1/* DWARF debugging format support for GDB.
2
3   Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4   2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6   Written by Fred Fish at Cygnus Support.  Portions based on dbxread.c,
7   mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
8
9   This file is part of GDB.
10
11   This program is free software; you can redistribute it and/or modify
12   it under the terms of the GNU General Public License as published by
13   the Free Software Foundation; either version 2 of the License, or
14   (at your option) any later version.
15
16   This program is distributed in the hope that it will be useful,
17   but WITHOUT ANY WARRANTY; without even the implied warranty of
18   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19   GNU General Public License for more details.
20
21   You should have received a copy of the GNU General Public License
22   along with this program; if not, write to the Free Software
23   Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
24
25/*
26   If you are looking for DWARF-2 support, you are in the wrong file.
27   Go look in dwarf2read.c.  This file is for the original DWARF,
28   also known as DWARF-1.
29
30   DWARF-1 is slowly headed for obsoletion.
31
32   In gcc HEAD 2003-11-29 16:28:31 UTC, no targets prefer dwarf-1.
33
34   In gcc 3.3.2, these targets prefer dwarf-1:
35
36     i[34567]86-sequent-ptx4*
37     i[34567]86-sequent-sysv4*
38     mips-sni-sysv4
39     sparc-hal-solaris2*
40
41   In gcc 3.2.2, these targets prefer dwarf-1:
42
43     i[34567]86-dg-dgux*
44     i[34567]86-sequent-ptx4*
45     i[34567]86-sequent-sysv4*
46     m88k-dg-dgux*
47     mips-sni-sysv4
48     sparc-hal-solaris2*
49
50   In gcc 2.95.3, these targets prefer dwarf-1:
51
52     i[34567]86-dg-dgux*
53     i[34567]86-ncr-sysv4*
54     i[34567]86-sequent-ptx4*
55     i[34567]86-sequent-sysv4*
56     i[34567]86-*-osf1*
57     i[34567]86-*-sco3.2v5*
58     i[34567]86-*-sysv4*
59     i860-alliant-*
60     i860-*-sysv4*
61     m68k-atari-sysv4*
62     m68k-cbm-sysv4*
63     m68k-*-sysv4*
64     m88k-dg-dgux*
65     m88k-*-sysv4*
66     mips-sni-sysv4
67     mips-*-gnu*
68     sh-*-elf*
69     sh-*-rtemself*
70     sparc-hal-solaris2*
71     sparc-*-sysv4*
72
73   Some non-gcc compilers produce dwarf-1:
74
75     PR gdb/1179 was from a user with Diab C++ 4.3.
76     Other users have also reported using Diab compilers with dwarf-1.
77     On 2003-06-09 the gdb list received a report from a user
78       with Absoft ProFortran f77 which is dwarf-1.
79
80   -- chastain 2003-12-01
81*/
82
83/*
84
85   FIXME: Do we need to generate dependencies in partial symtabs?
86   (Perhaps we don't need to).
87
88   FIXME: Resolve minor differences between what information we put in the
89   partial symbol table and what dbxread puts in.  For example, we don't yet
90   put enum constants there.  And dbxread seems to invent a lot of typedefs
91   we never see.  Use the new printpsym command to see the partial symbol table
92   contents.
93
94   FIXME: Figure out a better way to tell gdb about the name of the function
95   contain the user's entry point (I.E. main())
96
97   FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
98   other things to work on, if you get bored. :-)
99
100 */
101
102#include "defs.h"
103#include "symtab.h"
104#include "gdbtypes.h"
105#include "objfiles.h"
106#include "elf/dwarf.h"
107#include "buildsym.h"
108#include "demangle.h"
109#include "expression.h"		/* Needed for enum exp_opcode in language.h, sigh... */
110#include "language.h"
111#include "complaints.h"
112
113#include <fcntl.h>
114#include "gdb_string.h"
115
116/* Some macros to provide DIE info for complaints. */
117
118#define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
119#define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
120
121/* Complaints that can be issued during DWARF debug info reading. */
122
123static void
124bad_die_ref_complaint (int arg1, const char *arg2, int arg3)
125{
126  complaint (&symfile_complaints,
127	     "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit",
128	     arg1, arg2, arg3);
129}
130
131static void
132unknown_attribute_form_complaint (int arg1, const char *arg2, int arg3)
133{
134  complaint (&symfile_complaints,
135	     "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", arg1, arg2,
136	     arg3);
137}
138
139static void
140dup_user_type_definition_complaint (int arg1, const char *arg2)
141{
142  complaint (&symfile_complaints,
143	     "DIE @ 0x%x \"%s\", internal error: duplicate user type definition",
144	     arg1, arg2);
145}
146
147static void
148bad_array_element_type_complaint (int arg1, const char *arg2, int arg3)
149{
150  complaint (&symfile_complaints,
151	     "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", arg1,
152	     arg2, arg3);
153}
154
155typedef unsigned int DIE_REF;	/* Reference to a DIE */
156
157#ifndef GCC_PRODUCER
158#define GCC_PRODUCER "GNU C "
159#endif
160
161#ifndef GPLUS_PRODUCER
162#define GPLUS_PRODUCER "GNU C++ "
163#endif
164
165#ifndef LCC_PRODUCER
166#define LCC_PRODUCER "NCR C/C++"
167#endif
168
169/* Flags to target_to_host() that tell whether or not the data object is
170   expected to be signed.  Used, for example, when fetching a signed
171   integer in the target environment which is used as a signed integer
172   in the host environment, and the two environments have different sized
173   ints.  In this case, *somebody* has to sign extend the smaller sized
174   int. */
175
176#define GET_UNSIGNED	0	/* No sign extension required */
177#define GET_SIGNED	1	/* Sign extension required */
178
179/* Defines for things which are specified in the document "DWARF Debugging
180   Information Format" published by UNIX International, Programming Languages
181   SIG.  These defines are based on revision 1.0.0, Jan 20, 1992. */
182
183#define SIZEOF_DIE_LENGTH	4
184#define SIZEOF_DIE_TAG		2
185#define SIZEOF_ATTRIBUTE	2
186#define SIZEOF_FORMAT_SPECIFIER	1
187#define SIZEOF_FMT_FT		2
188#define SIZEOF_LINETBL_LENGTH	4
189#define SIZEOF_LINETBL_LINENO	4
190#define SIZEOF_LINETBL_STMT	2
191#define SIZEOF_LINETBL_DELTA	4
192#define SIZEOF_LOC_ATOM_CODE	1
193
194#define FORM_FROM_ATTR(attr)	((attr) & 0xF)	/* Implicitly specified */
195
196/* Macros that return the sizes of various types of data in the target
197   environment.
198
199   FIXME:  Currently these are just compile time constants (as they are in
200   other parts of gdb as well).  They need to be able to get the right size
201   either from the bfd or possibly from the DWARF info.  It would be nice if
202   the DWARF producer inserted DIES that describe the fundamental types in
203   the target environment into the DWARF info, similar to the way dbx stabs
204   producers produce information about their fundamental types. */
205
206#define TARGET_FT_POINTER_SIZE(objfile)	(TARGET_PTR_BIT / TARGET_CHAR_BIT)
207#define TARGET_FT_LONG_SIZE(objfile)	(TARGET_LONG_BIT / TARGET_CHAR_BIT)
208
209/* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
210   FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
211   However, the Issue 2 DWARF specification from AT&T defines it as
212   a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
213   For backwards compatibility with the AT&T compiler produced executables
214   we define AT_short_element_list for this variant. */
215
216#define	AT_short_element_list	 (0x00f0|FORM_BLOCK2)
217
218/* The DWARF debugging information consists of two major pieces,
219   one is a block of DWARF Information Entries (DIE's) and the other
220   is a line number table.  The "struct dieinfo" structure contains
221   the information for a single DIE, the one currently being processed.
222
223   In order to make it easier to randomly access the attribute fields
224   of the current DIE, which are specifically unordered within the DIE,
225   each DIE is scanned and an instance of the "struct dieinfo"
226   structure is initialized.
227
228   Initialization is done in two levels.  The first, done by basicdieinfo(),
229   just initializes those fields that are vital to deciding whether or not
230   to use this DIE, how to skip past it, etc.  The second, done by the
231   function completedieinfo(), fills in the rest of the information.
232
233   Attributes which have block forms are not interpreted at the time
234   the DIE is scanned, instead we just save pointers to the start
235   of their value fields.
236
237   Some fields have a flag <name>_p that is set when the value of the
238   field is valid (I.E. we found a matching attribute in the DIE).  Since
239   we may want to test for the presence of some attributes in the DIE,
240   such as AT_low_pc, without restricting the values of the field,
241   we need someway to note that we found such an attribute.
242
243 */
244
245typedef char BLOCK;
246
247struct dieinfo
248  {
249    char *die;			/* Pointer to the raw DIE data */
250    unsigned long die_length;	/* Length of the raw DIE data */
251    DIE_REF die_ref;		/* Offset of this DIE */
252    unsigned short die_tag;	/* Tag for this DIE */
253    unsigned long at_padding;
254    unsigned long at_sibling;
255    BLOCK *at_location;
256    char *at_name;
257    unsigned short at_fund_type;
258    BLOCK *at_mod_fund_type;
259    unsigned long at_user_def_type;
260    BLOCK *at_mod_u_d_type;
261    unsigned short at_ordering;
262    BLOCK *at_subscr_data;
263    unsigned long at_byte_size;
264    unsigned short at_bit_offset;
265    unsigned long at_bit_size;
266    BLOCK *at_element_list;
267    unsigned long at_stmt_list;
268    CORE_ADDR at_low_pc;
269    CORE_ADDR at_high_pc;
270    unsigned long at_language;
271    unsigned long at_member;
272    unsigned long at_discr;
273    BLOCK *at_discr_value;
274    BLOCK *at_string_length;
275    char *at_comp_dir;
276    char *at_producer;
277    unsigned long at_start_scope;
278    unsigned long at_stride_size;
279    unsigned long at_src_info;
280    char *at_prototyped;
281    unsigned int has_at_low_pc:1;
282    unsigned int has_at_stmt_list:1;
283    unsigned int has_at_byte_size:1;
284    unsigned int short_element_list:1;
285
286    /* Kludge to identify register variables */
287
288    unsigned int isreg;
289
290    /* Kludge to identify optimized out variables */
291
292    unsigned int optimized_out;
293
294    /* Kludge to identify basereg references.
295       Nonzero if we have an offset relative to a basereg.  */
296
297    unsigned int offreg;
298
299    /* Kludge to identify which base register is it relative to.  */
300
301    unsigned int basereg;
302  };
303
304static int diecount;		/* Approximate count of dies for compilation unit */
305static struct dieinfo *curdie;	/* For warnings and such */
306
307static char *dbbase;		/* Base pointer to dwarf info */
308static int dbsize;		/* Size of dwarf info in bytes */
309static int dbroff;		/* Relative offset from start of .debug section */
310static char *lnbase;		/* Base pointer to line section */
311
312/* This value is added to each symbol value.  FIXME:  Generalize to
313   the section_offsets structure used by dbxread (once this is done,
314   pass the appropriate section number to end_symtab).  */
315static CORE_ADDR baseaddr;	/* Add to each symbol value */
316
317/* The section offsets used in the current psymtab or symtab.  FIXME,
318   only used to pass one value (baseaddr) at the moment.  */
319static struct section_offsets *base_section_offsets;
320
321/* We put a pointer to this structure in the read_symtab_private field
322   of the psymtab.  */
323
324struct dwfinfo
325  {
326    /* Always the absolute file offset to the start of the ".debug"
327       section for the file containing the DIE's being accessed.  */
328    file_ptr dbfoff;
329    /* Relative offset from the start of the ".debug" section to the
330       first DIE to be accessed.  When building the partial symbol
331       table, this value will be zero since we are accessing the
332       entire ".debug" section.  When expanding a partial symbol
333       table entry, this value will be the offset to the first
334       DIE for the compilation unit containing the symbol that
335       triggers the expansion.  */
336    int dbroff;
337    /* The size of the chunk of DIE's being examined, in bytes.  */
338    int dblength;
339    /* The absolute file offset to the line table fragment.  Ignored
340       when building partial symbol tables, but used when expanding
341       them, and contains the absolute file offset to the fragment
342       of the ".line" section containing the line numbers for the
343       current compilation unit.  */
344    file_ptr lnfoff;
345  };
346
347#define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
348#define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
349#define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
350#define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
351
352/* The generic symbol table building routines have separate lists for
353   file scope symbols and all all other scopes (local scopes).  So
354   we need to select the right one to pass to add_symbol_to_list().
355   We do it by keeping a pointer to the correct list in list_in_scope.
356
357   FIXME:  The original dwarf code just treated the file scope as the first
358   local scope, and all other local scopes as nested local scopes, and worked
359   fine.  Check to see if we really need to distinguish these in buildsym.c */
360
361struct pending **list_in_scope = &file_symbols;
362
363/* DIES which have user defined types or modified user defined types refer to
364   other DIES for the type information.  Thus we need to associate the offset
365   of a DIE for a user defined type with a pointer to the type information.
366
367   Originally this was done using a simple but expensive algorithm, with an
368   array of unsorted structures, each containing an offset/type-pointer pair.
369   This array was scanned linearly each time a lookup was done.  The result
370   was that gdb was spending over half it's startup time munging through this
371   array of pointers looking for a structure that had the right offset member.
372
373   The second attempt used the same array of structures, but the array was
374   sorted using qsort each time a new offset/type was recorded, and a binary
375   search was used to find the type pointer for a given DIE offset.  This was
376   even slower, due to the overhead of sorting the array each time a new
377   offset/type pair was entered.
378
379   The third attempt uses a fixed size array of type pointers, indexed by a
380   value derived from the DIE offset.  Since the minimum DIE size is 4 bytes,
381   we can divide any DIE offset by 4 to obtain a unique index into this fixed
382   size array.  Since each element is a 4 byte pointer, it takes exactly as
383   much memory to hold this array as to hold the DWARF info for a given
384   compilation unit.  But it gets freed as soon as we are done with it.
385   This has worked well in practice, as a reasonable tradeoff between memory
386   consumption and speed, without having to resort to much more complicated
387   algorithms. */
388
389static struct type **utypes;	/* Pointer to array of user type pointers */
390static int numutypes;		/* Max number of user type pointers */
391
392/* Maintain an array of referenced fundamental types for the current
393   compilation unit being read.  For DWARF version 1, we have to construct
394   the fundamental types on the fly, since no information about the
395   fundamental types is supplied.  Each such fundamental type is created by
396   calling a language dependent routine to create the type, and then a
397   pointer to that type is then placed in the array at the index specified
398   by it's FT_<TYPENAME> value.  The array has a fixed size set by the
399   FT_NUM_MEMBERS compile time constant, which is the number of predefined
400   fundamental types gdb knows how to construct. */
401
402static struct type *ftypes[FT_NUM_MEMBERS];	/* Fundamental types */
403
404/* Record the language for the compilation unit which is currently being
405   processed.  We know it once we have seen the TAG_compile_unit DIE,
406   and we need it while processing the DIE's for that compilation unit.
