1//===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Base ARM implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ARMBaseInstrInfo.h"
15#include "ARM.h"
16#include "ARMBaseRegisterInfo.h"
17#include "ARMConstantPoolValue.h"
18#include "ARMHazardRecognizer.h"
19#include "ARMMachineFunctionInfo.h"
20#include "MCTargetDesc/ARMAddressingModes.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/CodeGen/LiveVariables.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineJumpTableInfo.h"
27#include "llvm/CodeGen/MachineMemOperand.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/CodeGen/SelectionDAGNodes.h"
30#include "llvm/IR/Constants.h"
31#include "llvm/IR/Function.h"
32#include "llvm/IR/GlobalValue.h"
33#include "llvm/MC/MCAsmInfo.h"
34#include "llvm/Support/BranchProbability.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/ErrorHandling.h"
38
39#define GET_INSTRINFO_CTOR
40#include "ARMGenInstrInfo.inc"
41
42using namespace llvm;
43
44static cl::opt<bool>
45EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
46               cl::desc("Enable ARM 2-addr to 3-addr conv"));
47
48static cl::opt<bool>
49WidenVMOVS("widen-vmovs", cl::Hidden, cl::init(true),
50           cl::desc("Widen ARM vmovs to vmovd when possible"));
51
52static cl::opt<unsigned>
53SwiftPartialUpdateClearance("swift-partial-update-clearance",
54     cl::Hidden, cl::init(12),
55     cl::desc("Clearance before partial register updates"));
56
57/// ARM_MLxEntry - Record information about MLA / MLS instructions.
58struct ARM_MLxEntry {
59  uint16_t MLxOpc;     // MLA / MLS opcode
60  uint16_t MulOpc;     // Expanded multiplication opcode
61  uint16_t AddSubOpc;  // Expanded add / sub opcode
62  bool NegAcc;         // True if the acc is negated before the add / sub.
63  bool HasLane;        // True if instruction has an extra "lane" operand.
64};
65
66static const ARM_MLxEntry ARM_MLxTable[] = {
67  // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
68  // fp scalar ops
69  { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
70  { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
71  { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
72  { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
73  { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
74  { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
75  { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
76  { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
77
78  // fp SIMD ops
79  { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
80  { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
81  { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
82  { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
83  { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
84  { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
85  { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
86  { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
87};
88
89ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
90  : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
91    Subtarget(STI) {
92  for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
93    if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
94      assert(false && "Duplicated entries?");
95    MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
96    MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
97  }
98}
99
100// Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
101// currently defaults to no prepass hazard recognizer.
102ScheduleHazardRecognizer *ARMBaseInstrInfo::
103CreateTargetHazardRecognizer(const TargetMachine *TM,
104                             const ScheduleDAG *DAG) const {
105  if (usePreRAHazardRecognizer()) {
106    const InstrItineraryData *II = TM->getInstrItineraryData();
107    return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
108  }
109  return TargetInstrInfo::CreateTargetHazardRecognizer(TM, DAG);
110}
111
112ScheduleHazardRecognizer *ARMBaseInstrInfo::
113CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
114                                   const ScheduleDAG *DAG) const {
115  if (Subtarget.isThumb2() || Subtarget.hasVFP2())
116    return (ScheduleHazardRecognizer *)
117      new ARMHazardRecognizer(II, *this, getRegisterInfo(), Subtarget, DAG);
118  return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
119}
120
121MachineInstr *
122ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
123                                        MachineBasicBlock::iterator &MBBI,
124                                        LiveVariables *LV) const {
125  // FIXME: Thumb2 support.
126
127  if (!EnableARM3Addr)
128    return NULL;
129
130  MachineInstr *MI = MBBI;
131  MachineFunction &MF = *MI->getParent()->getParent();
132  uint64_t TSFlags = MI->getDesc().TSFlags;
133  bool isPre = false;
134  switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
135  default: return NULL;
136  case ARMII::IndexModePre:
137    isPre = true;
138    break;
139  case ARMII::IndexModePost:
140    break;
141  }
142
143  // Try splitting an indexed load/store to an un-indexed one plus an add/sub
144  // operation.
145  unsigned MemOpc = getUnindexedOpcode(MI->getOpcode());
146  if (MemOpc == 0)
147    return NULL;
148
149  MachineInstr *UpdateMI = NULL;
150  MachineInstr *MemMI = NULL;
151  unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
152  const MCInstrDesc &MCID = MI->getDesc();
153  unsigned NumOps = MCID.getNumOperands();
154  bool isLoad = !MI->mayStore();
155  const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0);
156  const MachineOperand &Base = MI->getOperand(2);
157  const MachineOperand &Offset = MI->getOperand(NumOps-3);
158  unsigned WBReg = WB.getReg();
159  unsigned BaseReg = Base.getReg();
160  unsigned OffReg = Offset.getReg();
161  unsigned OffImm = MI->getOperand(NumOps-2).getImm();
162  ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm();
163  switch (AddrMode) {
164  default: llvm_unreachable("Unknown indexed op!");
165  case ARMII::AddrMode2: {
166    bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
167    unsigned Amt = ARM_AM::getAM2Offset(OffImm);
168    if (OffReg == 0) {
169      if (ARM_AM::getSOImmVal(Amt) == -1)
170        // Can't encode it in a so_imm operand. This transformation will
171        // add more than 1 instruction. Abandon!
172        return NULL;
173      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
174                         get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
175        .addReg(BaseReg).addImm(Amt)
176        .addImm(Pred).addReg(0).addReg(0);
177    } else if (Amt != 0) {
178      ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
179      unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
180      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
181                         get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
182        .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc)
183        .addImm(Pred).addReg(0).addReg(0);
184    } else
185      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
186                         get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
187        .addReg(BaseReg).addReg(OffReg)
188        .addImm(Pred).addReg(0).addReg(0);
189    break;
190  }
191  case ARMII::AddrMode3 : {
192    bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
193    unsigned Amt = ARM_AM::getAM3Offset(OffImm);
194    if (OffReg == 0)
195      // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
196      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
197                         get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
198        .addReg(BaseReg).addImm(Amt)
199        .addImm(Pred).addReg(0).addReg(0);
200    else
201      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
202                         get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
203        .addReg(BaseReg).addReg(OffReg)
204        .addImm(Pred).addReg(0).addReg(0);
205    break;
206  }
207  }
208
209  std::vector<MachineInstr*> NewMIs;
210  if (isPre) {
211    if (isLoad)
212      MemMI = BuildMI(MF, MI->getDebugLoc(),
213                      get(MemOpc), MI->getOperand(0).getReg())
214        .addReg(WBReg).addImm(0).addImm(Pred);
215    else
216      MemMI = BuildMI(MF, MI->getDebugLoc(),
217                      get(MemOpc)).addReg(MI->getOperand(1).getReg())
218        .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
219    NewMIs.push_back(MemMI);
220    NewMIs.push_back(UpdateMI);
221  } else {
222    if (isLoad)
223      MemMI = BuildMI(MF, MI->getDebugLoc(),
224                      get(MemOpc), MI->getOperand(0).getReg())
225        .addReg(BaseReg).addImm(0).addImm(Pred);
226    else
227      MemMI = BuildMI(MF, MI->getDebugLoc(),
228                      get(MemOpc)).addReg(MI->getOperand(1).getReg())
229        .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
230    if (WB.isDead())
231      UpdateMI->getOperand(0).setIsDead();
232    NewMIs.push_back(UpdateMI);
233    NewMIs.push_back(MemMI);
234  }
235
236  // Transfer LiveVariables states, kill / dead info.
237  if (LV) {
238    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
239      MachineOperand &MO = MI->getOperand(i);
240      if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
241        unsigned Reg = MO.getReg();
242
243        LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
244        if (MO.isDef()) {
245          MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
246          if (MO.isDead())
247            LV->addVirtualRegisterDead(Reg, NewMI);
248        }
249        if (MO.isUse() && MO.isKill()) {
250          for (unsigned j = 0; j < 2; ++j) {
251            // Look at the two new MI's in reverse order.
252            MachineInstr *NewMI = NewMIs[j];
253            if (!NewMI->readsRegister(Reg))
254              continue;
255            LV->addVirtualRegisterKilled(Reg, NewMI);
256            if (VI.removeKill(MI))
257              VI.Kills.push_back(NewMI);
258            break;
259          }
260        }
261      }
262    }
263  }
264
265  MFI->insert(MBBI, NewMIs[1]);
266  MFI->insert(MBBI, NewMIs[0]);
267  return NewMIs[0];
268}
269
270// Branch analysis.
271bool
272ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
273                                MachineBasicBlock *&FBB,
274                                SmallVectorImpl<MachineOperand> &Cond,
275                                bool AllowModify) const {
276  // If the block has no terminators, it just falls into the block after it.
277  MachineBasicBlock::iterator I = MBB.end();
278  if (I == MBB.begin())
279    return false;
280  --I;
281  while (I->isDebugValue()) {
282    if (I == MBB.begin())
283      return false;
284    --I;
285  }
286
287  // Get the last instruction in the block.
288  MachineInstr *LastInst = I;
289  unsigned LastOpc = LastInst->getOpcode();
290
291  // Check if it's an indirect branch first, this should return 'unanalyzable'
292  // even if it's predicated.
293  if (isIndirectBranchOpcode(LastOpc))
294    return true;
295
296  if (!isUnpredicatedTerminator(I))
297    return false;
298
299  // If there is only one terminator instruction, process it.
300  if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
301    if (isUncondBranchOpcode(LastOpc)) {
302      TBB = LastInst->getOperand(0).getMBB();
303      return false;
304    }
305    if (isCondBranchOpcode(LastOpc)) {
306      // Block ends with fall-through condbranch.
307      TBB = LastInst->getOperand(0).getMBB();
308      Cond.push_back(LastInst->getOperand(1));
309      Cond.push_back(LastInst->getOperand(2));
310      return false;
311    }
312    return true;  // Can't handle indirect branch.
313  }
314
315  // Get the instruction before it if it is a terminator.
316  MachineInstr *SecondLastInst = I;
317  unsigned SecondLastOpc = SecondLastInst->getOpcode();
318
319  // If AllowModify is true and the block ends with two or more unconditional
320  // branches, delete all but the first unconditional branch.
321  if (AllowModify && isUncondBranchOpcode(LastOpc)) {
322    while (isUncondBranchOpcode(SecondLastOpc)) {
323      LastInst->eraseFromParent();
324      LastInst = SecondLastInst;
325      LastOpc = LastInst->getOpcode();
326      if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
327        // Return now the only terminator is an unconditional branch.
328        TBB = LastInst->getOperand(0).getMBB();
329        return false;
330      } else {
331        SecondLastInst = I;
332        SecondLastOpc = SecondLastInst->getOpcode();
333      }
334    }
335  }
336
337  // If there are three terminators, we don't know what sort of block this is.
338  if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I))
339    return true;
340
341  // If the block ends with a B and a Bcc, handle it.
342  if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
343    TBB =  SecondLastInst->getOperand(0).getMBB();
344    Cond.push_back(SecondLastInst->getOperand(1));
345    Cond.push_back(SecondLastInst->getOperand(2));
346    FBB = LastInst->getOperand(0).getMBB();
347    return false;
348  }
349
350  // If the block ends with two unconditional branches, handle it.  The second
351  // one is not executed, so remove it.
352  if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
353    TBB = SecondLastInst->getOperand(0).getMBB();
354    I = LastInst;
355    if (AllowModify)
356      I->eraseFromParent();
357    return false;
358  }
359
360  // ...likewise if it ends with a branch table followed by an unconditional
361  // branch. The branch folder can create these, and we must get rid of them for
362  // correctness of Thumb constant islands.
363  if ((isJumpTableBranchOpcode(SecondLastOpc) ||
364       isIndirectBranchOpcode(SecondLastOpc)) &&
365      isUncondBranchOpcode(LastOpc)) {
366    I = LastInst;
367    if (AllowModify)
368      I->eraseFromParent();
369    return true;
370  }
371
372  // Otherwise, can't handle this.
373  return true;
374}
375
376
377unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
378  MachineBasicBlock::iterator I = MBB.end();
379  if (I == MBB.begin()) return 0;
380  --I;
381  while (I->isDebugValue()) {
382    if (I == MBB.begin())
383      return 0;
384    --I;
385  }
386  if (!isUncondBranchOpcode(I->getOpcode()) &&
387      !isCondBranchOpcode(I->getOpcode()))
388    return 0;
389
390  // Remove the branch.
391  I->eraseFromParent();
392
393  I = MBB.end();
394
395  if (I == MBB.begin()) return 1;
396  --I;
397  if (!isCondBranchOpcode(I->getOpcode()))
398    return 1;
399
400  // Remove the branch.
401  I->eraseFromParent();
402  return 2;
403}
404
405unsigned
406ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
407                               MachineBasicBlock *FBB,
408                               const SmallVectorImpl<MachineOperand> &Cond,
409                               DebugLoc DL) const {
410  ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
411  int BOpc   = !AFI->isThumbFunction()
412    ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
413  int BccOpc = !AFI->isThumbFunction()
414    ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
415  bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
416
417  // Shouldn't be a fall through.
418  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
419  assert((Cond.size() == 2 || Cond.size() == 0) &&
420         "ARM branch conditions have two components!");
421
422  if (FBB == 0) {
423    if (Cond.empty()) { // Unconditional branch?
424      if (isThumb)
425        BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).addImm(ARMCC::AL).addReg(0);
426      else
427        BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
428    } else
429      BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
430        .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
431    return 1;
432  }
433
434  // Two-way conditional branch.
435  BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
436    .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
437  if (isThumb)
438    BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).addImm(ARMCC::AL).addReg(0);
439  else
440    BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
441  return 2;
442}
443
444bool ARMBaseInstrInfo::
445ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
446  ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
447  Cond[0].setImm(ARMCC::getOppositeCondition(CC));
448  return false;
449}
450
451bool ARMBaseInstrInfo::isPredicated(const MachineInstr *MI) const {
452  if (MI->isBundle()) {
453    MachineBasicBlock::const_instr_iterator I = MI;
454    MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
455    while (++I != E && I->isInsideBundle()) {
456      int PIdx = I->findFirstPredOperandIdx();
457      if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
458        return true;
459    }
460    return false;
461  }
462
463  int PIdx = MI->findFirstPredOperandIdx();
464  return PIdx != -1 && MI->getOperand(PIdx).getImm() != ARMCC::AL;
465}
466
467bool ARMBaseInstrInfo::
468PredicateInstruction(MachineInstr *MI,
469                     const SmallVectorImpl<MachineOperand> &Pred) const {
470  unsigned Opc = MI->getOpcode();
471  if (isUncondBranchOpcode(Opc)) {
472    MI->setDesc(get(getMatchingCondBranchOpcode(Opc)));
473    MachineInstrBuilder(*MI->getParent()->getParent(), MI)
474      .addImm(Pred[0].getImm())
475      .addReg(Pred[1].getReg());
476    return true;
477  }
478
479  int PIdx = MI->findFirstPredOperandIdx();
480  if (PIdx != -1) {
481    MachineOperand &PMO = MI->getOperand(PIdx);
482    PMO.setImm(Pred[0].getImm());
483    MI->getOperand(PIdx+1).setReg(Pred[1].getReg());
484    return true;
485  }
486  return false;
487}
488
489bool ARMBaseInstrInfo::
490SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
491                  const SmallVectorImpl<MachineOperand> &Pred2) const {
492  if (Pred1.size() > 2 || Pred2.size() > 2)
493    return false;
494
495  ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
496  ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
497  if (CC1 == CC2)
498    return true;
499
500  switch (CC1) {
501  default:
502    return false;
503  case ARMCC::AL:
504    return true;
505  case ARMCC::HS:
506    return CC2 == ARMCC::HI;
507  case ARMCC::LS:
508    return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
509  case ARMCC::GE:
510    return CC2 == ARMCC::GT;
511  case ARMCC::LE:
512    return CC2 == ARMCC::LT;
513  }
514}
515
516bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI,
517                                    std::vector<MachineOperand> &Pred) const {
518  bool Found = false;
519  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
520    const MachineOperand &MO = MI->getOperand(i);
521    if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) ||
522        (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) {
523      Pred.push_back(MO);
524      Found = true;
525    }
526  }
527
528  return Found;
529}
530
531/// isPredicable - Return true if the specified instruction can be predicated.
532/// By default, this returns true for every instruction with a
533/// PredicateOperand.
534bool ARMBaseInstrInfo::isPredicable(MachineInstr *MI) const {
535  if (!MI->isPredicable())
536    return false;
537
538  if ((MI->getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) {
539    ARMFunctionInfo *AFI =
540      MI->getParent()->getParent()->getInfo<ARMFunctionInfo>();
541    return AFI->isThumb2Function();
542  }
543  return true;
544}
545
546/// FIXME: Works around a gcc miscompilation with -fstrict-aliasing.
547LLVM_ATTRIBUTE_NOINLINE
548static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
549                                unsigned JTI);
550static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
551                                unsigned JTI) {
552  assert(JTI < JT.size());
553  return JT[JTI].MBBs.size();
554}
555
556/// GetInstSize - Return the size of the specified MachineInstr.
557///
558unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
559  const MachineBasicBlock &MBB = *MI->getParent();
560  const MachineFunction *MF = MBB.getParent();
561  const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
562
563  const MCInstrDesc &MCID = MI->getDesc();
564  if (MCID.getSize())
565    return MCID.getSize();
566
567  // If this machine instr is an inline asm, measure it.
568  if (MI->getOpcode() == ARM::INLINEASM)
569    return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI);
570  if (MI->isLabel())
571    return 0;
572  unsigned Opc = MI->getOpcode();
573  switch (Opc) {
574  case TargetOpcode::IMPLICIT_DEF:
575  case TargetOpcode::KILL:
576  case TargetOpcode::PROLOG_LABEL:
577  case TargetOpcode::EH_LABEL:
578  case TargetOpcode::DBG_VALUE:
579    return 0;
580  case TargetOpcode::BUNDLE:
581    return getInstBundleLength(MI);
582  case ARM::MOVi16_ga_pcrel:
583  case ARM::MOVTi16_ga_pcrel:
584  case ARM::t2MOVi16_ga_pcrel:
585  case ARM::t2MOVTi16_ga_pcrel:
586    return 4;
587  case ARM::MOVi32imm:
588  case ARM::t2MOVi32imm:
589    return 8;
590  case ARM::CONSTPOOL_ENTRY:
591    // If this machine instr is a constant pool entry, its size is recorded as
592    // operand #2.
