1/* Utility routines for data type conversion for GCC.
2   Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1997, 1998,
3   2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING.  If not, write to the Free
19Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2002110-1301, USA.  */
21
22
23/* These routines are somewhat language-independent utility function
24   intended to be called by the language-specific convert () functions.  */
25
26#include "config.h"
27#include "system.h"
28#include "coretypes.h"
29#include "tm.h"
30#include "tree.h"
31#include "flags.h"
32#include "convert.h"
33#include "toplev.h"
34#include "langhooks.h"
35#include "real.h"
36
37/* Convert EXPR to some pointer or reference type TYPE.
38   EXPR must be pointer, reference, integer, enumeral, or literal zero;
39   in other cases error is called.  */
40
41tree
42convert_to_pointer (tree type, tree expr)
43{
44  if (TREE_TYPE (expr) == type)
45    return expr;
46
47  if (integer_zerop (expr))
48    {
49      tree t = build_int_cst (type, 0);
50      if (TREE_OVERFLOW (expr) || TREE_CONSTANT_OVERFLOW (expr))
51	t = force_fit_type (t, 0, TREE_OVERFLOW (expr),
52			    TREE_CONSTANT_OVERFLOW (expr));
53      return t;
54    }
55
56  switch (TREE_CODE (TREE_TYPE (expr)))
57    {
58    case POINTER_TYPE:
59    case REFERENCE_TYPE:
60      return fold_build1 (NOP_EXPR, type, expr);
61
62    case INTEGER_TYPE:
63    case ENUMERAL_TYPE:
64    case BOOLEAN_TYPE:
65      if (TYPE_PRECISION (TREE_TYPE (expr)) != POINTER_SIZE)
66	expr = fold_build1 (NOP_EXPR,
67                            lang_hooks.types.type_for_size (POINTER_SIZE, 0),
68			    expr);
69      return fold_build1 (CONVERT_EXPR, type, expr);
70
71
72    default:
73      error ("cannot convert to a pointer type");
74      return convert_to_pointer (type, integer_zero_node);
75    }
76}
77
78/* Avoid any floating point extensions from EXP.  */
79tree
80strip_float_extensions (tree exp)
81{
82  tree sub, expt, subt;
83
84  /*  For floating point constant look up the narrowest type that can hold
85      it properly and handle it like (type)(narrowest_type)constant.
86      This way we can optimize for instance a=a*2.0 where "a" is float
87      but 2.0 is double constant.  */
88  if (TREE_CODE (exp) == REAL_CST)
89    {
90      REAL_VALUE_TYPE orig;
91      tree type = NULL;
92
93      orig = TREE_REAL_CST (exp);
94      if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
95	  && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
96	type = float_type_node;
97      else if (TYPE_PRECISION (TREE_TYPE (exp))
98	       > TYPE_PRECISION (double_type_node)
99	       && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
100	type = double_type_node;
101      if (type)
102	return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
103    }
104
105  if (TREE_CODE (exp) != NOP_EXPR
106      && TREE_CODE (exp) != CONVERT_EXPR)
107    return exp;
108
109  sub = TREE_OPERAND (exp, 0);
110  subt = TREE_TYPE (sub);
111  expt = TREE_TYPE (exp);
112
113  if (!FLOAT_TYPE_P (subt))
114    return exp;
115
116  if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
117    return exp;
118
119  return strip_float_extensions (sub);
120}
121
122
123/* Convert EXPR to some floating-point type TYPE.
