1//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LLVM module linker.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Linker.h"
15#include "llvm-c/Linker.h"
16#include "llvm/ADT/Optional.h"
17#include "llvm/ADT/SetVector.h"
18#include "llvm/ADT/SmallString.h"
19#include "llvm/IR/Constants.h"
20#include "llvm/IR/Module.h"
21#include "llvm/IR/TypeFinder.h"
22#include "llvm/Support/Debug.h"
23#include "llvm/Support/raw_ostream.h"
24#include "llvm/Transforms/Utils/Cloning.h"
25using namespace llvm;
26
27//===----------------------------------------------------------------------===//
28// TypeMap implementation.
29//===----------------------------------------------------------------------===//
30
31namespace {
32  typedef SmallPtrSet<StructType*, 32> TypeSet;
33
34class TypeMapTy : public ValueMapTypeRemapper {
35  /// MappedTypes - This is a mapping from a source type to a destination type
36  /// to use.
37  DenseMap<Type*, Type*> MappedTypes;
38
39  /// SpeculativeTypes - When checking to see if two subgraphs are isomorphic,
40  /// we speculatively add types to MappedTypes, but keep track of them here in
41  /// case we need to roll back.
42  SmallVector<Type*, 16> SpeculativeTypes;
43
44  /// SrcDefinitionsToResolve - This is a list of non-opaque structs in the
45  /// source module that are mapped to an opaque struct in the destination
46  /// module.
47  SmallVector<StructType*, 16> SrcDefinitionsToResolve;
48
49  /// DstResolvedOpaqueTypes - This is the set of opaque types in the
50  /// destination modules who are getting a body from the source module.
51  SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes;
52
53public:
54  TypeMapTy(TypeSet &Set) : DstStructTypesSet(Set) {}
55
56  TypeSet &DstStructTypesSet;
57  /// addTypeMapping - Indicate that the specified type in the destination
58  /// module is conceptually equivalent to the specified type in the source
59  /// module.
60  void addTypeMapping(Type *DstTy, Type *SrcTy);
61
62  /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
63  /// module from a type definition in the source module.
64  void linkDefinedTypeBodies();
65
66  /// get - Return the mapped type to use for the specified input type from the
67  /// source module.
68  Type *get(Type *SrcTy);
69
70  FunctionType *get(FunctionType *T) {return cast<FunctionType>(get((Type*)T));}
71
72  /// dump - Dump out the type map for debugging purposes.
73  void dump() const {
74    for (DenseMap<Type*, Type*>::const_iterator
75           I = MappedTypes.begin(), E = MappedTypes.end(); I != E; ++I) {
76      dbgs() << "TypeMap: ";
77      I->first->dump();
78      dbgs() << " => ";
79      I->second->dump();
80      dbgs() << '\n';
81    }
82  }
83
84private:
85  Type *getImpl(Type *T);
86  /// remapType - Implement the ValueMapTypeRemapper interface.
87  Type *remapType(Type *SrcTy) {
88    return get(SrcTy);
89  }
90
91  bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
92};
93}
94
95void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
96  Type *&Entry = MappedTypes[SrcTy];
97  if (Entry) return;
98
99  if (DstTy == SrcTy) {
100    Entry = DstTy;
101    return;
102  }
103
104  // Check to see if these types are recursively isomorphic and establish a
105  // mapping between them if so.
106  if (!areTypesIsomorphic(DstTy, SrcTy)) {
107    // Oops, they aren't isomorphic.  Just discard this request by rolling out
108    // any speculative mappings we've established.
109    for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i)
110      MappedTypes.erase(SpeculativeTypes[i]);
111  }
112  SpeculativeTypes.clear();
113}
114
115/// areTypesIsomorphic - Recursively walk this pair of types, returning true
116/// if they are isomorphic, false if they are not.
117bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
118  // Two types with differing kinds are clearly not isomorphic.
119  if (DstTy->getTypeID() != SrcTy->getTypeID()) return false;
120
121  // If we have an entry in the MappedTypes table, then we have our answer.
122  Type *&Entry = MappedTypes[SrcTy];
123  if (Entry)
124    return Entry == DstTy;
125
126  // Two identical types are clearly isomorphic.  Remember this
127  // non-speculatively.
128  if (DstTy == SrcTy) {
129    Entry = DstTy;
130    return true;
131  }
132
133  // Okay, we have two types with identical kinds that we haven't seen before.
134
135  // If this is an opaque struct type, special case it.
136  if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
137    // Mapping an opaque type to any struct, just keep the dest struct.
138    if (SSTy->isOpaque()) {
139      Entry = DstTy;
140      SpeculativeTypes.push_back(SrcTy);
141      return true;
142    }
143
144    // Mapping a non-opaque source type to an opaque dest.  If this is the first
145    // type that we're mapping onto this destination type then we succeed.  Keep
146    // the dest, but fill it in later.  This doesn't need to be speculative.  If
147    // this is the second (different) type that we're trying to map onto the
148    // same opaque type then we fail.
149    if (cast<StructType>(DstTy)->isOpaque()) {
150      // We can only map one source type onto the opaque destination type.
151      if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)))
152        return false;
153      SrcDefinitionsToResolve.push_back(SSTy);
154      Entry = DstTy;
155      return true;
156    }
157  }
158
159  // If the number of subtypes disagree between the two types, then we fail.
160  if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
161    return false;
162
163  // Fail if any of the extra properties (e.g. array size) of the type disagree.
164  if (isa<IntegerType>(DstTy))
165    return false;  // bitwidth disagrees.
166  if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
167    if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
168      return false;
169
170  } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
171    if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
172      return false;
173  } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
174    StructType *SSTy = cast<StructType>(SrcTy);
175    if (DSTy->isLiteral() != SSTy->isLiteral() ||
176        DSTy->isPacked() != SSTy->isPacked())
177      return false;
178  } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
179    if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
180      return false;
181  } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
182    if (DVTy->getNumElements() != cast<VectorType>(SrcTy)->getNumElements())
183      return false;
184  }
185
186  // Otherwise, we speculate that these two types will line up and recursively
187  // check the subelements.
188  Entry = DstTy;
189  SpeculativeTypes.push_back(SrcTy);
190
191  for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i)
192    if (!areTypesIsomorphic(DstTy->getContainedType(i),
193                            SrcTy->getContainedType(i)))
194      return false;
195
196  // If everything seems to have lined up, then everything is great.
