
2171  case X86::AND16i16: return convert16i16to16ri8(Inst, X86::AND16ri8);
2172  case X86::AND32i32: return convert32i32to32ri8(Inst, X86::AND32ri8);
2173  case X86::AND64i32: return convert64i32to64ri8(Inst, X86::AND64ri8);
2174  case X86::XOR16i16: return convert16i16to16ri8(Inst, X86::XOR16ri8);
2175  case X86::XOR32i32: return convert32i32to32ri8(Inst, X86::XOR32ri8);
2176  case X86::XOR64i32: return convert64i32to64ri8(Inst, X86::XOR64ri8);
2177  case X86::OR16i16:  return convert16i16to16ri8(Inst, X86::OR16ri8);
2178  case X86::OR32i32:  return convert32i32to32ri8(Inst, X86::OR32ri8);
2179  case X86::OR64i32:  return convert64i32to64ri8(Inst, X86::OR64ri8);
2180  case X86::CMP16i16: return convert16i16to16ri8(Inst, X86::CMP16ri8, true);
2181  case X86::CMP32i32: return convert32i32to32ri8(Inst, X86::CMP32ri8, true);
2182  case X86::CMP64i32: return convert64i32to64ri8(Inst, X86::CMP64ri8, true);
2183  case X86::ADD16i16: return convert16i16to16ri8(Inst, X86::ADD16ri8);
2184  case X86::ADD32i32: return convert32i32to32ri8(Inst, X86::ADD32ri8);
2185  case X86::ADD64i32: return convert64i32to64ri8(Inst, X86::ADD64ri8);
2186  case X86::SUB16i16: return convert16i16to16ri8(Inst, X86::SUB16ri8);
2187  case X86::SUB32i32: return convert32i32to32ri8(Inst, X86::SUB32ri8);
2188  case X86::SUB64i32: return convert64i32to64ri8(Inst, X86::SUB64ri8);
2189  case X86::ADC16i16: return convert16i16to16ri8(Inst, X86::ADC16ri8);
2190  case X86::ADC32i32: return convert32i32to32ri8(Inst, X86::ADC32ri8);
2191  case X86::ADC64i32: return convert64i32to64ri8(Inst, X86::ADC64ri8);
2192  case X86::SBB16i16: return convert16i16to16ri8(Inst, X86::SBB16ri8);
2193  case X86::SBB32i32: return convert32i32to32ri8(Inst, X86::SBB32ri8);
2194  case X86::SBB64i32: return convert64i32to64ri8(Inst, X86::SBB64ri8);
2195  }
2196}
2197
2198static const char *getSubtargetFeatureName(unsigned Val);
2199bool X86AsmParser::
2200MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
2201                        SmallVectorImpl<MCParsedAsmOperand*> &Operands,
2202                        MCStreamer &Out, unsigned &ErrorInfo,
2203                        bool MatchingInlineAsm) {
2204  assert(!Operands.empty() && "Unexpect empty operand list!");
2205  X86Operand *Op = static_cast<X86Operand*>(Operands[0]);
2206  assert(Op->isToken() && "Leading operand should always be a mnemonic!");
2207  ArrayRef<SMRange> EmptyRanges = None;
2208
2209  // First, handle aliases that expand to multiple instructions.
2210  // FIXME: This should be replaced with a real .td file alias mechanism.
2211  // Also, MatchInstructionImpl should actually *do* the EmitInstruction
2212  // call.
2213  if (Op->getToken() == "fstsw" || Op->getToken() == "fstcw" ||
2214      Op->getToken() == "fstsww" || Op->getToken() == "fstcww" ||
2215      Op->getToken() == "finit" || Op->getToken() == "fsave" ||
2216      Op->getToken() == "fstenv" || Op->getToken() == "fclex") {
2217    MCInst Inst;
2218    Inst.setOpcode(X86::WAIT);
2219    Inst.setLoc(IDLoc);
2220    if (!MatchingInlineAsm)
2221      Out.EmitInstruction(Inst);
2222
2223    const char *Repl =
2224      StringSwitch<const char*>(Op->getToken())
2225        .Case("finit",  "fninit")
2226        .Case("fsave",  "fnsave")
2227        .Case("fstcw",  "fnstcw")
2228        .Case("fstcww",  "fnstcw")
2229        .Case("fstenv", "fnstenv")
2230        .Case("fstsw",  "fnstsw")
2231        .Case("fstsww", "fnstsw")
2232        .Case("fclex",  "fnclex")
2233        .Default(0);
2234    assert(Repl && "Unknown wait-prefixed instruction");
2235    delete Operands[0];
2236    Operands[0] = X86Operand::CreateToken(Repl, IDLoc);
2237  }
2238
2239  bool WasOriginallyInvalidOperand = false;
2240  MCInst Inst;
2241
2242  // First, try a direct match.