593    return MI->getOperand(2).getImm();
594  case ARM::Int_eh_sjlj_longjmp:
595    return 16;
596  case ARM::tInt_eh_sjlj_longjmp:
597    return 10;
598  case ARM::Int_eh_sjlj_setjmp:
599  case ARM::Int_eh_sjlj_setjmp_nofp:
600    return 20;
601  case ARM::tInt_eh_sjlj_setjmp:
602  case ARM::t2Int_eh_sjlj_setjmp:
603  case ARM::t2Int_eh_sjlj_setjmp_nofp:
604    return 12;
605  case ARM::BR_JTr:
606  case ARM::BR_JTm:
607  case ARM::BR_JTadd:
608  case ARM::tBR_JTr:
609  case ARM::t2BR_JT:
610  case ARM::t2TBB_JT:
611  case ARM::t2TBH_JT: {
612    // These are jumptable branches, i.e. a branch followed by an inlined
613    // jumptable. The size is 4 + 4 * number of entries. For TBB, each
614    // entry is one byte; TBH two byte each.
615    unsigned EntrySize = (Opc == ARM::t2TBB_JT)
616      ? 1 : ((Opc == ARM::t2TBH_JT) ? 2 : 4);
617    unsigned NumOps = MCID.getNumOperands();
618    MachineOperand JTOP =
619      MI->getOperand(NumOps - (MI->isPredicable() ? 3 : 2));
620    unsigned JTI = JTOP.getIndex();
621    const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
622    assert(MJTI != 0);
623    const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
624    assert(JTI < JT.size());
625    // Thumb instructions are 2 byte aligned, but JT entries are 4 byte
626    // 4 aligned. The assembler / linker may add 2 byte padding just before
627    // the JT entries.  The size does not include this padding; the
628    // constant islands pass does separate bookkeeping for it.
629    // FIXME: If we know the size of the function is less than (1 << 16) *2
630    // bytes, we can use 16-bit entries instead. Then there won't be an
631    // alignment issue.
632    unsigned InstSize = (Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT) ? 2 : 4;
633    unsigned NumEntries = getNumJTEntries(JT, JTI);
634    if (Opc == ARM::t2TBB_JT && (NumEntries & 1))
635      // Make sure the instruction that follows TBB is 2-byte aligned.
636      // FIXME: Constant island pass should insert an "ALIGN" instruction
637      // instead.
638      ++NumEntries;
639    return NumEntries * EntrySize + InstSize;
640  }
641  default:
642    // Otherwise, pseudo-instruction sizes are zero.
643    return 0;
644  }
645}
646
647unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr *MI) const {
648  unsigned Size = 0;
649  MachineBasicBlock::const_instr_iterator I = MI;
650  MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
651  while (++I != E && I->isInsideBundle()) {
652    assert(!I->isBundle() && "No nested bundle!");
653    Size += GetInstSizeInBytes(&*I);
654  }
655  return Size;
656}
657
658void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
659                                   MachineBasicBlock::iterator I, DebugLoc DL,
660                                   unsigned DestReg, unsigned SrcReg,
661                                   bool KillSrc) const {
662  bool GPRDest = ARM::GPRRegClass.contains(DestReg);
663  bool GPRSrc  = ARM::GPRRegClass.contains(SrcReg);
664
665  if (GPRDest && GPRSrc) {
666    AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
667                                  .addReg(SrcReg, getKillRegState(KillSrc))));
668    return;
669  }
670
671  bool SPRDest = ARM::SPRRegClass.contains(DestReg);
672  bool SPRSrc  = ARM::SPRRegClass.contains(SrcReg);
673
674  unsigned Opc = 0;
675  if (SPRDest && SPRSrc)
676    Opc = ARM::VMOVS;
677  else if (GPRDest && SPRSrc)
678    Opc = ARM::VMOVRS;
679  else if (SPRDest && GPRSrc)
680    Opc = ARM::VMOVSR;
681  else if (ARM::DPRRegClass.contains(DestReg, SrcReg))
682    Opc = ARM::VMOVD;
683  else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
684    Opc = ARM::VORRq;
685
686  if (Opc) {
687    MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
688    MIB.addReg(SrcReg, getKillRegState(KillSrc));
689    if (Opc == ARM::VORRq)
690      MIB.addReg(SrcReg, getKillRegState(KillSrc));
691    AddDefaultPred(MIB);
692    return;
693  }
694
695  // Handle register classes that require multiple instructions.
696  unsigned BeginIdx = 0;
697  unsigned SubRegs = 0;
698  int Spacing = 1;
699
700  // Use VORRq when possible.
701  if (ARM::QQPRRegClass.contains(DestReg, SrcReg))
702    Opc = ARM::VORRq, BeginIdx = ARM::qsub_0, SubRegs = 2;
703  else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg))
704    Opc = ARM::VORRq, BeginIdx = ARM::qsub_0, SubRegs = 4;
705  // Fall back to VMOVD.
706  else if (ARM::DPairRegClass.contains(DestReg, SrcReg))
707    Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 2;
708  else if (ARM::DTripleRegClass.contains(DestReg, SrcReg))
709    Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 3;
710  else if (ARM::DQuadRegClass.contains(DestReg, SrcReg))
711    Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 4;
712  else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg))
713    Opc = ARM::MOVr, BeginIdx = ARM::gsub_0, SubRegs = 2;
714
715  else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg))
716    Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 2, Spacing = 2;
717  else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg))
718    Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 3, Spacing = 2;
719  else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg))
720    Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 4, Spacing = 2;
721
722  assert(Opc && "Impossible reg-to-reg copy");
723
724  const TargetRegisterInfo *TRI = &getRegisterInfo();
725  MachineInstrBuilder Mov;
726
727  // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
728  if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
729    BeginIdx = BeginIdx + ((SubRegs-1)*Spacing);
730    Spacing = -Spacing;
731  }
732#ifndef NDEBUG
733  SmallSet<unsigned, 4> DstRegs;
734#endif
735  for (unsigned i = 0; i != SubRegs; ++i) {
736    unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i*Spacing);
737    unsigned Src = TRI->getSubReg(SrcReg,  BeginIdx + i*Spacing);
738    assert(Dst && Src && "Bad sub-register");
739#ifndef NDEBUG
740    assert(!DstRegs.count(Src) && "destructive vector copy");
741    DstRegs.insert(Dst);
742#endif
743    Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst)
744      .addReg(Src);
745    // VORR takes two source operands.
746    if (Opc == ARM::VORRq)
747      Mov.addReg(Src);
748    Mov = AddDefaultPred(Mov);
749  }
750  // Add implicit super-register defs and kills to the last instruction.
751  Mov->addRegisterDefined(DestReg, TRI);
752  if (KillSrc)
753    Mov->addRegisterKilled(SrcReg, TRI);
754}
755
756const MachineInstrBuilder &
757ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
758                          unsigned SubIdx, unsigned State,
759                          const TargetRegisterInfo *TRI) const {
760  if (!SubIdx)
761    return MIB.addReg(Reg, State);
762
763  if (TargetRegisterInfo::isPhysicalRegister(Reg))
764    return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
765  return MIB.addReg(Reg, State, SubIdx);
766}
767
768void ARMBaseInstrInfo::
769storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
770                    unsigned SrcReg, bool isKill, int FI,
771                    const TargetRegisterClass *RC,
772                    const TargetRegisterInfo *TRI) const {
773  DebugLoc DL;
774  if (I != MBB.end()) DL = I->getDebugLoc();
775  MachineFunction &MF = *MBB.getParent();
776  MachineFrameInfo &MFI = *MF.getFrameInfo();
777  unsigned Align = MFI.getObjectAlignment(FI);
778
779  MachineMemOperand *MMO =
780    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
781                            MachineMemOperand::MOStore,
782                            MFI.getObjectSize(FI),
783                            Align);
784
785  switch (RC->getSize()) {
786    case 4:
787      if (ARM::GPRRegClass.hasSubClassEq(RC)) {
788        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12))
789                   .addReg(SrcReg, getKillRegState(isKill))
790                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
791      } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
792        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS))
793                   .addReg(SrcReg, getKillRegState(isKill))
794                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
795      } else
796        llvm_unreachable("Unknown reg class!");
797      break;
798    case 8:
799      if (ARM::DPRRegClass.hasSubClassEq(RC)) {
800        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD))
801                   .addReg(SrcReg, getKillRegState(isKill))
802                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
803      } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
804        if (Subtarget.hasV5TEOps()) {
805          MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::STRD));
806          AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
807          AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
808          MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO);
809
810          AddDefaultPred(MIB);
811        } else {
812          // Fallback to STM instruction, which has existed since the dawn of
813          // time.
814          MachineInstrBuilder MIB =
815            AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STMIA))
816                             .addFrameIndex(FI).addMemOperand(MMO));
817          AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
818          AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
819        }
820      } else
821        llvm_unreachable("Unknown reg class!");
822      break;
823    case 16:
824      if (ARM::DPairRegClass.hasSubClassEq(RC)) {
825        // Use aligned spills if the stack can be realigned.
826        if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
827          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64))
828                     .addFrameIndex(FI).addImm(16)
829                     .addReg(SrcReg, getKillRegState(isKill))
830                     .addMemOperand(MMO));
831        } else {
832          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA))
833                     .addReg(SrcReg, getKillRegState(isKill))
834                     .addFrameIndex(FI)
835                     .addMemOperand(MMO));
836        }
837      } else
838        llvm_unreachable("Unknown reg class!");
839      break;
840    case 24:
841      if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
842        // Use aligned spills if the stack can be realigned.
843        if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
844          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64TPseudo))
845                     .addFrameIndex(FI).addImm(16)
846                     .addReg(SrcReg, getKillRegState(isKill))
847                     .addMemOperand(MMO));
848        } else {
849          MachineInstrBuilder MIB =
850          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
851                       .addFrameIndex(FI))
852                       .addMemOperand(MMO);
853          MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
854          MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
855          AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
856        }
857      } else
858        llvm_unreachable("Unknown reg class!");
859      break;
860    case 32:
861      if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
862        if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
863          // FIXME: It's possible to only store part of the QQ register if the
864          // spilled def has a sub-register index.
865          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo))
866                     .addFrameIndex(FI).addImm(16)
867                     .addReg(SrcReg, getKillRegState(isKill))
868                     .addMemOperand(MMO));
869        } else {
870          MachineInstrBuilder MIB =
871          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
872                       .addFrameIndex(FI))
873                       .addMemOperand(MMO);
874          MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
875          MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
876          MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
877                AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
878        }
879      } else
880        llvm_unreachable("Unknown reg class!");
881      break;
882    case 64:
883      if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
884        MachineInstrBuilder MIB =
885          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
886                         .addFrameIndex(FI))
887                         .addMemOperand(MMO);
888        MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
889        MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
890        MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
891        MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
892        MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
893        MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
894        MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
895              AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
896      } else
897        llvm_unreachable("Unknown reg class!");
898      break;
899    default:
900      llvm_unreachable("Unknown reg class!");
901  }
902}
903
904unsigned
905ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
906                                     int &FrameIndex) const {
907  switch (MI->getOpcode()) {
908  default: break;
909  case ARM::STRrs:
910  case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
911    if (MI->getOperand(1).isFI() &&
912        MI->getOperand(2).isReg() &&
913        MI->getOperand(3).isImm() &&
914        MI->getOperand(2).getReg() == 0 &&
915        MI->getOperand(3).getImm() == 0) {
916      FrameIndex = MI->getOperand(1).getIndex();
917      return MI->getOperand(0).getReg();
918    }
919    break;
920  case ARM::STRi12:
921  case ARM::t2STRi12:
922  case ARM::tSTRspi:
923  case ARM::VSTRD:
924  case ARM::VSTRS:
925    if (MI->getOperand(1).isFI() &&
926        MI->getOperand(2).isImm() &&
927        MI->getOperand(2).getImm() == 0) {
928      FrameIndex = MI->getOperand(1).getIndex();
929      return MI->getOperand(0).getReg();
930    }
931    break;
932  case ARM::VST1q64:
933  case ARM::VST1d64TPseudo:
934  case ARM::VST1d64QPseudo:
935    if (MI->getOperand(0).isFI() &&
936        MI->getOperand(2).getSubReg() == 0) {
937      FrameIndex = MI->getOperand(0).getIndex();
938      return MI->getOperand(2).getReg();
939    }
940    break;
941  case ARM::VSTMQIA:
942    if (MI->getOperand(1).isFI() &&
943        MI->getOperand(0).getSubReg() == 0) {
944      FrameIndex = MI->getOperand(1).getIndex();
945      return MI->getOperand(0).getReg();
946    }
947    break;
948  }
949
950  return 0;
951}
952
953unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
954                                                    int &FrameIndex) const {
955  const MachineMemOperand *Dummy;
956  return MI->mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex);
957}
958
959void ARMBaseInstrInfo::
960loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
961                     unsigned DestReg, int FI,
962                     const TargetRegisterClass *RC,
963                     const TargetRegisterInfo *TRI) const {
964  DebugLoc DL;
965  if (I != MBB.end()) DL = I->getDebugLoc();
966  MachineFunction &MF = *MBB.getParent();
967  MachineFrameInfo &MFI = *MF.getFrameInfo();
968  unsigned Align = MFI.getObjectAlignment(FI);
969  MachineMemOperand *MMO =
970    MF.getMachineMemOperand(
971                    MachinePointerInfo::getFixedStack(FI),
972                            MachineMemOperand::MOLoad,
973                            MFI.getObjectSize(FI),
974                            Align);
975
976  switch (RC->getSize()) {
977  case 4:
978    if (ARM::GPRRegClass.hasSubClassEq(RC)) {
979      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
980                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
981
982    } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
983      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
984                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
985    } else
986      llvm_unreachable("Unknown reg class!");
987    break;
988  case 8:
989    if (ARM::DPRRegClass.hasSubClassEq(RC)) {
990      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
991                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
992    } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
993      MachineInstrBuilder MIB;
994
995      if (Subtarget.hasV5TEOps()) {
996        MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
997        AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
998        AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
999        MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO);
1000
1001        AddDefaultPred(MIB);
1002      } else {
1003        // Fallback to LDM instruction, which has existed since the dawn of
1004        // time.
1005        MIB = AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDMIA))
1006                                 .addFrameIndex(FI).addMemOperand(MMO));
1007        MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1008        MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1009      }
1010
1011      if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1012        MIB.addReg(DestReg, RegState::ImplicitDefine);
1013    } else
1014      llvm_unreachable("Unknown reg class!");
1015    break;
1016  case 16:
1017    if (ARM::DPairRegClass.hasSubClassEq(RC)) {
1018      if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1019        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
1020                     .addFrameIndex(FI).addImm(16)
1021                     .addMemOperand(MMO));
1022      } else {
1023        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
1024                       .addFrameIndex(FI)
1025                       .addMemOperand(MMO));
1026      }
1027    } else
1028      llvm_unreachable("Unknown reg class!");
1029    break;
1030  case 24:
1031    if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1032      if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1033        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
1034                     .addFrameIndex(FI).addImm(16)
1035                     .addMemOperand(MMO));
1036      } else {
1037        MachineInstrBuilder MIB =
1038          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1039                         .addFrameIndex(FI)
1040                         .addMemOperand(MMO));
1041        MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1042        MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1043        MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1044        if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1045          MIB.addReg(DestReg, RegState::ImplicitDefine);
1046      }
1047    } else
1048      llvm_unreachable("Unknown reg class!");
1049    break;
1050   case 32:
1051    if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1052      if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1053        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
1054                     .addFrameIndex(FI).addImm(16)
1055                     .addMemOperand(MMO));
1056      } else {
1057        MachineInstrBuilder MIB =
1058        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1059                       .addFrameIndex(FI))
1060                       .addMemOperand(MMO);
1061        MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1062        MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1063        MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1064        MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1065        if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1066          MIB.addReg(DestReg, RegState::ImplicitDefine);
1067      }
1068    } else
1069      llvm_unreachable("Unknown reg class!");
1070    break;
1071  case 64:
1072    if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1073      MachineInstrBuilder MIB =
1074      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1075                     .addFrameIndex(FI))
1076                     .addMemOperand(MMO);
1077      MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1078      MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1079      MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1080      MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1081      MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1082      MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1083      MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1084      MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1085      if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1086        MIB.addReg(DestReg, RegState::ImplicitDefine);
1087    } else
1088      llvm_unreachable("Unknown reg class!");
1089    break;
1090  default:
1091    llvm_unreachable("Unknown regclass!");
1092  }
1093}
1094
1095unsigned
1096ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
1097                                      int &FrameIndex) const {
1098  switch (MI->getOpcode()) {
1099  default: break;
1100  case ARM::LDRrs:
1101  case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
1102    if (MI->getOperand(1).isFI() &&
1103        MI->getOperand(2).isReg() &&
1104        MI->getOperand(3).isImm() &&
1105        MI->getOperand(2).getReg() == 0 &&
1106        MI->getOperand(3).getImm() == 0) {
1107      FrameIndex = MI->getOperand(1).getIndex();
1108      return MI->getOperand(0).getReg();
1109    }
1110    break;
1111  case ARM::LDRi12:
1112  case ARM::t2LDRi12:
1113  case ARM::tLDRspi:
1114  case ARM::VLDRD:
1115  case ARM::VLDRS:
1116    if (MI->getOperand(1).isFI() &&
1117        MI->getOperand(2).isImm() &&
1118        MI->getOperand(2).getImm() == 0) {
1119      FrameIndex = MI->getOperand(1).getIndex();
1120      return MI->getOperand(0).getReg();
1121    }
1122    break;
1123  case ARM::VLD1q64:
1124  case ARM::VLD1d64TPseudo:
1125  case ARM::VLD1d64QPseudo:
1126    if (MI->getOperand(1).isFI() &&
1127        MI->getOperand(0).getSubReg() == 0) {
1128      FrameIndex = MI->getOperand(1).getIndex();
1129      return MI->getOperand(0).getReg();
1130    }
1131    break;
1132  case ARM::VLDMQIA:
1133    if (MI->getOperand(1).isFI() &&
1134        MI->getOperand(0).getSubReg() == 0) {
1135      FrameIndex = MI->getOperand(1).getIndex();
1136      return MI->getOperand(0).getReg();
1137    }
1138    break;
1139  }
1140
1141  return 0;
1142}
1143
1144unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
1145                                             int &FrameIndex) const {
1146  const MachineMemOperand *Dummy;
1147  return MI->mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex);
1148}
1149
1150bool ARMBaseInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const{
1151  // This hook gets to expand COPY instructions before they become
1152  // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
1153  // widened to VMOVD.  We prefer the VMOVD when possible because it may be
1154  // changed into a VORR that can go down the NEON pipeline.
1155  if (!WidenVMOVS || !MI->isCopy() || Subtarget.isCortexA15())
1156    return false;
1157
1158  // Look for a copy between even S-registers.  That is where we keep floats
1159  // when using NEON v2f32 instructions for f32 arithmetic.
1160  unsigned DstRegS = MI->getOperand(0).getReg();
1161  unsigned SrcRegS = MI->getOperand(1).getReg();
1162  if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1163    return false;
1164
1165  const TargetRegisterInfo *TRI = &getRegisterInfo();
1166  unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1167                                              &ARM::DPRRegClass);
1168  unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1169                                              &ARM::DPRRegClass);
1170  if (!DstRegD || !SrcRegD)
1171    return false;
1172
1173  // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
1174  // legal if the COPY already defines the full DstRegD, and it isn't a
1175  // sub-register insertion.