407   It is eventually saved in the symtab structure, but we don't finalize
408   the symtab struct until we have processed all the DIE's for the
409   compilation unit.  We also need to get and save a pointer to the
410   language struct for this language, so we can call the language
411   dependent routines for doing things such as creating fundamental
412   types. */
413
414static enum language cu_language;
415static const struct language_defn *cu_language_defn;
416
417/* Forward declarations of static functions so we don't have to worry
418   about ordering within this file.  */
419
420static void free_utypes (void *);
421
422static int attribute_size (unsigned int);
423
424static CORE_ADDR target_to_host (char *, int, int, struct objfile *);
425
426static void add_enum_psymbol (struct dieinfo *, struct objfile *);
427
428static void handle_producer (char *);
429
430static void read_file_scope (struct dieinfo *, char *, char *,
431			     struct objfile *);
432
433static void read_func_scope (struct dieinfo *, char *, char *,
434			     struct objfile *);
435
436static void read_lexical_block_scope (struct dieinfo *, char *, char *,
437				      struct objfile *);
438
439static void scan_partial_symbols (char *, char *, struct objfile *);
440
441static void scan_compilation_units (char *, char *, file_ptr, file_ptr,
442				    struct objfile *);
443
444static void add_partial_symbol (struct dieinfo *, struct objfile *);
445
446static void basicdieinfo (struct dieinfo *, char *, struct objfile *);
447
448static void completedieinfo (struct dieinfo *, struct objfile *);
449
450static void dwarf_psymtab_to_symtab (struct partial_symtab *);
451
452static void psymtab_to_symtab_1 (struct partial_symtab *);
453
454static void read_ofile_symtab (struct partial_symtab *);
455
456static void process_dies (char *, char *, struct objfile *);
457
458static void read_structure_scope (struct dieinfo *, char *, char *,
459				  struct objfile *);
460
461static struct type *decode_array_element_type (char *);
462
463static struct type *decode_subscript_data_item (char *, char *);
464
465static void dwarf_read_array_type (struct dieinfo *);
466
467static void read_tag_pointer_type (struct dieinfo *dip);
468
469static void read_tag_string_type (struct dieinfo *dip);
470
471static void read_subroutine_type (struct dieinfo *, char *, char *);
472
473static void read_enumeration (struct dieinfo *, char *, char *,
474			      struct objfile *);
475
476static struct type *struct_type (struct dieinfo *, char *, char *,
477				 struct objfile *);
478
479static struct type *enum_type (struct dieinfo *, struct objfile *);
480
481static void decode_line_numbers (char *);
482
483static struct type *decode_die_type (struct dieinfo *);
484
485static struct type *decode_mod_fund_type (char *);
486
487static struct type *decode_mod_u_d_type (char *);
488
489static struct type *decode_modified_type (char *, unsigned int, int);
490
491static struct type *decode_fund_type (unsigned int);
492
493static char *create_name (char *, struct obstack *);
494
495static struct type *lookup_utype (DIE_REF);
496
497static struct type *alloc_utype (DIE_REF, struct type *);
498
499static struct symbol *new_symbol (struct dieinfo *, struct objfile *);
500
501static void synthesize_typedef (struct dieinfo *, struct objfile *,
502				struct type *);
503
504static int locval (struct dieinfo *);
505
506static void set_cu_language (struct dieinfo *);
507
508static struct type *dwarf_fundamental_type (struct objfile *, int);
509
510
511/*
512
513   LOCAL FUNCTION
514
515   dwarf_fundamental_type -- lookup or create a fundamental type
516
517   SYNOPSIS
518
519   struct type *
520   dwarf_fundamental_type (struct objfile *objfile, int typeid)
521
522   DESCRIPTION
523
524   DWARF version 1 doesn't supply any fundamental type information,
525   so gdb has to construct such types.  It has a fixed number of
526   fundamental types that it knows how to construct, which is the
527   union of all types that it knows how to construct for all languages
528   that it knows about.  These are enumerated in gdbtypes.h.
529
530   As an example, assume we find a DIE that references a DWARF
531   fundamental type of FT_integer.  We first look in the ftypes
532   array to see if we already have such a type, indexed by the
533   gdb internal value of FT_INTEGER.  If so, we simply return a
534   pointer to that type.  If not, then we ask an appropriate
535   language dependent routine to create a type FT_INTEGER, using
536   defaults reasonable for the current target machine, and install
537   that type in ftypes for future reference.
538
539   RETURNS
540
541   Pointer to a fundamental type.
542
543 */
544
545static struct type *
546dwarf_fundamental_type (struct objfile *objfile, int typeid)
547{
548  if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
549    {
550      error ("internal error - invalid fundamental type id %d", typeid);
551    }
552
553  /* Look for this particular type in the fundamental type vector.  If one is
554     not found, create and install one appropriate for the current language
555     and the current target machine. */
556
557  if (ftypes[typeid] == NULL)
558    {
559      ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid);
560    }
561
562  return (ftypes[typeid]);
563}
564
565/*
566
567   LOCAL FUNCTION
568
569   set_cu_language -- set local copy of language for compilation unit
570
571   SYNOPSIS
572
573   void
574   set_cu_language (struct dieinfo *dip)
575
576   DESCRIPTION
577
578   Decode the language attribute for a compilation unit DIE and
579   remember what the language was.  We use this at various times
580   when processing DIE's for a given compilation unit.
581
582   RETURNS
583
584   No return value.
585
586 */
587
588static void
589set_cu_language (struct dieinfo *dip)
590{
591  switch (dip->at_language)
592    {
593    case LANG_C89:
594    case LANG_C:
595      cu_language = language_c;
596      break;
597    case LANG_C_PLUS_PLUS:
598      cu_language = language_cplus;
599      break;
600    case LANG_MODULA2:
601      cu_language = language_m2;
602      break;
603    case LANG_FORTRAN77:
604    case LANG_FORTRAN90:
605      cu_language = language_fortran;
606      break;
607    case LANG_ADA83:
608    case LANG_COBOL74:
609    case LANG_COBOL85:
610    case LANG_PASCAL83:
611      /* We don't know anything special about these yet. */
612      cu_language = language_unknown;
613      break;
614    default:
615      /* If no at_language, try to deduce one from the filename */
616      cu_language = deduce_language_from_filename (dip->at_name);
617      break;
618    }
619  cu_language_defn = language_def (cu_language);
620}
621
622/*
623
624   GLOBAL FUNCTION
625
626   dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
627
628   SYNOPSIS
629
630   void dwarf_build_psymtabs (struct objfile *objfile,
631   int mainline, file_ptr dbfoff, unsigned int dbfsize,
632   file_ptr lnoffset, unsigned int lnsize)
633
634   DESCRIPTION
635
636   This function is called upon to build partial symtabs from files
637   containing DIE's (Dwarf Information Entries) and DWARF line numbers.
638
639   It is passed a bfd* containing the DIES
640   and line number information, the corresponding filename for that
641   file, a base address for relocating the symbols, a flag indicating
642   whether or not this debugging information is from a "main symbol
643   table" rather than a shared library or dynamically linked file,
644   and file offset/size pairs for the DIE information and line number
645   information.
646
647   RETURNS
648
649   No return value.
650
651 */
652
653void
654dwarf_build_psymtabs (struct objfile *objfile, int mainline, file_ptr dbfoff,
655		      unsigned int dbfsize, file_ptr lnoffset,
656		      unsigned int lnsize)
657{
658  bfd *abfd = objfile->obfd;
659  struct cleanup *back_to;
660
661  current_objfile = objfile;
662  dbsize = dbfsize;
663  dbbase = xmalloc (dbsize);
664  dbroff = 0;
665  if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
666      (bfd_bread (dbbase, dbsize, abfd) != dbsize))
667    {
668      xfree (dbbase);
669      error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
670    }
671  back_to = make_cleanup (xfree, dbbase);
672
673  /* If we are reinitializing, or if we have never loaded syms yet, init.
674     Since we have no idea how many DIES we are looking at, we just guess
675     some arbitrary value. */
676
677  if (mainline
678      || (objfile->global_psymbols.size == 0
679	  && objfile->static_psymbols.size == 0))
680    {
681      init_psymbol_list (objfile, 1024);
682    }
683
684  /* Save the relocation factor where everybody can see it.  */
685
686  base_section_offsets = objfile->section_offsets;
687  baseaddr = ANOFFSET (objfile->section_offsets, 0);
688
689  /* Follow the compilation unit sibling chain, building a partial symbol
690     table entry for each one.  Save enough information about each compilation
691     unit to locate the full DWARF information later. */
692
693  scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
694
695  do_cleanups (back_to);
696  current_objfile = NULL;
697}
698
699/*
700
701   LOCAL FUNCTION
702
703   read_lexical_block_scope -- process all dies in a lexical block
704
705   SYNOPSIS
706
707   static void read_lexical_block_scope (struct dieinfo *dip,
708   char *thisdie, char *enddie)
709
710   DESCRIPTION
711
712   Process all the DIES contained within a lexical block scope.
713   Start a new scope, process the dies, and then close the scope.
714
715 */
716
717static void
718read_lexical_block_scope (struct dieinfo *dip, char *thisdie, char *enddie,
719			  struct objfile *objfile)
720{
721  struct context_stack *new;
722
723  push_context (0, dip->at_low_pc);
724  process_dies (thisdie + dip->die_length, enddie, objfile);
725  new = pop_context ();
726  if (local_symbols != NULL)
727    {
728      finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
729		    dip->at_high_pc, objfile);
730    }
731  local_symbols = new->locals;
732}
733
734/*
735
736   LOCAL FUNCTION
737
738   lookup_utype -- look up a user defined type from die reference
739
740   SYNOPSIS
741
742   static type *lookup_utype (DIE_REF die_ref)
743
744   DESCRIPTION
745
746   Given a DIE reference, lookup the user defined type associated with
747   that DIE, if it has been registered already.  If not registered, then
748   return NULL.  Alloc_utype() can be called to register an empty
749   type for this reference, which will be filled in later when the
750   actual referenced DIE is processed.
751 */
752
753static struct type *
754lookup_utype (DIE_REF die_ref)
755{
756  struct type *type = NULL;
757  int utypeidx;
758
759  utypeidx = (die_ref - dbroff) / 4;
760  if ((utypeidx < 0) || (utypeidx >= numutypes))
761    {
762      bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref);
763    }
764  else
765    {
766      type = *(utypes + utypeidx);
767    }
768  return (type);
769}
770
771
772/*
773
774   LOCAL FUNCTION
775
776   alloc_utype  -- add a user defined type for die reference
777
778   SYNOPSIS
779
780   static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
781
782   DESCRIPTION
783
784   Given a die reference DIE_REF, and a possible pointer to a user
785   defined type UTYPEP, register that this reference has a user
786   defined type and either use the specified type in UTYPEP or
787   make a new empty type that will be filled in later.
788
789   We should only be called after calling lookup_utype() to verify that
790   there is not currently a type registered for DIE_REF.
791 */
792
793static struct type *
794alloc_utype (DIE_REF die_ref, struct type *utypep)
795{
796  struct type **typep;
797  int utypeidx;
798
799  utypeidx = (die_ref - dbroff) / 4;
800  typep = utypes + utypeidx;
801  if ((utypeidx < 0) || (utypeidx >= numutypes))
802    {
803      utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
804      bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref);
805    }
806  else if (*typep != NULL)
807    {
808      utypep = *typep;
809      complaint (&symfile_complaints,
810		 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation",
811		 DIE_ID, DIE_NAME);
812    }
813  else
814    {
815      if (utypep == NULL)
816	{
817	  utypep = alloc_type (current_objfile);
818	}
819      *typep = utypep;
820    }
821  return (utypep);
822}
823
824/*
825
826   LOCAL FUNCTION
827
828   free_utypes -- free the utypes array and reset pointer & count
829
830   SYNOPSIS
831
832   static void free_utypes (void *dummy)
833
834   DESCRIPTION
835
836   Called via do_cleanups to free the utypes array, reset the pointer to NULL,
837   and set numutypes back to zero.  This ensures that the utypes does not get
838   referenced after being freed.
839 */
840
841static void
842free_utypes (void *dummy)
843{
844  xfree (utypes);
845  utypes = NULL;
846  numutypes = 0;
847}
848
849
850/*
851
852   LOCAL FUNCTION
853
854   decode_die_type -- return a type for a specified die
855
856   SYNOPSIS
857
858   static struct type *decode_die_type (struct dieinfo *dip)
859
860   DESCRIPTION
861
862   Given a pointer to a die information structure DIP, decode the
863   type of the die and return a pointer to the decoded type.  All
864   dies without specific types default to type int.
865 */
866
867static struct type *
868decode_die_type (struct dieinfo *dip)
869{
870  struct type *type = NULL;
871
872  if (dip->at_fund_type != 0)
873    {
874      type = decode_fund_type (dip->at_fund_type);
875    }
876  else if (dip->at_mod_fund_type != NULL)
877    {
878      type = decode_mod_fund_type (dip->at_mod_fund_type);
879    }
880  else if (dip->at_user_def_type)
881    {
882      type = lookup_utype (dip->at_user_def_type);
883      if (type == NULL)
884	{
885	  type = alloc_utype (dip->at_user_def_type, NULL);
886	}
887    }
888  else if (dip->at_mod_u_d_type)
889    {
890      type = decode_mod_u_d_type (dip->at_mod_u_d_type);
891    }
892  else
893    {
894      type = dwarf_fundamental_type (current_objfile, FT_VOID);
895    }
896  return (type);
897}
898
899/*
900
901   LOCAL FUNCTION
902
903   struct_type -- compute and return the type for a struct or union
904
905   SYNOPSIS
906
907   static struct type *struct_type (struct dieinfo *dip, char *thisdie,
908   char *enddie, struct objfile *objfile)
909
910   DESCRIPTION
911
912   Given pointer to a die information structure for a die which
913   defines a union or structure (and MUST define one or the other),
914   and pointers to the raw die data that define the range of dies which
915   define the members, compute and return the user defined type for the
916   structure or union.