124
125   EXPR must be float, integer, or enumeral;
126   in other cases error is called.  */
127
128tree
129convert_to_real (tree type, tree expr)
130{
131  enum built_in_function fcode = builtin_mathfn_code (expr);
132  tree itype = TREE_TYPE (expr);
133
134  /* Disable until we figure out how to decide whether the functions are
135     present in runtime.  */
136  /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
137  if (optimize
138      && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
139          || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
140    {
141      switch (fcode)
142        {
143#define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L:
144	  CASE_MATHFN (ACOS)
145	  CASE_MATHFN (ACOSH)
146	  CASE_MATHFN (ASIN)
147	  CASE_MATHFN (ASINH)
148	  CASE_MATHFN (ATAN)
149	  CASE_MATHFN (ATANH)
150	  CASE_MATHFN (CBRT)
151	  CASE_MATHFN (COS)
152	  CASE_MATHFN (COSH)
153	  CASE_MATHFN (ERF)
154	  CASE_MATHFN (ERFC)
155	  CASE_MATHFN (EXP)
156	  CASE_MATHFN (EXP10)
157	  CASE_MATHFN (EXP2)
158	  CASE_MATHFN (EXPM1)
159	  CASE_MATHFN (FABS)
160	  CASE_MATHFN (GAMMA)
161	  CASE_MATHFN (J0)
162	  CASE_MATHFN (J1)
163	  CASE_MATHFN (LGAMMA)
164	  CASE_MATHFN (LOG)
165	  CASE_MATHFN (LOG10)
166	  CASE_MATHFN (LOG1P)
167	  CASE_MATHFN (LOG2)
168	  CASE_MATHFN (LOGB)
169	  CASE_MATHFN (POW10)
170	  CASE_MATHFN (SIN)
171	  CASE_MATHFN (SINH)
172	  CASE_MATHFN (SQRT)
173	  CASE_MATHFN (TAN)
174	  CASE_MATHFN (TANH)
175	  CASE_MATHFN (TGAMMA)
176	  CASE_MATHFN (Y0)
177	  CASE_MATHFN (Y1)
178#undef CASE_MATHFN
179	    {
180	      tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
181	      tree newtype = type;
182
183	      /* We have (outertype)sqrt((innertype)x).  Choose the wider mode from
184		 the both as the safe type for operation.  */
185	      if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type))
186		newtype = TREE_TYPE (arg0);
187
188	      /* Be careful about integer to fp conversions.
189		 These may overflow still.  */
190	      if (FLOAT_TYPE_P (TREE_TYPE (arg0))
191		  && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
192		  && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node)
193		      || TYPE_MODE (newtype) == TYPE_MODE (float_type_node)))
194	        {
195		  tree arglist;
196		  tree fn = mathfn_built_in (newtype, fcode);
197
198		  if (fn)
199		  {
200		    arglist = build_tree_list (NULL_TREE, fold (convert_to_real (newtype, arg0)));
201		    expr = build_function_call_expr (fn, arglist);
202		    if (newtype == type)
203		      return expr;
204		  }
205		}
206	    }
207	default:
208	  break;
209	}
210    }
211  if (optimize
212      && (((fcode == BUILT_IN_FLOORL
213	   || fcode == BUILT_IN_CEILL
214	   || fcode == BUILT_IN_ROUNDL
215	   || fcode == BUILT_IN_RINTL
216	   || fcode == BUILT_IN_TRUNCL
217	   || fcode == BUILT_IN_NEARBYINTL)
218	  && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
219	      || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
220	  || ((fcode == BUILT_IN_FLOOR
221	       || fcode == BUILT_IN_CEIL
222	       || fcode == BUILT_IN_ROUND
223	       || fcode == BUILT_IN_RINT
224	       || fcode == BUILT_IN_TRUNC
225	       || fcode == BUILT_IN_NEARBYINT)
226	      && (TYPE_MODE (type) == TYPE_MODE (float_type_node)))))
227    {
228      tree fn = mathfn_built_in (type, fcode);
229
230      if (fn)
231	{
232	  tree arg
233	    = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
234
235	  /* Make sure (type)arg0 is an extension, otherwise we could end up
236	     changing (float)floor(double d) into floorf((float)d), which is
237	     incorrect because (float)d uses round-to-nearest and can round
238	     up to the next integer.  */
239	  if (TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (arg)))
240	    return
241	      build_function_call_expr (fn,
242					build_tree_list (NULL_TREE,
243					  fold (convert_to_real (type, arg))));
244	}
245    }
246
247  /* Propagate the cast into the operation.  */
248  if (itype != type && FLOAT_TYPE_P (type))
249    switch (TREE_CODE (expr))
250      {
251	/* Convert (float)-x into -(float)x.  This is safe for
252	   round-to-nearest rounding mode.  */
253	case ABS_EXPR:
254	case NEGATE_EXPR:
255	  if (!flag_rounding_math
256	      && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (expr)))
257	    return build1 (TREE_CODE (expr), type,
258			   fold (convert_to_real (type,
259						  TREE_OPERAND (expr, 0))));
260	  break;
261	/* Convert (outertype)((innertype0)a+(innertype1)b)
262	   into ((newtype)a+(newtype)b) where newtype
263	   is the widest mode from all of these.  */
264	case PLUS_EXPR:
265	case MINUS_EXPR:
266	case MULT_EXPR:
267	case RDIV_EXPR:
268	   {
269	     tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0));
270	     tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1));
271
272	     if (FLOAT_TYPE_P (TREE_TYPE (arg0))
273		 && FLOAT_TYPE_P (TREE_TYPE (arg1)))
274	       {
275		  tree newtype = type;
276
277		  if (TYPE_MODE (TREE_TYPE (arg0)) == SDmode
278		      || TYPE_MODE (TREE_TYPE (arg1)) == SDmode)
279		    newtype = dfloat32_type_node;
280		  if (TYPE_MODE (TREE_TYPE (arg0)) == DDmode
281		      || TYPE_MODE (TREE_TYPE (arg1)) == DDmode)
282		    newtype = dfloat64_type_node;
283		  if (TYPE_MODE (TREE_TYPE (arg0)) == TDmode
284		      || TYPE_MODE (TREE_TYPE (arg1)) == TDmode)
285                    newtype = dfloat128_type_node;
286		  if (newtype == dfloat32_type_node
287		      || newtype == dfloat64_type_node
288		      || newtype == dfloat128_type_node)
289		    {
290		      expr = build2 (TREE_CODE (expr), newtype,
291				     fold (convert_to_real (newtype, arg0)),
292				     fold (convert_to_real (newtype, arg1)));
293		      if (newtype == type)
294			return expr;
295		      break;
296		    }
297
298		  if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype))
299		    newtype = TREE_TYPE (arg0);
300		  if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype))
301		    newtype = TREE_TYPE (arg1);
302		  if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype))
303		    {
304		      expr = build2 (TREE_CODE (expr), newtype,
305				     fold (convert_to_real (newtype, arg0)),
306				     fold (convert_to_real (newtype, arg1)));
307		      if (newtype == type)
308			return expr;
309		    }
310	       }
311	   }
312	  break;
313	default:
314	  break;
315      }
316
317  switch (TREE_CODE (TREE_TYPE (expr)))
318    {
319    case REAL_TYPE:
320      /* Ignore the conversion if we don't need to store intermediate
321	 results and neither type is a decimal float.  */
322      return build1 ((flag_float_store
323		     || DECIMAL_FLOAT_TYPE_P (type)
324		     || DECIMAL_FLOAT_TYPE_P (itype))
325		     ? CONVERT_EXPR : NOP_EXPR, type, expr);
326
327    case INTEGER_TYPE:
328    case ENUMERAL_TYPE:
329    case BOOLEAN_TYPE:
330      return build1 (FLOAT_EXPR, type, expr);
331
332    case COMPLEX_TYPE:
333      return convert (type,
334		      fold_build1 (REALPART_EXPR,
335				   TREE_TYPE (TREE_TYPE (expr)), expr));
336
337    case POINTER_TYPE:
338    case REFERENCE_TYPE:
339      error ("pointer value used where a floating point value was expected");
340      return convert_to_real (type, integer_zero_node);
341
342    default:
343      error ("aggregate value used where a float was expected");
344      return convert_to_real (type, integer_zero_node);
345    }
346}
347
348/* Convert EXPR to some integer (or enum) type TYPE.
349
350   EXPR must be pointer, integer, discrete (enum, char, or bool), float, or
351   vector; in other cases error is called.
352
353   The result of this is always supposed to be a newly created tree node
354   not in use in any existing structure.  */
355
356tree
357convert_to_integer (tree type, tree expr)
358{
359  enum tree_code ex_form = TREE_CODE (expr);
360  tree intype = TREE_TYPE (expr);
361  unsigned int inprec = TYPE_PRECISION (intype);
362  unsigned int outprec = TYPE_PRECISION (type);
363
364  /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
365     be.  Consider `enum E = { a, b = (enum E) 3 };'.  */
366  if (!COMPLETE_TYPE_P (type))
367    {
368      error ("conversion to incomplete type");
369      return error_mark_node;
370    }
371
372  /* Convert e.g. (long)round(d) -> lround(d).  */
373  /* If we're converting to char, we may encounter differing behavior
374     between converting from double->char vs double->long->char.
