1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3   Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999,
4   2000, 2001, 2003, 2004
5   Free Software Foundation, Inc.
6
7   This file is part of GDB.
8
9   This program is free software; you can redistribute it and/or modify
10   it under the terms of the GNU General Public License as published by
11   the Free Software Foundation; either version 2 of the License, or
12   (at your option) any later version.
13
14   This program is distributed in the hope that it will be useful,
15   but WITHOUT ANY WARRANTY; without even the implied warranty of
16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17   GNU General Public License for more details.
18
19   You should have received a copy of the GNU General Public License
20   along with this program; if not, write to the Free Software
21   Foundation, Inc., 59 Temple Place - Suite 330,
22   Boston, MA 02111-1307, USA.  */
23
24#include "defs.h"
25
26#include "elf/external.h"
27#include "elf/common.h"
28#include "elf/mips.h"
29
30#include "symtab.h"
31#include "bfd.h"
32#include "symfile.h"
33#include "objfiles.h"
34#include "gdbcore.h"
35#include "target.h"
36#include "inferior.h"
37
38#include "solist.h"
39#include "solib-svr4.h"
40
41#include "bfd-target.h"
42#include "exec.h"
43
44#ifndef SVR4_FETCH_LINK_MAP_OFFSETS
45#define SVR4_FETCH_LINK_MAP_OFFSETS() svr4_fetch_link_map_offsets ()
46#endif
47
48static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
49static struct link_map_offsets *legacy_fetch_link_map_offsets (void);
50static int svr4_have_link_map_offsets (void);
51
52/* fetch_link_map_offsets_gdbarch_data is a handle used to obtain the
53   architecture specific link map offsets fetching function.  */
54
55static struct gdbarch_data *fetch_link_map_offsets_gdbarch_data;
56
57/* legacy_svr4_fetch_link_map_offsets_hook is a pointer to a function
58   which is used to fetch link map offsets.  It will only be set
59   by solib-legacy.c, if at all. */
60
61struct link_map_offsets *(*legacy_svr4_fetch_link_map_offsets_hook)(void) = 0;
62
63/* Link map info to include in an allocated so_list entry */
64
65struct lm_info
66  {
67    /* Pointer to copy of link map from inferior.  The type is char *
68       rather than void *, so that we may use byte offsets to find the
69       various fields without the need for a cast.  */
70    char *lm;
71  };
72
73/* On SVR4 systems, a list of symbols in the dynamic linker where
74   GDB can try to place a breakpoint to monitor shared library
75   events.
76
77   If none of these symbols are found, or other errors occur, then
78   SVR4 systems will fall back to using a symbol as the "startup
79   mapping complete" breakpoint address.  */
80
81static char *solib_break_names[] =
82{
83  "r_debug_state",
84  "_r_debug_state",
85  "_dl_debug_state",
86  "rtld_db_dlactivity",
87  "_rtld_debug_state",
88
89  /* On the 64-bit PowerPC, the linker symbol with the same name as
90     the C function points to a function descriptor, not to the entry
91     point.  The linker symbol whose name is the C function name
92     prefixed with a '.' points to the function's entry point.  So
93     when we look through this table, we ignore symbols that point
94     into the data section (thus skipping the descriptor's symbol),
95     and eventually try this one, giving us the real entry point
96     address.  */
97  ".r_debug_state",
98  "._dl_debug_state",
99
100  NULL
101};
102
103#define BKPT_AT_SYMBOL 1
104
105#if defined (BKPT_AT_SYMBOL)
106static char *bkpt_names[] =
107{
108#ifdef SOLIB_BKPT_NAME
109  SOLIB_BKPT_NAME,		/* Prefer configured name if it exists. */
110#endif
111  "_start",
112  "__start",
113  "main",
114  NULL
115};
116#endif
117
118static char *main_name_list[] =
119{
120  "main_$main",
121  NULL
122};
123
124/* Macro to extract an address from a solib structure.  When GDB is
125   configured for some 32-bit targets (e.g. Solaris 2.7 sparc), BFD is
126   configured to handle 64-bit targets, so CORE_ADDR is 64 bits.  We
127   have to extract only the significant bits of addresses to get the
128   right address when accessing the core file BFD.
129
130   Assume that the address is unsigned.  */
131
132#define SOLIB_EXTRACT_ADDRESS(MEMBER) \
133	extract_unsigned_integer (&(MEMBER), sizeof (MEMBER))
134
135/* local data declarations */
136
137/* link map access functions */
138
139static CORE_ADDR
140LM_ADDR (struct so_list *so)
141{
142  struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
143
144  return (CORE_ADDR) extract_signed_integer (so->lm_info->lm + lmo->l_addr_offset,
145					     lmo->l_addr_size);
146}
147
148static CORE_ADDR
149LM_NEXT (struct so_list *so)
150{
151  struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
152
153  /* Assume that the address is unsigned.  */
154  return extract_unsigned_integer (so->lm_info->lm + lmo->l_next_offset,
155				   lmo->l_next_size);
156}
157
158static CORE_ADDR
159LM_NAME (struct so_list *so)
160{
161  struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
162
163  /* Assume that the address is unsigned.  */
164  return extract_unsigned_integer (so->lm_info->lm + lmo->l_name_offset,
165				   lmo->l_name_size);
166}
167
168static int
169IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
170{
171  struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
172
173  /* Assume that the address is unsigned.  */
174  return extract_unsigned_integer (so->lm_info->lm + lmo->l_prev_offset,
175				   lmo->l_prev_size) == 0;
176}
177
178static CORE_ADDR debug_base;	/* Base of dynamic linker structures */
179static CORE_ADDR breakpoint_addr;	/* Address where end bkpt is set */
180
181/* Local function prototypes */
182
183static int match_main (char *);
184
185static CORE_ADDR bfd_lookup_symbol (bfd *, char *, flagword);
186
187/*
188
189   LOCAL FUNCTION
190
191   bfd_lookup_symbol -- lookup the value for a specific symbol
192
193   SYNOPSIS
194
195   CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname, flagword sect_flags)
196
197   DESCRIPTION
198
199   An expensive way to lookup the value of a single symbol for
200   bfd's that are only temporary anyway.  This is used by the
201   shared library support to find the address of the debugger
202   interface structures in the shared library.
203
204   If SECT_FLAGS is non-zero, only match symbols in sections whose
205   flags include all those in SECT_FLAGS.
206
207   Note that 0 is specifically allowed as an error return (no
208   such symbol).