917 */
918
919static struct type *
920struct_type (struct dieinfo *dip, char *thisdie, char *enddie,
921	     struct objfile *objfile)
922{
923  struct type *type;
924  struct nextfield
925    {
926      struct nextfield *next;
927      struct field field;
928    };
929  struct nextfield *list = NULL;
930  struct nextfield *new;
931  int nfields = 0;
932  int n;
933  struct dieinfo mbr;
934  char *nextdie;
935  int anonymous_size;
936
937  type = lookup_utype (dip->die_ref);
938  if (type == NULL)
939    {
940      /* No forward references created an empty type, so install one now */
941      type = alloc_utype (dip->die_ref, NULL);
942    }
943  INIT_CPLUS_SPECIFIC (type);
944  switch (dip->die_tag)
945    {
946    case TAG_class_type:
947      TYPE_CODE (type) = TYPE_CODE_CLASS;
948      break;
949    case TAG_structure_type:
950      TYPE_CODE (type) = TYPE_CODE_STRUCT;
951      break;
952    case TAG_union_type:
953      TYPE_CODE (type) = TYPE_CODE_UNION;
954      break;
955    default:
956      /* Should never happen */
957      TYPE_CODE (type) = TYPE_CODE_UNDEF;
958      complaint (&symfile_complaints,
959		 "DIE @ 0x%x \"%s\", missing class, structure, or union tag",
960		 DIE_ID, DIE_NAME);
961      break;
962    }
963  /* Some compilers try to be helpful by inventing "fake" names for
964     anonymous enums, structures, and unions, like "~0fake" or ".0fake".
965     Thanks, but no thanks... */
966  if (dip->at_name != NULL
967      && *dip->at_name != '~'
968      && *dip->at_name != '.')
969    {
970      TYPE_TAG_NAME (type) = obconcat (&objfile->objfile_obstack,
971				       "", "", dip->at_name);
972    }
973  /* Use whatever size is known.  Zero is a valid size.  We might however
974     wish to check has_at_byte_size to make sure that some byte size was
975     given explicitly, but DWARF doesn't specify that explicit sizes of
976     zero have to present, so complaining about missing sizes should
977     probably not be the default. */
978  TYPE_LENGTH (type) = dip->at_byte_size;
979  thisdie += dip->die_length;
980  while (thisdie < enddie)
981    {
982      basicdieinfo (&mbr, thisdie, objfile);
983      completedieinfo (&mbr, objfile);
984      if (mbr.die_length <= SIZEOF_DIE_LENGTH)
985	{
986	  break;
987	}
988      else if (mbr.at_sibling != 0)
989	{
990	  nextdie = dbbase + mbr.at_sibling - dbroff;
991	}
992      else
993	{
994	  nextdie = thisdie + mbr.die_length;
995	}
996      switch (mbr.die_tag)
997	{
998	case TAG_member:
999	  /* Static fields can be either TAG_global_variable (GCC) or else
1000	     TAG_member with no location (Diab).  We could treat the latter like
1001	     the former... but since we don't support the former, just avoid
1002	     crashing on the latter for now.  */
1003	  if (mbr.at_location == NULL)
1004	    break;
1005
1006	  /* Get space to record the next field's data.  */
1007	  new = (struct nextfield *) alloca (sizeof (struct nextfield));
1008	  new->next = list;
1009	  list = new;
1010	  /* Save the data.  */
1011	  list->field.name =
1012	    obsavestring (mbr.at_name, strlen (mbr.at_name),
1013			  &objfile->objfile_obstack);
1014	  FIELD_TYPE (list->field) = decode_die_type (&mbr);
1015	  FIELD_BITPOS (list->field) = 8 * locval (&mbr);
1016	  FIELD_STATIC_KIND (list->field) = 0;
1017	  /* Handle bit fields. */
1018	  FIELD_BITSIZE (list->field) = mbr.at_bit_size;
1019	  if (BITS_BIG_ENDIAN)
1020	    {
1021	      /* For big endian bits, the at_bit_offset gives the
1022	         additional bit offset from the MSB of the containing
1023	         anonymous object to the MSB of the field.  We don't
1024	         have to do anything special since we don't need to
1025	         know the size of the anonymous object. */
1026	      FIELD_BITPOS (list->field) += mbr.at_bit_offset;
1027	    }
1028	  else
1029	    {
1030	      /* For little endian bits, we need to have a non-zero
1031	         at_bit_size, so that we know we are in fact dealing
1032	         with a bitfield.  Compute the bit offset to the MSB
1033	         of the anonymous object, subtract off the number of
1034	         bits from the MSB of the field to the MSB of the
1035	         object, and then subtract off the number of bits of
1036	         the field itself.  The result is the bit offset of
1037	         the LSB of the field. */
1038	      if (mbr.at_bit_size > 0)
1039		{
1040		  if (mbr.has_at_byte_size)
1041		    {
1042		      /* The size of the anonymous object containing
1043		         the bit field is explicit, so use the
1044		         indicated size (in bytes). */
1045		      anonymous_size = mbr.at_byte_size;
1046		    }
1047		  else
1048		    {
1049		      /* The size of the anonymous object containing
1050		         the bit field matches the size of an object
1051		         of the bit field's type.  DWARF allows
1052		         at_byte_size to be left out in such cases, as
1053		         a debug information size optimization. */
1054		      anonymous_size = TYPE_LENGTH (list->field.type);
1055		    }
1056		  FIELD_BITPOS (list->field) +=
1057		    anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1058		}
1059	    }
1060	  nfields++;
1061	  break;
1062	default:
1063	  process_dies (thisdie, nextdie, objfile);
1064	  break;
1065	}
1066      thisdie = nextdie;
1067    }
1068  /* Now create the vector of fields, and record how big it is.  We may
1069     not even have any fields, if this DIE was generated due to a reference
1070     to an anonymous structure or union.  In this case, TYPE_FLAG_STUB is
1071     set, which clues gdb in to the fact that it needs to search elsewhere
1072     for the full structure definition. */
1073  if (nfields == 0)
1074    {
1075      TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1076    }
1077  else
1078    {
1079      TYPE_NFIELDS (type) = nfields;
1080      TYPE_FIELDS (type) = (struct field *)
1081	TYPE_ALLOC (type, sizeof (struct field) * nfields);
1082      /* Copy the saved-up fields into the field vector.  */
1083      for (n = nfields; list; list = list->next)
1084	{
1085	  TYPE_FIELD (type, --n) = list->field;
1086	}
1087    }
1088  return (type);
1089}
1090
1091/*
1092
1093   LOCAL FUNCTION
1094
1095   read_structure_scope -- process all dies within struct or union
1096
1097   SYNOPSIS
1098
1099   static void read_structure_scope (struct dieinfo *dip,
1100   char *thisdie, char *enddie, struct objfile *objfile)
1101
1102   DESCRIPTION
1103
1104   Called when we find the DIE that starts a structure or union
1105   scope (definition) to process all dies that define the members
1106   of the structure or union.  DIP is a pointer to the die info
1107   struct for the DIE that names the structure or union.
1108
1109   NOTES
1110
1111   Note that we need to call struct_type regardless of whether or not
1112   the DIE has an at_name attribute, since it might be an anonymous
1113   structure or union.  This gets the type entered into our set of
1114   user defined types.
1115
1116   However, if the structure is incomplete (an opaque struct/union)
1117   then suppress creating a symbol table entry for it since gdb only
1118   wants to find the one with the complete definition.  Note that if
1119   it is complete, we just call new_symbol, which does it's own
1120   checking about whether the struct/union is anonymous or not (and
1121   suppresses creating a symbol table entry itself).
1122
1123 */
1124
1125static void
1126read_structure_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1127		      struct objfile *objfile)
1128{
1129  struct type *type;
1130  struct symbol *sym;
1131
1132  type = struct_type (dip, thisdie, enddie, objfile);
1133  if (!TYPE_STUB (type))
1134    {
1135      sym = new_symbol (dip, objfile);
1136      if (sym != NULL)
1137	{
1138	  SYMBOL_TYPE (sym) = type;
1139	  if (cu_language == language_cplus)
1140	    {
1141	      synthesize_typedef (dip, objfile, type);
1142	    }
1143	}
1144    }
1145}
1146
1147/*
1148
1149   LOCAL FUNCTION
1150
1151   decode_array_element_type -- decode type of the array elements
1152
1153   SYNOPSIS
1154
1155   static struct type *decode_array_element_type (char *scan, char *end)
1156
1157   DESCRIPTION
1158
1159   As the last step in decoding the array subscript information for an
1160   array DIE, we need to decode the type of the array elements.  We are
1161   passed a pointer to this last part of the subscript information and
1162   must return the appropriate type.  If the type attribute is not
1163   recognized, just warn about the problem and return type int.
1164 */
1165
1166static struct type *
1167decode_array_element_type (char *scan)
1168{
1169  struct type *typep;
1170  DIE_REF die_ref;
1171  unsigned short attribute;
1172  unsigned short fundtype;
1173  int nbytes;
1174
1175  attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1176			      current_objfile);
1177  scan += SIZEOF_ATTRIBUTE;
1178  nbytes = attribute_size (attribute);
1179  if (nbytes == -1)
1180    {
1181      bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute);
1182      typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1183    }
1184  else
1185    {
1186      switch (attribute)
1187	{
1188	case AT_fund_type:
1189	  fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1190				     current_objfile);
1191	  typep = decode_fund_type (fundtype);
1192	  break;
1193	case AT_mod_fund_type:
1194	  typep = decode_mod_fund_type (scan);
1195	  break;
1196	case AT_user_def_type:
1197	  die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1198				    current_objfile);
1199	  typep = lookup_utype (die_ref);
1200	  if (typep == NULL)
1201	    {
1202	      typep = alloc_utype (die_ref, NULL);
1203	    }
1204	  break;
1205	case AT_mod_u_d_type:
1206	  typep = decode_mod_u_d_type (scan);
1207	  break;
1208	default:
1209	  bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute);
1210	  typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1211	  break;
1212	}
1213    }
1214  return (typep);
1215}
1216
1217/*
1218
1219   LOCAL FUNCTION
1220
1221   decode_subscript_data_item -- decode array subscript item
1222
1223   SYNOPSIS
1224
1225   static struct type *
1226   decode_subscript_data_item (char *scan, char *end)
1227
1228   DESCRIPTION
1229
1230   The array subscripts and the data type of the elements of an
1231   array are described by a list of data items, stored as a block
1232   of contiguous bytes.  There is a data item describing each array
1233   dimension, and a final data item describing the element type.
1234   The data items are ordered the same as their appearance in the
1235   source (I.E. leftmost dimension first, next to leftmost second,
1236   etc).
1237
1238   The data items describing each array dimension consist of four
1239   parts: (1) a format specifier, (2) type type of the subscript
1240   index, (3) a description of the low bound of the array dimension,
1241   and (4) a description of the high bound of the array dimension.
1242
1243   The last data item is the description of the type of each of
1244   the array elements.
1245
1246   We are passed a pointer to the start of the block of bytes
1247   containing the remaining data items, and a pointer to the first
1248   byte past the data.  This function recursively decodes the
1249   remaining data items and returns a type.
1250
1251   If we somehow fail to decode some data, we complain about it
1252   and return a type "array of int".
1253
1254   BUGS
1255   FIXME:  This code only implements the forms currently used
1256   by the AT&T and GNU C compilers.
1257
1258   The end pointer is supplied for error checking, maybe we should
1259   use it for that...
1260 */
1261
1262static struct type *
1263decode_subscript_data_item (char *scan, char *end)
1264{
1265  struct type *typep = NULL;	/* Array type we are building */
1266  struct type *nexttype;	/* Type of each element (may be array) */
1267  struct type *indextype;	/* Type of this index */
1268  struct type *rangetype;
1269  unsigned int format;
1270  unsigned short fundtype;
1271  unsigned long lowbound;
1272  unsigned long highbound;
1273  int nbytes;
1274
1275  format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1276			   current_objfile);
1277  scan += SIZEOF_FORMAT_SPECIFIER;
1278  switch (format)
1279    {
1280    case FMT_ET:
1281      typep = decode_array_element_type (scan);
1282      break;
1283    case FMT_FT_C_C:
1284      fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1285				 current_objfile);
1286      indextype = decode_fund_type (fundtype);
1287      scan += SIZEOF_FMT_FT;
1288      nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1289      lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1290      scan += nbytes;
1291      highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1292      scan += nbytes;
1293      nexttype = decode_subscript_data_item (scan, end);
1294      if (nexttype == NULL)
1295	{
1296	  /* Munged subscript data or other problem, fake it. */
1297	  complaint (&symfile_complaints,
1298		     "DIE @ 0x%x \"%s\", can't decode subscript data items",
1299		     DIE_ID, DIE_NAME);
1300	  nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1301	}
1302      rangetype = create_range_type ((struct type *) NULL, indextype,
1303				     lowbound, highbound);
1304      typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1305      break;
1306    case FMT_FT_C_X:
1307    case FMT_FT_X_C:
1308    case FMT_FT_X_X:
1309    case FMT_UT_C_C:
1310    case FMT_UT_C_X:
1311    case FMT_UT_X_C:
1312    case FMT_UT_X_X:
1313      complaint (&symfile_complaints,
1314		 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet",
1315		 DIE_ID, DIE_NAME, format);
1316      nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1317      rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1318      typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1319      break;
1320    default:
1321      complaint (&symfile_complaints,
1322		 "DIE @ 0x%x \"%s\", unknown array subscript format %x", DIE_ID,
1323		 DIE_NAME, format);
1324      nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1325      rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1326      typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1327      break;
1328    }
1329  return (typep);
1330}
1331
1332/*
1333
1334   LOCAL FUNCTION
1335
1336   dwarf_read_array_type -- read TAG_array_type DIE
1337
1338   SYNOPSIS
1339
1340   static void dwarf_read_array_type (struct dieinfo *dip)
1341
1342   DESCRIPTION
1343
1344   Extract all information from a TAG_array_type DIE and add to
1345   the user defined type vector.
1346 */
1347
1348static void
1349dwarf_read_array_type (struct dieinfo *dip)
1350{
1351  struct type *type;
1352  struct type *utype;
1353  char *sub;
1354  char *subend;
1355  unsigned short blocksz;
1356  int nbytes;
1357
1358  if (dip->at_ordering != ORD_row_major)
1359    {
1360      /* FIXME:  Can gdb even handle column major arrays? */
1361      complaint (&symfile_complaints,
1362		 "DIE @ 0x%x \"%s\", array not row major; not handled correctly",
1363		 DIE_ID, DIE_NAME);
1364    }
1365  sub = dip->at_subscr_data;
1366  if (sub != NULL)
1367    {
1368      nbytes = attribute_size (AT_subscr_data);
1369      blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1370      subend = sub + nbytes + blocksz;
1371      sub += nbytes;
1372      type = decode_subscript_data_item (sub, subend);
1373      utype = lookup_utype (dip->die_ref);
1374      if (utype == NULL)
1375	{
1376	  /* Install user defined type that has not been referenced yet. */
1377	  alloc_utype (dip->die_ref, type);
1378	}
1379      else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1380	{
1381	  /* Ick!  A forward ref has already generated a blank type in our
1382	     slot, and this type probably already has things pointing to it
1383	     (which is what caused it to be created in the first place).
