1/* Save and restore call-clobbered registers which are live across a call.
2   Copyright (C) 1989, 1992, 1994, 1995, 1997, 1998,
3   1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING.  If not, write to the Free
19Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2002110-1301, USA.  */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "tm.h"
26#include "rtl.h"
27#include "regs.h"
28#include "insn-config.h"
29#include "flags.h"
30#include "hard-reg-set.h"
31#include "recog.h"
32#include "basic-block.h"
33#include "reload.h"
34#include "function.h"
35#include "expr.h"
36#include "toplev.h"
37#include "tm_p.h"
38#include "addresses.h"
39
40#ifndef MAX_MOVE_MAX
41#define MAX_MOVE_MAX MOVE_MAX
42#endif
43
44#ifndef MIN_UNITS_PER_WORD
45#define MIN_UNITS_PER_WORD UNITS_PER_WORD
46#endif
47
48#define MOVE_MAX_WORDS (MOVE_MAX / UNITS_PER_WORD)
49
50/* Modes for each hard register that we can save.  The smallest mode is wide
51   enough to save the entire contents of the register.  When saving the
52   register because it is live we first try to save in multi-register modes.
53   If that is not possible the save is done one register at a time.  */
54
55static enum machine_mode
56  regno_save_mode[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
57
58/* For each hard register, a place on the stack where it can be saved,
59   if needed.  */
60
61static rtx
62  regno_save_mem[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
63
64/* We will only make a register eligible for caller-save if it can be
65   saved in its widest mode with a simple SET insn as long as the memory
66   address is valid.  We record the INSN_CODE is those insns here since
67   when we emit them, the addresses might not be valid, so they might not
68   be recognized.  */
69
70static int
71  reg_save_code[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
72static int
73  reg_restore_code[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
74
75/* Set of hard regs currently residing in save area (during insn scan).  */
76
77static HARD_REG_SET hard_regs_saved;
78
79/* Number of registers currently in hard_regs_saved.  */
80
81static int n_regs_saved;
82
83/* Computed by mark_referenced_regs, all regs referenced in a given
84   insn.  */
85static HARD_REG_SET referenced_regs;
86
87
88static void mark_set_regs (rtx, rtx, void *);
89static void mark_referenced_regs (rtx);
90static int insert_save (struct insn_chain *, int, int, HARD_REG_SET *,
91			enum machine_mode *);
92static int insert_restore (struct insn_chain *, int, int, int,
93			   enum machine_mode *);
94static struct insn_chain *insert_one_insn (struct insn_chain *, int, int,
95					   rtx);
96static void add_stored_regs (rtx, rtx, void *);
97
98/* Initialize for caller-save.
99
100   Look at all the hard registers that are used by a call and for which
101   regclass.c has not already excluded from being used across a call.
102
103   Ensure that we can find a mode to save the register and that there is a
104   simple insn to save and restore the register.  This latter check avoids
105   problems that would occur if we tried to save the MQ register of some
106   machines directly into memory.  */
107
108void
109init_caller_save (void)
110{
111  rtx addr_reg;
112  int offset;
113  rtx address;
114  int i, j;
115  enum machine_mode mode;
116  rtx savepat, restpat;
117  rtx test_reg, test_mem;
118  rtx saveinsn, restinsn;
119
120  /* First find all the registers that we need to deal with and all
121     the modes that they can have.  If we can't find a mode to use,
122     we can't have the register live over calls.  */
123
124  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
125    {
126      if (call_used_regs[i] && ! call_fixed_regs[i])
127	{
128	  for (j = 1; j <= MOVE_MAX_WORDS; j++)
129	    {
130	      regno_save_mode[i][j] = HARD_REGNO_CALLER_SAVE_MODE (i, j,
131								   VOIDmode);
132	      if (regno_save_mode[i][j] == VOIDmode && j == 1)
133		{
134		  call_fixed_regs[i] = 1;
135		  SET_HARD_REG_BIT (call_fixed_reg_set, i);
136		}
137	    }
138	}
139      else
140	regno_save_mode[i][1] = VOIDmode;
141    }
142
143  /* The following code tries to approximate the conditions under which
144     we can easily save and restore a register without scratch registers or
145     other complexities.  It will usually work, except under conditions where
146     the validity of an insn operand is dependent on the address offset.
147     No such cases are currently known.
148
149     We first find a typical offset from some BASE_REG_CLASS register.
150     This address is chosen by finding the first register in the class
151     and by finding the smallest power of two that is a valid offset from
152     that register in every mode we will use to save registers.  */
153
154  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
155    if (TEST_HARD_REG_BIT
156	(reg_class_contents
157	 [(int) base_reg_class (regno_save_mode [i][1], PLUS, CONST_INT)], i))
158      break;
159
160  gcc_assert (i < FIRST_PSEUDO_REGISTER);
161
162  addr_reg = gen_rtx_REG (Pmode, i);
163
164  for (offset = 1 << (HOST_BITS_PER_INT / 2); offset; offset >>= 1)
165    {
166      address = gen_rtx_PLUS (Pmode, addr_reg, GEN_INT (offset));
167
168      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
169	if (regno_save_mode[i][1] != VOIDmode
170	  && ! strict_memory_address_p (regno_save_mode[i][1], address))
171	  break;
172
173      if (i == FIRST_PSEUDO_REGISTER)
174	break;
175    }
176
177  /* If we didn't find a valid address, we must use register indirect.  */
178  if (offset == 0)
179    address = addr_reg;
180
181  /* Next we try to form an insn to save and restore the register.  We
182     see if such an insn is recognized and meets its constraints.