375     We're in "undefined" territory but we prefer to be conservative,
376     so only proceed in "unsafe" math mode.  */
377  if (optimize
378      && (flag_unsafe_math_optimizations
379	  || (long_integer_type_node
380	      && outprec >= TYPE_PRECISION (long_integer_type_node))))
381    {
382      tree s_expr = strip_float_extensions (expr);
383      tree s_intype = TREE_TYPE (s_expr);
384      const enum built_in_function fcode = builtin_mathfn_code (s_expr);
385      tree fn = 0;
386
387      switch (fcode)
388        {
389	CASE_FLT_FN (BUILT_IN_CEIL):
390	  /* Only convert in ISO C99 mode.  */
391	  if (!TARGET_C99_FUNCTIONS)
392	    break;
393	  if (outprec < TYPE_PRECISION (long_integer_type_node)
394	      || (outprec == TYPE_PRECISION (long_integer_type_node)
395		  && !TYPE_UNSIGNED (type)))
396	    fn = mathfn_built_in (s_intype, BUILT_IN_LCEIL);
397	  else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
398		   && !TYPE_UNSIGNED (type))
399	    fn = mathfn_built_in (s_intype, BUILT_IN_LLCEIL);
400	  break;
401
402	CASE_FLT_FN (BUILT_IN_FLOOR):
403	  /* Only convert in ISO C99 mode.  */
404	  if (!TARGET_C99_FUNCTIONS)
405	    break;
406	  if (outprec < TYPE_PRECISION (long_integer_type_node)
407	      || (outprec == TYPE_PRECISION (long_integer_type_node)
408		  && !TYPE_UNSIGNED (type)))
409	    fn = mathfn_built_in (s_intype, BUILT_IN_LFLOOR);
410	  else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
411		   && !TYPE_UNSIGNED (type))
412	    fn = mathfn_built_in (s_intype, BUILT_IN_LLFLOOR);
413	  break;
414
415	CASE_FLT_FN (BUILT_IN_ROUND):
416	  if (outprec < TYPE_PRECISION (long_integer_type_node)
417	      || (outprec == TYPE_PRECISION (long_integer_type_node)
418		  && !TYPE_UNSIGNED (type)))
419	    fn = mathfn_built_in (s_intype, BUILT_IN_LROUND);
420	  else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
421		   && !TYPE_UNSIGNED (type))
422	    fn = mathfn_built_in (s_intype, BUILT_IN_LLROUND);
423	  break;
424
425	CASE_FLT_FN (BUILT_IN_NEARBYINT):
426	  /* Only convert nearbyint* if we can ignore math exceptions.  */
427	  if (flag_trapping_math)
428	    break;
429	  /* ... Fall through ...  */
430	CASE_FLT_FN (BUILT_IN_RINT):
431	  if (outprec < TYPE_PRECISION (long_integer_type_node)
432	      || (outprec == TYPE_PRECISION (long_integer_type_node)
433		  && !TYPE_UNSIGNED (type)))
434	    fn = mathfn_built_in (s_intype, BUILT_IN_LRINT);
435	  else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
436		   && !TYPE_UNSIGNED (type))
437	    fn = mathfn_built_in (s_intype, BUILT_IN_LLRINT);
438	  break;
439
440	CASE_FLT_FN (BUILT_IN_TRUNC):
441	  {
442	    tree arglist = TREE_OPERAND (s_expr, 1);
443	    return convert_to_integer (type, TREE_VALUE (arglist));
444	  }
445
446	default:
447	  break;
448	}
449
450      if (fn)
451        {
452	  tree arglist = TREE_OPERAND (s_expr, 1);
453	  tree newexpr = build_function_call_expr (fn, arglist);
454	  return convert_to_integer (type, newexpr);
455	}
456    }
457
458  switch (TREE_CODE (intype))
459    {
460    case POINTER_TYPE:
461    case REFERENCE_TYPE:
462      if (integer_zerop (expr))
463	return build_int_cst (type, 0);
464
465      /* Convert to an unsigned integer of the correct width first,
466	 and from there widen/truncate to the required type.  */
467      expr = fold_build1 (CONVERT_EXPR,
468			  lang_hooks.types.type_for_size (POINTER_SIZE, 0),
469			  expr);
470      return fold_convert (type, expr);
471
472    case INTEGER_TYPE:
473    case ENUMERAL_TYPE:
474    case BOOLEAN_TYPE:
475      /* If this is a logical operation, which just returns 0 or 1, we can
476	 change the type of the expression.  */
477
478      if (TREE_CODE_CLASS (ex_form) == tcc_comparison)
479	{
480	  expr = copy_node (expr);
481	  TREE_TYPE (expr) = type;
482	  return expr;
483	}
484
485      /* If we are widening the type, put in an explicit conversion.