1384	     If it's just a place holder we can plop our fully defined type
1385	     on top of it.  We can't recover the space allocated for our
1386	     new type since it might be on an obstack, but we could reuse
1387	     it if we kept a list of them, but it might not be worth it
1388	     (FIXME). */
1389	  *utype = *type;
1390	}
1391      else
1392	{
1393	  /* Double ick!  Not only is a type already in our slot, but
1394	     someone has decorated it.  Complain and leave it alone. */
1395	  dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
1396	}
1397    }
1398}
1399
1400/*
1401
1402   LOCAL FUNCTION
1403
1404   read_tag_pointer_type -- read TAG_pointer_type DIE
1405
1406   SYNOPSIS
1407
1408   static void read_tag_pointer_type (struct dieinfo *dip)
1409
1410   DESCRIPTION
1411
1412   Extract all information from a TAG_pointer_type DIE and add to
1413   the user defined type vector.
1414 */
1415
1416static void
1417read_tag_pointer_type (struct dieinfo *dip)
1418{
1419  struct type *type;
1420  struct type *utype;
1421
1422  type = decode_die_type (dip);
1423  utype = lookup_utype (dip->die_ref);
1424  if (utype == NULL)
1425    {
1426      utype = lookup_pointer_type (type);
1427      alloc_utype (dip->die_ref, utype);
1428    }
1429  else
1430    {
1431      TYPE_TARGET_TYPE (utype) = type;
1432      TYPE_POINTER_TYPE (type) = utype;
1433
1434      /* We assume the machine has only one representation for pointers!  */
1435      /* FIXME:  Possably a poor assumption  */
1436      TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
1437      TYPE_CODE (utype) = TYPE_CODE_PTR;
1438    }
1439}
1440
1441/*
1442
1443   LOCAL FUNCTION
1444
1445   read_tag_string_type -- read TAG_string_type DIE
1446
1447   SYNOPSIS
1448
1449   static void read_tag_string_type (struct dieinfo *dip)
1450
1451   DESCRIPTION
1452
1453   Extract all information from a TAG_string_type DIE and add to
1454   the user defined type vector.  It isn't really a user defined
1455   type, but it behaves like one, with other DIE's using an
1456   AT_user_def_type attribute to reference it.
1457 */
1458
1459static void
1460read_tag_string_type (struct dieinfo *dip)
1461{
1462  struct type *utype;
1463  struct type *indextype;
1464  struct type *rangetype;
1465  unsigned long lowbound = 0;
1466  unsigned long highbound;
1467
1468  if (dip->has_at_byte_size)
1469    {
1470      /* A fixed bounds string */
1471      highbound = dip->at_byte_size - 1;
1472    }
1473  else
1474    {
1475      /* A varying length string.  Stub for now.  (FIXME) */
1476      highbound = 1;
1477    }
1478  indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1479  rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1480				 highbound);
1481
1482  utype = lookup_utype (dip->die_ref);
1483  if (utype == NULL)
1484    {
1485      /* No type defined, go ahead and create a blank one to use. */
1486      utype = alloc_utype (dip->die_ref, (struct type *) NULL);
1487    }
1488  else
1489    {
1490      /* Already a type in our slot due to a forward reference. Make sure it
1491         is a blank one.  If not, complain and leave it alone. */
1492      if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1493	{
1494	  dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
1495	  return;
1496	}
1497    }
1498
1499  /* Create the string type using the blank type we either found or created. */
1500  utype = create_string_type (utype, rangetype);
1501}
1502
1503/*
1504
1505   LOCAL FUNCTION
1506
1507   read_subroutine_type -- process TAG_subroutine_type dies
1508
1509   SYNOPSIS
1510
1511   static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1512   char *enddie)
1513
1514   DESCRIPTION
1515
1516   Handle DIES due to C code like:
1517
1518   struct foo {
1519   int (*funcp)(int a, long l);  (Generates TAG_subroutine_type DIE)
1520   int b;
1521   };
1522
1523   NOTES
1524
1525   The parameter DIES are currently ignored.  See if gdb has a way to
1526   include this info in it's type system, and decode them if so.  Is
1527   this what the type structure's "arg_types" field is for?  (FIXME)
1528 */
1529
1530static void
1531read_subroutine_type (struct dieinfo *dip, char *thisdie, char *enddie)
1532{
1533  struct type *type;		/* Type that this function returns */
1534  struct type *ftype;		/* Function that returns above type */
1535
1536  /* Decode the type that this subroutine returns */
1537
1538  type = decode_die_type (dip);
1539
1540  /* Check to see if we already have a partially constructed user
1541     defined type for this DIE, from a forward reference. */
1542
1543  ftype = lookup_utype (dip->die_ref);
1544  if (ftype == NULL)
1545    {
1546      /* This is the first reference to one of these types.  Make
1547         a new one and place it in the user defined types. */
1548      ftype = lookup_function_type (type);
1549      alloc_utype (dip->die_ref, ftype);
1550    }
1551  else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1552    {
1553      /* We have an existing partially constructed type, so bash it
1554         into the correct type. */
1555      TYPE_TARGET_TYPE (ftype) = type;
1556      TYPE_LENGTH (ftype) = 1;
1557      TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1558    }
1559  else
1560    {
1561      dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
1562    }
1563}
1564
1565/*
1566
1567   LOCAL FUNCTION
1568
1569   read_enumeration -- process dies which define an enumeration
1570
1571   SYNOPSIS
1572
1573   static void read_enumeration (struct dieinfo *dip, char *thisdie,
1574   char *enddie, struct objfile *objfile)
1575
1576   DESCRIPTION
1577
1578   Given a pointer to a die which begins an enumeration, process all
1579   the dies that define the members of the enumeration.
1580
1581   NOTES
1582
1583   Note that we need to call enum_type regardless of whether or not we
1584   have a symbol, since we might have an enum without a tag name (thus
1585   no symbol for the tagname).
1586 */
1587
1588static void
1589read_enumeration (struct dieinfo *dip, char *thisdie, char *enddie,
1590		  struct objfile *objfile)
1591{
1592  struct type *type;
1593  struct symbol *sym;
1594
1595  type = enum_type (dip, objfile);
1596  sym = new_symbol (dip, objfile);
1597  if (sym != NULL)
1598    {
1599      SYMBOL_TYPE (sym) = type;
1600      if (cu_language == language_cplus)
1601	{
1602	  synthesize_typedef (dip, objfile, type);
1603	}
1604    }
1605}
1606
1607/*
1608
1609   LOCAL FUNCTION
1610
1611   enum_type -- decode and return a type for an enumeration
1612
1613   SYNOPSIS
1614
1615   static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1616
1617   DESCRIPTION
1618
1619   Given a pointer to a die information structure for the die which
1620   starts an enumeration, process all the dies that define the members
1621   of the enumeration and return a type pointer for the enumeration.
1622
1623   At the same time, for each member of the enumeration, create a
1624   symbol for it with domain VAR_DOMAIN and class LOC_CONST,
1625   and give it the type of the enumeration itself.
1626
1627   NOTES
1628
1629   Note that the DWARF specification explicitly mandates that enum
1630   constants occur in reverse order from the source program order,
1631   for "consistency" and because this ordering is easier for many
1632   compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1633   Entries).  Because gdb wants to see the enum members in program
1634   source order, we have to ensure that the order gets reversed while
1635   we are processing them.
1636 */
1637
1638static struct type *
1639enum_type (struct dieinfo *dip, struct objfile *objfile)
1640{
1641  struct type *type;
1642  struct nextfield
1643    {
1644      struct nextfield *next;
1645      struct field field;
1646    };
1647  struct nextfield *list = NULL;
1648  struct nextfield *new;
1649  int nfields = 0;
1650  int n;
1651  char *scan;
1652  char *listend;
1653  unsigned short blocksz;
1654  struct symbol *sym;
1655  int nbytes;
1656  int unsigned_enum = 1;
1657
1658  type = lookup_utype (dip->die_ref);
1659  if (type == NULL)
1660    {
1661      /* No forward references created an empty type, so install one now */
1662      type = alloc_utype (dip->die_ref, NULL);
1663    }
1664  TYPE_CODE (type) = TYPE_CODE_ENUM;
1665  /* Some compilers try to be helpful by inventing "fake" names for
1666     anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1667     Thanks, but no thanks... */
1668  if (dip->at_name != NULL
1669      && *dip->at_name != '~'
1670      && *dip->at_name != '.')
1671    {
1672      TYPE_TAG_NAME (type) = obconcat (&objfile->objfile_obstack,
1673				       "", "", dip->at_name);
1674    }
1675  if (dip->at_byte_size != 0)
1676    {
1677      TYPE_LENGTH (type) = dip->at_byte_size;
1678    }
1679  scan = dip->at_element_list;
1680  if (scan != NULL)
1681    {
1682      if (dip->short_element_list)
1683	{
1684	  nbytes = attribute_size (AT_short_element_list);
1685	}
1686      else
1687	{
1688	  nbytes = attribute_size (AT_element_list);
1689	}
1690      blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1691      listend = scan + nbytes + blocksz;
1692      scan += nbytes;
1693      while (scan < listend)
1694	{
1695	  new = (struct nextfield *) alloca (sizeof (struct nextfield));
1696	  new->next = list;
1697	  list = new;
1698	  FIELD_TYPE (list->field) = NULL;
1699	  FIELD_BITSIZE (list->field) = 0;
1700	  FIELD_STATIC_KIND (list->field) = 0;
1701	  FIELD_BITPOS (list->field) =
1702	    target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1703			    objfile);
1704	  scan += TARGET_FT_LONG_SIZE (objfile);
1705	  list->field.name = obsavestring (scan, strlen (scan),
1706					   &objfile->objfile_obstack);
1707	  scan += strlen (scan) + 1;
1708	  nfields++;
1709	  /* Handcraft a new symbol for this enum member. */
1710	  sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
1711						 sizeof (struct symbol));
1712	  memset (sym, 0, sizeof (struct symbol));
1713	  DEPRECATED_SYMBOL_NAME (sym) = create_name (list->field.name,
1714					   &objfile->objfile_obstack);
1715	  SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1716	  SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1717	  SYMBOL_CLASS (sym) = LOC_CONST;
1718	  SYMBOL_TYPE (sym) = type;
1719	  SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
1720	  if (SYMBOL_VALUE (sym) < 0)
1721	    unsigned_enum = 0;
1722	  add_symbol_to_list (sym, list_in_scope);
1723	}
1724      /* Now create the vector of fields, and record how big it is. This is
1725         where we reverse the order, by pulling the members off the list in
1726         reverse order from how they were inserted.  If we have no fields
1727         (this is apparently possible in C++) then skip building a field
1728         vector. */
1729      if (nfields > 0)
1730	{
1731	  if (unsigned_enum)
1732	    TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1733	  TYPE_NFIELDS (type) = nfields;
1734	  TYPE_FIELDS (type) = (struct field *)
1735	    obstack_alloc (&objfile->objfile_obstack, sizeof (struct field) * nfields);
1736	  /* Copy the saved-up fields into the field vector.  */
1737	  for (n = 0; (n < nfields) && (list != NULL); list = list->next)
1738	    {
1739	      TYPE_FIELD (type, n++) = list->field;
1740	    }
1741	}
1742    }
1743  return (type);
1744}
1745
1746/*
1747
1748   LOCAL FUNCTION
1749
1750   read_func_scope -- process all dies within a function scope
1751
1752   DESCRIPTION
1753
1754   Process all dies within a given function scope.  We are passed
1755   a die information structure pointer DIP for the die which
1756   starts the function scope, and pointers into the raw die data
1757   that define the dies within the function scope.
1758
1759   For now, we ignore lexical block scopes within the function.
1760   The problem is that AT&T cc does not define a DWARF lexical
1761   block scope for the function itself, while gcc defines a
1762   lexical block scope for the function.  We need to think about
1763   how to handle this difference, or if it is even a problem.
1764   (FIXME)
1765 */
1766
1767static void
1768read_func_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1769		 struct objfile *objfile)
1770{
1771  struct context_stack *new;
1772
1773  /* AT_name is absent if the function is described with an
1774     AT_abstract_origin tag.
1775     Ignore the function description for now to avoid GDB core dumps.
1776     FIXME: Add code to handle AT_abstract_origin tags properly.  */
1777  if (dip->at_name == NULL)
1778    {
1779      complaint (&symfile_complaints, "DIE @ 0x%x, AT_name tag missing",
1780		 DIE_ID);
1781      return;
1782    }
1783
1784  if (objfile->ei.entry_point >= dip->at_low_pc &&
1785      objfile->ei.entry_point < dip->at_high_pc)
1786    {
1787      objfile->ei.entry_func_lowpc = dip->at_low_pc;
1788      objfile->ei.entry_func_highpc = dip->at_high_pc;
1789    }
1790  new = push_context (0, dip->at_low_pc);
1791  new->name = new_symbol (dip, objfile);
1792  list_in_scope = &local_symbols;
1793  process_dies (thisdie + dip->die_length, enddie, objfile);
1794  new = pop_context ();
1795  /* Make a block for the local symbols within.  */
1796  finish_block (new->name, &local_symbols, new->old_blocks,
1797		new->start_addr, dip->at_high_pc, objfile);
1798  list_in_scope = &file_symbols;
1799}
1800
1801
1802/*
1803
1804   LOCAL FUNCTION
1805
1806   handle_producer -- process the AT_producer attribute
1807
1808   DESCRIPTION
1809
1810   Perform any operations that depend on finding a particular
1811   AT_producer attribute.
1812
1813 */
1814
1815static void
1816handle_producer (char *producer)
1817{
1818
1819  /* If this compilation unit was compiled with g++ or gcc, then set the
1820     processing_gcc_compilation flag. */
1821
1822  if (DEPRECATED_STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER)))
1823    {
1824      char version = producer[strlen (GCC_PRODUCER)];
1825      processing_gcc_compilation = (version == '2' ? 2 : 1);
1826    }
1827  else
1828    {
1829      processing_gcc_compilation =
1830	strncmp (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)) == 0;
1831    }
1832
1833  /* Select a demangling style if we can identify the producer and if
1834     the current style is auto.  We leave the current style alone if it
1835     is not auto.  We also leave the demangling style alone if we find a
1836     gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1837
1838  if (AUTO_DEMANGLING)
1839    {
1840      if (DEPRECATED_STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1841	{
1842#if 0
1843	  /* For now, stay with AUTO_DEMANGLING for g++ output, as we don't
1844	     know whether it will use the old style or v3 mangling.  */
1845	  set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1846#endif
1847	}
1848      else if (DEPRECATED_STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1849	{
1850	  set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1851	}
1852    }
1853}
1854
1855
1856/*
1857
1858   LOCAL FUNCTION
1859
1860   read_file_scope -- process all dies within a file scope
1861
1862   DESCRIPTION
1863
1864   Process all dies within a given file scope.  We are passed a
1865   pointer to the die information structure for the die which
1866   starts the file scope, and pointers into the raw die data which
1867   mark the range of dies within the file scope.
