1/* Global common subexpression elimination/Partial redundancy elimination
2   and global constant/copy propagation for GNU compiler.
3   Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4   Free Software Foundation, Inc.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING.  If not, write to the Free
20Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2102110-1301, USA.  */
22
23/* TODO
24   - reordering of memory allocation and freeing to be more space efficient
25   - do rough calc of how many regs are needed in each block, and a rough
26     calc of how many regs are available in each class and use that to
27     throttle back the code in cases where RTX_COST is minimal.
28   - a store to the same address as a load does not kill the load if the
29     source of the store is also the destination of the load.  Handling this
30     allows more load motion, particularly out of loops.
31   - ability to realloc sbitmap vectors would allow one initial computation
32     of reg_set_in_block with only subsequent additions, rather than
33     recomputing it for each pass
34
35*/
36
37/* References searched while implementing this.
38
39   Compilers Principles, Techniques and Tools
40   Aho, Sethi, Ullman
41   Addison-Wesley, 1988
42
43   Global Optimization by Suppression of Partial Redundancies
44   E. Morel, C. Renvoise
45   communications of the acm, Vol. 22, Num. 2, Feb. 1979
46
47   A Portable Machine-Independent Global Optimizer - Design and Measurements
48   Frederick Chow
49   Stanford Ph.D. thesis, Dec. 1983
50
51   A Fast Algorithm for Code Movement Optimization
52   D.M. Dhamdhere
53   SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
54
55   A Solution to a Problem with Morel and Renvoise's
56   Global Optimization by Suppression of Partial Redundancies
57   K-H Drechsler, M.P. Stadel
58   ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
59
60   Practical Adaptation of the Global Optimization
61   Algorithm of Morel and Renvoise
62   D.M. Dhamdhere
63   ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
64
65   Efficiently Computing Static Single Assignment Form and the Control
66   Dependence Graph
67   R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68   ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
69
70   Lazy Code Motion
71   J. Knoop, O. Ruthing, B. Steffen
72   ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
73
74   What's In a Region?  Or Computing Control Dependence Regions in Near-Linear
75   Time for Reducible Flow Control
76   Thomas Ball
77   ACM Letters on Programming Languages and Systems,
78   Vol. 2, Num. 1-4, Mar-Dec 1993
79
80   An Efficient Representation for Sparse Sets
81   Preston Briggs, Linda Torczon
82   ACM Letters on Programming Languages and Systems,
83   Vol. 2, Num. 1-4, Mar-Dec 1993
84
85   A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86   K-H Drechsler, M.P. Stadel
87   ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
88
89   Partial Dead Code Elimination
90   J. Knoop, O. Ruthing, B. Steffen
91   ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
92
93   Effective Partial Redundancy Elimination
94   P. Briggs, K.D. Cooper
95   ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
96
97   The Program Structure Tree: Computing Control Regions in Linear Time
98   R. Johnson, D. Pearson, K. Pingali
99   ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
100
101   Optimal Code Motion: Theory and Practice
102   J. Knoop, O. Ruthing, B. Steffen
103   ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
104
105   The power of assignment motion
106   J. Knoop, O. Ruthing, B. Steffen
107   ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
108
109   Global code motion / global value numbering
110   C. Click
111   ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
112
113   Value Driven Redundancy Elimination
114   L.T. Simpson
115   Rice University Ph.D. thesis, Apr. 1996
116
117   Value Numbering
118   L.T. Simpson
119   Massively Scalar Compiler Project, Rice University, Sep. 1996
120
121   High Performance Compilers for Parallel Computing
122   Michael Wolfe
123   Addison-Wesley, 1996
124
125   Advanced Compiler Design and Implementation
126   Steven Muchnick
127   Morgan Kaufmann, 1997
128
129   Building an Optimizing Compiler
130   Robert Morgan
131   Digital Press, 1998
132
133   People wishing to speed up the code here should read:
134     Elimination Algorithms for Data Flow Analysis
135     B.G. Ryder, M.C. Paull
136     ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
137
138     How to Analyze Large Programs Efficiently and Informatively
139     D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140     ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
141
142   People wishing to do something different can find various possibilities
143   in the above papers and elsewhere.
144*/
145
146#include "config.h"
147#include "system.h"
148#include "coretypes.h"
149#include "tm.h"
150#include "toplev.h"
151
152#include "rtl.h"
153#include "tree.h"
154#include "tm_p.h"
155#include "regs.h"
156#include "hard-reg-set.h"
157#include "flags.h"
158#include "real.h"
159#include "insn-config.h"
160#include "recog.h"
161#include "basic-block.h"
162#include "output.h"
163#include "function.h"
164#include "expr.h"
165#include "except.h"
166#include "ggc.h"
167#include "params.h"
168#include "cselib.h"
169#include "intl.h"
170#include "obstack.h"
171#include "timevar.h"
172#include "tree-pass.h"
173#include "hashtab.h"
174
175/* Propagate flow information through back edges and thus enable PRE's
176   moving loop invariant calculations out of loops.
177
178   Originally this tended to create worse overall code, but several
179   improvements during the development of PRE seem to have made following
180   back edges generally a win.
181
182   Note much of the loop invariant code motion done here would normally
183   be done by loop.c, which has more heuristics for when to move invariants
184   out of loops.  At some point we might need to move some of those
185   heuristics into gcse.c.  */
186
187/* We support GCSE via Partial Redundancy Elimination.  PRE optimizations
188   are a superset of those done by GCSE.
189
190   We perform the following steps:
191
192   1) Compute basic block information.
193
194   2) Compute table of places where registers are set.
195
196   3) Perform copy/constant propagation.
197
198   4) Perform global cse using lazy code motion if not optimizing
199      for size, or code hoisting if we are.
200
201   5) Perform another pass of copy/constant propagation.
202
203   Two passes of copy/constant propagation are done because the first one
204   enables more GCSE and the second one helps to clean up the copies that
205   GCSE creates.  This is needed more for PRE than for Classic because Classic
206   GCSE will try to use an existing register containing the common
207   subexpression rather than create a new one.  This is harder to do for PRE
208   because of the code motion (which Classic GCSE doesn't do).
209
210   Expressions we are interested in GCSE-ing are of the form
211   (set (pseudo-reg) (expression)).
212   Function want_to_gcse_p says what these are.
213
214   PRE handles moving invariant expressions out of loops (by treating them as
215   partially redundant).
216
217   Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
218   assignment) based GVN (global value numbering).  L. T. Simpson's paper
219   (Rice University) on value numbering is a useful reference for this.
220
221   **********************
222
223   We used to support multiple passes but there are diminishing returns in
224   doing so.  The first pass usually makes 90% of the changes that are doable.
225   A second pass can make a few more changes made possible by the first pass.
226   Experiments show any further passes don't make enough changes to justify
227   the expense.
228
229   A study of spec92 using an unlimited number of passes:
230   [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
231   [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
232   [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
233
234   It was found doing copy propagation between each pass enables further
235   substitutions.
236
237   PRE is quite expensive in complicated functions because the DFA can take
238   a while to converge.  Hence we only perform one pass.  The parameter
239   max-gcse-passes can be modified if one wants to experiment.
240
241   **********************
242
243   The steps for PRE are:
244
245   1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
246
247   2) Perform the data flow analysis for PRE.
248
249   3) Delete the redundant instructions
250
251   4) Insert the required copies [if any] that make the partially
252      redundant instructions fully redundant.
253
254   5) For other reaching expressions, insert an instruction to copy the value
255      to a newly created pseudo that will reach the redundant instruction.
256
257   The deletion is done first so that when we do insertions we
258   know which pseudo reg to use.
259
260   Various papers have argued that PRE DFA is expensive (O(n^2)) and others
261   argue it is not.  The number of iterations for the algorithm to converge
262   is typically 2-4 so I don't view it as that expensive (relatively speaking).
263
264   PRE GCSE depends heavily on the second CSE pass to clean up the copies
265   we create.  To make an expression reach the place where it's redundant,
266   the result of the expression is copied to a new register, and the redundant
267   expression is deleted by replacing it with this new register.  Classic GCSE
268   doesn't have this problem as much as it computes the reaching defs of
269   each register in each block and thus can try to use an existing
270   register.  */
271
272/* GCSE global vars.  */
273
274/* Note whether or not we should run jump optimization after gcse.  We
275   want to do this for two cases.
276
277    * If we changed any jumps via cprop.
278
279    * If we added any labels via edge splitting.  */
280static int run_jump_opt_after_gcse;
281
282/* An obstack for our working variables.  */
283static struct obstack gcse_obstack;
284
285struct reg_use {rtx reg_rtx; };
286
287/* Hash table of expressions.  */
288
289struct expr
290{
291  /* The expression (SET_SRC for expressions, PATTERN for assignments).  */
292  rtx expr;
293  /* Index in the available expression bitmaps.  */
294  int bitmap_index;
295  /* Next entry with the same hash.  */
296  struct expr *next_same_hash;
297  /* List of anticipatable occurrences in basic blocks in the function.
298     An "anticipatable occurrence" is one that is the first occurrence in the
299     basic block, the operands are not modified in the basic block prior
300     to the occurrence and the output is not used between the start of
301     the block and the occurrence.  */
302  struct occr *antic_occr;
303  /* List of available occurrence in basic blocks in the function.
304     An "available occurrence" is one that is the last occurrence in the
305     basic block and the operands are not modified by following statements in
306     the basic block [including this insn].  */
307  struct occr *avail_occr;
308  /* Non-null if the computation is PRE redundant.
309     The value is the newly created pseudo-reg to record a copy of the
310     expression in all the places that reach the redundant copy.  */
311  rtx reaching_reg;
312};
313
314/* Occurrence of an expression.
315   There is one per basic block.  If a pattern appears more than once the
316   last appearance is used [or first for anticipatable expressions].  */
317
318struct occr
319{
320  /* Next occurrence of this expression.  */
321  struct occr *next;
322  /* The insn that computes the expression.  */
323  rtx insn;
324  /* Nonzero if this [anticipatable] occurrence has been deleted.  */
325  char deleted_p;
326  /* Nonzero if this [available] occurrence has been copied to
327     reaching_reg.  */
328  /* ??? This is mutually exclusive with deleted_p, so they could share
329     the same byte.  */
330  char copied_p;
331};
332
333/* Expression and copy propagation hash tables.
334   Each hash table is an array of buckets.
335   ??? It is known that if it were an array of entries, structure elements
336   `next_same_hash' and `bitmap_index' wouldn't be necessary.  However, it is
337   not clear whether in the final analysis a sufficient amount of memory would
338   be saved as the size of the available expression bitmaps would be larger
339   [one could build a mapping table without holes afterwards though].
340   Someday I'll perform the computation and figure it out.  */
341
342struct hash_table
343{
344  /* The table itself.
345     This is an array of `expr_hash_table_size' elements.  */
346  struct expr **table;
347
348  /* Size of the hash table, in elements.  */
349  unsigned int size;
350
351  /* Number of hash table elements.  */
352  unsigned int n_elems;
353
354  /* Whether the table is expression of copy propagation one.  */
355  int set_p;
356};
357
358/* Expression hash table.  */
359static struct hash_table expr_hash_table;
360
361/* Copy propagation hash table.  */
362static struct hash_table set_hash_table;
363
364/* Mapping of uids to cuids.
365   Only real insns get cuids.  */
366static int *uid_cuid;
367
368/* Highest UID in UID_CUID.  */
369static int max_uid;
370
371/* Get the cuid of an insn.  */
372#ifdef ENABLE_CHECKING
373#define INSN_CUID(INSN) \
374  (gcc_assert (INSN_UID (INSN) <= max_uid), uid_cuid[INSN_UID (INSN)])
375#else
376#define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
377#endif
378
379/* Number of cuids.  */
380static int max_cuid;
381
382/* Mapping of cuids to insns.  */
383static rtx *cuid_insn;
384
385/* Get insn from cuid.  */
386#define CUID_INSN(CUID) (cuid_insn[CUID])
387
388/* Maximum register number in function prior to doing gcse + 1.
389   Registers created during this pass have regno >= max_gcse_regno.
390   This is named with "gcse" to not collide with global of same name.  */
391static unsigned int max_gcse_regno;
392
393/* Table of registers that are modified.
394
395   For each register, each element is a list of places where the pseudo-reg
396   is set.
397
398   For simplicity, GCSE is done on sets of pseudo-regs only.  PRE GCSE only
399   requires knowledge of which blocks kill which regs [and thus could use
400   a bitmap instead of the lists `reg_set_table' uses].
401
402   `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
403   num-regs) [however perhaps it may be useful to keep the data as is].  One
404   advantage of recording things this way is that `reg_set_table' is fairly
405   sparse with respect to pseudo regs but for hard regs could be fairly dense
406   [relatively speaking].  And recording sets of pseudo-regs in lists speeds
407   up functions like compute_transp since in the case of pseudo-regs we only
408   need to iterate over the number of times a pseudo-reg is set, not over the
409   number of basic blocks [clearly there is a bit of a slow down in the cases
410   where a pseudo is set more than once in a block, however it is believed
411   that the net effect is to speed things up].  This isn't done for hard-regs
412   because recording call-clobbered hard-regs in `reg_set_table' at each
413   function call can consume a fair bit of memory, and iterating over
414   hard-regs stored this way in compute_transp will be more expensive.  */
415
416typedef struct reg_set
417{
418  /* The next setting of this register.  */
419  struct reg_set *next;
420  /* The index of the block where it was set.  */
421  int bb_index;
422} reg_set;
423
424static reg_set **reg_set_table;
425
426/* Size of `reg_set_table'.
427   The table starts out at max_gcse_regno + slop, and is enlarged as
428   necessary.  */
429static int reg_set_table_size;
430
431/* Amount to grow `reg_set_table' by when it's full.  */
432#define REG_SET_TABLE_SLOP 100
433
434/* This is a list of expressions which are MEMs and will be used by load
435   or store motion.
436   Load motion tracks MEMs which aren't killed by
437   anything except itself. (i.e., loads and stores to a single location).
438   We can then allow movement of these MEM refs with a little special
439   allowance. (all stores copy the same value to the reaching reg used
440   for the loads).  This means all values used to store into memory must have
441   no side effects so we can re-issue the setter value.
442   Store Motion uses this structure as an expression table to track stores
443   which look interesting, and might be moveable towards the exit block.  */
444
445struct ls_expr
446{
447  struct expr * expr;		/* Gcse expression reference for LM.  */
448  rtx pattern;			/* Pattern of this mem.  */
449  rtx pattern_regs;		/* List of registers mentioned by the mem.  */
450  rtx loads;			/* INSN list of loads seen.  */
451  rtx stores;			/* INSN list of stores seen.  */
452  struct ls_expr * next;	/* Next in the list.  */
453  int invalid;			/* Invalid for some reason.  */
454  int index;			/* If it maps to a bitmap index.  */
455  unsigned int hash_index;	/* Index when in a hash table.  */
456  rtx reaching_reg;		/* Register to use when re-writing.  */
457};
458
459/* Array of implicit set patterns indexed by basic block index.  */
460static rtx *implicit_sets;
461
462/* Head of the list of load/store memory refs.  */
463static struct ls_expr * pre_ldst_mems = NULL;
464
465/* Hashtable for the load/store memory refs.  */
466static htab_t pre_ldst_table = NULL;
467
468/* Bitmap containing one bit for each register in the program.
469   Used when performing GCSE to track which registers have been set since
470   the start of the basic block.  */
471static regset reg_set_bitmap;
472
473/* For each block, a bitmap of registers set in the block.
474   This is used by compute_transp.
475   It is computed during hash table computation and not by compute_sets
476   as it includes registers added since the last pass (or between cprop and
477   gcse) and it's currently not easy to realloc sbitmap vectors.  */
478static sbitmap *reg_set_in_block;
479
480/* Array, indexed by basic block number for a list of insns which modify
481   memory within that block.  */
482static rtx * modify_mem_list;
483static bitmap modify_mem_list_set;
484
485/* This array parallels modify_mem_list, but is kept canonicalized.  */
486static rtx * canon_modify_mem_list;
487
488/* Bitmap indexed by block numbers to record which blocks contain
489   function calls.  */
490static bitmap blocks_with_calls;
491
492/* Various variables for statistics gathering.  */
493
494/* Memory used in a pass.
495   This isn't intended to be absolutely precise.  Its intent is only
496   to keep an eye on memory usage.  */
497static int bytes_used;
498
499/* GCSE substitutions made.  */
500static int gcse_subst_count;
501/* Number of copy instructions created.  */
502static int gcse_create_count;
503/* Number of local constants propagated.  */
504static int local_const_prop_count;
505/* Number of local copies propagated.  */
506static int local_copy_prop_count;
507/* Number of global constants propagated.  */
508static int global_const_prop_count;
509/* Number of global copies propagated.  */
510static int global_copy_prop_count;
511
512/* For available exprs */
513static sbitmap *ae_kill, *ae_gen;
514
515static void compute_can_copy (void);
516static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
517static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
518static void *grealloc (void *, size_t);
519static void *gcse_alloc (unsigned long);
520static void alloc_gcse_mem (void);
521static void free_gcse_mem (void);
522static void alloc_reg_set_mem (int);
523static void free_reg_set_mem (void);
524static void record_one_set (int, rtx);
525static void record_set_info (rtx, rtx, void *);
526static void compute_sets (void);
527static void hash_scan_insn (rtx, struct hash_table *, int);
528static void hash_scan_set (rtx, rtx, struct hash_table *);
529static void hash_scan_clobber (rtx, rtx, struct hash_table *);
530static void hash_scan_call (rtx, rtx, struct hash_table *);
531static int want_to_gcse_p (rtx);
532static bool can_assign_to_reg_p (rtx);
533static bool gcse_constant_p (rtx);
534static int oprs_unchanged_p (rtx, rtx, int);
535static int oprs_anticipatable_p (rtx, rtx);
536static int oprs_available_p (rtx, rtx);
537static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int,
538				  struct hash_table *);
539static void insert_set_in_table (rtx, rtx, struct hash_table *);
540static unsigned int hash_expr (rtx, enum machine_mode, int *, int);
541static unsigned int hash_set (int, int);
542static int expr_equiv_p (rtx, rtx);
543static void record_last_reg_set_info (rtx, int);
544static void record_last_mem_set_info (rtx);
545static void record_last_set_info (rtx, rtx, void *);
546static void compute_hash_table (struct hash_table *);
547static void alloc_hash_table (int, struct hash_table *, int);
548static void free_hash_table (struct hash_table *);
549static void compute_hash_table_work (struct hash_table *);
550static void dump_hash_table (FILE *, const char *, struct hash_table *);
551static struct expr *lookup_set (unsigned int, struct hash_table *);
552static struct expr *next_set (unsigned int, struct expr *);
553static void reset_opr_set_tables (void);
554static int oprs_not_set_p (rtx, rtx);
555static void mark_call (rtx);
556static void mark_set (rtx, rtx);
557static void mark_clobber (rtx, rtx);
558static void mark_oprs_set (rtx);
559static void alloc_cprop_mem (int, int);
560static void free_cprop_mem (void);
561static void compute_transp (rtx, int, sbitmap *, int);
562static void compute_transpout (void);
563static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
564				      struct hash_table *);
565static void compute_cprop_data (void);
566static void find_used_regs (rtx *, void *);
567static int try_replace_reg (rtx, rtx, rtx);
568static struct expr *find_avail_set (int, rtx);
569static int cprop_jump (basic_block, rtx, rtx, rtx, rtx);
570static void mems_conflict_for_gcse_p (rtx, rtx, void *);
571static int load_killed_in_block_p (basic_block, int, rtx, int);
572static void canon_list_insert (rtx, rtx, void *);
573static int cprop_insn (rtx, int);
574static int cprop (int);
575static void find_implicit_sets (void);
576static int one_cprop_pass (int, bool, bool);
577static bool constprop_register (rtx, rtx, rtx, bool);
578static struct expr *find_bypass_set (int, int);
579static bool reg_killed_on_edge (rtx, edge);
580static int bypass_block (basic_block, rtx, rtx);
581static int bypass_conditional_jumps (void);
582static void alloc_pre_mem (int, int);
583static void free_pre_mem (void);
584static void compute_pre_data (void);
585static int pre_expr_reaches_here_p (basic_block, struct expr *,
586				    basic_block);
587static void insert_insn_end_bb (struct expr *, basic_block, int);
588static void pre_insert_copy_insn (struct expr *, rtx);
589static void pre_insert_copies (void);
590static int pre_delete (void);
591static int pre_gcse (void);
592static int one_pre_gcse_pass (int);
593static void add_label_notes (rtx, rtx);
594static void alloc_code_hoist_mem (int, int);
595static void free_code_hoist_mem (void);
596static void compute_code_hoist_vbeinout (void);
597static void compute_code_hoist_data (void);
598static int hoist_expr_reaches_here_p (basic_block, int, basic_block, char *);
599static void hoist_code (void);
600static int one_code_hoisting_pass (void);
601static rtx process_insert_insn (struct expr *);
602static int pre_edge_insert (struct edge_list *, struct expr **);
603static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
604					 basic_block, char *);
605static struct ls_expr * ldst_entry (rtx);
606static void free_ldst_entry (struct ls_expr *);
607static void free_ldst_mems (void);
608static void print_ldst_list (FILE *);
609static struct ls_expr * find_rtx_in_ldst (rtx);
610static int enumerate_ldsts (void);
611static inline struct ls_expr * first_ls_expr (void);
612static inline struct ls_expr * next_ls_expr (struct ls_expr *);
613static int simple_mem (rtx);
614static void invalidate_any_buried_refs (rtx);
615static void compute_ld_motion_mems (void);
616static void trim_ld_motion_mems (void);
617static void update_ld_motion_stores (struct expr *);
618static void reg_set_info (rtx, rtx, void *);
619static void reg_clear_last_set (rtx, rtx, void *);
620static bool store_ops_ok (rtx, int *);
621static rtx extract_mentioned_regs (rtx);
622static rtx extract_mentioned_regs_helper (rtx, rtx);
623static void find_moveable_store (rtx, int *, int *);
624static int compute_store_table (void);
625static bool load_kills_store (rtx, rtx, int);
626static bool find_loads (rtx, rtx, int);
627static bool store_killed_in_insn (rtx, rtx, rtx, int);
628static bool store_killed_after (rtx, rtx, rtx, basic_block, int *, rtx *);
629static bool store_killed_before (rtx, rtx, rtx, basic_block, int *);
630static void build_store_vectors (void);
631static void insert_insn_start_bb (rtx, basic_block);
632static int insert_store (struct ls_expr *, edge);
633static void remove_reachable_equiv_notes (basic_block, struct ls_expr *);
634static void replace_store_insn (rtx, rtx, basic_block, struct ls_expr *);
635static void delete_store (struct ls_expr *, basic_block);
636static void free_store_memory (void);
637static void store_motion (void);
638static void free_insn_expr_list_list (rtx *);
639static void clear_modify_mem_tables (void);
640static void free_modify_mem_tables (void);
641static rtx gcse_emit_move_after (rtx, rtx, rtx);
642static void local_cprop_find_used_regs (rtx *, void *);
643static bool do_local_cprop (rtx, rtx, bool, rtx*);
644static bool adjust_libcall_notes (rtx, rtx, rtx, rtx*);
645static void local_cprop_pass (bool);
646static bool is_too_expensive (const char *);
647
648
649/* Entry point for global common subexpression elimination.
650   F is the first instruction in the function.  Return nonzero if a
651   change is mode.  */
652
653static int
654gcse_main (rtx f ATTRIBUTE_UNUSED)
655{
656  int changed, pass;
657  /* Bytes used at start of pass.  */
658  int initial_bytes_used;
659  /* Maximum number of bytes used by a pass.  */
660  int max_pass_bytes;
661  /* Point to release obstack data from for each pass.  */
662  char *gcse_obstack_bottom;
663
664  /* We do not construct an accurate cfg in functions which call
665     setjmp, so just punt to be safe.  */
666  if (current_function_calls_setjmp)
667    return 0;
668
669  /* Assume that we do not need to run jump optimizations after gcse.  */
670  run_jump_opt_after_gcse = 0;
671
672  /* Identify the basic block information for this function, including
673     successors and predecessors.  */
674  max_gcse_regno = max_reg_num ();
675
676  if (dump_file)
677    dump_flow_info (dump_file, dump_flags);
678
679  /* Return if there's nothing to do, or it is too expensive.  */
680  if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
681      || is_too_expensive (_("GCSE disabled")))
682    return 0;
683
684  gcc_obstack_init (&gcse_obstack);
685  bytes_used = 0;
686
687  /* We need alias.  */
688  init_alias_analysis ();
689  /* Record where pseudo-registers are set.  This data is kept accurate
690     during each pass.  ??? We could also record hard-reg information here
691     [since it's unchanging], however it is currently done during hash table
692     computation.
693
694     It may be tempting to compute MEM set information here too, but MEM sets
695     will be subject to code motion one day and thus we need to compute
696     information about memory sets when we build the hash tables.  */
697
698  alloc_reg_set_mem (max_gcse_regno);
699  compute_sets ();
700
701  pass = 0;
702  initial_bytes_used = bytes_used;
703  max_pass_bytes = 0;
704  gcse_obstack_bottom = gcse_alloc (1);
705  changed = 1;
706  while (changed && pass < MAX_GCSE_PASSES)
707    {
708      changed = 0;
709      if (dump_file)
710	fprintf (dump_file, "GCSE pass %d\n\n", pass + 1);
711
712      /* Initialize bytes_used to the space for the pred/succ lists,
713	 and the reg_set_table data.  */
714      bytes_used = initial_bytes_used;
715
716      /* Each pass may create new registers, so recalculate each time.  */
717      max_gcse_regno = max_reg_num ();
718
719      alloc_gcse_mem ();
720
721      /* Don't allow constant propagation to modify jumps
722	 during this pass.  */
723      timevar_push (TV_CPROP1);
724      changed = one_cprop_pass (pass + 1, false, false);
725      timevar_pop (TV_CPROP1);
726
727      if (optimize_size)
728	/* Do nothing.  */ ;
729      else
730	{
731	  timevar_push (TV_PRE);
732	  changed |= one_pre_gcse_pass (pass + 1);
733	  /* We may have just created new basic blocks.  Release and
734	     recompute various things which are sized on the number of
735	     basic blocks.  */
736	  if (changed)
737	    {
738	      free_modify_mem_tables ();
739	      modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
740	      canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
741	    }
742	  free_reg_set_mem ();
743	  alloc_reg_set_mem (max_reg_num ());
744	  compute_sets ();
745	  run_jump_opt_after_gcse = 1;
746	  timevar_pop (TV_PRE);
747	}
748
749      if (max_pass_bytes < bytes_used)
750	max_pass_bytes = bytes_used;
751
752      /* Free up memory, then reallocate for code hoisting.  We can
753	 not re-use the existing allocated memory because the tables
754	 will not have info for the insns or registers created by
755	 partial redundancy elimination.  */
756      free_gcse_mem ();
757
758      /* It does not make sense to run code hoisting unless we are optimizing
759	 for code size -- it rarely makes programs faster, and can make
760	 them bigger if we did partial redundancy elimination (when optimizing
761	 for space, we don't run the partial redundancy algorithms).  */
762      if (optimize_size)
763	{
764	  timevar_push (TV_HOIST);
765	  max_gcse_regno = max_reg_num ();
766	  alloc_gcse_mem ();
767	  changed |= one_code_hoisting_pass ();
768	  free_gcse_mem ();
769
770	  if (max_pass_bytes < bytes_used)
771	    max_pass_bytes = bytes_used;
772	  timevar_pop (TV_HOIST);
773	}
774
775      if (dump_file)
776	{
777	  fprintf (dump_file, "\n");
778	  fflush (dump_file);
779	}
780
781      obstack_free (&gcse_obstack, gcse_obstack_bottom);
782      pass++;
783    }
784
785  /* Do one last pass of copy propagation, including cprop into
786     conditional jumps.  */
787
788  max_gcse_regno = max_reg_num ();
789  alloc_gcse_mem ();
790  /* This time, go ahead and allow cprop to alter jumps.  */
791  timevar_push (TV_CPROP2);
792  one_cprop_pass (pass + 1, true, false);
793  timevar_pop (TV_CPROP2);
794  free_gcse_mem ();
795
796  if (dump_file)
797    {
798      fprintf (dump_file, "GCSE of %s: %d basic blocks, ",
799	       current_function_name (), n_basic_blocks);
800      fprintf (dump_file, "%d pass%s, %d bytes\n\n",
801	       pass, pass > 1 ? "es" : "", max_pass_bytes);
802    }
803
804  obstack_free (&gcse_obstack, NULL);
805  free_reg_set_mem ();
806
807  /* We are finished with alias.  */
808  end_alias_analysis ();
809  allocate_reg_info (max_reg_num (), FALSE, FALSE);
810
811  if (!optimize_size && flag_gcse_sm)
812    {
813      timevar_push (TV_LSM);
814      store_motion ();
815      timevar_pop (TV_LSM);
816    }
817
818  /* Record where pseudo-registers are set.  */
819  return run_jump_opt_after_gcse;
820}
821
822/* Misc. utilities.  */
823
824/* Nonzero for each mode that supports (set (reg) (reg)).