1176  if (!MI->definesRegister(DstRegD, TRI) || MI->readsRegister(DstRegD, TRI))
1177    return false;
1178
1179  // A dead copy shouldn't show up here, but reject it just in case.
1180  if (MI->getOperand(0).isDead())
1181    return false;
1182
1183  // All clear, widen the COPY.
1184  DEBUG(dbgs() << "widening:    " << *MI);
1185  MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
1186
1187  // Get rid of the old <imp-def> of DstRegD.  Leave it if it defines a Q-reg
1188  // or some other super-register.
1189  int ImpDefIdx = MI->findRegisterDefOperandIdx(DstRegD);
1190  if (ImpDefIdx != -1)
1191    MI->RemoveOperand(ImpDefIdx);
1192
1193  // Change the opcode and operands.
1194  MI->setDesc(get(ARM::VMOVD));
1195  MI->getOperand(0).setReg(DstRegD);
1196  MI->getOperand(1).setReg(SrcRegD);
1197  AddDefaultPred(MIB);
1198
1199  // We are now reading SrcRegD instead of SrcRegS.  This may upset the
1200  // register scavenger and machine verifier, so we need to indicate that we
1201  // are reading an undefined value from SrcRegD, but a proper value from
1202  // SrcRegS.
1203  MI->getOperand(1).setIsUndef();
1204  MIB.addReg(SrcRegS, RegState::Implicit);
1205
1206  // SrcRegD may actually contain an unrelated value in the ssub_1
1207  // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
1208  if (MI->getOperand(1).isKill()) {
1209    MI->getOperand(1).setIsKill(false);
1210    MI->addRegisterKilled(SrcRegS, TRI, true);
1211  }
1212
1213  DEBUG(dbgs() << "replaced by: " << *MI);
1214  return true;
1215}
1216
1217MachineInstr*
1218ARMBaseInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
1219                                           int FrameIx, uint64_t Offset,
1220                                           const MDNode *MDPtr,
1221                                           DebugLoc DL) const {
1222  MachineInstrBuilder MIB = BuildMI(MF, DL, get(ARM::DBG_VALUE))
1223    .addFrameIndex(FrameIx).addImm(0).addImm(Offset).addMetadata(MDPtr);
1224  return &*MIB;
1225}
1226
1227/// Create a copy of a const pool value. Update CPI to the new index and return
1228/// the label UID.
1229static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1230  MachineConstantPool *MCP = MF.getConstantPool();
1231  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1232
1233  const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1234  assert(MCPE.isMachineConstantPoolEntry() &&
1235         "Expecting a machine constantpool entry!");
1236  ARMConstantPoolValue *ACPV =
1237    static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1238
1239  unsigned PCLabelId = AFI->createPICLabelUId();
1240  ARMConstantPoolValue *NewCPV = 0;
1241  // FIXME: The below assumes PIC relocation model and that the function
1242  // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1243  // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1244  // instructions, so that's probably OK, but is PIC always correct when
1245  // we get here?
1246  if (ACPV->isGlobalValue())
1247    NewCPV = ARMConstantPoolConstant::
1248      Create(cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId,
1249             ARMCP::CPValue, 4);
1250  else if (ACPV->isExtSymbol())
1251    NewCPV = ARMConstantPoolSymbol::
1252      Create(MF.getFunction()->getContext(),
1253             cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1254  else if (ACPV->isBlockAddress())
1255    NewCPV = ARMConstantPoolConstant::
1256      Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1257             ARMCP::CPBlockAddress, 4);
1258  else if (ACPV->isLSDA())
1259    NewCPV = ARMConstantPoolConstant::Create(MF.getFunction(), PCLabelId,
1260                                             ARMCP::CPLSDA, 4);
1261  else if (ACPV->isMachineBasicBlock())
1262    NewCPV = ARMConstantPoolMBB::
1263      Create(MF.getFunction()->getContext(),
1264             cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1265  else
1266    llvm_unreachable("Unexpected ARM constantpool value type!!");
1267  CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
1268  return PCLabelId;
1269}
1270
1271void ARMBaseInstrInfo::
1272reMaterialize(MachineBasicBlock &MBB,
1273              MachineBasicBlock::iterator I,
1274              unsigned DestReg, unsigned SubIdx,
1275              const MachineInstr *Orig,
1276              const TargetRegisterInfo &TRI) const {
1277  unsigned Opcode = Orig->getOpcode();
1278  switch (Opcode) {
1279  default: {
1280    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
1281    MI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
1282    MBB.insert(I, MI);
1283    break;
1284  }
1285  case ARM::tLDRpci_pic:
1286  case ARM::t2LDRpci_pic: {
1287    MachineFunction &MF = *MBB.getParent();
1288    unsigned CPI = Orig->getOperand(1).getIndex();
1289    unsigned PCLabelId = duplicateCPV(MF, CPI);
1290    MachineInstrBuilder MIB = BuildMI(MBB, I, Orig->getDebugLoc(), get(Opcode),
1291                                      DestReg)
1292      .addConstantPoolIndex(CPI).addImm(PCLabelId);
1293    MIB->setMemRefs(Orig->memoperands_begin(), Orig->memoperands_end());
1294    break;
1295  }
1296  }
1297}
1298
1299MachineInstr *
1300ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const {
1301  MachineInstr *MI = TargetInstrInfo::duplicate(Orig, MF);
1302  switch(Orig->getOpcode()) {
1303  case ARM::tLDRpci_pic:
1304  case ARM::t2LDRpci_pic: {
1305    unsigned CPI = Orig->getOperand(1).getIndex();
1306    unsigned PCLabelId = duplicateCPV(MF, CPI);
1307    Orig->getOperand(1).setIndex(CPI);
1308    Orig->getOperand(2).setImm(PCLabelId);
1309    break;
1310  }
1311  }
1312  return MI;
1313}
1314
1315bool ARMBaseInstrInfo::produceSameValue(const MachineInstr *MI0,
1316                                        const MachineInstr *MI1,
1317                                        const MachineRegisterInfo *MRI) const {
1318  int Opcode = MI0->getOpcode();
1319  if (Opcode == ARM::t2LDRpci ||
1320      Opcode == ARM::t2LDRpci_pic ||
1321      Opcode == ARM::tLDRpci ||
1322      Opcode == ARM::tLDRpci_pic ||
1323      Opcode == ARM::MOV_ga_dyn ||
1324      Opcode == ARM::MOV_ga_pcrel ||
1325      Opcode == ARM::MOV_ga_pcrel_ldr ||
1326      Opcode == ARM::t2MOV_ga_dyn ||
1327      Opcode == ARM::t2MOV_ga_pcrel) {
1328    if (MI1->getOpcode() != Opcode)
1329      return false;
1330    if (MI0->getNumOperands() != MI1->getNumOperands())
1331      return false;
1332
1333    const MachineOperand &MO0 = MI0->getOperand(1);
1334    const MachineOperand &MO1 = MI1->getOperand(1);
1335    if (MO0.getOffset() != MO1.getOffset())
1336      return false;
1337
1338    if (Opcode == ARM::MOV_ga_dyn ||
1339        Opcode == ARM::MOV_ga_pcrel ||
1340        Opcode == ARM::MOV_ga_pcrel_ldr ||
1341        Opcode == ARM::t2MOV_ga_dyn ||
1342        Opcode == ARM::t2MOV_ga_pcrel)
1343      // Ignore the PC labels.
1344      return MO0.getGlobal() == MO1.getGlobal();
1345
1346    const MachineFunction *MF = MI0->getParent()->getParent();
1347    const MachineConstantPool *MCP = MF->getConstantPool();
1348    int CPI0 = MO0.getIndex();
1349    int CPI1 = MO1.getIndex();
1350    const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1351    const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1352    bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1353    bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1354    if (isARMCP0 && isARMCP1) {
1355      ARMConstantPoolValue *ACPV0 =
1356        static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1357      ARMConstantPoolValue *ACPV1 =
1358        static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1359      return ACPV0->hasSameValue(ACPV1);
1360    } else if (!isARMCP0 && !isARMCP1) {
1361      return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1362    }
1363    return false;
1364  } else if (Opcode == ARM::PICLDR) {
1365    if (MI1->getOpcode() != Opcode)
1366      return false;
1367    if (MI0->getNumOperands() != MI1->getNumOperands())
1368      return false;
1369
1370    unsigned Addr0 = MI0->getOperand(1).getReg();
1371    unsigned Addr1 = MI1->getOperand(1).getReg();
1372    if (Addr0 != Addr1) {
1373      if (!MRI ||
1374          !TargetRegisterInfo::isVirtualRegister(Addr0) ||
1375          !TargetRegisterInfo::isVirtualRegister(Addr1))
1376        return false;
1377
1378      // This assumes SSA form.
1379      MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1380      MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1381      // Check if the loaded value, e.g. a constantpool of a global address, are
1382      // the same.
1383      if (!produceSameValue(Def0, Def1, MRI))
1384        return false;
1385    }
1386
1387    for (unsigned i = 3, e = MI0->getNumOperands(); i != e; ++i) {
1388      // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg
1389      const MachineOperand &MO0 = MI0->getOperand(i);
1390      const MachineOperand &MO1 = MI1->getOperand(i);
1391      if (!MO0.isIdenticalTo(MO1))
1392        return false;
1393    }
1394    return true;
1395  }
1396
1397  return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1398}
1399
1400/// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1401/// determine if two loads are loading from the same base address. It should
1402/// only return true if the base pointers are the same and the only differences
1403/// between the two addresses is the offset. It also returns the offsets by
1404/// reference.
1405///
1406/// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1407/// is permanently disabled.
1408bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1409                                               int64_t &Offset1,
1410                                               int64_t &Offset2) const {
1411  // Don't worry about Thumb: just ARM and Thumb2.
1412  if (Subtarget.isThumb1Only()) return false;
1413
1414  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1415    return false;
1416
1417  switch (Load1->getMachineOpcode()) {
1418  default:
1419    return false;
1420  case ARM::LDRi12:
1421  case ARM::LDRBi12:
1422  case ARM::LDRD:
1423  case ARM::LDRH:
1424  case ARM::LDRSB:
1425  case ARM::LDRSH:
1426  case ARM::VLDRD:
1427  case ARM::VLDRS:
1428  case ARM::t2LDRi8:
1429  case ARM::t2LDRDi8:
1430  case ARM::t2LDRSHi8:
1431  case ARM::t2LDRi12:
1432  case ARM::t2LDRSHi12:
1433    break;
1434  }
1435
1436  switch (Load2->getMachineOpcode()) {
1437  default:
1438    return false;
1439  case ARM::LDRi12:
1440  case ARM::LDRBi12:
1441  case ARM::LDRD:
1442  case ARM::LDRH:
1443  case ARM::LDRSB:
1444  case ARM::LDRSH:
1445  case ARM::VLDRD:
1446  case ARM::VLDRS:
1447  case ARM::t2LDRi8:
1448  case ARM::t2LDRSHi8:
1449  case ARM::t2LDRi12:
1450  case ARM::t2LDRSHi12:
1451    break;
1452  }
1453
1454  // Check if base addresses and chain operands match.
1455  if (Load1->getOperand(0) != Load2->getOperand(0) ||
1456      Load1->getOperand(4) != Load2->getOperand(4))
1457    return false;
1458
1459  // Index should be Reg0.
1460  if (Load1->getOperand(3) != Load2->getOperand(3))
1461    return false;
1462
1463  // Determine the offsets.
1464  if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
1465      isa<ConstantSDNode>(Load2->getOperand(1))) {
1466    Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
1467    Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
1468    return true;
1469  }
1470
1471  return false;
1472}
1473
1474/// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
1475/// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
1476/// be scheduled togther. On some targets if two loads are loading from
1477/// addresses in the same cache line, it's better if they are scheduled
1478/// together. This function takes two integers that represent the load offsets
1479/// from the common base address. It returns true if it decides it's desirable
1480/// to schedule the two loads together. "NumLoads" is the number of loads that
1481/// have already been scheduled after Load1.
1482///
1483/// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1484/// is permanently disabled.
1485bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1486                                               int64_t Offset1, int64_t Offset2,
1487                                               unsigned NumLoads) const {
1488  // Don't worry about Thumb: just ARM and Thumb2.
1489  if (Subtarget.isThumb1Only()) return false;
1490
1491  assert(Offset2 > Offset1);
1492
1493  if ((Offset2 - Offset1) / 8 > 64)
1494    return false;
1495
1496  if (Load1->getMachineOpcode() != Load2->getMachineOpcode())
1497    return false;  // FIXME: overly conservative?
1498
1499  // Four loads in a row should be sufficient.
1500  if (NumLoads >= 3)
1501    return false;
1502
1503  return true;
1504}
1505
1506bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
1507                                            const MachineBasicBlock *MBB,
1508                                            const MachineFunction &MF) const {
1509  // Debug info is never a scheduling boundary. It's necessary to be explicit
1510  // due to the special treatment of IT instructions below, otherwise a
1511  // dbg_value followed by an IT will result in the IT instruction being
1512  // considered a scheduling hazard, which is wrong. It should be the actual
1513  // instruction preceding the dbg_value instruction(s), just like it is
1514  // when debug info is not present.
1515  if (MI->isDebugValue())
1516    return false;
1517
1518  // Terminators and labels can't be scheduled around.
1519  if (MI->isTerminator() || MI->isLabel())
1520    return true;
1521
1522  // Treat the start of the IT block as a scheduling boundary, but schedule
1523  // t2IT along with all instructions following it.
1524  // FIXME: This is a big hammer. But the alternative is to add all potential
1525  // true and anti dependencies to IT block instructions as implicit operands
1526  // to the t2IT instruction. The added compile time and complexity does not
1527  // seem worth it.
1528  MachineBasicBlock::const_iterator I = MI;
1529  // Make sure to skip any dbg_value instructions
1530  while (++I != MBB->end() && I->isDebugValue())
1531    ;
1532  if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
1533    return true;
1534
1535  // Don't attempt to schedule around any instruction that defines
1536  // a stack-oriented pointer, as it's unlikely to be profitable. This
1537  // saves compile time, because it doesn't require every single
1538  // stack slot reference to depend on the instruction that does the
1539  // modification.
1540  // Calls don't actually change the stack pointer, even if they have imp-defs.
1541  // No ARM calling conventions change the stack pointer. (X86 calling
1542  // conventions sometimes do).
1543  if (!MI->isCall() && MI->definesRegister(ARM::SP))
1544    return true;
1545
1546  return false;
1547}
1548
1549bool ARMBaseInstrInfo::
1550isProfitableToIfCvt(MachineBasicBlock &MBB,
1551                    unsigned NumCycles, unsigned ExtraPredCycles,
1552                    const BranchProbability &Probability) const {
1553  if (!NumCycles)
1554    return false;
1555
1556  // Attempt to estimate the relative costs of predication versus branching.
1557  unsigned UnpredCost = Probability.getNumerator() * NumCycles;
1558  UnpredCost /= Probability.getDenominator();
1559  UnpredCost += 1; // The branch itself
1560  UnpredCost += Subtarget.getMispredictionPenalty() / 10;
1561
1562  return (NumCycles + ExtraPredCycles) <= UnpredCost;
1563}
1564
1565bool ARMBaseInstrInfo::
1566isProfitableToIfCvt(MachineBasicBlock &TMBB,
1567                    unsigned TCycles, unsigned TExtra,
1568                    MachineBasicBlock &FMBB,
1569                    unsigned FCycles, unsigned FExtra,
1570                    const BranchProbability &Probability) const {
1571  if (!TCycles || !FCycles)
1572    return false;
1573
1574  // Attempt to estimate the relative costs of predication versus branching.
1575  unsigned TUnpredCost = Probability.getNumerator() * TCycles;
1576  TUnpredCost /= Probability.getDenominator();
1577
1578  uint32_t Comp = Probability.getDenominator() - Probability.getNumerator();
1579  unsigned FUnpredCost = Comp * FCycles;
1580  FUnpredCost /= Probability.getDenominator();
1581
1582  unsigned UnpredCost = TUnpredCost + FUnpredCost;
1583  UnpredCost += 1; // The branch itself
1584  UnpredCost += Subtarget.getMispredictionPenalty() / 10;
1585
1586  return (TCycles + FCycles + TExtra + FExtra) <= UnpredCost;
1587}
1588
1589bool
1590ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
1591                                            MachineBasicBlock &FMBB) const {
1592  // Reduce false anti-dependencies to let Swift's out-of-order execution
1593  // engine do its thing.
1594  return Subtarget.isSwift();
1595}
1596
1597/// getInstrPredicate - If instruction is predicated, returns its predicate
1598/// condition, otherwise returns AL. It also returns the condition code
1599/// register by reference.
1600ARMCC::CondCodes
1601llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) {
1602  int PIdx = MI->findFirstPredOperandIdx();
1603  if (PIdx == -1) {
1604    PredReg = 0;
1605    return ARMCC::AL;
1606  }
1607
1608  PredReg = MI->getOperand(PIdx+1).getReg();
1609  return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm();
1610}
1611
1612
1613int llvm::getMatchingCondBranchOpcode(int Opc) {
1614  if (Opc == ARM::B)
1615    return ARM::Bcc;
1616  if (Opc == ARM::tB)
1617    return ARM::tBcc;
1618  if (Opc == ARM::t2B)
1619    return ARM::t2Bcc;
1620
1621  llvm_unreachable("Unknown unconditional branch opcode!");
1622}
1623
1624/// commuteInstruction - Handle commutable instructions.
1625MachineInstr *
1626ARMBaseInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
1627  switch (MI->getOpcode()) {
1628  case ARM::MOVCCr:
1629  case ARM::t2MOVCCr: {
1630    // MOVCC can be commuted by inverting the condition.
1631    unsigned PredReg = 0;
1632    ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
1633    // MOVCC AL can't be inverted. Shouldn't happen.
1634    if (CC == ARMCC::AL || PredReg != ARM::CPSR)
1635      return NULL;
1636    MI = TargetInstrInfo::commuteInstruction(MI, NewMI);
1637    if (!MI)
1638      return NULL;
1639    // After swapping the MOVCC operands, also invert the condition.
1640    MI->getOperand(MI->findFirstPredOperandIdx())
1641      .setImm(ARMCC::getOppositeCondition(CC));
1642    return MI;
1643  }
1644  }
1645  return TargetInstrInfo::commuteInstruction(MI, NewMI);
1646}
1647
1648/// Identify instructions that can be folded into a MOVCC instruction, and
1649/// return the defining instruction.
1650static MachineInstr *canFoldIntoMOVCC(unsigned Reg,
1651                                      const MachineRegisterInfo &MRI,
1652                                      const TargetInstrInfo *TII) {
1653  if (!TargetRegisterInfo::isVirtualRegister(Reg))
1654    return 0;
1655  if (!MRI.hasOneNonDBGUse(Reg))
1656    return 0;
1657  MachineInstr *MI = MRI.getVRegDef(Reg);
1658  if (!MI)
1659    return 0;
1660  // MI is folded into the MOVCC by predicating it.