197  return true;
198}
199
200/// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
201/// module from a type definition in the source module.
202void TypeMapTy::linkDefinedTypeBodies() {
203  SmallVector<Type*, 16> Elements;
204  SmallString<16> TmpName;
205
206  // Note that processing entries in this loop (calling 'get') can add new
207  // entries to the SrcDefinitionsToResolve vector.
208  while (!SrcDefinitionsToResolve.empty()) {
209    StructType *SrcSTy = SrcDefinitionsToResolve.pop_back_val();
210    StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
211
212    // TypeMap is a many-to-one mapping, if there were multiple types that
213    // provide a body for DstSTy then previous iterations of this loop may have
214    // already handled it.  Just ignore this case.
215    if (!DstSTy->isOpaque()) continue;
216    assert(!SrcSTy->isOpaque() && "Not resolving a definition?");
217
218    // Map the body of the source type over to a new body for the dest type.
219    Elements.resize(SrcSTy->getNumElements());
220    for (unsigned i = 0, e = Elements.size(); i != e; ++i)
221      Elements[i] = getImpl(SrcSTy->getElementType(i));
222
223    DstSTy->setBody(Elements, SrcSTy->isPacked());
224
225    // If DstSTy has no name or has a longer name than STy, then viciously steal
226    // STy's name.
227    if (!SrcSTy->hasName()) continue;
228    StringRef SrcName = SrcSTy->getName();
229
230    if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) {
231      TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end());
232      SrcSTy->setName("");
233      DstSTy->setName(TmpName.str());
234      TmpName.clear();
235    }
236  }
237
238  DstResolvedOpaqueTypes.clear();
239}
240
241/// get - Return the mapped type to use for the specified input type from the
242/// source module.
243Type *TypeMapTy::get(Type *Ty) {
244  Type *Result = getImpl(Ty);
245
246  // If this caused a reference to any struct type, resolve it before returning.
247  if (!SrcDefinitionsToResolve.empty())
248    linkDefinedTypeBodies();
249  return Result;
250}
251
252/// getImpl - This is the recursive version of get().
253Type *TypeMapTy::getImpl(Type *Ty) {
254  // If we already have an entry for this type, return it.
255  Type **Entry = &MappedTypes[Ty];
256  if (*Entry) return *Entry;
257
258  // If this is not a named struct type, then just map all of the elements and
259  // then rebuild the type from inside out.
260  if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral()) {
261    // If there are no element types to map, then the type is itself.  This is
262    // true for the anonymous {} struct, things like 'float', integers, etc.
263    if (Ty->getNumContainedTypes() == 0)
264      return *Entry = Ty;
265
266    // Remap all of the elements, keeping track of whether any of them change.
267    bool AnyChange = false;
268    SmallVector<Type*, 4> ElementTypes;
269    ElementTypes.resize(Ty->getNumContainedTypes());
270    for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) {
271      ElementTypes[i] = getImpl(Ty->getContainedType(i));
272      AnyChange |= ElementTypes[i] != Ty->getContainedType(i);
273    }
274
275    // If we found our type while recursively processing stuff, just use it.
276    Entry = &MappedTypes[Ty];
277    if (*Entry) return *Entry;
278
279    // If all of the element types mapped directly over, then the type is usable
280    // as-is.
281    if (!AnyChange)
282      return *Entry = Ty;
283
284    // Otherwise, rebuild a modified type.
285    switch (Ty->getTypeID()) {
286    default: llvm_unreachable("unknown derived type to remap");
287    case Type::ArrayTyID:
288      return *Entry = ArrayType::get(ElementTypes[0],
289                                     cast<ArrayType>(Ty)->getNumElements());
290    case Type::VectorTyID:
291      return *Entry = VectorType::get(ElementTypes[0],
292                                      cast<VectorType>(Ty)->getNumElements());
293    case Type::PointerTyID:
294      return *Entry = PointerType::get(ElementTypes[0],
295                                      cast<PointerType>(Ty)->getAddressSpace());
296    case Type::FunctionTyID:
297      return *Entry = FunctionType::get(ElementTypes[0],
298                                        makeArrayRef(ElementTypes).slice(1),
299                                        cast<FunctionType>(Ty)->isVarArg());
300    case Type::StructTyID:
301      // Note that this is only reached for anonymous structs.
302      return *Entry = StructType::get(Ty->getContext(), ElementTypes,
303                                      cast<StructType>(Ty)->isPacked());
304    }
305  }
306
307  // Otherwise, this is an unmapped named struct.  If the struct can be directly
308  // mapped over, just use it as-is.  This happens in a case when the linked-in
309  // module has something like:
310  //   %T = type {%T*, i32}
311  //   @GV = global %T* null
312  // where T does not exist at all in the destination module.
313  //
314  // The other case we watch for is when the type is not in the destination
315  // module, but that it has to be rebuilt because it refers to something that
316  // is already mapped.  For example, if the destination module has:
317  //  %A = type { i32 }
318  // and the source module has something like
319  //  %A' = type { i32 }
320  //  %B = type { %A'* }
321  //  @GV = global %B* null
322  // then we want to create a new type: "%B = type { %A*}" and have it take the
323  // pristine "%B" name from the source module.
324  //
325  // To determine which case this is, we have to recursively walk the type graph
326  // speculating that we'll be able to reuse it unmodified.  Only if this is
327  // safe would we map the entire thing over.  Because this is an optimization,
328  // and is not required for the prettiness of the linked module, we just skip
329  // it and always rebuild a type here.
330  StructType *STy = cast<StructType>(Ty);
331
332  // If the type is opaque, we can just use it directly.
333  if (STy->isOpaque()) {
334    // A named structure type from src module is used. Add it to the Set of
335    // identified structs in the destination module.
336    DstStructTypesSet.insert(STy);
337    return *Entry = STy;
338  }
339
340  // Otherwise we create a new type and resolve its body later.  This will be
341  // resolved by the top level of get().
342  SrcDefinitionsToResolve.push_back(STy);
343  StructType *DTy = StructType::create(STy->getContext());
344  // A new identified structure type was created. Add it to the set of
345  // identified structs in the destination module.
