1/* Copy propagation and SSA_NAME replacement support routines.
2   Copyright (C) 2004, 2005 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GCC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING.  If not, write to
18the Free Software Foundation, 51 Franklin Street, Fifth Floor,
19Boston, MA 02110-1301, USA.  */
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "tm.h"
25#include "tree.h"
26#include "flags.h"
27#include "rtl.h"
28#include "tm_p.h"
29#include "ggc.h"
30#include "basic-block.h"
31#include "output.h"
32#include "expr.h"
33#include "function.h"
34#include "diagnostic.h"
35#include "timevar.h"
36#include "tree-dump.h"
37#include "tree-flow.h"
38#include "tree-pass.h"
39#include "tree-ssa-propagate.h"
40#include "langhooks.h"
41
42/* This file implements the copy propagation pass and provides a
43   handful of interfaces for performing const/copy propagation and
44   simple expression replacement which keep variable annotations
45   up-to-date.
46
47   We require that for any copy operation where the RHS and LHS have
48   a non-null memory tag the memory tag be the same.   It is OK
49   for one or both of the memory tags to be NULL.
50
51   We also require tracking if a variable is dereferenced in a load or
52   store operation.
53
54   We enforce these requirements by having all copy propagation and
55   replacements of one SSA_NAME with a different SSA_NAME to use the
56   APIs defined in this file.  */
57
58/* Return true if we may propagate ORIG into DEST, false otherwise.  */
59
60bool
61may_propagate_copy (tree dest, tree orig)
62{
63  tree type_d = TREE_TYPE (dest);
64  tree type_o = TREE_TYPE (orig);
65
66  /* Do not copy between types for which we *do* need a conversion.  */
67  if (!tree_ssa_useless_type_conversion_1 (type_d, type_o))
68    return false;
69
70  /* FIXME.  GIMPLE is allowing pointer assignments and comparisons of
71     pointers that have different alias sets.  This means that these
72     pointers will have different memory tags associated to them.
73
74     If we allow copy propagation in these cases, statements de-referencing
75     the new pointer will now have a reference to a different memory tag
76     with potentially incorrect SSA information.
77
78     This was showing up in libjava/java/util/zip/ZipFile.java with code
79     like:
80
81     	struct java.io.BufferedInputStream *T.660;
82	struct java.io.BufferedInputStream *T.647;
83	struct java.io.InputStream *is;
84	struct java.io.InputStream *is.662;
85	[ ... ]
86	T.660 = T.647;
87	is = T.660;	<-- This ought to be type-casted
88	is.662 = is;
89
90     Also, f/name.c exposed a similar problem with a COND_EXPR predicate
91     that was causing DOM to generate and equivalence with two pointers of
92     alias-incompatible types:
93
94     	struct _ffename_space *n;
95	struct _ffename *ns;
96	[ ... ]
97	if (n == ns)
98	  goto lab;
99	...
100	lab:
101	return n;
102
103     I think that GIMPLE should emit the appropriate type-casts.  For the
104     time being, blocking copy-propagation in these cases is the safe thing
105     to do.  */
106  if (TREE_CODE (dest) == SSA_NAME
107      && TREE_CODE (orig) == SSA_NAME
108      && POINTER_TYPE_P (type_d)
109      && POINTER_TYPE_P (type_o))
110    {
111      tree mt_dest = var_ann (SSA_NAME_VAR (dest))->symbol_mem_tag;
112      tree mt_orig = var_ann (SSA_NAME_VAR (orig))->symbol_mem_tag;
113      if (mt_dest && mt_orig && mt_dest != mt_orig)
114	return false;
115      else if (!lang_hooks.types_compatible_p (type_d, type_o))
116	return false;
117      else if (get_alias_set (TREE_TYPE (type_d)) !=
118	       get_alias_set (TREE_TYPE (type_o)))
119	return false;
120
121      /* Also verify flow-sensitive information is compatible.  */
122      if (SSA_NAME_PTR_INFO (orig) && SSA_NAME_PTR_INFO (dest))
123	{
124	  struct ptr_info_def *orig_ptr_info = SSA_NAME_PTR_INFO (orig);
125	  struct ptr_info_def *dest_ptr_info = SSA_NAME_PTR_INFO (dest);
126
127	  if (orig_ptr_info->name_mem_tag
128	      && dest_ptr_info->name_mem_tag
129	      && orig_ptr_info->pt_vars
130	      && dest_ptr_info->pt_vars
131	      && !bitmap_intersect_p (dest_ptr_info->pt_vars,
132				      orig_ptr_info->pt_vars))
133	    return false;
134	}
135    }
136
137  /* If the destination is a SSA_NAME for a virtual operand, then we have
138     some special cases to handle.  */
139  if (TREE_CODE (dest) == SSA_NAME && !is_gimple_reg (dest))
140    {
141      /* If both operands are SSA_NAMEs referring to virtual operands, then
142	 we can always propagate.  */
143      if (TREE_CODE (orig) == SSA_NAME
144	  && !is_gimple_reg (orig))
145	return true;
146
147      /* We have a "copy" from something like a constant into a virtual
148	 operand.  Reject these.  */
149      return false;
150    }
151
152  /* If ORIG flows in from an abnormal edge, it cannot be propagated.  */
153  if (TREE_CODE (orig) == SSA_NAME
154      && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig))
155    return false;
156
157  /* If DEST is an SSA_NAME that flows from an abnormal edge, then it
