1/*
2 * FILE:	sha2.c
3 * AUTHOR:	Aaron D. Gifford - http://www.aarongifford.com/
4 *
5 * Copyright (c) 2000-2001, Aaron D. Gifford
6 * All rights reserved.
7 *
8 * Modified by Jelte Jansen to fit in ldns, and not clash with any
9 * system-defined SHA code.
10 * Changes:
11 * - Renamed (external) functions and constants to fit ldns style
12 * - Removed _End and _Data functions
13 * - Added ldns_shaX(data, len, digest) convenience functions
14 * - Removed prototypes of _Transform functions and made those static
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 *    notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 *    notice, this list of conditions and the following disclaimer in the
23 *    documentation and/or other materials provided with the distribution.
24 * 3. Neither the name of the copyright holder nor the names of contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
41 */
42
43#include <ldns/config.h>
44#include <string.h>	/* memcpy()/memset() or bcopy()/bzero() */
45#include <assert.h>	/* assert() */
46#include <ldns/sha2.h>
47
48/*
49 * ASSERT NOTE:
50 * Some sanity checking code is included using assert().  On my FreeBSD
51 * system, this additional code can be removed by compiling with NDEBUG
52 * defined.  Check your own systems manpage on assert() to see how to
53 * compile WITHOUT the sanity checking code on your system.
54 *
55 * UNROLLED TRANSFORM LOOP NOTE:
56 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
57 * loop version for the hash transform rounds (defined using macros
58 * later in this file).  Either define on the command line, for example:
59 *
60 *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
61 *
62 * or define below:
63 *
64 *   #define SHA2_UNROLL_TRANSFORM
65 *
66 */
67
68
69/*** SHA-256/384/512 Machine Architecture Definitions *****************/
70/*
71 * BYTE_ORDER NOTE:
72 *
73 * Please make sure that your system defines BYTE_ORDER.  If your
74 * architecture is little-endian, make sure it also defines
75 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
76 * equivilent.
77 *
78 * If your system does not define the above, then you can do so by
79 * hand like this:
80 *
81 *   #define LITTLE_ENDIAN 1234
82 *   #define BIG_ENDIAN    4321
83 *
84 * And for little-endian machines, add:
85 *
86 *   #define BYTE_ORDER LITTLE_ENDIAN
87 *
88 * Or for big-endian machines:
89 *
90 *   #define BYTE_ORDER BIG_ENDIAN
91 *
92 * The FreeBSD machine this was written on defines BYTE_ORDER
93 * appropriately by including <sys/types.h> (which in turn includes
94 * <machine/endian.h> where the appropriate definitions are actually
95 * made).
96 */
97#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
98#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
99#endif
100
101typedef uint8_t  sha2_byte;	/* Exactly 1 byte */
102typedef uint32_t sha2_word32;	/* Exactly 4 bytes */
103#ifdef S_SPLINT_S
104typedef unsigned long long sha2_word64; /* lint 8 bytes */
105#else
106typedef uint64_t sha2_word64;	/* Exactly 8 bytes */
107#endif
108
109/*** SHA-256/384/512 Various Length Definitions ***********************/
110/* NOTE: Most of these are in sha2.h */
111#define ldns_sha256_SHORT_BLOCK_LENGTH	(LDNS_SHA256_BLOCK_LENGTH - 8)
112#define ldns_sha384_SHORT_BLOCK_LENGTH	(LDNS_SHA384_BLOCK_LENGTH - 16)
113#define ldns_sha512_SHORT_BLOCK_LENGTH	(LDNS_SHA512_BLOCK_LENGTH - 16)
114
115
116/*** ENDIAN REVERSAL MACROS *******************************************/
117#if BYTE_ORDER == LITTLE_ENDIAN
118#define REVERSE32(w,x)	{ \
119	sha2_word32 tmp = (w); \
120	tmp = (tmp >> 16) | (tmp << 16); \
121	(x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
122}
123#ifndef S_SPLINT_S
124#define REVERSE64(w,x)	{ \
125	sha2_word64 tmp = (w); \
126	tmp = (tmp >> 32) | (tmp << 32); \
127	tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
128	      ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
129	(x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
130	      ((tmp & 0x0000ffff0000ffffULL) << 16); \
131}
132#else /* splint */
133#define REVERSE64(w,x) /* splint */
134#endif /* splint */
135#endif /* BYTE_ORDER == LITTLE_ENDIAN */
136
137/*
138 * Macro for incrementally adding the unsigned 64-bit integer n to the
139 * unsigned 128-bit integer (represented using a two-element array of
140 * 64-bit words):
141 */
142#define ADDINC128(w,n)	{ \
143	(w)[0] += (sha2_word64)(n); \
144	if ((w)[0] < (n)) { \
145		(w)[1]++; \
146	} \
147}
148#ifdef S_SPLINT_S
149#undef ADDINC128
150#define ADDINC128(w,n) /* splint */
151#endif
152
153/*
154 * Macros for copying blocks of memory and for zeroing out ranges
155 * of memory.  Using these macros makes it easy to switch from
156 * using memset()/memcpy() and using bzero()/bcopy().