1868
1869   When the partial symbol table is built, the file offset for the line
1870   number table for each compilation unit is saved in the partial symbol
1871   table entry for that compilation unit.  As the symbols for each
1872   compilation unit are read, the line number table is read into memory
1873   and the variable lnbase is set to point to it.  Thus all we have to
1874   do is use lnbase to access the line number table for the current
1875   compilation unit.
1876 */
1877
1878static void
1879read_file_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1880		 struct objfile *objfile)
1881{
1882  struct cleanup *back_to;
1883  struct symtab *symtab;
1884
1885  if (objfile->ei.entry_point >= dip->at_low_pc &&
1886      objfile->ei.entry_point < dip->at_high_pc)
1887    {
1888      objfile->ei.deprecated_entry_file_lowpc = dip->at_low_pc;
1889      objfile->ei.deprecated_entry_file_highpc = dip->at_high_pc;
1890    }
1891  set_cu_language (dip);
1892  if (dip->at_producer != NULL)
1893    {
1894      handle_producer (dip->at_producer);
1895    }
1896  numutypes = (enddie - thisdie) / 4;
1897  utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1898  back_to = make_cleanup (free_utypes, NULL);
1899  memset (utypes, 0, numutypes * sizeof (struct type *));
1900  memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1901  start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc);
1902  record_debugformat ("DWARF 1");
1903  decode_line_numbers (lnbase);
1904  process_dies (thisdie + dip->die_length, enddie, objfile);
1905
1906  symtab = end_symtab (dip->at_high_pc, objfile, 0);
1907  if (symtab != NULL)
1908    {
1909      symtab->language = cu_language;
1910    }
1911  do_cleanups (back_to);
1912}
1913
1914/*
1915
1916   LOCAL FUNCTION
1917
1918   process_dies -- process a range of DWARF Information Entries
1919
1920   SYNOPSIS
1921
1922   static void process_dies (char *thisdie, char *enddie,
1923   struct objfile *objfile)
1924
1925   DESCRIPTION
1926
1927   Process all DIE's in a specified range.  May be (and almost
1928   certainly will be) called recursively.
1929 */
1930
1931static void
1932process_dies (char *thisdie, char *enddie, struct objfile *objfile)
1933{
1934  char *nextdie;
1935  struct dieinfo di;
1936
1937  while (thisdie < enddie)
1938    {
1939      basicdieinfo (&di, thisdie, objfile);
1940      if (di.die_length < SIZEOF_DIE_LENGTH)
1941	{
1942	  break;
1943	}
1944      else if (di.die_tag == TAG_padding)
1945	{
1946	  nextdie = thisdie + di.die_length;
1947	}
1948      else
1949	{
1950	  completedieinfo (&di, objfile);
1951	  if (di.at_sibling != 0)
1952	    {
1953	      nextdie = dbbase + di.at_sibling - dbroff;
1954	    }
1955	  else
1956	    {
1957	      nextdie = thisdie + di.die_length;
1958	    }
1959	  /* I think that these are always text, not data, addresses.  */
1960	  di.at_low_pc = SMASH_TEXT_ADDRESS (di.at_low_pc);
1961	  di.at_high_pc = SMASH_TEXT_ADDRESS (di.at_high_pc);
1962	  switch (di.die_tag)
1963	    {
1964	    case TAG_compile_unit:
1965	      /* Skip Tag_compile_unit if we are already inside a compilation
1966	         unit, we are unable to handle nested compilation units
1967	         properly (FIXME).  */
1968	      if (current_subfile == NULL)
1969		read_file_scope (&di, thisdie, nextdie, objfile);
1970	      else
1971		nextdie = thisdie + di.die_length;
1972	      break;
1973	    case TAG_global_subroutine:
1974	    case TAG_subroutine:
1975	      if (di.has_at_low_pc)
1976		{
1977		  read_func_scope (&di, thisdie, nextdie, objfile);
1978		}
1979	      break;
1980	    case TAG_lexical_block:
1981	      read_lexical_block_scope (&di, thisdie, nextdie, objfile);
1982	      break;
1983	    case TAG_class_type:
1984	    case TAG_structure_type:
1985	    case TAG_union_type:
1986	      read_structure_scope (&di, thisdie, nextdie, objfile);
1987	      break;
1988	    case TAG_enumeration_type:
1989	      read_enumeration (&di, thisdie, nextdie, objfile);
1990	      break;
1991	    case TAG_subroutine_type:
1992	      read_subroutine_type (&di, thisdie, nextdie);
1993	      break;
1994	    case TAG_array_type:
1995	      dwarf_read_array_type (&di);
1996	      break;
1997	    case TAG_pointer_type:
1998	      read_tag_pointer_type (&di);
1999	      break;
2000	    case TAG_string_type:
2001	      read_tag_string_type (&di);
2002	      break;
2003	    default:
2004	      new_symbol (&di, objfile);
2005	      break;
2006	    }
2007	}
2008      thisdie = nextdie;
2009    }
2010}
2011
2012/*
2013
2014   LOCAL FUNCTION
2015
2016   decode_line_numbers -- decode a line number table fragment
2017
2018   SYNOPSIS
2019
2020   static void decode_line_numbers (char *tblscan, char *tblend,
2021   long length, long base, long line, long pc)
2022
2023   DESCRIPTION
2024
2025   Translate the DWARF line number information to gdb form.
2026
2027   The ".line" section contains one or more line number tables, one for
2028   each ".line" section from the objects that were linked.
2029
2030   The AT_stmt_list attribute for each TAG_source_file entry in the
2031   ".debug" section contains the offset into the ".line" section for the
2032   start of the table for that file.
2033
2034   The table itself has the following structure:
2035
2036   <table length><base address><source statement entry>
2037   4 bytes       4 bytes       10 bytes
2038
2039   The table length is the total size of the table, including the 4 bytes
2040   for the length information.
2041
2042   The base address is the address of the first instruction generated
2043   for the source file.
2044
2045   Each source statement entry has the following structure:
2046
2047   <line number><statement position><address delta>
2048   4 bytes      2 bytes             4 bytes
2049
2050   The line number is relative to the start of the file, starting with
2051   line 1.
2052
2053   The statement position either -1 (0xFFFF) or the number of characters
2054   from the beginning of the line to the beginning of the statement.
2055
2056   The address delta is the difference between the base address and
2057   the address of the first instruction for the statement.
2058
2059   Note that we must copy the bytes from the packed table to our local
2060   variables before attempting to use them, to avoid alignment problems
2061   on some machines, particularly RISC processors.
2062
2063   BUGS
2064
2065   Does gdb expect the line numbers to be sorted?  They are now by
2066   chance/luck, but are not required to be.  (FIXME)
2067
2068   The line with number 0 is unused, gdb apparently can discover the
2069   span of the last line some other way. How?  (FIXME)
2070 */
2071
2072static void
2073decode_line_numbers (char *linetable)
2074{
2075  char *tblscan;
2076  char *tblend;
2077  unsigned long length;
2078  unsigned long base;
2079  unsigned long line;
2080  unsigned long pc;
2081
2082  if (linetable != NULL)
2083    {
2084      tblscan = tblend = linetable;
2085      length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2086			       current_objfile);
2087      tblscan += SIZEOF_LINETBL_LENGTH;
2088      tblend += length;
2089      base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2090			     GET_UNSIGNED, current_objfile);
2091      tblscan += TARGET_FT_POINTER_SIZE (objfile);
2092      base += baseaddr;
2093      while (tblscan < tblend)
2094	{
2095	  line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2096				 current_objfile);
2097	  tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2098	  pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2099			       current_objfile);
2100	  tblscan += SIZEOF_LINETBL_DELTA;
2101	  pc += base;
2102	  if (line != 0)
2103	    {
2104	      record_line (current_subfile, line, pc);
2105	    }
2106	}
2107    }
2108}
2109
2110/*
2111
2112   LOCAL FUNCTION
2113
2114   locval -- compute the value of a location attribute
2115
2116   SYNOPSIS
2117
2118   static int locval (struct dieinfo *dip)
2119
2120   DESCRIPTION
2121
2122   Given pointer to a string of bytes that define a location, compute
2123   the location and return the value.
2124   A location description containing no atoms indicates that the
2125   object is optimized out. The optimized_out flag is set for those,
2126   the return value is meaningless.
2127
2128   When computing values involving the current value of the frame pointer,
2129   the value zero is used, which results in a value relative to the frame
2130   pointer, rather than the absolute value.  This is what GDB wants
2131   anyway.
2132
2133   When the result is a register number, the isreg flag is set, otherwise
2134   it is cleared.  This is a kludge until we figure out a better
2135   way to handle the problem.  Gdb's design does not mesh well with the
2136   DWARF notion of a location computing interpreter, which is a shame
2137   because the flexibility goes unused.
2138
2139   NOTES
2140
2141   Note that stack[0] is unused except as a default error return.
2142   Note that stack overflow is not yet handled.
2143 */
2144
2145static int
2146locval (struct dieinfo *dip)
2147{
2148  unsigned short nbytes;
2149  unsigned short locsize;
2150  auto long stack[64];
2151  int stacki;
2152  char *loc;
2153  char *end;
2154  int loc_atom_code;
2155  int loc_value_size;
2156
2157  loc = dip->at_location;
2158  nbytes = attribute_size (AT_location);
2159  locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2160  loc += nbytes;
2161  end = loc + locsize;
2162  stacki = 0;
2163  stack[stacki] = 0;
2164  dip->isreg = 0;
2165  dip->offreg = 0;
2166  dip->optimized_out = 1;
2167  loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2168  while (loc < end)
2169    {
2170      dip->optimized_out = 0;
2171      loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2172				      current_objfile);
2173      loc += SIZEOF_LOC_ATOM_CODE;
2174      switch (loc_atom_code)
2175	{
2176	case 0:
2177	  /* error */
2178	  loc = end;
2179	  break;
2180	case OP_REG:
2181	  /* push register (number) */
2182	  stack[++stacki]
2183	    = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2184						   GET_UNSIGNED,
2185						   current_objfile));
2186	  loc += loc_value_size;
2187	  dip->isreg = 1;
2188	  break;
2189	case OP_BASEREG:
2190	  /* push value of register (number) */
2191	  /* Actually, we compute the value as if register has 0, so the
2192	     value ends up being the offset from that register.  */
2193	  dip->offreg = 1;
2194	  dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2195					 current_objfile);
2196	  loc += loc_value_size;
2197	  stack[++stacki] = 0;
2198	  break;
2199	case OP_ADDR:
2200	  /* push address (relocated address) */
2201	  stack[++stacki] = target_to_host (loc, loc_value_size,
2202					    GET_UNSIGNED, current_objfile);
2203	  loc += loc_value_size;
2204	  break;
2205	case OP_CONST:
2206	  /* push constant (number)   FIXME: signed or unsigned! */
2207	  stack[++stacki] = target_to_host (loc, loc_value_size,
2208					    GET_SIGNED, current_objfile);
2209	  loc += loc_value_size;
2210	  break;
2211	case OP_DEREF2:
2212	  /* pop, deref and push 2 bytes (as a long) */
2213	  complaint (&symfile_complaints,
2214		     "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%lx not handled",
2215		     DIE_ID, DIE_NAME, stack[stacki]);
2216	  break;
2217	case OP_DEREF4:	/* pop, deref and push 4 bytes (as a long) */
2218	  complaint (&symfile_complaints,
2219		     "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%lx not handled",
2220		     DIE_ID, DIE_NAME, stack[stacki]);
2221	  break;
2222	case OP_ADD:		/* pop top 2 items, add, push result */
2223	  stack[stacki - 1] += stack[stacki];
2224	  stacki--;
2225	  break;
2226	}
2227    }
2228  return (stack[stacki]);
2229}
2230
2231/*
2232
2233   LOCAL FUNCTION
2234
2235   read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2236
2237   SYNOPSIS
2238
2239   static void read_ofile_symtab (struct partial_symtab *pst)
2240
2241   DESCRIPTION
2242
2243   When expanding a partial symbol table entry to a full symbol table
2244   entry, this is the function that gets called to read in the symbols
2245   for the compilation unit.  A pointer to the newly constructed symtab,
2246   which is now the new first one on the objfile's symtab list, is
2247   stashed in the partial symbol table entry.
2248 */
2249
2250static void
2251read_ofile_symtab (struct partial_symtab *pst)
2252{
2253  struct cleanup *back_to;
2254  unsigned long lnsize;
2255  file_ptr foffset;
2256  bfd *abfd;
2257  char lnsizedata[SIZEOF_LINETBL_LENGTH];
2258
2259  abfd = pst->objfile->obfd;
2260  current_objfile = pst->objfile;
2261
2262  /* Allocate a buffer for the entire chunk of DIE's for this compilation
2263     unit, seek to the location in the file, and read in all the DIE's. */
2264
2265  diecount = 0;
2266  dbsize = DBLENGTH (pst);
2267  dbbase = xmalloc (dbsize);
2268  dbroff = DBROFF (pst);
2269  foffset = DBFOFF (pst) + dbroff;
2270  base_section_offsets = pst->section_offsets;
2271  baseaddr = ANOFFSET (pst->section_offsets, 0);
2272  if (bfd_seek (abfd, foffset, SEEK_SET) ||
2273      (bfd_bread (dbbase, dbsize, abfd) != dbsize))
2274    {
2275      xfree (dbbase);
2276      error ("can't read DWARF data");
2277    }
2278  back_to = make_cleanup (xfree, dbbase);
2279
2280  /* If there is a line number table associated with this compilation unit
2281     then read the size of this fragment in bytes, from the fragment itself.
2282     Allocate a buffer for the fragment and read it in for future
2283     processing. */
2284
2285  lnbase = NULL;
2286  if (LNFOFF (pst))
2287    {
2288      if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2289	  (bfd_bread (lnsizedata, sizeof (lnsizedata), abfd)
2290	   != sizeof (lnsizedata)))
2291	{
2292	  error ("can't read DWARF line number table size");
2293	}
2294      lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2295			       GET_UNSIGNED, pst->objfile);
2296      lnbase = xmalloc (lnsize);
2297      if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2298	  (bfd_bread (lnbase, lnsize, abfd) != lnsize))
2299	{
2300	  xfree (lnbase);
2301	  error ("can't read DWARF line numbers");
2302	}
2303      make_cleanup (xfree, lnbase);
2304    }
2305
2306  process_dies (dbbase, dbbase + dbsize, pst->objfile);
2307  do_cleanups (back_to);
2308  current_objfile = NULL;
2309  pst->symtab = pst->objfile->symtabs;
2310}
2311
2312/*
2313
2314   LOCAL FUNCTION
2315
2316   psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2317
2318   SYNOPSIS
2319
2320   static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2321
2322   DESCRIPTION
2323
2324   Called once for each partial symbol table entry that needs to be
2325   expanded into a full symbol table entry.