346  DstStructTypesSet.insert(DTy);
347  DstResolvedOpaqueTypes.insert(DTy);
348  return *Entry = DTy;
349}
350
351//===----------------------------------------------------------------------===//
352// ModuleLinker implementation.
353//===----------------------------------------------------------------------===//
354
355namespace {
356  /// ModuleLinker - This is an implementation class for the LinkModules
357  /// function, which is the entrypoint for this file.
358  class ModuleLinker {
359    Module *DstM, *SrcM;
360
361    TypeMapTy TypeMap;
362
363    /// ValueMap - Mapping of values from what they used to be in Src, to what
364    /// they are now in DstM.  ValueToValueMapTy is a ValueMap, which involves
365    /// some overhead due to the use of Value handles which the Linker doesn't
366    /// actually need, but this allows us to reuse the ValueMapper code.
367    ValueToValueMapTy ValueMap;
368
369    struct AppendingVarInfo {
370      GlobalVariable *NewGV;  // New aggregate global in dest module.
371      Constant *DstInit;      // Old initializer from dest module.
372      Constant *SrcInit;      // Old initializer from src module.
373    };
374
375    std::vector<AppendingVarInfo> AppendingVars;
376
377    unsigned Mode; // Mode to treat source module.
378
379    // Set of items not to link in from source.
380    SmallPtrSet<const Value*, 16> DoNotLinkFromSource;
381
382    // Vector of functions to lazily link in.
383    std::vector<Function*> LazilyLinkFunctions;
384
385  public:
386    std::string ErrorMsg;
387
388    ModuleLinker(Module *dstM, TypeSet &Set, Module *srcM, unsigned mode)
389      : DstM(dstM), SrcM(srcM), TypeMap(Set), Mode(mode) { }
390
391    bool run();
392
393  private:
394    /// emitError - Helper method for setting a message and returning an error
395    /// code.
396    bool emitError(const Twine &Message) {
397      ErrorMsg = Message.str();
398      return true;
399    }
400
401    /// getLinkageResult - This analyzes the two global values and determines
402    /// what the result will look like in the destination module.
403    bool getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
404                          GlobalValue::LinkageTypes &LT,
405                          GlobalValue::VisibilityTypes &Vis,
406                          bool &LinkFromSrc);
407
408    /// getLinkedToGlobal - Given a global in the source module, return the
409    /// global in the destination module that is being linked to, if any.
410    GlobalValue *getLinkedToGlobal(GlobalValue *SrcGV) {
411      // If the source has no name it can't link.  If it has local linkage,
412      // there is no name match-up going on.
413      if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
414        return 0;
415
416      // Otherwise see if we have a match in the destination module's symtab.
417      GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
418      if (DGV == 0) return 0;
419
420      // If we found a global with the same name in the dest module, but it has
421      // internal linkage, we are really not doing any linkage here.
422      if (DGV->hasLocalLinkage())
423        return 0;
424
425      // Otherwise, we do in fact link to the destination global.
426      return DGV;
427    }
428
429    void computeTypeMapping();
430
431    bool linkAppendingVarProto(GlobalVariable *DstGV, GlobalVariable *SrcGV);
432    bool linkGlobalProto(GlobalVariable *SrcGV);
433    bool linkFunctionProto(Function *SrcF);
434    bool linkAliasProto(GlobalAlias *SrcA);
435    bool linkModuleFlagsMetadata();
436
437    void linkAppendingVarInit(const AppendingVarInfo &AVI);
438    void linkGlobalInits();
439    void linkFunctionBody(Function *Dst, Function *Src);
440    void linkAliasBodies();
441    void linkNamedMDNodes();
442  };
443}
444
445/// forceRenaming - The LLVM SymbolTable class autorenames globals that conflict
446/// in the symbol table.  This is good for all clients except for us.  Go
447/// through the trouble to force this back.
448static void forceRenaming(GlobalValue *GV, StringRef Name) {
449  // If the global doesn't force its name or if it already has the right name,
450  // there is nothing for us to do.
451  if (GV->hasLocalLinkage() || GV->getName() == Name)
452    return;
453
454  Module *M = GV->getParent();
455
456  // If there is a conflict, rename the conflict.
457  if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
458    GV->takeName(ConflictGV);
459    ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
460    assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
461  } else {
462    GV->setName(Name);              // Force the name back
463  }
464}
465
466/// copyGVAttributes - copy additional attributes (those not needed to construct
467/// a GlobalValue) from the SrcGV to the DestGV.
468static void copyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
469  // Use the maximum alignment, rather than just copying the alignment of SrcGV.
470  unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
471  DestGV->copyAttributesFrom(SrcGV);
472  DestGV->setAlignment(Alignment);
473
474  forceRenaming(DestGV, SrcGV->getName());
475}
476
477static bool isLessConstraining(GlobalValue::VisibilityTypes a,
478                               GlobalValue::VisibilityTypes b) {
479  if (a == GlobalValue::HiddenVisibility)
480    return false;
481  if (b == GlobalValue::HiddenVisibility)
482    return true;
483  if (a == GlobalValue::ProtectedVisibility)
484    return false;
485  if (b == GlobalValue::ProtectedVisibility)
486    return true;
487  return false;
488}
489
490/// getLinkageResult - This analyzes the two global values and determines what
491/// the result will look like in the destination module.  In particular, it
492/// computes the resultant linkage type and visibility, computes whether the
493/// global in the source should be copied over to the destination (replacing
494/// the existing one), and computes whether this linkage is an error or not.
495bool ModuleLinker::getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
496                                    GlobalValue::LinkageTypes &LT,
497                                    GlobalValue::VisibilityTypes &Vis,
498                                    bool &LinkFromSrc) {
499  assert(Dest && "Must have two globals being queried");
500  assert(!Src->hasLocalLinkage() &&
501         "If Src has internal linkage, Dest shouldn't be set!");
502
503  bool SrcIsDeclaration = Src->isDeclaration() && !Src->isMaterializable();
504  bool DestIsDeclaration = Dest->isDeclaration();
505
506  if (SrcIsDeclaration) {
507    // If Src is external or if both Src & Dest are external..  Just link the
508    // external globals, we aren't adding anything.