157 *
158 * Please define either SHA2_USE_MEMSET_MEMCPY or define
159 * SHA2_USE_BZERO_BCOPY depending on which function set you
160 * choose to use:
161 */
162#if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
163/* Default to memset()/memcpy() if no option is specified */
164#define	SHA2_USE_MEMSET_MEMCPY	1
165#endif
166#if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
167/* Abort with an error if BOTH options are defined */
168#error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
169#endif
170
171#ifdef SHA2_USE_MEMSET_MEMCPY
172#define MEMSET_BZERO(p,l)	memset((p), 0, (l))
173#define MEMCPY_BCOPY(d,s,l)	memcpy((d), (s), (l))
174#endif
175#ifdef SHA2_USE_BZERO_BCOPY
176#define MEMSET_BZERO(p,l)	bzero((p), (l))
177#define MEMCPY_BCOPY(d,s,l)	bcopy((s), (d), (l))
178#endif
179
180
181/*** THE SIX LOGICAL FUNCTIONS ****************************************/
182/*
183 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
184 *
185 *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
186 *   S is a ROTATION) because the SHA-256/384/512 description document
187 *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
188 *   same "backwards" definition.
189 */
190/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
191#define R(b,x) 		((x) >> (b))
192/* 32-bit Rotate-right (used in SHA-256): */
193#define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
194/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
195#define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
196
197/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
198#define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
199#define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
200
201/* Four of six logical functions used in SHA-256: */
202#define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
203#define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
204#define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
205#define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
206
207/* Four of six logical functions used in SHA-384 and SHA-512: */
208#define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
209#define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
210#define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
211#define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
212
213/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
214/* Hash constant words K for SHA-256: */
215static const sha2_word32 K256[64] = {
216	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
217	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
218	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
219	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
220	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
221	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
222	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
223	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
224	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
225	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
226	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
227	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
228	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
229	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
230	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
231	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
232};
233
234/* initial hash value H for SHA-256: */
235static const sha2_word32 ldns_sha256_initial_hash_value[8] = {
236	0x6a09e667UL,
237	0xbb67ae85UL,
238	0x3c6ef372UL,
239	0xa54ff53aUL,
240	0x510e527fUL,
241	0x9b05688cUL,
242	0x1f83d9abUL,
243	0x5be0cd19UL
244};
245
246/* Hash constant words K for SHA-384 and SHA-512: */
247static const sha2_word64 K512[80] = {
248	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
249	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
250	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