158     cannot be replaced.  */
159  if (TREE_CODE (dest) == SSA_NAME
160      && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (dest))
161    return false;
162
163  /* Anything else is OK.  */
164  return true;
165}
166
167/* Similarly, but we know that we're propagating into an ASM_EXPR.  */
168
169bool
170may_propagate_copy_into_asm (tree dest)
171{
172  /* Hard register operands of asms are special.  Do not bypass.  */
173  return !(TREE_CODE (dest) == SSA_NAME
174	   && TREE_CODE (SSA_NAME_VAR (dest)) == VAR_DECL
175	   && DECL_HARD_REGISTER (SSA_NAME_VAR (dest)));
176}
177
178
179/* Given two SSA_NAMEs pointers ORIG and NEW such that we are copy
180   propagating NEW into ORIG, consolidate aliasing information so that
181   they both share the same memory tags.  */
182
183void
184merge_alias_info (tree orig, tree new)
185{
186  tree new_sym = SSA_NAME_VAR (new);
187  tree orig_sym = SSA_NAME_VAR (orig);
188  var_ann_t new_ann = var_ann (new_sym);
189  var_ann_t orig_ann = var_ann (orig_sym);
190
191  gcc_assert (POINTER_TYPE_P (TREE_TYPE (orig)));
192  gcc_assert (POINTER_TYPE_P (TREE_TYPE (new)));
193
194#if defined ENABLE_CHECKING
195  gcc_assert (lang_hooks.types_compatible_p (TREE_TYPE (orig),
196					     TREE_TYPE (new)));
197
198  /* If the pointed-to alias sets are different, these two pointers
199     would never have the same memory tag.  In this case, NEW should
200     not have been propagated into ORIG.  */
201  gcc_assert (get_alias_set (TREE_TYPE (TREE_TYPE (new_sym)))
202	      == get_alias_set (TREE_TYPE (TREE_TYPE (orig_sym))));
203#endif
204
205  /* Synchronize the symbol tags.  If both pointers had a tag and they
206     are different, then something has gone wrong.  Symbol tags can
207     always be merged because they are flow insensitive, all the SSA
208     names of the same base DECL share the same symbol tag.  */
209  if (new_ann->symbol_mem_tag == NULL_TREE)
210    new_ann->symbol_mem_tag = orig_ann->symbol_mem_tag;
211  else if (orig_ann->symbol_mem_tag == NULL_TREE)
212    orig_ann->symbol_mem_tag = new_ann->symbol_mem_tag;
213  else
214    gcc_assert (new_ann->symbol_mem_tag == orig_ann->symbol_mem_tag);
215
216  /* Check that flow-sensitive information is compatible.  Notice that
217     we may not merge flow-sensitive information here.  This function
218     is called when propagating equivalences dictated by the IL, like
219     a copy operation P_i = Q_j, and from equivalences dictated by
220     control-flow, like if (P_i == Q_j).
221
222     In the former case, P_i and Q_j are equivalent in every block
223     dominated by the assignment, so their flow-sensitive information
224     is always the same.  However, in the latter case, the pointers
225     P_i and Q_j are only equivalent in one of the sub-graphs out of
226     the predicate, so their flow-sensitive information is not the
227     same in every block dominated by the predicate.
228
229     Since we cannot distinguish one case from another in this
230     function, we can only make sure that if P_i and Q_j have
231     flow-sensitive information, they should be compatible.  */
232  if (SSA_NAME_PTR_INFO (orig) && SSA_NAME_PTR_INFO (new))
233    {
234      struct ptr_info_def *orig_ptr_info = SSA_NAME_PTR_INFO (orig);
235      struct ptr_info_def *new_ptr_info = SSA_NAME_PTR_INFO (new);
236
237      /* Note that pointer NEW and ORIG may actually have different
238	 pointed-to variables (e.g., PR 18291 represented in
239	 testsuite/gcc.c-torture/compile/pr18291.c).  However, since
240	 NEW is being copy-propagated into ORIG, it must always be
241	 true that the pointed-to set for pointer NEW is the same, or
242	 a subset, of the pointed-to set for pointer ORIG.  If this
243	 isn't the case, we shouldn't have been able to do the
244	 propagation of NEW into ORIG.  */
245      if (orig_ptr_info->name_mem_tag
246	  && new_ptr_info->name_mem_tag
247	  && orig_ptr_info->pt_vars
248	  && new_ptr_info->pt_vars)
249	gcc_assert (bitmap_intersect_p (new_ptr_info->pt_vars,
250					orig_ptr_info->pt_vars));
251    }
252}
253
254
255/* Common code for propagate_value and replace_exp.
256
257   Replace use operand OP_P with VAL.  FOR_PROPAGATION indicates if the
258   replacement is done to propagate a value or not.  */
259
260static void
261replace_exp_1 (use_operand_p op_p, tree val,
262	       bool for_propagation ATTRIBUTE_UNUSED)
263{
264  tree op = USE_FROM_PTR (op_p);
265
266#if defined ENABLE_CHECKING
267  gcc_assert (!(for_propagation
268		&& TREE_CODE (op) == SSA_NAME
269		&& TREE_CODE (val) == SSA_NAME
270		&& !may_propagate_copy (op, val)));
271#endif
272
273  if (TREE_CODE (val) == SSA_NAME)
274    {
275      if (TREE_CODE (op) == SSA_NAME && POINTER_TYPE_P (TREE_TYPE (op)))
276	merge_alias_info (op, val);
277      SET_USE (op_p, val);
278    }
279  else
280    SET_USE (op_p, unsave_expr_now (val));
281}
282
283
284/* Propagate the value VAL (assumed to be a constant or another SSA_NAME)
285   into the operand pointed to by OP_P.