2326
2327 */
2328
2329static void
2330psymtab_to_symtab_1 (struct partial_symtab *pst)
2331{
2332  int i;
2333  struct cleanup *old_chain;
2334
2335  if (pst != NULL)
2336    {
2337      if (pst->readin)
2338	{
2339	  warning ("psymtab for %s already read in.  Shouldn't happen.",
2340		   pst->filename);
2341	}
2342      else
2343	{
2344	  /* Read in all partial symtabs on which this one is dependent */
2345	  for (i = 0; i < pst->number_of_dependencies; i++)
2346	    {
2347	      if (!pst->dependencies[i]->readin)
2348		{
2349		  /* Inform about additional files that need to be read in. */
2350		  if (info_verbose)
2351		    {
2352		      fputs_filtered (" ", gdb_stdout);
2353		      wrap_here ("");
2354		      fputs_filtered ("and ", gdb_stdout);
2355		      wrap_here ("");
2356		      printf_filtered ("%s...",
2357				       pst->dependencies[i]->filename);
2358		      wrap_here ("");
2359		      gdb_flush (gdb_stdout);	/* Flush output */
2360		    }
2361		  psymtab_to_symtab_1 (pst->dependencies[i]);
2362		}
2363	    }
2364	  if (DBLENGTH (pst))	/* Otherwise it's a dummy */
2365	    {
2366	      buildsym_init ();
2367	      old_chain = make_cleanup (really_free_pendings, 0);
2368	      read_ofile_symtab (pst);
2369	      if (info_verbose)
2370		{
2371		  printf_filtered ("%d DIE's, sorting...", diecount);
2372		  wrap_here ("");
2373		  gdb_flush (gdb_stdout);
2374		}
2375	      do_cleanups (old_chain);
2376	    }
2377	  pst->readin = 1;
2378	}
2379    }
2380}
2381
2382/*
2383
2384   LOCAL FUNCTION
2385
2386   dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2387
2388   SYNOPSIS
2389
2390   static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2391
2392   DESCRIPTION
2393
2394   This is the DWARF support entry point for building a full symbol
2395   table entry from a partial symbol table entry.  We are passed a
2396   pointer to the partial symbol table entry that needs to be expanded.
2397
2398 */
2399
2400static void
2401dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2402{
2403
2404  if (pst != NULL)
2405    {
2406      if (pst->readin)
2407	{
2408	  warning ("psymtab for %s already read in.  Shouldn't happen.",
2409		   pst->filename);
2410	}
2411      else
2412	{
2413	  if (DBLENGTH (pst) || pst->number_of_dependencies)
2414	    {
2415	      /* Print the message now, before starting serious work, to avoid
2416	         disconcerting pauses.  */
2417	      if (info_verbose)
2418		{
2419		  printf_filtered ("Reading in symbols for %s...",
2420				   pst->filename);
2421		  gdb_flush (gdb_stdout);
2422		}
2423
2424	      psymtab_to_symtab_1 (pst);
2425
2426#if 0				/* FIXME:  Check to see what dbxread is doing here and see if
2427				   we need to do an equivalent or is this something peculiar to
2428				   stabs/a.out format.
2429				   Match with global symbols.  This only needs to be done once,
2430				   after all of the symtabs and dependencies have been read in.
2431				 */
2432	      scan_file_globals (pst->objfile);
2433#endif
2434
2435	      /* Finish up the verbose info message.  */
2436	      if (info_verbose)
2437		{
2438		  printf_filtered ("done.\n");
2439		  gdb_flush (gdb_stdout);
2440		}
2441	    }
2442	}
2443    }
2444}
2445
2446/*
2447
2448   LOCAL FUNCTION
2449
2450   add_enum_psymbol -- add enumeration members to partial symbol table
2451
2452   DESCRIPTION
2453
2454   Given pointer to a DIE that is known to be for an enumeration,
2455   extract the symbolic names of the enumeration members and add
2456   partial symbols for them.
2457 */
2458
2459static void
2460add_enum_psymbol (struct dieinfo *dip, struct objfile *objfile)
2461{
2462  char *scan;
2463  char *listend;
2464  unsigned short blocksz;
2465  int nbytes;
2466
2467  scan = dip->at_element_list;
2468  if (scan != NULL)
2469    {
2470      if (dip->short_element_list)
2471	{
2472	  nbytes = attribute_size (AT_short_element_list);
2473	}
2474      else
2475	{
2476	  nbytes = attribute_size (AT_element_list);
2477	}
2478      blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2479      scan += nbytes;
2480      listend = scan + blocksz;
2481      while (scan < listend)
2482	{
2483	  scan += TARGET_FT_LONG_SIZE (objfile);
2484	  add_psymbol_to_list (scan, strlen (scan), VAR_DOMAIN, LOC_CONST,
2485			       &objfile->static_psymbols, 0, 0, cu_language,
2486			       objfile);
2487	  scan += strlen (scan) + 1;
2488	}
2489    }
2490}
2491
2492/*
2493
2494   LOCAL FUNCTION
2495
2496   add_partial_symbol -- add symbol to partial symbol table
2497
2498   DESCRIPTION
2499
2500   Given a DIE, if it is one of the types that we want to
2501   add to a partial symbol table, finish filling in the die info
2502   and then add a partial symbol table entry for it.
2503
2504   NOTES
2505
2506   The caller must ensure that the DIE has a valid name attribute.
2507 */
2508
2509static void
2510add_partial_symbol (struct dieinfo *dip, struct objfile *objfile)
2511{
2512  switch (dip->die_tag)
2513    {
2514    case TAG_global_subroutine:
2515      add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2516			   VAR_DOMAIN, LOC_BLOCK,
2517			   &objfile->global_psymbols,
2518			   0, dip->at_low_pc, cu_language, objfile);
2519      break;
2520    case TAG_global_variable:
2521      add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2522			   VAR_DOMAIN, LOC_STATIC,
2523			   &objfile->global_psymbols,
2524			   0, 0, cu_language, objfile);
2525      break;
2526    case TAG_subroutine:
2527      add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2528			   VAR_DOMAIN, LOC_BLOCK,
2529			   &objfile->static_psymbols,
2530			   0, dip->at_low_pc, cu_language, objfile);
2531      break;
2532    case TAG_local_variable:
2533      add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2534			   VAR_DOMAIN, LOC_STATIC,
2535			   &objfile->static_psymbols,
2536			   0, 0, cu_language, objfile);
2537      break;
2538    case TAG_typedef:
2539      add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2540			   VAR_DOMAIN, LOC_TYPEDEF,
2541			   &objfile->static_psymbols,
2542			   0, 0, cu_language, objfile);
2543      break;
2544    case TAG_class_type:
2545    case TAG_structure_type:
2546    case TAG_union_type:
2547    case TAG_enumeration_type:
2548      /* Do not add opaque aggregate definitions to the psymtab.  */
2549      if (!dip->has_at_byte_size)
2550	break;
2551      add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2552			   STRUCT_DOMAIN, LOC_TYPEDEF,
2553			   &objfile->static_psymbols,
2554			   0, 0, cu_language, objfile);
2555      if (cu_language == language_cplus)
2556	{
2557	  /* For C++, these implicitly act as typedefs as well. */
2558	  add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2559			       VAR_DOMAIN, LOC_TYPEDEF,
2560			       &objfile->static_psymbols,
2561			       0, 0, cu_language, objfile);
2562	}
2563      break;
2564    }
2565}
2566/* *INDENT-OFF* */
2567/*
2568
2569LOCAL FUNCTION
2570
2571	scan_partial_symbols -- scan DIE's within a single compilation unit
2572
2573DESCRIPTION
2574
2575	Process the DIE's within a single compilation unit, looking for
2576	interesting DIE's that contribute to the partial symbol table entry
2577	for this compilation unit.
2578
2579NOTES
2580
2581	There are some DIE's that may appear both at file scope and within
2582	the scope of a function.  We are only interested in the ones at file
2583	scope, and the only way to tell them apart is to keep track of the
2584	scope.  For example, consider the test case:
2585
2586		static int i;
2587		main () { int j; }
2588
2589	for which the relevant DWARF segment has the structure:
2590
2591		0x51:
2592		0x23   global subrtn   sibling     0x9b
2593		                       name        main
2594		                       fund_type   FT_integer
2595		                       low_pc      0x800004cc
2596		                       high_pc     0x800004d4
2597
2598		0x74:
2599		0x23   local var       sibling     0x97
2600		                       name        j
2601		                       fund_type   FT_integer
2602		                       location    OP_BASEREG 0xe
2603		                                   OP_CONST 0xfffffffc
2604		                                   OP_ADD
2605		0x97:
2606		0x4
2607
2608		0x9b:
2609		0x1d   local var       sibling     0xb8
2610		                       name        i
2611		                       fund_type   FT_integer
2612		                       location    OP_ADDR 0x800025dc
2613
2614		0xb8:
2615		0x4
2616
2617	We want to include the symbol 'i' in the partial symbol table, but
2618	not the symbol 'j'.  In essence, we want to skip all the dies within
2619	the scope of a TAG_global_subroutine DIE.
2620
2621	Don't attempt to add anonymous structures or unions since they have
2622	no name.  Anonymous enumerations however are processed, because we
2623	want to extract their member names (the check for a tag name is
2624	done later).
2625
2626	Also, for variables and subroutines, check that this is the place
2627	where the actual definition occurs, rather than just a reference
2628	to an external.
2629 */
2630/* *INDENT-ON* */
2631
2632
2633
2634static void
2635scan_partial_symbols (char *thisdie, char *enddie, struct objfile *objfile)
2636{
2637  char *nextdie;
2638  char *temp;
2639  struct dieinfo di;
2640
2641  while (thisdie < enddie)
2642    {
2643      basicdieinfo (&di, thisdie, objfile);
2644      if (di.die_length < SIZEOF_DIE_LENGTH)
2645	{
2646	  break;
2647	}
2648      else
2649	{
2650	  nextdie = thisdie + di.die_length;
2651	  /* To avoid getting complete die information for every die, we
2652	     only do it (below) for the cases we are interested in. */
2653	  switch (di.die_tag)
2654	    {
2655	    case TAG_global_subroutine:
2656	    case TAG_subroutine:
2657	      completedieinfo (&di, objfile);
2658	      if (di.at_name && (di.has_at_low_pc || di.at_location))
2659		{
2660		  add_partial_symbol (&di, objfile);
2661		  /* If there is a sibling attribute, adjust the nextdie
2662		     pointer to skip the entire scope of the subroutine.
2663		     Apply some sanity checking to make sure we don't
2664		     overrun or underrun the range of remaining DIE's */
2665		  if (di.at_sibling != 0)
2666		    {
2667		      temp = dbbase + di.at_sibling - dbroff;
2668		      if ((temp < thisdie) || (temp >= enddie))
2669			{
2670			  bad_die_ref_complaint (DIE_ID, DIE_NAME,
2671						 di.at_sibling);
2672			}
2673		      else
2674			{
2675			  nextdie = temp;
2676			}
2677		    }
2678		}
2679	      break;
2680	    case TAG_global_variable:
2681	    case TAG_local_variable:
2682	      completedieinfo (&di, objfile);
2683	      if (di.at_name && (di.has_at_low_pc || di.at_location))
2684		{
2685		  add_partial_symbol (&di, objfile);
2686		}
2687	      break;
2688	    case TAG_typedef:
2689	    case TAG_class_type:
2690	    case TAG_structure_type:
2691	    case TAG_union_type:
2692	      completedieinfo (&di, objfile);
2693	      if (di.at_name)
2694		{
2695		  add_partial_symbol (&di, objfile);
2696		}
2697	      break;
2698	    case TAG_enumeration_type:
2699	      completedieinfo (&di, objfile);
2700	      if (di.at_name)
2701		{
2702		  add_partial_symbol (&di, objfile);
2703		}
2704	      add_enum_psymbol (&di, objfile);
2705	      break;
2706	    }
2707	}
2708      thisdie = nextdie;
2709    }
2710}
2711
2712/*
2713
2714   LOCAL FUNCTION
2715
2716   scan_compilation_units -- build a psymtab entry for each compilation
2717
2718   DESCRIPTION
2719
2720   This is the top level dwarf parsing routine for building partial
2721   symbol tables.
2722
2723   It scans from the beginning of the DWARF table looking for the first
2724   TAG_compile_unit DIE, and then follows the sibling chain to locate
2725   each additional TAG_compile_unit DIE.
2726
2727   For each TAG_compile_unit DIE it creates a partial symtab structure,
2728   calls a subordinate routine to collect all the compilation unit's
2729   global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2730   new partial symtab structure into the partial symbol table.  It also
2731   records the appropriate information in the partial symbol table entry
2732   to allow the chunk of DIE's and line number table for this compilation
2733   unit to be located and re-read later, to generate a complete symbol
2734   table entry for the compilation unit.
2735
2736   Thus it effectively partitions up a chunk of DIE's for multiple
2737   compilation units into smaller DIE chunks and line number tables,
2738   and associates them with a partial symbol table entry.
2739
2740   NOTES
2741
2742   If any compilation unit has no line number table associated with
2743   it for some reason (a missing at_stmt_list attribute, rather than
2744   just one with a value of zero, which is valid) then we ensure that
2745   the recorded file offset is zero so that the routine which later
2746   reads line number table fragments knows that there is no fragment
2747   to read.
2748
2749   RETURNS
2750
2751   Returns no value.
2752
2753 */
2754
2755static void
2756scan_compilation_units (char *thisdie, char *enddie, file_ptr dbfoff,
2757			file_ptr lnoffset, struct objfile *objfile)
2758{
2759  char *nextdie;
2760  struct dieinfo di;
2761  struct partial_symtab *pst;
2762  int culength;
2763  int curoff;
2764  file_ptr curlnoffset;
2765
2766  while (thisdie < enddie)
2767    {
2768      basicdieinfo (&di, thisdie, objfile);
2769      if (di.die_length < SIZEOF_DIE_LENGTH)
2770	{
2771	  break;
2772	}
2773      else if (di.die_tag != TAG_compile_unit)
2774	{
2775	  nextdie = thisdie + di.die_length;
2776	}
2777      else
2778	{
2779	  completedieinfo (&di, objfile);
2780	  set_cu_language (&di);
2781	  if (di.at_sibling != 0)
2782	    {
2783	      nextdie = dbbase + di.at_sibling - dbroff;
2784	    }
2785	  else
2786	    {
2787	      nextdie = thisdie + di.die_length;
2788	    }
2789	  curoff = thisdie - dbbase;
2790	  culength = nextdie - thisdie;
2791	  curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2792
2793	  /* First allocate a new partial symbol table structure */
2794
2795	  pst = start_psymtab_common (objfile, base_section_offsets,
2796				      di.at_name, di.at_low_pc,
2797				      objfile->global_psymbols.next,
2798				      objfile->static_psymbols.next);
2799
2800	  pst->texthigh = di.at_high_pc;
2801	  pst->read_symtab_private = (char *)
2802	    obstack_alloc (&objfile->objfile_obstack,
2803			   sizeof (struct dwfinfo));
2804	  DBFOFF (pst) = dbfoff;
2805	  DBROFF (pst) = curoff;
2806	  DBLENGTH (pst) = culength;
2807	  LNFOFF (pst) = curlnoffset;
2808	  pst->read_symtab = dwarf_psymtab_to_symtab;
2809
2810	  /* Now look for partial symbols */
2811
2812	  scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2813
2814	  pst->n_global_syms = objfile->global_psymbols.next -
2815	    (objfile->global_psymbols.list + pst->globals_offset);
2816	  pst->n_static_syms = objfile->static_psymbols.next -
2817	    (objfile->static_psymbols.list + pst->statics_offset);
2818	  sort_pst_symbols (pst);
2819	  /* If there is already a psymtab or symtab for a file of this name,
2820	     remove it. (If there is a symtab, more drastic things also
2821	     happen.)  This happens in VxWorks.  */
2822	  free_named_symtabs (pst->filename);
2823	}
2824      thisdie = nextdie;
2825    }
2826}
2827
2828/*
2829
2830   LOCAL FUNCTION
2831
2832   new_symbol -- make a symbol table entry for a new symbol
2833
2834   SYNOPSIS
2835
2836   static struct symbol *new_symbol (struct dieinfo *dip,
2837   struct objfile *objfile)
2838
2839   DESCRIPTION
2840
2841   Given a pointer to a DWARF information entry, figure out if we need
2842   to make a symbol table entry for it, and if so, create a new entry
2843   and return a pointer to it.