251	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
252	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
253	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
254	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
255	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
256	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
257	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
258	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
259	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
260	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
261	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
262	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
263	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
264	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
265	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
266	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
267	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
268	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
269	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
270	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
271	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
272	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
273	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
274	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
275	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
276	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
277	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
278	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
279	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
280	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
281	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
282	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
283	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
284	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
285	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
286	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
287	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
288};
289
290/* initial hash value H for SHA-384 */
291static const sha2_word64 sha384_initial_hash_value[8] = {
292	0xcbbb9d5dc1059ed8ULL,
293	0x629a292a367cd507ULL,
294	0x9159015a3070dd17ULL,
295	0x152fecd8f70e5939ULL,
296	0x67332667ffc00b31ULL,
297	0x8eb44a8768581511ULL,
298	0xdb0c2e0d64f98fa7ULL,
299	0x47b5481dbefa4fa4ULL
300};
301
302/* initial hash value H for SHA-512 */
303static const sha2_word64 sha512_initial_hash_value[8] = {
304	0x6a09e667f3bcc908ULL,
305	0xbb67ae8584caa73bULL,
306	0x3c6ef372fe94f82bULL,
307	0xa54ff53a5f1d36f1ULL,
308	0x510e527fade682d1ULL,
309	0x9b05688c2b3e6c1fULL,
310	0x1f83d9abfb41bd6bULL,
311	0x5be0cd19137e2179ULL
312};
313
314/*** SHA-256: *********************************************************/
315void ldns_sha256_init(ldns_sha256_CTX* context) {
316	if (context == (ldns_sha256_CTX*)0) {
317		return;
318	}
319	MEMCPY_BCOPY(context->state, ldns_sha256_initial_hash_value, LDNS_SHA256_DIGEST_LENGTH);
320	MEMSET_BZERO(context->buffer, LDNS_SHA256_BLOCK_LENGTH);
321	context->bitcount = 0;
322}
323
324#ifdef SHA2_UNROLL_TRANSFORM
325
326/* Unrolled SHA-256 round macros: */
327
328#if BYTE_ORDER == LITTLE_ENDIAN
329
330#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
331	REVERSE32(*data++, W256[j]); \
332	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
333             K256[j] + W256[j]; \
334	(d) += T1; \
335	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
336	j++
337
338
339#else /* BYTE_ORDER == LITTLE_ENDIAN */
340
341#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
342	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
343	     K256[j] + (W256[j] = *data++); \
344	(d) += T1; \
345	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
346	j++
347
348#endif /* BYTE_ORDER == LITTLE_ENDIAN */
349