209 */
210
211static CORE_ADDR
212bfd_lookup_symbol (bfd *abfd, char *symname, flagword sect_flags)
213{
214  long storage_needed;
215  asymbol *sym;
216  asymbol **symbol_table;
217  unsigned int number_of_symbols;
218  unsigned int i;
219  struct cleanup *back_to;
220  CORE_ADDR symaddr = 0;
221
222  storage_needed = bfd_get_symtab_upper_bound (abfd);
223
224  if (storage_needed > 0)
225    {
226      symbol_table = (asymbol **) xmalloc (storage_needed);
227      back_to = make_cleanup (xfree, symbol_table);
228      number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
229
230      for (i = 0; i < number_of_symbols; i++)
231	{
232	  sym = *symbol_table++;
233	  if (strcmp (sym->name, symname) == 0
234              && (sym->section->flags & sect_flags) == sect_flags)
235	    {
236	      /* Bfd symbols are section relative. */
237	      symaddr = sym->value + sym->section->vma;
238	      break;
239	    }
240	}
241      do_cleanups (back_to);
242    }
243
244  if (symaddr)
245    return symaddr;
246
247  /* On FreeBSD, the dynamic linker is stripped by default.  So we'll
248     have to check the dynamic string table too.  */
249
250  storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
251
252  if (storage_needed > 0)
253    {
254      symbol_table = (asymbol **) xmalloc (storage_needed);
255      back_to = make_cleanup (xfree, symbol_table);
256      number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
257
258      for (i = 0; i < number_of_symbols; i++)
259	{
260	  sym = *symbol_table++;
261
262	  if (strcmp (sym->name, symname) == 0
263              && (sym->section->flags & sect_flags) == sect_flags)
264	    {
265	      /* Bfd symbols are section relative. */
266	      symaddr = sym->value + sym->section->vma;
267	      break;
268	    }
269	}
270      do_cleanups (back_to);
271    }
272
273  return symaddr;
274}
275
276#ifdef HANDLE_SVR4_EXEC_EMULATORS
277
278/*
279   Solaris BCP (the part of Solaris which allows it to run SunOS4
280   a.out files) throws in another wrinkle. Solaris does not fill
281   in the usual a.out link map structures when running BCP programs,
282   the only way to get at them is via groping around in the dynamic
283   linker.
284   The dynamic linker and it's structures are located in the shared
285   C library, which gets run as the executable's "interpreter" by
286   the kernel.
287
288   Note that we can assume nothing about the process state at the time
289   we need to find these structures.  We may be stopped on the first
290   instruction of the interpreter (C shared library), the first
291   instruction of the executable itself, or somewhere else entirely
292   (if we attached to the process for example).
293 */
294
295static char *debug_base_symbols[] =
296{
297  "r_debug",			/* Solaris 2.3 */
298  "_r_debug",			/* Solaris 2.1, 2.2 */
299  NULL
300};
301
302static int look_for_base (int, CORE_ADDR);
303
304/*
305
306   LOCAL FUNCTION
307
308   look_for_base -- examine file for each mapped address segment
309
310   SYNOPSYS
311
312   static int look_for_base (int fd, CORE_ADDR baseaddr)
313
314   DESCRIPTION
315
316   This function is passed to proc_iterate_over_mappings, which
317   causes it to get called once for each mapped address space, with
318   an open file descriptor for the file mapped to that space, and the
319   base address of that mapped space.
320
321   Our job is to find the debug base symbol in the file that this
322   fd is open on, if it exists, and if so, initialize the dynamic
323   linker structure base address debug_base.
324
325   Note that this is a computationally expensive proposition, since
326   we basically have to open a bfd on every call, so we specifically
327   avoid opening the exec file.
328 */
329
330static int
331look_for_base (int fd, CORE_ADDR baseaddr)
332{
333  bfd *interp_bfd;
334  CORE_ADDR address = 0;
335  char **symbolp;
336
337  /* If the fd is -1, then there is no file that corresponds to this
338     mapped memory segment, so skip it.  Also, if the fd corresponds
339     to the exec file, skip it as well. */
340
341  if (fd == -1
342      || (exec_bfd != NULL
343	  && fdmatch (fileno ((FILE *) (exec_bfd->iostream)), fd)))
344    {
345      return (0);
346    }
347
348  /* Try to open whatever random file this fd corresponds to.  Note that
349     we have no way currently to find the filename.  Don't gripe about
350     any problems we might have, just fail. */
351
352  if ((interp_bfd = bfd_fdopenr ("unnamed", gnutarget, fd)) == NULL)
353    {
354      return (0);
355    }
356  if (!bfd_check_format (interp_bfd, bfd_object))
357    {
358      /* FIXME-leak: on failure, might not free all memory associated with
359         interp_bfd.  */
360      bfd_close (interp_bfd);
361      return (0);
362    }
363
364  /* Now try to find our debug base symbol in this file, which we at
365     least know to be a valid ELF executable or shared library. */
366
367  for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
368    {
369      address = bfd_lookup_symbol (interp_bfd, *symbolp, 0);
370      if (address != 0)
371	{
372	  break;
373	}
374    }
375  if (address == 0)
376    {
377      /* FIXME-leak: on failure, might not free all memory associated with
378         interp_bfd.  */
379      bfd_close (interp_bfd);
380      return (0);
381    }
382
383  /* Eureka!  We found the symbol.  But now we may need to relocate it
384     by the base address.  If the symbol's value is less than the base
385     address of the shared library, then it hasn't yet been relocated
386     by the dynamic linker, and we have to do it ourself.  FIXME: Note
387     that we make the assumption that the first segment that corresponds
388     to the shared library has the base address to which the library
389     was relocated. */
390
391  if (address < baseaddr)
392    {
393      address += baseaddr;
394    }
395  debug_base = address;
396  /* FIXME-leak: on failure, might not free all memory associated with
397     interp_bfd.  */
398  bfd_close (interp_bfd);
399  return (1);
400}
401#endif /* HANDLE_SVR4_EXEC_EMULATORS */
402
403/*
404
405   LOCAL FUNCTION
406
407   elf_locate_base -- locate the base address of dynamic linker structs
408   for SVR4 elf targets.
409
410   SYNOPSIS
411
412   CORE_ADDR elf_locate_base (void)
413
414   DESCRIPTION
415
416   For SVR4 elf targets the address of the dynamic linker's runtime
417   structure is contained within the dynamic info section in the
418   executable file.  The dynamic section is also mapped into the
419   inferior address space.  Because the runtime loader fills in the
420   real address before starting the inferior, we have to read in the
421   dynamic info section from the inferior address space.
422   If there are any errors while trying to find the address, we
423   silently return 0, otherwise the found address is returned.
424
425 */
426
427static CORE_ADDR
428elf_locate_base (void)
429{
430  struct bfd_section *dyninfo_sect;
431  int dyninfo_sect_size;
432  CORE_ADDR dyninfo_addr;
433  char *buf;
434  char *bufend;
435  int arch_size;
436
437  /* Find the start address of the .dynamic section.  */
438  dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
439  if (dyninfo_sect == NULL)
440    return 0;
441  dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect);
442
443  /* Read in .dynamic section, silently ignore errors.  */
444  dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect);
445  buf = alloca (dyninfo_sect_size);
446  if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size))
447    return 0;
448
449  /* Find the DT_DEBUG entry in the the .dynamic section.