286
287   Use this version for const/copy propagation as it will perform additional
288   checks to ensure validity of the const/copy propagation.  */
289
290void
291propagate_value (use_operand_p op_p, tree val)
292{
293  replace_exp_1 (op_p, val, true);
294}
295
296
297/* Propagate the value VAL (assumed to be a constant or another SSA_NAME)
298   into the tree pointed to by OP_P.
299
300   Use this version for const/copy propagation when SSA operands are not
301   available.  It will perform the additional checks to ensure validity of
302   the const/copy propagation, but will not update any operand information.
303   Be sure to mark the stmt as modified.  */
304
305void
306propagate_tree_value (tree *op_p, tree val)
307{
308#if defined ENABLE_CHECKING
309  gcc_assert (!(TREE_CODE (val) == SSA_NAME
310		&& TREE_CODE (*op_p) == SSA_NAME
311		&& !may_propagate_copy (*op_p, val)));
312#endif
313
314  if (TREE_CODE (val) == SSA_NAME)
315    {
316      if (TREE_CODE (*op_p) == SSA_NAME && POINTER_TYPE_P (TREE_TYPE (*op_p)))
317	merge_alias_info (*op_p, val);
318      *op_p = val;
319    }
320  else
321    *op_p = unsave_expr_now (val);
322}
323
324
325/* Replace *OP_P with value VAL (assumed to be a constant or another SSA_NAME).
326
327   Use this version when not const/copy propagating values.  For example,
328   PRE uses this version when building expressions as they would appear
329   in specific blocks taking into account actions of PHI nodes.  */
330
331void
332replace_exp (use_operand_p op_p, tree val)
333{
334  replace_exp_1 (op_p, val, false);
335}
336
337
338/*---------------------------------------------------------------------------
339				Copy propagation
340---------------------------------------------------------------------------*/
341/* During propagation, we keep chains of variables that are copies of
342   one another.  If variable X_i is a copy of X_j and X_j is a copy of
343   X_k, COPY_OF will contain:
344
345   	COPY_OF[i].VALUE = X_j
346	COPY_OF[j].VALUE = X_k
347	COPY_OF[k].VALUE = X_k
348
349   After propagation, the copy-of value for each variable X_i is
350   converted into the final value by walking the copy-of chains and
351   updating COPY_OF[i].VALUE to be the last element of the chain.  */
352static prop_value_t *copy_of;
353
354/* Used in set_copy_of_val to determine if the last link of a copy-of
355   chain has changed.  */
356static tree *cached_last_copy_of;
357
358/* True if we are doing copy propagation on loads and stores.  */
359static bool do_store_copy_prop;
360
361
362/* Return true if this statement may generate a useful copy.  */
363
364static bool
365stmt_may_generate_copy (tree stmt)
366{
367  tree lhs, rhs;
368  stmt_ann_t ann;
369
370  if (TREE_CODE (stmt) == PHI_NODE)
371    return !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (stmt));
372
373  if (TREE_CODE (stmt) != MODIFY_EXPR)
374    return false;
375
376  lhs = TREE_OPERAND (stmt, 0);
377  rhs = TREE_OPERAND (stmt, 1);
378  ann = stmt_ann (stmt);
379
380  /* If the statement has volatile operands, it won't generate a
381     useful copy.  */
382  if (ann->has_volatile_ops)
383    return false;
384
385  /* If we are not doing store copy-prop, statements with loads and/or
386     stores will never generate a useful copy.  */
387  if (!do_store_copy_prop
388      && !ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
389    return false;
390
391  /* Otherwise, the only statements that generate useful copies are
392     assignments whose RHS is just an SSA name that doesn't flow
393     through abnormal edges.  */
394  return (do_store_copy_prop
395	  && TREE_CODE (lhs) == SSA_NAME)
396	 || (TREE_CODE (rhs) == SSA_NAME
397	     && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs));
398}
399
400
401/* Return the copy-of value for VAR.  */
402
403static inline prop_value_t *
404get_copy_of_val (tree var)
405{
406  prop_value_t *val = &copy_of[SSA_NAME_VERSION (var)];
407
408  if (val->value == NULL_TREE
409      && !stmt_may_generate_copy (SSA_NAME_DEF_STMT (var)))
410    {
411      /* If the variable will never generate a useful copy relation,
412	 make it its own copy.  */
413      val->value = var;
414      val->mem_ref = NULL_TREE;
415    }
416
417  return val;
418}
419
420
421/* Return last link in the copy-of chain for VAR.  */
422
423static tree
424get_last_copy_of (tree var)
425{
426  tree last;
427  int i;
428
429  /* Traverse COPY_OF starting at VAR until we get to the last
430     link in the chain.  Since it is possible to have cycles in PHI
431     nodes, the copy-of chain may also contain cycles.
432
433     To avoid infinite loops and to avoid traversing lengthy copy-of
434     chains, we artificially limit the maximum number of chains we are
435     willing to traverse.
436
437     The value 5 was taken from a compiler and runtime library
438     bootstrap and a mixture of C and C++ code from various sources.
439     More than 82% of all copy-of chains were shorter than 5 links.  */
440#define LIMIT	5
441
442  last = var;
443  for (i = 0; i < LIMIT; i++)
444    {
445      tree copy = copy_of[SSA_NAME_VERSION (last)].value;
446      if (copy == NULL_TREE || copy == last)
447	break;
448      last = copy;
449    }
450
451  /* If we have reached the limit, then we are either in a copy-of
452     cycle or the copy-of chain is too long.  In this case, just
453     return VAR so that it is not considered a copy of anything.  */
454  return (i < LIMIT ? last : var);
455}
456
457
458/* Set FIRST to be the first variable in the copy-of chain for DEST.