509    if (Src->hasDLLImportLinkage()) {
510      // If one of GVs has DLLImport linkage, result should be dllimport'ed.
511      if (DestIsDeclaration) {
512        LinkFromSrc = true;
513        LT = Src->getLinkage();
514      }
515    } else if (Dest->hasExternalWeakLinkage()) {
516      // If the Dest is weak, use the source linkage.
517      LinkFromSrc = true;
518      LT = Src->getLinkage();
519    } else {
520      LinkFromSrc = false;
521      LT = Dest->getLinkage();
522    }
523  } else if (DestIsDeclaration && !Dest->hasDLLImportLinkage()) {
524    // If Dest is external but Src is not:
525    LinkFromSrc = true;
526    LT = Src->getLinkage();
527  } else if (Src->isWeakForLinker()) {
528    // At this point we know that Dest has LinkOnce, External*, Weak, Common,
529    // or DLL* linkage.
530    if (Dest->hasExternalWeakLinkage() ||
531        Dest->hasAvailableExternallyLinkage() ||
532        (Dest->hasLinkOnceLinkage() &&
533         (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
534      LinkFromSrc = true;
535      LT = Src->getLinkage();
536    } else {
537      LinkFromSrc = false;
538      LT = Dest->getLinkage();
539    }
540  } else if (Dest->isWeakForLinker()) {
541    // At this point we know that Src has External* or DLL* linkage.
542    if (Src->hasExternalWeakLinkage()) {
543      LinkFromSrc = false;
544      LT = Dest->getLinkage();
545    } else {
546      LinkFromSrc = true;
547      LT = GlobalValue::ExternalLinkage;
548    }
549  } else {
550    assert((Dest->hasExternalLinkage()  || Dest->hasDLLImportLinkage() ||
551            Dest->hasDLLExportLinkage() || Dest->hasExternalWeakLinkage()) &&
552           (Src->hasExternalLinkage()   || Src->hasDLLImportLinkage() ||
553            Src->hasDLLExportLinkage()  || Src->hasExternalWeakLinkage()) &&
554           "Unexpected linkage type!");
555    return emitError("Linking globals named '" + Src->getName() +
556                 "': symbol multiply defined!");
557  }
558
559  // Compute the visibility. We follow the rules in the System V Application
560  // Binary Interface.
561  Vis = isLessConstraining(Src->getVisibility(), Dest->getVisibility()) ?
562    Dest->getVisibility() : Src->getVisibility();
563  return false;
564}
565
566/// computeTypeMapping - Loop over all of the linked values to compute type
567/// mappings.  For example, if we link "extern Foo *x" and "Foo *x = NULL", then
568/// we have two struct types 'Foo' but one got renamed when the module was
569/// loaded into the same LLVMContext.
570void ModuleLinker::computeTypeMapping() {
571  // Incorporate globals.
572  for (Module::global_iterator I = SrcM->global_begin(),
573       E = SrcM->global_end(); I != E; ++I) {
574    GlobalValue *DGV = getLinkedToGlobal(I);
575    if (DGV == 0) continue;
576
577    if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) {
578      TypeMap.addTypeMapping(DGV->getType(), I->getType());
579      continue;
580    }
581
582    // Unify the element type of appending arrays.
583    ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
584    ArrayType *SAT = cast<ArrayType>(I->getType()->getElementType());
585    TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
586  }
587
588  // Incorporate functions.
589  for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) {
590    if (GlobalValue *DGV = getLinkedToGlobal(I))
591      TypeMap.addTypeMapping(DGV->getType(), I->getType());
592  }
593
594  // Incorporate types by name, scanning all the types in the source module.
595  // At this point, the destination module may have a type "%foo = { i32 }" for
596  // example.  When the source module got loaded into the same LLVMContext, if
597  // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
598  TypeFinder SrcStructTypes;
599  SrcStructTypes.run(*SrcM, true);
600  SmallPtrSet<StructType*, 32> SrcStructTypesSet(SrcStructTypes.begin(),
601                                                 SrcStructTypes.end());
602
603  for (unsigned i = 0, e = SrcStructTypes.size(); i != e; ++i) {
604    StructType *ST = SrcStructTypes[i];
605    if (!ST->hasName()) continue;
606
607    // Check to see if there is a dot in the name followed by a digit.
608    size_t DotPos = ST->getName().rfind('.');
609    if (DotPos == 0 || DotPos == StringRef::npos ||
610        ST->getName().back() == '.' ||
611        !isdigit(static_cast<unsigned char>(ST->getName()[DotPos+1])))
612      continue;
613
614    // Check to see if the destination module has a struct with the prefix name.
615    if (StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos)))
616      // Don't use it if this actually came from the source module. They're in
617      // the same LLVMContext after all. Also don't use it unless the type is
618      // actually used in the destination module. This can happen in situations
619      // like this:
620      //
621      //      Module A                         Module B
622      //      --------                         --------
623      //   %Z = type { %A }                %B = type { %C.1 }
624      //   %A = type { %B.1, [7 x i8] }    %C.1 = type { i8* }
625      //   %B.1 = type { %C }              %A.2 = type { %B.3, [5 x i8] }
626      //   %C = type { i8* }               %B.3 = type { %C.1 }
627      //
628      // When we link Module B with Module A, the '%B' in Module B is
629      // used. However, that would then use '%C.1'. But when we process '%C.1',
630      // we prefer to take the '%C' version. So we are then left with both
631      // '%C.1' and '%C' being used for the same types. This leads to some
632      // variables using one type and some using the other.
633      if (!SrcStructTypesSet.count(DST) && TypeMap.DstStructTypesSet.count(DST))
634        TypeMap.addTypeMapping(DST, ST);
635  }
636
637  // Don't bother incorporating aliases, they aren't generally typed well.
638
639  // Now that we have discovered all of the type equivalences, get a body for
640  // any 'opaque' types in the dest module that are now resolved.
641  TypeMap.linkDefinedTypeBodies();
642}
643
644/// linkAppendingVarProto - If there were any appending global variables, link
645/// them together now.  Return true on error.
646bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
647                                         GlobalVariable *SrcGV) {
648
649  if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
650    return emitError("Linking globals named '" + SrcGV->getName() +
651           "': can only link appending global with another appending global!");
652
653  ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
654  ArrayType *SrcTy =
655    cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
656  Type *EltTy = DstTy->getElementType();
657
658  // Check to see that they two arrays agree on type.