1661  if (!MI->isPredicable())
1662    return 0;
1663  // Check if MI has any non-dead defs or physreg uses. This also detects
1664  // predicated instructions which will be reading CPSR.
1665  for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
1666    const MachineOperand &MO = MI->getOperand(i);
1667    // Reject frame index operands, PEI can't handle the predicated pseudos.
1668    if (MO.isFI() || MO.isCPI() || MO.isJTI())
1669      return 0;
1670    if (!MO.isReg())
1671      continue;
1672    // MI can't have any tied operands, that would conflict with predication.
1673    if (MO.isTied())
1674      return 0;
1675    if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
1676      return 0;
1677    if (MO.isDef() && !MO.isDead())
1678      return 0;
1679  }
1680  bool DontMoveAcrossStores = true;
1681  if (!MI->isSafeToMove(TII, /* AliasAnalysis = */ 0, DontMoveAcrossStores))
1682    return 0;
1683  return MI;
1684}
1685
1686bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr *MI,
1687                                     SmallVectorImpl<MachineOperand> &Cond,
1688                                     unsigned &TrueOp, unsigned &FalseOp,
1689                                     bool &Optimizable) const {
1690  assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) &&
1691         "Unknown select instruction");
1692  // MOVCC operands:
1693  // 0: Def.
1694  // 1: True use.
1695  // 2: False use.
1696  // 3: Condition code.
1697  // 4: CPSR use.
1698  TrueOp = 1;
1699  FalseOp = 2;
1700  Cond.push_back(MI->getOperand(3));
1701  Cond.push_back(MI->getOperand(4));
1702  // We can always fold a def.
1703  Optimizable = true;
1704  return false;
1705}
1706
1707MachineInstr *ARMBaseInstrInfo::optimizeSelect(MachineInstr *MI,
1708                                               bool PreferFalse) const {
1709  assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) &&
1710         "Unknown select instruction");
1711  const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
1712  MachineInstr *DefMI = canFoldIntoMOVCC(MI->getOperand(2).getReg(), MRI, this);
1713  bool Invert = !DefMI;
1714  if (!DefMI)
1715    DefMI = canFoldIntoMOVCC(MI->getOperand(1).getReg(), MRI, this);
1716  if (!DefMI)
1717    return 0;
1718
1719  // Create a new predicated version of DefMI.
1720  // Rfalse is the first use.
1721  MachineInstrBuilder NewMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1722                                      DefMI->getDesc(),
1723                                      MI->getOperand(0).getReg());
1724
1725  // Copy all the DefMI operands, excluding its (null) predicate.
1726  const MCInstrDesc &DefDesc = DefMI->getDesc();
1727  for (unsigned i = 1, e = DefDesc.getNumOperands();
1728       i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
1729    NewMI.addOperand(DefMI->getOperand(i));
1730
1731  unsigned CondCode = MI->getOperand(3).getImm();
1732  if (Invert)
1733    NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
1734  else
1735    NewMI.addImm(CondCode);
1736  NewMI.addOperand(MI->getOperand(4));
1737
1738  // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
1739  if (NewMI->hasOptionalDef())
1740    AddDefaultCC(NewMI);
1741
1742  // The output register value when the predicate is false is an implicit
1743  // register operand tied to the first def.
1744  // The tie makes the register allocator ensure the FalseReg is allocated the
1745  // same register as operand 0.
1746  MachineOperand FalseReg = MI->getOperand(Invert ? 2 : 1);
1747  FalseReg.setImplicit();
1748  NewMI.addOperand(FalseReg);
1749  NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
1750
1751  // The caller will erase MI, but not DefMI.
1752  DefMI->eraseFromParent();
1753  return NewMI;
1754}
1755
1756/// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
1757/// instruction is encoded with an 'S' bit is determined by the optional CPSR
1758/// def operand.
1759///
1760/// This will go away once we can teach tblgen how to set the optional CPSR def
1761/// operand itself.
1762struct AddSubFlagsOpcodePair {
1763  uint16_t PseudoOpc;
1764  uint16_t MachineOpc;
1765};
1766
1767static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
1768  {ARM::ADDSri, ARM::ADDri},
1769  {ARM::ADDSrr, ARM::ADDrr},
1770  {ARM::ADDSrsi, ARM::ADDrsi},
1771  {ARM::ADDSrsr, ARM::ADDrsr},
1772
1773  {ARM::SUBSri, ARM::SUBri},
1774  {ARM::SUBSrr, ARM::SUBrr},
1775  {ARM::SUBSrsi, ARM::SUBrsi},
1776  {ARM::SUBSrsr, ARM::SUBrsr},
1777
1778  {ARM::RSBSri, ARM::RSBri},
1779  {ARM::RSBSrsi, ARM::RSBrsi},
1780  {ARM::RSBSrsr, ARM::RSBrsr},
1781
1782  {ARM::t2ADDSri, ARM::t2ADDri},
1783  {ARM::t2ADDSrr, ARM::t2ADDrr},
1784  {ARM::t2ADDSrs, ARM::t2ADDrs},
1785
1786  {ARM::t2SUBSri, ARM::t2SUBri},
1787  {ARM::t2SUBSrr, ARM::t2SUBrr},
1788  {ARM::t2SUBSrs, ARM::t2SUBrs},
1789
1790  {ARM::t2RSBSri, ARM::t2RSBri},
1791  {ARM::t2RSBSrs, ARM::t2RSBrs},
1792};
1793
1794unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
1795  for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
1796    if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
1797      return AddSubFlagsOpcodeMap[i].MachineOpc;
1798  return 0;
1799}
1800
1801void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
1802                               MachineBasicBlock::iterator &MBBI, DebugLoc dl,
1803                               unsigned DestReg, unsigned BaseReg, int NumBytes,
1804                               ARMCC::CondCodes Pred, unsigned PredReg,
1805                               const ARMBaseInstrInfo &TII, unsigned MIFlags) {
1806  bool isSub = NumBytes < 0;
1807  if (isSub) NumBytes = -NumBytes;
1808
1809  while (NumBytes) {
1810    unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
1811    unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
1812    assert(ThisVal && "Didn't extract field correctly");
1813
1814    // We will handle these bits from offset, clear them.
1815    NumBytes &= ~ThisVal;
1816
1817    assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
1818
1819    // Build the new ADD / SUB.
1820    unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
1821    BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
1822      .addReg(BaseReg, RegState::Kill).addImm(ThisVal)
1823      .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
1824      .setMIFlags(MIFlags);
1825    BaseReg = DestReg;
1826  }
1827}
1828
1829bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
1830                                unsigned FrameReg, int &Offset,
1831                                const ARMBaseInstrInfo &TII) {
1832  unsigned Opcode = MI.getOpcode();
1833  const MCInstrDesc &Desc = MI.getDesc();
1834  unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
1835  bool isSub = false;
1836
1837  // Memory operands in inline assembly always use AddrMode2.
1838  if (Opcode == ARM::INLINEASM)
1839    AddrMode = ARMII::AddrMode2;
1840
1841  if (Opcode == ARM::ADDri) {
1842    Offset += MI.getOperand(FrameRegIdx+1).getImm();
1843    if (Offset == 0) {
1844      // Turn it into a move.
1845      MI.setDesc(TII.get(ARM::MOVr));
1846      MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1847      MI.RemoveOperand(FrameRegIdx+1);
1848      Offset = 0;
1849      return true;
1850    } else if (Offset < 0) {
1851      Offset = -Offset;
1852      isSub = true;
1853      MI.setDesc(TII.get(ARM::SUBri));
1854    }
1855
1856    // Common case: small offset, fits into instruction.
1857    if (ARM_AM::getSOImmVal(Offset) != -1) {
1858      // Replace the FrameIndex with sp / fp
1859      MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1860      MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
1861      Offset = 0;
1862      return true;
1863    }
1864
1865    // Otherwise, pull as much of the immedidate into this ADDri/SUBri
1866    // as possible.
1867    unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
1868    unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
1869
1870    // We will handle these bits from offset, clear them.
1871    Offset &= ~ThisImmVal;
1872
1873    // Get the properly encoded SOImmVal field.
1874    assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
1875           "Bit extraction didn't work?");
1876    MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
1877 } else {
1878    unsigned ImmIdx = 0;
1879    int InstrOffs = 0;
1880    unsigned NumBits = 0;
1881    unsigned Scale = 1;
1882    switch (AddrMode) {
1883    case ARMII::AddrMode_i12: {
1884      ImmIdx = FrameRegIdx + 1;
1885      InstrOffs = MI.getOperand(ImmIdx).getImm();
1886      NumBits = 12;
1887      break;
1888    }
1889    case ARMII::AddrMode2: {
1890      ImmIdx = FrameRegIdx+2;
1891      InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
1892      if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
1893        InstrOffs *= -1;
1894      NumBits = 12;
1895      break;
1896    }
1897    case ARMII::AddrMode3: {
1898      ImmIdx = FrameRegIdx+2;
1899      InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
1900      if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
1901        InstrOffs *= -1;
1902      NumBits = 8;
1903      break;
1904    }
1905    case ARMII::AddrMode4:
1906    case ARMII::AddrMode6:
1907      // Can't fold any offset even if it's zero.
1908      return false;
1909    case ARMII::AddrMode5: {
1910      ImmIdx = FrameRegIdx+1;
1911      InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
1912      if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
1913        InstrOffs *= -1;
1914      NumBits = 8;
1915      Scale = 4;
1916      break;
1917    }
1918    default:
1919      llvm_unreachable("Unsupported addressing mode!");
1920    }
1921
1922    Offset += InstrOffs * Scale;
1923    assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
1924    if (Offset < 0) {
1925      Offset = -Offset;
1926      isSub = true;
1927    }
1928
1929    // Attempt to fold address comp. if opcode has offset bits
1930    if (NumBits > 0) {
1931      // Common case: small offset, fits into instruction.
1932      MachineOperand &ImmOp = MI.getOperand(ImmIdx);
1933      int ImmedOffset = Offset / Scale;
1934      unsigned Mask = (1 << NumBits) - 1;
1935      if ((unsigned)Offset <= Mask * Scale) {
1936        // Replace the FrameIndex with sp
1937        MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1938        // FIXME: When addrmode2 goes away, this will simplify (like the
1939        // T2 version), as the LDR.i12 versions don't need the encoding
1940        // tricks for the offset value.
1941        if (isSub) {
1942          if (AddrMode == ARMII::AddrMode_i12)
1943            ImmedOffset = -ImmedOffset;
1944          else
1945            ImmedOffset |= 1 << NumBits;
1946        }
1947        ImmOp.ChangeToImmediate(ImmedOffset);
1948        Offset = 0;
1949        return true;
1950      }
1951
1952      // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
1953      ImmedOffset = ImmedOffset & Mask;
1954      if (isSub) {
1955        if (AddrMode == ARMII::AddrMode_i12)
1956          ImmedOffset = -ImmedOffset;
1957        else
1958          ImmedOffset |= 1 << NumBits;
1959      }
1960      ImmOp.ChangeToImmediate(ImmedOffset);
1961      Offset &= ~(Mask*Scale);
1962    }
1963  }
1964
1965  Offset = (isSub) ? -Offset : Offset;
1966  return Offset == 0;
1967}
1968
1969/// analyzeCompare - For a comparison instruction, return the source registers
1970/// in SrcReg and SrcReg2 if having two register operands, and the value it
1971/// compares against in CmpValue. Return true if the comparison instruction
1972/// can be analyzed.
1973bool ARMBaseInstrInfo::
1974analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
1975               int &CmpMask, int &CmpValue) const {
1976  switch (MI->getOpcode()) {
1977  default: break;
1978  case ARM::CMPri:
1979  case ARM::t2CMPri:
1980    SrcReg = MI->getOperand(0).getReg();
1981    SrcReg2 = 0;
1982    CmpMask = ~0;
1983    CmpValue = MI->getOperand(1).getImm();
1984    return true;
1985  case ARM::CMPrr:
1986  case ARM::t2CMPrr:
1987    SrcReg = MI->getOperand(0).getReg();
1988    SrcReg2 = MI->getOperand(1).getReg();
1989    CmpMask = ~0;
1990    CmpValue = 0;
1991    return true;
1992  case ARM::TSTri:
1993  case ARM::t2TSTri:
1994    SrcReg = MI->getOperand(0).getReg();
1995    SrcReg2 = 0;
1996    CmpMask = MI->getOperand(1).getImm();
1997    CmpValue = 0;
1998    return true;
1999  }
2000
2001  return false;
2002}
2003
2004/// isSuitableForMask - Identify a suitable 'and' instruction that
2005/// operates on the given source register and applies the same mask
2006/// as a 'tst' instruction. Provide a limited look-through for copies.
2007/// When successful, MI will hold the found instruction.
2008static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
2009                              int CmpMask, bool CommonUse) {
2010  switch (MI->getOpcode()) {
2011    case ARM::ANDri:
2012    case ARM::t2ANDri:
2013      if (CmpMask != MI->getOperand(2).getImm())
2014        return false;
2015      if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
2016        return true;
2017      break;
2018    case ARM::COPY: {
2019      // Walk down one instruction which is potentially an 'and'.
2020      const MachineInstr &Copy = *MI;
2021      MachineBasicBlock::iterator AND(
2022        llvm::next(MachineBasicBlock::iterator(MI)));
2023      if (AND == MI->getParent()->end()) return false;
2024      MI = AND;
2025      return isSuitableForMask(MI, Copy.getOperand(0).getReg(),
2026                               CmpMask, true);
2027    }
2028  }
2029
2030  return false;
2031}
2032
2033/// getSwappedCondition - assume the flags are set by MI(a,b), return
2034/// the condition code if we modify the instructions such that flags are
2035/// set by MI(b,a).
2036inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) {
2037  switch (CC) {
2038  default: return ARMCC::AL;
2039  case ARMCC::EQ: return ARMCC::EQ;
2040  case ARMCC::NE: return ARMCC::NE;
2041  case ARMCC::HS: return ARMCC::LS;
2042  case ARMCC::LO: return ARMCC::HI;
2043  case ARMCC::HI: return ARMCC::LO;
2044  case ARMCC::LS: return ARMCC::HS;
2045  case ARMCC::GE: return ARMCC::LE;
2046  case ARMCC::LT: return ARMCC::GT;
2047  case ARMCC::GT: return ARMCC::LT;
2048  case ARMCC::LE: return ARMCC::GE;
2049  }
2050}
2051
2052/// isRedundantFlagInstr - check whether the first instruction, whose only
2053/// purpose is to update flags, can be made redundant.
2054/// CMPrr can be made redundant by SUBrr if the operands are the same.
2055/// CMPri can be made redundant by SUBri if the operands are the same.
2056/// This function can be extended later on.
2057inline static bool isRedundantFlagInstr(MachineInstr *CmpI, unsigned SrcReg,
2058                                        unsigned SrcReg2, int ImmValue,
2059                                        MachineInstr *OI) {
2060  if ((CmpI->getOpcode() == ARM::CMPrr ||
2061       CmpI->getOpcode() == ARM::t2CMPrr) &&
2062      (OI->getOpcode() == ARM::SUBrr ||
2063       OI->getOpcode() == ARM::t2SUBrr) &&
2064      ((OI->getOperand(1).getReg() == SrcReg &&
2065        OI->getOperand(2).getReg() == SrcReg2) ||
2066       (OI->getOperand(1).getReg() == SrcReg2 &&
2067        OI->getOperand(2).getReg() == SrcReg)))
2068    return true;
2069
2070  if ((CmpI->getOpcode() == ARM::CMPri ||
2071       CmpI->getOpcode() == ARM::t2CMPri) &&
2072      (OI->getOpcode() == ARM::SUBri ||
2073       OI->getOpcode() == ARM::t2SUBri) &&
2074      OI->getOperand(1).getReg() == SrcReg &&
2075      OI->getOperand(2).getImm() == ImmValue)
2076    return true;
2077  return false;
2078}
2079
2080/// optimizeCompareInstr - Convert the instruction supplying the argument to the
2081/// comparison into one that sets the zero bit in the flags register;
2082/// Remove a redundant Compare instruction if an earlier instruction can set the
2083/// flags in the same way as Compare.
2084/// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
2085/// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
2086/// condition code of instructions which use the flags.
2087bool ARMBaseInstrInfo::
2088optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
2089                     int CmpMask, int CmpValue,
2090                     const MachineRegisterInfo *MRI) const {
2091  // Get the unique definition of SrcReg.
2092  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
2093  if (!MI) return false;
2094
2095  // Masked compares sometimes use the same register as the corresponding 'and'.
2096  if (CmpMask != ~0) {
2097    if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(MI)) {
2098      MI = 0;
2099      for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SrcReg),
2100           UE = MRI->use_end(); UI != UE; ++UI) {
2101        if (UI->getParent() != CmpInstr->getParent()) continue;
2102        MachineInstr *PotentialAND = &*UI;
2103        if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
2104            isPredicated(PotentialAND))
2105          continue;
2106        MI = PotentialAND;
2107        break;
2108      }
2109      if (!MI) return false;
2110    }
2111  }
2112
2113  // Get ready to iterate backward from CmpInstr.
2114  MachineBasicBlock::iterator I = CmpInstr, E = MI,
2115                              B = CmpInstr->getParent()->begin();
2116
2117  // Early exit if CmpInstr is at the beginning of the BB.
2118  if (I == B) return false;
2119
2120  // There are two possible candidates which can be changed to set CPSR:
2121  // One is MI, the other is a SUB instruction.
2122  // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
2123  // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
2124  MachineInstr *Sub = NULL;
2125  if (SrcReg2 != 0)
2126    // MI is not a candidate for CMPrr.
2127    MI = NULL;
2128  else if (MI->getParent() != CmpInstr->getParent() || CmpValue != 0) {
2129    // Conservatively refuse to convert an instruction which isn't in the same
2130    // BB as the comparison.
2131    // For CMPri, we need to check Sub, thus we can't return here.
2132    if (CmpInstr->getOpcode() == ARM::CMPri ||
2133       CmpInstr->getOpcode() == ARM::t2CMPri)
2134      MI = NULL;
2135    else
2136      return false;
2137  }
2138
2139  // Check that CPSR isn't set between the comparison instruction and the one we
2140  // want to change. At the same time, search for Sub.
2141  const TargetRegisterInfo *TRI = &getRegisterInfo();
2142  --I;
2143  for (; I != E; --I) {
2144    const MachineInstr &Instr = *I;
2145
2146    if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
2147        Instr.readsRegister(ARM::CPSR, TRI))
2148      // This instruction modifies or uses CPSR after the one we want to
2149      // change. We can't do this transformation.
2150      return false;
2151
2152    // Check whether CmpInstr can be made redundant by the current instruction.