2243  switch (MatchInstructionImpl(Operands, Inst,
2244                               ErrorInfo, MatchingInlineAsm,
2245                               isParsingIntelSyntax())) {
2246  default: break;
2247  case Match_Success:
2248    // Some instructions need post-processing to, for example, tweak which
2249    // encoding is selected. Loop on it while changes happen so the
2250    // individual transformations can chain off each other.
2251    if (!MatchingInlineAsm)
2252      while (processInstruction(Inst, Operands))
2253        ;
2254
2255    Inst.setLoc(IDLoc);
2256    if (!MatchingInlineAsm)
2257      Out.EmitInstruction(Inst);
2258    Opcode = Inst.getOpcode();
2259    return false;
2260  case Match_MissingFeature: {
2261    assert(ErrorInfo && "Unknown missing feature!");
2262    // Special case the error message for the very common case where only
2263    // a single subtarget feature is missing.
2264    std::string Msg = "instruction requires:";
2265    unsigned Mask = 1;
2266    for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
2267      if (ErrorInfo & Mask) {
2268        Msg += " ";
2269        Msg += getSubtargetFeatureName(ErrorInfo & Mask);
2270      }
2271      Mask <<= 1;
2272    }
2273    return Error(IDLoc, Msg, EmptyRanges, MatchingInlineAsm);
2274  }
2275  case Match_InvalidOperand:
2276    WasOriginallyInvalidOperand = true;
2277    break;
2278  case Match_MnemonicFail:
2279    break;
2280  }
2281
2282  // FIXME: Ideally, we would only attempt suffix matches for things which are
2283  // valid prefixes, and we could just infer the right unambiguous
2284  // type. However, that requires substantially more matcher support than the
2285  // following hack.
2286
2287  // Change the operand to point to a temporary token.
2288  StringRef Base = Op->getToken();
2289  SmallString<16> Tmp;
2290  Tmp += Base;
2291  Tmp += ' ';
2292  Op->setTokenValue(Tmp.str());
2293
2294  // If this instruction starts with an 'f', then it is a floating point stack
2295  // instruction.  These come in up to three forms for 32-bit, 64-bit, and
2296  // 80-bit floating point, which use the suffixes s,l,t respectively.
2297  //
2298  // Otherwise, we assume that this may be an integer instruction, which comes
2299  // in 8/16/32/64-bit forms using the b,w,l,q suffixes respectively.
2300  const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0";
2301
2302  // Check for the various suffix matches.
2303  Tmp[Base.size()] = Suffixes[0];
2304  unsigned ErrorInfoIgnore;
2305  unsigned ErrorInfoMissingFeature = 0; // Init suppresses compiler warnings.
2306  unsigned Match1, Match2, Match3, Match4;
2307
2308  Match1 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
2309                                MatchingInlineAsm, isParsingIntelSyntax());
2310  // If this returned as a missing feature failure, remember that.
2311  if (Match1 == Match_MissingFeature)
2312    ErrorInfoMissingFeature = ErrorInfoIgnore;
2313  Tmp[Base.size()] = Suffixes[1];
2314  Match2 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
2315                                MatchingInlineAsm, isParsingIntelSyntax());
2316  // If this returned as a missing feature failure, remember that.
2317  if (Match2 == Match_MissingFeature)
2318    ErrorInfoMissingFeature = ErrorInfoIgnore;
2319  Tmp[Base.size()] = Suffixes[2];
2320  Match3 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
2321                                MatchingInlineAsm, isParsingIntelSyntax());
2322  // If this returned as a missing feature failure, remember that.