659  if (EltTy != SrcTy->getElementType())
660    return emitError("Appending variables with different element types!");
661  if (DstGV->isConstant() != SrcGV->isConstant())
662    return emitError("Appending variables linked with different const'ness!");
663
664  if (DstGV->getAlignment() != SrcGV->getAlignment())
665    return emitError(
666             "Appending variables with different alignment need to be linked!");
667
668  if (DstGV->getVisibility() != SrcGV->getVisibility())
669    return emitError(
670            "Appending variables with different visibility need to be linked!");
671
672  if (DstGV->getSection() != SrcGV->getSection())
673    return emitError(
674          "Appending variables with different section name need to be linked!");
675
676  uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
677  ArrayType *NewType = ArrayType::get(EltTy, NewSize);
678
679  // Create the new global variable.
680  GlobalVariable *NG =
681    new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
682                       DstGV->getLinkage(), /*init*/0, /*name*/"", DstGV,
683                       DstGV->getThreadLocalMode(),
684                       DstGV->getType()->getAddressSpace());
685
686  // Propagate alignment, visibility and section info.
687  copyGVAttributes(NG, DstGV);
688
689  AppendingVarInfo AVI;
690  AVI.NewGV = NG;
691  AVI.DstInit = DstGV->getInitializer();
692  AVI.SrcInit = SrcGV->getInitializer();
693  AppendingVars.push_back(AVI);
694
695  // Replace any uses of the two global variables with uses of the new
696  // global.
697  ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
698
699  DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
700  DstGV->eraseFromParent();
701
702  // Track the source variable so we don't try to link it.
703  DoNotLinkFromSource.insert(SrcGV);
704
705  return false;
706}
707
708/// linkGlobalProto - Loop through the global variables in the src module and
709/// merge them into the dest module.
710bool ModuleLinker::linkGlobalProto(GlobalVariable *SGV) {
711  GlobalValue *DGV = getLinkedToGlobal(SGV);
712  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
713
714  if (DGV) {
715    // Concatenation of appending linkage variables is magic and handled later.
716    if (DGV->hasAppendingLinkage() || SGV->hasAppendingLinkage())
717      return linkAppendingVarProto(cast<GlobalVariable>(DGV), SGV);
718
719    // Determine whether linkage of these two globals follows the source
720    // module's definition or the destination module's definition.
721    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
722    GlobalValue::VisibilityTypes NV;
723    bool LinkFromSrc = false;
724    if (getLinkageResult(DGV, SGV, NewLinkage, NV, LinkFromSrc))
725      return true;
726    NewVisibility = NV;
727
728    // If we're not linking from the source, then keep the definition that we
729    // have.
730    if (!LinkFromSrc) {
731      // Special case for const propagation.
732      if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
733        if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
734          DGVar->setConstant(true);
735
736      // Set calculated linkage and visibility.
737      DGV->setLinkage(NewLinkage);
738      DGV->setVisibility(*NewVisibility);
739
740      // Make sure to remember this mapping.
741      ValueMap[SGV] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGV->getType()));
742
743      // Track the source global so that we don't attempt to copy it over when
744      // processing global initializers.
745      DoNotLinkFromSource.insert(SGV);
746
747      return false;
748    }
749  }
750
751  // No linking to be performed or linking from the source: simply create an
752  // identical version of the symbol over in the dest module... the
753  // initializer will be filled in later by LinkGlobalInits.
754  GlobalVariable *NewDGV =
755    new GlobalVariable(*DstM, TypeMap.get(SGV->getType()->getElementType()),
756                       SGV->isConstant(), SGV->getLinkage(), /*init*/0,
757                       SGV->getName(), /*insertbefore*/0,
758                       SGV->getThreadLocalMode(),
759                       SGV->getType()->getAddressSpace());
760  // Propagate alignment, visibility and section info.
761  copyGVAttributes(NewDGV, SGV);
762  if (NewVisibility)
763    NewDGV->setVisibility(*NewVisibility);
764
765  if (DGV) {
766    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType()));
767    DGV->eraseFromParent();
768  }
769
770  // Make sure to remember this mapping.
771  ValueMap[SGV] = NewDGV;
772  return false;
773}
774
775/// linkFunctionProto - Link the function in the source module into the
776/// destination module if needed, setting up mapping information.
777bool ModuleLinker::linkFunctionProto(Function *SF) {
778  GlobalValue *DGV = getLinkedToGlobal(SF);
779  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
780
781  if (DGV) {
782    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
783    bool LinkFromSrc = false;
784    GlobalValue::VisibilityTypes NV;
785    if (getLinkageResult(DGV, SF, NewLinkage, NV, LinkFromSrc))
786      return true;
787    NewVisibility = NV;
788
789    if (!LinkFromSrc) {
790      // Set calculated linkage
791      DGV->setLinkage(NewLinkage);
792      DGV->setVisibility(*NewVisibility);
793
794      // Make sure to remember this mapping.
795      ValueMap[SF] = ConstantExpr::getBitCast(DGV, TypeMap.get(SF->getType()));
796
797      // Track the function from the source module so we don't attempt to remap
798      // it.
799      DoNotLinkFromSource.insert(SF);
800
801      return false;
802    }
803  }
804
805  // If there is no linkage to be performed or we are linking from the source,
806  // bring SF over.
807  Function *NewDF = Function::Create(TypeMap.get(SF->getFunctionType()),
808                                     SF->getLinkage(), SF->getName(), DstM);
809  copyGVAttributes(NewDF, SF);
810  if (NewVisibility)
811    NewDF->setVisibility(*NewVisibility);
812
813  if (DGV) {
814    // Any uses of DF need to change to NewDF, with cast.
815    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType()));
816    DGV->eraseFromParent();
817  } else {
818    // Internal, LO_ODR, or LO linkage - stick in set to ignore and lazily link.
819    if (SF->hasLocalLinkage() || SF->hasLinkOnceLinkage() ||
820        SF->hasAvailableExternallyLinkage()) {
821      DoNotLinkFromSource.insert(SF);
822      LazilyLinkFunctions.push_back(SF);
823    }
824  }
825
826  ValueMap[SF] = NewDF;
827  return false;
828}
829
830/// LinkAliasProto - Set up prototypes for any aliases that come over from the
831/// source module.
832bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) {
833  GlobalValue *DGV = getLinkedToGlobal(SGA);
834  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
835
836  if (DGV) {
837    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
838    GlobalValue::VisibilityTypes NV;
839    bool LinkFromSrc = false;
840    if (getLinkageResult(DGV, SGA, NewLinkage, NV, LinkFromSrc))
841      return true;
842    NewVisibility = NV;
843
844    if (!LinkFromSrc) {
845      // Set calculated linkage.
846      DGV->setLinkage(NewLinkage);
847      DGV->setVisibility(*NewVisibility);
848
849      // Make sure to remember this mapping.
850      ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType()));
851
852      // Track the alias from the source module so we don't attempt to remap it.
853      DoNotLinkFromSource.insert(SGA);
854
855      return false;
856    }
857  }
858
859  // If there is no linkage to be performed or we're linking from the source,
860  // bring over SGA.
861  GlobalAlias *NewDA = new GlobalAlias(TypeMap.get(SGA->getType()),
862                                       SGA->getLinkage(), SGA->getName(),
863                                       /*aliasee*/0, DstM);
864  copyGVAttributes(NewDA, SGA);
865  if (NewVisibility)
866    NewDA->setVisibility(*NewVisibility);
867
868  if (DGV) {
869    // Any uses of DGV need to change to NewDA, with cast.
870    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA, DGV->getType()));
871    DGV->eraseFromParent();
872  }
873
874  ValueMap[SGA] = NewDA;
875  return false;
876}
877
878static void getArrayElements(Constant *C, SmallVectorImpl<Constant*> &Dest) {
879  unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
880
881  for (unsigned i = 0; i != NumElements; ++i)
882    Dest.push_back(C->getAggregateElement(i));
883}
884
885void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
886  // Merge the initializer.
887  SmallVector<Constant*, 16> Elements;
888  getArrayElements(AVI.DstInit, Elements);
889
890  Constant *SrcInit = MapValue(AVI.SrcInit, ValueMap, RF_None, &TypeMap);
891  getArrayElements(SrcInit, Elements);
892
893  ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
894  AVI.NewGV->setInitializer(ConstantArray::get(NewType, Elements));
895}
896
897/// linkGlobalInits - Update the initializers in the Dest module now that all
898/// globals that may be referenced are in Dest.
899void ModuleLinker::linkGlobalInits() {
900  // Loop over all of the globals in the src module, mapping them over as we go
901  for (Module::const_global_iterator I = SrcM->global_begin(),
902       E = SrcM->global_end(); I != E; ++I) {
903
904    // Only process initialized GV's or ones not already in dest.
905    if (!I->hasInitializer() || DoNotLinkFromSource.count(I)) continue;
906
907    // Grab destination global variable.
908    GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[I]);
909    // Figure out what the initializer looks like in the dest module.
910    DGV->setInitializer(MapValue(I->getInitializer(), ValueMap,
911                                 RF_None, &TypeMap));
912  }
913}
914
915/// linkFunctionBody - Copy the source function over into the dest function and
916/// fix up references to values.  At this point we know that Dest is an external
917/// function, and that Src is not.
918void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) {
919  assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration());
920
921  // Go through and convert function arguments over, remembering the mapping.
922  Function::arg_iterator DI = Dst->arg_begin();
923  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
924       I != E; ++I, ++DI) {
925    DI->setName(I->getName());  // Copy the name over.
926
927    // Add a mapping to our mapping.
928    ValueMap[I] = DI;
929  }
930
931  if (Mode == Linker::DestroySource) {
932    // Splice the body of the source function into the dest function.
933    Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList());
934
935    // At this point, all of the instructions and values of the function are now
936    // copied over.  The only problem is that they are still referencing values in
937    // the Source function as operands.  Loop through all of the operands of the
938    // functions and patch them up to point to the local versions.
939    for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB)
940      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
941        RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries, &TypeMap);
942
943  } else {
944    // Clone the body of the function into the dest function.
945    SmallVector<ReturnInst*, 8> Returns; // Ignore returns.
946    CloneFunctionInto(Dst, Src, ValueMap, false, Returns, "", NULL, &TypeMap);
947  }
948
949  // There is no need to map the arguments anymore.
950  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
951       I != E; ++I)
952    ValueMap.erase(I);
953
954}
955
956/// linkAliasBodies - Insert all of the aliases in Src into the Dest module.
957void ModuleLinker::linkAliasBodies() {
958  for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end();
959       I != E; ++I) {
960    if (DoNotLinkFromSource.count(I))
961      continue;
962    if (Constant *Aliasee = I->getAliasee()) {
963      GlobalAlias *DA = cast<GlobalAlias>(ValueMap[I]);
964      DA->setAliasee(MapValue(Aliasee, ValueMap, RF_None, &TypeMap));
965    }
966  }
967}
968
969/// linkNamedMDNodes - Insert all of the named MDNodes in Src into the Dest
970/// module.
971void ModuleLinker::linkNamedMDNodes() {
972  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
973  for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
974       E = SrcM->named_metadata_end(); I != E; ++I) {
975    // Don't link module flags here. Do them separately.
976    if (&*I == SrcModFlags) continue;
977    NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
978    // Add Src elements into Dest node.
979    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
980      DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap,
981                                   RF_None, &TypeMap));
982  }
983}
984
985/// linkModuleFlagsMetadata - Merge the linker flags in Src into the Dest
986/// module.
987bool ModuleLinker::linkModuleFlagsMetadata() {
988  // If the source module has no module flags, we are done.
989  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
990  if (!SrcModFlags) return false;
991
992  // If the destination module doesn't have module flags yet, then just copy
993  // over the source module's flags.
994  NamedMDNode *DstModFlags = DstM->getOrInsertModuleFlagsMetadata();
995  if (DstModFlags->getNumOperands() == 0) {
996    for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
997      DstModFlags->addOperand(SrcModFlags->getOperand(I));
998
999    return false;
1000  }
1001
1002  // First build a map of the existing module flags and requirements.