350#define ROUND256(a,b,c,d,e,f,g,h)	\
351	s0 = W256[(j+1)&0x0f]; \
352	s0 = sigma0_256(s0); \
353	s1 = W256[(j+14)&0x0f]; \
354	s1 = sigma1_256(s1); \
355	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
356	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
357	(d) += T1; \
358	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
359	j++
360
361static void ldns_sha256_Transform(ldns_sha256_CTX* context,
362                                  const sha2_word32* data) {
363	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
364	sha2_word32	T1, *W256;
365	int		j;
366
367	W256 = (sha2_word32*)context->buffer;
368
369	/* initialize registers with the prev. intermediate value */
370	a = context->state[0];
371	b = context->state[1];
372	c = context->state[2];
373	d = context->state[3];
374	e = context->state[4];
375	f = context->state[5];
376	g = context->state[6];
377	h = context->state[7];
378
379	j = 0;
380	do {
381		/* Rounds 0 to 15 (unrolled): */
382		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
383		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
384		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
385		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
386		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
387		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
388		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
389		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
390	} while (j < 16);
391
392	/* Now for the remaining rounds to 64: */
393	do {
394		ROUND256(a,b,c,d,e,f,g,h);
395		ROUND256(h,a,b,c,d,e,f,g);
396		ROUND256(g,h,a,b,c,d,e,f);
397		ROUND256(f,g,h,a,b,c,d,e);
398		ROUND256(e,f,g,h,a,b,c,d);
399		ROUND256(d,e,f,g,h,a,b,c);
400		ROUND256(c,d,e,f,g,h,a,b);
401		ROUND256(b,c,d,e,f,g,h,a);
402	} while (j < 64);
403
404	/* Compute the current intermediate hash value */
405	context->state[0] += a;
406	context->state[1] += b;
407	context->state[2] += c;
408	context->state[3] += d;
409	context->state[4] += e;
410	context->state[5] += f;
411	context->state[6] += g;
412	context->state[7] += h;
413
414	/* Clean up */
415	a = b = c = d = e = f = g = h = T1 = 0;
416}
417
418#else /* SHA2_UNROLL_TRANSFORM */
419
420static void ldns_sha256_Transform(ldns_sha256_CTX* context,
421                                  const sha2_word32* data) {
422	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
423	sha2_word32	T1, T2, *W256;
424	int		j;
425
426	W256 = (sha2_word32*)context->buffer;
427
428	/* initialize registers with the prev. intermediate value */
429	a = context->state[0];
430	b = context->state[1];
431	c = context->state[2];
432	d = context->state[3];
433	e = context->state[4];
434	f = context->state[5];
435	g = context->state[6];
436	h = context->state[7];
437
438	j = 0;
439	do {
440#if BYTE_ORDER == LITTLE_ENDIAN
441		/* Copy data while converting to host byte order */
442		REVERSE32(*data++,W256[j]);
443		/* Apply the SHA-256 compression function to update a..h */
444		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
445#else /* BYTE_ORDER == LITTLE_ENDIAN */
446		/* Apply the SHA-256 compression function to update a..h with copy */
447		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
448#endif /* BYTE_ORDER == LITTLE_ENDIAN */
449		T2 = Sigma0_256(a) + Maj(a, b, c);
450		h = g;
451		g = f;
452		f = e;
453		e = d + T1;
454		d = c;
455		c = b;
456		b = a;
457		a = T1 + T2;
458
459		j++;
460	} while (j < 16);
461
462	do {
463		/* Part of the message block expansion: */
464		s0 = W256[(j+1)&0x0f];
465		s0 = sigma0_256(s0);
466		s1 = W256[(j+14)&0x0f];
467		s1 = sigma1_256(s1);
468
469		/* Apply the SHA-256 compression function to update a..h */
470		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
471		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
472		T2 = Sigma0_256(a) + Maj(a, b, c);
473		h = g;
474		g = f;
475		f = e;
476		e = d + T1;
477		d = c;
478		c = b;
479		b = a;
480		a = T1 + T2;
481
482		j++;
483	} while (j < 64);