2153    if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, &*I)) {
2154      Sub = &*I;
2155      break;
2156    }
2157
2158    if (I == B)
2159      // The 'and' is below the comparison instruction.
2160      return false;
2161  }
2162
2163  // Return false if no candidates exist.
2164  if (!MI && !Sub)
2165    return false;
2166
2167  // The single candidate is called MI.
2168  if (!MI) MI = Sub;
2169
2170  // We can't use a predicated instruction - it doesn't always write the flags.
2171  if (isPredicated(MI))
2172    return false;
2173
2174  switch (MI->getOpcode()) {
2175  default: break;
2176  case ARM::RSBrr:
2177  case ARM::RSBri:
2178  case ARM::RSCrr:
2179  case ARM::RSCri:
2180  case ARM::ADDrr:
2181  case ARM::ADDri:
2182  case ARM::ADCrr:
2183  case ARM::ADCri:
2184  case ARM::SUBrr:
2185  case ARM::SUBri:
2186  case ARM::SBCrr:
2187  case ARM::SBCri:
2188  case ARM::t2RSBri:
2189  case ARM::t2ADDrr:
2190  case ARM::t2ADDri:
2191  case ARM::t2ADCrr:
2192  case ARM::t2ADCri:
2193  case ARM::t2SUBrr:
2194  case ARM::t2SUBri:
2195  case ARM::t2SBCrr:
2196  case ARM::t2SBCri:
2197  case ARM::ANDrr:
2198  case ARM::ANDri:
2199  case ARM::t2ANDrr:
2200  case ARM::t2ANDri:
2201  case ARM::ORRrr:
2202  case ARM::ORRri:
2203  case ARM::t2ORRrr:
2204  case ARM::t2ORRri:
2205  case ARM::EORrr:
2206  case ARM::EORri:
2207  case ARM::t2EORrr:
2208  case ARM::t2EORri: {
2209    // Scan forward for the use of CPSR
2210    // When checking against MI: if it's a conditional code requires
2211    // checking of V bit, then this is not safe to do.
2212    // It is safe to remove CmpInstr if CPSR is redefined or killed.
2213    // If we are done with the basic block, we need to check whether CPSR is
2214    // live-out.
2215    SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
2216        OperandsToUpdate;
2217    bool isSafe = false;
2218    I = CmpInstr;
2219    E = CmpInstr->getParent()->end();
2220    while (!isSafe && ++I != E) {
2221      const MachineInstr &Instr = *I;
2222      for (unsigned IO = 0, EO = Instr.getNumOperands();
2223           !isSafe && IO != EO; ++IO) {
2224        const MachineOperand &MO = Instr.getOperand(IO);
2225        if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
2226          isSafe = true;
2227          break;
2228        }
2229        if (!MO.isReg() || MO.getReg() != ARM::CPSR)
2230          continue;
2231        if (MO.isDef()) {
2232          isSafe = true;
2233          break;
2234        }
2235        // Condition code is after the operand before CPSR.
2236        ARMCC::CondCodes CC = (ARMCC::CondCodes)Instr.getOperand(IO-1).getImm();
2237        if (Sub) {
2238          ARMCC::CondCodes NewCC = getSwappedCondition(CC);
2239          if (NewCC == ARMCC::AL)
2240            return false;
2241          // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
2242          // on CMP needs to be updated to be based on SUB.
2243          // Push the condition code operands to OperandsToUpdate.
2244          // If it is safe to remove CmpInstr, the condition code of these
2245          // operands will be modified.
2246          if (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
2247              Sub->getOperand(2).getReg() == SrcReg)
2248            OperandsToUpdate.push_back(std::make_pair(&((*I).getOperand(IO-1)),
2249                                                      NewCC));
2250        }
2251        else
2252          switch (CC) {
2253          default:
2254            // CPSR can be used multiple times, we should continue.
2255            break;
2256          case ARMCC::VS:
2257          case ARMCC::VC:
2258          case ARMCC::GE:
2259          case ARMCC::LT:
2260          case ARMCC::GT:
2261          case ARMCC::LE:
2262            return false;
2263          }
2264      }
2265    }
2266
2267    // If CPSR is not killed nor re-defined, we should check whether it is
2268    // live-out. If it is live-out, do not optimize.
2269    if (!isSafe) {
2270      MachineBasicBlock *MBB = CmpInstr->getParent();
2271      for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
2272               SE = MBB->succ_end(); SI != SE; ++SI)
2273        if ((*SI)->isLiveIn(ARM::CPSR))
2274          return false;
2275    }
2276
2277    // Toggle the optional operand to CPSR.
2278    MI->getOperand(5).setReg(ARM::CPSR);
2279    MI->getOperand(5).setIsDef(true);
2280    assert(!isPredicated(MI) && "Can't use flags from predicated instruction");
2281    CmpInstr->eraseFromParent();
2282
2283    // Modify the condition code of operands in OperandsToUpdate.
2284    // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2285    // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2286    for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
2287      OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
2288    return true;
2289  }
2290  }
2291
2292  return false;
2293}
2294
2295bool ARMBaseInstrInfo::FoldImmediate(MachineInstr *UseMI,
2296                                     MachineInstr *DefMI, unsigned Reg,
2297                                     MachineRegisterInfo *MRI) const {
2298  // Fold large immediates into add, sub, or, xor.
2299  unsigned DefOpc = DefMI->getOpcode();
2300  if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
2301    return false;
2302  if (!DefMI->getOperand(1).isImm())
2303    // Could be t2MOVi32imm <ga:xx>
2304    return false;
2305
2306  if (!MRI->hasOneNonDBGUse(Reg))
2307    return false;
2308
2309  const MCInstrDesc &DefMCID = DefMI->getDesc();
2310  if (DefMCID.hasOptionalDef()) {
2311    unsigned NumOps = DefMCID.getNumOperands();
2312    const MachineOperand &MO = DefMI->getOperand(NumOps-1);
2313    if (MO.getReg() == ARM::CPSR && !MO.isDead())
2314      // If DefMI defines CPSR and it is not dead, it's obviously not safe
2315      // to delete DefMI.
2316      return false;
2317  }
2318
2319  const MCInstrDesc &UseMCID = UseMI->getDesc();
2320  if (UseMCID.hasOptionalDef()) {
2321    unsigned NumOps = UseMCID.getNumOperands();
2322    if (UseMI->getOperand(NumOps-1).getReg() == ARM::CPSR)
2323      // If the instruction sets the flag, do not attempt this optimization
2324      // since it may change the semantics of the code.
2325      return false;
2326  }
2327
2328  unsigned UseOpc = UseMI->getOpcode();
2329  unsigned NewUseOpc = 0;
2330  uint32_t ImmVal = (uint32_t)DefMI->getOperand(1).getImm();
2331  uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
2332  bool Commute = false;
2333  switch (UseOpc) {
2334  default: return false;
2335  case ARM::SUBrr:
2336  case ARM::ADDrr:
2337  case ARM::ORRrr:
2338  case ARM::EORrr:
2339  case ARM::t2SUBrr:
2340  case ARM::t2ADDrr:
2341  case ARM::t2ORRrr:
2342  case ARM::t2EORrr: {
2343    Commute = UseMI->getOperand(2).getReg() != Reg;
2344    switch (UseOpc) {
2345    default: break;
2346    case ARM::SUBrr: {
2347      if (Commute)
2348        return false;
2349      ImmVal = -ImmVal;
2350      NewUseOpc = ARM::SUBri;
2351      // Fallthrough
2352    }
2353    case ARM::ADDrr:
2354    case ARM::ORRrr:
2355    case ARM::EORrr: {
2356      if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
2357        return false;
2358      SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
2359      SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
2360      switch (UseOpc) {
2361      default: break;
2362      case ARM::ADDrr: NewUseOpc = ARM::ADDri; break;
2363      case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
2364      case ARM::EORrr: NewUseOpc = ARM::EORri; break;
2365      }
2366      break;
2367    }
2368    case ARM::t2SUBrr: {
2369      if (Commute)
2370        return false;
2371      ImmVal = -ImmVal;
2372      NewUseOpc = ARM::t2SUBri;
2373      // Fallthrough
2374    }
2375    case ARM::t2ADDrr:
2376    case ARM::t2ORRrr:
2377    case ARM::t2EORrr: {
2378      if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
2379        return false;
2380      SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
2381      SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
2382      switch (UseOpc) {
2383      default: break;
2384      case ARM::t2ADDrr: NewUseOpc = ARM::t2ADDri; break;
2385      case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
2386      case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
2387      }
2388      break;
2389    }
2390    }
2391  }
2392  }
2393
2394  unsigned OpIdx = Commute ? 2 : 1;
2395  unsigned Reg1 = UseMI->getOperand(OpIdx).getReg();
2396  bool isKill = UseMI->getOperand(OpIdx).isKill();
2397  unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
2398  AddDefaultCC(AddDefaultPred(BuildMI(*UseMI->getParent(),
2399                                      UseMI, UseMI->getDebugLoc(),
2400                                      get(NewUseOpc), NewReg)
2401                              .addReg(Reg1, getKillRegState(isKill))
2402                              .addImm(SOImmValV1)));
2403  UseMI->setDesc(get(NewUseOpc));
2404  UseMI->getOperand(1).setReg(NewReg);
2405  UseMI->getOperand(1).setIsKill();
2406  UseMI->getOperand(2).ChangeToImmediate(SOImmValV2);
2407  DefMI->eraseFromParent();
2408  return true;
2409}
2410
2411static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
2412                                        const MachineInstr *MI) {
2413  switch (MI->getOpcode()) {
2414  default: {
2415    const MCInstrDesc &Desc = MI->getDesc();
2416    int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
2417    assert(UOps >= 0 && "bad # UOps");
2418    return UOps;
2419  }
2420
2421  case ARM::LDRrs:
2422  case ARM::LDRBrs:
2423  case ARM::STRrs:
2424  case ARM::STRBrs: {
2425    unsigned ShOpVal = MI->getOperand(3).getImm();
2426    bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2427    unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2428    if (!isSub &&
2429        (ShImm == 0 ||
2430         ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2431          ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2432      return 1;
2433    return 2;
2434  }
2435
2436  case ARM::LDRH:
2437  case ARM::STRH: {
2438    if (!MI->getOperand(2).getReg())
2439      return 1;
2440
2441    unsigned ShOpVal = MI->getOperand(3).getImm();
2442    bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2443    unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2444    if (!isSub &&
2445        (ShImm == 0 ||
2446         ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2447          ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2448      return 1;
2449    return 2;
2450  }
2451
2452  case ARM::LDRSB:
2453  case ARM::LDRSH:
2454    return (ARM_AM::getAM3Op(MI->getOperand(3).getImm()) == ARM_AM::sub) ? 3:2;
2455
2456  case ARM::LDRSB_POST:
2457  case ARM::LDRSH_POST: {
2458    unsigned Rt = MI->getOperand(0).getReg();
2459    unsigned Rm = MI->getOperand(3).getReg();
2460    return (Rt == Rm) ? 4 : 3;
2461  }
2462
2463  case ARM::LDR_PRE_REG:
2464  case ARM::LDRB_PRE_REG: {
2465    unsigned Rt = MI->getOperand(0).getReg();
2466    unsigned Rm = MI->getOperand(3).getReg();
2467    if (Rt == Rm)
2468      return 3;
2469    unsigned ShOpVal = MI->getOperand(4).getImm();
2470    bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2471    unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2472    if (!isSub &&
2473        (ShImm == 0 ||
2474         ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2475          ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2476      return 2;
2477    return 3;
2478  }
2479
2480  case ARM::STR_PRE_REG:
2481  case ARM::STRB_PRE_REG: {
2482    unsigned ShOpVal = MI->getOperand(4).getImm();
2483    bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2484    unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2485    if (!isSub &&
2486        (ShImm == 0 ||
2487         ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2488          ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2489      return 2;
2490    return 3;
2491  }
2492
2493  case ARM::LDRH_PRE:
2494  case ARM::STRH_PRE: {
2495    unsigned Rt = MI->getOperand(0).getReg();
2496    unsigned Rm = MI->getOperand(3).getReg();
2497    if (!Rm)
2498      return 2;
2499    if (Rt == Rm)
2500      return 3;
2501    return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub)
2502      ? 3 : 2;
2503  }
2504
2505  case ARM::LDR_POST_REG:
2506  case ARM::LDRB_POST_REG:
2507  case ARM::LDRH_POST: {
2508    unsigned Rt = MI->getOperand(0).getReg();
2509    unsigned Rm = MI->getOperand(3).getReg();
2510    return (Rt == Rm) ? 3 : 2;
2511  }
2512
2513  case ARM::LDR_PRE_IMM:
2514  case ARM::LDRB_PRE_IMM:
2515  case ARM::LDR_POST_IMM:
2516  case ARM::LDRB_POST_IMM:
2517  case ARM::STRB_POST_IMM:
2518  case ARM::STRB_POST_REG:
2519  case ARM::STRB_PRE_IMM:
2520  case ARM::STRH_POST:
2521  case ARM::STR_POST_IMM:
2522  case ARM::STR_POST_REG:
2523  case ARM::STR_PRE_IMM:
2524    return 2;
2525
2526  case ARM::LDRSB_PRE:
2527  case ARM::LDRSH_PRE: {
2528    unsigned Rm = MI->getOperand(3).getReg();
2529    if (Rm == 0)
2530      return 3;
2531    unsigned Rt = MI->getOperand(0).getReg();
2532    if (Rt == Rm)
2533      return 4;
2534    unsigned ShOpVal = MI->getOperand(4).getImm();
2535    bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2536    unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2537    if (!isSub &&
2538        (ShImm == 0 ||
2539         ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2540          ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2541      return 3;
2542    return 4;
2543  }
2544
2545  case ARM::LDRD: {
2546    unsigned Rt = MI->getOperand(0).getReg();
2547    unsigned Rn = MI->getOperand(2).getReg();
2548    unsigned Rm = MI->getOperand(3).getReg();
2549    if (Rm)
2550      return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub) ?4:3;
2551    return (Rt == Rn) ? 3 : 2;
2552  }
2553
2554  case ARM::STRD: {
2555    unsigned Rm = MI->getOperand(3).getReg();
2556    if (Rm)
2557      return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub) ?4:3;
2558    return 2;
2559  }
2560
2561  case ARM::LDRD_POST:
2562  case ARM::t2LDRD_POST:
2563    return 3;
2564
2565  case ARM::STRD_POST:
2566  case ARM::t2STRD_POST:
2567    return 4;
2568
2569  case ARM::LDRD_PRE: {
2570    unsigned Rt = MI->getOperand(0).getReg();
2571    unsigned Rn = MI->getOperand(3).getReg();
2572    unsigned Rm = MI->getOperand(4).getReg();
2573    if (Rm)
2574      return (ARM_AM::getAM3Op(MI->getOperand(5).getImm()) == ARM_AM::sub) ?5:4;
2575    return (Rt == Rn) ? 4 : 3;
2576  }
2577
2578  case ARM::t2LDRD_PRE: {
2579    unsigned Rt = MI->getOperand(0).getReg();
2580    unsigned Rn = MI->getOperand(3).getReg();
2581    return (Rt == Rn) ? 4 : 3;
2582  }
2583
2584  case ARM::STRD_PRE: {
2585    unsigned Rm = MI->getOperand(4).getReg();
2586    if (Rm)
2587      return (ARM_AM::getAM3Op(MI->getOperand(5).getImm()) == ARM_AM::sub) ?5:4;
2588    return 3;
2589  }
2590
2591  case ARM::t2STRD_PRE:
2592    return 3;
2593
2594  case ARM::t2LDR_POST:
2595  case ARM::t2LDRB_POST:
2596  case ARM::t2LDRB_PRE:
2597  case ARM::t2LDRSBi12:
2598  case ARM::t2LDRSBi8:
2599  case ARM::t2LDRSBpci:
2600  case ARM::t2LDRSBs:
2601  case ARM::t2LDRH_POST:
2602  case ARM::t2LDRH_PRE:
2603  case ARM::t2LDRSBT:
2604  case ARM::t2LDRSB_POST:
2605  case ARM::t2LDRSB_PRE:
2606  case ARM::t2LDRSH_POST:
2607  case ARM::t2LDRSH_PRE:
2608  case ARM::t2LDRSHi12:
2609  case ARM::t2LDRSHi8:
2610  case ARM::t2LDRSHpci:
2611  case ARM::t2LDRSHs:
2612    return 2;
2613
2614  case ARM::t2LDRDi8: {
2615    unsigned Rt = MI->getOperand(0).getReg();
2616    unsigned Rn = MI->getOperand(2).getReg();
2617    return (Rt == Rn) ? 3 : 2;
2618  }
2619
2620  case ARM::t2STRB_POST:
2621  case ARM::t2STRB_PRE:
2622  case ARM::t2STRBs:
2623  case ARM::t2STRDi8:
2624  case ARM::t2STRH_POST:
2625  case ARM::t2STRH_PRE:
2626  case ARM::t2STRHs:
2627  case ARM::t2STR_POST:
2628  case ARM::t2STR_PRE:
2629  case ARM::t2STRs:
2630    return 2;
2631  }
2632}
2633
2634// Return the number of 32-bit words loaded by LDM or stored by STM. If this
2635// can't be easily determined return 0 (missing MachineMemOperand).
2636//
2637// FIXME: The current MachineInstr design does not support relying on machine
2638// mem operands to determine the width of a memory access. Instead, we expect
2639// the target to provide this information based on the instruction opcode and
2640// operands. However, using MachineMemOperand is a the best solution now for
2641// two reasons:
2642//
2643// 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
2644// operands. This is much more dangerous than using the MachineMemOperand
2645// sizes because CodeGen passes can insert/remove optional machine operands. In
2646// fact, it's totally incorrect for preRA passes and appears to be wrong for
2647// postRA passes as well.
2648//
2649// 2) getNumLDMAddresses is only used by the scheduling machine model and any
2650// machine model that calls this should handle the unknown (zero size) case.
2651//
2652// Long term, we should require a target hook that verifies MachineMemOperand
2653// sizes during MC lowering. That target hook should be local to MC lowering
2654// because we can't ensure that it is aware of other MI forms. Doing this will
2655// ensure that MachineMemOperands are correctly propagated through all passes.
2656unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr *MI) const {
2657  unsigned Size = 0;
2658  for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
2659         E = MI->memoperands_end(); I != E; ++I) {
2660    Size += (*I)->getSize();
2661  }
2662  return Size / 4;
2663}
2664
2665unsigned
2666ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
2667                                 const MachineInstr *MI) const {
2668  if (!ItinData || ItinData->isEmpty())
2669    return 1;
2670
2671  const MCInstrDesc &Desc = MI->getDesc();
2672  unsigned Class = Desc.getSchedClass();
2673  int ItinUOps = ItinData->getNumMicroOps(Class);
2674  if (ItinUOps >= 0) {
2675    if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
2676      return getNumMicroOpsSwiftLdSt(ItinData, MI);
2677
2678    return ItinUOps;
2679  }
2680
2681  unsigned Opc = MI->getOpcode();
2682  switch (Opc) {
2683  default:
2684    llvm_unreachable("Unexpected multi-uops instruction!");
2685  case ARM::VLDMQIA:
2686  case ARM::VSTMQIA:
2687    return 2;
2688
2689  // The number of uOps for load / store multiple are determined by the number
2690  // registers.
