1//===- ScheduleDAGVLIW.cpp - SelectionDAG list scheduler for VLIW -*- C++ -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a top-down list scheduler, using standard algorithms.
11// The basic approach uses a priority queue of available nodes to schedule.
12// One at a time, nodes are taken from the priority queue (thus in priority
13// order), checked for legality to schedule, and emitted if legal.
14//
15// Nodes may not be legal to schedule either due to structural hazards (e.g.
16// pipeline or resource constraints) or because an input to the instruction has
17// not completed execution.
18//
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "pre-RA-sched"
22#include "llvm/CodeGen/SchedulerRegistry.h"
23#include "ScheduleDAGSDNodes.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/CodeGen/LatencyPriorityQueue.h"
26#include "llvm/CodeGen/ResourcePriorityQueue.h"
27#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
28#include "llvm/CodeGen/SelectionDAGISel.h"
29#include "llvm/IR/DataLayout.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/Target/TargetInstrInfo.h"
34#include "llvm/Target/TargetRegisterInfo.h"
35#include <climits>
36using namespace llvm;
37
38STATISTIC(NumNoops , "Number of noops inserted");
39STATISTIC(NumStalls, "Number of pipeline stalls");
40
41static RegisterScheduler
42  VLIWScheduler("vliw-td", "VLIW scheduler",
43                createVLIWDAGScheduler);
44
45namespace {
46//===----------------------------------------------------------------------===//
47/// ScheduleDAGVLIW - The actual DFA list scheduler implementation.  This
48/// supports / top-down scheduling.
49///
50class ScheduleDAGVLIW : public ScheduleDAGSDNodes {
51private:
52  /// AvailableQueue - The priority queue to use for the available SUnits.
53  ///
54  SchedulingPriorityQueue *AvailableQueue;
55
56  /// PendingQueue - This contains all of the instructions whose operands have
57  /// been issued, but their results are not ready yet (due to the latency of
58  /// the operation).  Once the operands become available, the instruction is
59  /// added to the AvailableQueue.
60  std::vector<SUnit*> PendingQueue;
61
62  /// HazardRec - The hazard recognizer to use.
63  ScheduleHazardRecognizer *HazardRec;
64
65  /// AA - AliasAnalysis for making memory reference queries.
66  AliasAnalysis *AA;
67
68public:
69  ScheduleDAGVLIW(MachineFunction &mf,
70                  AliasAnalysis *aa,
71                  SchedulingPriorityQueue *availqueue)
72    : ScheduleDAGSDNodes(mf), AvailableQueue(availqueue), AA(aa) {
73
74    const TargetMachine &tm = mf.getTarget();
75    HazardRec = tm.getInstrInfo()->CreateTargetHazardRecognizer(&tm, this);
76  }
77
78  ~ScheduleDAGVLIW() {
79    delete HazardRec;
80    delete AvailableQueue;
81  }
82
83  void Schedule();
84
85private:
86  void releaseSucc(SUnit *SU, const SDep &D);
87  void releaseSuccessors(SUnit *SU);
88  void scheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
89  void listScheduleTopDown();
90};
91}  // end anonymous namespace
92
93/// Schedule - Schedule the DAG using list scheduling.
94void ScheduleDAGVLIW::Schedule() {
95  DEBUG(dbgs()
96        << "********** List Scheduling BB#" << BB->getNumber()
97        << " '" << BB->getName() << "' **********\n");
98
99  // Build the scheduling graph.
100  BuildSchedGraph(AA);
101
102  AvailableQueue->initNodes(SUnits);
103
104  listScheduleTopDown();
105
106  AvailableQueue->releaseState();
107}
108
109//===----------------------------------------------------------------------===//
110//  Top-Down Scheduling
111//===----------------------------------------------------------------------===//
112
113/// releaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
114/// the PendingQueue if the count reaches zero. Also update its cycle bound.
115void ScheduleDAGVLIW::releaseSucc(SUnit *SU, const SDep &D) {
116  SUnit *SuccSU = D.getSUnit();
117
118#ifndef NDEBUG
119  if (SuccSU->NumPredsLeft == 0) {
120    dbgs() << "*** Scheduling failed! ***\n";
121    SuccSU->dump(this);
122    dbgs() << " has been released too many times!\n";
123    llvm_unreachable(0);
124  }
125#endif
126  assert(!D.isWeak() && "unexpected artificial DAG edge");
127
128  --SuccSU->NumPredsLeft;
129
130  SuccSU->setDepthToAtLeast(SU->getDepth() + D.getLatency());
131
132  // If all the node's predecessors are scheduled, this node is ready
133  // to be scheduled. Ignore the special ExitSU node.
134  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) {
135    PendingQueue.push_back(SuccSU);
136  }
137}
138
139void ScheduleDAGVLIW::releaseSuccessors(SUnit *SU) {
140  // Top down: release successors.