450     For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
451     no DT_DEBUG entries.  */
452
453  arch_size = bfd_get_arch_size (exec_bfd);
454  if (arch_size == -1)	/* failure */
455    return 0;
456
457  if (arch_size == 32)
458    { /* 32-bit elf */
459      for (bufend = buf + dyninfo_sect_size;
460	   buf < bufend;
461	   buf += sizeof (Elf32_External_Dyn))
462	{
463	  Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf;
464	  long dyn_tag;
465	  CORE_ADDR dyn_ptr;
466
467	  dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
468	  if (dyn_tag == DT_NULL)
469	    break;
470	  else if (dyn_tag == DT_DEBUG)
471	    {
472	      dyn_ptr = bfd_h_get_32 (exec_bfd,
473				      (bfd_byte *) x_dynp->d_un.d_ptr);
474	      return dyn_ptr;
475	    }
476	  else if (dyn_tag == DT_MIPS_RLD_MAP)
477	    {
478	      char *pbuf;
479	      int pbuf_size = TARGET_PTR_BIT / HOST_CHAR_BIT;
480
481	      pbuf = alloca (pbuf_size);
482	      /* DT_MIPS_RLD_MAP contains a pointer to the address
483		 of the dynamic link structure.  */
484	      dyn_ptr = bfd_h_get_32 (exec_bfd,
485				      (bfd_byte *) x_dynp->d_un.d_ptr);
486	      if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
487		return 0;
488	      return extract_unsigned_integer (pbuf, pbuf_size);
489	    }
490	}
491    }
492  else /* 64-bit elf */
493    {
494      for (bufend = buf + dyninfo_sect_size;
495	   buf < bufend;
496	   buf += sizeof (Elf64_External_Dyn))
497	{
498	  Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf;
499	  long dyn_tag;
500	  CORE_ADDR dyn_ptr;
501
502	  dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
503	  if (dyn_tag == DT_NULL)
504	    break;
505	  else if (dyn_tag == DT_DEBUG)
506	    {
507	      dyn_ptr = bfd_h_get_64 (exec_bfd,
508				      (bfd_byte *) x_dynp->d_un.d_ptr);
509	      return dyn_ptr;
510	    }
511	  else if (dyn_tag == DT_MIPS_RLD_MAP)
512	    {
513	      char *pbuf;
514	      int pbuf_size = TARGET_PTR_BIT / HOST_CHAR_BIT;
515
516	      pbuf = alloca (pbuf_size);
517	      /* DT_MIPS_RLD_MAP contains a pointer to the address
518		 of the dynamic link structure.  */
519	      dyn_ptr = bfd_h_get_64 (exec_bfd,
520				      (bfd_byte *) x_dynp->d_un.d_ptr);
521	      if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
522		return 0;
523	      return extract_unsigned_integer (pbuf, pbuf_size);
524	    }
525	}
526    }
527
528  /* DT_DEBUG entry not found.  */
529  return 0;
530}
531
532/*
533
534   LOCAL FUNCTION
535
536   locate_base -- locate the base address of dynamic linker structs
537
538   SYNOPSIS
539
540   CORE_ADDR locate_base (void)
541
542   DESCRIPTION
543
544   For both the SunOS and SVR4 shared library implementations, if the
545   inferior executable has been linked dynamically, there is a single
546   address somewhere in the inferior's data space which is the key to
547   locating all of the dynamic linker's runtime structures.  This
548   address is the value of the debug base symbol.  The job of this
549   function is to find and return that address, or to return 0 if there
550   is no such address (the executable is statically linked for example).
551
552   For SunOS, the job is almost trivial, since the dynamic linker and
553   all of it's structures are statically linked to the executable at
554   link time.  Thus the symbol for the address we are looking for has
555   already been added to the minimal symbol table for the executable's
556   objfile at the time the symbol file's symbols were read, and all we
557   have to do is look it up there.  Note that we explicitly do NOT want
558   to find the copies in the shared library.
559
560   The SVR4 version is a bit more complicated because the address
561   is contained somewhere in the dynamic info section.  We have to go
562   to a lot more work to discover the address of the debug base symbol.
563   Because of this complexity, we cache the value we find and return that
564   value on subsequent invocations.  Note there is no copy in the
565   executable symbol tables.
566
567 */
568
569static CORE_ADDR
570locate_base (void)
571{
572  /* Check to see if we have a currently valid address, and if so, avoid
573     doing all this work again and just return the cached address.  If
574     we have no cached address, try to locate it in the dynamic info
575     section for ELF executables.  There's no point in doing any of this
576     though if we don't have some link map offsets to work with.  */
577
578  if (debug_base == 0 && svr4_have_link_map_offsets ())
579    {
580      if (exec_bfd != NULL
581	  && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
582	debug_base = elf_locate_base ();
583#ifdef HANDLE_SVR4_EXEC_EMULATORS
584      /* Try it the hard way for emulated executables.  */
585      else if (!ptid_equal (inferior_ptid, null_ptid) && target_has_execution)
586	proc_iterate_over_mappings (look_for_base);
587#endif
588    }
589  return (debug_base);
590}
591
592/*
593
594   LOCAL FUNCTION
595
596   first_link_map_member -- locate first member in dynamic linker's map
597
598   SYNOPSIS
599
600   static CORE_ADDR first_link_map_member (void)
601
602   DESCRIPTION
603
604   Find the first element in the inferior's dynamic link map, and
605   return its address in the inferior.  This function doesn't copy the
606   link map entry itself into our address space; current_sos actually
607   does the reading.  */
608
609static CORE_ADDR
610first_link_map_member (void)
611{
612  CORE_ADDR lm = 0;
613  struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
614  char *r_map_buf = xmalloc (lmo->r_map_size);
615  struct cleanup *cleanups = make_cleanup (xfree, r_map_buf);
616
617  read_memory (debug_base + lmo->r_map_offset, r_map_buf, lmo->r_map_size);
618
619  /* Assume that the address is unsigned.  */
620  lm = extract_unsigned_integer (r_map_buf, lmo->r_map_size);
621
622  /* FIXME:  Perhaps we should validate the info somehow, perhaps by
623     checking r_version for a known version number, or r_state for
624     RT_CONSISTENT. */
625
626  do_cleanups (cleanups);
627
628  return (lm);
629}
630
631/*
632
633  LOCAL FUNCTION
634
635  open_symbol_file_object
636
637  SYNOPSIS
638
639  void open_symbol_file_object (void *from_tty)
640
641  DESCRIPTION
642
643  If no open symbol file, attempt to locate and open the main symbol
644  file.  On SVR4 systems, this is the first link map entry.  If its
645  name is here, we can open it.  Useful when attaching to a process
646  without first loading its symbol file.