825   This is trivially true for integer and floating point values.
826   It may or may not be true for condition codes.  */
827static char can_copy[(int) NUM_MACHINE_MODES];
828
829/* Compute which modes support reg/reg copy operations.  */
830
831static void
832compute_can_copy (void)
833{
834  int i;
835#ifndef AVOID_CCMODE_COPIES
836  rtx reg, insn;
837#endif
838  memset (can_copy, 0, NUM_MACHINE_MODES);
839
840  start_sequence ();
841  for (i = 0; i < NUM_MACHINE_MODES; i++)
842    if (GET_MODE_CLASS (i) == MODE_CC)
843      {
844#ifdef AVOID_CCMODE_COPIES
845	can_copy[i] = 0;
846#else
847	reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
848	insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
849	if (recog (PATTERN (insn), insn, NULL) >= 0)
850	  can_copy[i] = 1;
851#endif
852      }
853    else
854      can_copy[i] = 1;
855
856  end_sequence ();
857}
858
859/* Returns whether the mode supports reg/reg copy operations.  */
860
861bool
862can_copy_p (enum machine_mode mode)
863{
864  static bool can_copy_init_p = false;
865
866  if (! can_copy_init_p)
867    {
868      compute_can_copy ();
869      can_copy_init_p = true;
870    }
871
872  return can_copy[mode] != 0;
873}
874
875/* Cover function to xmalloc to record bytes allocated.  */
876
877static void *
878gmalloc (size_t size)
879{
880  bytes_used += size;
881  return xmalloc (size);
882}
883
884/* Cover function to xcalloc to record bytes allocated.  */
885
886static void *
887gcalloc (size_t nelem, size_t elsize)
888{
889  bytes_used += nelem * elsize;
890  return xcalloc (nelem, elsize);
891}
892
893/* Cover function to xrealloc.
894   We don't record the additional size since we don't know it.
895   It won't affect memory usage stats much anyway.  */
896
897static void *
898grealloc (void *ptr, size_t size)
899{
900  return xrealloc (ptr, size);
901}
902
903/* Cover function to obstack_alloc.  */
904
905static void *
906gcse_alloc (unsigned long size)
907{
908  bytes_used += size;
909  return obstack_alloc (&gcse_obstack, size);
910}
911
912/* Allocate memory for the cuid mapping array,
913   and reg/memory set tracking tables.
914
915   This is called at the start of each pass.  */
916
917static void
918alloc_gcse_mem (void)
919{
920  int i;
921  basic_block bb;
922  rtx insn;
923
924  /* Find the largest UID and create a mapping from UIDs to CUIDs.
925     CUIDs are like UIDs except they increase monotonically, have no gaps,
926     and only apply to real insns.
927     (Actually, there are gaps, for insn that are not inside a basic block.
928     but we should never see those anyway, so this is OK.)  */
929
930  max_uid = get_max_uid ();
931  uid_cuid = gcalloc (max_uid + 1, sizeof (int));
932  i = 0;
933  FOR_EACH_BB (bb)
934    FOR_BB_INSNS (bb, insn)
935      {
936	if (INSN_P (insn))
937	  uid_cuid[INSN_UID (insn)] = i++;
938	else
939	  uid_cuid[INSN_UID (insn)] = i;
940      }
941
942  /* Create a table mapping cuids to insns.  */
943
944  max_cuid = i;
945  cuid_insn = gcalloc (max_cuid + 1, sizeof (rtx));
946  i = 0;
947  FOR_EACH_BB (bb)
948    FOR_BB_INSNS (bb, insn)
949      if (INSN_P (insn))
950	CUID_INSN (i++) = insn;
951
952  /* Allocate vars to track sets of regs.  */
953  reg_set_bitmap = BITMAP_ALLOC (NULL);
954
955  /* Allocate vars to track sets of regs, memory per block.  */
956  reg_set_in_block = sbitmap_vector_alloc (last_basic_block, max_gcse_regno);
957  /* Allocate array to keep a list of insns which modify memory in each
958     basic block.  */
959  modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
960  canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
961  modify_mem_list_set = BITMAP_ALLOC (NULL);
962  blocks_with_calls = BITMAP_ALLOC (NULL);
963}
964
965/* Free memory allocated by alloc_gcse_mem.  */
966
967static void
968free_gcse_mem (void)
969{
970  free (uid_cuid);
971  free (cuid_insn);
972
973  BITMAP_FREE (reg_set_bitmap);
974
975  sbitmap_vector_free (reg_set_in_block);
976  free_modify_mem_tables ();
977  BITMAP_FREE (modify_mem_list_set);
978  BITMAP_FREE (blocks_with_calls);
979}
980
981/* Compute the local properties of each recorded expression.
982
983   Local properties are those that are defined by the block, irrespective of
984   other blocks.
985
986   An expression is transparent in a block if its operands are not modified
987   in the block.
988
989   An expression is computed (locally available) in a block if it is computed
990   at least once and expression would contain the same value if the
991   computation was moved to the end of the block.
992
993   An expression is locally anticipatable in a block if it is computed at
994   least once and expression would contain the same value if the computation
995   was moved to the beginning of the block.
996
997   We call this routine for cprop, pre and code hoisting.  They all compute
998   basically the same information and thus can easily share this code.
999
1000   TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1001   properties.  If NULL, then it is not necessary to compute or record that
1002   particular property.
1003
1004   TABLE controls which hash table to look at.  If it is  set hash table,
1005   additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1006   ABSALTERED.  */
1007
1008static void
1009compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
1010			  struct hash_table *table)
1011{
1012  unsigned int i;
1013
1014  /* Initialize any bitmaps that were passed in.  */
1015  if (transp)
1016    {
1017      if (table->set_p)
1018	sbitmap_vector_zero (transp, last_basic_block);
1019      else
1020	sbitmap_vector_ones (transp, last_basic_block);
1021    }
1022
1023  if (comp)
1024    sbitmap_vector_zero (comp, last_basic_block);
1025  if (antloc)
1026    sbitmap_vector_zero (antloc, last_basic_block);
1027
1028  for (i = 0; i < table->size; i++)
1029    {
1030      struct expr *expr;
1031
1032      for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1033	{
1034	  int indx = expr->bitmap_index;
1035	  struct occr *occr;
1036
1037	  /* The expression is transparent in this block if it is not killed.
1038	     We start by assuming all are transparent [none are killed], and
1039	     then reset the bits for those that are.  */
1040	  if (transp)
1041	    compute_transp (expr->expr, indx, transp, table->set_p);
1042
1043	  /* The occurrences recorded in antic_occr are exactly those that
1044	     we want to set to nonzero in ANTLOC.  */
1045	  if (antloc)
1046	    for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1047	      {
1048		SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
1049
1050		/* While we're scanning the table, this is a good place to
1051		   initialize this.  */
1052		occr->deleted_p = 0;
1053	      }
1054
1055	  /* The occurrences recorded in avail_occr are exactly those that
1056	     we want to set to nonzero in COMP.  */
1057	  if (comp)
1058	    for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1059	      {
1060		SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
1061
1062		/* While we're scanning the table, this is a good place to
1063		   initialize this.  */
1064		occr->copied_p = 0;
1065	      }
1066
1067	  /* While we're scanning the table, this is a good place to
1068	     initialize this.  */
1069	  expr->reaching_reg = 0;
1070	}
1071    }
1072}
1073
1074/* Register set information.
1075
1076   `reg_set_table' records where each register is set or otherwise
1077   modified.  */
1078
1079static struct obstack reg_set_obstack;
1080
1081static void
1082alloc_reg_set_mem (int n_regs)
1083{
1084  reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1085  reg_set_table = gcalloc (reg_set_table_size, sizeof (struct reg_set *));
1086
1087  gcc_obstack_init (&reg_set_obstack);
1088}
1089
1090static void
1091free_reg_set_mem (void)
1092{
1093  free (reg_set_table);
1094  obstack_free (&reg_set_obstack, NULL);
1095}
1096
1097/* Record REGNO in the reg_set table.  */
1098
1099static void
1100record_one_set (int regno, rtx insn)
1101{
1102  /* Allocate a new reg_set element and link it onto the list.  */
1103  struct reg_set *new_reg_info;
1104
1105  /* If the table isn't big enough, enlarge it.  */
1106  if (regno >= reg_set_table_size)
1107    {
1108      int new_size = regno + REG_SET_TABLE_SLOP;
1109
1110      reg_set_table = grealloc (reg_set_table,
1111				new_size * sizeof (struct reg_set *));
1112      memset (reg_set_table + reg_set_table_size, 0,
1113	      (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1114      reg_set_table_size = new_size;
1115    }
1116
1117  new_reg_info = obstack_alloc (&reg_set_obstack, sizeof (struct reg_set));
1118  bytes_used += sizeof (struct reg_set);
1119  new_reg_info->bb_index = BLOCK_NUM (insn);
1120  new_reg_info->next = reg_set_table[regno];
1121  reg_set_table[regno] = new_reg_info;
1122}
1123
1124/* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1125   an insn.  The DATA is really the instruction in which the SET is
1126   occurring.  */
1127
1128static void
1129record_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
1130{
1131  rtx record_set_insn = (rtx) data;
1132
1133  if (REG_P (dest) && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1134    record_one_set (REGNO (dest), record_set_insn);
1135}
1136
1137/* Scan the function and record each set of each pseudo-register.
1138
1139   This is called once, at the start of the gcse pass.  See the comments for
1140   `reg_set_table' for further documentation.  */
1141
1142static void
1143compute_sets (void)
1144{
1145  basic_block bb;
1146  rtx insn;
1147
1148  FOR_EACH_BB (bb)
1149    FOR_BB_INSNS (bb, insn)
1150      if (INSN_P (insn))
1151	note_stores (PATTERN (insn), record_set_info, insn);
1152}
1153
1154/* Hash table support.  */
1155
1156struct reg_avail_info
1157{
1158  basic_block last_bb;
1159  int first_set;
1160  int last_set;
1161};
1162
1163static struct reg_avail_info *reg_avail_info;
1164static basic_block current_bb;
1165
1166
1167/* See whether X, the source of a set, is something we want to consider for
1168   GCSE.  */
1169
1170static int
1171want_to_gcse_p (rtx x)
1172{
1173#ifdef STACK_REGS
1174  /* On register stack architectures, don't GCSE constants from the
1175     constant pool, as the benefits are often swamped by the overhead
1176     of shuffling the register stack between basic blocks.  */
1177  if (IS_STACK_MODE (GET_MODE (x)))
1178    x = avoid_constant_pool_reference (x);
1179#endif
1180
1181  switch (GET_CODE (x))
1182    {
1183    case REG:
1184    case SUBREG:
1185    case CONST_INT:
1186    case CONST_DOUBLE:
1187    case CONST_VECTOR:
1188    case CALL:
1189      return 0;
1190
1191    default:
1192      return can_assign_to_reg_p (x);
1193    }
1194}
1195
1196/* Used internally by can_assign_to_reg_p.  */
1197
1198static GTY(()) rtx test_insn;
1199
1200/* Return true if we can assign X to a pseudo register.  */
1201
1202static bool
1203can_assign_to_reg_p (rtx x)
1204{
1205  int num_clobbers = 0;
1206  int icode;
1207
1208  /* If this is a valid operand, we are OK.  If it's VOIDmode, we aren't.  */
1209  if (general_operand (x, GET_MODE (x)))
1210    return 1;
1211  else if (GET_MODE (x) == VOIDmode)
1212    return 0;
1213
1214  /* Otherwise, check if we can make a valid insn from it.  First initialize
1215     our test insn if we haven't already.  */
1216  if (test_insn == 0)
1217    {
1218      test_insn
1219	= make_insn_raw (gen_rtx_SET (VOIDmode,
1220				      gen_rtx_REG (word_mode,
1221						   FIRST_PSEUDO_REGISTER * 2),
1222				      const0_rtx));
1223      NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
1224    }
1225
1226  /* Now make an insn like the one we would make when GCSE'ing and see if
1227     valid.  */
1228  PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
1229  SET_SRC (PATTERN (test_insn)) = x;
1230  return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
1231	  && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
1232}
1233
1234/* Return nonzero if the operands of expression X are unchanged from the
1235   start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1236   or from INSN to the end of INSN's basic block (if AVAIL_P != 0).  */
1237
1238static int
1239oprs_unchanged_p (rtx x, rtx insn, int avail_p)
1240{
1241  int i, j;
1242  enum rtx_code code;
1243  const char *fmt;
1244
1245  if (x == 0)
1246    return 1;
1247
1248  code = GET_CODE (x);
1249  switch (code)
1250    {
1251    case REG:
1252      {
1253	struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
1254
1255	if (info->last_bb != current_bb)
1256	  return 1;
1257	if (avail_p)
1258	  return info->last_set < INSN_CUID (insn);
1259	else
1260	  return info->first_set >= INSN_CUID (insn);
1261      }
1262
1263    case MEM:
1264      if (load_killed_in_block_p (current_bb, INSN_CUID (insn),
1265				  x, avail_p))
1266	return 0;
1267      else
1268	return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
1269
1270    case PRE_DEC:
1271    case PRE_INC:
1272    case POST_DEC:
1273    case POST_INC:
1274    case PRE_MODIFY:
1275    case POST_MODIFY:
1276      return 0;
1277
1278    case PC:
1279    case CC0: /*FIXME*/
1280    case CONST:
1281    case CONST_INT:
1282    case CONST_DOUBLE:
1283    case CONST_VECTOR:
1284    case SYMBOL_REF:
1285    case LABEL_REF:
1286    case ADDR_VEC:
1287    case ADDR_DIFF_VEC:
1288      return 1;
1289
1290    default:
1291      break;
1292    }
1293
1294  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1295    {
1296      if (fmt[i] == 'e')
1297	{
1298	  /* If we are about to do the last recursive call needed at this
1299	     level, change it into iteration.  This function is called enough
1300	     to be worth it.  */
1301	  if (i == 0)
1302	    return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1303
1304	  else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
1305	    return 0;
1306	}
1307      else if (fmt[i] == 'E')
1308	for (j = 0; j < XVECLEN (x, i); j++)
1309	  if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1310	    return 0;
1311    }
1312
1313  return 1;
1314}
1315
1316/* Used for communication between mems_conflict_for_gcse_p and
1317   load_killed_in_block_p.  Nonzero if mems_conflict_for_gcse_p finds a
1318   conflict between two memory references.  */
1319static int gcse_mems_conflict_p;
1320
1321/* Used for communication between mems_conflict_for_gcse_p and
1322   load_killed_in_block_p.  A memory reference for a load instruction,
1323   mems_conflict_for_gcse_p will see if a memory store conflicts with
1324   this memory load.  */
1325static rtx gcse_mem_operand;
1326
1327/* DEST is the output of an instruction.  If it is a memory reference, and
1328   possibly conflicts with the load found in gcse_mem_operand, then set
1329   gcse_mems_conflict_p to a nonzero value.  */
1330
1331static void
1332mems_conflict_for_gcse_p (rtx dest, rtx setter ATTRIBUTE_UNUSED,
1333			  void *data ATTRIBUTE_UNUSED)
1334{
1335  while (GET_CODE (dest) == SUBREG
1336	 || GET_CODE (dest) == ZERO_EXTRACT
1337	 || GET_CODE (dest) == STRICT_LOW_PART)
1338    dest = XEXP (dest, 0);
1339
1340  /* If DEST is not a MEM, then it will not conflict with the load.  Note
1341     that function calls are assumed to clobber memory, but are handled
1342     elsewhere.  */
1343  if (! MEM_P (dest))
1344    return;
1345
1346  /* If we are setting a MEM in our list of specially recognized MEMs,
1347     don't mark as killed this time.  */
1348
1349  if (expr_equiv_p (dest, gcse_mem_operand) && pre_ldst_mems != NULL)
1350    {
1351      if (!find_rtx_in_ldst (dest))
1352	gcse_mems_conflict_p = 1;
1353      return;
1354    }
1355
1356  if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1357		       rtx_addr_varies_p))
1358    gcse_mems_conflict_p = 1;
1359}
1360
1361/* Return nonzero if the expression in X (a memory reference) is killed
1362   in block BB before or after the insn with the CUID in UID_LIMIT.
1363   AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1364   before UID_LIMIT.
1365
1366   To check the entire block, set UID_LIMIT to max_uid + 1 and
1367   AVAIL_P to 0.  */
1368
1369static int
1370load_killed_in_block_p (basic_block bb, int uid_limit, rtx x, int avail_p)
1371{
1372  rtx list_entry = modify_mem_list[bb->index];
1373
1374  /* If this is a readonly then we aren't going to be changing it.  */
1375  if (MEM_READONLY_P (x))
1376    return 0;
1377
1378  while (list_entry)
1379    {
1380      rtx setter;
1381      /* Ignore entries in the list that do not apply.  */
1382      if ((avail_p
1383	   && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
1384	  || (! avail_p
1385	      && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
1386	{
1387	  list_entry = XEXP (list_entry, 1);
1388	  continue;
1389	}
1390
1391      setter = XEXP (list_entry, 0);
1392
1393      /* If SETTER is a call everything is clobbered.  Note that calls
1394	 to pure functions are never put on the list, so we need not
1395	 worry about them.  */
1396      if (CALL_P (setter))
1397	return 1;
1398
1399      /* SETTER must be an INSN of some kind that sets memory.  Call
1400	 note_stores to examine each hunk of memory that is modified.
1401
1402	 The note_stores interface is pretty limited, so we have to
1403	 communicate via global variables.  Yuk.  */
1404      gcse_mem_operand = x;
1405      gcse_mems_conflict_p = 0;
1406      note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1407      if (gcse_mems_conflict_p)
1408	return 1;
1409      list_entry = XEXP (list_entry, 1);
1410    }
1411  return 0;
1412}
1413
1414/* Return nonzero if the operands of expression X are unchanged from
1415   the start of INSN's basic block up to but not including INSN.  */
1416
1417static int
1418oprs_anticipatable_p (rtx x, rtx insn)
1419{
1420  return oprs_unchanged_p (x, insn, 0);
1421}
1422
1423/* Return nonzero if the operands of expression X are unchanged from
1424   INSN to the end of INSN's basic block.  */
1425
1426static int
1427oprs_available_p (rtx x, rtx insn)
1428{
1429  return oprs_unchanged_p (x, insn, 1);
1430}
1431
1432/* Hash expression X.
1433
1434   MODE is only used if X is a CONST_INT.  DO_NOT_RECORD_P is a boolean
1435   indicating if a volatile operand is found or if the expression contains
1436   something we don't want to insert in the table.  HASH_TABLE_SIZE is
1437   the current size of the hash table to be probed.  */
1438
1439static unsigned int
1440hash_expr (rtx x, enum machine_mode mode, int *do_not_record_p,
1441	   int hash_table_size)
1442{
1443  unsigned int hash;
1444
1445  *do_not_record_p = 0;
1446
1447  hash = hash_rtx (x, mode, do_not_record_p,
1448		   NULL,  /*have_reg_qty=*/false);
1449  return hash % hash_table_size;
1450}
1451
1452/* Hash a set of register REGNO.
1453
1454   Sets are hashed on the register that is set.  This simplifies the PRE copy
1455   propagation code.
1456
1457   ??? May need to make things more elaborate.  Later, as necessary.  */
1458
1459static unsigned int
1460hash_set (int regno, int hash_table_size)
1461{
1462  unsigned int hash;
1463
1464  hash = regno;
1465  return hash % hash_table_size;
1466}
1467
1468/* Return nonzero if exp1 is equivalent to exp2.  */
1469
1470static int
1471expr_equiv_p (rtx x, rtx y)
1472{
1473  return exp_equiv_p (x, y, 0, true);
1474}
1475
1476/* Insert expression X in INSN in the hash TABLE.
1477   If it is already present, record it as the last occurrence in INSN's
1478   basic block.
1479
1480   MODE is the mode of the value X is being stored into.
1481   It is only used if X is a CONST_INT.
1482
1483   ANTIC_P is nonzero if X is an anticipatable expression.
1484   AVAIL_P is nonzero if X is an available expression.  */
1485
1486static void
1487insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1488		      int avail_p, struct hash_table *table)
1489{
1490  int found, do_not_record_p;
1491  unsigned int hash;
1492  struct expr *cur_expr, *last_expr = NULL;
1493  struct occr *antic_occr, *avail_occr;
1494
1495  hash = hash_expr (x, mode, &do_not_record_p, table->size);
1496
1497  /* Do not insert expression in table if it contains volatile operands,
1498     or if hash_expr determines the expression is something we don't want
1499     to or can't handle.  */
1500  if (do_not_record_p)
1501    return;
1502
1503  cur_expr = table->table[hash];
1504  found = 0;
1505
1506  while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1507    {
1508      /* If the expression isn't found, save a pointer to the end of
1509	 the list.  */
1510      last_expr = cur_expr;
1511      cur_expr = cur_expr->next_same_hash;
1512    }
1513
1514  if (! found)
1515    {
1516      cur_expr = gcse_alloc (sizeof (struct expr));
1517      bytes_used += sizeof (struct expr);
1518      if (table->table[hash] == NULL)
1519	/* This is the first pattern that hashed to this index.  */
1520	table->table[hash] = cur_expr;
1521      else
1522	/* Add EXPR to end of this hash chain.  */
1523	last_expr->next_same_hash = cur_expr;
1524
1525      /* Set the fields of the expr element.  */
1526      cur_expr->expr = x;
1527      cur_expr->bitmap_index = table->n_elems++;
1528      cur_expr->next_same_hash = NULL;
1529      cur_expr->antic_occr = NULL;
1530      cur_expr->avail_occr = NULL;
1531    }
1532
1533  /* Now record the occurrence(s).  */
1534  if (antic_p)
1535    {
1536      antic_occr = cur_expr->antic_occr;
1537
1538      if (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
1539	antic_occr = NULL;
1540
1541      if (antic_occr)
1542	/* Found another instance of the expression in the same basic block.
1543	   Prefer the currently recorded one.  We want the first one in the
1544	   block and the block is scanned from start to end.  */
1545	; /* nothing to do */
1546      else
1547	{
1548	  /* First occurrence of this expression in this basic block.  */
1549	  antic_occr = gcse_alloc (sizeof (struct occr));
1550	  bytes_used += sizeof (struct occr);
1551	  antic_occr->insn = insn;
1552	  antic_occr->next = cur_expr->antic_occr;
1553	  antic_occr->deleted_p = 0;
1554	  cur_expr->antic_occr = antic_occr;
1555	}
1556    }
1557
1558  if (avail_p)
1559    {
1560      avail_occr = cur_expr->avail_occr;
1561
1562      if (avail_occr && BLOCK_NUM (avail_occr->insn) == BLOCK_NUM (insn))
1563	{
1564	  /* Found another instance of the expression in the same basic block.
1565	     Prefer this occurrence to the currently recorded one.  We want
1566	     the last one in the block and the block is scanned from start
1567	     to end.  */
1568	  avail_occr->insn = insn;
1569	}
1570      else
1571	{
1572	  /* First occurrence of this expression in this basic block.  */
1573	  avail_occr = gcse_alloc (sizeof (struct occr));
1574	  bytes_used += sizeof (struct occr);
1575	  avail_occr->insn = insn;
1576	  avail_occr->next = cur_expr->avail_occr;
1577	  avail_occr->deleted_p = 0;
1578	  cur_expr->avail_occr = avail_occr;
1579	}
1580    }
1581}
1582
1583/* Insert pattern X in INSN in the hash table.
1584   X is a SET of a reg to either another reg or a constant.
1585   If it is already present, record it as the last occurrence in INSN's
1586   basic block.  */
1587
1588static void
1589insert_set_in_table (rtx x, rtx insn, struct hash_table *table)
1590{
1591  int found;
1592  unsigned int hash;
1593  struct expr *cur_expr, *last_expr = NULL;
1594  struct occr *cur_occr;
1595
1596  gcc_assert (GET_CODE (x) == SET && REG_P (SET_DEST (x)));
1597
1598  hash = hash_set (REGNO (SET_DEST (x)), table->size);
1599
1600  cur_expr = table->table[hash];
1601  found = 0;
1602
1603  while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1604    {
1605      /* If the expression isn't found, save a pointer to the end of
1606	 the list.  */
1607      last_expr = cur_expr;
1608      cur_expr = cur_expr->next_same_hash;
1609    }
1610
1611  if (! found)
1612    {
1613      cur_expr = gcse_alloc (sizeof (struct expr));
1614      bytes_used += sizeof (struct expr);
1615      if (table->table[hash] == NULL)
1616	/* This is the first pattern that hashed to this index.  */
1617	table->table[hash] = cur_expr;
1618      else
1619	/* Add EXPR to end of this hash chain.  */
1620	last_expr->next_same_hash = cur_expr;
1621
1622      /* Set the fields of the expr element.
1623	 We must copy X because it can be modified when copy propagation is
1624	 performed on its operands.  */
1625      cur_expr->expr = copy_rtx (x);
1626      cur_expr->bitmap_index = table->n_elems++;
1627      cur_expr->next_same_hash = NULL;
1628      cur_expr->antic_occr = NULL;
1629      cur_expr->avail_occr = NULL;
1630    }
1631
1632  /* Now record the occurrence.  */
1633  cur_occr = cur_expr->avail_occr;
1634
1635  if (cur_occr && BLOCK_NUM (cur_occr->insn) == BLOCK_NUM (insn))
1636    {
1637      /* Found another instance of the expression in the same basic block.
1638	 Prefer this occurrence to the currently recorded one.  We want
1639	 the last one in the block and the block is scanned from start
1640	 to end.  */
1641      cur_occr->insn = insn;
1642    }
1643  else
1644    {
1645      /* First occurrence of this expression in this basic block.  */
1646      cur_occr = gcse_alloc (sizeof (struct occr));
1647      bytes_used += sizeof (struct occr);
1648
1649	  cur_occr->insn = insn;
1650	  cur_occr->next = cur_expr->avail_occr;
1651	  cur_occr->deleted_p = 0;
1652	  cur_expr->avail_occr = cur_occr;
1653    }
1654}
1655
1656/* Determine whether the rtx X should be treated as a constant for
1657   the purposes of GCSE's constant propagation.  */
1658
1659static bool
1660gcse_constant_p (rtx x)
1661{
1662  /* Consider a COMPARE of two integers constant.  */
1663  if (GET_CODE (x) == COMPARE
1664      && GET_CODE (XEXP (x, 0)) == CONST_INT
1665      && GET_CODE (XEXP (x, 1)) == CONST_INT)
1666    return true;
1667
1668  /* Consider a COMPARE of the same registers is a constant
1669     if they are not floating point registers.  */
1670  if (GET_CODE(x) == COMPARE
1671      && REG_P (XEXP (x, 0)) && REG_P (XEXP (x, 1))
1672      && REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 1))
1673      && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
1674      && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 1))))
1675    return true;
1676
1677  return CONSTANT_P (x);
1678}
1679
1680/* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
1681   expression one).  */
1682
1683static void
1684hash_scan_set (rtx pat, rtx insn, struct hash_table *table)
1685{
1686  rtx src = SET_SRC (pat);
1687  rtx dest = SET_DEST (pat);
1688  rtx note;
1689
1690  if (GET_CODE (src) == CALL)
1691    hash_scan_call (src, insn, table);
1692
1693  else if (REG_P (dest))
1694    {
1695      unsigned int regno = REGNO (dest);
1696      rtx tmp;
1697
1698      /* See if a REG_NOTE shows this equivalent to a simpler expression.