484
485	/* Compute the current intermediate hash value */
486	context->state[0] += a;
487	context->state[1] += b;
488	context->state[2] += c;
489	context->state[3] += d;
490	context->state[4] += e;
491	context->state[5] += f;
492	context->state[6] += g;
493	context->state[7] += h;
494
495	/* Clean up */
496	a = b = c = d = e = f = g = h = T1 = T2 = 0;
497}
498
499#endif /* SHA2_UNROLL_TRANSFORM */
500
501void ldns_sha256_update(ldns_sha256_CTX* context, const sha2_byte *data, size_t len) {
502	size_t freespace, usedspace;
503
504	if (len == 0) {
505		/* Calling with no data is valid - we do nothing */
506		return;
507	}
508
509	/* Sanity check: */
510	assert(context != (ldns_sha256_CTX*)0 && data != (sha2_byte*)0);
511
512	usedspace = (context->bitcount >> 3) % LDNS_SHA256_BLOCK_LENGTH;
513	if (usedspace > 0) {
514		/* Calculate how much free space is available in the buffer */
515		freespace = LDNS_SHA256_BLOCK_LENGTH - usedspace;
516
517		if (len >= freespace) {
518			/* Fill the buffer completely and process it */
519			MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
520			context->bitcount += freespace << 3;
521			len -= freespace;
522			data += freespace;
523			ldns_sha256_Transform(context, (sha2_word32*)context->buffer);
524		} else {
525			/* The buffer is not yet full */
526			MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
527			context->bitcount += len << 3;
528			/* Clean up: */
529			usedspace = freespace = 0;
530			return;
531		}
532	}
533	while (len >= LDNS_SHA256_BLOCK_LENGTH) {
534		/* Process as many complete blocks as we can */
535		ldns_sha256_Transform(context, (sha2_word32*)data);
536		context->bitcount += LDNS_SHA256_BLOCK_LENGTH << 3;
537		len -= LDNS_SHA256_BLOCK_LENGTH;
538		data += LDNS_SHA256_BLOCK_LENGTH;
539	}
540	if (len > 0) {
541		/* There's left-overs, so save 'em */
542		MEMCPY_BCOPY(context->buffer, data, len);
543		context->bitcount += len << 3;
544	}
545	/* Clean up: */
546	usedspace = freespace = 0;
547}
548
549void ldns_sha256_final(sha2_byte digest[], ldns_sha256_CTX* context) {
550	sha2_word32	*d = (sha2_word32*)digest;
551	size_t usedspace;
552
553	/* Sanity check: */
554	assert(context != (ldns_sha256_CTX*)0);
555
556	/* If no digest buffer is passed, we don't bother doing this: */
557	if (digest != (sha2_byte*)0) {
558		usedspace = (context->bitcount >> 3) % LDNS_SHA256_BLOCK_LENGTH;
559#if BYTE_ORDER == LITTLE_ENDIAN
560		/* Convert FROM host byte order */
561		REVERSE64(context->bitcount,context->bitcount);
562#endif
563		if (usedspace > 0) {
564			/* Begin padding with a 1 bit: */
565			context->buffer[usedspace++] = 0x80;
566
567			if (usedspace <= ldns_sha256_SHORT_BLOCK_LENGTH) {
568				/* Set-up for the last transform: */
569				MEMSET_BZERO(&context->buffer[usedspace], ldns_sha256_SHORT_BLOCK_LENGTH - usedspace);
570			} else {
571				if (usedspace < LDNS_SHA256_BLOCK_LENGTH) {
572					MEMSET_BZERO(&context->buffer[usedspace], LDNS_SHA256_BLOCK_LENGTH - usedspace);
573				}
574				/* Do second-to-last transform: */
575				ldns_sha256_Transform(context, (sha2_word32*)context->buffer);
576
577				/* And set-up for the last transform: */
578				MEMSET_BZERO(context->buffer, ldns_sha256_SHORT_BLOCK_LENGTH);
579			}
580		} else {
581			/* Set-up for the last transform: */
582			MEMSET_BZERO(context->buffer, ldns_sha256_SHORT_BLOCK_LENGTH);
583
584			/* Begin padding with a 1 bit: */
585			*context->buffer = 0x80;
586		}
587		/* Set the bit count: */
588		*(sha2_word64*)&context->buffer[ldns_sha256_SHORT_BLOCK_LENGTH] = context->bitcount;
589
590		/* final transform: */
591		ldns_sha256_Transform(context, (sha2_word32*)context->buffer);
592
593#if BYTE_ORDER == LITTLE_ENDIAN
594		{
595			/* Convert TO host byte order */
596			int	j;
597			for (j = 0; j < 8; j++) {
598				REVERSE32(context->state[j],context->state[j]);
599				*d++ = context->state[j];
600			}
601		}
602#else
603		MEMCPY_BCOPY(d, context->state, LDNS_SHA256_DIGEST_LENGTH);