647
648  If FROM_TTYP dereferences to a non-zero integer, allow messages to
649  be printed.  This parameter is a pointer rather than an int because
650  open_symbol_file_object() is called via catch_errors() and
651  catch_errors() requires a pointer argument. */
652
653static int
654open_symbol_file_object (void *from_ttyp)
655{
656  CORE_ADDR lm, l_name;
657  char *filename;
658  int errcode;
659  int from_tty = *(int *)from_ttyp;
660  struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
661  char *l_name_buf = xmalloc (lmo->l_name_size);
662  struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
663
664  if (symfile_objfile)
665    if (!query ("Attempt to reload symbols from process? "))
666      return 0;
667
668  if ((debug_base = locate_base ()) == 0)
669    return 0;	/* failed somehow... */
670
671  /* First link map member should be the executable.  */
672  if ((lm = first_link_map_member ()) == 0)
673    return 0;	/* failed somehow... */
674
675  /* Read address of name from target memory to GDB.  */
676  read_memory (lm + lmo->l_name_offset, l_name_buf, lmo->l_name_size);
677
678  /* Convert the address to host format.  Assume that the address is
679     unsigned.  */
680  l_name = extract_unsigned_integer (l_name_buf, lmo->l_name_size);
681
682  /* Free l_name_buf.  */
683  do_cleanups (cleanups);
684
685  if (l_name == 0)
686    return 0;		/* No filename.  */
687
688  /* Now fetch the filename from target memory.  */
689  target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
690
691  if (errcode)
692    {
693      warning ("failed to read exec filename from attached file: %s",
694	       safe_strerror (errcode));
695      return 0;
696    }
697
698  make_cleanup (xfree, filename);
699  /* Have a pathname: read the symbol file.  */
700  symbol_file_add_main (filename, from_tty);
701
702  return 1;
703}
704
705/* LOCAL FUNCTION
706
707   current_sos -- build a list of currently loaded shared objects
708
709   SYNOPSIS
710
711   struct so_list *current_sos ()
712
713   DESCRIPTION
714
715   Build a list of `struct so_list' objects describing the shared
716   objects currently loaded in the inferior.  This list does not
717   include an entry for the main executable file.
718
719   Note that we only gather information directly available from the
720   inferior --- we don't examine any of the shared library files
721   themselves.  The declaration of `struct so_list' says which fields
722   we provide values for.  */
723
724static struct so_list *
725svr4_current_sos (void)
726{
727  CORE_ADDR lm;
728  struct so_list *head = 0;
729  struct so_list **link_ptr = &head;
730
731  /* Make sure we've looked up the inferior's dynamic linker's base
732     structure.  */
733  if (! debug_base)
734    {
735      debug_base = locate_base ();
736
737      /* If we can't find the dynamic linker's base structure, this
738	 must not be a dynamically linked executable.  Hmm.  */
739      if (! debug_base)
740	return 0;
741    }
742
743  /* Walk the inferior's link map list, and build our list of
744     `struct so_list' nodes.  */
745  lm = first_link_map_member ();
746  while (lm)
747    {
748      struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
749      struct so_list *new
750	= (struct so_list *) xmalloc (sizeof (struct so_list));
751      struct cleanup *old_chain = make_cleanup (xfree, new);
752
753      memset (new, 0, sizeof (*new));
754
755      new->lm_info = xmalloc (sizeof (struct lm_info));
756      make_cleanup (xfree, new->lm_info);
757
758      new->lm_info->lm = xmalloc (lmo->link_map_size);
759      make_cleanup (xfree, new->lm_info->lm);
760      memset (new->lm_info->lm, 0, lmo->link_map_size);
761
762      read_memory (lm, new->lm_info->lm, lmo->link_map_size);
763
764      lm = LM_NEXT (new);
765
766      /* For SVR4 versions, the first entry in the link map is for the
767         inferior executable, so we must ignore it.  For some versions of
768         SVR4, it has no name.  For others (Solaris 2.3 for example), it
769         does have a name, so we can no longer use a missing name to
770         decide when to ignore it. */
771      if (IGNORE_FIRST_LINK_MAP_ENTRY (new))
772	free_so (new);
773      else
774	{
775	  int errcode;
776	  char *buffer;
777
778	  /* Extract this shared object's name.  */
779	  target_read_string (LM_NAME (new), &buffer,
780			      SO_NAME_MAX_PATH_SIZE - 1, &errcode);
781	  if (errcode != 0)
782	    {
783	      warning ("current_sos: Can't read pathname for load map: %s\n",
784		       safe_strerror (errcode));
785	    }
786	  else
787	    {
788	      strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
789	      new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
790	      xfree (buffer);
791	      strcpy (new->so_original_name, new->so_name);
792	    }
793
794	  /* If this entry has no name, or its name matches the name
795	     for the main executable, don't include it in the list.  */
796	  if (! new->so_name[0]
797	      || match_main (new->so_name))
798	    free_so (new);
799	  else
800	    {
801	      new->next = 0;
802	      *link_ptr = new;
803	      link_ptr = &new->next;
804	    }
805	}
806
807      discard_cleanups (old_chain);
808    }
809
810  return head;
811}
812
813/* Get the address of the link_map for a given OBJFILE.  Loop through
814   the link maps, and return the address of the one corresponding to
815   the given objfile.  Note that this function takes into account that
816   objfile can be the main executable, not just a shared library.  The
817   main executable has always an empty name field in the linkmap.  */
818
819CORE_ADDR
820svr4_fetch_objfile_link_map (struct objfile *objfile)
821{
822  CORE_ADDR lm;
823
824  if ((debug_base = locate_base ()) == 0)
825    return 0;   /* failed somehow... */
826
827  /* Position ourselves on the first link map.  */
828  lm = first_link_map_member ();
829  while (lm)
830    {
831      /* Get info on the layout of the r_debug and link_map structures. */
832      struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
833      int errcode;
834      char *buffer;
835      struct lm_info objfile_lm_info;
836      struct cleanup *old_chain;
837      CORE_ADDR name_address;
838      char *l_name_buf = xmalloc (lmo->l_name_size);
839      old_chain = make_cleanup (xfree, l_name_buf);
840
841      /* Set up the buffer to contain the portion of the link_map
842         structure that gdb cares about.  Note that this is not the
843         whole link_map structure.  */
844      objfile_lm_info.lm = xmalloc (lmo->link_map_size);
845      make_cleanup (xfree, objfile_lm_info.lm);
846      memset (objfile_lm_info.lm, 0, lmo->link_map_size);
847
848      /* Read the link map into our internal structure.  */
849      read_memory (lm, objfile_lm_info.lm, lmo->link_map_size);