2844 */
2845
2846static struct symbol *
2847new_symbol (struct dieinfo *dip, struct objfile *objfile)
2848{
2849  struct symbol *sym = NULL;
2850
2851  if (dip->at_name != NULL)
2852    {
2853      sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
2854					     sizeof (struct symbol));
2855      OBJSTAT (objfile, n_syms++);
2856      memset (sym, 0, sizeof (struct symbol));
2857      /* default assumptions */
2858      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
2859      SYMBOL_CLASS (sym) = LOC_STATIC;
2860      SYMBOL_TYPE (sym) = decode_die_type (dip);
2861
2862      /* If this symbol is from a C++ compilation, then attempt to cache the
2863         demangled form for future reference.  This is a typical time versus
2864         space tradeoff, that was decided in favor of time because it sped up
2865         C++ symbol lookups by a factor of about 20. */
2866
2867      SYMBOL_LANGUAGE (sym) = cu_language;
2868      SYMBOL_SET_NAMES (sym, dip->at_name, strlen (dip->at_name), objfile);
2869      switch (dip->die_tag)
2870	{
2871	case TAG_label:
2872	  SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2873	  SYMBOL_CLASS (sym) = LOC_LABEL;
2874	  break;
2875	case TAG_global_subroutine:
2876	case TAG_subroutine:
2877	  SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2878	  SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2879	  if (dip->at_prototyped)
2880	    TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
2881	  SYMBOL_CLASS (sym) = LOC_BLOCK;
2882	  if (dip->die_tag == TAG_global_subroutine)
2883	    {
2884	      add_symbol_to_list (sym, &global_symbols);
2885	    }
2886	  else
2887	    {
2888	      add_symbol_to_list (sym, list_in_scope);
2889	    }
2890	  break;
2891	case TAG_global_variable:
2892	  if (dip->at_location != NULL)
2893	    {
2894	      SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
2895	      add_symbol_to_list (sym, &global_symbols);
2896	      SYMBOL_CLASS (sym) = LOC_STATIC;
2897	      SYMBOL_VALUE (sym) += baseaddr;
2898	    }
2899	  break;
2900	case TAG_local_variable:
2901	  if (dip->at_location != NULL)
2902	    {
2903	      int loc = locval (dip);
2904	      if (dip->optimized_out)
2905		{
2906		  SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
2907		}
2908	      else if (dip->isreg)
2909		{
2910		  SYMBOL_CLASS (sym) = LOC_REGISTER;
2911		}
2912	      else if (dip->offreg)
2913		{
2914		  SYMBOL_CLASS (sym) = LOC_BASEREG;
2915		  SYMBOL_BASEREG (sym) = dip->basereg;
2916		}
2917	      else
2918		{
2919		  SYMBOL_CLASS (sym) = LOC_STATIC;
2920		  SYMBOL_VALUE (sym) += baseaddr;
2921		}
2922	      if (SYMBOL_CLASS (sym) == LOC_STATIC)
2923		{
2924		  /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
2925		     which may store to a bigger location than SYMBOL_VALUE. */
2926		  SYMBOL_VALUE_ADDRESS (sym) = loc;
2927		}
2928	      else
2929		{
2930		  SYMBOL_VALUE (sym) = loc;
2931		}
2932	      add_symbol_to_list (sym, list_in_scope);
2933	    }
2934	  break;
2935	case TAG_formal_parameter:
2936	  if (dip->at_location != NULL)
2937	    {
2938	      SYMBOL_VALUE (sym) = locval (dip);
2939	    }
2940	  add_symbol_to_list (sym, list_in_scope);
2941	  if (dip->isreg)
2942	    {
2943	      SYMBOL_CLASS (sym) = LOC_REGPARM;
2944	    }
2945	  else if (dip->offreg)
2946	    {
2947	      SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
2948	      SYMBOL_BASEREG (sym) = dip->basereg;
2949	    }
2950	  else
2951	    {
2952	      SYMBOL_CLASS (sym) = LOC_ARG;
2953	    }
2954	  break;
2955	case TAG_unspecified_parameters:
2956	  /* From varargs functions; gdb doesn't seem to have any interest in
2957	     this information, so just ignore it for now. (FIXME?) */
2958	  break;
2959	case TAG_class_type:
2960	case TAG_structure_type:
2961	case TAG_union_type:
2962	case TAG_enumeration_type:
2963	  SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2964	  SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
2965	  add_symbol_to_list (sym, list_in_scope);
2966	  break;
2967	case TAG_typedef:
2968	  SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2969	  SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
2970	  add_symbol_to_list (sym, list_in_scope);
2971	  break;
2972	default:
2973	  /* Not a tag we recognize.  Hopefully we aren't processing trash
2974	     data, but since we must specifically ignore things we don't
2975	     recognize, there is nothing else we should do at this point. */
2976	  break;
2977	}
2978    }
2979  return (sym);
2980}
2981
2982/*
2983
2984   LOCAL FUNCTION
2985
2986   synthesize_typedef -- make a symbol table entry for a "fake" typedef
2987
2988   SYNOPSIS
2989
2990   static void synthesize_typedef (struct dieinfo *dip,
2991   struct objfile *objfile,
2992   struct type *type);
2993
2994   DESCRIPTION
2995
2996   Given a pointer to a DWARF information entry, synthesize a typedef
2997   for the name in the DIE, using the specified type.
2998
2999   This is used for C++ class, structs, unions, and enumerations to
3000   set up the tag name as a type.
3001
3002 */
3003
3004static void
3005synthesize_typedef (struct dieinfo *dip, struct objfile *objfile,
3006		    struct type *type)
3007{
3008  struct symbol *sym = NULL;
3009
3010  if (dip->at_name != NULL)
3011    {
3012      sym = (struct symbol *)
3013	obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3014      OBJSTAT (objfile, n_syms++);
3015      memset (sym, 0, sizeof (struct symbol));
3016      DEPRECATED_SYMBOL_NAME (sym) = create_name (dip->at_name,
3017				       &objfile->objfile_obstack);
3018      SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3019      SYMBOL_TYPE (sym) = type;
3020      SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3021      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3022      add_symbol_to_list (sym, list_in_scope);
3023    }
3024}
3025
3026/*
3027
3028   LOCAL FUNCTION
3029
3030   decode_mod_fund_type -- decode a modified fundamental type
3031
3032   SYNOPSIS
3033
3034   static struct type *decode_mod_fund_type (char *typedata)
3035
3036   DESCRIPTION
3037
3038   Decode a block of data containing a modified fundamental
3039   type specification.  TYPEDATA is a pointer to the block,
3040   which starts with a length containing the size of the rest
3041   of the block.  At the end of the block is a fundmental type
3042   code value that gives the fundamental type.  Everything
3043   in between are type modifiers.
3044
3045   We simply compute the number of modifiers and call the general
3046   function decode_modified_type to do the actual work.
3047 */
3048
3049static struct type *
3050decode_mod_fund_type (char *typedata)
3051{
3052  struct type *typep = NULL;
3053  unsigned short modcount;
3054  int nbytes;
3055
3056  /* Get the total size of the block, exclusive of the size itself */
3057
3058  nbytes = attribute_size (AT_mod_fund_type);
3059  modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3060  typedata += nbytes;
3061
3062  /* Deduct the size of the fundamental type bytes at the end of the block. */
3063
3064  modcount -= attribute_size (AT_fund_type);
3065
3066  /* Now do the actual decoding */
3067
3068  typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3069  return (typep);
3070}
3071
3072/*
3073
3074   LOCAL FUNCTION
3075
3076   decode_mod_u_d_type -- decode a modified user defined type
3077
3078   SYNOPSIS
3079
3080   static struct type *decode_mod_u_d_type (char *typedata)
3081
3082   DESCRIPTION
3083
3084   Decode a block of data containing a modified user defined
3085   type specification.  TYPEDATA is a pointer to the block,
3086   which consists of a two byte length, containing the size
3087   of the rest of the block.  At the end of the block is a
3088   four byte value that gives a reference to a user defined type.
3089   Everything in between are type modifiers.
3090
3091   We simply compute the number of modifiers and call the general
3092   function decode_modified_type to do the actual work.
3093 */
3094
3095static struct type *
3096decode_mod_u_d_type (char *typedata)
3097{
3098  struct type *typep = NULL;
3099  unsigned short modcount;
3100  int nbytes;
3101
3102  /* Get the total size of the block, exclusive of the size itself */
3103
3104  nbytes = attribute_size (AT_mod_u_d_type);
3105  modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3106  typedata += nbytes;
3107
3108  /* Deduct the size of the reference type bytes at the end of the block. */
3109
3110  modcount -= attribute_size (AT_user_def_type);
3111
3112  /* Now do the actual decoding */
3113
3114  typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3115  return (typep);
3116}
3117
3118/*
3119
3120   LOCAL FUNCTION
3121
3122   decode_modified_type -- decode modified user or fundamental type
3123
3124   SYNOPSIS
3125
3126   static struct type *decode_modified_type (char *modifiers,
3127   unsigned short modcount, int mtype)
3128
3129   DESCRIPTION
3130
3131   Decode a modified type, either a modified fundamental type or
3132   a modified user defined type.  MODIFIERS is a pointer to the
3133   block of bytes that define MODCOUNT modifiers.  Immediately
3134   following the last modifier is a short containing the fundamental
3135   type or a long containing the reference to the user defined
3136   type.  Which one is determined by MTYPE, which is either
3137   AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3138   type we are generating.
3139
3140   We call ourself recursively to generate each modified type,`
3141   until MODCOUNT reaches zero, at which point we have consumed
3142   all the modifiers and generate either the fundamental type or
3143   user defined type.  When the recursion unwinds, each modifier
3144   is applied in turn to generate the full modified type.
3145
3146   NOTES
3147
3148   If we find a modifier that we don't recognize, and it is not one
3149   of those reserved for application specific use, then we issue a
3150   warning and simply ignore the modifier.
3151
3152   BUGS
3153
3154   We currently ignore MOD_const and MOD_volatile.  (FIXME)
3155
3156 */
3157
3158static struct type *
3159decode_modified_type (char *modifiers, unsigned int modcount, int mtype)
3160{
3161  struct type *typep = NULL;
3162  unsigned short fundtype;
3163  DIE_REF die_ref;
3164  char modifier;
3165  int nbytes;
3166
3167  if (modcount == 0)
3168    {
3169      switch (mtype)
3170	{
3171	case AT_mod_fund_type:
3172	  nbytes = attribute_size (AT_fund_type);
3173	  fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3174				     current_objfile);
3175	  typep = decode_fund_type (fundtype);
3176	  break;
3177	case AT_mod_u_d_type:
3178	  nbytes = attribute_size (AT_user_def_type);
3179	  die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3180				    current_objfile);
3181	  typep = lookup_utype (die_ref);
3182	  if (typep == NULL)
3183	    {
3184	      typep = alloc_utype (die_ref, NULL);
3185	    }
3186	  break;
3187	default:
3188	  complaint (&symfile_complaints,
3189		     "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)",
3190		     DIE_ID, DIE_NAME, mtype);
3191	  typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3192	  break;
3193	}
3194    }
3195  else
3196    {
3197      modifier = *modifiers++;
3198      typep = decode_modified_type (modifiers, --modcount, mtype);
3199      switch (modifier)
3200	{
3201	case MOD_pointer_to:
3202	  typep = lookup_pointer_type (typep);
3203	  break;
3204	case MOD_reference_to:
3205	  typep = lookup_reference_type (typep);
3206	  break;
3207	case MOD_const:
3208	  complaint (&symfile_complaints,
3209		     "DIE @ 0x%x \"%s\", type modifier 'const' ignored", DIE_ID,
3210		     DIE_NAME);	/* FIXME */
3211	  break;
3212	case MOD_volatile:
3213	  complaint (&symfile_complaints,
3214		     "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored",
3215		     DIE_ID, DIE_NAME);	/* FIXME */
3216	  break;
3217	default:
3218	  if (!(MOD_lo_user <= (unsigned char) modifier))
3219#if 0
3220/* This part of the test would always be true, and it triggers a compiler
3221   warning.  */
3222		&& (unsigned char) modifier <= MOD_hi_user))
3223#endif
3224	    {
3225	      complaint (&symfile_complaints,
3226			 "DIE @ 0x%x \"%s\", unknown type modifier %u", DIE_ID,
3227			 DIE_NAME, modifier);
3228	    }
3229	  break;
3230	}
3231    }
3232  return (typep);
3233}
3234
3235/*
3236
3237   LOCAL FUNCTION
3238
3239   decode_fund_type -- translate basic DWARF type to gdb base type
3240
3241   DESCRIPTION
3242
3243   Given an integer that is one of the fundamental DWARF types,
3244   translate it to one of the basic internal gdb types and return
3245   a pointer to the appropriate gdb type (a "struct type *").
3246
3247   NOTES
3248
3249   For robustness, if we are asked to translate a fundamental
3250   type that we are unprepared to deal with, we return int so
3251   callers can always depend upon a valid type being returned,
3252   and so gdb may at least do something reasonable by default.
3253   If the type is not in the range of those types defined as
3254   application specific types, we also issue a warning.