1699	 This allows us to do a single GCSE pass and still eliminate
1700	 redundant constants, addresses or other expressions that are
1701	 constructed with multiple instructions.  */
1702      note = find_reg_equal_equiv_note (insn);
1703      if (note != 0
1704	  && (table->set_p
1705	      ? gcse_constant_p (XEXP (note, 0))
1706	      : want_to_gcse_p (XEXP (note, 0))))
1707	src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
1708
1709      /* Only record sets of pseudo-regs in the hash table.  */
1710      if (! table->set_p
1711	  && regno >= FIRST_PSEUDO_REGISTER
1712	  /* Don't GCSE something if we can't do a reg/reg copy.  */
1713	  && can_copy_p (GET_MODE (dest))
1714	  /* GCSE commonly inserts instruction after the insn.  We can't
1715	     do that easily for EH_REGION notes so disable GCSE on these
1716	     for now.  */
1717	  && !find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1718	  /* Is SET_SRC something we want to gcse?  */
1719	  && want_to_gcse_p (src)
1720	  /* Don't CSE a nop.  */
1721	  && ! set_noop_p (pat)
1722	  /* Don't GCSE if it has attached REG_EQUIV note.
1723	     At this point this only function parameters should have
1724	     REG_EQUIV notes and if the argument slot is used somewhere
1725	     explicitly, it means address of parameter has been taken,
1726	     so we should not extend the lifetime of the pseudo.  */
1727	  && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1728	{
1729	  /* An expression is not anticipatable if its operands are
1730	     modified before this insn or if this is not the only SET in
1731	     this insn.  */
1732	  int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn);
1733	  /* An expression is not available if its operands are
1734	     subsequently modified, including this insn.  It's also not
1735	     available if this is a branch, because we can't insert
1736	     a set after the branch.  */
1737	  int avail_p = (oprs_available_p (src, insn)
1738			 && ! JUMP_P (insn));
1739
1740	  insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p, table);
1741	}
1742
1743      /* Record sets for constant/copy propagation.  */
1744      else if (table->set_p
1745	       && regno >= FIRST_PSEUDO_REGISTER
1746	       && ((REG_P (src)
1747		    && REGNO (src) >= FIRST_PSEUDO_REGISTER
1748		    && can_copy_p (GET_MODE (dest))
1749		    && REGNO (src) != regno)
1750		   || gcse_constant_p (src))
1751	       /* A copy is not available if its src or dest is subsequently
1752		  modified.  Here we want to search from INSN+1 on, but
1753		  oprs_available_p searches from INSN on.  */
1754	       && (insn == BB_END (BLOCK_FOR_INSN (insn))
1755		   || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
1756		       && oprs_available_p (pat, tmp))))
1757	insert_set_in_table (pat, insn, table);
1758    }
1759  /* In case of store we want to consider the memory value as available in
1760     the REG stored in that memory. This makes it possible to remove
1761     redundant loads from due to stores to the same location.  */
1762  else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1763      {
1764        unsigned int regno = REGNO (src);
1765
1766        /* Do not do this for constant/copy propagation.  */
1767        if (! table->set_p
1768            /* Only record sets of pseudo-regs in the hash table.  */
1769	    && regno >= FIRST_PSEUDO_REGISTER
1770	   /* Don't GCSE something if we can't do a reg/reg copy.  */
1771	   && can_copy_p (GET_MODE (src))
1772	   /* GCSE commonly inserts instruction after the insn.  We can't
1773	      do that easily for EH_REGION notes so disable GCSE on these
1774	      for now.  */
1775	   && ! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1776	   /* Is SET_DEST something we want to gcse?  */
1777	   && want_to_gcse_p (dest)
1778	   /* Don't CSE a nop.  */
1779	   && ! set_noop_p (pat)
1780	   /* Don't GCSE if it has attached REG_EQUIV note.
1781	      At this point this only function parameters should have
1782	      REG_EQUIV notes and if the argument slot is used somewhere
1783	      explicitly, it means address of parameter has been taken,
1784	      so we should not extend the lifetime of the pseudo.  */
1785	   && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1786	       || ! MEM_P (XEXP (note, 0))))
1787             {
1788               /* Stores are never anticipatable.  */
1789               int antic_p = 0;
1790	       /* An expression is not available if its operands are
1791	          subsequently modified, including this insn.  It's also not
1792	          available if this is a branch, because we can't insert
1793	          a set after the branch.  */
1794               int avail_p = oprs_available_p (dest, insn)
1795			     && ! JUMP_P (insn);
1796
1797	       /* Record the memory expression (DEST) in the hash table.  */
1798	       insert_expr_in_table (dest, GET_MODE (dest), insn,
1799				     antic_p, avail_p, table);
1800             }
1801      }
1802}
1803
1804static void
1805hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1806		   struct hash_table *table ATTRIBUTE_UNUSED)
1807{
1808  /* Currently nothing to do.  */
1809}
1810
1811static void
1812hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1813		struct hash_table *table ATTRIBUTE_UNUSED)
1814{
1815  /* Currently nothing to do.  */
1816}
1817
1818/* Process INSN and add hash table entries as appropriate.
1819
1820   Only available expressions that set a single pseudo-reg are recorded.
1821
1822   Single sets in a PARALLEL could be handled, but it's an extra complication
1823   that isn't dealt with right now.  The trick is handling the CLOBBERs that
1824   are also in the PARALLEL.  Later.
1825
1826   If SET_P is nonzero, this is for the assignment hash table,
1827   otherwise it is for the expression hash table.
1828   If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
1829   not record any expressions.  */
1830
1831static void
1832hash_scan_insn (rtx insn, struct hash_table *table, int in_libcall_block)
1833{
1834  rtx pat = PATTERN (insn);
1835  int i;
1836
1837  if (in_libcall_block)
1838    return;
1839
1840  /* Pick out the sets of INSN and for other forms of instructions record
1841     what's been modified.  */
1842
1843  if (GET_CODE (pat) == SET)
1844    hash_scan_set (pat, insn, table);
1845  else if (GET_CODE (pat) == PARALLEL)
1846    for (i = 0; i < XVECLEN (pat, 0); i++)
1847      {
1848	rtx x = XVECEXP (pat, 0, i);
1849
1850	if (GET_CODE (x) == SET)
1851	  hash_scan_set (x, insn, table);
1852	else if (GET_CODE (x) == CLOBBER)
1853	  hash_scan_clobber (x, insn, table);
1854	else if (GET_CODE (x) == CALL)
1855	  hash_scan_call (x, insn, table);
1856      }
1857
1858  else if (GET_CODE (pat) == CLOBBER)
1859    hash_scan_clobber (pat, insn, table);
1860  else if (GET_CODE (pat) == CALL)
1861    hash_scan_call (pat, insn, table);
1862}
1863
1864static void
1865dump_hash_table (FILE *file, const char *name, struct hash_table *table)
1866{
1867  int i;
1868  /* Flattened out table, so it's printed in proper order.  */
1869  struct expr **flat_table;
1870  unsigned int *hash_val;
1871  struct expr *expr;
1872
1873  flat_table = xcalloc (table->n_elems, sizeof (struct expr *));
1874  hash_val = xmalloc (table->n_elems * sizeof (unsigned int));
1875
1876  for (i = 0; i < (int) table->size; i++)
1877    for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1878      {
1879	flat_table[expr->bitmap_index] = expr;
1880	hash_val[expr->bitmap_index] = i;
1881      }
1882
1883  fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1884	   name, table->size, table->n_elems);
1885
1886  for (i = 0; i < (int) table->n_elems; i++)
1887    if (flat_table[i] != 0)
1888      {
1889	expr = flat_table[i];
1890	fprintf (file, "Index %d (hash value %d)\n  ",
1891		 expr->bitmap_index, hash_val[i]);
1892	print_rtl (file, expr->expr);
1893	fprintf (file, "\n");
1894      }
1895
1896  fprintf (file, "\n");
1897
1898  free (flat_table);
1899  free (hash_val);
1900}
1901
1902/* Record register first/last/block set information for REGNO in INSN.
1903
1904   first_set records the first place in the block where the register
1905   is set and is used to compute "anticipatability".
1906
1907   last_set records the last place in the block where the register
1908   is set and is used to compute "availability".
1909
1910   last_bb records the block for which first_set and last_set are
1911   valid, as a quick test to invalidate them.
1912
1913   reg_set_in_block records whether the register is set in the block
1914   and is used to compute "transparency".  */
1915
1916static void
1917record_last_reg_set_info (rtx insn, int regno)
1918{
1919  struct reg_avail_info *info = &reg_avail_info[regno];
1920  int cuid = INSN_CUID (insn);
1921
1922  info->last_set = cuid;
1923  if (info->last_bb != current_bb)
1924    {
1925      info->last_bb = current_bb;
1926      info->first_set = cuid;
1927      SET_BIT (reg_set_in_block[current_bb->index], regno);
1928    }
1929}
1930
1931
1932/* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1933   Note we store a pair of elements in the list, so they have to be
1934   taken off pairwise.  */
1935
1936static void
1937canon_list_insert (rtx dest ATTRIBUTE_UNUSED, rtx unused1 ATTRIBUTE_UNUSED,
1938		   void * v_insn)
1939{
1940  rtx dest_addr, insn;
1941  int bb;
1942
1943  while (GET_CODE (dest) == SUBREG
1944      || GET_CODE (dest) == ZERO_EXTRACT
1945      || GET_CODE (dest) == STRICT_LOW_PART)
1946    dest = XEXP (dest, 0);
1947
1948  /* If DEST is not a MEM, then it will not conflict with a load.  Note
1949     that function calls are assumed to clobber memory, but are handled
1950     elsewhere.  */
1951
1952  if (! MEM_P (dest))
1953    return;
1954
1955  dest_addr = get_addr (XEXP (dest, 0));
1956  dest_addr = canon_rtx (dest_addr);
1957  insn = (rtx) v_insn;
1958  bb = BLOCK_NUM (insn);
1959
1960  canon_modify_mem_list[bb] =
1961    alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
1962  canon_modify_mem_list[bb] =
1963    alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
1964}
1965
1966/* Record memory modification information for INSN.  We do not actually care
1967   about the memory location(s) that are set, or even how they are set (consider
1968   a CALL_INSN).  We merely need to record which insns modify memory.  */
1969
1970static void
1971record_last_mem_set_info (rtx insn)
1972{
1973  int bb = BLOCK_NUM (insn);
1974
1975  /* load_killed_in_block_p will handle the case of calls clobbering
1976     everything.  */
1977  modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
1978  bitmap_set_bit (modify_mem_list_set, bb);
1979
1980  if (CALL_P (insn))
1981    {
1982      /* Note that traversals of this loop (other than for free-ing)
1983	 will break after encountering a CALL_INSN.  So, there's no
1984	 need to insert a pair of items, as canon_list_insert does.  */
1985      canon_modify_mem_list[bb] =
1986	alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
1987      bitmap_set_bit (blocks_with_calls, bb);
1988    }
1989  else
1990    note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
1991}
1992
1993/* Called from compute_hash_table via note_stores to handle one
1994   SET or CLOBBER in an insn.  DATA is really the instruction in which
1995   the SET is taking place.  */
1996
1997static void
1998record_last_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
1999{
2000  rtx last_set_insn = (rtx) data;
2001
2002  if (GET_CODE (dest) == SUBREG)
2003    dest = SUBREG_REG (dest);
2004
2005  if (REG_P (dest))
2006    record_last_reg_set_info (last_set_insn, REGNO (dest));
2007  else if (MEM_P (dest)
2008	   /* Ignore pushes, they clobber nothing.  */
2009	   && ! push_operand (dest, GET_MODE (dest)))
2010    record_last_mem_set_info (last_set_insn);
2011}
2012
2013/* Top level function to create an expression or assignment hash table.
2014
2015   Expression entries are placed in the hash table if
2016   - they are of the form (set (pseudo-reg) src),
2017   - src is something we want to perform GCSE on,
2018   - none of the operands are subsequently modified in the block
2019
2020   Assignment entries are placed in the hash table if
2021   - they are of the form (set (pseudo-reg) src),
2022   - src is something we want to perform const/copy propagation on,
2023   - none of the operands or target are subsequently modified in the block
2024
2025   Currently src must be a pseudo-reg or a const_int.
2026
2027   TABLE is the table computed.  */
2028
2029static void
2030compute_hash_table_work (struct hash_table *table)
2031{
2032  unsigned int i;
2033
2034  /* While we compute the hash table we also compute a bit array of which
2035     registers are set in which blocks.
2036     ??? This isn't needed during const/copy propagation, but it's cheap to
2037     compute.  Later.  */
2038  sbitmap_vector_zero (reg_set_in_block, last_basic_block);
2039
2040  /* re-Cache any INSN_LIST nodes we have allocated.  */
2041  clear_modify_mem_tables ();
2042  /* Some working arrays used to track first and last set in each block.  */
2043  reg_avail_info = gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
2044
2045  for (i = 0; i < max_gcse_regno; ++i)
2046    reg_avail_info[i].last_bb = NULL;
2047
2048  FOR_EACH_BB (current_bb)
2049    {
2050      rtx insn;
2051      unsigned int regno;
2052      int in_libcall_block;
2053
2054      /* First pass over the instructions records information used to
2055	 determine when registers and memory are first and last set.
2056	 ??? hard-reg reg_set_in_block computation
2057	 could be moved to compute_sets since they currently don't change.  */
2058
2059      FOR_BB_INSNS (current_bb, insn)
2060	{
2061	  if (! INSN_P (insn))
2062	    continue;
2063
2064	  if (CALL_P (insn))
2065	    {
2066	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2067		if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2068		  record_last_reg_set_info (insn, regno);
2069
2070	      mark_call (insn);
2071	    }
2072
2073	  note_stores (PATTERN (insn), record_last_set_info, insn);
2074	}
2075
2076      /* Insert implicit sets in the hash table.  */
2077      if (table->set_p
2078	  && implicit_sets[current_bb->index] != NULL_RTX)
2079	hash_scan_set (implicit_sets[current_bb->index],
2080		       BB_HEAD (current_bb), table);
2081
2082      /* The next pass builds the hash table.  */
2083      in_libcall_block = 0;
2084      FOR_BB_INSNS (current_bb, insn)
2085	if (INSN_P (insn))
2086	  {
2087	    if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2088	      in_libcall_block = 1;
2089	    else if (table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2090	      in_libcall_block = 0;
2091	    hash_scan_insn (insn, table, in_libcall_block);
2092	    if (!table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2093	      in_libcall_block = 0;
2094	  }
2095    }
2096
2097  free (reg_avail_info);
2098  reg_avail_info = NULL;
2099}
2100
2101/* Allocate space for the set/expr hash TABLE.
2102   N_INSNS is the number of instructions in the function.
2103   It is used to determine the number of buckets to use.
2104   SET_P determines whether set or expression table will
2105   be created.  */
2106
2107static void
2108alloc_hash_table (int n_insns, struct hash_table *table, int set_p)
2109{
2110  int n;
2111
2112  table->size = n_insns / 4;
2113  if (table->size < 11)
2114    table->size = 11;
2115
2116  /* Attempt to maintain efficient use of hash table.
2117     Making it an odd number is simplest for now.
2118     ??? Later take some measurements.  */
2119  table->size |= 1;
2120  n = table->size * sizeof (struct expr *);
2121  table->table = gmalloc (n);
2122  table->set_p = set_p;
2123}
2124
2125/* Free things allocated by alloc_hash_table.  */
2126
2127static void
2128free_hash_table (struct hash_table *table)
2129{
2130  free (table->table);
2131}
2132
2133/* Compute the hash TABLE for doing copy/const propagation or
2134   expression hash table.  */
2135
2136static void
2137compute_hash_table (struct hash_table *table)
2138{
2139  /* Initialize count of number of entries in hash table.  */
2140  table->n_elems = 0;
2141  memset (table->table, 0, table->size * sizeof (struct expr *));
2142
2143  compute_hash_table_work (table);
2144}
2145
2146/* Expression tracking support.  */
2147
2148/* Lookup REGNO in the set TABLE.  The result is a pointer to the
2149   table entry, or NULL if not found.  */
2150
2151static struct expr *
2152lookup_set (unsigned int regno, struct hash_table *table)
2153{
2154  unsigned int hash = hash_set (regno, table->size);
2155  struct expr *expr;
2156
2157  expr = table->table[hash];
2158
2159  while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2160    expr = expr->next_same_hash;
2161
2162  return expr;
2163}
2164
2165/* Return the next entry for REGNO in list EXPR.  */
2166
2167static struct expr *
2168next_set (unsigned int regno, struct expr *expr)
2169{
2170  do
2171    expr = expr->next_same_hash;
2172  while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2173
2174  return expr;
2175}
2176
2177/* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2178   types may be mixed.  */
2179
2180static void
2181free_insn_expr_list_list (rtx *listp)
2182{
2183  rtx list, next;
2184
2185  for (list = *listp; list ; list = next)
2186    {
2187      next = XEXP (list, 1);
2188      if (GET_CODE (list) == EXPR_LIST)
2189	free_EXPR_LIST_node (list);
2190      else
2191	free_INSN_LIST_node (list);
2192    }
2193
2194  *listp = NULL;
2195}
2196
2197/* Clear canon_modify_mem_list and modify_mem_list tables.  */
2198static void
2199clear_modify_mem_tables (void)
2200{
2201  unsigned i;
2202  bitmap_iterator bi;
2203
2204  EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
2205    {
2206      free_INSN_LIST_list (modify_mem_list + i);
2207      free_insn_expr_list_list (canon_modify_mem_list + i);
2208    }
2209  bitmap_clear (modify_mem_list_set);
2210  bitmap_clear (blocks_with_calls);
2211}
2212
2213/* Release memory used by modify_mem_list_set.  */
2214
2215static void
2216free_modify_mem_tables (void)
2217{
2218  clear_modify_mem_tables ();
2219  free (modify_mem_list);
2220  free (canon_modify_mem_list);
2221  modify_mem_list = 0;
2222  canon_modify_mem_list = 0;
2223}
2224
2225/* Reset tables used to keep track of what's still available [since the
2226   start of the block].  */
2227
2228static void
2229reset_opr_set_tables (void)
2230{
2231  /* Maintain a bitmap of which regs have been set since beginning of
2232     the block.  */
2233  CLEAR_REG_SET (reg_set_bitmap);
2234
2235  /* Also keep a record of the last instruction to modify memory.
2236     For now this is very trivial, we only record whether any memory
2237     location has been modified.  */
2238  clear_modify_mem_tables ();
2239}
2240
2241/* Return nonzero if the operands of X are not set before INSN in
2242   INSN's basic block.  */
2243
2244static int
2245oprs_not_set_p (rtx x, rtx insn)
2246{
2247  int i, j;
2248  enum rtx_code code;
2249  const char *fmt;
2250
2251  if (x == 0)
2252    return 1;
2253
2254  code = GET_CODE (x);
2255  switch (code)
2256    {
2257    case PC:
2258    case CC0:
2259    case CONST:
2260    case CONST_INT:
2261    case CONST_DOUBLE:
2262    case CONST_VECTOR:
2263    case SYMBOL_REF:
2264    case LABEL_REF:
2265    case ADDR_VEC:
2266    case ADDR_DIFF_VEC:
2267      return 1;
2268
2269    case MEM:
2270      if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
2271				  INSN_CUID (insn), x, 0))
2272	return 0;
2273      else
2274	return oprs_not_set_p (XEXP (x, 0), insn);
2275
2276    case REG:
2277      return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
2278
2279    default:
2280      break;
2281    }
2282
2283  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2284    {
2285      if (fmt[i] == 'e')
2286	{
2287	  /* If we are about to do the last recursive call
2288	     needed at this level, change it into iteration.
2289	     This function is called enough to be worth it.  */
2290	  if (i == 0)
2291	    return oprs_not_set_p (XEXP (x, i), insn);
2292
2293	  if (! oprs_not_set_p (XEXP (x, i), insn))
2294	    return 0;
2295	}
2296      else if (fmt[i] == 'E')
2297	for (j = 0; j < XVECLEN (x, i); j++)
2298	  if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2299	    return 0;
2300    }
2301
2302  return 1;
2303}
2304
2305/* Mark things set by a CALL.  */
2306
2307static void
2308mark_call (rtx insn)
2309{
2310  if (! CONST_OR_PURE_CALL_P (insn))
2311    record_last_mem_set_info (insn);
2312}
2313
2314/* Mark things set by a SET.  */
2315
2316static void
2317mark_set (rtx pat, rtx insn)
2318{
2319  rtx dest = SET_DEST (pat);
2320
2321  while (GET_CODE (dest) == SUBREG
2322	 || GET_CODE (dest) == ZERO_EXTRACT
2323	 || GET_CODE (dest) == STRICT_LOW_PART)
2324    dest = XEXP (dest, 0);
2325
2326  if (REG_P (dest))
2327    SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
2328  else if (MEM_P (dest))
2329    record_last_mem_set_info (insn);
2330
2331  if (GET_CODE (SET_SRC (pat)) == CALL)
2332    mark_call (insn);
2333}
2334
2335/* Record things set by a CLOBBER.  */
2336
2337static void
2338mark_clobber (rtx pat, rtx insn)
2339{
2340  rtx clob = XEXP (pat, 0);
2341
2342  while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2343    clob = XEXP (clob, 0);
2344
2345  if (REG_P (clob))
2346    SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
2347  else
2348    record_last_mem_set_info (insn);
2349}
2350
2351/* Record things set by INSN.
2352   This data is used by oprs_not_set_p.  */
2353
2354static void
2355mark_oprs_set (rtx insn)
2356{
2357  rtx pat = PATTERN (insn);
2358  int i;
2359
2360  if (GET_CODE (pat) == SET)
2361    mark_set (pat, insn);
2362  else if (GET_CODE (pat) == PARALLEL)
2363    for (i = 0; i < XVECLEN (pat, 0); i++)
2364      {
2365	rtx x = XVECEXP (pat, 0, i);
2366
2367	if (GET_CODE (x) == SET)
2368	  mark_set (x, insn);
2369	else if (GET_CODE (x) == CLOBBER)
2370	  mark_clobber (x, insn);
2371	else if (GET_CODE (x) == CALL)
2372	  mark_call (insn);
2373      }
2374
2375  else if (GET_CODE (pat) == CLOBBER)
2376    mark_clobber (pat, insn);
2377  else if (GET_CODE (pat) == CALL)
2378    mark_call (insn);
2379}
2380
2381
2382/* Compute copy/constant propagation working variables.  */
2383
2384/* Local properties of assignments.  */
2385static sbitmap *cprop_pavloc;
2386static sbitmap *cprop_absaltered;
2387
2388/* Global properties of assignments (computed from the local properties).  */
2389static sbitmap *cprop_avin;
2390static sbitmap *cprop_avout;
2391
2392/* Allocate vars used for copy/const propagation.  N_BLOCKS is the number of
2393   basic blocks.  N_SETS is the number of sets.  */
2394
2395static void
2396alloc_cprop_mem (int n_blocks, int n_sets)
2397{
2398  cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
2399  cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
2400
2401  cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
2402  cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
2403}
2404
2405/* Free vars used by copy/const propagation.  */
2406
2407static void
2408free_cprop_mem (void)
2409{
2410  sbitmap_vector_free (cprop_pavloc);
2411  sbitmap_vector_free (cprop_absaltered);
2412  sbitmap_vector_free (cprop_avin);
2413  sbitmap_vector_free (cprop_avout);
2414}
2415
2416/* For each block, compute whether X is transparent.  X is either an
2417   expression or an assignment [though we don't care which, for this context
2418   an assignment is treated as an expression].  For each block where an
2419   element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
2420   bit in BMAP.  */
2421
2422static void
2423compute_transp (rtx x, int indx, sbitmap *bmap, int set_p)
2424{
2425  int i, j;
2426  basic_block bb;
2427  enum rtx_code code;
2428  reg_set *r;
2429  const char *fmt;
2430
2431  /* repeat is used to turn tail-recursion into iteration since GCC
2432     can't do it when there's no return value.  */
2433 repeat:
2434
2435  if (x == 0)
2436    return;
2437
2438  code = GET_CODE (x);
2439  switch (code)
2440    {
2441    case REG:
2442      if (set_p)
2443	{
2444	  if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2445	    {
2446	      FOR_EACH_BB (bb)
2447		if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2448		  SET_BIT (bmap[bb->index], indx);
2449	    }
2450	  else
2451	    {
2452	      for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2453		SET_BIT (bmap[r->bb_index], indx);
2454	    }
2455	}
2456      else
2457	{
2458	  if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2459	    {
2460	      FOR_EACH_BB (bb)
2461		if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2462		  RESET_BIT (bmap[bb->index], indx);
2463	    }
2464	  else
2465	    {
2466	      for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2467		RESET_BIT (bmap[r->bb_index], indx);
2468	    }
2469	}
2470
2471      return;
2472
2473    case MEM:
2474      if (! MEM_READONLY_P (x))
2475	{
2476	  bitmap_iterator bi;
2477	  unsigned bb_index;
2478
2479	  /* First handle all the blocks with calls.  We don't need to
2480	     do any list walking for them.  */
2481	  EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
2482	    {
2483	      if (set_p)
2484		SET_BIT (bmap[bb_index], indx);
2485	      else
2486		RESET_BIT (bmap[bb_index], indx);
2487	    }
2488
2489	    /* Now iterate over the blocks which have memory modifications
2490	       but which do not have any calls.  */
2491	    EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
2492					    blocks_with_calls,
2493					    0, bb_index, bi)
2494	      {
2495		rtx list_entry = canon_modify_mem_list[bb_index];
2496
2497		while (list_entry)
2498		  {
2499		    rtx dest, dest_addr;
2500
2501		    /* LIST_ENTRY must be an INSN of some kind that sets memory.
2502		       Examine each hunk of memory that is modified.  */
2503
2504		    dest = XEXP (list_entry, 0);
2505		    list_entry = XEXP (list_entry, 1);
2506		    dest_addr = XEXP (list_entry, 0);
2507
2508		    if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
2509					       x, rtx_addr_varies_p))
2510		      {
2511			if (set_p)
2512			  SET_BIT (bmap[bb_index], indx);
2513			else
2514			  RESET_BIT (bmap[bb_index], indx);
2515			break;
2516		      }
2517		    list_entry = XEXP (list_entry, 1);
2518	          }
2519	      }
2520	}
2521
2522      x = XEXP (x, 0);
2523      goto repeat;
2524
2525    case PC:
2526    case CC0: /*FIXME*/
2527    case CONST:
2528    case CONST_INT:
2529    case CONST_DOUBLE:
2530    case CONST_VECTOR:
2531    case SYMBOL_REF:
2532    case LABEL_REF:
2533    case ADDR_VEC:
2534    case ADDR_DIFF_VEC:
2535      return;
2536
2537    default:
2538      break;
2539    }
2540
2541  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2542    {
2543      if (fmt[i] == 'e')
2544	{
2545	  /* If we are about to do the last recursive call
2546	     needed at this level, change it into iteration.