459   If DEST's copy-of value or its copy-of chain has changed, return
460   true.
461
462   MEM_REF is the memory reference where FIRST is stored.  This is
463   used when DEST is a non-register and we are copy propagating loads
464   and stores.  */
465
466static inline bool
467set_copy_of_val (tree dest, tree first, tree mem_ref)
468{
469  unsigned int dest_ver = SSA_NAME_VERSION (dest);
470  tree old_first, old_last, new_last;
471
472  /* Set FIRST to be the first link in COPY_OF[DEST].  If that
473     changed, return true.  */
474  old_first = copy_of[dest_ver].value;
475  copy_of[dest_ver].value = first;
476  copy_of[dest_ver].mem_ref = mem_ref;
477
478  if (old_first != first)
479    return true;
480
481  /* If FIRST and OLD_FIRST are the same, we need to check whether the
482     copy-of chain starting at FIRST ends in a different variable.  If
483     the copy-of chain starting at FIRST ends up in a different
484     variable than the last cached value we had for DEST, then return
485     true because DEST is now a copy of a different variable.
486
487     This test is necessary because even though the first link in the
488     copy-of chain may not have changed, if any of the variables in
489     the copy-of chain changed its final value, DEST will now be the
490     copy of a different variable, so we have to do another round of
491     propagation for everything that depends on DEST.  */
492  old_last = cached_last_copy_of[dest_ver];
493  new_last = get_last_copy_of (dest);
494  cached_last_copy_of[dest_ver] = new_last;
495
496  return (old_last != new_last);
497}
498
499
500/* Dump the copy-of value for variable VAR to FILE.  */
501
502static void
503dump_copy_of (FILE *file, tree var)
504{
505  tree val;
506  sbitmap visited;
507
508  print_generic_expr (file, var, dump_flags);
509
510  if (TREE_CODE (var) != SSA_NAME)
511    return;
512
513  visited = sbitmap_alloc (num_ssa_names);
514  sbitmap_zero (visited);
515  SET_BIT (visited, SSA_NAME_VERSION (var));
516
517  fprintf (file, " copy-of chain: ");
518
519  val = var;
520  print_generic_expr (file, val, 0);
521  fprintf (file, " ");
522  while (copy_of[SSA_NAME_VERSION (val)].value)
523    {
524      fprintf (file, "-> ");
525      val = copy_of[SSA_NAME_VERSION (val)].value;
526      print_generic_expr (file, val, 0);
527      fprintf (file, " ");
528      if (TEST_BIT (visited, SSA_NAME_VERSION (val)))
529        break;
530      SET_BIT (visited, SSA_NAME_VERSION (val));
531    }
532
533  val = get_copy_of_val (var)->value;
534  if (val == NULL_TREE)
535    fprintf (file, "[UNDEFINED]");
536  else if (val != var)
537    fprintf (file, "[COPY]");
538  else
539    fprintf (file, "[NOT A COPY]");
540
541  sbitmap_free (visited);
542}
543
544
545/* Evaluate the RHS of STMT.  If it produces a valid copy, set the LHS
546   value and store the LHS into *RESULT_P.  If STMT generates more
547   than one name (i.e., STMT is an aliased store), it is enough to
548   store the first name in the V_MAY_DEF list into *RESULT_P.  After
549   all, the names generated will be VUSEd in the same statements.  */
550
551static enum ssa_prop_result
552copy_prop_visit_assignment (tree stmt, tree *result_p)
553{
554  tree lhs, rhs;
555  prop_value_t *rhs_val;
556
557  lhs = TREE_OPERAND (stmt, 0);
558  rhs = TREE_OPERAND (stmt, 1);
559
560  gcc_assert (TREE_CODE (rhs) == SSA_NAME);
561
562  rhs_val = get_copy_of_val (rhs);
563
564  if (TREE_CODE (lhs) == SSA_NAME)
565    {
566      /* Straight copy between two SSA names.  First, make sure that
567	 we can propagate the RHS into uses of LHS.  */
568      if (!may_propagate_copy (lhs, rhs))
569	return SSA_PROP_VARYING;
570
571      /* Notice that in the case of assignments, we make the LHS be a
572	 copy of RHS's value, not of RHS itself.  This avoids keeping
573	 unnecessary copy-of chains (assignments cannot be in a cycle
574	 like PHI nodes), speeding up the propagation process.