1003  DenseMap<MDString*, MDNode*> Flags;
1004  SmallSetVector<MDNode*, 16> Requirements;
1005  for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
1006    MDNode *Op = DstModFlags->getOperand(I);
1007    ConstantInt *Behavior = cast<ConstantInt>(Op->getOperand(0));
1008    MDString *ID = cast<MDString>(Op->getOperand(1));
1009
1010    if (Behavior->getZExtValue() == Module::Require) {
1011      Requirements.insert(cast<MDNode>(Op->getOperand(2)));
1012    } else {
1013      Flags[ID] = Op;
1014    }
1015  }
1016
1017  // Merge in the flags from the source module, and also collect its set of
1018  // requirements.
1019  bool HasErr = false;
1020  for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
1021    MDNode *SrcOp = SrcModFlags->getOperand(I);
1022    ConstantInt *SrcBehavior = cast<ConstantInt>(SrcOp->getOperand(0));
1023    MDString *ID = cast<MDString>(SrcOp->getOperand(1));
1024    MDNode *DstOp = Flags.lookup(ID);
1025    unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
1026
1027    // If this is a requirement, add it and continue.
1028    if (SrcBehaviorValue == Module::Require) {
1029      // If the destination module does not already have this requirement, add
1030      // it.
1031      if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
1032        DstModFlags->addOperand(SrcOp);
1033      }
1034      continue;
1035    }
1036
1037    // If there is no existing flag with this ID, just add it.
1038    if (!DstOp) {
1039      Flags[ID] = SrcOp;
1040      DstModFlags->addOperand(SrcOp);
1041      continue;
1042    }
1043
1044    // Otherwise, perform a merge.
1045    ConstantInt *DstBehavior = cast<ConstantInt>(DstOp->getOperand(0));
1046    unsigned DstBehaviorValue = DstBehavior->getZExtValue();
1047
1048    // If either flag has override behavior, handle it first.
1049    if (DstBehaviorValue == Module::Override) {
1050      // Diagnose inconsistent flags which both have override behavior.
1051      if (SrcBehaviorValue == Module::Override &&
1052          SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1053        HasErr |= emitError("linking module flags '" + ID->getString() +
1054                            "': IDs have conflicting override values");
1055      }
1056      continue;
1057    } else if (SrcBehaviorValue == Module::Override) {
1058      // Update the destination flag to that of the source.
1059      DstOp->replaceOperandWith(0, SrcBehavior);
1060      DstOp->replaceOperandWith(2, SrcOp->getOperand(2));
1061      continue;
1062    }
1063
1064    // Diagnose inconsistent merge behavior types.
1065    if (SrcBehaviorValue != DstBehaviorValue) {
1066      HasErr |= emitError("linking module flags '" + ID->getString() +
1067                          "': IDs have conflicting behaviors");
1068      continue;
1069    }
1070
1071    // Perform the merge for standard behavior types.
1072    switch (SrcBehaviorValue) {
1073    case Module::Require:
1074    case Module::Override: assert(0 && "not possible"); break;
1075    case Module::Error: {
1076      // Emit an error if the values differ.
1077      if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1078        HasErr |= emitError("linking module flags '" + ID->getString() +
1079                            "': IDs have conflicting values");
1080      }
1081      continue;
1082    }
1083    case Module::Warning: {
1084      // Emit a warning if the values differ.
1085      if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1086        errs() << "WARNING: linking module flags '" << ID->getString()
1087               << "': IDs have conflicting values";
1088      }
1089      continue;
1090    }
1091    case Module::Append: {
1092      MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1093      MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1094      unsigned NumOps = DstValue->getNumOperands() + SrcValue->getNumOperands();
1095      Value **VP, **Values = VP = new Value*[NumOps];
1096      for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i, ++VP)
1097        *VP = DstValue->getOperand(i);
1098      for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i, ++VP)
1099        *VP = SrcValue->getOperand(i);
1100      DstOp->replaceOperandWith(2, MDNode::get(DstM->getContext(),
1101                                               ArrayRef<Value*>(Values,
1102                                                                NumOps)));
1103      delete[] Values;
1104      break;
1105    }
1106    case Module::AppendUnique: {
1107      SmallSetVector<Value*, 16> Elts;
1108      MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1109      MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1110      for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i)
1111        Elts.insert(DstValue->getOperand(i));
1112      for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i)
1113        Elts.insert(SrcValue->getOperand(i));
1114      DstOp->replaceOperandWith(2, MDNode::get(DstM->getContext(),
1115                                               ArrayRef<Value*>(Elts.begin(),
1116                                                                Elts.end())));
1117      break;
1118    }
1119    }
1120  }
1121
1122  // Check all of the requirements.
1123  for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1124    MDNode *Requirement = Requirements[I];
1125    MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1126    Value *ReqValue = Requirement->getOperand(1);
1127
1128    MDNode *Op = Flags[Flag];
1129    if (!Op || Op->getOperand(2) != ReqValue) {
1130      HasErr |= emitError("linking module flags '" + Flag->getString() +
1131                          "': does not have the required value");
1132      continue;
1133    }
1134  }
1135
1136  return HasErr;
1137}
1138
1139bool ModuleLinker::run() {
1140  assert(DstM && "Null destination module");
1141  assert(SrcM && "Null source module");
1142
1143  // Inherit the target data from the source module if the destination module
1144  // doesn't have one already.
1145  if (DstM->getDataLayout().empty() && !SrcM->getDataLayout().empty())
1146    DstM->setDataLayout(SrcM->getDataLayout());
1147
1148  // Copy the target triple from the source to dest if the dest's is empty.
1149  if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
1150    DstM->setTargetTriple(SrcM->getTargetTriple());
1151
1152  if (!SrcM->getDataLayout().empty() && !DstM->getDataLayout().empty() &&
1153      SrcM->getDataLayout() != DstM->getDataLayout())
1154    errs() << "WARNING: Linking two modules of different data layouts!\n";
1155  if (!SrcM->getTargetTriple().empty() &&
1156      DstM->getTargetTriple() != SrcM->getTargetTriple()) {
1157    errs() << "WARNING: Linking two modules of different target triples: ";
1158    if (!SrcM->getModuleIdentifier().empty())
1159      errs() << SrcM->getModuleIdentifier() << ": ";
1160    errs() << "'" << SrcM->getTargetTriple() << "' and '"
1161           << DstM->getTargetTriple() << "'\n";
1162  }
1163
1164  // Append the module inline asm string.