2547	     This function is called enough to be worth it.  */
2548	  if (i == 0)
2549	    {
2550	      x = XEXP (x, i);
2551	      goto repeat;
2552	    }
2553
2554	  compute_transp (XEXP (x, i), indx, bmap, set_p);
2555	}
2556      else if (fmt[i] == 'E')
2557	for (j = 0; j < XVECLEN (x, i); j++)
2558	  compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
2559    }
2560}
2561
2562/* Top level routine to do the dataflow analysis needed by copy/const
2563   propagation.  */
2564
2565static void
2566compute_cprop_data (void)
2567{
2568  compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table);
2569  compute_available (cprop_pavloc, cprop_absaltered,
2570		     cprop_avout, cprop_avin);
2571}
2572
2573/* Copy/constant propagation.  */
2574
2575/* Maximum number of register uses in an insn that we handle.  */
2576#define MAX_USES 8
2577
2578/* Table of uses found in an insn.
2579   Allocated statically to avoid alloc/free complexity and overhead.  */
2580static struct reg_use reg_use_table[MAX_USES];
2581
2582/* Index into `reg_use_table' while building it.  */
2583static int reg_use_count;
2584
2585/* Set up a list of register numbers used in INSN.  The found uses are stored
2586   in `reg_use_table'.  `reg_use_count' is initialized to zero before entry,
2587   and contains the number of uses in the table upon exit.
2588
2589   ??? If a register appears multiple times we will record it multiple times.
2590   This doesn't hurt anything but it will slow things down.  */
2591
2592static void
2593find_used_regs (rtx *xptr, void *data ATTRIBUTE_UNUSED)
2594{
2595  int i, j;
2596  enum rtx_code code;
2597  const char *fmt;
2598  rtx x = *xptr;
2599
2600  /* repeat is used to turn tail-recursion into iteration since GCC
2601     can't do it when there's no return value.  */
2602 repeat:
2603  if (x == 0)
2604    return;
2605
2606  code = GET_CODE (x);
2607  if (REG_P (x))
2608    {
2609      if (reg_use_count == MAX_USES)
2610	return;
2611
2612      reg_use_table[reg_use_count].reg_rtx = x;
2613      reg_use_count++;
2614    }
2615
2616  /* Recursively scan the operands of this expression.  */
2617
2618  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2619    {
2620      if (fmt[i] == 'e')
2621	{
2622	  /* If we are about to do the last recursive call
2623	     needed at this level, change it into iteration.
2624	     This function is called enough to be worth it.  */
2625	  if (i == 0)
2626	    {
2627	      x = XEXP (x, 0);
2628	      goto repeat;
2629	    }
2630
2631	  find_used_regs (&XEXP (x, i), data);
2632	}
2633      else if (fmt[i] == 'E')
2634	for (j = 0; j < XVECLEN (x, i); j++)
2635	  find_used_regs (&XVECEXP (x, i, j), data);
2636    }
2637}
2638
2639/* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
2640   Returns nonzero is successful.  */
2641
2642static int
2643try_replace_reg (rtx from, rtx to, rtx insn)
2644{
2645  rtx note = find_reg_equal_equiv_note (insn);
2646  rtx src = 0;
2647  int success = 0;
2648  rtx set = single_set (insn);
2649
2650  validate_replace_src_group (from, to, insn);
2651  if (num_changes_pending () && apply_change_group ())
2652    success = 1;
2653
2654  /* Try to simplify SET_SRC if we have substituted a constant.  */
2655  if (success && set && CONSTANT_P (to))
2656    {
2657      src = simplify_rtx (SET_SRC (set));
2658
2659      if (src)
2660	validate_change (insn, &SET_SRC (set), src, 0);
2661    }
2662
2663  /* If there is already a REG_EQUAL note, update the expression in it
2664     with our replacement.  */
2665  if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
2666    XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to);
2667
2668  if (!success && set && reg_mentioned_p (from, SET_SRC (set)))
2669    {
2670      /* If above failed and this is a single set, try to simplify the source of
2671	 the set given our substitution.  We could perhaps try this for multiple
2672	 SETs, but it probably won't buy us anything.  */
2673      src = simplify_replace_rtx (SET_SRC (set), from, to);
2674
2675      if (!rtx_equal_p (src, SET_SRC (set))
2676	  && validate_change (insn, &SET_SRC (set), src, 0))
2677	success = 1;
2678
2679      /* If we've failed to do replacement, have a single SET, don't already
2680	 have a note, and have no special SET, add a REG_EQUAL note to not
2681	 lose information.  */
2682      if (!success && note == 0 && set != 0
2683	  && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2684	  && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2685	note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2686    }
2687
2688  /* REG_EQUAL may get simplified into register.
2689     We don't allow that. Remove that note. This code ought
2690     not to happen, because previous code ought to synthesize
2691     reg-reg move, but be on the safe side.  */
2692  if (note && REG_NOTE_KIND (note) == REG_EQUAL && REG_P (XEXP (note, 0)))
2693    remove_note (insn, note);
2694
2695  return success;
2696}
2697
2698/* Find a set of REGNOs that are available on entry to INSN's block.  Returns
2699   NULL no such set is found.  */
2700
2701static struct expr *
2702find_avail_set (int regno, rtx insn)
2703{
2704  /* SET1 contains the last set found that can be returned to the caller for
2705     use in a substitution.  */
2706  struct expr *set1 = 0;
2707
2708  /* Loops are not possible here.  To get a loop we would need two sets
2709     available at the start of the block containing INSN.  i.e. we would
2710     need two sets like this available at the start of the block:
2711
2712       (set (reg X) (reg Y))
2713       (set (reg Y) (reg X))
2714
2715     This can not happen since the set of (reg Y) would have killed the
2716     set of (reg X) making it unavailable at the start of this block.  */
2717  while (1)
2718    {
2719      rtx src;
2720      struct expr *set = lookup_set (regno, &set_hash_table);
2721
2722      /* Find a set that is available at the start of the block
2723	 which contains INSN.  */
2724      while (set)
2725	{
2726	  if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
2727	    break;
2728	  set = next_set (regno, set);
2729	}
2730
2731      /* If no available set was found we've reached the end of the
2732	 (possibly empty) copy chain.  */
2733      if (set == 0)
2734	break;
2735
2736      gcc_assert (GET_CODE (set->expr) == SET);
2737
2738      src = SET_SRC (set->expr);
2739
2740      /* We know the set is available.
2741	 Now check that SRC is ANTLOC (i.e. none of the source operands
2742	 have changed since the start of the block).
2743
2744         If the source operand changed, we may still use it for the next
2745         iteration of this loop, but we may not use it for substitutions.  */
2746
2747      if (gcse_constant_p (src) || oprs_not_set_p (src, insn))
2748	set1 = set;
2749
2750      /* If the source of the set is anything except a register, then
2751	 we have reached the end of the copy chain.  */
2752      if (! REG_P (src))
2753	break;
2754
2755      /* Follow the copy chain, i.e. start another iteration of the loop
2756	 and see if we have an available copy into SRC.  */
2757      regno = REGNO (src);
2758    }
2759
2760  /* SET1 holds the last set that was available and anticipatable at
2761     INSN.  */
2762  return set1;
2763}
2764
2765/* Subroutine of cprop_insn that tries to propagate constants into
2766   JUMP_INSNS.  JUMP must be a conditional jump.  If SETCC is non-NULL
2767   it is the instruction that immediately precedes JUMP, and must be a
2768   single SET of a register.  FROM is what we will try to replace,
2769   SRC is the constant we will try to substitute for it.  Returns nonzero
2770   if a change was made.  */
2771
2772static int
2773cprop_jump (basic_block bb, rtx setcc, rtx jump, rtx from, rtx src)
2774{
2775  rtx new, set_src, note_src;
2776  rtx set = pc_set (jump);
2777  rtx note = find_reg_equal_equiv_note (jump);
2778
2779  if (note)
2780    {
2781      note_src = XEXP (note, 0);
2782      if (GET_CODE (note_src) == EXPR_LIST)
2783	note_src = NULL_RTX;
2784    }
2785  else note_src = NULL_RTX;
2786
2787  /* Prefer REG_EQUAL notes except those containing EXPR_LISTs.  */
2788  set_src = note_src ? note_src : SET_SRC (set);
2789
2790  /* First substitute the SETCC condition into the JUMP instruction,
2791     then substitute that given values into this expanded JUMP.  */
2792  if (setcc != NULL_RTX
2793      && !modified_between_p (from, setcc, jump)
2794      && !modified_between_p (src, setcc, jump))
2795    {
2796      rtx setcc_src;
2797      rtx setcc_set = single_set (setcc);
2798      rtx setcc_note = find_reg_equal_equiv_note (setcc);
2799      setcc_src = (setcc_note && GET_CODE (XEXP (setcc_note, 0)) != EXPR_LIST)
2800		? XEXP (setcc_note, 0) : SET_SRC (setcc_set);
2801      set_src = simplify_replace_rtx (set_src, SET_DEST (setcc_set),
2802				      setcc_src);
2803    }
2804  else
2805    setcc = NULL_RTX;
2806
2807  new = simplify_replace_rtx (set_src, from, src);
2808
2809  /* If no simplification can be made, then try the next register.  */
2810  if (rtx_equal_p (new, SET_SRC (set)))
2811    return 0;
2812
2813  /* If this is now a no-op delete it, otherwise this must be a valid insn.  */
2814  if (new == pc_rtx)
2815    delete_insn (jump);
2816  else
2817    {
2818      /* Ensure the value computed inside the jump insn to be equivalent
2819         to one computed by setcc.  */
2820      if (setcc && modified_in_p (new, setcc))
2821	return 0;
2822      if (! validate_change (jump, &SET_SRC (set), new, 0))
2823	{
2824	  /* When (some) constants are not valid in a comparison, and there
2825	     are two registers to be replaced by constants before the entire
2826	     comparison can be folded into a constant, we need to keep
2827	     intermediate information in REG_EQUAL notes.  For targets with
2828	     separate compare insns, such notes are added by try_replace_reg.
2829	     When we have a combined compare-and-branch instruction, however,
2830	     we need to attach a note to the branch itself to make this
2831	     optimization work.  */
2832
2833	  if (!rtx_equal_p (new, note_src))
2834	    set_unique_reg_note (jump, REG_EQUAL, copy_rtx (new));
2835	  return 0;
2836	}
2837
2838      /* Remove REG_EQUAL note after simplification.  */
2839      if (note_src)
2840	remove_note (jump, note);
2841
2842      /* If this has turned into an unconditional jump,
2843	 then put a barrier after it so that the unreachable
2844	 code will be deleted.  */
2845      if (GET_CODE (SET_SRC (set)) == LABEL_REF)
2846	emit_barrier_after (jump);
2847     }
2848
2849#ifdef HAVE_cc0
2850  /* Delete the cc0 setter.  */
2851  if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
2852    delete_insn (setcc);
2853#endif
2854
2855  run_jump_opt_after_gcse = 1;
2856
2857  global_const_prop_count++;
2858  if (dump_file != NULL)
2859    {
2860      fprintf (dump_file,
2861	       "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
2862	       REGNO (from), INSN_UID (jump));
2863      print_rtl (dump_file, src);
2864      fprintf (dump_file, "\n");
2865    }
2866  purge_dead_edges (bb);
2867
2868  return 1;
2869}
2870
2871static bool
2872constprop_register (rtx insn, rtx from, rtx to, bool alter_jumps)
2873{
2874  rtx sset;
2875
2876  /* Check for reg or cc0 setting instructions followed by
2877     conditional branch instructions first.  */
2878  if (alter_jumps
2879      && (sset = single_set (insn)) != NULL
2880      && NEXT_INSN (insn)
2881      && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn)))
2882    {
2883      rtx dest = SET_DEST (sset);
2884      if ((REG_P (dest) || CC0_P (dest))
2885	  && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to))
2886	return 1;
2887    }
2888
2889  /* Handle normal insns next.  */
2890  if (NONJUMP_INSN_P (insn)
2891      && try_replace_reg (from, to, insn))
2892    return 1;
2893
2894  /* Try to propagate a CONST_INT into a conditional jump.
2895     We're pretty specific about what we will handle in this
2896     code, we can extend this as necessary over time.
2897
2898     Right now the insn in question must look like
2899     (set (pc) (if_then_else ...))  */
2900  else if (alter_jumps && any_condjump_p (insn) && onlyjump_p (insn))
2901    return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to);
2902  return 0;
2903}
2904
2905/* Perform constant and copy propagation on INSN.
2906   The result is nonzero if a change was made.  */
2907
2908static int
2909cprop_insn (rtx insn, int alter_jumps)
2910{
2911  struct reg_use *reg_used;
2912  int changed = 0;
2913  rtx note;
2914
2915  if (!INSN_P (insn))
2916    return 0;
2917
2918  reg_use_count = 0;
2919  note_uses (&PATTERN (insn), find_used_regs, NULL);
2920
2921  note = find_reg_equal_equiv_note (insn);
2922
2923  /* We may win even when propagating constants into notes.  */
2924  if (note)
2925    find_used_regs (&XEXP (note, 0), NULL);
2926
2927  for (reg_used = &reg_use_table[0]; reg_use_count > 0;
2928       reg_used++, reg_use_count--)
2929    {
2930      unsigned int regno = REGNO (reg_used->reg_rtx);
2931      rtx pat, src;
2932      struct expr *set;
2933
2934      /* Ignore registers created by GCSE.
2935	 We do this because ...  */
2936      if (regno >= max_gcse_regno)
2937	continue;
2938
2939      /* If the register has already been set in this block, there's
2940	 nothing we can do.  */
2941      if (! oprs_not_set_p (reg_used->reg_rtx, insn))
2942	continue;
2943
2944      /* Find an assignment that sets reg_used and is available
2945	 at the start of the block.  */
2946      set = find_avail_set (regno, insn);
2947      if (! set)
2948	continue;
2949
2950      pat = set->expr;
2951      /* ??? We might be able to handle PARALLELs.  Later.  */
2952      gcc_assert (GET_CODE (pat) == SET);
2953
2954      src = SET_SRC (pat);
2955
2956      /* Constant propagation.  */
2957      if (gcse_constant_p (src))
2958	{
2959          if (constprop_register (insn, reg_used->reg_rtx, src, alter_jumps))
2960	    {
2961	      changed = 1;
2962	      global_const_prop_count++;
2963	      if (dump_file != NULL)
2964		{
2965		  fprintf (dump_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno);
2966		  fprintf (dump_file, "insn %d with constant ", INSN_UID (insn));
2967		  print_rtl (dump_file, src);
2968		  fprintf (dump_file, "\n");
2969		}
2970	      if (INSN_DELETED_P (insn))
2971		return 1;
2972	    }
2973	}
2974      else if (REG_P (src)
2975	       && REGNO (src) >= FIRST_PSEUDO_REGISTER
2976	       && REGNO (src) != regno)
2977	{
2978	  if (try_replace_reg (reg_used->reg_rtx, src, insn))
2979	    {
2980	      changed = 1;
2981	      global_copy_prop_count++;
2982	      if (dump_file != NULL)
2983		{
2984		  fprintf (dump_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
2985			   regno, INSN_UID (insn));
2986		  fprintf (dump_file, " with reg %d\n", REGNO (src));
2987		}
2988
2989	      /* The original insn setting reg_used may or may not now be
2990		 deletable.  We leave the deletion to flow.  */
2991	      /* FIXME: If it turns out that the insn isn't deletable,
2992		 then we may have unnecessarily extended register lifetimes
2993		 and made things worse.  */
2994	    }
2995	}
2996    }
2997
2998  return changed;
2999}
3000
3001/* Like find_used_regs, but avoid recording uses that appear in
3002   input-output contexts such as zero_extract or pre_dec.  This
3003   restricts the cases we consider to those for which local cprop
3004   can legitimately make replacements.  */
3005
3006static void
3007local_cprop_find_used_regs (rtx *xptr, void *data)
3008{
3009  rtx x = *xptr;
3010
3011  if (x == 0)
3012    return;
3013
3014  switch (GET_CODE (x))
3015    {
3016    case ZERO_EXTRACT:
3017    case SIGN_EXTRACT:
3018    case STRICT_LOW_PART:
3019      return;
3020
3021    case PRE_DEC:
3022    case PRE_INC:
3023    case POST_DEC:
3024    case POST_INC:
3025    case PRE_MODIFY:
3026    case POST_MODIFY:
3027      /* Can only legitimately appear this early in the context of
3028	 stack pushes for function arguments, but handle all of the
3029	 codes nonetheless.  */
3030      return;
3031
3032    case SUBREG:
3033      /* Setting a subreg of a register larger than word_mode leaves
3034	 the non-written words unchanged.  */
3035      if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) > BITS_PER_WORD)
3036	return;
3037      break;
3038
3039    default:
3040      break;
3041    }
3042
3043  find_used_regs (xptr, data);
3044}
3045
3046/* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3047   their REG_EQUAL notes need updating.  */
3048
3049static bool
3050do_local_cprop (rtx x, rtx insn, bool alter_jumps, rtx *libcall_sp)
3051{
3052  rtx newreg = NULL, newcnst = NULL;
3053
3054  /* Rule out USE instructions and ASM statements as we don't want to
3055     change the hard registers mentioned.  */
3056  if (REG_P (x)
3057      && (REGNO (x) >= FIRST_PSEUDO_REGISTER
3058          || (GET_CODE (PATTERN (insn)) != USE
3059	      && asm_noperands (PATTERN (insn)) < 0)))
3060    {
3061      cselib_val *val = cselib_lookup (x, GET_MODE (x), 0);
3062      struct elt_loc_list *l;
3063
3064      if (!val)
3065	return false;
3066      for (l = val->locs; l; l = l->next)
3067	{
3068	  rtx this_rtx = l->loc;
3069	  rtx note;
3070
3071	  /* Don't CSE non-constant values out of libcall blocks.  */
3072	  if (l->in_libcall && ! CONSTANT_P (this_rtx))
3073	    continue;
3074
3075	  if (gcse_constant_p (this_rtx))
3076	    newcnst = this_rtx;
3077	  if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER
3078	      /* Don't copy propagate if it has attached REG_EQUIV note.
3079		 At this point this only function parameters should have
3080		 REG_EQUIV notes and if the argument slot is used somewhere
3081		 explicitly, it means address of parameter has been taken,
3082		 so we should not extend the lifetime of the pseudo.  */
3083	      && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX))
3084		  || ! MEM_P (XEXP (note, 0))))
3085	    newreg = this_rtx;
3086	}
3087      if (newcnst && constprop_register (insn, x, newcnst, alter_jumps))
3088	{
3089	  /* If we find a case where we can't fix the retval REG_EQUAL notes
3090	     match the new register, we either have to abandon this replacement
3091	     or fix delete_trivially_dead_insns to preserve the setting insn,
3092	     or make it delete the REG_EUAQL note, and fix up all passes that
3093	     require the REG_EQUAL note there.  */
3094	  bool adjusted;
3095
3096	  adjusted = adjust_libcall_notes (x, newcnst, insn, libcall_sp);
3097	  gcc_assert (adjusted);
3098
3099	  if (dump_file != NULL)
3100	    {
3101	      fprintf (dump_file, "LOCAL CONST-PROP: Replacing reg %d in ",
3102		       REGNO (x));
3103	      fprintf (dump_file, "insn %d with constant ",
3104		       INSN_UID (insn));
3105	      print_rtl (dump_file, newcnst);
3106	      fprintf (dump_file, "\n");
3107	    }
3108	  local_const_prop_count++;
3109	  return true;
3110	}
3111      else if (newreg && newreg != x && try_replace_reg (x, newreg, insn))
3112	{
3113	  adjust_libcall_notes (x, newreg, insn, libcall_sp);
3114	  if (dump_file != NULL)
3115	    {
3116	      fprintf (dump_file,
3117		       "LOCAL COPY-PROP: Replacing reg %d in insn %d",
3118		       REGNO (x), INSN_UID (insn));
3119	      fprintf (dump_file, " with reg %d\n", REGNO (newreg));
3120	    }
3121	  local_copy_prop_count++;
3122	  return true;
3123	}
3124    }
3125  return false;
3126}
3127
3128/* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3129   their REG_EQUAL notes need updating to reflect that OLDREG has been
3130   replaced with NEWVAL in INSN.  Return true if all substitutions could
3131   be made.  */
3132static bool
3133adjust_libcall_notes (rtx oldreg, rtx newval, rtx insn, rtx *libcall_sp)
3134{
3135  rtx end;
3136
3137  while ((end = *libcall_sp++))
3138    {
3139      rtx note = find_reg_equal_equiv_note (end);
3140
3141      if (! note)
3142	continue;
3143
3144      if (REG_P (newval))
3145	{
3146	  if (reg_set_between_p (newval, PREV_INSN (insn), end))
3147	    {
3148	      do
3149		{
3150		  note = find_reg_equal_equiv_note (end);
3151		  if (! note)
3152		    continue;
3153		  if (reg_mentioned_p (newval, XEXP (note, 0)))
3154		    return false;
3155		}
3156	      while ((end = *libcall_sp++));
3157	      return true;
3158	    }
3159	}
3160      XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), oldreg, newval);
3161      insn = end;
3162    }
3163  return true;
3164}
3165
3166#define MAX_NESTED_LIBCALLS 9
3167
3168/* Do local const/copy propagation (i.e. within each basic block).
3169   If ALTER_JUMPS is true, allow propagating into jump insns, which
3170   could modify the CFG.  */
3171
3172static void
3173local_cprop_pass (bool alter_jumps)
3174{
3175  basic_block bb;
3176  rtx insn;
3177  struct reg_use *reg_used;
3178  rtx libcall_stack[MAX_NESTED_LIBCALLS + 1], *libcall_sp;
3179  bool changed = false;
3180
3181  cselib_init (false);
3182  libcall_sp = &libcall_stack[MAX_NESTED_LIBCALLS];
3183  *libcall_sp = 0;
3184  FOR_EACH_BB (bb)
3185    {
3186      FOR_BB_INSNS (bb, insn)
3187	{
3188	  if (INSN_P (insn))
3189	    {
3190	      rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
3191
3192	      if (note)
3193		{
3194		  gcc_assert (libcall_sp != libcall_stack);
3195		  *--libcall_sp = XEXP (note, 0);
3196		}
3197	      note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
3198	      if (note)
3199		libcall_sp++;
3200	      note = find_reg_equal_equiv_note (insn);
3201	      do
3202		{
3203		  reg_use_count = 0;
3204		  note_uses (&PATTERN (insn), local_cprop_find_used_regs,
3205			     NULL);
3206		  if (note)
3207		    local_cprop_find_used_regs (&XEXP (note, 0), NULL);
3208
3209		  for (reg_used = &reg_use_table[0]; reg_use_count > 0;
3210		       reg_used++, reg_use_count--)
3211		    if (do_local_cprop (reg_used->reg_rtx, insn, alter_jumps,
3212			libcall_sp))
3213		      {
3214			changed = true;
3215			break;
3216		      }
3217		  if (INSN_DELETED_P (insn))
3218		    break;
3219		}
3220	      while (reg_use_count);
3221	    }
3222	  cselib_process_insn (insn);
3223	}
3224
3225      /* Forget everything at the end of a basic block.  Make sure we are
3226	 not inside a libcall, they should never cross basic blocks.  */
3227      cselib_clear_table ();
3228      gcc_assert (libcall_sp == &libcall_stack[MAX_NESTED_LIBCALLS]);
3229    }
3230
3231  cselib_finish ();
3232
3233  /* Global analysis may get into infinite loops for unreachable blocks.  */
3234  if (changed && alter_jumps)
3235    {
3236      delete_unreachable_blocks ();
3237      free_reg_set_mem ();
3238      alloc_reg_set_mem (max_reg_num ());
3239      compute_sets ();
3240    }
3241}
3242
3243/* Forward propagate copies.  This includes copies and constants.  Return
3244   nonzero if a change was made.  */
3245
3246static int
3247cprop (int alter_jumps)
3248{
3249  int changed;
3250  basic_block bb;
3251  rtx insn;
3252
3253  /* Note we start at block 1.  */
3254  if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3255    {
3256      if (dump_file != NULL)
3257	fprintf (dump_file, "\n");
3258      return 0;
3259    }
3260
3261  changed = 0;
3262  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
3263    {
3264      /* Reset tables used to keep track of what's still valid [since the
3265	 start of the block].  */
3266      reset_opr_set_tables ();
3267
3268      FOR_BB_INSNS (bb, insn)
3269	if (INSN_P (insn))
3270	  {
3271	    changed |= cprop_insn (insn, alter_jumps);
3272
3273	    /* Keep track of everything modified by this insn.  */
3274	    /* ??? Need to be careful w.r.t. mods done to INSN.  Don't
3275	       call mark_oprs_set if we turned the insn into a NOTE.  */
3276	    if (! NOTE_P (insn))
3277	      mark_oprs_set (insn);
3278	  }
3279    }
3280
3281  if (dump_file != NULL)
3282    fprintf (dump_file, "\n");
3283
3284  return changed;
3285}
3286
3287/* Similar to get_condition, only the resulting condition must be
3288   valid at JUMP, instead of at EARLIEST.
3289
3290   This differs from noce_get_condition in ifcvt.c in that we prefer not to
3291   settle for the condition variable in the jump instruction being integral.
3292   We prefer to be able to record the value of a user variable, rather than
3293   the value of a temporary used in a condition.  This could be solved by
3294   recording the value of *every* register scanned by canonicalize_condition,
3295   but this would require some code reorganization.  */
3296
3297rtx
3298fis_get_condition (rtx jump)
3299{
3300  return get_condition (jump, NULL, false, true);
3301}
3302
3303/* Check the comparison COND to see if we can safely form an implicit set from
3304   it.  COND is either an EQ or NE comparison.  */
3305
3306static bool
3307implicit_set_cond_p (rtx cond)
3308{
3309  enum machine_mode mode = GET_MODE (XEXP (cond, 0));
3310  rtx cst = XEXP (cond, 1);
3311
3312  /* We can't perform this optimization if either operand might be or might
3313     contain a signed zero.  */
3314  if (HONOR_SIGNED_ZEROS (mode))
3315    {
3316      /* It is sufficient to check if CST is or contains a zero.  We must
3317	 handle float, complex, and vector.  If any subpart is a zero, then
3318	 the optimization can't be performed.  */
3319      /* ??? The complex and vector checks are not implemented yet.  We just
3320	 always return zero for them.  */
3321      if (GET_CODE (cst) == CONST_DOUBLE)
3322	{
3323	  REAL_VALUE_TYPE d;
3324	  REAL_VALUE_FROM_CONST_DOUBLE (d, cst);
3325	  if (REAL_VALUES_EQUAL (d, dconst0))
3326	    return 0;
3327	}
3328      else
3329	return 0;
3330    }
3331
3332  return gcse_constant_p (cst);
3333}
3334
3335/* Find the implicit sets of a function.  An "implicit set" is a constraint
3336   on the value of a variable, implied by a conditional jump.  For example,
3337   following "if (x == 2)", the then branch may be optimized as though the
3338   conditional performed an "explicit set", in this example, "x = 2".  This
3339   function records the set patterns that are implicit at the start of each
3340   basic block.  */
3341
3342static void
3343find_implicit_sets (void)
3344{
3345  basic_block bb, dest;
3346  unsigned int count;
3347  rtx cond, new;
3348
3349  count = 0;
3350  FOR_EACH_BB (bb)
3351    /* Check for more than one successor.  */
3352    if (EDGE_COUNT (bb->succs) > 1)
3353      {
3354	cond = fis_get_condition (BB_END (bb));
3355
3356	if (cond
3357	    && (GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
3358	    && REG_P (XEXP (cond, 0))
3359	    && REGNO (XEXP (cond, 0)) >= FIRST_PSEUDO_REGISTER
3360	    && implicit_set_cond_p (cond))
3361	  {
3362	    dest = GET_CODE (cond) == EQ ? BRANCH_EDGE (bb)->dest
3363					 : FALLTHRU_EDGE (bb)->dest;
3364
3365	    if (dest && single_pred_p (dest)
3366		&& dest != EXIT_BLOCK_PTR)
3367	      {
3368		new = gen_rtx_SET (VOIDmode, XEXP (cond, 0),
3369					     XEXP (cond, 1));
3370		implicit_sets[dest->index] = new;
3371		if (dump_file)
3372		  {
3373		    fprintf(dump_file, "Implicit set of reg %d in ",
3374			    REGNO (XEXP (cond, 0)));
3375		    fprintf(dump_file, "basic block %d\n", dest->index);
3376		  }
3377		count++;
3378	      }
3379	  }
3380      }
3381
3382  if (dump_file)
3383    fprintf (dump_file, "Found %d implicit sets\n", count);
3384}
3385
3386/* Perform one copy/constant propagation pass.