2323  if (Match3 == Match_MissingFeature)
2324    ErrorInfoMissingFeature = ErrorInfoIgnore;
2325  Tmp[Base.size()] = Suffixes[3];
2326  Match4 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
2327                                MatchingInlineAsm, isParsingIntelSyntax());
2328  // If this returned as a missing feature failure, remember that.
2329  if (Match4 == Match_MissingFeature)
2330    ErrorInfoMissingFeature = ErrorInfoIgnore;
2331
2332  // Restore the old token.
2333  Op->setTokenValue(Base);
2334
2335  // If exactly one matched, then we treat that as a successful match (and the
2336  // instruction will already have been filled in correctly, since the failing
2337  // matches won't have modified it).
2338  unsigned NumSuccessfulMatches =
2339    (Match1 == Match_Success) + (Match2 == Match_Success) +
2340    (Match3 == Match_Success) + (Match4 == Match_Success);
2341  if (NumSuccessfulMatches == 1) {
2342    Inst.setLoc(IDLoc);
2343    if (!MatchingInlineAsm)
2344      Out.EmitInstruction(Inst);
2345    Opcode = Inst.getOpcode();
2346    return false;
2347  }
2348
2349  // Otherwise, the match failed, try to produce a decent error message.
2350
2351  // If we had multiple suffix matches, then identify this as an ambiguous
2352  // match.
2353  if (NumSuccessfulMatches > 1) {
2354    char MatchChars[4];
2355    unsigned NumMatches = 0;
2356    if (Match1 == Match_Success) MatchChars[NumMatches++] = Suffixes[0];
2357    if (Match2 == Match_Success) MatchChars[NumMatches++] = Suffixes[1];
2358    if (Match3 == Match_Success) MatchChars[NumMatches++] = Suffixes[2];
2359    if (Match4 == Match_Success) MatchChars[NumMatches++] = Suffixes[3];
2360
2361    SmallString<126> Msg;
2362    raw_svector_ostream OS(Msg);
2363    OS << "ambiguous instructions require an explicit suffix (could be ";
2364    for (unsigned i = 0; i != NumMatches; ++i) {
2365      if (i != 0)
2366        OS << ", ";
2367      if (i + 1 == NumMatches)
2368        OS << "or ";
2369      OS << "'" << Base << MatchChars[i] << "'";
2370    }
2371    OS << ")";
2372    Error(IDLoc, OS.str(), EmptyRanges, MatchingInlineAsm);
2373    return true;
2374  }
2375
2376  // Okay, we know that none of the variants matched successfully.
2377
2378  // If all of the instructions reported an invalid mnemonic, then the original
2379  // mnemonic was invalid.
2380  if ((Match1 == Match_MnemonicFail) && (Match2 == Match_MnemonicFail) &&
2381      (Match3 == Match_MnemonicFail) && (Match4 == Match_MnemonicFail)) {
2382    if (!WasOriginallyInvalidOperand) {
2383      ArrayRef<SMRange> Ranges = MatchingInlineAsm ? EmptyRanges :
2384        Op->getLocRange();
2385      return Error(IDLoc, "invalid instruction mnemonic '" + Base + "'",
2386                   Ranges, MatchingInlineAsm);
2387    }
2388
2389    // Recover location info for the operand if we know which was the problem.
2390    if (ErrorInfo != ~0U) {
2391      if (ErrorInfo >= Operands.size())
2392        return Error(IDLoc, "too few operands for instruction",
2393                     EmptyRanges, MatchingInlineAsm);
2394
2395      X86Operand *Operand = (X86Operand*)Operands[ErrorInfo];
2396      if (Operand->getStartLoc().isValid()) {
2397        SMRange OperandRange = Operand->getLocRange();
2398        return Error(Operand->getStartLoc(), "invalid operand for instruction",
2399                     OperandRange, MatchingInlineAsm);
2400      }
2401    }
2402
2403    return Error(IDLoc, "invalid operand for instruction", EmptyRanges,
2404                 MatchingInlineAsm);
2405  }
2406
2407  // If one instruction matched with a missing feature, report this as a
2408  // missing feature.