575	 This is different from what we do in copy_prop_visit_phi_node.
576	 In those cases, we are interested in the copy-of chains.  */
577      *result_p = lhs;
578      if (set_copy_of_val (*result_p, rhs_val->value, rhs_val->mem_ref))
579	return SSA_PROP_INTERESTING;
580      else
581	return SSA_PROP_NOT_INTERESTING;
582    }
583  else if (stmt_makes_single_store (stmt))
584    {
585      /* Otherwise, set the names in V_MAY_DEF/V_MUST_DEF operands
586	 to be a copy of RHS.  */
587      ssa_op_iter i;
588      tree vdef;
589      bool changed;
590
591      /* This should only be executed when doing store copy-prop.  */
592      gcc_assert (do_store_copy_prop);
593
594      /* Set the value of every VDEF to RHS_VAL.  */
595      changed = false;
596      FOR_EACH_SSA_TREE_OPERAND (vdef, stmt, i, SSA_OP_VIRTUAL_DEFS)
597	changed |= set_copy_of_val (vdef, rhs_val->value, lhs);
598
599      /* Note that for propagation purposes, we are only interested in
600	 visiting statements that load the exact same memory reference
601	 stored here.  Those statements will have the exact same list
602	 of virtual uses, so it is enough to set the output of this
603	 statement to be its first virtual definition.  */
604      *result_p = first_vdef (stmt);
605
606      if (changed)
607	return SSA_PROP_INTERESTING;
608      else
609	return SSA_PROP_NOT_INTERESTING;
610    }
611
612
613  return SSA_PROP_VARYING;
614}
615
616
617/* Visit the COND_EXPR STMT.  Return SSA_PROP_INTERESTING
618   if it can determine which edge will be taken.  Otherwise, return
619   SSA_PROP_VARYING.  */
620
621static enum ssa_prop_result
622copy_prop_visit_cond_stmt (tree stmt, edge *taken_edge_p)
623{
624  enum ssa_prop_result retval;
625  tree cond;
626
627  cond = COND_EXPR_COND (stmt);
628  retval = SSA_PROP_VARYING;
629
630  /* The only conditionals that we may be able to compute statically
631     are predicates involving two SSA_NAMEs.  */
632  if (COMPARISON_CLASS_P (cond)
633      && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
634      && TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME)
635    {
636      tree op0 = get_last_copy_of (TREE_OPERAND (cond, 0));
637      tree op1 = get_last_copy_of (TREE_OPERAND (cond, 1));
638
639      /* See if we can determine the predicate's value.  */
640      if (dump_file && (dump_flags & TDF_DETAILS))
641	{
642	  fprintf (dump_file, "Trying to determine truth value of ");
643	  fprintf (dump_file, "predicate ");
644	  print_generic_stmt (dump_file, cond, 0);
645	}
646
647      /* We can fold COND and get a useful result only when we have
648	 the same SSA_NAME on both sides of a comparison operator.  */
649      if (op0 == op1)
650	{
651	  tree folded_cond = fold_binary (TREE_CODE (cond), boolean_type_node,
652					  op0, op1);
653	  if (folded_cond)
654	    {
655	      basic_block bb = bb_for_stmt (stmt);
656	      *taken_edge_p = find_taken_edge (bb, folded_cond);
657	      if (*taken_edge_p)
658		retval = SSA_PROP_INTERESTING;
659	    }
660	}
661    }
662
663  if (dump_file && (dump_flags & TDF_DETAILS) && *taken_edge_p)
664    fprintf (dump_file, "\nConditional will always take edge %d->%d\n",
665	     (*taken_edge_p)->src->index, (*taken_edge_p)->dest->index);
666
667  return retval;
668}
669
670
671/* Evaluate statement STMT.  If the statement produces a new output
672   value, return SSA_PROP_INTERESTING and store the SSA_NAME holding
673   the new value in *RESULT_P.
674
675   If STMT is a conditional branch and we can determine its truth
676   value, set *TAKEN_EDGE_P accordingly.
677
678   If the new value produced by STMT is varying, return
679   SSA_PROP_VARYING.  */
680
681static enum ssa_prop_result
682copy_prop_visit_stmt (tree stmt, edge *taken_edge_p, tree *result_p)
683{
684  enum ssa_prop_result retval;
685
686  if (dump_file && (dump_flags & TDF_DETAILS))
687    {
688      fprintf (dump_file, "\nVisiting statement:\n");
689      print_generic_stmt (dump_file, stmt, dump_flags);
690      fprintf (dump_file, "\n");
691    }
692
693  if (TREE_CODE (stmt) == MODIFY_EXPR
694      && TREE_CODE (TREE_OPERAND (stmt, 1)) == SSA_NAME
695      && (do_store_copy_prop
696	  || TREE_CODE (TREE_OPERAND (stmt, 0)) == SSA_NAME))
697    {
698      /* If the statement is a copy assignment, evaluate its RHS to
699	 see if the lattice value of its output has changed.  */
700      retval = copy_prop_visit_assignment (stmt, result_p);
701    }
702  else if (TREE_CODE (stmt) == MODIFY_EXPR
703	   && TREE_CODE (TREE_OPERAND (stmt, 0)) == SSA_NAME
704	   && do_store_copy_prop
705	   && stmt_makes_single_load (stmt))
706    {
707      /* If the statement is a copy assignment with a memory load
708	 on the RHS, see if we know the value of this load and
709	 update the lattice accordingly.  */
710      prop_value_t *val = get_value_loaded_by (stmt, copy_of);
711      if (val
712	  && val->mem_ref
713	  && is_gimple_reg (val->value)
714	  && operand_equal_p (val->mem_ref, TREE_OPERAND (stmt, 1), 0))
715        {
716	  bool changed;
717	  changed = set_copy_of_val (TREE_OPERAND (stmt, 0),
718				     val->value, val->mem_ref);
719	  if (changed)
720	    {
721	      *result_p = TREE_OPERAND (stmt, 0);
722	      retval = SSA_PROP_INTERESTING;
723	    }
724	  else
725	    retval = SSA_PROP_NOT_INTERESTING;
726	}
727      else
728        retval = SSA_PROP_VARYING;
729    }
730  else if (TREE_CODE (stmt) == COND_EXPR)
731    {
732      /* See if we can determine which edge goes out of a conditional
733	 jump.  */
734      retval = copy_prop_visit_cond_stmt (stmt, taken_edge_p);
735    }
736  else
737    retval = SSA_PROP_VARYING;