3387   PASS is the pass count.  If CPROP_JUMPS is true, perform constant
3388   propagation into conditional jumps.  If BYPASS_JUMPS is true,
3389   perform conditional jump bypassing optimizations.  */
3390
3391static int
3392one_cprop_pass (int pass, bool cprop_jumps, bool bypass_jumps)
3393{
3394  int changed = 0;
3395
3396  global_const_prop_count = local_const_prop_count = 0;
3397  global_copy_prop_count = local_copy_prop_count = 0;
3398
3399  local_cprop_pass (cprop_jumps);
3400
3401  /* Determine implicit sets.  */
3402  implicit_sets = XCNEWVEC (rtx, last_basic_block);
3403  find_implicit_sets ();
3404
3405  alloc_hash_table (max_cuid, &set_hash_table, 1);
3406  compute_hash_table (&set_hash_table);
3407
3408  /* Free implicit_sets before peak usage.  */
3409  free (implicit_sets);
3410  implicit_sets = NULL;
3411
3412  if (dump_file)
3413    dump_hash_table (dump_file, "SET", &set_hash_table);
3414  if (set_hash_table.n_elems > 0)
3415    {
3416      alloc_cprop_mem (last_basic_block, set_hash_table.n_elems);
3417      compute_cprop_data ();
3418      changed = cprop (cprop_jumps);
3419      if (bypass_jumps)
3420	changed |= bypass_conditional_jumps ();
3421      free_cprop_mem ();
3422    }
3423
3424  free_hash_table (&set_hash_table);
3425
3426  if (dump_file)
3427    {
3428      fprintf (dump_file, "CPROP of %s, pass %d: %d bytes needed, ",
3429	       current_function_name (), pass, bytes_used);
3430      fprintf (dump_file, "%d local const props, %d local copy props, ",
3431	       local_const_prop_count, local_copy_prop_count);
3432      fprintf (dump_file, "%d global const props, %d global copy props\n\n",
3433	       global_const_prop_count, global_copy_prop_count);
3434    }
3435  /* Global analysis may get into infinite loops for unreachable blocks.  */
3436  if (changed && cprop_jumps)
3437    delete_unreachable_blocks ();
3438
3439  return changed;
3440}
3441
3442/* Bypass conditional jumps.  */
3443
3444/* The value of last_basic_block at the beginning of the jump_bypass
3445   pass.  The use of redirect_edge_and_branch_force may introduce new
3446   basic blocks, but the data flow analysis is only valid for basic
3447   block indices less than bypass_last_basic_block.  */
3448
3449static int bypass_last_basic_block;
3450
3451/* Find a set of REGNO to a constant that is available at the end of basic
3452   block BB.  Returns NULL if no such set is found.  Based heavily upon
3453   find_avail_set.  */
3454
3455static struct expr *
3456find_bypass_set (int regno, int bb)
3457{
3458  struct expr *result = 0;
3459
3460  for (;;)
3461    {
3462      rtx src;
3463      struct expr *set = lookup_set (regno, &set_hash_table);
3464
3465      while (set)
3466	{
3467	  if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
3468	    break;
3469	  set = next_set (regno, set);
3470	}
3471
3472      if (set == 0)
3473	break;
3474
3475      gcc_assert (GET_CODE (set->expr) == SET);
3476
3477      src = SET_SRC (set->expr);
3478      if (gcse_constant_p (src))
3479	result = set;
3480
3481      if (! REG_P (src))
3482	break;
3483
3484      regno = REGNO (src);
3485    }
3486  return result;
3487}
3488
3489
3490/* Subroutine of bypass_block that checks whether a pseudo is killed by
3491   any of the instructions inserted on an edge.  Jump bypassing places
3492   condition code setters on CFG edges using insert_insn_on_edge.  This
3493   function is required to check that our data flow analysis is still
3494   valid prior to commit_edge_insertions.  */
3495
3496static bool
3497reg_killed_on_edge (rtx reg, edge e)
3498{
3499  rtx insn;
3500
3501  for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
3502    if (INSN_P (insn) && reg_set_p (reg, insn))
3503      return true;
3504
3505  return false;
3506}
3507
3508/* Subroutine of bypass_conditional_jumps that attempts to bypass the given
3509   basic block BB which has more than one predecessor.  If not NULL, SETCC
3510   is the first instruction of BB, which is immediately followed by JUMP_INSN
3511   JUMP.  Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
3512   Returns nonzero if a change was made.
3513
3514   During the jump bypassing pass, we may place copies of SETCC instructions
3515   on CFG edges.  The following routine must be careful to pay attention to
3516   these inserted insns when performing its transformations.  */
3517
3518static int
3519bypass_block (basic_block bb, rtx setcc, rtx jump)
3520{
3521  rtx insn, note;
3522  edge e, edest;
3523  int i, change;
3524  int may_be_loop_header;
3525  unsigned removed_p;
3526  edge_iterator ei;
3527
3528  insn = (setcc != NULL) ? setcc : jump;
3529
3530  /* Determine set of register uses in INSN.  */
3531  reg_use_count = 0;
3532  note_uses (&PATTERN (insn), find_used_regs, NULL);
3533  note = find_reg_equal_equiv_note (insn);
3534  if (note)
3535    find_used_regs (&XEXP (note, 0), NULL);
3536
3537  may_be_loop_header = false;
3538  FOR_EACH_EDGE (e, ei, bb->preds)
3539    if (e->flags & EDGE_DFS_BACK)
3540      {
3541	may_be_loop_header = true;
3542	break;
3543      }
3544
3545  change = 0;
3546  for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3547    {
3548      removed_p = 0;
3549
3550      if (e->flags & EDGE_COMPLEX)
3551	{
3552	  ei_next (&ei);
3553	  continue;
3554	}
3555
3556      /* We can't redirect edges from new basic blocks.  */
3557      if (e->src->index >= bypass_last_basic_block)
3558	{
3559	  ei_next (&ei);
3560	  continue;
3561	}
3562
3563      /* The irreducible loops created by redirecting of edges entering the
3564	 loop from outside would decrease effectiveness of some of the following
3565	 optimizations, so prevent this.  */
3566      if (may_be_loop_header
3567	  && !(e->flags & EDGE_DFS_BACK))
3568	{
3569	  ei_next (&ei);
3570	  continue;
3571	}
3572
3573      for (i = 0; i < reg_use_count; i++)
3574	{
3575	  struct reg_use *reg_used = &reg_use_table[i];
3576	  unsigned int regno = REGNO (reg_used->reg_rtx);
3577	  basic_block dest, old_dest;
3578	  struct expr *set;
3579	  rtx src, new;
3580
3581	  if (regno >= max_gcse_regno)
3582	    continue;
3583
3584	  set = find_bypass_set (regno, e->src->index);
3585
3586	  if (! set)
3587	    continue;
3588
3589	  /* Check the data flow is valid after edge insertions.  */
3590	  if (e->insns.r && reg_killed_on_edge (reg_used->reg_rtx, e))
3591	    continue;
3592
3593	  src = SET_SRC (pc_set (jump));
3594
3595	  if (setcc != NULL)
3596	      src = simplify_replace_rtx (src,
3597					  SET_DEST (PATTERN (setcc)),
3598					  SET_SRC (PATTERN (setcc)));
3599
3600	  new = simplify_replace_rtx (src, reg_used->reg_rtx,
3601				      SET_SRC (set->expr));
3602
3603	  /* Jump bypassing may have already placed instructions on
3604	     edges of the CFG.  We can't bypass an outgoing edge that
3605	     has instructions associated with it, as these insns won't
3606	     get executed if the incoming edge is redirected.  */
3607
3608	  if (new == pc_rtx)
3609	    {
3610	      edest = FALLTHRU_EDGE (bb);
3611	      dest = edest->insns.r ? NULL : edest->dest;
3612	    }
3613	  else if (GET_CODE (new) == LABEL_REF)
3614	    {
3615	      dest = BLOCK_FOR_INSN (XEXP (new, 0));
3616	      /* Don't bypass edges containing instructions.  */
3617	      edest = find_edge (bb, dest);
3618	      if (edest && edest->insns.r)
3619		dest = NULL;
3620	    }
3621	  else
3622	    dest = NULL;
3623
3624	  /* Avoid unification of the edge with other edges from original
3625	     branch.  We would end up emitting the instruction on "both"
3626	     edges.  */
3627
3628	  if (dest && setcc && !CC0_P (SET_DEST (PATTERN (setcc)))
3629	      && find_edge (e->src, dest))
3630	    dest = NULL;
3631
3632	  old_dest = e->dest;
3633	  if (dest != NULL
3634	      && dest != old_dest
3635	      && dest != EXIT_BLOCK_PTR)
3636            {
3637	      redirect_edge_and_branch_force (e, dest);
3638
3639	      /* Copy the register setter to the redirected edge.
3640		 Don't copy CC0 setters, as CC0 is dead after jump.  */
3641	      if (setcc)
3642		{
3643		  rtx pat = PATTERN (setcc);
3644		  if (!CC0_P (SET_DEST (pat)))
3645		    insert_insn_on_edge (copy_insn (pat), e);
3646		}
3647
3648	      if (dump_file != NULL)
3649		{
3650		  fprintf (dump_file, "JUMP-BYPASS: Proved reg %d "
3651				      "in jump_insn %d equals constant ",
3652			   regno, INSN_UID (jump));
3653		  print_rtl (dump_file, SET_SRC (set->expr));
3654		  fprintf (dump_file, "\nBypass edge from %d->%d to %d\n",
3655			   e->src->index, old_dest->index, dest->index);
3656		}
3657	      change = 1;
3658	      removed_p = 1;
3659	      break;
3660	    }
3661	}
3662      if (!removed_p)
3663	ei_next (&ei);
3664    }
3665  return change;
3666}
3667
3668/* Find basic blocks with more than one predecessor that only contain a
3669   single conditional jump.  If the result of the comparison is known at
3670   compile-time from any incoming edge, redirect that edge to the
3671   appropriate target.  Returns nonzero if a change was made.
3672
3673   This function is now mis-named, because we also handle indirect jumps.  */
3674
3675static int
3676bypass_conditional_jumps (void)
3677{
3678  basic_block bb;
3679  int changed;
3680  rtx setcc;
3681  rtx insn;
3682  rtx dest;
3683
3684  /* Note we start at block 1.  */
3685  if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3686    return 0;
3687
3688  bypass_last_basic_block = last_basic_block;
3689  mark_dfs_back_edges ();
3690
3691  changed = 0;
3692  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
3693		  EXIT_BLOCK_PTR, next_bb)
3694    {
3695      /* Check for more than one predecessor.  */
3696      if (!single_pred_p (bb))
3697	{
3698	  setcc = NULL_RTX;
3699	  FOR_BB_INSNS (bb, insn)
3700	    if (NONJUMP_INSN_P (insn))
3701	      {
3702		if (setcc)
3703		  break;
3704		if (GET_CODE (PATTERN (insn)) != SET)
3705		  break;
3706
3707		dest = SET_DEST (PATTERN (insn));
3708		if (REG_P (dest) || CC0_P (dest))
3709		  setcc = insn;
3710		else
3711		  break;
3712	      }
3713	    else if (JUMP_P (insn))
3714	      {
3715		if ((any_condjump_p (insn) || computed_jump_p (insn))
3716		    && onlyjump_p (insn))
3717		  changed |= bypass_block (bb, setcc, insn);
3718		break;
3719	      }
3720	    else if (INSN_P (insn))
3721	      break;
3722	}
3723    }
3724
3725  /* If we bypassed any register setting insns, we inserted a
3726     copy on the redirected edge.  These need to be committed.  */
3727  if (changed)
3728    commit_edge_insertions();
3729
3730  return changed;
3731}
3732
3733/* Compute PRE+LCM working variables.  */
3734
3735/* Local properties of expressions.  */
3736/* Nonzero for expressions that are transparent in the block.  */
3737static sbitmap *transp;
3738
3739/* Nonzero for expressions that are transparent at the end of the block.
3740   This is only zero for expressions killed by abnormal critical edge
3741   created by a calls.  */
3742static sbitmap *transpout;
3743
3744/* Nonzero for expressions that are computed (available) in the block.  */
3745static sbitmap *comp;
3746
3747/* Nonzero for expressions that are locally anticipatable in the block.  */
3748static sbitmap *antloc;
3749
3750/* Nonzero for expressions where this block is an optimal computation
3751   point.  */
3752static sbitmap *pre_optimal;
3753
3754/* Nonzero for expressions which are redundant in a particular block.  */
3755static sbitmap *pre_redundant;
3756
3757/* Nonzero for expressions which should be inserted on a specific edge.  */
3758static sbitmap *pre_insert_map;
3759
3760/* Nonzero for expressions which should be deleted in a specific block.  */
3761static sbitmap *pre_delete_map;
3762
3763/* Contains the edge_list returned by pre_edge_lcm.  */
3764static struct edge_list *edge_list;
3765
3766/* Redundant insns.  */
3767static sbitmap pre_redundant_insns;
3768
3769/* Allocate vars used for PRE analysis.  */
3770
3771static void
3772alloc_pre_mem (int n_blocks, int n_exprs)
3773{
3774  transp = sbitmap_vector_alloc (n_blocks, n_exprs);
3775  comp = sbitmap_vector_alloc (n_blocks, n_exprs);
3776  antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
3777
3778  pre_optimal = NULL;
3779  pre_redundant = NULL;
3780  pre_insert_map = NULL;
3781  pre_delete_map = NULL;
3782  ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
3783
3784  /* pre_insert and pre_delete are allocated later.  */
3785}
3786
3787/* Free vars used for PRE analysis.  */
3788
3789static void
3790free_pre_mem (void)
3791{
3792  sbitmap_vector_free (transp);
3793  sbitmap_vector_free (comp);
3794
3795  /* ANTLOC and AE_KILL are freed just after pre_lcm finishes.  */
3796
3797  if (pre_optimal)
3798    sbitmap_vector_free (pre_optimal);
3799  if (pre_redundant)
3800    sbitmap_vector_free (pre_redundant);
3801  if (pre_insert_map)
3802    sbitmap_vector_free (pre_insert_map);
3803  if (pre_delete_map)
3804    sbitmap_vector_free (pre_delete_map);
3805
3806  transp = comp = NULL;
3807  pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
3808}
3809
3810/* Top level routine to do the dataflow analysis needed by PRE.  */
3811
3812static void
3813compute_pre_data (void)
3814{
3815  sbitmap trapping_expr;
3816  basic_block bb;
3817  unsigned int ui;
3818
3819  compute_local_properties (transp, comp, antloc, &expr_hash_table);
3820  sbitmap_vector_zero (ae_kill, last_basic_block);
3821
3822  /* Collect expressions which might trap.  */
3823  trapping_expr = sbitmap_alloc (expr_hash_table.n_elems);
3824  sbitmap_zero (trapping_expr);
3825  for (ui = 0; ui < expr_hash_table.size; ui++)
3826    {
3827      struct expr *e;
3828      for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
3829	if (may_trap_p (e->expr))
3830	  SET_BIT (trapping_expr, e->bitmap_index);
3831    }
3832
3833  /* Compute ae_kill for each basic block using:
3834
3835     ~(TRANSP | COMP)
3836  */
3837
3838  FOR_EACH_BB (bb)
3839    {
3840      edge e;
3841      edge_iterator ei;
3842
3843      /* If the current block is the destination of an abnormal edge, we
3844	 kill all trapping expressions because we won't be able to properly
3845	 place the instruction on the edge.  So make them neither
3846	 anticipatable nor transparent.  This is fairly conservative.  */
3847      FOR_EACH_EDGE (e, ei, bb->preds)
3848	if (e->flags & EDGE_ABNORMAL)
3849	  {
3850	    sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr);
3851	    sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr);
3852	    break;
3853	  }
3854
3855      sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
3856      sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
3857    }
3858
3859  edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
3860			    ae_kill, &pre_insert_map, &pre_delete_map);
3861  sbitmap_vector_free (antloc);
3862  antloc = NULL;
3863  sbitmap_vector_free (ae_kill);
3864  ae_kill = NULL;
3865  sbitmap_free (trapping_expr);
3866}
3867
3868/* PRE utilities */
3869
3870/* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
3871   block BB.
3872
3873   VISITED is a pointer to a working buffer for tracking which BB's have
3874   been visited.  It is NULL for the top-level call.
3875
3876   We treat reaching expressions that go through blocks containing the same
3877   reaching expression as "not reaching".  E.g. if EXPR is generated in blocks
3878   2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3879   2 as not reaching.  The intent is to improve the probability of finding
3880   only one reaching expression and to reduce register lifetimes by picking
3881   the closest such expression.  */
3882
3883static int
3884pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr, basic_block bb, char *visited)
3885{
3886  edge pred;
3887  edge_iterator ei;
3888
3889  FOR_EACH_EDGE (pred, ei, bb->preds)
3890    {
3891      basic_block pred_bb = pred->src;
3892
3893      if (pred->src == ENTRY_BLOCK_PTR
3894	  /* Has predecessor has already been visited?  */
3895	  || visited[pred_bb->index])
3896	;/* Nothing to do.  */
3897
3898      /* Does this predecessor generate this expression?  */
3899      else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
3900	{
3901	  /* Is this the occurrence we're looking for?
3902	     Note that there's only one generating occurrence per block
3903	     so we just need to check the block number.  */
3904	  if (occr_bb == pred_bb)
3905	    return 1;
3906
3907	  visited[pred_bb->index] = 1;
3908	}
3909      /* Ignore this predecessor if it kills the expression.  */
3910      else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
3911	visited[pred_bb->index] = 1;
3912
3913      /* Neither gen nor kill.  */
3914      else
3915	{
3916	  visited[pred_bb->index] = 1;
3917	  if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
3918	    return 1;
3919	}
3920    }
3921
3922  /* All paths have been checked.  */
3923  return 0;
3924}
3925
3926/* The wrapper for pre_expr_reaches_here_work that ensures that any
3927   memory allocated for that function is returned.  */
3928
3929static int
3930pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
3931{
3932  int rval;
3933  char *visited = XCNEWVEC (char, last_basic_block);
3934
3935  rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
3936
3937  free (visited);
3938  return rval;
3939}
3940
3941
3942/* Given an expr, generate RTL which we can insert at the end of a BB,
3943   or on an edge.  Set the block number of any insns generated to
3944   the value of BB.  */
3945
3946static rtx
3947process_insert_insn (struct expr *expr)
3948{
3949  rtx reg = expr->reaching_reg;
3950  rtx exp = copy_rtx (expr->expr);
3951  rtx pat;
3952
3953  start_sequence ();
3954
3955  /* If the expression is something that's an operand, like a constant,
3956     just copy it to a register.  */
3957  if (general_operand (exp, GET_MODE (reg)))
3958    emit_move_insn (reg, exp);
3959
3960  /* Otherwise, make a new insn to compute this expression and make sure the
3961     insn will be recognized (this also adds any needed CLOBBERs).  Copy the
3962     expression to make sure we don't have any sharing issues.  */
3963  else
3964    {
3965      rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
3966
3967      if (insn_invalid_p (insn))
3968	gcc_unreachable ();
3969    }
3970
3971
3972  pat = get_insns ();
3973  end_sequence ();
3974
3975  return pat;
3976}
3977
3978/* Add EXPR to the end of basic block BB.
3979
3980   This is used by both the PRE and code hoisting.
3981
3982   For PRE, we want to verify that the expr is either transparent
3983   or locally anticipatable in the target block.  This check makes
3984   no sense for code hoisting.  */
3985
3986static void
3987insert_insn_end_bb (struct expr *expr, basic_block bb, int pre)
3988{
3989  rtx insn = BB_END (bb);
3990  rtx new_insn;
3991  rtx reg = expr->reaching_reg;
3992  int regno = REGNO (reg);
3993  rtx pat, pat_end;
3994
3995  pat = process_insert_insn (expr);
3996  gcc_assert (pat && INSN_P (pat));
3997
3998  pat_end = pat;
3999  while (NEXT_INSN (pat_end) != NULL_RTX)
4000    pat_end = NEXT_INSN (pat_end);
4001
4002  /* If the last insn is a jump, insert EXPR in front [taking care to
4003     handle cc0, etc. properly].  Similarly we need to care trapping
4004     instructions in presence of non-call exceptions.  */
4005
4006  if (JUMP_P (insn)
4007      || (NONJUMP_INSN_P (insn)
4008	  && (!single_succ_p (bb)
4009	      || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
4010    {
4011#ifdef HAVE_cc0
4012      rtx note;
4013#endif
4014      /* It should always be the case that we can put these instructions
4015	 anywhere in the basic block with performing PRE optimizations.
4016	 Check this.  */
4017      gcc_assert (!NONJUMP_INSN_P (insn) || !pre
4018		  || TEST_BIT (antloc[bb->index], expr->bitmap_index)
4019		  || TEST_BIT (transp[bb->index], expr->bitmap_index));
4020
4021      /* If this is a jump table, then we can't insert stuff here.  Since
4022	 we know the previous real insn must be the tablejump, we insert
4023	 the new instruction just before the tablejump.  */
4024      if (GET_CODE (PATTERN (insn)) == ADDR_VEC
4025	  || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
4026	insn = prev_real_insn (insn);
4027
4028#ifdef HAVE_cc0
4029      /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4030	 if cc0 isn't set.  */
4031      note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
4032      if (note)
4033	insn = XEXP (note, 0);
4034      else
4035	{
4036	  rtx maybe_cc0_setter = prev_nonnote_insn (insn);
4037	  if (maybe_cc0_setter
4038	      && INSN_P (maybe_cc0_setter)
4039	      && sets_cc0_p (PATTERN (maybe_cc0_setter)))
4040	    insn = maybe_cc0_setter;
4041	}
4042#endif
4043      /* FIXME: What if something in cc0/jump uses value set in new insn?  */
4044      new_insn = emit_insn_before_noloc (pat, insn);
4045    }
4046
4047  /* Likewise if the last insn is a call, as will happen in the presence
4048     of exception handling.  */
4049  else if (CALL_P (insn)
4050	   && (!single_succ_p (bb)
4051	       || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
4052    {
4053      /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4054	 we search backward and place the instructions before the first
4055	 parameter is loaded.  Do this for everyone for consistency and a
4056	 presumption that we'll get better code elsewhere as well.
4057
4058	 It should always be the case that we can put these instructions
4059	 anywhere in the basic block with performing PRE optimizations.
4060	 Check this.  */
4061
4062      gcc_assert (!pre
4063		  || TEST_BIT (antloc[bb->index], expr->bitmap_index)
4064		  || TEST_BIT (transp[bb->index], expr->bitmap_index));
4065
4066      /* Since different machines initialize their parameter registers
4067	 in different orders, assume nothing.  Collect the set of all
4068	 parameter registers.  */
4069      insn = find_first_parameter_load (insn, BB_HEAD (bb));
4070
4071      /* If we found all the parameter loads, then we want to insert
4072	 before the first parameter load.
4073
4074	 If we did not find all the parameter loads, then we might have
4075	 stopped on the head of the block, which could be a CODE_LABEL.
4076	 If we inserted before the CODE_LABEL, then we would be putting
4077	 the insn in the wrong basic block.  In that case, put the insn
4078	 after the CODE_LABEL.  Also, respect NOTE_INSN_BASIC_BLOCK.  */
4079      while (LABEL_P (insn)
4080	     || NOTE_INSN_BASIC_BLOCK_P (insn))
4081	insn = NEXT_INSN (insn);
4082
4083      new_insn = emit_insn_before_noloc (pat, insn);
4084    }
4085  else
4086    new_insn = emit_insn_after_noloc (pat, insn);
4087
4088  while (1)
4089    {
4090      if (INSN_P (pat))
4091	{
4092	  add_label_notes (PATTERN (pat), new_insn);
4093	  note_stores (PATTERN (pat), record_set_info, pat);
4094	}
4095      if (pat == pat_end)
4096	break;
4097      pat = NEXT_INSN (pat);
4098    }
4099
4100  gcse_create_count++;
4101
4102  if (dump_file)
4103    {
4104      fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
4105	       bb->index, INSN_UID (new_insn));
4106      fprintf (dump_file, "copying expression %d to reg %d\n",
4107	       expr->bitmap_index, regno);
4108    }
4109}
4110
4111/* Insert partially redundant expressions on edges in the CFG to make
4112   the expressions fully redundant.  */
4113
4114static int
4115pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
4116{
4117  int e, i, j, num_edges, set_size, did_insert = 0;
4118  sbitmap *inserted;
4119
4120  /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4121     if it reaches any of the deleted expressions.  */
4122
4123  set_size = pre_insert_map[0]->size;
4124  num_edges = NUM_EDGES (edge_list);
4125  inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
4126  sbitmap_vector_zero (inserted, num_edges);
4127
4128  for (e = 0; e < num_edges; e++)
4129    {
4130      int indx;
4131      basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
4132
4133      for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
4134	{
4135	  SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
4136
4137	  for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
4138	    if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
4139	      {
4140		struct expr *expr = index_map[j];
4141		struct occr *occr;
4142
4143		/* Now look at each deleted occurrence of this expression.  */
4144		for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4145		  {
4146		    if (! occr->deleted_p)
4147		      continue;
4148
4149		    /* Insert this expression on this edge if it would
4150		       reach the deleted occurrence in BB.  */
4151		    if (!TEST_BIT (inserted[e], j))
4152		      {
4153			rtx insn;
4154			edge eg = INDEX_EDGE (edge_list, e);
4155
4156			/* We can't insert anything on an abnormal and
4157			   critical edge, so we insert the insn at the end of
4158			   the previous block. There are several alternatives
4159			   detailed in Morgans book P277 (sec 10.5) for
4160			   handling this situation.  This one is easiest for
4161			   now.  */
4162
4163			if (eg->flags & EDGE_ABNORMAL)
4164			  insert_insn_end_bb (index_map[j], bb, 0);
4165			else
4166			  {
4167			    insn = process_insert_insn (index_map[j]);
4168			    insert_insn_on_edge (insn, eg);
4169			  }
4170
4171			if (dump_file)
4172			  {
4173			    fprintf (dump_file, "PRE/HOIST: edge (%d,%d), ",
4174				     bb->index,
4175				     INDEX_EDGE_SUCC_BB (edge_list, e)->index);
4176			    fprintf (dump_file, "copy expression %d\n",
4177				     expr->bitmap_index);
4178			  }
4179
4180			update_ld_motion_stores (expr);
4181			SET_BIT (inserted[e], j);
4182			did_insert = 1;
4183			gcse_create_count++;
4184		      }
4185		  }
4186	      }
4187	}
4188    }
4189
4190  sbitmap_vector_free (inserted);
4191  return did_insert;
4192}
4193
4194/* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
4195   Given "old_reg <- expr" (INSN), instead of adding after it
4196     reaching_reg <- old_reg
4197   it's better to do the following:
4198     reaching_reg <- expr
4199     old_reg      <- reaching_reg
4200   because this way copy propagation can discover additional PRE
4201   opportunities.  But if this fails, we try the old way.