850
851      /* Read address of name from target memory to GDB.  */
852      read_memory (lm + lmo->l_name_offset, l_name_buf, lmo->l_name_size);
853
854      /* Extract this object's name.  Assume that the address is
855         unsigned.  */
856      name_address = extract_unsigned_integer (l_name_buf, lmo->l_name_size);
857      target_read_string (name_address, &buffer,
858      			  SO_NAME_MAX_PATH_SIZE - 1, &errcode);
859      make_cleanup (xfree, buffer);
860      if (errcode != 0)
861    	{
862	  warning ("svr4_fetch_objfile_link_map: Can't read pathname for load map: %s\n",
863  		   safe_strerror (errcode));
864  	}
865      else
866  	{
867	  /* Is this the linkmap for the file we want?  */
868	  /* If the file is not a shared library and has no name,
869	     we are sure it is the main executable, so we return that.  */
870	  if ((buffer && strcmp (buffer, objfile->name) == 0)
871              || (!(objfile->flags & OBJF_SHARED) && (strcmp (buffer, "") == 0)))
872  	    {
873    	      do_cleanups (old_chain);
874    	      return lm;
875      	    }
876  	}
877      /* Not the file we wanted, continue checking.  Assume that the
878         address is unsigned.  */
879      lm = extract_unsigned_integer (objfile_lm_info.lm + lmo->l_next_offset,
880				     lmo->l_next_size);
881      do_cleanups (old_chain);
882    }
883  return 0;
884}
885
886/* On some systems, the only way to recognize the link map entry for
887   the main executable file is by looking at its name.  Return
888   non-zero iff SONAME matches one of the known main executable names.  */
889
890static int
891match_main (char *soname)
892{
893  char **mainp;
894
895  for (mainp = main_name_list; *mainp != NULL; mainp++)
896    {
897      if (strcmp (soname, *mainp) == 0)
898	return (1);
899    }
900
901  return (0);
902}
903
904/* Return 1 if PC lies in the dynamic symbol resolution code of the
905   SVR4 run time loader.  */
906static CORE_ADDR interp_text_sect_low;
907static CORE_ADDR interp_text_sect_high;
908static CORE_ADDR interp_plt_sect_low;
909static CORE_ADDR interp_plt_sect_high;
910
911static int
912svr4_in_dynsym_resolve_code (CORE_ADDR pc)
913{
914  return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
915	  || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
916	  || in_plt_section (pc, NULL));
917}
918
919/* Given an executable's ABFD and target, compute the entry-point
920   address.  */
921
922static CORE_ADDR
923exec_entry_point (struct bfd *abfd, struct target_ops *targ)
924{
925  /* KevinB wrote ... for most targets, the address returned by
926     bfd_get_start_address() is the entry point for the start
927     function.  But, for some targets, bfd_get_start_address() returns
928     the address of a function descriptor from which the entry point
929     address may be extracted.  This address is extracted by
930     gdbarch_convert_from_func_ptr_addr().  The method
931     gdbarch_convert_from_func_ptr_addr() is the merely the identify
932     function for targets which don't use function descriptors.  */
933  return gdbarch_convert_from_func_ptr_addr (current_gdbarch,
934					     bfd_get_start_address (abfd),
935					     targ);
936}
937
938/*
939
940   LOCAL FUNCTION
941
942   enable_break -- arrange for dynamic linker to hit breakpoint
943
944   SYNOPSIS
945
946   int enable_break (void)
947
948   DESCRIPTION
949
950   Both the SunOS and the SVR4 dynamic linkers have, as part of their
951   debugger interface, support for arranging for the inferior to hit
952   a breakpoint after mapping in the shared libraries.  This function
953   enables that breakpoint.
954
955   For SunOS, there is a special flag location (in_debugger) which we
956   set to 1.  When the dynamic linker sees this flag set, it will set
957   a breakpoint at a location known only to itself, after saving the
958   original contents of that place and the breakpoint address itself,
959   in it's own internal structures.  When we resume the inferior, it
960   will eventually take a SIGTRAP when it runs into the breakpoint.
961   We handle this (in a different place) by restoring the contents of
962   the breakpointed location (which is only known after it stops),
963   chasing around to locate the shared libraries that have been
964   loaded, then resuming.
965
966   For SVR4, the debugger interface structure contains a member (r_brk)
967   which is statically initialized at the time the shared library is
968   built, to the offset of a function (_r_debug_state) which is guaran-
969   teed to be called once before mapping in a library, and again when
970   the mapping is complete.  At the time we are examining this member,
971   it contains only the unrelocated offset of the function, so we have
972   to do our own relocation.  Later, when the dynamic linker actually
973   runs, it relocates r_brk to be the actual address of _r_debug_state().
974
975   The debugger interface structure also contains an enumeration which
976   is set to either RT_ADD or RT_DELETE prior to changing the mapping,
977   depending upon whether or not the library is being mapped or unmapped,
978   and then set to RT_CONSISTENT after the library is mapped/unmapped.
979 */
980
981static int
982enable_break (void)
983{
984  int success = 0;
985
986#ifdef BKPT_AT_SYMBOL
987
988  struct minimal_symbol *msymbol;
989  char **bkpt_namep;
990  asection *interp_sect;
991
992  /* First, remove all the solib event breakpoints.  Their addresses
993     may have changed since the last time we ran the program.  */
994  remove_solib_event_breakpoints ();
995
996  interp_text_sect_low = interp_text_sect_high = 0;
997  interp_plt_sect_low = interp_plt_sect_high = 0;
998
999  /* Find the .interp section; if not found, warn the user and drop
1000     into the old breakpoint at symbol code.  */
1001  interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1002  if (interp_sect)
1003    {
1004      unsigned int interp_sect_size;
1005      char *buf;
1006      CORE_ADDR load_addr = 0;
1007      int load_addr_found = 0;
1008      struct so_list *inferior_sos;
1009      bfd *tmp_bfd = NULL;
1010      struct target_ops *tmp_bfd_target;
1011      int tmp_fd = -1;
1012      char *tmp_pathname = NULL;
1013      CORE_ADDR sym_addr = 0;
1014
1015      /* Read the contents of the .interp section into a local buffer;
1016         the contents specify the dynamic linker this program uses.  */
1017      interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
1018      buf = alloca (interp_sect_size);
1019      bfd_get_section_contents (exec_bfd, interp_sect,
1020				buf, 0, interp_sect_size);
1021
1022      /* Now we need to figure out where the dynamic linker was
1023         loaded so that we can load its symbols and place a breakpoint
1024         in the dynamic linker itself.