738
739  if (retval == SSA_PROP_VARYING)
740    {
741      tree def;
742      ssa_op_iter i;
743
744      /* Any other kind of statement is not interesting for constant
745	 propagation and, therefore, not worth simulating.  */
746      if (dump_file && (dump_flags & TDF_DETAILS))
747	fprintf (dump_file, "No interesting values produced.\n");
748
749      /* The assignment is not a copy operation.  Don't visit this
750	 statement again and mark all the definitions in the statement
751	 to be copies of nothing.  */
752      FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_ALL_DEFS)
753	set_copy_of_val (def, def, NULL_TREE);
754    }
755
756  return retval;
757}
758
759
760/* Visit PHI node PHI.  If all the arguments produce the same value,
761   set it to be the value of the LHS of PHI.  */
762
763static enum ssa_prop_result
764copy_prop_visit_phi_node (tree phi)
765{
766  enum ssa_prop_result retval;
767  int i;
768  tree lhs;
769  prop_value_t phi_val = { 0, NULL_TREE, NULL_TREE };
770
771  lhs = PHI_RESULT (phi);
772
773  if (dump_file && (dump_flags & TDF_DETAILS))
774    {
775      fprintf (dump_file, "\nVisiting PHI node: ");
776      print_generic_expr (dump_file, phi, dump_flags);
777      fprintf (dump_file, "\n\n");
778    }
779
780  for (i = 0; i < PHI_NUM_ARGS (phi); i++)
781    {
782      prop_value_t *arg_val;
783      tree arg = PHI_ARG_DEF (phi, i);
784      edge e = PHI_ARG_EDGE (phi, i);
785
786      /* We don't care about values flowing through non-executable
787	 edges.  */
788      if (!(e->flags & EDGE_EXECUTABLE))
789	continue;
790
791      /* Constants in the argument list never generate a useful copy.
792	 Similarly, names that flow through abnormal edges cannot be
793	 used to derive copies.  */
794      if (TREE_CODE (arg) != SSA_NAME || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (arg))
795	{
796	  phi_val.value = lhs;
797	  break;
798	}
799
800      /* Avoid copy propagation from an inner into an outer loop.
801	 Otherwise, this may move loop variant variables outside of
802	 their loops and prevent coalescing opportunities.  If the
803	 value was loop invariant, it will be hoisted by LICM and
804	 exposed for copy propagation.  */
805      if (loop_depth_of_name (arg) > loop_depth_of_name (lhs))
806	{
807	  phi_val.value = lhs;
808	  break;
809	}
810
811      /* If the LHS appears in the argument list, ignore it.  It is
812	 irrelevant as a copy.  */
813      if (arg == lhs || get_last_copy_of (arg) == lhs)
814	continue;
815
816      if (dump_file && (dump_flags & TDF_DETAILS))
817	{
818	  fprintf (dump_file, "\tArgument #%d: ", i);
819	  dump_copy_of (dump_file, arg);
820	  fprintf (dump_file, "\n");
821	}
822
823      arg_val = get_copy_of_val (arg);
824
825      /* If the LHS didn't have a value yet, make it a copy of the
826	 first argument we find.  Notice that while we make the LHS be
827	 a copy of the argument itself, we take the memory reference
828	 from the argument's value so that we can compare it to the
829	 memory reference of all the other arguments.  */
830      if (phi_val.value == NULL_TREE)
831	{
832	  phi_val.value = arg;
833	  phi_val.mem_ref = arg_val->mem_ref;
834	  continue;
835	}
836
837      /* If PHI_VAL and ARG don't have a common copy-of chain, then
838	 this PHI node cannot be a copy operation.  Also, if we are
839	 copy propagating stores and these two arguments came from
840	 different memory references, they cannot be considered
841	 copies.  */
842      if (get_last_copy_of (phi_val.value) != get_last_copy_of (arg)
843	  || (do_store_copy_prop
844	      && phi_val.mem_ref
845	      && arg_val->mem_ref
846	      && simple_cst_equal (phi_val.mem_ref, arg_val->mem_ref) != 1))
847	{
848	  phi_val.value = lhs;
849	  break;
850	}
851    }
852
853  if (phi_val.value && set_copy_of_val (lhs, phi_val.value, phi_val.mem_ref))
854    retval = (phi_val.value != lhs) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
855  else
856    retval = SSA_PROP_NOT_INTERESTING;
857
858  if (dump_file && (dump_flags & TDF_DETAILS))
859    {
860      fprintf (dump_file, "\nPHI node ");
861      dump_copy_of (dump_file, lhs);
862      fprintf (dump_file, "\nTelling the propagator to ");
863      if (retval == SSA_PROP_INTERESTING)
864	fprintf (dump_file, "add SSA edges out of this PHI and continue.");
865      else if (retval == SSA_PROP_VARYING)
866	fprintf (dump_file, "add SSA edges out of this PHI and never visit again.");
867      else
868	fprintf (dump_file, "do nothing with SSA edges and keep iterating.");
869      fprintf (dump_file, "\n\n");
870    }
871
872  return retval;
873}
874
875
876/* Initialize structures used for copy propagation.   PHIS_ONLY is true
877   if we should only consider PHI nodes as generating copy propagation
878   opportunities.  */
879
880static void
881init_copy_prop (void)
882{
883  basic_block bb;
884
885  copy_of = XNEWVEC (prop_value_t, num_ssa_names);
886  memset (copy_of, 0, num_ssa_names * sizeof (*copy_of));
887
888  cached_last_copy_of = XNEWVEC (tree, num_ssa_names);
889  memset (cached_last_copy_of, 0, num_ssa_names * sizeof (*cached_last_copy_of));
890
891  FOR_EACH_BB (bb)
892    {
893      block_stmt_iterator si;
894      tree phi, def;
895      int depth = bb->loop_depth;
896
897      for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
898	{
899	  tree stmt = bsi_stmt (si);
900	  ssa_op_iter iter;
901
902	  /* The only statements that we care about are those that may
903	     generate useful copies.  We also need to mark conditional
904	     jumps so that their outgoing edges are added to the work
905	     lists of the propagator.