2409  if ((Match1 == Match_MissingFeature) + (Match2 == Match_MissingFeature) +
2410      (Match3 == Match_MissingFeature) + (Match4 == Match_MissingFeature) == 1){
2411    std::string Msg = "instruction requires:";
2412    unsigned Mask = 1;
2413    for (unsigned i = 0; i < (sizeof(ErrorInfoMissingFeature)*8-1); ++i) {
2414      if (ErrorInfoMissingFeature & Mask) {
2415        Msg += " ";
2416        Msg += getSubtargetFeatureName(ErrorInfoMissingFeature & Mask);
2417      }
2418      Mask <<= 1;
2419    }
2420    return Error(IDLoc, Msg, EmptyRanges, MatchingInlineAsm);
2421  }
2422
2423  // If one instruction matched with an invalid operand, report this as an
2424  // operand failure.
2425  if ((Match1 == Match_InvalidOperand) + (Match2 == Match_InvalidOperand) +
2426      (Match3 == Match_InvalidOperand) + (Match4 == Match_InvalidOperand) == 1){
2427    Error(IDLoc, "invalid operand for instruction", EmptyRanges,
2428          MatchingInlineAsm);
2429    return true;
2430  }
2431
2432  // If all of these were an outright failure, report it in a useless way.
2433  Error(IDLoc, "unknown use of instruction mnemonic without a size suffix",
2434        EmptyRanges, MatchingInlineAsm);
2435  return true;
2436}
2437
2438
2439bool X86AsmParser::ParseDirective(AsmToken DirectiveID) {
2440  StringRef IDVal = DirectiveID.getIdentifier();
2441  if (IDVal == ".word")
2442    return ParseDirectiveWord(2, DirectiveID.getLoc());
2443  else if (IDVal.startswith(".code"))
2444    return ParseDirectiveCode(IDVal, DirectiveID.getLoc());
2445  else if (IDVal.startswith(".att_syntax")) {
2446    getParser().setAssemblerDialect(0);
2447    return false;
2448  } else if (IDVal.startswith(".intel_syntax")) {
2449    getParser().setAssemblerDialect(1);
2450    if (getLexer().isNot(AsmToken::EndOfStatement)) {
2451      if(Parser.getTok().getString() == "noprefix") {
2452        // FIXME : Handle noprefix
2453        Parser.Lex();
2454      } else
2455        return true;
2456    }
2457    return false;
2458  }
2459  return true;
2460}
2461
2462/// ParseDirectiveWord
2463///  ::= .word [ expression (, expression)* ]
2464bool X86AsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
2465  if (getLexer().isNot(AsmToken::EndOfStatement)) {
2466    for (;;) {
2467      const MCExpr *Value;
2468      if (getParser().parseExpression(Value))
2469        return true;
2470
2471      getParser().getStreamer().EmitValue(Value, Size);
2472
2473      if (getLexer().is(AsmToken::EndOfStatement))
2474        break;
2475
2476      // FIXME: Improve diagnostic.
2477      if (getLexer().isNot(AsmToken::Comma))
2478        return Error(L, "unexpected token in directive");
2479      Parser.Lex();
2480    }
2481  }
2482
2483  Parser.Lex();
2484  return false;
2485}
2486
2487/// ParseDirectiveCode
2488///  ::= .code32 | .code64
2489bool X86AsmParser::ParseDirectiveCode(StringRef IDVal, SMLoc L) {
2490  if (IDVal == ".code32") {
2491    Parser.Lex();
2492    if (is64BitMode()) {
2493      SwitchMode();
2494      getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
2495    }
2496  } else if (IDVal == ".code64") {
2497    Parser.Lex();
2498    if (!is64BitMode()) {
2499      SwitchMode();
2500      getParser().getStreamer().EmitAssemblerFlag(MCAF_Code64);
2501    }
2502  } else {
2503    return Error(L, "unexpected directive " + IDVal);
2504  }
2505
2506  return false;
2507}
2508
2509// Force static initialization.
2510extern "C" void LLVMInitializeX86AsmParser() {
2511  RegisterMCAsmParser<X86AsmParser> X(TheX86_32Target);
2512  RegisterMCAsmParser<X86AsmParser> Y(TheX86_64Target);
2513}
2514
2515#define GET_REGISTER_MATCHER
2516#define GET_MATCHER_IMPLEMENTATION
2517#define GET_SUBTARGET_FEATURE_NAME
2518#include "X86GenAsmMatcher.inc"
2519