604#endif
605	}
606
607	/* Clean up state data: */
608	MEMSET_BZERO(context, sizeof(ldns_sha256_CTX));
609	usedspace = 0;
610}
611
612unsigned char *
613ldns_sha256(unsigned char *data, unsigned int data_len, unsigned char *digest)
614{
615    ldns_sha256_CTX ctx;
616    ldns_sha256_init(&ctx);
617    ldns_sha256_update(&ctx, data, data_len);
618    ldns_sha256_final(digest, &ctx);
619    return digest;
620}
621
622/*** SHA-512: *********************************************************/
623void ldns_sha512_init(ldns_sha512_CTX* context) {
624	if (context == (ldns_sha512_CTX*)0) {
625		return;
626	}
627	MEMCPY_BCOPY(context->state, sha512_initial_hash_value, LDNS_SHA512_DIGEST_LENGTH);
628	MEMSET_BZERO(context->buffer, LDNS_SHA512_BLOCK_LENGTH);
629	context->bitcount[0] = context->bitcount[1] =  0;
630}
631
632#ifdef SHA2_UNROLL_TRANSFORM
633
634/* Unrolled SHA-512 round macros: */
635#if BYTE_ORDER == LITTLE_ENDIAN
636
637#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
638	REVERSE64(*data++, W512[j]); \
639	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
640             K512[j] + W512[j]; \
641	(d) += T1, \
642	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
643	j++
644
645
646#else /* BYTE_ORDER == LITTLE_ENDIAN */
647
648#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
649	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
650             K512[j] + (W512[j] = *data++); \
651	(d) += T1; \
652	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
653	j++
654
655#endif /* BYTE_ORDER == LITTLE_ENDIAN */
656
657#define ROUND512(a,b,c,d,e,f,g,h)	\
658	s0 = W512[(j+1)&0x0f]; \
659	s0 = sigma0_512(s0); \
660	s1 = W512[(j+14)&0x0f]; \
661	s1 = sigma1_512(s1); \
662	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
663             (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
664	(d) += T1; \
665	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
666	j++
667
668static void ldns_sha512_Transform(ldns_sha512_CTX* context,
669                                  const sha2_word64* data) {
670	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
671	sha2_word64	T1, *W512 = (sha2_word64*)context->buffer;
672	int		j;
673
674	/* initialize registers with the prev. intermediate value */
675	a = context->state[0];
676	b = context->state[1];
677	c = context->state[2];
678	d = context->state[3];
679	e = context->state[4];
680	f = context->state[5];
681	g = context->state[6];
682	h = context->state[7];
683
684	j = 0;
685	do {
686		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
687		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
688		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
689		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
690		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
691		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
692		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
693		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
694	} while (j < 16);
695
696	/* Now for the remaining rounds up to 79: */
697	do {
698		ROUND512(a,b,c,d,e,f,g,h);
699		ROUND512(h,a,b,c,d,e,f,g);
700		ROUND512(g,h,a,b,c,d,e,f);
701		ROUND512(f,g,h,a,b,c,d,e);
702		ROUND512(e,f,g,h,a,b,c,d);
703		ROUND512(d,e,f,g,h,a,b,c);
704		ROUND512(c,d,e,f,g,h,a,b);
705		ROUND512(b,c,d,e,f,g,h,a);
706	} while (j < 80);
707
708	/* Compute the current intermediate hash value */
709	context->state[0] += a;
710	context->state[1] += b;
711	context->state[2] += c;
712	context->state[3] += d;
713	context->state[4] += e;
714	context->state[5] += f;
715	context->state[6] += g;
716	context->state[7] += h;
717
718	/* Clean up */
719	a = b = c = d = e = f = g = h = T1 = 0;
720}
721
722#else /* SHA2_UNROLL_TRANSFORM */
723
724static void ldns_sha512_Transform(ldns_sha512_CTX* context,
725                                  const sha2_word64* data) {
726	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