3255 */
3256
3257static struct type *
3258decode_fund_type (unsigned int fundtype)
3259{
3260  struct type *typep = NULL;
3261
3262  switch (fundtype)
3263    {
3264
3265    case FT_void:
3266      typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3267      break;
3268
3269    case FT_boolean:		/* Was FT_set in AT&T version */
3270      typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3271      break;
3272
3273    case FT_pointer:		/* (void *) */
3274      typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3275      typep = lookup_pointer_type (typep);
3276      break;
3277
3278    case FT_char:
3279      typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3280      break;
3281
3282    case FT_signed_char:
3283      typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3284      break;
3285
3286    case FT_unsigned_char:
3287      typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3288      break;
3289
3290    case FT_short:
3291      typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3292      break;
3293
3294    case FT_signed_short:
3295      typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3296      break;
3297
3298    case FT_unsigned_short:
3299      typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3300      break;
3301
3302    case FT_integer:
3303      typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3304      break;
3305
3306    case FT_signed_integer:
3307      typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3308      break;
3309
3310    case FT_unsigned_integer:
3311      typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3312      break;
3313
3314    case FT_long:
3315      typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3316      break;
3317
3318    case FT_signed_long:
3319      typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3320      break;
3321
3322    case FT_unsigned_long:
3323      typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3324      break;
3325
3326    case FT_long_long:
3327      typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3328      break;
3329
3330    case FT_signed_long_long:
3331      typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3332      break;
3333
3334    case FT_unsigned_long_long:
3335      typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3336      break;
3337
3338    case FT_float:
3339      typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3340      break;
3341
3342    case FT_dbl_prec_float:
3343      typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3344      break;
3345
3346    case FT_ext_prec_float:
3347      typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3348      break;
3349
3350    case FT_complex:
3351      typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3352      break;
3353
3354    case FT_dbl_prec_complex:
3355      typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3356      break;
3357
3358    case FT_ext_prec_complex:
3359      typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3360      break;
3361
3362    }
3363
3364  if (typep == NULL)
3365    {
3366      typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3367      if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3368	{
3369	  complaint (&symfile_complaints,
3370		     "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x",
3371		     DIE_ID, DIE_NAME, fundtype);
3372	}
3373    }
3374
3375  return (typep);
3376}
3377
3378/*
3379
3380   LOCAL FUNCTION
3381
3382   create_name -- allocate a fresh copy of a string on an obstack
3383
3384   DESCRIPTION
3385
3386   Given a pointer to a string and a pointer to an obstack, allocates
3387   a fresh copy of the string on the specified obstack.
3388
3389 */
3390
3391static char *
3392create_name (char *name, struct obstack *obstackp)
3393{
3394  int length;
3395  char *newname;
3396
3397  length = strlen (name) + 1;
3398  newname = (char *) obstack_alloc (obstackp, length);
3399  strcpy (newname, name);
3400  return (newname);
3401}
3402
3403/*
3404
3405   LOCAL FUNCTION
3406
3407   basicdieinfo -- extract the minimal die info from raw die data
3408
3409   SYNOPSIS
3410
3411   void basicdieinfo (char *diep, struct dieinfo *dip,
3412   struct objfile *objfile)
3413
3414   DESCRIPTION
3415
3416   Given a pointer to raw DIE data, and a pointer to an instance of a
3417   die info structure, this function extracts the basic information
3418   from the DIE data required to continue processing this DIE, along
3419   with some bookkeeping information about the DIE.
3420
3421   The information we absolutely must have includes the DIE tag,
3422   and the DIE length.  If we need the sibling reference, then we
3423   will have to call completedieinfo() to process all the remaining
3424   DIE information.
3425
3426   Note that since there is no guarantee that the data is properly
3427   aligned in memory for the type of access required (indirection
3428   through anything other than a char pointer), and there is no
3429   guarantee that it is in the same byte order as the gdb host,
3430   we call a function which deals with both alignment and byte
3431   swapping issues.  Possibly inefficient, but quite portable.
3432
3433   We also take care of some other basic things at this point, such
3434   as ensuring that the instance of the die info structure starts
3435   out completely zero'd and that curdie is initialized for use
3436   in error reporting if we have a problem with the current die.
3437
3438   NOTES
3439
3440   All DIE's must have at least a valid length, thus the minimum
3441   DIE size is SIZEOF_DIE_LENGTH.  In order to have a valid tag, the
3442   DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3443   are forced to be TAG_padding DIES.
3444
3445   Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3446   that if a padding DIE is used for alignment and the amount needed is
3447   less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3448   enough to align to the next alignment boundry.
3449
3450   We do some basic sanity checking here, such as verifying that the
3451   length of the die would not cause it to overrun the recorded end of
3452   the buffer holding the DIE info.  If we find a DIE that is either
3453   too small or too large, we force it's length to zero which should
3454   cause the caller to take appropriate action.
3455 */
3456
3457static void
3458basicdieinfo (struct dieinfo *dip, char *diep, struct objfile *objfile)
3459{
3460  curdie = dip;
3461  memset (dip, 0, sizeof (struct dieinfo));
3462  dip->die = diep;
3463  dip->die_ref = dbroff + (diep - dbbase);
3464  dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3465				    objfile);
3466  if ((dip->die_length < SIZEOF_DIE_LENGTH) ||
3467      ((diep + dip->die_length) > (dbbase + dbsize)))
3468    {
3469      complaint (&symfile_complaints,
3470		 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%ld bytes)",
3471		 DIE_ID, DIE_NAME, dip->die_length);
3472      dip->die_length = 0;
3473    }
3474  else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3475    {
3476      dip->die_tag = TAG_padding;
3477    }
3478  else
3479    {
3480      diep += SIZEOF_DIE_LENGTH;
3481      dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3482				     objfile);
3483    }
3484}
3485
3486/*
3487
3488   LOCAL FUNCTION
3489
3490   completedieinfo -- finish reading the information for a given DIE
3491
3492   SYNOPSIS
3493
3494   void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3495
3496   DESCRIPTION
3497
3498   Given a pointer to an already partially initialized die info structure,
3499   scan the raw DIE data and finish filling in the die info structure
3500   from the various attributes found.
3501
3502   Note that since there is no guarantee that the data is properly
3503   aligned in memory for the type of access required (indirection
3504   through anything other than a char pointer), and there is no
3505   guarantee that it is in the same byte order as the gdb host,
3506   we call a function which deals with both alignment and byte
3507   swapping issues.  Possibly inefficient, but quite portable.
3508
3509   NOTES
3510
3511   Each time we are called, we increment the diecount variable, which
3512   keeps an approximate count of the number of dies processed for
3513   each compilation unit.  This information is presented to the user
3514   if the info_verbose flag is set.
3515
3516 */
3517
3518static void
3519completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3520{
3521  char *diep;			/* Current pointer into raw DIE data */
3522  char *end;			/* Terminate DIE scan here */
3523  unsigned short attr;		/* Current attribute being scanned */
3524  unsigned short form;		/* Form of the attribute */
3525  int nbytes;			/* Size of next field to read */
3526
3527  diecount++;
3528  diep = dip->die;
3529  end = diep + dip->die_length;
3530  diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3531  while (diep < end)
3532    {
3533      attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3534      diep += SIZEOF_ATTRIBUTE;
3535      nbytes = attribute_size (attr);
3536      if (nbytes == -1)
3537	{
3538	  complaint (&symfile_complaints,
3539		     "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes",
3540		     DIE_ID, DIE_NAME);
3541	  diep = end;
3542	  continue;
3543	}
3544      switch (attr)
3545	{
3546	case AT_fund_type:
3547	  dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3548					      objfile);
3549	  break;
3550	case AT_ordering:
3551	  dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3552					     objfile);
3553	  break;
3554	case AT_bit_offset:
3555	  dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3556					       objfile);
3557	  break;
3558	case AT_sibling:
3559	  dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3560					    objfile);
3561	  break;
3562	case AT_stmt_list:
3563	  dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3564					      objfile);
3565	  dip->has_at_stmt_list = 1;
3566	  break;
3567	case AT_low_pc:
3568	  dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3569					   objfile);
3570	  dip->at_low_pc += baseaddr;
3571	  dip->has_at_low_pc = 1;
3572	  break;
3573	case AT_high_pc:
3574	  dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3575					    objfile);
3576	  dip->at_high_pc += baseaddr;
3577	  break;
3578	case AT_language:
3579	  dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3580					     objfile);
3581	  break;
3582	case AT_user_def_type:
3583	  dip->at_user_def_type = target_to_host (diep, nbytes,
3584						  GET_UNSIGNED, objfile);
3585	  break;
3586	case AT_byte_size:
3587	  dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3588					      objfile);
3589	  dip->has_at_byte_size = 1;
3590	  break;
3591	case AT_bit_size:
3592	  dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3593					     objfile);
3594	  break;
3595	case AT_member:
3596	  dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3597					   objfile);
3598	  break;
3599	case AT_discr:
3600	  dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3601					  objfile);
3602	  break;
3603	case AT_location:
3604	  dip->at_location = diep;
3605	  break;
3606	case AT_mod_fund_type:
3607	  dip->at_mod_fund_type = diep;
3608	  break;
3609	case AT_subscr_data:
3610	  dip->at_subscr_data = diep;
3611	  break;
3612	case AT_mod_u_d_type:
3613	  dip->at_mod_u_d_type = diep;
3614	  break;
3615	case AT_element_list:
3616	  dip->at_element_list = diep;
3617	  dip->short_element_list = 0;
3618	  break;
3619	case AT_short_element_list:
3620	  dip->at_element_list = diep;
3621	  dip->short_element_list = 1;
3622	  break;
3623	case AT_discr_value:
3624	  dip->at_discr_value = diep;
3625	  break;
3626	case AT_string_length:
3627	  dip->at_string_length = diep;
3628	  break;
3629	case AT_name:
3630	  dip->at_name = diep;
3631	  break;
3632	case AT_comp_dir:
3633	  /* For now, ignore any "hostname:" portion, since gdb doesn't
3634	     know how to deal with it.  (FIXME). */
3635	  dip->at_comp_dir = strrchr (diep, ':');
3636	  if (dip->at_comp_dir != NULL)
3637	    {
3638	      dip->at_comp_dir++;
3639	    }
3640	  else
3641	    {
3642	      dip->at_comp_dir = diep;
3643	    }
3644	  break;
3645	case AT_producer:
3646	  dip->at_producer = diep;
3647	  break;
3648	case AT_start_scope:
3649	  dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3650						objfile);
3651	  break;
3652	case AT_stride_size:
3653	  dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3654						objfile);
3655	  break;
3656	case AT_src_info:
3657	  dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3658					     objfile);
3659	  break;
3660	case AT_prototyped:
3661	  dip->at_prototyped = diep;
3662	  break;
3663	default:
3664	  /* Found an attribute that we are unprepared to handle.  However
3665	     it is specifically one of the design goals of DWARF that
3666	     consumers should ignore unknown attributes.  As long as the
3667	     form is one that we recognize (so we know how to skip it),
3668	     we can just ignore the unknown attribute. */
3669	  break;
3670	}
3671      form = FORM_FROM_ATTR (attr);
3672      switch (form)
3673	{
3674	case FORM_DATA2:
3675	  diep += 2;
3676	  break;
3677	case FORM_DATA4:
3678	case FORM_REF:
3679	  diep += 4;
3680	  break;
3681	case FORM_DATA8:
3682	  diep += 8;
3683	  break;
3684	case FORM_ADDR:
3685	  diep += TARGET_FT_POINTER_SIZE (objfile);
3686	  break;
3687	case FORM_BLOCK2:
3688	  diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3689	  break;
3690	case FORM_BLOCK4:
3691	  diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3692	  break;
3693	case FORM_STRING:
3694	  diep += strlen (diep) + 1;
3695	  break;
3696	default:
3697	  unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form);
3698	  diep = end;
3699	  break;
3700	}
3701    }
3702}
3703
3704/*
3705
3706   LOCAL FUNCTION
3707
3708   target_to_host -- swap in target data to host
3709
3710   SYNOPSIS
3711
3712   target_to_host (char *from, int nbytes, int signextend,
3713   struct objfile *objfile)
3714
3715   DESCRIPTION
3716
3717   Given pointer to data in target format in FROM, a byte count for
3718   the size of the data in NBYTES, a flag indicating whether or not
3719   the data is signed in SIGNEXTEND, and a pointer to the current
3720   objfile in OBJFILE, convert the data to host format and return
3721   the converted value.
3722
3723   NOTES
3724
3725   FIXME:  If we read data that is known to be signed, and expect to
3726   use it as signed data, then we need to explicitly sign extend the
3727   result until the bfd library is able to do this for us.
3728
3729   FIXME: Would a 32 bit target ever need an 8 byte result?
3730
3731 */
3732
3733static CORE_ADDR
3734target_to_host (char *from, int nbytes, int signextend,	/* FIXME:  Unused */
3735		struct objfile *objfile)
3736{
3737  CORE_ADDR rtnval;
3738
3739  switch (nbytes)
3740    {
3741    case 8:
3742      rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from);
3743      break;
3744    case 4:
3745      rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from);
3746      break;
3747    case 2:
3748      rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from);
3749      break;
3750    case 1:
3751      rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from);
3752      break;
3753    default:
3754      complaint (&symfile_complaints,
3755		 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object",
3756		 DIE_ID, DIE_NAME, nbytes);
3757      rtnval = 0;
3758      break;
3759    }
3760  return (rtnval);
3761}
3762
3763/*
3764
3765   LOCAL FUNCTION
3766
3767   attribute_size -- compute size of data for a DWARF attribute
3768
3769   SYNOPSIS
3770
3771   static int attribute_size (unsigned int attr)
3772
3773   DESCRIPTION
3774
3775   Given a DWARF attribute in ATTR, compute the size of the first
3776   piece of data associated with this attribute and return that
3777   size.
3778
3779   Returns -1 for unrecognized attributes.
3780
3781 */
3782
3783static int
3784attribute_size (unsigned int attr)
3785{
3786  int nbytes;			/* Size of next data for this attribute */
3787  unsigned short form;		/* Form of the attribute */
3788
3789  form = FORM_FROM_ATTR (attr);
3790  switch (form)
3791    {
3792    case FORM_STRING:		/* A variable length field is next */
3793      nbytes = 0;
3794      break;
3795    case FORM_DATA2:		/* Next 2 byte field is the data itself */
3796    case FORM_BLOCK2:		/* Next 2 byte field is a block length */
3797      nbytes = 2;
3798      break;
3799    case FORM_DATA4:		/* Next 4 byte field is the data itself */
3800    case FORM_BLOCK4:		/* Next 4 byte field is a block length */
3801    case FORM_REF:		/* Next 4 byte field is a DIE offset */
3802      nbytes = 4;
3803      break;
3804    case FORM_DATA8:		/* Next 8 byte field is the data itself */
3805      nbytes = 8;
3806      break;
3807    case FORM_ADDR:		/* Next field size is target sizeof(void *) */
3808      nbytes = TARGET_FT_POINTER_SIZE (objfile);
3809      break;
3810    default:
3811      unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form);
3812      nbytes = -1;
3813      break;
3814    }
3815  return (nbytes);
3816}
3817