2691  //
2692  // On Cortex-A8, each pair of register loads / stores can be scheduled on the
2693  // same cycle. The scheduling for the first load / store must be done
2694  // separately by assuming the address is not 64-bit aligned.
2695  //
2696  // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
2697  // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
2698  // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
2699  case ARM::VLDMDIA:
2700  case ARM::VLDMDIA_UPD:
2701  case ARM::VLDMDDB_UPD:
2702  case ARM::VLDMSIA:
2703  case ARM::VLDMSIA_UPD:
2704  case ARM::VLDMSDB_UPD:
2705  case ARM::VSTMDIA:
2706  case ARM::VSTMDIA_UPD:
2707  case ARM::VSTMDDB_UPD:
2708  case ARM::VSTMSIA:
2709  case ARM::VSTMSIA_UPD:
2710  case ARM::VSTMSDB_UPD: {
2711    unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands();
2712    return (NumRegs / 2) + (NumRegs % 2) + 1;
2713  }
2714
2715  case ARM::LDMIA_RET:
2716  case ARM::LDMIA:
2717  case ARM::LDMDA:
2718  case ARM::LDMDB:
2719  case ARM::LDMIB:
2720  case ARM::LDMIA_UPD:
2721  case ARM::LDMDA_UPD:
2722  case ARM::LDMDB_UPD:
2723  case ARM::LDMIB_UPD:
2724  case ARM::STMIA:
2725  case ARM::STMDA:
2726  case ARM::STMDB:
2727  case ARM::STMIB:
2728  case ARM::STMIA_UPD:
2729  case ARM::STMDA_UPD:
2730  case ARM::STMDB_UPD:
2731  case ARM::STMIB_UPD:
2732  case ARM::tLDMIA:
2733  case ARM::tLDMIA_UPD:
2734  case ARM::tSTMIA_UPD:
2735  case ARM::tPOP_RET:
2736  case ARM::tPOP:
2737  case ARM::tPUSH:
2738  case ARM::t2LDMIA_RET:
2739  case ARM::t2LDMIA:
2740  case ARM::t2LDMDB:
2741  case ARM::t2LDMIA_UPD:
2742  case ARM::t2LDMDB_UPD:
2743  case ARM::t2STMIA:
2744  case ARM::t2STMDB:
2745  case ARM::t2STMIA_UPD:
2746  case ARM::t2STMDB_UPD: {
2747    unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands() + 1;
2748    if (Subtarget.isSwift()) {
2749      int UOps = 1 + NumRegs;  // One for address computation, one for each ld / st.
2750      switch (Opc) {
2751      default: break;
2752      case ARM::VLDMDIA_UPD:
2753      case ARM::VLDMDDB_UPD:
2754      case ARM::VLDMSIA_UPD:
2755      case ARM::VLDMSDB_UPD:
2756      case ARM::VSTMDIA_UPD:
2757      case ARM::VSTMDDB_UPD:
2758      case ARM::VSTMSIA_UPD:
2759      case ARM::VSTMSDB_UPD:
2760      case ARM::LDMIA_UPD:
2761      case ARM::LDMDA_UPD:
2762      case ARM::LDMDB_UPD:
2763      case ARM::LDMIB_UPD:
2764      case ARM::STMIA_UPD:
2765      case ARM::STMDA_UPD:
2766      case ARM::STMDB_UPD:
2767      case ARM::STMIB_UPD:
2768      case ARM::tLDMIA_UPD:
2769      case ARM::tSTMIA_UPD:
2770      case ARM::t2LDMIA_UPD:
2771      case ARM::t2LDMDB_UPD:
2772      case ARM::t2STMIA_UPD:
2773      case ARM::t2STMDB_UPD:
2774        ++UOps; // One for base register writeback.
2775        break;
2776      case ARM::LDMIA_RET:
2777      case ARM::tPOP_RET:
2778      case ARM::t2LDMIA_RET:
2779        UOps += 2; // One for base reg wb, one for write to pc.
2780        break;
2781      }
2782      return UOps;
2783    } else if (Subtarget.isCortexA8()) {
2784      if (NumRegs < 4)
2785        return 2;
2786      // 4 registers would be issued: 2, 2.
2787      // 5 registers would be issued: 2, 2, 1.
2788      int A8UOps = (NumRegs / 2);
2789      if (NumRegs % 2)
2790        ++A8UOps;
2791      return A8UOps;
2792    } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
2793      int A9UOps = (NumRegs / 2);
2794      // If there are odd number of registers or if it's not 64-bit aligned,
2795      // then it takes an extra AGU (Address Generation Unit) cycle.
2796      if ((NumRegs % 2) ||
2797          !MI->hasOneMemOperand() ||
2798          (*MI->memoperands_begin())->getAlignment() < 8)
2799        ++A9UOps;
2800      return A9UOps;
2801    } else {
2802      // Assume the worst.
2803      return NumRegs;
2804    }
2805  }
2806  }
2807}
2808
2809int
2810ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
2811                                  const MCInstrDesc &DefMCID,
2812                                  unsigned DefClass,
2813                                  unsigned DefIdx, unsigned DefAlign) const {
2814  int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
2815  if (RegNo <= 0)
2816    // Def is the address writeback.
2817    return ItinData->getOperandCycle(DefClass, DefIdx);
2818
2819  int DefCycle;
2820  if (Subtarget.isCortexA8()) {
2821    // (regno / 2) + (regno % 2) + 1
2822    DefCycle = RegNo / 2 + 1;
2823    if (RegNo % 2)
2824      ++DefCycle;
2825  } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
2826    DefCycle = RegNo;
2827    bool isSLoad = false;
2828
2829    switch (DefMCID.getOpcode()) {
2830    default: break;
2831    case ARM::VLDMSIA:
2832    case ARM::VLDMSIA_UPD:
2833    case ARM::VLDMSDB_UPD:
2834      isSLoad = true;
2835      break;
2836    }
2837
2838    // If there are odd number of 'S' registers or if it's not 64-bit aligned,
2839    // then it takes an extra cycle.
2840    if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
2841      ++DefCycle;
2842  } else {
2843    // Assume the worst.
2844    DefCycle = RegNo + 2;
2845  }
2846
2847  return DefCycle;
2848}
2849
2850int
2851ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
2852                                 const MCInstrDesc &DefMCID,
2853                                 unsigned DefClass,
2854                                 unsigned DefIdx, unsigned DefAlign) const {
2855  int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
2856  if (RegNo <= 0)
2857    // Def is the address writeback.
2858    return ItinData->getOperandCycle(DefClass, DefIdx);
2859
2860  int DefCycle;
2861  if (Subtarget.isCortexA8()) {
2862    // 4 registers would be issued: 1, 2, 1.
2863    // 5 registers would be issued: 1, 2, 2.
2864    DefCycle = RegNo / 2;
2865    if (DefCycle < 1)
2866      DefCycle = 1;
2867    // Result latency is issue cycle + 2: E2.
2868    DefCycle += 2;
2869  } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
2870    DefCycle = (RegNo / 2);
2871    // If there are odd number of registers or if it's not 64-bit aligned,
2872    // then it takes an extra AGU (Address Generation Unit) cycle.
2873    if ((RegNo % 2) || DefAlign < 8)
2874      ++DefCycle;
2875    // Result latency is AGU cycles + 2.
2876    DefCycle += 2;
2877  } else {
2878    // Assume the worst.
2879    DefCycle = RegNo + 2;
2880  }
2881
2882  return DefCycle;
2883}
2884
2885int
2886ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
2887                                  const MCInstrDesc &UseMCID,
2888                                  unsigned UseClass,
2889                                  unsigned UseIdx, unsigned UseAlign) const {
2890  int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
2891  if (RegNo <= 0)
2892    return ItinData->getOperandCycle(UseClass, UseIdx);
2893
2894  int UseCycle;
2895  if (Subtarget.isCortexA8()) {
2896    // (regno / 2) + (regno % 2) + 1
2897    UseCycle = RegNo / 2 + 1;
2898    if (RegNo % 2)
2899      ++UseCycle;
2900  } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
2901    UseCycle = RegNo;
2902    bool isSStore = false;
2903
2904    switch (UseMCID.getOpcode()) {
2905    default: break;
2906    case ARM::VSTMSIA:
2907    case ARM::VSTMSIA_UPD:
2908    case ARM::VSTMSDB_UPD:
2909      isSStore = true;
2910      break;
2911    }
2912
2913    // If there are odd number of 'S' registers or if it's not 64-bit aligned,
2914    // then it takes an extra cycle.
2915    if ((isSStore && (RegNo % 2)) || UseAlign < 8)
2916      ++UseCycle;
2917  } else {
2918    // Assume the worst.
2919    UseCycle = RegNo + 2;
2920  }
2921
2922  return UseCycle;
2923}
2924
2925int
2926ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
2927                                 const MCInstrDesc &UseMCID,
2928                                 unsigned UseClass,
2929                                 unsigned UseIdx, unsigned UseAlign) const {
2930  int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
2931  if (RegNo <= 0)
2932    return ItinData->getOperandCycle(UseClass, UseIdx);
2933
2934  int UseCycle;
2935  if (Subtarget.isCortexA8()) {
2936    UseCycle = RegNo / 2;
2937    if (UseCycle < 2)
2938      UseCycle = 2;
2939    // Read in E3.
2940    UseCycle += 2;
2941  } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
2942    UseCycle = (RegNo / 2);
2943    // If there are odd number of registers or if it's not 64-bit aligned,
2944    // then it takes an extra AGU (Address Generation Unit) cycle.
2945    if ((RegNo % 2) || UseAlign < 8)
2946      ++UseCycle;
2947  } else {
2948    // Assume the worst.
2949    UseCycle = 1;
2950  }
2951  return UseCycle;
2952}
2953
2954int
2955ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
2956                                    const MCInstrDesc &DefMCID,
2957                                    unsigned DefIdx, unsigned DefAlign,
2958                                    const MCInstrDesc &UseMCID,
2959                                    unsigned UseIdx, unsigned UseAlign) const {
2960  unsigned DefClass = DefMCID.getSchedClass();
2961  unsigned UseClass = UseMCID.getSchedClass();
2962
2963  if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
2964    return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
2965
2966  // This may be a def / use of a variable_ops instruction, the operand
2967  // latency might be determinable dynamically. Let the target try to
2968  // figure it out.
2969  int DefCycle = -1;
2970  bool LdmBypass = false;
2971  switch (DefMCID.getOpcode()) {
2972  default:
2973    DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
2974    break;
2975
2976  case ARM::VLDMDIA:
2977  case ARM::VLDMDIA_UPD:
2978  case ARM::VLDMDDB_UPD:
2979  case ARM::VLDMSIA:
2980  case ARM::VLDMSIA_UPD:
2981  case ARM::VLDMSDB_UPD:
2982    DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
2983    break;
2984
2985  case ARM::LDMIA_RET:
2986  case ARM::LDMIA:
2987  case ARM::LDMDA:
2988  case ARM::LDMDB:
2989  case ARM::LDMIB:
2990  case ARM::LDMIA_UPD:
2991  case ARM::LDMDA_UPD:
2992  case ARM::LDMDB_UPD:
2993  case ARM::LDMIB_UPD:
2994  case ARM::tLDMIA:
2995  case ARM::tLDMIA_UPD:
2996  case ARM::tPUSH:
2997  case ARM::t2LDMIA_RET:
2998  case ARM::t2LDMIA:
2999  case ARM::t2LDMDB:
3000  case ARM::t2LDMIA_UPD:
3001  case ARM::t2LDMDB_UPD:
3002    LdmBypass = 1;
3003    DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3004    break;
3005  }
3006
3007  if (DefCycle == -1)
3008    // We can't seem to determine the result latency of the def, assume it's 2.
3009    DefCycle = 2;
3010
3011  int UseCycle = -1;
3012  switch (UseMCID.getOpcode()) {
3013  default:
3014    UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
3015    break;
3016
3017  case ARM::VSTMDIA:
3018  case ARM::VSTMDIA_UPD:
3019  case ARM::VSTMDDB_UPD:
3020  case ARM::VSTMSIA:
3021  case ARM::VSTMSIA_UPD:
3022  case ARM::VSTMSDB_UPD:
3023    UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
3024    break;
3025
3026  case ARM::STMIA:
3027  case ARM::STMDA:
3028  case ARM::STMDB:
3029  case ARM::STMIB:
3030  case ARM::STMIA_UPD:
3031  case ARM::STMDA_UPD:
3032  case ARM::STMDB_UPD:
3033  case ARM::STMIB_UPD:
3034  case ARM::tSTMIA_UPD:
3035  case ARM::tPOP_RET:
3036  case ARM::tPOP:
3037  case ARM::t2STMIA:
3038  case ARM::t2STMDB:
3039  case ARM::t2STMIA_UPD:
3040  case ARM::t2STMDB_UPD:
3041    UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
3042    break;
3043  }
3044
3045  if (UseCycle == -1)
3046    // Assume it's read in the first stage.
3047    UseCycle = 1;
3048
3049  UseCycle = DefCycle - UseCycle + 1;
3050  if (UseCycle > 0) {
3051    if (LdmBypass) {
3052      // It's a variable_ops instruction so we can't use DefIdx here. Just use
3053      // first def operand.
3054      if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
3055                                          UseClass, UseIdx))
3056        --UseCycle;
3057    } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
3058                                               UseClass, UseIdx)) {
3059      --UseCycle;
3060    }
3061  }
3062
3063  return UseCycle;
3064}
3065
3066static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
3067                                           const MachineInstr *MI, unsigned Reg,
3068                                           unsigned &DefIdx, unsigned &Dist) {
3069  Dist = 0;
3070
3071  MachineBasicBlock::const_iterator I = MI; ++I;
3072  MachineBasicBlock::const_instr_iterator II =
3073    llvm::prior(I.getInstrIterator());
3074  assert(II->isInsideBundle() && "Empty bundle?");
3075
3076  int Idx = -1;
3077  while (II->isInsideBundle()) {
3078    Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
3079    if (Idx != -1)
3080      break;
3081    --II;
3082    ++Dist;
3083  }
3084
3085  assert(Idx != -1 && "Cannot find bundled definition!");
3086  DefIdx = Idx;
3087  return II;
3088}
3089
3090static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
3091                                           const MachineInstr *MI, unsigned Reg,
3092                                           unsigned &UseIdx, unsigned &Dist) {
3093  Dist = 0;
3094
3095  MachineBasicBlock::const_instr_iterator II = MI; ++II;
3096  assert(II->isInsideBundle() && "Empty bundle?");
3097  MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
3098
3099  // FIXME: This doesn't properly handle multiple uses.
3100  int Idx = -1;
3101  while (II != E && II->isInsideBundle()) {
3102    Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
3103    if (Idx != -1)
3104      break;
3105    if (II->getOpcode() != ARM::t2IT)
3106      ++Dist;
3107    ++II;
3108  }
3109
3110  if (Idx == -1) {
3111    Dist = 0;
3112    return 0;
3113  }
3114
3115  UseIdx = Idx;
3116  return II;
3117}
3118
3119/// Return the number of cycles to add to (or subtract from) the static
3120/// itinerary based on the def opcode and alignment. The caller will ensure that
3121/// adjusted latency is at least one cycle.
3122static int adjustDefLatency(const ARMSubtarget &Subtarget,
3123                            const MachineInstr *DefMI,
3124                            const MCInstrDesc *DefMCID, unsigned DefAlign) {
3125  int Adjust = 0;
3126  if (Subtarget.isCortexA8() || Subtarget.isLikeA9()) {
3127    // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
3128    // variants are one cycle cheaper.
3129    switch (DefMCID->getOpcode()) {
3130    default: break;
3131    case ARM::LDRrs:
3132    case ARM::LDRBrs: {
3133      unsigned ShOpVal = DefMI->getOperand(3).getImm();
3134      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3135      if (ShImm == 0 ||
3136          (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
3137        --Adjust;
3138      break;
3139    }
3140    case ARM::t2LDRs:
3141    case ARM::t2LDRBs:
3142    case ARM::t2LDRHs:
3143    case ARM::t2LDRSHs: {
3144      // Thumb2 mode: lsl only.
3145      unsigned ShAmt = DefMI->getOperand(3).getImm();
3146      if (ShAmt == 0 || ShAmt == 2)
3147        --Adjust;
3148      break;
3149    }
3150    }
3151  } else if (Subtarget.isSwift()) {
3152    // FIXME: Properly handle all of the latency adjustments for address
3153    // writeback.
3154    switch (DefMCID->getOpcode()) {
3155    default: break;
3156    case ARM::LDRrs:
3157    case ARM::LDRBrs: {
3158      unsigned ShOpVal = DefMI->getOperand(3).getImm();
3159      bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3160      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3161      if (!isSub &&
3162          (ShImm == 0 ||
3163           ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3164            ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3165        Adjust -= 2;
3166      else if (!isSub &&
3167               ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
3168        --Adjust;
3169      break;
3170    }
3171    case ARM::t2LDRs:
3172    case ARM::t2LDRBs:
3173    case ARM::t2LDRHs:
3174    case ARM::t2LDRSHs: {
3175      // Thumb2 mode: lsl only.