1025
1026         This address is stored on the stack.  However, I've been unable
1027         to find any magic formula to find it for Solaris (appears to
1028         be trivial on GNU/Linux).  Therefore, we have to try an alternate
1029         mechanism to find the dynamic linker's base address.  */
1030
1031      tmp_fd  = solib_open (buf, &tmp_pathname);
1032      if (tmp_fd >= 0)
1033	tmp_bfd = bfd_fdopenr (tmp_pathname, gnutarget, tmp_fd);
1034
1035      if (tmp_bfd == NULL)
1036	goto bkpt_at_symbol;
1037
1038      /* Make sure the dynamic linker's really a useful object.  */
1039      if (!bfd_check_format (tmp_bfd, bfd_object))
1040	{
1041	  warning ("Unable to grok dynamic linker %s as an object file", buf);
1042	  bfd_close (tmp_bfd);
1043	  goto bkpt_at_symbol;
1044	}
1045
1046      /* Now convert the TMP_BFD into a target.  That way target, as
1047         well as BFD operations can be used.  Note that closing the
1048         target will also close the underlying bfd.  */
1049      tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1050
1051      /* If the entry in _DYNAMIC for the dynamic linker has already
1052         been filled in, we can read its base address from there. */
1053      inferior_sos = svr4_current_sos ();
1054      if (inferior_sos)
1055	{
1056	  /* Connected to a running target.  Update our shared library table. */
1057	  solib_add (NULL, 0, NULL, auto_solib_add);
1058	}
1059      while (inferior_sos)
1060	{
1061	  if (strcmp (buf, inferior_sos->so_original_name) == 0)
1062	    {
1063	      load_addr_found = 1;
1064	      load_addr = LM_ADDR (inferior_sos);
1065	      break;
1066	    }
1067	  inferior_sos = inferior_sos->next;
1068	}
1069
1070      /* Otherwise we find the dynamic linker's base address by examining
1071	 the current pc (which should point at the entry point for the
1072	 dynamic linker) and subtracting the offset of the entry point.  */
1073      if (!load_addr_found)
1074	load_addr = (read_pc ()
1075		     - exec_entry_point (tmp_bfd, tmp_bfd_target));
1076
1077      /* Record the relocated start and end address of the dynamic linker
1078         text and plt section for svr4_in_dynsym_resolve_code.  */
1079      interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1080      if (interp_sect)
1081	{
1082	  interp_text_sect_low =
1083	    bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1084	  interp_text_sect_high =
1085	    interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1086	}
1087      interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1088      if (interp_sect)
1089	{
1090	  interp_plt_sect_low =
1091	    bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1092	  interp_plt_sect_high =
1093	    interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1094	}
1095
1096      /* Now try to set a breakpoint in the dynamic linker.  */
1097      for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1098	{
1099          /* On ABI's that use function descriptors, there are usually
1100             two linker symbols associated with each C function: one
1101             pointing at the actual entry point of the machine code,
1102             and one pointing at the function's descriptor.  The
1103             latter symbol has the same name as the C function.
1104
1105             What we're looking for here is the machine code entry
1106             point, so we are only interested in symbols in code
1107             sections.  */
1108	  sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep, SEC_CODE);
1109	  if (sym_addr != 0)
1110	    break;
1111	}
1112
1113      /* We're done with both the temporary bfd and target.  Remember,
1114         closing the target closes the underlying bfd.  */
1115      target_close (tmp_bfd_target, 0);
1116
1117      if (sym_addr != 0)
1118	{
1119	  create_solib_event_breakpoint (load_addr + sym_addr);
1120	  return 1;
1121	}
1122
1123      /* For whatever reason we couldn't set a breakpoint in the dynamic
1124         linker.  Warn and drop into the old code.  */
1125    bkpt_at_symbol:
1126      warning ("Unable to find dynamic linker breakpoint function.\nGDB will be unable to debug shared library initializers\nand track explicitly loaded dynamic code.");
1127    }
1128
1129  /* Scan through the list of symbols, trying to look up the symbol and
1130     set a breakpoint there.  Terminate loop when we/if we succeed. */
1131
1132  breakpoint_addr = 0;
1133  for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1134    {
1135      msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1136      if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1137	{
1138	  create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1139	  return 1;
1140	}
1141    }
1142
1143  /* Nothing good happened.  */
1144  success = 0;
1145
1146#endif /* BKPT_AT_SYMBOL */
1147
1148  return (success);
1149}
1150
1151/*
1152
1153   LOCAL FUNCTION
1154
1155   special_symbol_handling -- additional shared library symbol handling
1156
1157   SYNOPSIS
1158
1159   void special_symbol_handling ()
1160
1161   DESCRIPTION
1162
1163   Once the symbols from a shared object have been loaded in the usual
1164   way, we are called to do any system specific symbol handling that
1165   is needed.
1166
1167   For SunOS4, this consisted of grunging around in the dynamic
1168   linkers structures to find symbol definitions for "common" symbols
1169   and adding them to the minimal symbol table for the runtime common
1170   objfile.
1171
1172   However, for SVR4, there's nothing to do.
1173
1174 */
1175
1176static void
1177svr4_special_symbol_handling (void)
1178{
1179}
1180
1181/* Relocate the main executable.  This function should be called upon
1182   stopping the inferior process at the entry point to the program.
1183   The entry point from BFD is compared to the PC and if they are
1184   different, the main executable is relocated by the proper amount.
1185
1186   As written it will only attempt to relocate executables which
1187   lack interpreter sections.  It seems likely that only dynamic
1188   linker executables will get relocated, though it should work
1189   properly for a position-independent static executable as well.  */
1190
1191static void
1192svr4_relocate_main_executable (void)
1193{
1194  asection *interp_sect;
1195  CORE_ADDR pc = read_pc ();
1196
1197  /* Decide if the objfile needs to be relocated.  As indicated above,
1198     we will only be here when execution is stopped at the beginning
1199     of the program.  Relocation is necessary if the address at which
1200     we are presently stopped differs from the start address stored in
1201     the executable AND there's no interpreter section.  The condition
1202     regarding the interpreter section is very important because if
1203     there *is* an interpreter section, execution will begin there
1204     instead.  When there is an interpreter section, the start address
1205     is (presumably) used by the interpreter at some point to start
1206     execution of the program.
1207
1208     If there is an interpreter, it is normal for it to be set to an
1209     arbitrary address at the outset.  The job of finding it is
1210     handled in enable_break().
1211
1212     So, to summarize, relocations are necessary when there is no
1213     interpreter section and the start address obtained from the
1214     executable is different from the address at which GDB is
1215     currently stopped.
1216
1217     [ The astute reader will note that we also test to make sure that
1218       the executable in question has the DYNAMIC flag set.  It is my
1219       opinion that this test is unnecessary (undesirable even).  It
1220       was added to avoid inadvertent relocation of an executable
1221       whose e_type member in the ELF header is not ET_DYN.  There may
1222       be a time in the future when it is desirable to do relocations
1223       on other types of files as well in which case this condition
1224       should either be removed or modified to accomodate the new file
1225       type.  (E.g, an ET_EXEC executable which has been built to be
1226       position-independent could safely be relocated by the OS if
1227       desired.  It is true that this violates the ABI, but the ABI
1228       has been known to be bent from time to time.)  - Kevin, Nov 2000. ]
1229     */
1230
1231  interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1232  if (interp_sect == NULL
1233      && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
1234      && (exec_entry_point (exec_bfd, &exec_ops) != pc))
1235    {
1236      struct cleanup *old_chain;
1237      struct section_offsets *new_offsets;
1238      int i, changed;
1239      CORE_ADDR displacement;
1240
1241      /* It is necessary to relocate the objfile.  The amount to
1242	 relocate by is simply the address at which we are stopped
1243	 minus the starting address from the executable.