4202   When "expr" is a store, i.e.
4203   given "MEM <- old_reg", instead of adding after it
4204     reaching_reg <- old_reg
4205   it's better to add it before as follows:
4206     reaching_reg <- old_reg
4207     MEM          <- reaching_reg.  */
4208
4209static void
4210pre_insert_copy_insn (struct expr *expr, rtx insn)
4211{
4212  rtx reg = expr->reaching_reg;
4213  int regno = REGNO (reg);
4214  int indx = expr->bitmap_index;
4215  rtx pat = PATTERN (insn);
4216  rtx set, first_set, new_insn;
4217  rtx old_reg;
4218  int i;
4219
4220  /* This block matches the logic in hash_scan_insn.  */
4221  switch (GET_CODE (pat))
4222    {
4223    case SET:
4224      set = pat;
4225      break;
4226
4227    case PARALLEL:
4228      /* Search through the parallel looking for the set whose
4229	 source was the expression that we're interested in.  */
4230      first_set = NULL_RTX;
4231      set = NULL_RTX;
4232      for (i = 0; i < XVECLEN (pat, 0); i++)
4233	{
4234	  rtx x = XVECEXP (pat, 0, i);
4235	  if (GET_CODE (x) == SET)
4236	    {
4237	      /* If the source was a REG_EQUAL or REG_EQUIV note, we
4238		 may not find an equivalent expression, but in this
4239		 case the PARALLEL will have a single set.  */
4240	      if (first_set == NULL_RTX)
4241		first_set = x;
4242	      if (expr_equiv_p (SET_SRC (x), expr->expr))
4243	        {
4244	          set = x;
4245	          break;
4246	        }
4247	    }
4248	}
4249
4250      gcc_assert (first_set);
4251      if (set == NULL_RTX)
4252        set = first_set;
4253      break;
4254
4255    default:
4256      gcc_unreachable ();
4257    }
4258
4259  if (REG_P (SET_DEST (set)))
4260    {
4261      old_reg = SET_DEST (set);
4262      /* Check if we can modify the set destination in the original insn.  */
4263      if (validate_change (insn, &SET_DEST (set), reg, 0))
4264        {
4265          new_insn = gen_move_insn (old_reg, reg);
4266          new_insn = emit_insn_after (new_insn, insn);
4267
4268          /* Keep register set table up to date.  */
4269          record_one_set (regno, insn);
4270        }
4271      else
4272        {
4273          new_insn = gen_move_insn (reg, old_reg);
4274          new_insn = emit_insn_after (new_insn, insn);
4275
4276          /* Keep register set table up to date.  */
4277          record_one_set (regno, new_insn);
4278        }
4279    }
4280  else /* This is possible only in case of a store to memory.  */
4281    {
4282      old_reg = SET_SRC (set);
4283      new_insn = gen_move_insn (reg, old_reg);
4284
4285      /* Check if we can modify the set source in the original insn.  */
4286      if (validate_change (insn, &SET_SRC (set), reg, 0))
4287        new_insn = emit_insn_before (new_insn, insn);
4288      else
4289        new_insn = emit_insn_after (new_insn, insn);
4290
4291      /* Keep register set table up to date.  */
4292      record_one_set (regno, new_insn);
4293    }
4294
4295  gcse_create_count++;
4296
4297  if (dump_file)
4298    fprintf (dump_file,
4299	     "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
4300	      BLOCK_NUM (insn), INSN_UID (new_insn), indx,
4301	      INSN_UID (insn), regno);
4302}
4303
4304/* Copy available expressions that reach the redundant expression
4305   to `reaching_reg'.  */
4306
4307static void
4308pre_insert_copies (void)
4309{
4310  unsigned int i, added_copy;
4311  struct expr *expr;
4312  struct occr *occr;
4313  struct occr *avail;
4314
4315  /* For each available expression in the table, copy the result to
4316     `reaching_reg' if the expression reaches a deleted one.
4317
4318     ??? The current algorithm is rather brute force.
4319     Need to do some profiling.  */
4320
4321  for (i = 0; i < expr_hash_table.size; i++)
4322    for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4323      {
4324	/* If the basic block isn't reachable, PPOUT will be TRUE.  However,
4325	   we don't want to insert a copy here because the expression may not
4326	   really be redundant.  So only insert an insn if the expression was
4327	   deleted.  This test also avoids further processing if the
4328	   expression wasn't deleted anywhere.  */
4329	if (expr->reaching_reg == NULL)
4330	  continue;
4331
4332	/* Set when we add a copy for that expression.  */
4333	added_copy = 0;
4334
4335	for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4336	  {
4337	    if (! occr->deleted_p)
4338	      continue;
4339
4340	    for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
4341	      {
4342		rtx insn = avail->insn;
4343
4344		/* No need to handle this one if handled already.  */
4345		if (avail->copied_p)
4346		  continue;
4347
4348		/* Don't handle this one if it's a redundant one.  */
4349		if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
4350		  continue;
4351
4352		/* Or if the expression doesn't reach the deleted one.  */
4353		if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
4354					       expr,
4355					       BLOCK_FOR_INSN (occr->insn)))
4356		  continue;
4357
4358                added_copy = 1;
4359
4360		/* Copy the result of avail to reaching_reg.  */
4361		pre_insert_copy_insn (expr, insn);
4362		avail->copied_p = 1;
4363	      }
4364	  }
4365
4366	  if (added_copy)
4367            update_ld_motion_stores (expr);
4368      }
4369}
4370
4371/* Emit move from SRC to DEST noting the equivalence with expression computed
4372   in INSN.  */
4373static rtx
4374gcse_emit_move_after (rtx src, rtx dest, rtx insn)
4375{
4376  rtx new;
4377  rtx set = single_set (insn), set2;
4378  rtx note;
4379  rtx eqv;
4380
4381  /* This should never fail since we're creating a reg->reg copy
4382     we've verified to be valid.  */
4383
4384  new = emit_insn_after (gen_move_insn (dest, src), insn);
4385
4386  /* Note the equivalence for local CSE pass.  */
4387  set2 = single_set (new);
4388  if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
4389    return new;
4390  if ((note = find_reg_equal_equiv_note (insn)))
4391    eqv = XEXP (note, 0);
4392  else
4393    eqv = SET_SRC (set);
4394
4395  set_unique_reg_note (new, REG_EQUAL, copy_insn_1 (eqv));
4396
4397  return new;
4398}
4399
4400/* Delete redundant computations.
4401   Deletion is done by changing the insn to copy the `reaching_reg' of
4402   the expression into the result of the SET.  It is left to later passes
4403   (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
4404
4405   Returns nonzero if a change is made.  */
4406
4407static int
4408pre_delete (void)
4409{
4410  unsigned int i;
4411  int changed;
4412  struct expr *expr;
4413  struct occr *occr;
4414
4415  changed = 0;
4416  for (i = 0; i < expr_hash_table.size; i++)
4417    for (expr = expr_hash_table.table[i];
4418	 expr != NULL;
4419	 expr = expr->next_same_hash)
4420      {
4421	int indx = expr->bitmap_index;
4422
4423	/* We only need to search antic_occr since we require
4424	   ANTLOC != 0.  */
4425
4426	for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4427	  {
4428	    rtx insn = occr->insn;
4429	    rtx set;
4430	    basic_block bb = BLOCK_FOR_INSN (insn);
4431
4432	    /* We only delete insns that have a single_set.  */
4433	    if (TEST_BIT (pre_delete_map[bb->index], indx)
4434		&& (set = single_set (insn)) != 0)
4435	      {
4436		/* Create a pseudo-reg to store the result of reaching
4437		   expressions into.  Get the mode for the new pseudo from
4438		   the mode of the original destination pseudo.  */
4439		if (expr->reaching_reg == NULL)
4440		  expr->reaching_reg
4441		    = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4442
4443		gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4444		delete_insn (insn);
4445		occr->deleted_p = 1;
4446		SET_BIT (pre_redundant_insns, INSN_CUID (insn));
4447		changed = 1;
4448		gcse_subst_count++;
4449
4450		if (dump_file)
4451		  {
4452		    fprintf (dump_file,
4453			     "PRE: redundant insn %d (expression %d) in ",
4454			       INSN_UID (insn), indx);
4455		    fprintf (dump_file, "bb %d, reaching reg is %d\n",
4456			     bb->index, REGNO (expr->reaching_reg));
4457		  }
4458	      }
4459	  }
4460      }
4461
4462  return changed;
4463}
4464
4465/* Perform GCSE optimizations using PRE.
4466   This is called by one_pre_gcse_pass after all the dataflow analysis
4467   has been done.
4468
4469   This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
4470   lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
4471   Compiler Design and Implementation.
4472
4473   ??? A new pseudo reg is created to hold the reaching expression.  The nice
4474   thing about the classical approach is that it would try to use an existing
4475   reg.  If the register can't be adequately optimized [i.e. we introduce
4476   reload problems], one could add a pass here to propagate the new register
4477   through the block.
4478
4479   ??? We don't handle single sets in PARALLELs because we're [currently] not
4480   able to copy the rest of the parallel when we insert copies to create full
4481   redundancies from partial redundancies.  However, there's no reason why we
4482   can't handle PARALLELs in the cases where there are no partial
4483   redundancies.  */
4484
4485static int
4486pre_gcse (void)
4487{
4488  unsigned int i;
4489  int did_insert, changed;
4490  struct expr **index_map;
4491  struct expr *expr;
4492
4493  /* Compute a mapping from expression number (`bitmap_index') to
4494     hash table entry.  */
4495
4496  index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
4497  for (i = 0; i < expr_hash_table.size; i++)
4498    for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4499      index_map[expr->bitmap_index] = expr;
4500
4501  /* Reset bitmap used to track which insns are redundant.  */
4502  pre_redundant_insns = sbitmap_alloc (max_cuid);
4503  sbitmap_zero (pre_redundant_insns);
4504
4505  /* Delete the redundant insns first so that
4506     - we know what register to use for the new insns and for the other
4507       ones with reaching expressions
4508     - we know which insns are redundant when we go to create copies  */
4509
4510  changed = pre_delete ();
4511
4512  did_insert = pre_edge_insert (edge_list, index_map);
4513
4514  /* In other places with reaching expressions, copy the expression to the
4515     specially allocated pseudo-reg that reaches the redundant expr.  */
4516  pre_insert_copies ();
4517  if (did_insert)
4518    {
4519      commit_edge_insertions ();
4520      changed = 1;
4521    }
4522
4523  free (index_map);
4524  sbitmap_free (pre_redundant_insns);
4525  return changed;
4526}
4527
4528/* Top level routine to perform one PRE GCSE pass.
4529
4530   Return nonzero if a change was made.  */
4531
4532static int
4533one_pre_gcse_pass (int pass)
4534{
4535  int changed = 0;
4536
4537  gcse_subst_count = 0;
4538  gcse_create_count = 0;
4539
4540  alloc_hash_table (max_cuid, &expr_hash_table, 0);
4541  add_noreturn_fake_exit_edges ();
4542  if (flag_gcse_lm)
4543    compute_ld_motion_mems ();
4544
4545  compute_hash_table (&expr_hash_table);
4546  trim_ld_motion_mems ();
4547  if (dump_file)
4548    dump_hash_table (dump_file, "Expression", &expr_hash_table);
4549
4550  if (expr_hash_table.n_elems > 0)
4551    {
4552      alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
4553      compute_pre_data ();
4554      changed |= pre_gcse ();
4555      free_edge_list (edge_list);
4556      free_pre_mem ();
4557    }
4558
4559  free_ldst_mems ();
4560  remove_fake_exit_edges ();
4561  free_hash_table (&expr_hash_table);
4562
4563  if (dump_file)
4564    {
4565      fprintf (dump_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
4566	       current_function_name (), pass, bytes_used);
4567      fprintf (dump_file, "%d substs, %d insns created\n",
4568	       gcse_subst_count, gcse_create_count);
4569    }
4570
4571  return changed;
4572}
4573
4574/* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
4575   If notes are added to an insn which references a CODE_LABEL, the
4576   LABEL_NUSES count is incremented.  We have to add REG_LABEL notes,
4577   because the following loop optimization pass requires them.  */
4578
4579/* ??? If there was a jump optimization pass after gcse and before loop,
4580   then we would not need to do this here, because jump would add the
4581   necessary REG_LABEL notes.  */
4582
4583static void
4584add_label_notes (rtx x, rtx insn)
4585{
4586  enum rtx_code code = GET_CODE (x);
4587  int i, j;
4588  const char *fmt;
4589
4590  if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
4591    {
4592      /* This code used to ignore labels that referred to dispatch tables to
4593	 avoid flow generating (slightly) worse code.
4594
4595	 We no longer ignore such label references (see LABEL_REF handling in
4596	 mark_jump_label for additional information).  */
4597
4598      REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
4599					    REG_NOTES (insn));
4600      if (LABEL_P (XEXP (x, 0)))
4601	LABEL_NUSES (XEXP (x, 0))++;
4602      return;
4603    }
4604
4605  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
4606    {
4607      if (fmt[i] == 'e')
4608	add_label_notes (XEXP (x, i), insn);
4609      else if (fmt[i] == 'E')
4610	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4611	  add_label_notes (XVECEXP (x, i, j), insn);
4612    }
4613}
4614
4615/* Compute transparent outgoing information for each block.
4616
4617   An expression is transparent to an edge unless it is killed by
4618   the edge itself.  This can only happen with abnormal control flow,
4619   when the edge is traversed through a call.  This happens with
4620   non-local labels and exceptions.
4621
4622   This would not be necessary if we split the edge.  While this is
4623   normally impossible for abnormal critical edges, with some effort
4624   it should be possible with exception handling, since we still have
4625   control over which handler should be invoked.  But due to increased
4626   EH table sizes, this may not be worthwhile.  */
4627
4628static void
4629compute_transpout (void)
4630{
4631  basic_block bb;
4632  unsigned int i;
4633  struct expr *expr;
4634
4635  sbitmap_vector_ones (transpout, last_basic_block);
4636
4637  FOR_EACH_BB (bb)
4638    {
4639      /* Note that flow inserted a nop a the end of basic blocks that
4640	 end in call instructions for reasons other than abnormal
4641	 control flow.  */
4642      if (! CALL_P (BB_END (bb)))
4643	continue;
4644
4645      for (i = 0; i < expr_hash_table.size; i++)
4646	for (expr = expr_hash_table.table[i]; expr ; expr = expr->next_same_hash)
4647	  if (MEM_P (expr->expr))
4648	    {
4649	      if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
4650		  && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
4651		continue;
4652
4653	      /* ??? Optimally, we would use interprocedural alias
4654		 analysis to determine if this mem is actually killed
4655		 by this call.  */
4656	      RESET_BIT (transpout[bb->index], expr->bitmap_index);
4657	    }
4658    }
4659}
4660
4661/* Code Hoisting variables and subroutines.  */
4662
4663/* Very busy expressions.  */
4664static sbitmap *hoist_vbein;
4665static sbitmap *hoist_vbeout;
4666
4667/* Hoistable expressions.  */
4668static sbitmap *hoist_exprs;
4669
4670/* ??? We could compute post dominators and run this algorithm in
4671   reverse to perform tail merging, doing so would probably be
4672   more effective than the tail merging code in jump.c.
4673
4674   It's unclear if tail merging could be run in parallel with
4675   code hoisting.  It would be nice.  */
4676
4677/* Allocate vars used for code hoisting analysis.  */
4678
4679static void
4680alloc_code_hoist_mem (int n_blocks, int n_exprs)
4681{
4682  antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4683  transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4684  comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4685
4686  hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
4687  hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
4688  hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
4689  transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
4690}
4691
4692/* Free vars used for code hoisting analysis.  */
4693
4694static void
4695free_code_hoist_mem (void)
4696{
4697  sbitmap_vector_free (antloc);
4698  sbitmap_vector_free (transp);
4699  sbitmap_vector_free (comp);
4700
4701  sbitmap_vector_free (hoist_vbein);
4702  sbitmap_vector_free (hoist_vbeout);
4703  sbitmap_vector_free (hoist_exprs);
4704  sbitmap_vector_free (transpout);
4705
4706  free_dominance_info (CDI_DOMINATORS);
4707}
4708
4709/* Compute the very busy expressions at entry/exit from each block.
4710
4711   An expression is very busy if all paths from a given point
4712   compute the expression.  */
4713
4714static void
4715compute_code_hoist_vbeinout (void)
4716{
4717  int changed, passes;
4718  basic_block bb;
4719
4720  sbitmap_vector_zero (hoist_vbeout, last_basic_block);
4721  sbitmap_vector_zero (hoist_vbein, last_basic_block);
4722
4723  passes = 0;
4724  changed = 1;
4725
4726  while (changed)
4727    {
4728      changed = 0;
4729
4730      /* We scan the blocks in the reverse order to speed up
4731	 the convergence.  */
4732      FOR_EACH_BB_REVERSE (bb)
4733	{
4734	  changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index], antloc[bb->index],
4735					      hoist_vbeout[bb->index], transp[bb->index]);
4736	  if (bb->next_bb != EXIT_BLOCK_PTR)
4737	    sbitmap_intersection_of_succs (hoist_vbeout[bb->index], hoist_vbein, bb->index);
4738	}
4739
4740      passes++;
4741    }
4742
4743  if (dump_file)
4744    fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
4745}
4746
4747/* Top level routine to do the dataflow analysis needed by code hoisting.  */
4748
4749static void
4750compute_code_hoist_data (void)
4751{
4752  compute_local_properties (transp, comp, antloc, &expr_hash_table);
4753  compute_transpout ();
4754  compute_code_hoist_vbeinout ();
4755  calculate_dominance_info (CDI_DOMINATORS);
4756  if (dump_file)
4757    fprintf (dump_file, "\n");
4758}
4759
4760/* Determine if the expression identified by EXPR_INDEX would
4761   reach BB unimpared if it was placed at the end of EXPR_BB.
4762
4763   It's unclear exactly what Muchnick meant by "unimpared".  It seems
4764   to me that the expression must either be computed or transparent in
4765   *every* block in the path(s) from EXPR_BB to BB.  Any other definition
4766   would allow the expression to be hoisted out of loops, even if
4767   the expression wasn't a loop invariant.
4768
4769   Contrast this to reachability for PRE where an expression is
4770   considered reachable if *any* path reaches instead of *all*
4771   paths.  */
4772
4773static int
4774hoist_expr_reaches_here_p (basic_block expr_bb, int expr_index, basic_block bb, char *visited)
4775{
4776  edge pred;
4777  edge_iterator ei;
4778  int visited_allocated_locally = 0;
4779
4780
4781  if (visited == NULL)
4782    {
4783      visited_allocated_locally = 1;
4784      visited = XCNEWVEC (char, last_basic_block);
4785    }
4786
4787  FOR_EACH_EDGE (pred, ei, bb->preds)
4788    {
4789      basic_block pred_bb = pred->src;
4790
4791      if (pred->src == ENTRY_BLOCK_PTR)
4792	break;
4793      else if (pred_bb == expr_bb)
4794	continue;
4795      else if (visited[pred_bb->index])
4796	continue;
4797
4798      /* Does this predecessor generate this expression?  */
4799      else if (TEST_BIT (comp[pred_bb->index], expr_index))
4800	break;
4801      else if (! TEST_BIT (transp[pred_bb->index], expr_index))
4802	break;
4803
4804      /* Not killed.  */
4805      else
4806	{
4807	  visited[pred_bb->index] = 1;
4808	  if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
4809					   pred_bb, visited))
4810	    break;
4811	}
4812    }
4813  if (visited_allocated_locally)
4814    free (visited);
4815
4816  return (pred == NULL);
4817}
4818
4819/* Actually perform code hoisting.  */
4820
4821static void
4822hoist_code (void)
4823{
4824  basic_block bb, dominated;
4825  basic_block *domby;
4826  unsigned int domby_len;
4827  unsigned int i,j;
4828  struct expr **index_map;
4829  struct expr *expr;
4830
4831  sbitmap_vector_zero (hoist_exprs, last_basic_block);
4832
4833  /* Compute a mapping from expression number (`bitmap_index') to
4834     hash table entry.  */
4835
4836  index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
4837  for (i = 0; i < expr_hash_table.size; i++)
4838    for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4839      index_map[expr->bitmap_index] = expr;
4840
4841  /* Walk over each basic block looking for potentially hoistable
4842     expressions, nothing gets hoisted from the entry block.  */
4843  FOR_EACH_BB (bb)
4844    {
4845      int found = 0;
4846      int insn_inserted_p;
4847
4848      domby_len = get_dominated_by (CDI_DOMINATORS, bb, &domby);
4849      /* Examine each expression that is very busy at the exit of this
4850	 block.  These are the potentially hoistable expressions.  */
4851      for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
4852	{
4853	  int hoistable = 0;
4854
4855	  if (TEST_BIT (hoist_vbeout[bb->index], i)
4856	      && TEST_BIT (transpout[bb->index], i))
4857	    {
4858	      /* We've found a potentially hoistable expression, now
4859		 we look at every block BB dominates to see if it
4860		 computes the expression.  */
4861	      for (j = 0; j < domby_len; j++)
4862		{
4863		  dominated = domby[j];
4864		  /* Ignore self dominance.  */
4865		  if (bb == dominated)
4866		    continue;
4867		  /* We've found a dominated block, now see if it computes
4868		     the busy expression and whether or not moving that
4869		     expression to the "beginning" of that block is safe.  */
4870		  if (!TEST_BIT (antloc[dominated->index], i))
4871		    continue;
4872
4873		  /* Note if the expression would reach the dominated block
4874		     unimpared if it was placed at the end of BB.
4875
4876		     Keep track of how many times this expression is hoistable
4877		     from a dominated block into BB.  */
4878		  if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4879		    hoistable++;
4880		}
4881
4882	      /* If we found more than one hoistable occurrence of this
4883		 expression, then note it in the bitmap of expressions to
4884		 hoist.  It makes no sense to hoist things which are computed
4885		 in only one BB, and doing so tends to pessimize register
4886		 allocation.  One could increase this value to try harder
4887		 to avoid any possible code expansion due to register
4888		 allocation issues; however experiments have shown that
4889		 the vast majority of hoistable expressions are only movable
4890		 from two successors, so raising this threshold is likely
4891		 to nullify any benefit we get from code hoisting.  */
4892	      if (hoistable > 1)
4893		{
4894		  SET_BIT (hoist_exprs[bb->index], i);
4895		  found = 1;
4896		}
4897	    }
4898	}
4899      /* If we found nothing to hoist, then quit now.  */
4900      if (! found)
4901        {
4902	  free (domby);
4903	continue;
4904	}
4905
4906      /* Loop over all the hoistable expressions.  */
4907      for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++)
4908	{
4909	  /* We want to insert the expression into BB only once, so
4910	     note when we've inserted it.  */
4911	  insn_inserted_p = 0;
4912
4913	  /* These tests should be the same as the tests above.  */
4914	  if (TEST_BIT (hoist_exprs[bb->index], i))
4915	    {
4916	      /* We've found a potentially hoistable expression, now
4917		 we look at every block BB dominates to see if it
4918		 computes the expression.  */
4919	      for (j = 0; j < domby_len; j++)
4920		{
4921		  dominated = domby[j];
4922		  /* Ignore self dominance.  */
4923		  if (bb == dominated)
4924		    continue;
4925
4926		  /* We've found a dominated block, now see if it computes
4927		     the busy expression and whether or not moving that
4928		     expression to the "beginning" of that block is safe.  */
4929		  if (!TEST_BIT (antloc[dominated->index], i))
4930		    continue;
4931
4932		  /* The expression is computed in the dominated block and
4933		     it would be safe to compute it at the start of the
4934		     dominated block.  Now we have to determine if the
4935		     expression would reach the dominated block if it was
4936		     placed at the end of BB.  */
4937		  if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4938		    {
4939		      struct expr *expr = index_map[i];
4940		      struct occr *occr = expr->antic_occr;
4941		      rtx insn;
4942		      rtx set;
4943
4944		      /* Find the right occurrence of this expression.  */
4945		      while (BLOCK_FOR_INSN (occr->insn) != dominated && occr)
4946			occr = occr->next;
4947
4948		      gcc_assert (occr);
4949		      insn = occr->insn;
4950		      set = single_set (insn);
4951		      gcc_assert (set);
4952
4953		      /* Create a pseudo-reg to store the result of reaching
4954			 expressions into.  Get the mode for the new pseudo
4955			 from the mode of the original destination pseudo.  */
4956		      if (expr->reaching_reg == NULL)
4957			expr->reaching_reg
4958			  = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4959
4960		      gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4961		      delete_insn (insn);
4962		      occr->deleted_p = 1;
4963		      if (!insn_inserted_p)
4964			{
4965			  insert_insn_end_bb (index_map[i], bb, 0);
4966			  insn_inserted_p = 1;
4967			}
4968		    }
4969		}
4970	    }
4971	}
4972      free (domby);
4973    }
4974
4975  free (index_map);
4976}
4977
4978/* Top level routine to perform one code hoisting (aka unification) pass
4979
4980   Return nonzero if a change was made.  */
4981
4982static int
4983one_code_hoisting_pass (void)
4984{
4985  int changed = 0;
4986
4987  alloc_hash_table (max_cuid, &expr_hash_table, 0);
4988  compute_hash_table (&expr_hash_table);
4989  if (dump_file)
4990    dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
4991
4992  if (expr_hash_table.n_elems > 0)
4993    {
4994      alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
4995      compute_code_hoist_data ();
4996      hoist_code ();
4997      free_code_hoist_mem ();
4998    }
4999
5000  free_hash_table (&expr_hash_table);
5001
5002  return changed;
5003}
5004
5005/*  Here we provide the things required to do store motion towards
5006    the exit. In order for this to be effective, gcse also needed to
5007    be taught how to move a load when it is kill only by a store to itself.
5008
5009	    int i;
5010	    float a[10];
5011
5012	    void foo(float scale)
5013	    {
5014	      for (i=0; i<10; i++)
5015		a[i] *= scale;
5016	    }
5017
5018    'i' is both loaded and stored to in the loop. Normally, gcse cannot move
5019    the load out since its live around the loop, and stored at the bottom
5020    of the loop.
5021
5022      The 'Load Motion' referred to and implemented in this file is
5023    an enhancement to gcse which when using edge based lcm, recognizes
5024    this situation and allows gcse to move the load out of the loop.