727	sha2_word64	T1, T2, *W512 = (sha2_word64*)context->buffer;
728	int		j;
729
730	/* initialize registers with the prev. intermediate value */
731	a = context->state[0];
732	b = context->state[1];
733	c = context->state[2];
734	d = context->state[3];
735	e = context->state[4];
736	f = context->state[5];
737	g = context->state[6];
738	h = context->state[7];
739
740	j = 0;
741	do {
742#if BYTE_ORDER == LITTLE_ENDIAN
743		/* Convert TO host byte order */
744		REVERSE64(*data++, W512[j]);
745		/* Apply the SHA-512 compression function to update a..h */
746		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
747#else /* BYTE_ORDER == LITTLE_ENDIAN */
748		/* Apply the SHA-512 compression function to update a..h with copy */
749		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
750#endif /* BYTE_ORDER == LITTLE_ENDIAN */
751		T2 = Sigma0_512(a) + Maj(a, b, c);
752		h = g;
753		g = f;
754		f = e;
755		e = d + T1;
756		d = c;
757		c = b;
758		b = a;
759		a = T1 + T2;
760
761		j++;
762	} while (j < 16);
763
764	do {
765		/* Part of the message block expansion: */
766		s0 = W512[(j+1)&0x0f];
767		s0 = sigma0_512(s0);
768		s1 = W512[(j+14)&0x0f];
769		s1 =  sigma1_512(s1);
770
771		/* Apply the SHA-512 compression function to update a..h */
772		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
773		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
774		T2 = Sigma0_512(a) + Maj(a, b, c);
775		h = g;
776		g = f;
777		f = e;
778		e = d + T1;
779		d = c;
780		c = b;
781		b = a;
782		a = T1 + T2;
783
784		j++;
785	} while (j < 80);
786
787	/* Compute the current intermediate hash value */
788	context->state[0] += a;
789	context->state[1] += b;
790	context->state[2] += c;
791	context->state[3] += d;
792	context->state[4] += e;
793	context->state[5] += f;
794	context->state[6] += g;
795	context->state[7] += h;
796
797	/* Clean up */
798	a = b = c = d = e = f = g = h = T1 = T2 = 0;
799}
800
801#endif /* SHA2_UNROLL_TRANSFORM */
802
803void ldns_sha512_update(ldns_sha512_CTX* context, const sha2_byte *data, size_t len) {
804	size_t freespace, usedspace;
805
806	if (len == 0) {
807		/* Calling with no data is valid - we do nothing */
808		return;
809	}
810
811	/* Sanity check: */
812	assert(context != (ldns_sha512_CTX*)0 && data != (sha2_byte*)0);
813
814	usedspace = (context->bitcount[0] >> 3) % LDNS_SHA512_BLOCK_LENGTH;
815	if (usedspace > 0) {
816		/* Calculate how much free space is available in the buffer */
817		freespace = LDNS_SHA512_BLOCK_LENGTH - usedspace;
818
819		if (len >= freespace) {
820			/* Fill the buffer completely and process it */
821			MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
822			ADDINC128(context->bitcount, freespace << 3);
823			len -= freespace;
824			data += freespace;
825			ldns_sha512_Transform(context, (sha2_word64*)context->buffer);
826		} else {
827			/* The buffer is not yet full */
828			MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
829			ADDINC128(context->bitcount, len << 3);
830			/* Clean up: */
831			usedspace = freespace = 0;
832			return;
833		}
834	}
835	while (len >= LDNS_SHA512_BLOCK_LENGTH) {
836		/* Process as many complete blocks as we can */
837		ldns_sha512_Transform(context, (sha2_word64*)data);
838		ADDINC128(context->bitcount, LDNS_SHA512_BLOCK_LENGTH << 3);
839		len -= LDNS_SHA512_BLOCK_LENGTH;
840		data += LDNS_SHA512_BLOCK_LENGTH;
841	}
842	if (len > 0) {
843		/* There's left-overs, so save 'em */
844		MEMCPY_BCOPY(context->buffer, data, len);
845		ADDINC128(context->bitcount, len << 3);
846	}
847	/* Clean up: */
848	usedspace = freespace = 0;
849}
850
851static void ldns_sha512_Last(ldns_sha512_CTX* context) {
852	size_t usedspace;
853
854	usedspace = (context->bitcount[0] >> 3) % LDNS_SHA512_BLOCK_LENGTH;
855#if BYTE_ORDER == LITTLE_ENDIAN
856	/* Convert FROM host byte order */
857	REVERSE64(context->bitcount[0],context->bitcount[0]);
858	REVERSE64(context->bitcount[1],context->bitcount[1]);
859#endif
860	if (usedspace > 0) {