486	 Similarly if we are not changing the width.  After this, we know
487	 we are truncating EXPR.  */
488
489      else if (outprec >= inprec)
490	{
491	  enum tree_code code;
492	  tree tem;
493
494	  /* If the precision of the EXPR's type is K bits and the
495	     destination mode has more bits, and the sign is changing,
496	     it is not safe to use a NOP_EXPR.  For example, suppose
497	     that EXPR's type is a 3-bit unsigned integer type, the
498	     TYPE is a 3-bit signed integer type, and the machine mode
499	     for the types is 8-bit QImode.  In that case, the
500	     conversion necessitates an explicit sign-extension.  In
501	     the signed-to-unsigned case the high-order bits have to
502	     be cleared.  */
503	  if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (TREE_TYPE (expr))
504	      && (TYPE_PRECISION (TREE_TYPE (expr))
505		  != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)))))
506	    code = CONVERT_EXPR;
507	  else
508	    code = NOP_EXPR;
509
510	  tem = fold_unary (code, type, expr);
511	  if (tem)
512	    return tem;
513
514	  tem = build1 (code, type, expr);
515	  TREE_NO_WARNING (tem) = 1;
516	  return tem;
517	}
518
519      /* If TYPE is an enumeral type or a type with a precision less
520	 than the number of bits in its mode, do the conversion to the
521	 type corresponding to its mode, then do a nop conversion
522	 to TYPE.  */
523      else if (TREE_CODE (type) == ENUMERAL_TYPE
524	       || outprec != GET_MODE_BITSIZE (TYPE_MODE (type)))
525	return build1 (NOP_EXPR, type,
526		       convert (lang_hooks.types.type_for_mode
527				(TYPE_MODE (type), TYPE_UNSIGNED (type)),
528				expr));
529
530      /* Here detect when we can distribute the truncation down past some
531	 arithmetic.  For example, if adding two longs and converting to an
532	 int, we can equally well convert both to ints and then add.
533	 For the operations handled here, such truncation distribution
534	 is always safe.
535	 It is desirable in these cases:
536	 1) when truncating down to full-word from a larger size
537	 2) when truncating takes no work.
538	 3) when at least one operand of the arithmetic has been extended
539	 (as by C's default conversions).  In this case we need two conversions
540	 if we do the arithmetic as already requested, so we might as well
541	 truncate both and then combine.  Perhaps that way we need only one.
542
543	 Note that in general we cannot do the arithmetic in a type
544	 shorter than the desired result of conversion, even if the operands
545	 are both extended from a shorter type, because they might overflow
546	 if combined in that type.  The exceptions to this--the times when
547	 two narrow values can be combined in their narrow type even to
548	 make a wider result--are handled by "shorten" in build_binary_op.  */
549
550      switch (ex_form)
551	{
552	case RSHIFT_EXPR:
553	  /* We can pass truncation down through right shifting
554	     when the shift count is a nonpositive constant.  */
555	  if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
556	      && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) <= 0)
557	    goto trunc1;
558	  break;
559
560	case LSHIFT_EXPR:
561	  /* We can pass truncation down through left shifting
562	     when the shift count is a nonnegative constant and
563	     the target type is unsigned.  */
564	  if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
565	      && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
566	      && TYPE_UNSIGNED (type)
567	      && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
568	    {
569	      /* If shift count is less than the width of the truncated type,
570		 really shift.  */
571	      if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
572		/* In this case, shifting is like multiplication.  */
573		goto trunc1;
574	      else
575		{
576		  /* If it is >= that width, result is zero.