1244
1245	 We relocate all of the sections by the same amount.  This
1246	 behavior is mandated by recent editions of the System V ABI.
1247	 According to the System V Application Binary Interface,
1248	 Edition 4.1, page 5-5:
1249
1250	   ...  Though the system chooses virtual addresses for
1251	   individual processes, it maintains the segments' relative
1252	   positions.  Because position-independent code uses relative
1253	   addressesing between segments, the difference between
1254	   virtual addresses in memory must match the difference
1255	   between virtual addresses in the file.  The difference
1256	   between the virtual address of any segment in memory and
1257	   the corresponding virtual address in the file is thus a
1258	   single constant value for any one executable or shared
1259	   object in a given process.  This difference is the base
1260	   address.  One use of the base address is to relocate the
1261	   memory image of the program during dynamic linking.
1262
1263	 The same language also appears in Edition 4.0 of the System V
1264	 ABI and is left unspecified in some of the earlier editions.  */
1265
1266      displacement = pc - exec_entry_point (exec_bfd, &exec_ops);
1267      changed = 0;
1268
1269      new_offsets = xcalloc (symfile_objfile->num_sections,
1270			     sizeof (struct section_offsets));
1271      old_chain = make_cleanup (xfree, new_offsets);
1272
1273      for (i = 0; i < symfile_objfile->num_sections; i++)
1274	{
1275	  if (displacement != ANOFFSET (symfile_objfile->section_offsets, i))
1276	    changed = 1;
1277	  new_offsets->offsets[i] = displacement;
1278	}
1279
1280      if (changed)
1281	objfile_relocate (symfile_objfile, new_offsets);
1282
1283      do_cleanups (old_chain);
1284    }
1285}
1286
1287/*
1288
1289   GLOBAL FUNCTION
1290
1291   svr4_solib_create_inferior_hook -- shared library startup support
1292
1293   SYNOPSIS
1294
1295   void svr4_solib_create_inferior_hook()
1296
1297   DESCRIPTION
1298
1299   When gdb starts up the inferior, it nurses it along (through the
1300   shell) until it is ready to execute it's first instruction.  At this
1301   point, this function gets called via expansion of the macro
1302   SOLIB_CREATE_INFERIOR_HOOK.
1303
1304   For SunOS executables, this first instruction is typically the
1305   one at "_start", or a similar text label, regardless of whether
1306   the executable is statically or dynamically linked.  The runtime
1307   startup code takes care of dynamically linking in any shared
1308   libraries, once gdb allows the inferior to continue.
1309
1310   For SVR4 executables, this first instruction is either the first
1311   instruction in the dynamic linker (for dynamically linked
1312   executables) or the instruction at "start" for statically linked
1313   executables.  For dynamically linked executables, the system
1314   first exec's /lib/libc.so.N, which contains the dynamic linker,
1315   and starts it running.  The dynamic linker maps in any needed
1316   shared libraries, maps in the actual user executable, and then
1317   jumps to "start" in the user executable.
1318
1319   For both SunOS shared libraries, and SVR4 shared libraries, we
1320   can arrange to cooperate with the dynamic linker to discover the
1321   names of shared libraries that are dynamically linked, and the
1322   base addresses to which they are linked.
1323
1324   This function is responsible for discovering those names and
1325   addresses, and saving sufficient information about them to allow
1326   their symbols to be read at a later time.
1327
1328   FIXME
1329
1330   Between enable_break() and disable_break(), this code does not
1331   properly handle hitting breakpoints which the user might have
1332   set in the startup code or in the dynamic linker itself.  Proper
1333   handling will probably have to wait until the implementation is
1334   changed to use the "breakpoint handler function" method.
1335
1336   Also, what if child has exit()ed?  Must exit loop somehow.
1337 */
1338
1339static void
1340svr4_solib_create_inferior_hook (void)
1341{
1342  /* Relocate the main executable if necessary.  */
1343  svr4_relocate_main_executable ();
1344
1345  if (!svr4_have_link_map_offsets ())
1346    {
1347      warning ("no shared library support for this OS / ABI");
1348      return;
1349
1350    }
1351
1352  if (!enable_break ())
1353    {
1354      warning ("shared library handler failed to enable breakpoint");
1355      return;
1356    }
1357
1358#if defined(_SCO_DS)
1359  /* SCO needs the loop below, other systems should be using the
1360     special shared library breakpoints and the shared library breakpoint
1361     service routine.
1362
1363     Now run the target.  It will eventually hit the breakpoint, at
1364     which point all of the libraries will have been mapped in and we
1365     can go groveling around in the dynamic linker structures to find
1366     out what we need to know about them. */
1367
1368  clear_proceed_status ();
1369  stop_soon = STOP_QUIETLY;
1370  stop_signal = TARGET_SIGNAL_0;
1371  do
1372    {
1373      target_resume (pid_to_ptid (-1), 0, stop_signal);
1374      wait_for_inferior ();
1375    }
1376  while (stop_signal != TARGET_SIGNAL_TRAP);
1377  stop_soon = NO_STOP_QUIETLY;
1378#endif /* defined(_SCO_DS) */
1379}
1380
1381static void
1382svr4_clear_solib (void)
1383{
1384  debug_base = 0;
1385}
1386
1387static void
1388svr4_free_so (struct so_list *so)
1389{
1390  xfree (so->lm_info->lm);
1391  xfree (so->lm_info);
1392}
1393
1394
1395/* Clear any bits of ADDR that wouldn't fit in a target-format
1396   data pointer.  "Data pointer" here refers to whatever sort of
1397   address the dynamic linker uses to manage its sections.  At the
1398   moment, we don't support shared libraries on any processors where
1399   code and data pointers are different sizes.
1400
1401   This isn't really the right solution.  What we really need here is
1402   a way to do arithmetic on CORE_ADDR values that respects the
1403   natural pointer/address correspondence.  (For example, on the MIPS,
1404   converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1405   sign-extend the value.  There, simply truncating the bits above
1406   TARGET_PTR_BIT, as we do below, is no good.)  This should probably
1407   be a new gdbarch method or something.  */
1408static CORE_ADDR
1409svr4_truncate_ptr (CORE_ADDR addr)
1410{
1411  if (TARGET_PTR_BIT == sizeof (CORE_ADDR) * 8)
1412    /* We don't need to truncate anything, and the bit twiddling below
1413       will fail due to overflow problems.  */
1414    return addr;
1415  else
1416    return addr & (((CORE_ADDR) 1 << TARGET_PTR_BIT) - 1);
1417}
1418
1419
1420static void
1421svr4_relocate_section_addresses (struct so_list *so,
1422                                 struct section_table *sec)
1423{
1424  sec->addr    = svr4_truncate_ptr (sec->addr    + LM_ADDR (so));
1425  sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR (so));
1426}
1427
1428
1429/* Fetch a link_map_offsets structure for native targets using struct
1430   definitions from link.h.  See solib-legacy.c for the function
1431   which does the actual work.