5025
5026      Once gcse has hoisted the load, store motion can then push this
5027    load towards the exit, and we end up with no loads or stores of 'i'
5028    in the loop.  */
5029
5030static hashval_t
5031pre_ldst_expr_hash (const void *p)
5032{
5033  int do_not_record_p = 0;
5034  const struct ls_expr *x = p;
5035  return hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
5036}
5037
5038static int
5039pre_ldst_expr_eq (const void *p1, const void *p2)
5040{
5041  const struct ls_expr *ptr1 = p1, *ptr2 = p2;
5042  return expr_equiv_p (ptr1->pattern, ptr2->pattern);
5043}
5044
5045/* This will search the ldst list for a matching expression. If it
5046   doesn't find one, we create one and initialize it.  */
5047
5048static struct ls_expr *
5049ldst_entry (rtx x)
5050{
5051  int do_not_record_p = 0;
5052  struct ls_expr * ptr;
5053  unsigned int hash;
5054  void **slot;
5055  struct ls_expr e;
5056
5057  hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
5058		   NULL,  /*have_reg_qty=*/false);
5059
5060  e.pattern = x;
5061  slot = htab_find_slot_with_hash (pre_ldst_table, &e, hash, INSERT);
5062  if (*slot)
5063    return (struct ls_expr *)*slot;
5064
5065  ptr = XNEW (struct ls_expr);
5066
5067  ptr->next         = pre_ldst_mems;
5068  ptr->expr         = NULL;
5069  ptr->pattern      = x;
5070  ptr->pattern_regs = NULL_RTX;
5071  ptr->loads        = NULL_RTX;
5072  ptr->stores       = NULL_RTX;
5073  ptr->reaching_reg = NULL_RTX;
5074  ptr->invalid      = 0;
5075  ptr->index        = 0;
5076  ptr->hash_index   = hash;
5077  pre_ldst_mems     = ptr;
5078  *slot = ptr;
5079
5080  return ptr;
5081}
5082
5083/* Free up an individual ldst entry.  */
5084
5085static void
5086free_ldst_entry (struct ls_expr * ptr)
5087{
5088  free_INSN_LIST_list (& ptr->loads);
5089  free_INSN_LIST_list (& ptr->stores);
5090
5091  free (ptr);
5092}
5093
5094/* Free up all memory associated with the ldst list.  */
5095
5096static void
5097free_ldst_mems (void)
5098{
5099  if (pre_ldst_table)
5100    htab_delete (pre_ldst_table);
5101  pre_ldst_table = NULL;
5102
5103  while (pre_ldst_mems)
5104    {
5105      struct ls_expr * tmp = pre_ldst_mems;
5106
5107      pre_ldst_mems = pre_ldst_mems->next;
5108
5109      free_ldst_entry (tmp);
5110    }
5111
5112  pre_ldst_mems = NULL;
5113}
5114
5115/* Dump debugging info about the ldst list.  */
5116
5117static void
5118print_ldst_list (FILE * file)
5119{
5120  struct ls_expr * ptr;
5121
5122  fprintf (file, "LDST list: \n");
5123
5124  for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
5125    {
5126      fprintf (file, "  Pattern (%3d): ", ptr->index);
5127
5128      print_rtl (file, ptr->pattern);
5129
5130      fprintf (file, "\n	 Loads : ");
5131
5132      if (ptr->loads)
5133	print_rtl (file, ptr->loads);
5134      else
5135	fprintf (file, "(nil)");
5136
5137      fprintf (file, "\n	Stores : ");
5138
5139      if (ptr->stores)
5140	print_rtl (file, ptr->stores);
5141      else
5142	fprintf (file, "(nil)");
5143
5144      fprintf (file, "\n\n");
5145    }
5146
5147  fprintf (file, "\n");
5148}
5149
5150/* Returns 1 if X is in the list of ldst only expressions.  */
5151
5152static struct ls_expr *
5153find_rtx_in_ldst (rtx x)
5154{
5155  struct ls_expr e;
5156  void **slot;
5157  if (!pre_ldst_table)
5158    return NULL;
5159  e.pattern = x;
5160  slot = htab_find_slot (pre_ldst_table, &e, NO_INSERT);
5161  if (!slot || ((struct ls_expr *)*slot)->invalid)
5162    return NULL;
5163  return *slot;
5164}
5165
5166/* Assign each element of the list of mems a monotonically increasing value.  */
5167
5168static int
5169enumerate_ldsts (void)
5170{
5171  struct ls_expr * ptr;
5172  int n = 0;
5173
5174  for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5175    ptr->index = n++;
5176
5177  return n;
5178}
5179
5180/* Return first item in the list.  */
5181
5182static inline struct ls_expr *
5183first_ls_expr (void)
5184{
5185  return pre_ldst_mems;
5186}
5187
5188/* Return the next item in the list after the specified one.  */
5189
5190static inline struct ls_expr *
5191next_ls_expr (struct ls_expr * ptr)
5192{
5193  return ptr->next;
5194}
5195
5196/* Load Motion for loads which only kill themselves.  */
5197
5198/* Return true if x is a simple MEM operation, with no registers or
5199   side effects. These are the types of loads we consider for the
5200   ld_motion list, otherwise we let the usual aliasing take care of it.  */
5201
5202static int
5203simple_mem (rtx x)
5204{
5205  if (! MEM_P (x))
5206    return 0;
5207
5208  if (MEM_VOLATILE_P (x))
5209    return 0;
5210
5211  if (GET_MODE (x) == BLKmode)
5212    return 0;
5213
5214  /* If we are handling exceptions, we must be careful with memory references
5215     that may trap. If we are not, the behavior is undefined, so we may just
5216     continue.  */
5217  if (flag_non_call_exceptions && may_trap_p (x))
5218    return 0;
5219
5220  if (side_effects_p (x))
5221    return 0;
5222
5223  /* Do not consider function arguments passed on stack.  */
5224  if (reg_mentioned_p (stack_pointer_rtx, x))
5225    return 0;
5226
5227  if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
5228    return 0;
5229
5230  return 1;
5231}
5232
5233/* Make sure there isn't a buried reference in this pattern anywhere.
5234   If there is, invalidate the entry for it since we're not capable
5235   of fixing it up just yet.. We have to be sure we know about ALL
5236   loads since the aliasing code will allow all entries in the
5237   ld_motion list to not-alias itself.  If we miss a load, we will get
5238   the wrong value since gcse might common it and we won't know to
5239   fix it up.  */
5240
5241static void
5242invalidate_any_buried_refs (rtx x)
5243{
5244  const char * fmt;
5245  int i, j;
5246  struct ls_expr * ptr;
5247
5248  /* Invalidate it in the list.  */
5249  if (MEM_P (x) && simple_mem (x))
5250    {
5251      ptr = ldst_entry (x);
5252      ptr->invalid = 1;
5253    }
5254
5255  /* Recursively process the insn.  */
5256  fmt = GET_RTX_FORMAT (GET_CODE (x));
5257
5258  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5259    {
5260      if (fmt[i] == 'e')
5261	invalidate_any_buried_refs (XEXP (x, i));
5262      else if (fmt[i] == 'E')
5263	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5264	  invalidate_any_buried_refs (XVECEXP (x, i, j));
5265    }
5266}
5267
5268/* Find all the 'simple' MEMs which are used in LOADs and STORES.  Simple
5269   being defined as MEM loads and stores to symbols, with no side effects
5270   and no registers in the expression.  For a MEM destination, we also
5271   check that the insn is still valid if we replace the destination with a
5272   REG, as is done in update_ld_motion_stores.  If there are any uses/defs
5273   which don't match this criteria, they are invalidated and trimmed out
5274   later.  */
5275
5276static void
5277compute_ld_motion_mems (void)
5278{
5279  struct ls_expr * ptr;
5280  basic_block bb;
5281  rtx insn;
5282
5283  pre_ldst_mems = NULL;
5284  pre_ldst_table = htab_create (13, pre_ldst_expr_hash,
5285				pre_ldst_expr_eq, NULL);
5286
5287  FOR_EACH_BB (bb)
5288    {
5289      FOR_BB_INSNS (bb, insn)
5290	{
5291	  if (INSN_P (insn))
5292	    {
5293	      if (GET_CODE (PATTERN (insn)) == SET)
5294		{
5295		  rtx src = SET_SRC (PATTERN (insn));
5296		  rtx dest = SET_DEST (PATTERN (insn));
5297
5298		  /* Check for a simple LOAD...  */
5299		  if (MEM_P (src) && simple_mem (src))
5300		    {
5301		      ptr = ldst_entry (src);
5302		      if (REG_P (dest))
5303			ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
5304		      else
5305			ptr->invalid = 1;
5306		    }
5307		  else
5308		    {
5309		      /* Make sure there isn't a buried load somewhere.  */
5310		      invalidate_any_buried_refs (src);
5311		    }
5312
5313		  /* Check for stores. Don't worry about aliased ones, they
5314		     will block any movement we might do later. We only care
5315		     about this exact pattern since those are the only
5316		     circumstance that we will ignore the aliasing info.  */
5317		  if (MEM_P (dest) && simple_mem (dest))
5318		    {
5319		      ptr = ldst_entry (dest);
5320
5321		      if (! MEM_P (src)
5322			  && GET_CODE (src) != ASM_OPERANDS
5323			  /* Check for REG manually since want_to_gcse_p
5324			     returns 0 for all REGs.  */
5325			  && can_assign_to_reg_p (src))
5326			ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
5327		      else
5328			ptr->invalid = 1;
5329		    }
5330		}
5331	      else
5332		invalidate_any_buried_refs (PATTERN (insn));
5333	    }
5334	}
5335    }
5336}
5337
5338/* Remove any references that have been either invalidated or are not in the
5339   expression list for pre gcse.  */
5340
5341static void
5342trim_ld_motion_mems (void)
5343{
5344  struct ls_expr * * last = & pre_ldst_mems;
5345  struct ls_expr * ptr = pre_ldst_mems;
5346
5347  while (ptr != NULL)
5348    {
5349      struct expr * expr;
5350
5351      /* Delete if entry has been made invalid.  */
5352      if (! ptr->invalid)
5353	{
5354	  /* Delete if we cannot find this mem in the expression list.  */
5355	  unsigned int hash = ptr->hash_index % expr_hash_table.size;
5356
5357	  for (expr = expr_hash_table.table[hash];
5358	       expr != NULL;
5359	       expr = expr->next_same_hash)
5360	    if (expr_equiv_p (expr->expr, ptr->pattern))
5361	      break;
5362	}
5363      else
5364	expr = (struct expr *) 0;
5365
5366      if (expr)
5367	{
5368	  /* Set the expression field if we are keeping it.  */
5369	  ptr->expr = expr;
5370	  last = & ptr->next;
5371	  ptr = ptr->next;
5372	}
5373      else
5374	{
5375	  *last = ptr->next;
5376	  htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
5377	  free_ldst_entry (ptr);
5378	  ptr = * last;
5379	}
5380    }
5381
5382  /* Show the world what we've found.  */
5383  if (dump_file && pre_ldst_mems != NULL)
5384    print_ldst_list (dump_file);
5385}
5386
5387/* This routine will take an expression which we are replacing with
5388   a reaching register, and update any stores that are needed if
5389   that expression is in the ld_motion list.  Stores are updated by
5390   copying their SRC to the reaching register, and then storing
5391   the reaching register into the store location. These keeps the
5392   correct value in the reaching register for the loads.  */
5393
5394static void
5395update_ld_motion_stores (struct expr * expr)
5396{
5397  struct ls_expr * mem_ptr;
5398
5399  if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
5400    {
5401      /* We can try to find just the REACHED stores, but is shouldn't
5402	 matter to set the reaching reg everywhere...  some might be
5403	 dead and should be eliminated later.  */
5404
5405      /* We replace (set mem expr) with (set reg expr) (set mem reg)
5406	 where reg is the reaching reg used in the load.  We checked in
5407	 compute_ld_motion_mems that we can replace (set mem expr) with
5408	 (set reg expr) in that insn.  */
5409      rtx list = mem_ptr->stores;
5410
5411      for ( ; list != NULL_RTX; list = XEXP (list, 1))
5412	{
5413	  rtx insn = XEXP (list, 0);
5414	  rtx pat = PATTERN (insn);
5415	  rtx src = SET_SRC (pat);
5416	  rtx reg = expr->reaching_reg;
5417	  rtx copy, new;
5418
5419	  /* If we've already copied it, continue.  */
5420	  if (expr->reaching_reg == src)
5421	    continue;
5422
5423	  if (dump_file)
5424	    {
5425	      fprintf (dump_file, "PRE:  store updated with reaching reg ");
5426	      print_rtl (dump_file, expr->reaching_reg);
5427	      fprintf (dump_file, ":\n	");
5428	      print_inline_rtx (dump_file, insn, 8);
5429	      fprintf (dump_file, "\n");
5430	    }
5431
5432	  copy = gen_move_insn ( reg, copy_rtx (SET_SRC (pat)));
5433	  new = emit_insn_before (copy, insn);
5434	  record_one_set (REGNO (reg), new);
5435	  SET_SRC (pat) = reg;
5436
5437	  /* un-recognize this pattern since it's probably different now.  */
5438	  INSN_CODE (insn) = -1;
5439	  gcse_create_count++;
5440	}
5441    }
5442}
5443
5444/* Store motion code.  */
5445
5446#define ANTIC_STORE_LIST(x)		((x)->loads)
5447#define AVAIL_STORE_LIST(x)		((x)->stores)
5448#define LAST_AVAIL_CHECK_FAILURE(x)	((x)->reaching_reg)
5449
5450/* This is used to communicate the target bitvector we want to use in the
5451   reg_set_info routine when called via the note_stores mechanism.  */
5452static int * regvec;
5453
5454/* And current insn, for the same routine.  */
5455static rtx compute_store_table_current_insn;
5456
5457/* Used in computing the reverse edge graph bit vectors.  */
5458static sbitmap * st_antloc;
5459
5460/* Global holding the number of store expressions we are dealing with.  */
5461static int num_stores;
5462
5463/* Checks to set if we need to mark a register set.  Called from
5464   note_stores.  */
5465
5466static void
5467reg_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED,
5468	      void *data)
5469{
5470  sbitmap bb_reg = data;
5471
5472  if (GET_CODE (dest) == SUBREG)
5473    dest = SUBREG_REG (dest);
5474
5475  if (REG_P (dest))
5476    {
5477      regvec[REGNO (dest)] = INSN_UID (compute_store_table_current_insn);
5478      if (bb_reg)
5479	SET_BIT (bb_reg, REGNO (dest));
5480    }
5481}
5482
5483/* Clear any mark that says that this insn sets dest.  Called from
5484   note_stores.  */
5485
5486static void
5487reg_clear_last_set (rtx dest, rtx setter ATTRIBUTE_UNUSED,
5488	      void *data)
5489{
5490  int *dead_vec = data;
5491
5492  if (GET_CODE (dest) == SUBREG)
5493    dest = SUBREG_REG (dest);
5494
5495  if (REG_P (dest) &&
5496      dead_vec[REGNO (dest)] == INSN_UID (compute_store_table_current_insn))
5497    dead_vec[REGNO (dest)] = 0;
5498}
5499
5500/* Return zero if some of the registers in list X are killed
5501   due to set of registers in bitmap REGS_SET.  */
5502
5503static bool
5504store_ops_ok (rtx x, int *regs_set)
5505{
5506  rtx reg;
5507
5508  for (; x; x = XEXP (x, 1))
5509    {
5510      reg = XEXP (x, 0);
5511      if (regs_set[REGNO(reg)])
5512	return false;
5513    }
5514
5515  return true;
5516}
5517
5518/* Returns a list of registers mentioned in X.  */
5519static rtx
5520extract_mentioned_regs (rtx x)
5521{
5522  return extract_mentioned_regs_helper (x, NULL_RTX);
5523}
5524
5525/* Helper for extract_mentioned_regs; ACCUM is used to accumulate used
5526   registers.  */
5527static rtx
5528extract_mentioned_regs_helper (rtx x, rtx accum)
5529{
5530  int i;
5531  enum rtx_code code;
5532  const char * fmt;
5533
5534  /* Repeat is used to turn tail-recursion into iteration.  */
5535 repeat:
5536
5537  if (x == 0)
5538    return accum;
5539
5540  code = GET_CODE (x);
5541  switch (code)
5542    {
5543    case REG:
5544      return alloc_EXPR_LIST (0, x, accum);
5545
5546    case MEM:
5547      x = XEXP (x, 0);
5548      goto repeat;
5549
5550    case PRE_DEC:
5551    case PRE_INC:
5552    case POST_DEC:
5553    case POST_INC:
5554      /* We do not run this function with arguments having side effects.  */
5555      gcc_unreachable ();
5556
5557    case PC:
5558    case CC0: /*FIXME*/
5559    case CONST:
5560    case CONST_INT:
5561    case CONST_DOUBLE:
5562    case CONST_VECTOR:
5563    case SYMBOL_REF:
5564    case LABEL_REF:
5565    case ADDR_VEC:
5566    case ADDR_DIFF_VEC:
5567      return accum;
5568
5569    default:
5570      break;
5571    }
5572
5573  i = GET_RTX_LENGTH (code) - 1;
5574  fmt = GET_RTX_FORMAT (code);
5575
5576  for (; i >= 0; i--)
5577    {
5578      if (fmt[i] == 'e')
5579	{
5580	  rtx tem = XEXP (x, i);
5581
5582	  /* If we are about to do the last recursive call
5583	     needed at this level, change it into iteration.  */
5584	  if (i == 0)
5585	    {
5586	      x = tem;
5587	      goto repeat;
5588	    }
5589
5590	  accum = extract_mentioned_regs_helper (tem, accum);
5591	}
5592      else if (fmt[i] == 'E')
5593	{
5594	  int j;
5595
5596	  for (j = 0; j < XVECLEN (x, i); j++)
5597	    accum = extract_mentioned_regs_helper (XVECEXP (x, i, j), accum);
5598	}
5599    }
5600
5601  return accum;
5602}
5603
5604/* Determine whether INSN is MEM store pattern that we will consider moving.
5605   REGS_SET_BEFORE is bitmap of registers set before (and including) the
5606   current insn, REGS_SET_AFTER is bitmap of registers set after (and
5607   including) the insn in this basic block.  We must be passing through BB from
5608   head to end, as we are using this fact to speed things up.
5609
5610   The results are stored this way:
5611
5612   -- the first anticipatable expression is added into ANTIC_STORE_LIST
5613   -- if the processed expression is not anticipatable, NULL_RTX is added
5614      there instead, so that we can use it as indicator that no further
5615      expression of this type may be anticipatable
5616   -- if the expression is available, it is added as head of AVAIL_STORE_LIST;
5617      consequently, all of them but this head are dead and may be deleted.
5618   -- if the expression is not available, the insn due to that it fails to be
5619      available is stored in reaching_reg.
5620
5621   The things are complicated a bit by fact that there already may be stores
5622   to the same MEM from other blocks; also caller must take care of the
5623   necessary cleanup of the temporary markers after end of the basic block.
5624   */
5625
5626static void
5627find_moveable_store (rtx insn, int *regs_set_before, int *regs_set_after)
5628{
5629  struct ls_expr * ptr;
5630  rtx dest, set, tmp;
5631  int check_anticipatable, check_available;
5632  basic_block bb = BLOCK_FOR_INSN (insn);
5633
5634  set = single_set (insn);
5635  if (!set)
5636    return;
5637
5638  dest = SET_DEST (set);
5639
5640  if (! MEM_P (dest) || MEM_VOLATILE_P (dest)
5641      || GET_MODE (dest) == BLKmode)
5642    return;
5643
5644  if (side_effects_p (dest))
5645    return;
5646
5647  /* If we are handling exceptions, we must be careful with memory references
5648     that may trap. If we are not, the behavior is undefined, so we may just
5649     continue.  */
5650  if (flag_non_call_exceptions && may_trap_p (dest))
5651    return;
5652
5653  /* Even if the destination cannot trap, the source may.  In this case we'd
5654     need to handle updating the REG_EH_REGION note.  */
5655  if (find_reg_note (insn, REG_EH_REGION, NULL_RTX))
5656    return;
5657
5658  /* Make sure that the SET_SRC of this store insns can be assigned to
5659     a register, or we will fail later on in replace_store_insn, which
5660     assumes that we can do this.  But sometimes the target machine has
5661     oddities like MEM read-modify-write instruction.  See for example
5662     PR24257.  */
5663  if (!can_assign_to_reg_p (SET_SRC (set)))
5664    return;
5665
5666  ptr = ldst_entry (dest);
5667  if (!ptr->pattern_regs)
5668    ptr->pattern_regs = extract_mentioned_regs (dest);
5669
5670  /* Do not check for anticipatability if we either found one anticipatable
5671     store already, or tested for one and found out that it was killed.  */
5672  check_anticipatable = 0;
5673  if (!ANTIC_STORE_LIST (ptr))
5674    check_anticipatable = 1;
5675  else
5676    {
5677      tmp = XEXP (ANTIC_STORE_LIST (ptr), 0);
5678      if (tmp != NULL_RTX
5679	  && BLOCK_FOR_INSN (tmp) != bb)
5680	check_anticipatable = 1;
5681    }
5682  if (check_anticipatable)
5683    {
5684      if (store_killed_before (dest, ptr->pattern_regs, insn, bb, regs_set_before))
5685	tmp = NULL_RTX;
5686      else
5687	tmp = insn;
5688      ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (tmp,
5689						ANTIC_STORE_LIST (ptr));
5690    }
5691
5692  /* It is not necessary to check whether store is available if we did
5693     it successfully before; if we failed before, do not bother to check
5694     until we reach the insn that caused us to fail.  */
5695  check_available = 0;
5696  if (!AVAIL_STORE_LIST (ptr))
5697    check_available = 1;
5698  else
5699    {
5700      tmp = XEXP (AVAIL_STORE_LIST (ptr), 0);
5701      if (BLOCK_FOR_INSN (tmp) != bb)
5702	check_available = 1;
5703    }
5704  if (check_available)
5705    {
5706      /* Check that we have already reached the insn at that the check
5707	 failed last time.  */
5708      if (LAST_AVAIL_CHECK_FAILURE (ptr))
5709	{
5710	  for (tmp = BB_END (bb);
5711	       tmp != insn && tmp != LAST_AVAIL_CHECK_FAILURE (ptr);
5712	       tmp = PREV_INSN (tmp))
5713	    continue;
5714	  if (tmp == insn)
5715	    check_available = 0;
5716	}
5717      else
5718	check_available = store_killed_after (dest, ptr->pattern_regs, insn,
5719					      bb, regs_set_after,
5720					      &LAST_AVAIL_CHECK_FAILURE (ptr));
5721    }
5722  if (!check_available)
5723    AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn, AVAIL_STORE_LIST (ptr));
5724}
5725
5726/* Find available and anticipatable stores.  */
5727
5728static int
5729compute_store_table (void)
5730{
5731  int ret;
5732  basic_block bb;
5733  unsigned regno;
5734  rtx insn, pat, tmp;
5735  int *last_set_in, *already_set;
5736  struct ls_expr * ptr, **prev_next_ptr_ptr;
5737
5738  max_gcse_regno = max_reg_num ();
5739
5740  reg_set_in_block = sbitmap_vector_alloc (last_basic_block,
5741						       max_gcse_regno);
5742  sbitmap_vector_zero (reg_set_in_block, last_basic_block);
5743  pre_ldst_mems = 0;
5744  pre_ldst_table = htab_create (13, pre_ldst_expr_hash,
5745				pre_ldst_expr_eq, NULL);
5746  last_set_in = XCNEWVEC (int, max_gcse_regno);
5747  already_set = XNEWVEC (int, max_gcse_regno);
5748
5749  /* Find all the stores we care about.  */
5750  FOR_EACH_BB (bb)
5751    {
5752      /* First compute the registers set in this block.  */
5753      regvec = last_set_in;
5754
5755      FOR_BB_INSNS (bb, insn)
5756	{
5757	  if (! INSN_P (insn))
5758	    continue;
5759
5760	  if (CALL_P (insn))
5761	    {
5762	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5763		if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5764		  {
5765		    last_set_in[regno] = INSN_UID (insn);
5766		    SET_BIT (reg_set_in_block[bb->index], regno);
5767		  }
5768	    }
5769
5770	  pat = PATTERN (insn);
5771	  compute_store_table_current_insn = insn;
5772	  note_stores (pat, reg_set_info, reg_set_in_block[bb->index]);
5773	}
5774
5775      /* Now find the stores.  */
5776      memset (already_set, 0, sizeof (int) * max_gcse_regno);
5777      regvec = already_set;
5778      FOR_BB_INSNS (bb, insn)
5779	{
5780	  if (! INSN_P (insn))
5781	    continue;
5782
5783	  if (CALL_P (insn))
5784	    {
5785	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5786		if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5787		  already_set[regno] = 1;
5788	    }
5789
5790	  pat = PATTERN (insn);
5791	  note_stores (pat, reg_set_info, NULL);
5792
5793	  /* Now that we've marked regs, look for stores.  */
5794	  find_moveable_store (insn, already_set, last_set_in);
5795
5796	  /* Unmark regs that are no longer set.  */
5797	  compute_store_table_current_insn = insn;
5798	  note_stores (pat, reg_clear_last_set, last_set_in);
5799	  if (CALL_P (insn))
5800	    {
5801	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5802		if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
5803		    && last_set_in[regno] == INSN_UID (insn))
5804		  last_set_in[regno] = 0;
5805	    }
5806	}
5807
5808#ifdef ENABLE_CHECKING
5809      /* last_set_in should now be all-zero.  */
5810      for (regno = 0; regno < max_gcse_regno; regno++)
5811	gcc_assert (!last_set_in[regno]);
5812#endif
5813
5814      /* Clear temporary marks.  */
5815      for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
5816	{
5817	  LAST_AVAIL_CHECK_FAILURE(ptr) = NULL_RTX;
5818	  if (ANTIC_STORE_LIST (ptr)
5819	      && (tmp = XEXP (ANTIC_STORE_LIST (ptr), 0)) == NULL_RTX)
5820	    ANTIC_STORE_LIST (ptr) = XEXP (ANTIC_STORE_LIST (ptr), 1);
5821	}
5822    }
5823
5824  /* Remove the stores that are not available anywhere, as there will
5825     be no opportunity to optimize them.  */
5826  for (ptr = pre_ldst_mems, prev_next_ptr_ptr = &pre_ldst_mems;
5827       ptr != NULL;
5828       ptr = *prev_next_ptr_ptr)
5829    {
5830      if (!AVAIL_STORE_LIST (ptr))
5831	{
5832	  *prev_next_ptr_ptr = ptr->next;
5833	  htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
5834	  free_ldst_entry (ptr);
5835	}
5836      else
5837	prev_next_ptr_ptr = &ptr->next;
5838    }
5839
5840  ret = enumerate_ldsts ();
5841
5842  if (dump_file)
5843    {
5844      fprintf (dump_file, "ST_avail and ST_antic (shown under loads..)\n");
5845      print_ldst_list (dump_file);
5846    }
5847
5848  free (last_set_in);
5849  free (already_set);
5850  return ret;
5851}
5852
5853/* Check to see if the load X is aliased with STORE_PATTERN.
5854   AFTER is true if we are checking the case when STORE_PATTERN occurs
5855   after the X.  */
5856
5857static bool
5858load_kills_store (rtx x, rtx store_pattern, int after)
5859{
5860  if (after)
5861    return anti_dependence (x, store_pattern);
5862  else
5863    return true_dependence (store_pattern, GET_MODE (store_pattern), x,
5864			    rtx_addr_varies_p);
5865}
5866
5867/* Go through the entire insn X, looking for any loads which might alias
5868   STORE_PATTERN.  Return true if found.
5869   AFTER is true if we are checking the case when STORE_PATTERN occurs
5870   after the insn X.  */
5871
5872static bool
5873find_loads (rtx x, rtx store_pattern, int after)
5874{
5875  const char * fmt;
5876  int i, j;
5877  int ret = false;
5878
5879  if (!x)
5880    return false;
5881
5882  if (GET_CODE (x) == SET)
5883    x = SET_SRC (x);
5884
5885  if (MEM_P (x))
5886    {
5887      if (load_kills_store (x, store_pattern, after))
5888	return true;
5889    }
5890
5891  /* Recursively process the insn.  */
5892  fmt = GET_RTX_FORMAT (GET_CODE (x));
5893
5894  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
5895    {
5896      if (fmt[i] == 'e')
5897	ret |= find_loads (XEXP (x, i), store_pattern, after);
5898      else if (fmt[i] == 'E')
5899	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5900	  ret |= find_loads (XVECEXP (x, i, j), store_pattern, after);
5901    }
5902  return ret;
5903}
5904
5905/* Check if INSN kills the store pattern X (is aliased with it).