577		     Handling this with trunc1 would give the wrong result:
578		     (int) ((long long) a << 32) is well defined (as 0)
579		     but (int) a << 32 is undefined and would get a
580		     warning.  */
581
582		  tree t = build_int_cst (type, 0);
583
584		  /* If the original expression had side-effects, we must
585		     preserve it.  */
586		  if (TREE_SIDE_EFFECTS (expr))
587		    return build2 (COMPOUND_EXPR, type, expr, t);
588		  else
589		    return t;
590		}
591	    }
592	  break;
593
594	case MAX_EXPR:
595	case MIN_EXPR:
596	case MULT_EXPR:
597	  {
598	    tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
599	    tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
600
601	    /* Don't distribute unless the output precision is at least as big
602	       as the actual inputs.  Otherwise, the comparison of the
603	       truncated values will be wrong.  */
604	    if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
605		&& outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
606		/* If signedness of arg0 and arg1 don't match,
607		   we can't necessarily find a type to compare them in.  */
608		&& (TYPE_UNSIGNED (TREE_TYPE (arg0))
609		    == TYPE_UNSIGNED (TREE_TYPE (arg1))))
610	      goto trunc1;
611	    break;
612	  }
613
614	case PLUS_EXPR:
615	case MINUS_EXPR:
616	case BIT_AND_EXPR:
617	case BIT_IOR_EXPR:
618	case BIT_XOR_EXPR:
619	trunc1:
620	  {
621	    tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
622	    tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
623
624	    if (outprec >= BITS_PER_WORD
625		|| TRULY_NOOP_TRUNCATION (outprec, inprec)
626		|| inprec > TYPE_PRECISION (TREE_TYPE (arg0))
627		|| inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
628	      {
629		/* Do the arithmetic in type TYPEX,
630		   then convert result to TYPE.  */
631		tree typex = type;
632
633		/* Can't do arithmetic in enumeral types
634		   so use an integer type that will hold the values.  */
635		if (TREE_CODE (typex) == ENUMERAL_TYPE)
636		  typex = lang_hooks.types.type_for_size
637		    (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex));
638
639		/* But now perhaps TYPEX is as wide as INPREC.
640		   In that case, do nothing special here.
641		   (Otherwise would recurse infinitely in convert.  */
642		if (TYPE_PRECISION (typex) != inprec)
643		  {
644		    /* Don't do unsigned arithmetic where signed was wanted,
645		       or vice versa.
646		       Exception: if both of the original operands were
647		       unsigned then we can safely do the work as unsigned.
648		       Exception: shift operations take their type solely
649		       from the first argument.
650		       Exception: the LSHIFT_EXPR case above requires that
651		       we perform this operation unsigned lest we produce
652		       signed-overflow undefinedness.
653		       And we may need to do it as unsigned
654		       if we truncate to the original size.  */
655		    if (TYPE_UNSIGNED (TREE_TYPE (expr))
656			|| (TYPE_UNSIGNED (TREE_TYPE (arg0))
657			    && (TYPE_UNSIGNED (TREE_TYPE (arg1))
658				|| ex_form == LSHIFT_EXPR
659				|| ex_form == RSHIFT_EXPR
660				|| ex_form == LROTATE_EXPR
661				|| ex_form == RROTATE_EXPR))
662			|| ex_form == LSHIFT_EXPR
663			/* If we have !flag_wrapv, and either ARG0 or
664			   ARG1 is of a signed type, we have to do
665			   PLUS_EXPR or MINUS_EXPR in an unsigned
666			   type.  Otherwise, we would introduce
667			   signed-overflow undefinedness.  */
668			|| ((!TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))
669			     || !TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
670			    && (ex_form == PLUS_EXPR
671				|| ex_form == MINUS_EXPR)))
672		      typex = lang_hooks.types.unsigned_type (typex);
673		    else
674		      typex = lang_hooks.types.signed_type (typex);
675		    return convert (type,
676				    fold_build2 (ex_form, typex,
677						 convert (typex, arg0),
678						 convert (typex, arg1)));
679		  }
680	      }
681	  }
682	  break;
683
684	case NEGATE_EXPR:
685	case BIT_NOT_EXPR:
686	  /* This is not correct for ABS_EXPR,
687	     since we must test the sign before truncation.  */
688	  {
689	    tree typex;
690
691	    /* Don't do unsigned arithmetic where signed was wanted,
692	       or vice versa.  */
693	    if (TYPE_UNSIGNED (TREE_TYPE (expr)))
694	      typex = lang_hooks.types.unsigned_type (type);
695	    else
696	      typex = lang_hooks.types.signed_type (type);
697	    return convert (type,
698			    fold_build1 (ex_form, typex,
699					 convert (typex,
700						  TREE_OPERAND (expr, 0))));
701	  }
702
703	case NOP_EXPR:
704	  /* Don't introduce a
705	     "can't convert between vector values of different size" error.  */
706	  if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE
707	      && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0))))
708		  != GET_MODE_SIZE (TYPE_MODE (type))))
709	    break;
710	  /* If truncating after truncating, might as well do all at once.