1432
1433   Note: For non-native targets (i.e. cross-debugging situations),
1434   a target specific fetch_link_map_offsets() function should be
1435   defined and registered via set_solib_svr4_fetch_link_map_offsets().  */
1436
1437static struct link_map_offsets *
1438legacy_fetch_link_map_offsets (void)
1439{
1440  if (legacy_svr4_fetch_link_map_offsets_hook)
1441    return legacy_svr4_fetch_link_map_offsets_hook ();
1442  else
1443    {
1444      internal_error (__FILE__, __LINE__,
1445                      "legacy_fetch_link_map_offsets called without legacy "
1446		      "link_map support enabled.");
1447      return 0;
1448    }
1449}
1450
1451/* Fetch a link_map_offsets structure using the method registered in the
1452   architecture vector.  */
1453
1454static struct link_map_offsets *
1455svr4_fetch_link_map_offsets (void)
1456{
1457  struct link_map_offsets *(*flmo)(void) =
1458    gdbarch_data (current_gdbarch, fetch_link_map_offsets_gdbarch_data);
1459
1460  if (flmo == NULL)
1461    {
1462      internal_error (__FILE__, __LINE__,
1463                      "svr4_fetch_link_map_offsets: fetch_link_map_offsets "
1464		      "method not defined for this architecture.");
1465      return 0;
1466    }
1467  else
1468    return (flmo ());
1469}
1470
1471/* Return 1 if a link map offset fetcher has been defined, 0 otherwise.  */
1472static int
1473svr4_have_link_map_offsets (void)
1474{
1475  struct link_map_offsets *(*flmo)(void) =
1476    gdbarch_data (current_gdbarch, fetch_link_map_offsets_gdbarch_data);
1477  if (flmo == NULL
1478      || (flmo == legacy_fetch_link_map_offsets
1479          && legacy_svr4_fetch_link_map_offsets_hook == NULL))
1480    return 0;
1481  else
1482    return 1;
1483}
1484
1485/* set_solib_svr4_fetch_link_map_offsets() is intended to be called by
1486   a <arch>_gdbarch_init() function.  It is used to establish an
1487   architecture specific link_map_offsets fetcher for the architecture
1488   being defined.  */
1489
1490void
1491set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1492                                       struct link_map_offsets *(*flmo) (void))
1493{
1494  set_gdbarch_data (gdbarch, fetch_link_map_offsets_gdbarch_data, flmo);
1495}
1496
1497/* Initialize the architecture-specific link_map_offsets fetcher.
1498   This is called after <arch>_gdbarch_init() has set up its `struct
1499   gdbarch' for the new architecture, and is only called if the
1500   link_map_offsets fetcher isn't already initialized (which is
1501   usually done by calling set_solib_svr4_fetch_link_map_offsets()
1502   above in <arch>_gdbarch_init()).  Therefore we attempt to provide a
1503   reasonable alternative (for native targets anyway) if the
1504   <arch>_gdbarch_init() fails to call
1505   set_solib_svr4_fetch_link_map_offsets().  */
1506
1507static void *
1508init_fetch_link_map_offsets (struct gdbarch *gdbarch)
1509{
1510  return legacy_fetch_link_map_offsets;
1511}
1512
1513/* Most OS'es that have SVR4-style ELF dynamic libraries define a
1514   `struct r_debug' and a `struct link_map' that are binary compatible
1515   with the origional SVR4 implementation.  */
1516
1517/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1518   for an ILP32 SVR4 system.  */
1519
1520struct link_map_offsets *
1521svr4_ilp32_fetch_link_map_offsets (void)
1522{
1523  static struct link_map_offsets lmo;
1524  static struct link_map_offsets *lmp = NULL;
1525
1526  if (lmp == NULL)
1527    {
1528      lmp = &lmo;
1529
1530      /* Everything we need is in the first 8 bytes.  */
1531      lmo.r_debug_size = 8;
1532      lmo.r_map_offset = 4;
1533      lmo.r_map_size   = 4;
1534
1535      /* Everything we need is in the first 20 bytes.  */
1536      lmo.link_map_size = 20;
1537      lmo.l_addr_offset = 0;
1538      lmo.l_addr_size   = 4;
1539      lmo.l_name_offset = 4;
1540      lmo.l_name_size   = 4;
1541      lmo.l_next_offset = 12;
1542      lmo.l_next_size   = 4;
1543      lmo.l_prev_offset = 16;
1544      lmo.l_prev_size   = 4;
1545    }
1546
1547  return lmp;
1548}
1549
1550/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1551   for an LP64 SVR4 system.  */
1552
1553struct link_map_offsets *
1554svr4_lp64_fetch_link_map_offsets (void)
1555{
1556  static struct link_map_offsets lmo;
1557  static struct link_map_offsets *lmp = NULL;
1558
1559  if (lmp == NULL)
1560    {
1561      lmp = &lmo;
1562
1563      /* Everything we need is in the first 16 bytes.  */
1564      lmo.r_debug_size = 16;
1565      lmo.r_map_offset = 8;
1566      lmo.r_map_size   = 8;
1567
1568      /* Everything we need is in the first 40 bytes.  */
1569      lmo.link_map_size = 40;
1570      lmo.l_addr_offset = 0;
1571      lmo.l_addr_size   = 8;
1572      lmo.l_name_offset = 8;
1573      lmo.l_name_size   = 8;
1574      lmo.l_next_offset = 24;
1575      lmo.l_next_size   = 8;
1576      lmo.l_prev_offset = 32;
1577      lmo.l_prev_size   = 8;
1578    }
1579
1580  return lmp;
1581}
1582
1583
1584static struct target_so_ops svr4_so_ops;
1585
1586extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
1587
1588void
1589_initialize_svr4_solib (void)
1590{
1591  fetch_link_map_offsets_gdbarch_data =
1592    register_gdbarch_data (init_fetch_link_map_offsets);
1593
1594  svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
1595  svr4_so_ops.free_so = svr4_free_so;
1596  svr4_so_ops.clear_solib = svr4_clear_solib;
1597  svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
1598  svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
1599  svr4_so_ops.current_sos = svr4_current_sos;
1600  svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
1601  svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
1602
1603  /* FIXME: Don't do this here.  *_gdbarch_init() should set so_ops. */
1604  current_target_so_ops = &svr4_so_ops;
1605}
1606