141  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
142       I != E; ++I) {
143    assert(!I->isAssignedRegDep() &&
144           "The list-td scheduler doesn't yet support physreg dependencies!");
145
146    releaseSucc(SU, *I);
147  }
148}
149
150/// scheduleNodeTopDown - Add the node to the schedule. Decrement the pending
151/// count of its successors. If a successor pending count is zero, add it to
152/// the Available queue.
153void ScheduleDAGVLIW::scheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
154  DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
155  DEBUG(SU->dump(this));
156
157  Sequence.push_back(SU);
158  assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
159  SU->setDepthToAtLeast(CurCycle);
160
161  releaseSuccessors(SU);
162  SU->isScheduled = true;
163  AvailableQueue->scheduledNode(SU);
164}
165
166/// listScheduleTopDown - The main loop of list scheduling for top-down
167/// schedulers.
168void ScheduleDAGVLIW::listScheduleTopDown() {
169  unsigned CurCycle = 0;
170
171  // Release any successors of the special Entry node.
172  releaseSuccessors(&EntrySU);
173
174  // All leaves to AvailableQueue.
175  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
176    // It is available if it has no predecessors.
177    if (SUnits[i].Preds.empty()) {
178      AvailableQueue->push(&SUnits[i]);
179      SUnits[i].isAvailable = true;
180    }
181  }
182
183  // While AvailableQueue is not empty, grab the node with the highest
184  // priority. If it is not ready put it back.  Schedule the node.
185  std::vector<SUnit*> NotReady;
186  Sequence.reserve(SUnits.size());
187  while (!AvailableQueue->empty() || !PendingQueue.empty()) {
188    // Check to see if any of the pending instructions are ready to issue.  If
189    // so, add them to the available queue.
190    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
191      if (PendingQueue[i]->getDepth() == CurCycle) {
192        AvailableQueue->push(PendingQueue[i]);
193        PendingQueue[i]->isAvailable = true;
194        PendingQueue[i] = PendingQueue.back();
195        PendingQueue.pop_back();
196        --i; --e;
197      }
198      else {
199        assert(PendingQueue[i]->getDepth() > CurCycle && "Negative latency?");
200      }
201    }
202
203    // If there are no instructions available, don't try to issue anything, and
204    // don't advance the hazard recognizer.
205    if (AvailableQueue->empty()) {
206      // Reset DFA state.
207      AvailableQueue->scheduledNode(0);
208      ++CurCycle;
209      continue;
210    }
211
212    SUnit *FoundSUnit = 0;
213
214    bool HasNoopHazards = false;
215    while (!AvailableQueue->empty()) {
216      SUnit *CurSUnit = AvailableQueue->pop();
217
218      ScheduleHazardRecognizer::HazardType HT =
219        HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
220      if (HT == ScheduleHazardRecognizer::NoHazard) {
221        FoundSUnit = CurSUnit;
222        break;
223      }
224
225      // Remember if this is a noop hazard.
226      HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
227
228      NotReady.push_back(CurSUnit);
229    }
230
231    // Add the nodes that aren't ready back onto the available list.
232    if (!NotReady.empty()) {
233      AvailableQueue->push_all(NotReady);
234      NotReady.clear();
235    }
236
237    // If we found a node to schedule, do it now.
238    if (FoundSUnit) {
239      scheduleNodeTopDown(FoundSUnit, CurCycle);
240      HazardRec->EmitInstruction(FoundSUnit);
241
242      // If this is a pseudo-op node, we don't want to increment the current
243      // cycle.
244      if (FoundSUnit->Latency)  // Don't increment CurCycle for pseudo-ops!
245        ++CurCycle;
246    } else if (!HasNoopHazards) {
247      // Otherwise, we have a pipeline stall, but no other problem, just advance
248      // the current cycle and try again.
249      DEBUG(dbgs() << "*** Advancing cycle, no work to do\n");
250      HazardRec->AdvanceCycle();
251      ++NumStalls;
252      ++CurCycle;
253    } else {
254      // Otherwise, we have no instructions to issue and we have instructions
255      // that will fault if we don't do this right.  This is the case for
256      // processors without pipeline interlocks and other cases.
257      DEBUG(dbgs() << "*** Emitting noop\n");
258      HazardRec->EmitNoop();
259      Sequence.push_back(0);   // NULL here means noop
260      ++NumNoops;
261      ++CurCycle;
262    }
263  }
264
265#ifndef NDEBUG
266  VerifyScheduledSequence(/*isBottomUp=*/false);
267#endif
268}
269
270//===----------------------------------------------------------------------===//
271//                         Public Constructor Functions
272//===----------------------------------------------------------------------===//
273
274/// createVLIWDAGScheduler - This creates a top-down list scheduler.
275ScheduleDAGSDNodes *
276llvm::createVLIWDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
277  return new ScheduleDAGVLIW(*IS->MF, IS->AA, new ResourcePriorityQueue(IS));
278}
279