711	     If truncating after extending, we may get rid of wasted work.  */
712	  return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
713
714	case COND_EXPR:
715	  /* It is sometimes worthwhile to push the narrowing down through
716	     the conditional and never loses.  */
717	  return fold_build3 (COND_EXPR, type, TREE_OPERAND (expr, 0),
718			      convert (type, TREE_OPERAND (expr, 1)),
719			      convert (type, TREE_OPERAND (expr, 2)));
720
721	default:
722	  break;
723	}
724
725      return build1 (CONVERT_EXPR, type, expr);
726
727    case REAL_TYPE:
728      return build1 (FIX_TRUNC_EXPR, type, expr);
729
730    case COMPLEX_TYPE:
731      return convert (type,
732		      fold_build1 (REALPART_EXPR,
733				   TREE_TYPE (TREE_TYPE (expr)), expr));
734
735    case VECTOR_TYPE:
736      if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
737	{
738	  error ("can't convert between vector values of different size");
739	  return error_mark_node;
740	}
741      return build1 (VIEW_CONVERT_EXPR, type, expr);
742
743    default:
744      error ("aggregate value used where an integer was expected");
745      return convert (type, integer_zero_node);
746    }
747}
748
749/* Convert EXPR to the complex type TYPE in the usual ways.  */
750
751tree
752convert_to_complex (tree type, tree expr)
753{
754  tree subtype = TREE_TYPE (type);
755
756  switch (TREE_CODE (TREE_TYPE (expr)))
757    {
758    case REAL_TYPE:
759    case INTEGER_TYPE:
760    case ENUMERAL_TYPE:
761    case BOOLEAN_TYPE:
762      return build2 (COMPLEX_EXPR, type, convert (subtype, expr),
763		     convert (subtype, integer_zero_node));
764
765    case COMPLEX_TYPE:
766      {
767	tree elt_type = TREE_TYPE (TREE_TYPE (expr));
768
769	if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
770	  return expr;
771	else if (TREE_CODE (expr) == COMPLEX_EXPR)
772	  return fold_build2 (COMPLEX_EXPR, type,
773			      convert (subtype, TREE_OPERAND (expr, 0)),
774			      convert (subtype, TREE_OPERAND (expr, 1)));
775	else
776	  {
777	    expr = save_expr (expr);
778	    return
779	      fold_build2 (COMPLEX_EXPR, type,
780			   convert (subtype,
781				    fold_build1 (REALPART_EXPR,
782						 TREE_TYPE (TREE_TYPE (expr)),
783						 expr)),
784			   convert (subtype,
785				    fold_build1 (IMAGPART_EXPR,
786						 TREE_TYPE (TREE_TYPE (expr)),
787						 expr)));
788	  }
789      }
790
791    case POINTER_TYPE:
792    case REFERENCE_TYPE:
793      error ("pointer value used where a complex was expected");
794      return convert_to_complex (type, integer_zero_node);
795
796    default:
797      error ("aggregate value used where a complex was expected");
798      return convert_to_complex (type, integer_zero_node);
799    }
800}
801
802/* Convert EXPR to the vector type TYPE in the usual ways.  */
803
804tree
805convert_to_vector (tree type, tree expr)
806{
807  switch (TREE_CODE (TREE_TYPE (expr)))
808    {
809    case INTEGER_TYPE:
810    case VECTOR_TYPE:
811      if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
812	{
813	  error ("can't convert between vector values of different size");
814	  return error_mark_node;
815	}
816      return build1 (VIEW_CONVERT_EXPR, type, expr);
817
818    default:
819      error ("can't convert value to a vector");
820      return error_mark_node;
821    }
822}
823