1165  if (!SrcM->getModuleInlineAsm().empty()) {
1166    if (DstM->getModuleInlineAsm().empty())
1167      DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
1168    else
1169      DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
1170                               SrcM->getModuleInlineAsm());
1171  }
1172
1173  // Loop over all of the linked values to compute type mappings.
1174  computeTypeMapping();
1175
1176  // Insert all of the globals in src into the DstM module... without linking
1177  // initializers (which could refer to functions not yet mapped over).
1178  for (Module::global_iterator I = SrcM->global_begin(),
1179       E = SrcM->global_end(); I != E; ++I)
1180    if (linkGlobalProto(I))
1181      return true;
1182
1183  // Link the functions together between the two modules, without doing function
1184  // bodies... this just adds external function prototypes to the DstM
1185  // function...  We do this so that when we begin processing function bodies,
1186  // all of the global values that may be referenced are available in our
1187  // ValueMap.
1188  for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
1189    if (linkFunctionProto(I))
1190      return true;
1191
1192  // If there were any aliases, link them now.
1193  for (Module::alias_iterator I = SrcM->alias_begin(),
1194       E = SrcM->alias_end(); I != E; ++I)
1195    if (linkAliasProto(I))
1196      return true;
1197
1198  for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
1199    linkAppendingVarInit(AppendingVars[i]);
1200
1201  // Update the initializers in the DstM module now that all globals that may
1202  // be referenced are in DstM.
1203  linkGlobalInits();
1204
1205  // Link in the function bodies that are defined in the source module into
1206  // DstM.
1207  for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) {
1208    // Skip if not linking from source.
1209    if (DoNotLinkFromSource.count(SF)) continue;
1210
1211    // Skip if no body (function is external) or materialize.
1212    if (SF->isDeclaration()) {
1213      if (!SF->isMaterializable())
1214        continue;
1215      if (SF->Materialize(&ErrorMsg))
1216        return true;
1217    }
1218
1219    linkFunctionBody(cast<Function>(ValueMap[SF]), SF);
1220    SF->Dematerialize();
1221  }
1222
1223  // Resolve all uses of aliases with aliasees.
1224  linkAliasBodies();
1225
1226  // Remap all of the named MDNodes in Src into the DstM module. We do this
1227  // after linking GlobalValues so that MDNodes that reference GlobalValues
1228  // are properly remapped.
1229  linkNamedMDNodes();
1230
1231  // Merge the module flags into the DstM module.
1232  if (linkModuleFlagsMetadata())
1233    return true;
1234
1235  // Process vector of lazily linked in functions.
1236  bool LinkedInAnyFunctions;
1237  do {
1238    LinkedInAnyFunctions = false;
1239
1240    for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
1241        E = LazilyLinkFunctions.end(); I != E; ++I) {
1242      if (!*I)
1243        continue;
1244
1245      Function *SF = *I;
1246      Function *DF = cast<Function>(ValueMap[SF]);
1247
1248      if (!DF->use_empty()) {
1249
1250        // Materialize if necessary.
1251        if (SF->isDeclaration()) {
1252          if (!SF->isMaterializable())
1253            continue;
1254          if (SF->Materialize(&ErrorMsg))
1255            return true;
1256        }
1257
1258        // Link in function body.
1259        linkFunctionBody(DF, SF);
1260        SF->Dematerialize();
1261
1262        // "Remove" from vector by setting the element to 0.
1263        *I = 0;
1264
1265        // Set flag to indicate we may have more functions to lazily link in
1266        // since we linked in a function.
1267        LinkedInAnyFunctions = true;
1268      }
1269    }
1270  } while (LinkedInAnyFunctions);
1271
1272  // Remove any prototypes of functions that were not actually linked in.
1273  for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
1274      E = LazilyLinkFunctions.end(); I != E; ++I) {
1275    if (!*I)
1276      continue;
1277
1278    Function *SF = *I;
1279    Function *DF = cast<Function>(ValueMap[SF]);
1280    if (DF->use_empty())
1281      DF->eraseFromParent();
1282  }
1283
1284  // Now that all of the types from the source are used, resolve any structs
1285  // copied over to the dest that didn't exist there.
1286  TypeMap.linkDefinedTypeBodies();
1287
1288  return false;
1289}
1290
1291Linker::Linker(Module *M) : Composite(M) {
1292  TypeFinder StructTypes;
1293  StructTypes.run(*M, true);
1294  IdentifiedStructTypes.insert(StructTypes.begin(), StructTypes.end());
1295}
1296
1297Linker::~Linker() {
1298}
1299
1300bool Linker::linkInModule(Module *Src, unsigned Mode, std::string *ErrorMsg) {
1301  ModuleLinker TheLinker(Composite, IdentifiedStructTypes, Src, Mode);
1302  if (TheLinker.run()) {
1303    if (ErrorMsg)
1304      *ErrorMsg = TheLinker.ErrorMsg;
1305    return true;
1306  }
1307  return false;
1308}
1309
1310//===----------------------------------------------------------------------===//
1311// LinkModules entrypoint.
1312//===----------------------------------------------------------------------===//
1313
1314/// LinkModules - This function links two modules together, with the resulting
1315/// Dest module modified to be the composite of the two input modules.  If an
1316/// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1317/// the problem.  Upon failure, the Dest module could be in a modified state,
1318/// and shouldn't be relied on to be consistent.
1319bool Linker::LinkModules(Module *Dest, Module *Src, unsigned Mode,
1320                         std::string *ErrorMsg) {
1321  Linker L(Dest);
1322  return L.linkInModule(Src, Mode, ErrorMsg);
1323}
1324
1325//===----------------------------------------------------------------------===//
1326// C API.
1327//===----------------------------------------------------------------------===//
1328
1329LLVMBool LLVMLinkModules(LLVMModuleRef Dest, LLVMModuleRef Src,
1330                         LLVMLinkerMode Mode, char **OutMessages) {
1331  std::string Messages;
1332  LLVMBool Result = Linker::LinkModules(unwrap(Dest), unwrap(Src),
1333                                        Mode, OutMessages? &Messages : 0);
1334  if (OutMessages)
1335    *OutMessages = strdup(Messages.c_str());
1336  return Result;
1337}
1338