5906   AFTER is true if we are checking the case when store X occurs
5907   after the insn.  Return true if it does.  */
5908
5909static bool
5910store_killed_in_insn (rtx x, rtx x_regs, rtx insn, int after)
5911{
5912  rtx reg, base, note;
5913
5914  if (!INSN_P (insn))
5915    return false;
5916
5917  if (CALL_P (insn))
5918    {
5919      /* A normal or pure call might read from pattern,
5920	 but a const call will not.  */
5921      if (! CONST_OR_PURE_CALL_P (insn) || pure_call_p (insn))
5922	return true;
5923
5924      /* But even a const call reads its parameters.  Check whether the
5925	 base of some of registers used in mem is stack pointer.  */
5926      for (reg = x_regs; reg; reg = XEXP (reg, 1))
5927	{
5928	  base = find_base_term (XEXP (reg, 0));
5929	  if (!base
5930	      || (GET_CODE (base) == ADDRESS
5931		  && GET_MODE (base) == Pmode
5932		  && XEXP (base, 0) == stack_pointer_rtx))
5933	    return true;
5934	}
5935
5936      return false;
5937    }
5938
5939  if (GET_CODE (PATTERN (insn)) == SET)
5940    {
5941      rtx pat = PATTERN (insn);
5942      rtx dest = SET_DEST (pat);
5943
5944      if (GET_CODE (dest) == ZERO_EXTRACT)
5945	dest = XEXP (dest, 0);
5946
5947      /* Check for memory stores to aliased objects.  */
5948      if (MEM_P (dest)
5949	  && !expr_equiv_p (dest, x))
5950	{
5951	  if (after)
5952	    {
5953	      if (output_dependence (dest, x))
5954		return true;
5955	    }
5956	  else
5957	    {
5958	      if (output_dependence (x, dest))
5959		return true;
5960	    }
5961	}
5962      if (find_loads (SET_SRC (pat), x, after))
5963	return true;
5964    }
5965  else if (find_loads (PATTERN (insn), x, after))
5966    return true;
5967
5968  /* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory
5969     location aliased with X, then this insn kills X.  */
5970  note = find_reg_equal_equiv_note (insn);
5971  if (! note)
5972    return false;
5973  note = XEXP (note, 0);
5974
5975  /* However, if the note represents a must alias rather than a may
5976     alias relationship, then it does not kill X.  */
5977  if (expr_equiv_p (note, x))
5978    return false;
5979
5980  /* See if there are any aliased loads in the note.  */
5981  return find_loads (note, x, after);
5982}
5983
5984/* Returns true if the expression X is loaded or clobbered on or after INSN
5985   within basic block BB.  REGS_SET_AFTER is bitmap of registers set in
5986   or after the insn.  X_REGS is list of registers mentioned in X. If the store
5987   is killed, return the last insn in that it occurs in FAIL_INSN.  */
5988
5989static bool
5990store_killed_after (rtx x, rtx x_regs, rtx insn, basic_block bb,
5991		    int *regs_set_after, rtx *fail_insn)
5992{
5993  rtx last = BB_END (bb), act;
5994
5995  if (!store_ops_ok (x_regs, regs_set_after))
5996    {
5997      /* We do not know where it will happen.  */
5998      if (fail_insn)
5999	*fail_insn = NULL_RTX;
6000      return true;
6001    }
6002
6003  /* Scan from the end, so that fail_insn is determined correctly.  */
6004  for (act = last; act != PREV_INSN (insn); act = PREV_INSN (act))
6005    if (store_killed_in_insn (x, x_regs, act, false))
6006      {
6007	if (fail_insn)
6008	  *fail_insn = act;
6009	return true;
6010      }
6011
6012  return false;
6013}
6014
6015/* Returns true if the expression X is loaded or clobbered on or before INSN
6016   within basic block BB. X_REGS is list of registers mentioned in X.
6017   REGS_SET_BEFORE is bitmap of registers set before or in this insn.  */
6018static bool
6019store_killed_before (rtx x, rtx x_regs, rtx insn, basic_block bb,
6020		     int *regs_set_before)
6021{
6022  rtx first = BB_HEAD (bb);
6023
6024  if (!store_ops_ok (x_regs, regs_set_before))
6025    return true;
6026
6027  for ( ; insn != PREV_INSN (first); insn = PREV_INSN (insn))
6028    if (store_killed_in_insn (x, x_regs, insn, true))
6029      return true;
6030
6031  return false;
6032}
6033
6034/* Fill in available, anticipatable, transparent and kill vectors in
6035   STORE_DATA, based on lists of available and anticipatable stores.  */
6036static void
6037build_store_vectors (void)
6038{
6039  basic_block bb;
6040  int *regs_set_in_block;
6041  rtx insn, st;
6042  struct ls_expr * ptr;
6043  unsigned regno;
6044
6045  /* Build the gen_vector. This is any store in the table which is not killed
6046     by aliasing later in its block.  */
6047  ae_gen = sbitmap_vector_alloc (last_basic_block, num_stores);
6048  sbitmap_vector_zero (ae_gen, last_basic_block);
6049
6050  st_antloc = sbitmap_vector_alloc (last_basic_block, num_stores);
6051  sbitmap_vector_zero (st_antloc, last_basic_block);
6052
6053  for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6054    {
6055      for (st = AVAIL_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6056	{
6057	  insn = XEXP (st, 0);
6058	  bb = BLOCK_FOR_INSN (insn);
6059
6060	  /* If we've already seen an available expression in this block,
6061	     we can delete this one (It occurs earlier in the block). We'll
6062	     copy the SRC expression to an unused register in case there
6063	     are any side effects.  */
6064	  if (TEST_BIT (ae_gen[bb->index], ptr->index))
6065	    {
6066	      rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
6067	      if (dump_file)
6068		fprintf (dump_file, "Removing redundant store:\n");
6069	      replace_store_insn (r, XEXP (st, 0), bb, ptr);
6070	      continue;
6071	    }
6072	  SET_BIT (ae_gen[bb->index], ptr->index);
6073	}
6074
6075      for (st = ANTIC_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6076	{
6077	  insn = XEXP (st, 0);
6078	  bb = BLOCK_FOR_INSN (insn);
6079	  SET_BIT (st_antloc[bb->index], ptr->index);
6080	}
6081    }
6082
6083  ae_kill = sbitmap_vector_alloc (last_basic_block, num_stores);
6084  sbitmap_vector_zero (ae_kill, last_basic_block);
6085
6086  transp = sbitmap_vector_alloc (last_basic_block, num_stores);
6087  sbitmap_vector_zero (transp, last_basic_block);
6088  regs_set_in_block = XNEWVEC (int, max_gcse_regno);
6089
6090  FOR_EACH_BB (bb)
6091    {
6092      for (regno = 0; regno < max_gcse_regno; regno++)
6093	regs_set_in_block[regno] = TEST_BIT (reg_set_in_block[bb->index], regno);
6094
6095      for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6096	{
6097	  if (store_killed_after (ptr->pattern, ptr->pattern_regs, BB_HEAD (bb),
6098				  bb, regs_set_in_block, NULL))
6099	    {
6100	      /* It should not be necessary to consider the expression
6101		 killed if it is both anticipatable and available.  */
6102	      if (!TEST_BIT (st_antloc[bb->index], ptr->index)
6103		  || !TEST_BIT (ae_gen[bb->index], ptr->index))
6104		SET_BIT (ae_kill[bb->index], ptr->index);
6105	    }
6106	  else
6107	    SET_BIT (transp[bb->index], ptr->index);
6108	}
6109    }
6110
6111  free (regs_set_in_block);
6112
6113  if (dump_file)
6114    {
6115      dump_sbitmap_vector (dump_file, "st_antloc", "", st_antloc, last_basic_block);
6116      dump_sbitmap_vector (dump_file, "st_kill", "", ae_kill, last_basic_block);
6117      dump_sbitmap_vector (dump_file, "Transpt", "", transp, last_basic_block);
6118      dump_sbitmap_vector (dump_file, "st_avloc", "", ae_gen, last_basic_block);
6119    }
6120}
6121
6122/* Insert an instruction at the beginning of a basic block, and update
6123   the BB_HEAD if needed.  */
6124
6125static void
6126insert_insn_start_bb (rtx insn, basic_block bb)
6127{
6128  /* Insert at start of successor block.  */
6129  rtx prev = PREV_INSN (BB_HEAD (bb));
6130  rtx before = BB_HEAD (bb);
6131  while (before != 0)
6132    {
6133      if (! LABEL_P (before)
6134	  && (! NOTE_P (before)
6135	      || NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK))
6136	break;
6137      prev = before;
6138      if (prev == BB_END (bb))
6139	break;
6140      before = NEXT_INSN (before);
6141    }
6142
6143  insn = emit_insn_after_noloc (insn, prev);
6144
6145  if (dump_file)
6146    {
6147      fprintf (dump_file, "STORE_MOTION  insert store at start of BB %d:\n",
6148	       bb->index);
6149      print_inline_rtx (dump_file, insn, 6);
6150      fprintf (dump_file, "\n");
6151    }
6152}
6153
6154/* This routine will insert a store on an edge. EXPR is the ldst entry for
6155   the memory reference, and E is the edge to insert it on.  Returns nonzero
6156   if an edge insertion was performed.  */
6157
6158static int
6159insert_store (struct ls_expr * expr, edge e)
6160{
6161  rtx reg, insn;
6162  basic_block bb;
6163  edge tmp;
6164  edge_iterator ei;
6165
6166  /* We did all the deleted before this insert, so if we didn't delete a
6167     store, then we haven't set the reaching reg yet either.  */
6168  if (expr->reaching_reg == NULL_RTX)
6169    return 0;
6170
6171  if (e->flags & EDGE_FAKE)
6172    return 0;
6173
6174  reg = expr->reaching_reg;
6175  insn = gen_move_insn (copy_rtx (expr->pattern), reg);
6176
6177  /* If we are inserting this expression on ALL predecessor edges of a BB,
6178     insert it at the start of the BB, and reset the insert bits on the other
6179     edges so we don't try to insert it on the other edges.  */
6180  bb = e->dest;
6181  FOR_EACH_EDGE (tmp, ei, e->dest->preds)
6182    if (!(tmp->flags & EDGE_FAKE))
6183      {
6184	int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6185
6186	gcc_assert (index != EDGE_INDEX_NO_EDGE);
6187	if (! TEST_BIT (pre_insert_map[index], expr->index))
6188	  break;
6189      }
6190
6191  /* If tmp is NULL, we found an insertion on every edge, blank the
6192     insertion vector for these edges, and insert at the start of the BB.  */
6193  if (!tmp && bb != EXIT_BLOCK_PTR)
6194    {
6195      FOR_EACH_EDGE (tmp, ei, e->dest->preds)
6196	{
6197	  int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6198	  RESET_BIT (pre_insert_map[index], expr->index);
6199	}
6200      insert_insn_start_bb (insn, bb);
6201      return 0;
6202    }
6203
6204  /* We can't put stores in the front of blocks pointed to by abnormal
6205     edges since that may put a store where one didn't used to be.  */
6206  gcc_assert (!(e->flags & EDGE_ABNORMAL));
6207
6208  insert_insn_on_edge (insn, e);
6209
6210  if (dump_file)
6211    {
6212      fprintf (dump_file, "STORE_MOTION  insert insn on edge (%d, %d):\n",
6213	       e->src->index, e->dest->index);
6214      print_inline_rtx (dump_file, insn, 6);
6215      fprintf (dump_file, "\n");
6216    }
6217
6218  return 1;
6219}
6220
6221/* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the
6222   memory location in SMEXPR set in basic block BB.
6223
6224   This could be rather expensive.  */
6225
6226static void
6227remove_reachable_equiv_notes (basic_block bb, struct ls_expr *smexpr)
6228{
6229  edge_iterator *stack, ei;
6230  int sp;
6231  edge act;
6232  sbitmap visited = sbitmap_alloc (last_basic_block);
6233  rtx last, insn, note;
6234  rtx mem = smexpr->pattern;
6235
6236  stack = XNEWVEC (edge_iterator, n_basic_blocks);
6237  sp = 0;
6238  ei = ei_start (bb->succs);
6239
6240  sbitmap_zero (visited);
6241
6242  act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
6243  while (1)
6244    {
6245      if (!act)
6246	{
6247	  if (!sp)
6248	    {
6249	      free (stack);
6250	      sbitmap_free (visited);
6251	      return;
6252	    }
6253	  act = ei_edge (stack[--sp]);
6254	}
6255      bb = act->dest;
6256
6257      if (bb == EXIT_BLOCK_PTR
6258	  || TEST_BIT (visited, bb->index))
6259	{
6260	  if (!ei_end_p (ei))
6261	      ei_next (&ei);
6262	  act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
6263	  continue;
6264	}
6265      SET_BIT (visited, bb->index);
6266
6267      if (TEST_BIT (st_antloc[bb->index], smexpr->index))
6268	{
6269	  for (last = ANTIC_STORE_LIST (smexpr);
6270	       BLOCK_FOR_INSN (XEXP (last, 0)) != bb;
6271	       last = XEXP (last, 1))
6272	    continue;
6273	  last = XEXP (last, 0);
6274	}
6275      else
6276	last = NEXT_INSN (BB_END (bb));
6277
6278      for (insn = BB_HEAD (bb); insn != last; insn = NEXT_INSN (insn))
6279	if (INSN_P (insn))
6280	  {
6281	    note = find_reg_equal_equiv_note (insn);
6282	    if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6283	      continue;
6284
6285	    if (dump_file)
6286	      fprintf (dump_file, "STORE_MOTION  drop REG_EQUAL note at insn %d:\n",
6287		       INSN_UID (insn));
6288	    remove_note (insn, note);
6289	  }
6290
6291      if (!ei_end_p (ei))
6292	ei_next (&ei);
6293      act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
6294
6295      if (EDGE_COUNT (bb->succs) > 0)
6296	{
6297	  if (act)
6298	    stack[sp++] = ei;
6299	  ei = ei_start (bb->succs);
6300	  act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
6301	}
6302    }
6303}
6304
6305/* This routine will replace a store with a SET to a specified register.  */
6306
6307static void
6308replace_store_insn (rtx reg, rtx del, basic_block bb, struct ls_expr *smexpr)
6309{
6310  rtx insn, mem, note, set, ptr, pair;
6311
6312  mem = smexpr->pattern;
6313  insn = gen_move_insn (reg, SET_SRC (single_set (del)));
6314  insn = emit_insn_after (insn, del);
6315
6316  if (dump_file)
6317    {
6318      fprintf (dump_file,
6319	       "STORE_MOTION  delete insn in BB %d:\n      ", bb->index);
6320      print_inline_rtx (dump_file, del, 6);
6321      fprintf (dump_file, "\nSTORE MOTION  replaced with insn:\n      ");
6322      print_inline_rtx (dump_file, insn, 6);
6323      fprintf (dump_file, "\n");
6324    }
6325
6326  for (ptr = ANTIC_STORE_LIST (smexpr); ptr; ptr = XEXP (ptr, 1))
6327    if (XEXP (ptr, 0) == del)
6328      {
6329	XEXP (ptr, 0) = insn;
6330	break;
6331      }
6332
6333  /* Move the notes from the deleted insn to its replacement, and patch
6334     up the LIBCALL notes.  */
6335  REG_NOTES (insn) = REG_NOTES (del);
6336
6337  note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
6338  if (note)
6339    {
6340      pair = XEXP (note, 0);
6341      note = find_reg_note (pair, REG_LIBCALL, NULL_RTX);
6342      XEXP (note, 0) = insn;
6343    }
6344  note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
6345  if (note)
6346    {
6347      pair = XEXP (note, 0);
6348      note = find_reg_note (pair, REG_RETVAL, NULL_RTX);
6349      XEXP (note, 0) = insn;
6350    }
6351
6352  delete_insn (del);
6353
6354  /* Now we must handle REG_EQUAL notes whose contents is equal to the mem;
6355     they are no longer accurate provided that they are reached by this
6356     definition, so drop them.  */
6357  for (; insn != NEXT_INSN (BB_END (bb)); insn = NEXT_INSN (insn))
6358    if (INSN_P (insn))
6359      {
6360	set = single_set (insn);
6361	if (!set)
6362	  continue;
6363	if (expr_equiv_p (SET_DEST (set), mem))
6364	  return;
6365	note = find_reg_equal_equiv_note (insn);
6366	if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6367	  continue;
6368
6369	if (dump_file)
6370	  fprintf (dump_file, "STORE_MOTION  drop REG_EQUAL note at insn %d:\n",
6371		   INSN_UID (insn));
6372	remove_note (insn, note);
6373      }
6374  remove_reachable_equiv_notes (bb, smexpr);
6375}
6376
6377
6378/* Delete a store, but copy the value that would have been stored into
6379   the reaching_reg for later storing.  */
6380
6381static void
6382delete_store (struct ls_expr * expr, basic_block bb)
6383{
6384  rtx reg, i, del;
6385
6386  if (expr->reaching_reg == NULL_RTX)
6387    expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));
6388
6389  reg = expr->reaching_reg;
6390
6391  for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
6392    {
6393      del = XEXP (i, 0);
6394      if (BLOCK_FOR_INSN (del) == bb)
6395	{
6396	  /* We know there is only one since we deleted redundant
6397	     ones during the available computation.  */
6398	  replace_store_insn (reg, del, bb, expr);
6399	  break;
6400	}
6401    }
6402}
6403
6404/* Free memory used by store motion.  */
6405
6406static void
6407free_store_memory (void)
6408{
6409  free_ldst_mems ();
6410
6411  if (ae_gen)
6412    sbitmap_vector_free (ae_gen);
6413  if (ae_kill)
6414    sbitmap_vector_free (ae_kill);
6415  if (transp)
6416    sbitmap_vector_free (transp);
6417  if (st_antloc)
6418    sbitmap_vector_free (st_antloc);
6419  if (pre_insert_map)
6420    sbitmap_vector_free (pre_insert_map);
6421  if (pre_delete_map)
6422    sbitmap_vector_free (pre_delete_map);
6423  if (reg_set_in_block)
6424    sbitmap_vector_free (reg_set_in_block);
6425
6426  ae_gen = ae_kill = transp = st_antloc = NULL;
6427  pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
6428}
6429
6430/* Perform store motion. Much like gcse, except we move expressions the
6431   other way by looking at the flowgraph in reverse.  */
6432
6433static void
6434store_motion (void)
6435{
6436  basic_block bb;
6437  int x;
6438  struct ls_expr * ptr;
6439  int update_flow = 0;
6440
6441  if (dump_file)
6442    {
6443      fprintf (dump_file, "before store motion\n");
6444      print_rtl (dump_file, get_insns ());
6445    }
6446
6447  init_alias_analysis ();
6448
6449  /* Find all the available and anticipatable stores.  */
6450  num_stores = compute_store_table ();
6451  if (num_stores == 0)
6452    {
6453      htab_delete (pre_ldst_table);
6454      pre_ldst_table = NULL;
6455      sbitmap_vector_free (reg_set_in_block);
6456      end_alias_analysis ();
6457      return;
6458    }
6459
6460  /* Now compute kill & transp vectors.  */
6461  build_store_vectors ();
6462  add_noreturn_fake_exit_edges ();
6463  connect_infinite_loops_to_exit ();
6464
6465  edge_list = pre_edge_rev_lcm (num_stores, transp, ae_gen,
6466				st_antloc, ae_kill, &pre_insert_map,
6467				&pre_delete_map);
6468
6469  /* Now we want to insert the new stores which are going to be needed.  */
6470  for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6471    {
6472      /* If any of the edges we have above are abnormal, we can't move this
6473	 store.  */
6474      for (x = NUM_EDGES (edge_list) - 1; x >= 0; x--)
6475	if (TEST_BIT (pre_insert_map[x], ptr->index)
6476	    && (INDEX_EDGE (edge_list, x)->flags & EDGE_ABNORMAL))
6477	  break;
6478
6479      if (x >= 0)
6480	{
6481	  if (dump_file != NULL)
6482	    fprintf (dump_file,
6483		     "Can't replace store %d: abnormal edge from %d to %d\n",
6484		     ptr->index, INDEX_EDGE (edge_list, x)->src->index,
6485		     INDEX_EDGE (edge_list, x)->dest->index);
6486	  continue;
6487	}
6488
6489      /* Now we want to insert the new stores which are going to be needed.  */
6490
6491      FOR_EACH_BB (bb)
6492	if (TEST_BIT (pre_delete_map[bb->index], ptr->index))
6493	  delete_store (ptr, bb);
6494
6495      for (x = 0; x < NUM_EDGES (edge_list); x++)
6496	if (TEST_BIT (pre_insert_map[x], ptr->index))
6497	  update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
6498    }
6499
6500  if (update_flow)
6501    commit_edge_insertions ();
6502
6503  free_store_memory ();
6504  free_edge_list (edge_list);
6505  remove_fake_exit_edges ();
6506  end_alias_analysis ();
6507}
6508
6509
6510/* Entry point for jump bypassing optimization pass.  */
6511
6512static int
6513bypass_jumps (void)
6514{
6515  int changed;
6516
6517  /* We do not construct an accurate cfg in functions which call
6518     setjmp, so just punt to be safe.  */
6519  if (current_function_calls_setjmp)
6520    return 0;
6521
6522  /* Identify the basic block information for this function, including
6523     successors and predecessors.  */
6524  max_gcse_regno = max_reg_num ();
6525
6526  if (dump_file)
6527    dump_flow_info (dump_file, dump_flags);
6528
6529  /* Return if there's nothing to do, or it is too expensive.  */
6530  if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
6531      || is_too_expensive (_ ("jump bypassing disabled")))
6532    return 0;
6533
6534  gcc_obstack_init (&gcse_obstack);
6535  bytes_used = 0;
6536
6537  /* We need alias.  */
6538  init_alias_analysis ();
6539
6540  /* Record where pseudo-registers are set.  This data is kept accurate
6541     during each pass.  ??? We could also record hard-reg information here
6542     [since it's unchanging], however it is currently done during hash table
6543     computation.
6544
6545     It may be tempting to compute MEM set information here too, but MEM sets
6546     will be subject to code motion one day and thus we need to compute
6547     information about memory sets when we build the hash tables.  */
6548
6549  alloc_reg_set_mem (max_gcse_regno);
6550  compute_sets ();
6551
6552  max_gcse_regno = max_reg_num ();
6553  alloc_gcse_mem ();
6554  changed = one_cprop_pass (MAX_GCSE_PASSES + 2, true, true);
6555  free_gcse_mem ();
6556
6557  if (dump_file)
6558    {
6559      fprintf (dump_file, "BYPASS of %s: %d basic blocks, ",
6560	       current_function_name (), n_basic_blocks);
6561      fprintf (dump_file, "%d bytes\n\n", bytes_used);
6562    }
6563
6564  obstack_free (&gcse_obstack, NULL);
6565  free_reg_set_mem ();
6566
6567  /* We are finished with alias.  */
6568  end_alias_analysis ();
6569  allocate_reg_info (max_reg_num (), FALSE, FALSE);
6570
6571  return changed;
6572}
6573
6574/* Return true if the graph is too expensive to optimize. PASS is the
6575   optimization about to be performed.  */
6576
6577static bool
6578is_too_expensive (const char *pass)
6579{
6580  /* Trying to perform global optimizations on flow graphs which have
6581     a high connectivity will take a long time and is unlikely to be
6582     particularly useful.
6583
6584     In normal circumstances a cfg should have about twice as many
6585     edges as blocks.  But we do not want to punish small functions
6586     which have a couple switch statements.  Rather than simply
6587     threshold the number of blocks, uses something with a more
6588     graceful degradation.  */
6589  if (n_edges > 20000 + n_basic_blocks * 4)
6590    {
6591      warning (OPT_Wdisabled_optimization,
6592	       "%s: %d basic blocks and %d edges/basic block",
6593	       pass, n_basic_blocks, n_edges / n_basic_blocks);
6594
6595      return true;
6596    }
6597
6598  /* If allocating memory for the cprop bitmap would take up too much
6599     storage it's better just to disable the optimization.  */
6600  if ((n_basic_blocks
6601       * SBITMAP_SET_SIZE (max_reg_num ())
6602       * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
6603    {
6604      warning (OPT_Wdisabled_optimization,
6605	       "%s: %d basic blocks and %d registers",
6606	       pass, n_basic_blocks, max_reg_num ());
6607
6608      return true;
6609    }
6610
6611  return false;
6612}
6613
6614static bool
6615gate_handle_jump_bypass (void)
6616{
6617  return optimize > 0 && flag_gcse;
6618}
6619
6620/* Perform jump bypassing and control flow optimizations.  */
6621static unsigned int
6622rest_of_handle_jump_bypass (void)
6623{
6624  cleanup_cfg (CLEANUP_EXPENSIVE);
6625  reg_scan (get_insns (), max_reg_num ());
6626
6627  if (bypass_jumps ())
6628    {
6629      rebuild_jump_labels (get_insns ());
6630      cleanup_cfg (CLEANUP_EXPENSIVE);
6631      delete_trivially_dead_insns (get_insns (), max_reg_num ());
6632    }
6633  return 0;
6634}
6635
6636struct tree_opt_pass pass_jump_bypass =
6637{
6638  "bypass",                             /* name */
6639  gate_handle_jump_bypass,              /* gate */
6640  rest_of_handle_jump_bypass,           /* execute */
6641  NULL,                                 /* sub */
6642  NULL,                                 /* next */
6643  0,                                    /* static_pass_number */
6644  TV_BYPASS,                            /* tv_id */
6645  0,                                    /* properties_required */
6646  0,                                    /* properties_provided */
6647  0,                                    /* properties_destroyed */
6648  0,                                    /* todo_flags_start */
6649  TODO_dump_func |
6650  TODO_ggc_collect | TODO_verify_flow,  /* todo_flags_finish */
6651  'G'                                   /* letter */
6652};
6653
6654
6655static bool
6656gate_handle_gcse (void)
6657{
6658  return optimize > 0 && flag_gcse;
6659}
6660
6661
6662static unsigned int
6663rest_of_handle_gcse (void)
6664{
6665  int save_csb, save_cfj;
6666  int tem2 = 0, tem;
6667
6668  tem = gcse_main (get_insns ());
6669  rebuild_jump_labels (get_insns ());
6670  delete_trivially_dead_insns (get_insns (), max_reg_num ());
6671
6672  save_csb = flag_cse_skip_blocks;
6673  save_cfj = flag_cse_follow_jumps;
6674  flag_cse_skip_blocks = flag_cse_follow_jumps = 0;
6675
6676  /* If -fexpensive-optimizations, re-run CSE to clean up things done
6677     by gcse.  */
6678  if (flag_expensive_optimizations)
6679    {
6680      timevar_push (TV_CSE);
6681      reg_scan (get_insns (), max_reg_num ());
6682      tem2 = cse_main (get_insns (), max_reg_num ());
6683      purge_all_dead_edges ();
6684      delete_trivially_dead_insns (get_insns (), max_reg_num ());
6685      timevar_pop (TV_CSE);
6686      cse_not_expected = !flag_rerun_cse_after_loop;
6687    }
6688
6689  /* If gcse or cse altered any jumps, rerun jump optimizations to clean
6690     things up.  */
6691  if (tem || tem2)
6692    {
6693      timevar_push (TV_JUMP);
6694      rebuild_jump_labels (get_insns ());
6695      delete_dead_jumptables ();
6696      cleanup_cfg (CLEANUP_EXPENSIVE);
6697      timevar_pop (TV_JUMP);
6698    }
6699
6700  flag_cse_skip_blocks = save_csb;
6701  flag_cse_follow_jumps = save_cfj;
6702  return 0;
6703}
6704
6705struct tree_opt_pass pass_gcse =
6706{
6707  "gcse1",                              /* name */
6708  gate_handle_gcse,                     /* gate */
6709  rest_of_handle_gcse,			/* execute */
6710  NULL,                                 /* sub */
6711  NULL,                                 /* next */
6712  0,                                    /* static_pass_number */
6713  TV_GCSE,                              /* tv_id */
6714  0,                                    /* properties_required */
6715  0,                                    /* properties_provided */
6716  0,                                    /* properties_destroyed */
6717  0,                                    /* todo_flags_start */
6718  TODO_dump_func |
6719  TODO_verify_flow | TODO_ggc_collect,  /* todo_flags_finish */
6720  'G'                                   /* letter */
6721};
6722
6723
6724#include "gt-gcse.h"
6725