3176      unsigned ShAmt = DefMI->getOperand(3).getImm();
3177      if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
3178        Adjust -= 2;
3179      break;
3180    }
3181    }
3182  }
3183
3184  if (DefAlign < 8 && Subtarget.isLikeA9()) {
3185    switch (DefMCID->getOpcode()) {
3186    default: break;
3187    case ARM::VLD1q8:
3188    case ARM::VLD1q16:
3189    case ARM::VLD1q32:
3190    case ARM::VLD1q64:
3191    case ARM::VLD1q8wb_fixed:
3192    case ARM::VLD1q16wb_fixed:
3193    case ARM::VLD1q32wb_fixed:
3194    case ARM::VLD1q64wb_fixed:
3195    case ARM::VLD1q8wb_register:
3196    case ARM::VLD1q16wb_register:
3197    case ARM::VLD1q32wb_register:
3198    case ARM::VLD1q64wb_register:
3199    case ARM::VLD2d8:
3200    case ARM::VLD2d16:
3201    case ARM::VLD2d32:
3202    case ARM::VLD2q8:
3203    case ARM::VLD2q16:
3204    case ARM::VLD2q32:
3205    case ARM::VLD2d8wb_fixed:
3206    case ARM::VLD2d16wb_fixed:
3207    case ARM::VLD2d32wb_fixed:
3208    case ARM::VLD2q8wb_fixed:
3209    case ARM::VLD2q16wb_fixed:
3210    case ARM::VLD2q32wb_fixed:
3211    case ARM::VLD2d8wb_register:
3212    case ARM::VLD2d16wb_register:
3213    case ARM::VLD2d32wb_register:
3214    case ARM::VLD2q8wb_register:
3215    case ARM::VLD2q16wb_register:
3216    case ARM::VLD2q32wb_register:
3217    case ARM::VLD3d8:
3218    case ARM::VLD3d16:
3219    case ARM::VLD3d32:
3220    case ARM::VLD1d64T:
3221    case ARM::VLD3d8_UPD:
3222    case ARM::VLD3d16_UPD:
3223    case ARM::VLD3d32_UPD:
3224    case ARM::VLD1d64Twb_fixed:
3225    case ARM::VLD1d64Twb_register:
3226    case ARM::VLD3q8_UPD:
3227    case ARM::VLD3q16_UPD:
3228    case ARM::VLD3q32_UPD:
3229    case ARM::VLD4d8:
3230    case ARM::VLD4d16:
3231    case ARM::VLD4d32:
3232    case ARM::VLD1d64Q:
3233    case ARM::VLD4d8_UPD:
3234    case ARM::VLD4d16_UPD:
3235    case ARM::VLD4d32_UPD:
3236    case ARM::VLD1d64Qwb_fixed:
3237    case ARM::VLD1d64Qwb_register:
3238    case ARM::VLD4q8_UPD:
3239    case ARM::VLD4q16_UPD:
3240    case ARM::VLD4q32_UPD:
3241    case ARM::VLD1DUPq8:
3242    case ARM::VLD1DUPq16:
3243    case ARM::VLD1DUPq32:
3244    case ARM::VLD1DUPq8wb_fixed:
3245    case ARM::VLD1DUPq16wb_fixed:
3246    case ARM::VLD1DUPq32wb_fixed:
3247    case ARM::VLD1DUPq8wb_register:
3248    case ARM::VLD1DUPq16wb_register:
3249    case ARM::VLD1DUPq32wb_register:
3250    case ARM::VLD2DUPd8:
3251    case ARM::VLD2DUPd16:
3252    case ARM::VLD2DUPd32:
3253    case ARM::VLD2DUPd8wb_fixed:
3254    case ARM::VLD2DUPd16wb_fixed:
3255    case ARM::VLD2DUPd32wb_fixed:
3256    case ARM::VLD2DUPd8wb_register:
3257    case ARM::VLD2DUPd16wb_register:
3258    case ARM::VLD2DUPd32wb_register:
3259    case ARM::VLD4DUPd8:
3260    case ARM::VLD4DUPd16:
3261    case ARM::VLD4DUPd32:
3262    case ARM::VLD4DUPd8_UPD:
3263    case ARM::VLD4DUPd16_UPD:
3264    case ARM::VLD4DUPd32_UPD:
3265    case ARM::VLD1LNd8:
3266    case ARM::VLD1LNd16:
3267    case ARM::VLD1LNd32:
3268    case ARM::VLD1LNd8_UPD:
3269    case ARM::VLD1LNd16_UPD:
3270    case ARM::VLD1LNd32_UPD:
3271    case ARM::VLD2LNd8:
3272    case ARM::VLD2LNd16:
3273    case ARM::VLD2LNd32:
3274    case ARM::VLD2LNq16:
3275    case ARM::VLD2LNq32:
3276    case ARM::VLD2LNd8_UPD:
3277    case ARM::VLD2LNd16_UPD:
3278    case ARM::VLD2LNd32_UPD:
3279    case ARM::VLD2LNq16_UPD:
3280    case ARM::VLD2LNq32_UPD:
3281    case ARM::VLD4LNd8:
3282    case ARM::VLD4LNd16:
3283    case ARM::VLD4LNd32:
3284    case ARM::VLD4LNq16:
3285    case ARM::VLD4LNq32:
3286    case ARM::VLD4LNd8_UPD:
3287    case ARM::VLD4LNd16_UPD:
3288    case ARM::VLD4LNd32_UPD:
3289    case ARM::VLD4LNq16_UPD:
3290    case ARM::VLD4LNq32_UPD:
3291      // If the address is not 64-bit aligned, the latencies of these
3292      // instructions increases by one.
3293      ++Adjust;
3294      break;
3295    }
3296  }
3297  return Adjust;
3298}
3299
3300
3301
3302int
3303ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3304                                    const MachineInstr *DefMI, unsigned DefIdx,
3305                                    const MachineInstr *UseMI,
3306                                    unsigned UseIdx) const {
3307  // No operand latency. The caller may fall back to getInstrLatency.
3308  if (!ItinData || ItinData->isEmpty())
3309    return -1;
3310
3311  const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
3312  unsigned Reg = DefMO.getReg();
3313  const MCInstrDesc *DefMCID = &DefMI->getDesc();
3314  const MCInstrDesc *UseMCID = &UseMI->getDesc();
3315
3316  unsigned DefAdj = 0;
3317  if (DefMI->isBundle()) {
3318    DefMI = getBundledDefMI(&getRegisterInfo(), DefMI, Reg, DefIdx, DefAdj);
3319    DefMCID = &DefMI->getDesc();
3320  }
3321  if (DefMI->isCopyLike() || DefMI->isInsertSubreg() ||
3322      DefMI->isRegSequence() || DefMI->isImplicitDef()) {
3323    return 1;
3324  }
3325
3326  unsigned UseAdj = 0;
3327  if (UseMI->isBundle()) {
3328    unsigned NewUseIdx;
3329    const MachineInstr *NewUseMI = getBundledUseMI(&getRegisterInfo(), UseMI,
3330                                                   Reg, NewUseIdx, UseAdj);
3331    if (!NewUseMI)
3332      return -1;
3333
3334    UseMI = NewUseMI;
3335    UseIdx = NewUseIdx;
3336    UseMCID = &UseMI->getDesc();
3337  }
3338
3339  if (Reg == ARM::CPSR) {
3340    if (DefMI->getOpcode() == ARM::FMSTAT) {
3341      // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
3342      return Subtarget.isLikeA9() ? 1 : 20;
3343    }
3344
3345    // CPSR set and branch can be paired in the same cycle.
3346    if (UseMI->isBranch())
3347      return 0;
3348
3349    // Otherwise it takes the instruction latency (generally one).
3350    unsigned Latency = getInstrLatency(ItinData, DefMI);
3351
3352    // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
3353    // its uses. Instructions which are otherwise scheduled between them may
3354    // incur a code size penalty (not able to use the CPSR setting 16-bit
3355    // instructions).
3356    if (Latency > 0 && Subtarget.isThumb2()) {
3357      const MachineFunction *MF = DefMI->getParent()->getParent();
3358      if (MF->getFunction()->getAttributes().
3359            hasAttribute(AttributeSet::FunctionIndex,
3360                         Attribute::OptimizeForSize))
3361        --Latency;
3362    }
3363    return Latency;
3364  }
3365
3366  if (DefMO.isImplicit() || UseMI->getOperand(UseIdx).isImplicit())
3367    return -1;
3368
3369  unsigned DefAlign = DefMI->hasOneMemOperand()
3370    ? (*DefMI->memoperands_begin())->getAlignment() : 0;
3371  unsigned UseAlign = UseMI->hasOneMemOperand()
3372    ? (*UseMI->memoperands_begin())->getAlignment() : 0;
3373
3374  // Get the itinerary's latency if possible, and handle variable_ops.
3375  int Latency = getOperandLatency(ItinData, *DefMCID, DefIdx, DefAlign,
3376                                  *UseMCID, UseIdx, UseAlign);
3377  // Unable to find operand latency. The caller may resort to getInstrLatency.
3378  if (Latency < 0)
3379    return Latency;
3380
3381  // Adjust for IT block position.
3382  int Adj = DefAdj + UseAdj;
3383
3384  // Adjust for dynamic def-side opcode variants not captured by the itinerary.
3385  Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
3386  if (Adj >= 0 || (int)Latency > -Adj) {
3387    return Latency + Adj;
3388  }
3389  // Return the itinerary latency, which may be zero but not less than zero.
3390  return Latency;
3391}
3392
3393int
3394ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3395                                    SDNode *DefNode, unsigned DefIdx,
3396                                    SDNode *UseNode, unsigned UseIdx) const {
3397  if (!DefNode->isMachineOpcode())
3398    return 1;
3399
3400  const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
3401
3402  if (isZeroCost(DefMCID.Opcode))
3403    return 0;
3404
3405  if (!ItinData || ItinData->isEmpty())
3406    return DefMCID.mayLoad() ? 3 : 1;
3407
3408  if (!UseNode->isMachineOpcode()) {
3409    int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
3410    if (Subtarget.isLikeA9() || Subtarget.isSwift())
3411      return Latency <= 2 ? 1 : Latency - 1;
3412    else
3413      return Latency <= 3 ? 1 : Latency - 2;
3414  }
3415
3416  const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
3417  const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
3418  unsigned DefAlign = !DefMN->memoperands_empty()
3419    ? (*DefMN->memoperands_begin())->getAlignment() : 0;
3420  const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
3421  unsigned UseAlign = !UseMN->memoperands_empty()
3422    ? (*UseMN->memoperands_begin())->getAlignment() : 0;
3423  int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
3424                                  UseMCID, UseIdx, UseAlign);
3425
3426  if (Latency > 1 &&
3427      (Subtarget.isCortexA8() || Subtarget.isLikeA9())) {
3428    // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
3429    // variants are one cycle cheaper.
3430    switch (DefMCID.getOpcode()) {
3431    default: break;
3432    case ARM::LDRrs:
3433    case ARM::LDRBrs: {
3434      unsigned ShOpVal =
3435        cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
3436      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3437      if (ShImm == 0 ||
3438          (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
3439        --Latency;
3440      break;
3441    }
3442    case ARM::t2LDRs:
3443    case ARM::t2LDRBs:
3444    case ARM::t2LDRHs:
3445    case ARM::t2LDRSHs: {
3446      // Thumb2 mode: lsl only.
3447      unsigned ShAmt =
3448        cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
3449      if (ShAmt == 0 || ShAmt == 2)
3450        --Latency;
3451      break;
3452    }
3453    }
3454  } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) {
3455    // FIXME: Properly handle all of the latency adjustments for address
3456    // writeback.
3457    switch (DefMCID.getOpcode()) {
3458    default: break;
3459    case ARM::LDRrs:
3460    case ARM::LDRBrs: {
3461      unsigned ShOpVal =
3462        cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
3463      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3464      if (ShImm == 0 ||
3465          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3466           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
3467        Latency -= 2;
3468      else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
3469        --Latency;
3470      break;
3471    }
3472    case ARM::t2LDRs:
3473    case ARM::t2LDRBs:
3474    case ARM::t2LDRHs:
3475    case ARM::t2LDRSHs: {
3476      // Thumb2 mode: lsl 0-3 only.
3477      Latency -= 2;
3478      break;
3479    }
3480    }
3481  }
3482
3483  if (DefAlign < 8 && Subtarget.isLikeA9())
3484    switch (DefMCID.getOpcode()) {
3485    default: break;
3486    case ARM::VLD1q8:
3487    case ARM::VLD1q16:
3488    case ARM::VLD1q32:
3489    case ARM::VLD1q64:
3490    case ARM::VLD1q8wb_register:
3491    case ARM::VLD1q16wb_register:
3492    case ARM::VLD1q32wb_register:
3493    case ARM::VLD1q64wb_register:
3494    case ARM::VLD1q8wb_fixed:
3495    case ARM::VLD1q16wb_fixed:
3496    case ARM::VLD1q32wb_fixed:
3497    case ARM::VLD1q64wb_fixed:
3498    case ARM::VLD2d8:
3499    case ARM::VLD2d16:
3500    case ARM::VLD2d32:
3501    case ARM::VLD2q8Pseudo:
3502    case ARM::VLD2q16Pseudo:
3503    case ARM::VLD2q32Pseudo:
3504    case ARM::VLD2d8wb_fixed:
3505    case ARM::VLD2d16wb_fixed:
3506    case ARM::VLD2d32wb_fixed:
3507    case ARM::VLD2q8PseudoWB_fixed:
3508    case ARM::VLD2q16PseudoWB_fixed:
3509    case ARM::VLD2q32PseudoWB_fixed:
3510    case ARM::VLD2d8wb_register:
3511    case ARM::VLD2d16wb_register:
3512    case ARM::VLD2d32wb_register:
3513    case ARM::VLD2q8PseudoWB_register:
3514    case ARM::VLD2q16PseudoWB_register:
3515    case ARM::VLD2q32PseudoWB_register:
3516    case ARM::VLD3d8Pseudo:
3517    case ARM::VLD3d16Pseudo:
3518    case ARM::VLD3d32Pseudo:
3519    case ARM::VLD1d64TPseudo:
3520    case ARM::VLD3d8Pseudo_UPD:
3521    case ARM::VLD3d16Pseudo_UPD:
3522    case ARM::VLD3d32Pseudo_UPD:
3523    case ARM::VLD3q8Pseudo_UPD:
3524    case ARM::VLD3q16Pseudo_UPD:
3525    case ARM::VLD3q32Pseudo_UPD:
3526    case ARM::VLD3q8oddPseudo:
3527    case ARM::VLD3q16oddPseudo:
3528    case ARM::VLD3q32oddPseudo:
3529    case ARM::VLD3q8oddPseudo_UPD:
3530    case ARM::VLD3q16oddPseudo_UPD:
3531    case ARM::VLD3q32oddPseudo_UPD:
3532    case ARM::VLD4d8Pseudo:
3533    case ARM::VLD4d16Pseudo:
3534    case ARM::VLD4d32Pseudo:
3535    case ARM::VLD1d64QPseudo:
3536    case ARM::VLD4d8Pseudo_UPD:
3537    case ARM::VLD4d16Pseudo_UPD:
3538    case ARM::VLD4d32Pseudo_UPD:
3539    case ARM::VLD4q8Pseudo_UPD:
3540    case ARM::VLD4q16Pseudo_UPD:
3541    case ARM::VLD4q32Pseudo_UPD:
3542    case ARM::VLD4q8oddPseudo:
3543    case ARM::VLD4q16oddPseudo:
3544    case ARM::VLD4q32oddPseudo:
3545    case ARM::VLD4q8oddPseudo_UPD:
3546    case ARM::VLD4q16oddPseudo_UPD:
3547    case ARM::VLD4q32oddPseudo_UPD:
3548    case ARM::VLD1DUPq8:
3549    case ARM::VLD1DUPq16:
3550    case ARM::VLD1DUPq32:
3551    case ARM::VLD1DUPq8wb_fixed:
3552    case ARM::VLD1DUPq16wb_fixed:
3553    case ARM::VLD1DUPq32wb_fixed:
3554    case ARM::VLD1DUPq8wb_register:
3555    case ARM::VLD1DUPq16wb_register:
3556    case ARM::VLD1DUPq32wb_register:
3557    case ARM::VLD2DUPd8:
3558    case ARM::VLD2DUPd16:
3559    case ARM::VLD2DUPd32:
3560    case ARM::VLD2DUPd8wb_fixed:
3561    case ARM::VLD2DUPd16wb_fixed:
3562    case ARM::VLD2DUPd32wb_fixed:
3563    case ARM::VLD2DUPd8wb_register:
3564    case ARM::VLD2DUPd16wb_register:
3565    case ARM::VLD2DUPd32wb_register:
3566    case ARM::VLD4DUPd8Pseudo:
3567    case ARM::VLD4DUPd16Pseudo:
3568    case ARM::VLD4DUPd32Pseudo:
3569    case ARM::VLD4DUPd8Pseudo_UPD:
3570    case ARM::VLD4DUPd16Pseudo_UPD:
3571    case ARM::VLD4DUPd32Pseudo_UPD:
3572    case ARM::VLD1LNq8Pseudo:
3573    case ARM::VLD1LNq16Pseudo:
3574    case ARM::VLD1LNq32Pseudo:
3575    case ARM::VLD1LNq8Pseudo_UPD:
3576    case ARM::VLD1LNq16Pseudo_UPD:
3577    case ARM::VLD1LNq32Pseudo_UPD:
3578    case ARM::VLD2LNd8Pseudo:
3579    case ARM::VLD2LNd16Pseudo:
3580    case ARM::VLD2LNd32Pseudo:
3581    case ARM::VLD2LNq16Pseudo:
3582    case ARM::VLD2LNq32Pseudo:
3583    case ARM::VLD2LNd8Pseudo_UPD:
3584    case ARM::VLD2LNd16Pseudo_UPD:
3585    case ARM::VLD2LNd32Pseudo_UPD:
3586    case ARM::VLD2LNq16Pseudo_UPD:
3587    case ARM::VLD2LNq32Pseudo_UPD:
3588    case ARM::VLD4LNd8Pseudo:
3589    case ARM::VLD4LNd16Pseudo:
3590    case ARM::VLD4LNd32Pseudo:
3591    case ARM::VLD4LNq16Pseudo:
3592    case ARM::VLD4LNq32Pseudo:
3593    case ARM::VLD4LNd8Pseudo_UPD:
3594    case ARM::VLD4LNd16Pseudo_UPD:
3595    case ARM::VLD4LNd32Pseudo_UPD:
3596    case ARM::VLD4LNq16Pseudo_UPD:
3597    case ARM::VLD4LNq32Pseudo_UPD:
3598      // If the address is not 64-bit aligned, the latencies of these
3599      // instructions increases by one.
3600      ++Latency;
3601      break;
3602    }
3603
3604  return Latency;
3605}
3606
3607unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
3608                                           const MachineInstr *MI,
3609                                           unsigned *PredCost) const {
3610  if (MI->isCopyLike() || MI->isInsertSubreg() ||
3611      MI->isRegSequence() || MI->isImplicitDef())
3612    return 1;
3613
3614  // An instruction scheduler typically runs on unbundled instructions, however
3615  // other passes may query the latency of a bundled instruction.
3616  if (MI->isBundle()) {
3617    unsigned Latency = 0;
3618    MachineBasicBlock::const_instr_iterator I = MI;
3619    MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
3620    while (++I != E && I->isInsideBundle()) {
3621      if (I->getOpcode() != ARM::t2IT)
3622        Latency += getInstrLatency(ItinData, I, PredCost);
3623    }
3624    return Latency;
3625  }
3626
3627  const MCInstrDesc &MCID = MI->getDesc();
3628  if (PredCost && (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR))) {
3629    // When predicated, CPSR is an additional source operand for CPSR updating
3630    // instructions, this apparently increases their latencies.
3631    *PredCost = 1;
3632  }
3633  // Be sure to call getStageLatency for an empty itinerary in case it has a
3634  // valid MinLatency property.
3635  if (!ItinData)
3636    return MI->mayLoad() ? 3 : 1;
3637
3638  unsigned Class = MCID.getSchedClass();
3639
3640  // For instructions with variable uops, use uops as latency.