861		/* Begin padding with a 1 bit: */
862		context->buffer[usedspace++] = 0x80;
863
864		if (usedspace <= ldns_sha512_SHORT_BLOCK_LENGTH) {
865			/* Set-up for the last transform: */
866			MEMSET_BZERO(&context->buffer[usedspace], ldns_sha512_SHORT_BLOCK_LENGTH - usedspace);
867		} else {
868			if (usedspace < LDNS_SHA512_BLOCK_LENGTH) {
869				MEMSET_BZERO(&context->buffer[usedspace], LDNS_SHA512_BLOCK_LENGTH - usedspace);
870			}
871			/* Do second-to-last transform: */
872			ldns_sha512_Transform(context, (sha2_word64*)context->buffer);
873
874			/* And set-up for the last transform: */
875			MEMSET_BZERO(context->buffer, LDNS_SHA512_BLOCK_LENGTH - 2);
876		}
877	} else {
878		/* Prepare for final transform: */
879		MEMSET_BZERO(context->buffer, ldns_sha512_SHORT_BLOCK_LENGTH);
880
881		/* Begin padding with a 1 bit: */
882		*context->buffer = 0x80;
883	}
884	/* Store the length of input data (in bits): */
885	*(sha2_word64*)&context->buffer[ldns_sha512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
886	*(sha2_word64*)&context->buffer[ldns_sha512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
887
888	/* final transform: */
889	ldns_sha512_Transform(context, (sha2_word64*)context->buffer);
890}
891
892void ldns_sha512_final(sha2_byte digest[], ldns_sha512_CTX* context) {
893	sha2_word64	*d = (sha2_word64*)digest;
894
895	/* Sanity check: */
896	assert(context != (ldns_sha512_CTX*)0);
897
898	/* If no digest buffer is passed, we don't bother doing this: */
899	if (digest != (sha2_byte*)0) {
900		ldns_sha512_Last(context);
901
902		/* Save the hash data for output: */
903#if BYTE_ORDER == LITTLE_ENDIAN
904		{
905			/* Convert TO host byte order */
906			int	j;
907			for (j = 0; j < 8; j++) {
908				REVERSE64(context->state[j],context->state[j]);
909				*d++ = context->state[j];
910			}
911		}
912#else
913		MEMCPY_BCOPY(d, context->state, LDNS_SHA512_DIGEST_LENGTH);
914#endif
915	}
916
917	/* Zero out state data */
918	MEMSET_BZERO(context, sizeof(ldns_sha512_CTX));
919}
920
921unsigned char *
922ldns_sha512(unsigned char *data, unsigned int data_len, unsigned char *digest)
923{
924    ldns_sha512_CTX ctx;
925    ldns_sha512_init(&ctx);
926    ldns_sha512_update(&ctx, data, data_len);
927    ldns_sha512_final(digest, &ctx);
928    return digest;
929}
930
931/*** SHA-384: *********************************************************/
932void ldns_sha384_init(ldns_sha384_CTX* context) {
933	if (context == (ldns_sha384_CTX*)0) {
934		return;
935	}
936	MEMCPY_BCOPY(context->state, sha384_initial_hash_value, LDNS_SHA512_DIGEST_LENGTH);
937	MEMSET_BZERO(context->buffer, LDNS_SHA384_BLOCK_LENGTH);
938	context->bitcount[0] = context->bitcount[1] = 0;
939}
940
941void ldns_sha384_update(ldns_sha384_CTX* context, const sha2_byte* data, size_t len) {
942	ldns_sha512_update((ldns_sha512_CTX*)context, data, len);
943}
944
945void ldns_sha384_final(sha2_byte digest[], ldns_sha384_CTX* context) {
946	sha2_word64	*d = (sha2_word64*)digest;
947
948	/* Sanity check: */
949	assert(context != (ldns_sha384_CTX*)0);
950
951	/* If no digest buffer is passed, we don't bother doing this: */
952	if (digest != (sha2_byte*)0) {
953		ldns_sha512_Last((ldns_sha512_CTX*)context);
954
955		/* Save the hash data for output: */
956#if BYTE_ORDER == LITTLE_ENDIAN
957		{
958			/* Convert TO host byte order */
959			int	j;
960			for (j = 0; j < 6; j++) {
961				REVERSE64(context->state[j],context->state[j]);
962				*d++ = context->state[j];
963			}
964		}
965#else
966		MEMCPY_BCOPY(d, context->state, LDNS_SHA384_DIGEST_LENGTH);
967#endif
968	}
969
970	/* Zero out state data */
971	MEMSET_BZERO(context, sizeof(ldns_sha384_CTX));
972}
973
974unsigned char *
975ldns_sha384(unsigned char *data, unsigned int data_len, unsigned char *digest)
976{
977    ldns_sha384_CTX ctx;
978    ldns_sha384_init(&ctx);
979    ldns_sha384_update(&ctx, data, data_len);
980    ldns_sha384_final(digest, &ctx);
981    return digest;
982}
983