906
907	     Avoid copy propagation from an inner into an outer loop.
908	     Otherwise, this may move loop variant variables outside of
909	     their loops and prevent coalescing opportunities.  If the
910	     value was loop invariant, it will be hoisted by LICM and
911	     exposed for copy propagation.  */
912	  if (stmt_ends_bb_p (stmt))
913	    DONT_SIMULATE_AGAIN (stmt) = false;
914	  else if (stmt_may_generate_copy (stmt)
915		   && loop_depth_of_name (TREE_OPERAND (stmt, 1)) <= depth)
916	    DONT_SIMULATE_AGAIN (stmt) = false;
917	  else
918	    DONT_SIMULATE_AGAIN (stmt) = true;
919
920	  /* Mark all the outputs of this statement as not being
921	     the copy of anything.  */
922	  FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
923	    if (DONT_SIMULATE_AGAIN (stmt))
924	      set_copy_of_val (def, def, NULL_TREE);
925	    else
926	      cached_last_copy_of[SSA_NAME_VERSION (def)] = def;
927	}
928
929      for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
930	{
931	  def = PHI_RESULT (phi);
932	  if (!do_store_copy_prop && !is_gimple_reg (def))
933	    DONT_SIMULATE_AGAIN (phi) = true;
934	  else
935	    DONT_SIMULATE_AGAIN (phi) = false;
936
937	  if (DONT_SIMULATE_AGAIN (phi))
938	    set_copy_of_val (def, def, NULL_TREE);
939	  else
940	    cached_last_copy_of[SSA_NAME_VERSION (def)] = def;
941	}
942    }
943}
944
945
946/* Deallocate memory used in copy propagation and do final
947   substitution.  */
948
949static void
950fini_copy_prop (void)
951{
952  size_t i;
953  prop_value_t *tmp;
954
955  /* Set the final copy-of value for each variable by traversing the
956     copy-of chains.  */
957  tmp = XNEWVEC (prop_value_t, num_ssa_names);
958  memset (tmp, 0, num_ssa_names * sizeof (*tmp));
959  for (i = 1; i < num_ssa_names; i++)
960    {
961      tree var = ssa_name (i);
962      if (var && copy_of[i].value && copy_of[i].value != var)
963	tmp[i].value = get_last_copy_of (var);
964    }
965
966  substitute_and_fold (tmp, false);
967
968  free (cached_last_copy_of);
969  free (copy_of);
970  free (tmp);
971}
972
973
974/* Main entry point to the copy propagator.
975
976   PHIS_ONLY is true if we should only consider PHI nodes as generating
977   copy propagation opportunities.
978
979   The algorithm propagates the value COPY-OF using ssa_propagate.  For
980   every variable X_i, COPY-OF(X_i) indicates which variable is X_i created
981   from.  The following example shows how the algorithm proceeds at a
982   high level:
983
984	    1	a_24 = x_1
985	    2	a_2 = PHI <a_24, x_1>
986	    3	a_5 = PHI <a_2>
987	    4	x_1 = PHI <x_298, a_5, a_2>
988
989   The end result should be that a_2, a_5, a_24 and x_1 are a copy of
990   x_298.  Propagation proceeds as follows.
991
992   Visit #1: a_24 is copy-of x_1.  Value changed.
993   Visit #2: a_2 is copy-of x_1.  Value changed.
994   Visit #3: a_5 is copy-of x_1.  Value changed.
995   Visit #4: x_1 is copy-of x_298.  Value changed.
996   Visit #1: a_24 is copy-of x_298.  Value changed.
997   Visit #2: a_2 is copy-of x_298.  Value changed.
998   Visit #3: a_5 is copy-of x_298.  Value changed.
999   Visit #4: x_1 is copy-of x_298.  Stable state reached.
1000
1001   When visiting PHI nodes, we only consider arguments that flow
1002   through edges marked executable by the propagation engine.  So,
1003   when visiting statement #2 for the first time, we will only look at
1004   the first argument (a_24) and optimistically assume that its value
1005   is the copy of a_24 (x_1).
1006
1007   The problem with this approach is that it may fail to discover copy
1008   relations in PHI cycles.  Instead of propagating copy-of
1009   values, we actually propagate copy-of chains.  For instance:
1010
1011   		A_3 = B_1;
1012		C_9 = A_3;
1013		D_4 = C_9;
1014		X_i = D_4;
1015
1016   In this code fragment, COPY-OF (X_i) = { D_4, C_9, A_3, B_1 }.
1017   Obviously, we are only really interested in the last value of the
1018   chain, however the propagator needs to access the copy-of chain
1019   when visiting PHI nodes.
1020
1021   To represent the copy-of chain, we use the array COPY_CHAINS, which
1022   holds the first link in the copy-of chain for every variable.