3641  if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
3642    return getNumMicroOps(ItinData, MI);
3643
3644  // For the common case, fall back on the itinerary's latency.
3645  unsigned Latency = ItinData->getStageLatency(Class);
3646
3647  // Adjust for dynamic def-side opcode variants not captured by the itinerary.
3648  unsigned DefAlign = MI->hasOneMemOperand()
3649    ? (*MI->memoperands_begin())->getAlignment() : 0;
3650  int Adj = adjustDefLatency(Subtarget, MI, &MCID, DefAlign);
3651  if (Adj >= 0 || (int)Latency > -Adj) {
3652    return Latency + Adj;
3653  }
3654  return Latency;
3655}
3656
3657int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
3658                                      SDNode *Node) const {
3659  if (!Node->isMachineOpcode())
3660    return 1;
3661
3662  if (!ItinData || ItinData->isEmpty())
3663    return 1;
3664
3665  unsigned Opcode = Node->getMachineOpcode();
3666  switch (Opcode) {
3667  default:
3668    return ItinData->getStageLatency(get(Opcode).getSchedClass());
3669  case ARM::VLDMQIA:
3670  case ARM::VSTMQIA:
3671    return 2;
3672  }
3673}
3674
3675bool ARMBaseInstrInfo::
3676hasHighOperandLatency(const InstrItineraryData *ItinData,
3677                      const MachineRegisterInfo *MRI,
3678                      const MachineInstr *DefMI, unsigned DefIdx,
3679                      const MachineInstr *UseMI, unsigned UseIdx) const {
3680  unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
3681  unsigned UDomain = UseMI->getDesc().TSFlags & ARMII::DomainMask;
3682  if (Subtarget.isCortexA8() &&
3683      (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
3684    // CortexA8 VFP instructions are not pipelined.
3685    return true;
3686
3687  // Hoist VFP / NEON instructions with 4 or higher latency.
3688  int Latency = computeOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx,
3689                                      /*FindMin=*/false);
3690  if (Latency < 0)
3691    Latency = getInstrLatency(ItinData, DefMI);
3692  if (Latency <= 3)
3693    return false;
3694  return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
3695         UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
3696}
3697
3698bool ARMBaseInstrInfo::
3699hasLowDefLatency(const InstrItineraryData *ItinData,
3700                 const MachineInstr *DefMI, unsigned DefIdx) const {
3701  if (!ItinData || ItinData->isEmpty())
3702    return false;
3703
3704  unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
3705  if (DDomain == ARMII::DomainGeneral) {
3706    unsigned DefClass = DefMI->getDesc().getSchedClass();
3707    int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
3708    return (DefCycle != -1 && DefCycle <= 2);
3709  }
3710  return false;
3711}
3712
3713bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr *MI,
3714                                         StringRef &ErrInfo) const {
3715  if (convertAddSubFlagsOpcode(MI->getOpcode())) {
3716    ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
3717    return false;
3718  }
3719  return true;
3720}
3721
3722bool
3723ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
3724                                     unsigned &AddSubOpc,
3725                                     bool &NegAcc, bool &HasLane) const {
3726  DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
3727  if (I == MLxEntryMap.end())
3728    return false;
3729
3730  const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
3731  MulOpc = Entry.MulOpc;
3732  AddSubOpc = Entry.AddSubOpc;
3733  NegAcc = Entry.NegAcc;
3734  HasLane = Entry.HasLane;
3735  return true;
3736}
3737
3738//===----------------------------------------------------------------------===//
3739// Execution domains.
3740//===----------------------------------------------------------------------===//
3741//
3742// Some instructions go down the NEON pipeline, some go down the VFP pipeline,
3743// and some can go down both.  The vmov instructions go down the VFP pipeline,
3744// but they can be changed to vorr equivalents that are executed by the NEON
3745// pipeline.
3746//
3747// We use the following execution domain numbering:
3748//
3749enum ARMExeDomain {
3750  ExeGeneric = 0,
3751  ExeVFP = 1,
3752  ExeNEON = 2
3753};
3754//
3755// Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
3756//
3757std::pair<uint16_t, uint16_t>
3758ARMBaseInstrInfo::getExecutionDomain(const MachineInstr *MI) const {
3759  // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
3760  // if they are not predicated.
3761  if (MI->getOpcode() == ARM::VMOVD && !isPredicated(MI))
3762    return std::make_pair(ExeVFP, (1<<ExeVFP) | (1<<ExeNEON));
3763
3764  // CortexA9 is particularly picky about mixing the two and wants these
3765  // converted.
3766  if (Subtarget.isCortexA9() && !isPredicated(MI) &&
3767      (MI->getOpcode() == ARM::VMOVRS ||
3768       MI->getOpcode() == ARM::VMOVSR ||
3769       MI->getOpcode() == ARM::VMOVS))
3770    return std::make_pair(ExeVFP, (1<<ExeVFP) | (1<<ExeNEON));
3771
3772  // No other instructions can be swizzled, so just determine their domain.
3773  unsigned Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
3774
3775  if (Domain & ARMII::DomainNEON)
3776    return std::make_pair(ExeNEON, 0);
3777
3778  // Certain instructions can go either way on Cortex-A8.
3779  // Treat them as NEON instructions.
3780  if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
3781    return std::make_pair(ExeNEON, 0);
3782
3783  if (Domain & ARMII::DomainVFP)
3784    return std::make_pair(ExeVFP, 0);
3785
3786  return std::make_pair(ExeGeneric, 0);
3787}
3788
3789static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
3790                                            unsigned SReg, unsigned &Lane) {
3791  unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
3792  Lane = 0;
3793
3794  if (DReg != ARM::NoRegister)
3795   return DReg;
3796
3797  Lane = 1;
3798  DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
3799
3800  assert(DReg && "S-register with no D super-register?");
3801  return DReg;
3802}
3803
3804/// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
3805/// set ImplicitSReg to a register number that must be marked as implicit-use or
3806/// zero if no register needs to be defined as implicit-use.
3807///
3808/// If the function cannot determine if an SPR should be marked implicit use or
3809/// not, it returns false.
3810///
3811/// This function handles cases where an instruction is being modified from taking
3812/// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
3813/// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
3814/// lane of the DPR).
3815///
3816/// If the other SPR is defined, an implicit-use of it should be added. Else,
3817/// (including the case where the DPR itself is defined), it should not.
3818///
3819static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
3820                                       MachineInstr *MI,
3821                                       unsigned DReg, unsigned Lane,
3822                                       unsigned &ImplicitSReg) {
3823  // If the DPR is defined or used already, the other SPR lane will be chained
3824  // correctly, so there is nothing to be done.
3825  if (MI->definesRegister(DReg, TRI) || MI->readsRegister(DReg, TRI)) {
3826    ImplicitSReg = 0;
3827    return true;
3828  }
3829
3830  // Otherwise we need to go searching to see if the SPR is set explicitly.
3831  ImplicitSReg = TRI->getSubReg(DReg,
3832                                (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
3833  MachineBasicBlock::LivenessQueryResult LQR =
3834    MI->getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
3835
3836  if (LQR == MachineBasicBlock::LQR_Live)
3837    return true;
3838  else if (LQR == MachineBasicBlock::LQR_Unknown)
3839    return false;
3840
3841  // If the register is known not to be live, there is no need to add an
3842  // implicit-use.
3843  ImplicitSReg = 0;
3844  return true;
3845}
3846
3847void
3848ARMBaseInstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
3849  unsigned DstReg, SrcReg, DReg;
3850  unsigned Lane;
3851  MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
3852  const TargetRegisterInfo *TRI = &getRegisterInfo();
3853  switch (MI->getOpcode()) {
3854    default:
3855      llvm_unreachable("cannot handle opcode!");
3856      break;
3857    case ARM::VMOVD:
3858      if (Domain != ExeNEON)
3859        break;
3860
3861      // Zap the predicate operands.
3862      assert(!isPredicated(MI) && "Cannot predicate a VORRd");
3863
3864      // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
3865      DstReg = MI->getOperand(0).getReg();
3866      SrcReg = MI->getOperand(1).getReg();
3867
3868      for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
3869        MI->RemoveOperand(i-1);
3870
3871      // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
3872      MI->setDesc(get(ARM::VORRd));
3873      AddDefaultPred(MIB.addReg(DstReg, RegState::Define)
3874                        .addReg(SrcReg)
3875                        .addReg(SrcReg));
3876      break;
3877    case ARM::VMOVRS:
3878      if (Domain != ExeNEON)
3879        break;
3880      assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
3881
3882      // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
3883      DstReg = MI->getOperand(0).getReg();
3884      SrcReg = MI->getOperand(1).getReg();
3885
3886      for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
3887        MI->RemoveOperand(i-1);
3888
3889      DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
3890
3891      // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
3892      // Note that DSrc has been widened and the other lane may be undef, which
3893      // contaminates the entire register.
3894      MI->setDesc(get(ARM::VGETLNi32));
3895      AddDefaultPred(MIB.addReg(DstReg, RegState::Define)
3896                        .addReg(DReg, RegState::Undef)
3897                        .addImm(Lane));
3898
3899      // The old source should be an implicit use, otherwise we might think it
3900      // was dead before here.
3901      MIB.addReg(SrcReg, RegState::Implicit);
3902      break;
3903    case ARM::VMOVSR: {
3904      if (Domain != ExeNEON)
3905        break;
3906      assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
3907
3908      // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
3909      DstReg = MI->getOperand(0).getReg();
3910      SrcReg = MI->getOperand(1).getReg();
3911
3912      DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
3913
3914      unsigned ImplicitSReg;
3915      if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
3916        break;
3917
3918      for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
3919        MI->RemoveOperand(i-1);
3920
3921      // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
3922      // Again DDst may be undefined at the beginning of this instruction.
3923      MI->setDesc(get(ARM::VSETLNi32));
3924      MIB.addReg(DReg, RegState::Define)
3925         .addReg(DReg, getUndefRegState(!MI->readsRegister(DReg, TRI)))
3926         .addReg(SrcReg)
3927         .addImm(Lane);
3928      AddDefaultPred(MIB);
3929
3930      // The narrower destination must be marked as set to keep previous chains
3931      // in place.
3932      MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
3933      if (ImplicitSReg != 0)
3934        MIB.addReg(ImplicitSReg, RegState::Implicit);
3935      break;
3936    }
3937    case ARM::VMOVS: {
3938      if (Domain != ExeNEON)
3939        break;
3940
3941      // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
3942      DstReg = MI->getOperand(0).getReg();
3943      SrcReg = MI->getOperand(1).getReg();
3944
3945      unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
3946      DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
3947      DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
3948
3949      unsigned ImplicitSReg;
3950      if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
3951        break;
3952
3953      for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
3954        MI->RemoveOperand(i-1);
3955
3956      if (DSrc == DDst) {
3957        // Destination can be:
3958        //     %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
3959        MI->setDesc(get(ARM::VDUPLN32d));
3960        MIB.addReg(DDst, RegState::Define)
3961           .addReg(DDst, getUndefRegState(!MI->readsRegister(DDst, TRI)))
3962           .addImm(SrcLane);
3963        AddDefaultPred(MIB);
3964
3965        // Neither the source or the destination are naturally represented any
3966        // more, so add them in manually.
3967        MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
3968        MIB.addReg(SrcReg, RegState::Implicit);
3969        if (ImplicitSReg != 0)
3970          MIB.addReg(ImplicitSReg, RegState::Implicit);
3971        break;
3972      }
3973
3974      // In general there's no single instruction that can perform an S <-> S
3975      // move in NEON space, but a pair of VEXT instructions *can* do the
3976      // job. It turns out that the VEXTs needed will only use DSrc once, with
3977      // the position based purely on the combination of lane-0 and lane-1
3978      // involved. For example
3979      //     vmov s0, s2 -> vext.32 d0, d0, d1, #1  vext.32 d0, d0, d0, #1
3980      //     vmov s1, s3 -> vext.32 d0, d1, d0, #1  vext.32 d0, d0, d0, #1
3981      //     vmov s0, s3 -> vext.32 d0, d0, d0, #1  vext.32 d0, d1, d0, #1
3982      //     vmov s1, s2 -> vext.32 d0, d0, d0, #1  vext.32 d0, d0, d1, #1
3983      //
3984      // Pattern of the MachineInstrs is:
3985      //     %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
3986      MachineInstrBuilder NewMIB;
3987      NewMIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
3988                       get(ARM::VEXTd32), DDst);
3989
3990      // On the first instruction, both DSrc and DDst may be <undef> if present.
3991      // Specifically when the original instruction didn't have them as an
3992      // <imp-use>.
3993      unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
3994      bool CurUndef = !MI->readsRegister(CurReg, TRI);
3995      NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
3996
3997      CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
3998      CurUndef = !MI->readsRegister(CurReg, TRI);
3999      NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
4000
4001      NewMIB.addImm(1);
4002      AddDefaultPred(NewMIB);
4003
4004      if (SrcLane == DstLane)
4005        NewMIB.addReg(SrcReg, RegState::Implicit);
4006
4007      MI->setDesc(get(ARM::VEXTd32));
4008      MIB.addReg(DDst, RegState::Define);
4009
4010      // On the second instruction, DDst has definitely been defined above, so
4011      // it is not <undef>. DSrc, if present, can be <undef> as above.
4012      CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
4013      CurUndef = CurReg == DSrc && !MI->readsRegister(CurReg, TRI);
4014      MIB.addReg(CurReg, getUndefRegState(CurUndef));
4015
4016      CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
4017      CurUndef = CurReg == DSrc && !MI->readsRegister(CurReg, TRI);
4018      MIB.addReg(CurReg, getUndefRegState(CurUndef));
4019
4020      MIB.addImm(1);
4021      AddDefaultPred(MIB);
4022
4023      if (SrcLane != DstLane)
4024        MIB.addReg(SrcReg, RegState::Implicit);
4025
4026      // As before, the original destination is no longer represented, add it
4027      // implicitly.
4028      MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
4029      if (ImplicitSReg != 0)
4030        MIB.addReg(ImplicitSReg, RegState::Implicit);
4031      break;
4032    }
4033  }
4034
4035}
4036
4037//===----------------------------------------------------------------------===//
4038// Partial register updates
4039//===----------------------------------------------------------------------===//
4040//
4041// Swift renames NEON registers with 64-bit granularity.  That means any
4042// instruction writing an S-reg implicitly reads the containing D-reg.  The
4043// problem is mostly avoided by translating f32 operations to v2f32 operations
4044// on D-registers, but f32 loads are still a problem.
4045//
4046// These instructions can load an f32 into a NEON register:
4047//
4048// VLDRS - Only writes S, partial D update.
4049// VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
4050// VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
4051//
4052// FCONSTD can be used as a dependency-breaking instruction.
4053unsigned ARMBaseInstrInfo::
4054getPartialRegUpdateClearance(const MachineInstr *MI,
4055                             unsigned OpNum,
4056                             const TargetRegisterInfo *TRI) const {
4057  if (!SwiftPartialUpdateClearance ||
4058      !(Subtarget.isSwift() || Subtarget.isCortexA15()))
4059    return 0;
4060
4061  assert(TRI && "Need TRI instance");
4062
4063  const MachineOperand &MO = MI->getOperand(OpNum);
4064  if (MO.readsReg())
4065    return 0;
4066  unsigned Reg = MO.getReg();
4067  int UseOp = -1;
4068
4069  switch(MI->getOpcode()) {
4070    // Normal instructions writing only an S-register.
4071  case ARM::VLDRS:
4072  case ARM::FCONSTS:
4073  case ARM::VMOVSR:
4074  case ARM::VMOVv8i8:
4075  case ARM::VMOVv4i16:
4076  case ARM::VMOVv2i32:
4077  case ARM::VMOVv2f32:
4078  case ARM::VMOVv1i64:
4079    UseOp = MI->findRegisterUseOperandIdx(Reg, false, TRI);
4080    break;
4081
4082    // Explicitly reads the dependency.
4083  case ARM::VLD1LNd32:
4084    UseOp = 3;
4085    break;
4086  default:
4087    return 0;
4088  }
4089
4090  // If this instruction actually reads a value from Reg, there is no unwanted
4091  // dependency.
4092  if (UseOp != -1 && MI->getOperand(UseOp).readsReg())
4093    return 0;
4094
4095  // We must be able to clobber the whole D-reg.
4096  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
4097    // Virtual register must be a foo:ssub_0<def,undef> operand.
4098    if (!MO.getSubReg() || MI->readsVirtualRegister(Reg))
4099      return 0;
4100  } else if (ARM::SPRRegClass.contains(Reg)) {
4101    // Physical register: MI must define the full D-reg.
4102    unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
4103                                             &ARM::DPRRegClass);
4104    if (!DReg || !MI->definesRegister(DReg, TRI))
4105      return 0;
4106  }
4107
4108  // MI has an unwanted D-register dependency.
4109  // Avoid defs in the previous N instructrions.
4110  return SwiftPartialUpdateClearance;
4111}
4112
4113// Break a partial register dependency after getPartialRegUpdateClearance
4114// returned non-zero.
4115void ARMBaseInstrInfo::
4116breakPartialRegDependency(MachineBasicBlock::iterator MI,
4117                          unsigned OpNum,
4118                          const TargetRegisterInfo *TRI) const {
4119  assert(MI && OpNum < MI->getDesc().getNumDefs() && "OpNum is not a def");
4120  assert(TRI && "Need TRI instance");
4121
4122  const MachineOperand &MO = MI->getOperand(OpNum);
4123  unsigned Reg = MO.getReg();
4124  assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
4125         "Can't break virtual register dependencies.");
4126  unsigned DReg = Reg;
4127
4128  // If MI defines an S-reg, find the corresponding D super-register.
4129  if (ARM::SPRRegClass.contains(Reg)) {
4130    DReg = ARM::D0 + (Reg - ARM::S0) / 2;
4131    assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
4132  }
4133
4134  assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
4135  assert(MI->definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
4136
4137  // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
4138  // the full D-register by loading the same value to both lanes.  The
4139  // instruction is micro-coded with 2 uops, so don't do this until we can
4140  // properly schedule micro-coded instuctions.  The dispatcher stalls cause
4141  // too big regressions.
4142
4143  // Insert the dependency-breaking FCONSTD before MI.
4144  // 96 is the encoding of 0.5, but the actual value doesn't matter here.
4145  AddDefaultPred(BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
4146                         get(ARM::FCONSTD), DReg).addImm(96));
4147  MI->addRegisterKilled(DReg, TRI, true);
4148}
4149
4150bool ARMBaseInstrInfo::hasNOP() const {
4151  return (Subtarget.getFeatureBits() & ARM::HasV6T2Ops) != 0;
4152}
4153
4154bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
4155  unsigned ShOpVal = MI->getOperand(3).getImm();
4156  unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
4157  // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
4158  if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
4159      ((ShImm == 1 || ShImm == 2) &&
4160       ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
4161    return true;
4162
4163  return false;
4164}
4165