1023   If variable X_i is a copy of X_j, which in turn is a copy of X_k,
1024   the array will contain:
1025
1026		COPY_CHAINS[i] = X_j
1027		COPY_CHAINS[j] = X_k
1028		COPY_CHAINS[k] = X_k
1029
1030   Keeping copy-of chains instead of copy-of values directly becomes
1031   important when visiting PHI nodes.  Suppose that we had the
1032   following PHI cycle, such that x_52 is already considered a copy of
1033   x_53:
1034
1035	    1	x_54 = PHI <x_53, x_52>
1036	    2	x_53 = PHI <x_898, x_54>
1037
1038   Visit #1: x_54 is copy-of x_53 (because x_52 is copy-of x_53)
1039   Visit #2: x_53 is copy-of x_898 (because x_54 is a copy of x_53,
1040				    so it is considered irrelevant
1041				    as a copy).
1042   Visit #1: x_54 is copy-of nothing (x_53 is a copy-of x_898 and
1043				      x_52 is a copy of x_53, so
1044				      they don't match)
1045   Visit #2: x_53 is copy-of nothing
1046
1047   This problem is avoided by keeping a chain of copies, instead of
1048   the final copy-of value.  Propagation will now only keep the first
1049   element of a variable's copy-of chain.  When visiting PHI nodes,
1050   arguments are considered equal if their copy-of chains end in the
1051   same variable.  So, as long as their copy-of chains overlap, we
1052   know that they will be a copy of the same variable, regardless of
1053   which variable that may be).
1054
1055   Propagation would then proceed as follows (the notation a -> b
1056   means that a is a copy-of b):
1057
1058   Visit #1: x_54 = PHI <x_53, x_52>
1059		x_53 -> x_53
1060		x_52 -> x_53
1061		Result: x_54 -> x_53.  Value changed.  Add SSA edges.
1062
1063   Visit #1: x_53 = PHI <x_898, x_54>
1064   		x_898 -> x_898
1065		x_54 -> x_53
1066		Result: x_53 -> x_898.  Value changed.  Add SSA edges.
1067
1068   Visit #2: x_54 = PHI <x_53, x_52>
1069   		x_53 -> x_898
1070		x_52 -> x_53 -> x_898
1071		Result: x_54 -> x_898.  Value changed.  Add SSA edges.
1072
1073   Visit #2: x_53 = PHI <x_898, x_54>
1074   		x_898 -> x_898
1075		x_54 -> x_898
1076		Result: x_53 -> x_898.  Value didn't change.  Stable state
1077
1078   Once the propagator stabilizes, we end up with the desired result
1079   x_53 and x_54 are both copies of x_898.  */
1080
1081static void
1082execute_copy_prop (bool store_copy_prop)
1083{
1084  do_store_copy_prop = store_copy_prop;
1085  init_copy_prop ();
1086  ssa_propagate (copy_prop_visit_stmt, copy_prop_visit_phi_node);
1087  fini_copy_prop ();
1088}
1089
1090
1091static bool
1092gate_copy_prop (void)
1093{
1094  return flag_tree_copy_prop != 0;
1095}
1096
1097static unsigned int
1098do_copy_prop (void)
1099{
1100  execute_copy_prop (false);
1101  return 0;
1102}
1103
1104struct tree_opt_pass pass_copy_prop =
1105{
1106  "copyprop",				/* name */
1107  gate_copy_prop,			/* gate */
1108  do_copy_prop,				/* execute */
1109  NULL,					/* sub */
1110  NULL,					/* next */
1111  0,					/* static_pass_number */
1112  TV_TREE_COPY_PROP,			/* tv_id */
1113  PROP_ssa | PROP_alias | PROP_cfg,	/* properties_required */
1114  0,					/* properties_provided */
1115  0,					/* properties_destroyed */
1116  0,					/* todo_flags_start */
1117  TODO_cleanup_cfg
1118    | TODO_dump_func
1119    | TODO_ggc_collect
1120    | TODO_verify_ssa
1121    | TODO_update_ssa,			/* todo_flags_finish */
1122  0					/* letter */
1123};
1124
1125static bool
1126gate_store_copy_prop (void)
1127{
1128  /* STORE-COPY-PROP is enabled only with -ftree-store-copy-prop, but
1129     when -fno-tree-store-copy-prop is specified, we should run
1130     regular COPY-PROP. That's why the pass is enabled with either
1131     flag.  */
1132  return flag_tree_store_copy_prop != 0 || flag_tree_copy_prop != 0;
1133}
1134
1135static unsigned int
1136store_copy_prop (void)
1137{
1138  /* If STORE-COPY-PROP is not enabled, we just run regular COPY-PROP.  */
1139  execute_copy_prop (flag_tree_store_copy_prop != 0);
1140  return 0;
1141}
1142
1143struct tree_opt_pass pass_store_copy_prop =
1144{
1145  "store_copyprop",			/* name */
1146  gate_store_copy_prop,			/* gate */
1147  store_copy_prop,			/* execute */
1148  NULL,					/* sub */
1149  NULL,					/* next */
1150  0,					/* static_pass_number */
1151  TV_TREE_STORE_COPY_PROP,		/* tv_id */
1152  PROP_ssa | PROP_alias | PROP_cfg,	/* properties_required */
1153  0,					/* properties_provided */
1154  0,					/* properties_destroyed */
1155  0,					/* todo_flags_start */
1156  TODO_dump_func
1157    | TODO_cleanup_cfg
1158    | TODO_ggc_collect
1159    | TODO_verify_ssa
1160    | TODO_update_ssa,			/* todo_flags_finish */
1161  0					/* letter */
1162};
1163