183
184     To avoid lots of unnecessary RTL allocation, we construct all the RTL
185     once, then modify the memory and register operands in-place.  */
186
187  test_reg = gen_rtx_REG (VOIDmode, 0);
188  test_mem = gen_rtx_MEM (VOIDmode, address);
189  savepat = gen_rtx_SET (VOIDmode, test_mem, test_reg);
190  restpat = gen_rtx_SET (VOIDmode, test_reg, test_mem);
191
192  saveinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, 0, savepat, -1, 0, 0);
193  restinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, 0, restpat, -1, 0, 0);
194
195  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
196    for (mode = 0 ; mode < MAX_MACHINE_MODE; mode++)
197      if (HARD_REGNO_MODE_OK (i, mode))
198	{
199	  int ok;
200
201	  /* Update the register number and modes of the register
202	     and memory operand.  */
203	  REGNO (test_reg) = i;
204	  PUT_MODE (test_reg, mode);
205	  PUT_MODE (test_mem, mode);
206
207	  /* Force re-recognition of the modified insns.  */
208	  INSN_CODE (saveinsn) = -1;
209	  INSN_CODE (restinsn) = -1;
210
211	  reg_save_code[i][mode] = recog_memoized (saveinsn);
212	  reg_restore_code[i][mode] = recog_memoized (restinsn);
213
214	  /* Now extract both insns and see if we can meet their
215	     constraints.  */
216	  ok = (reg_save_code[i][mode] != -1
217		&& reg_restore_code[i][mode] != -1);
218	  if (ok)
219	    {
220	      extract_insn (saveinsn);
221	      ok = constrain_operands (1);
222	      extract_insn (restinsn);
223	      ok &= constrain_operands (1);
224	    }
225
226	  if (! ok)
227	    {
228	      reg_save_code[i][mode] = -1;
229	      reg_restore_code[i][mode] = -1;
230	    }
231	}
232      else
233	{
234	  reg_save_code[i][mode] = -1;
235	  reg_restore_code[i][mode] = -1;
236	}
237
238  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
239    for (j = 1; j <= MOVE_MAX_WORDS; j++)
240      if (reg_save_code [i][regno_save_mode[i][j]] == -1)
241	{
242	  regno_save_mode[i][j] = VOIDmode;
243	  if (j == 1)
244	    {
245	      call_fixed_regs[i] = 1;
246	      SET_HARD_REG_BIT (call_fixed_reg_set, i);
247	    }
248	}
249}
250
251/* Initialize save areas by showing that we haven't allocated any yet.  */
252
253void
254init_save_areas (void)
255{
256  int i, j;
257
258  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
259    for (j = 1; j <= MOVE_MAX_WORDS; j++)
260      regno_save_mem[i][j] = 0;
261}
262
263/* Allocate save areas for any hard registers that might need saving.
264   We take a conservative approach here and look for call-clobbered hard
265   registers that are assigned to pseudos that cross calls.  This may
266   overestimate slightly (especially if some of these registers are later
267   used as spill registers), but it should not be significant.
268
269   Future work:
270
271     In the fallback case we should iterate backwards across all possible
272     modes for the save, choosing the largest available one instead of
273     falling back to the smallest mode immediately.  (eg TF -> DF -> SF).
274
275     We do not try to use "move multiple" instructions that exist
276     on some machines (such as the 68k moveml).  It could be a win to try
277     and use them when possible.  The hard part is doing it in a way that is
278     machine independent since they might be saving non-consecutive
279     registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */
280
281void
282setup_save_areas (void)
283{
284  int i, j, k;
285  unsigned int r;
286  HARD_REG_SET hard_regs_used;
287
288  /* Allocate space in the save area for the largest multi-register
289     pseudos first, then work backwards to single register
290     pseudos.  */
291
292  /* Find and record all call-used hard-registers in this function.  */
293  CLEAR_HARD_REG_SET (hard_regs_used);
294  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
295    if (reg_renumber[i] >= 0 && REG_N_CALLS_CROSSED (i) > 0)
296      {
297	unsigned int regno = reg_renumber[i];
298	unsigned int endregno
299	  = regno + hard_regno_nregs[regno][GET_MODE (regno_reg_rtx[i])];
300
301	for (r = regno; r < endregno; r++)
302	  if (call_used_regs[r])
303	    SET_HARD_REG_BIT (hard_regs_used, r);
304      }
305
306  /* Now run through all the call-used hard-registers and allocate
307     space for them in the caller-save area.  Try to allocate space
308     in a manner which allows multi-register saves/restores to be done.  */
309
310  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
311    for (j = MOVE_MAX_WORDS; j > 0; j--)
312      {
313	int do_save = 1;
314
315	/* If no mode exists for this size, try another.  Also break out
316	   if we have already saved this hard register.  */
317	if (regno_save_mode[i][j] == VOIDmode || regno_save_mem[i][1] != 0)
318	  continue;
319
320	/* See if any register in this group has been saved.  */
321	for (k = 0; k < j; k++)
322	  if (regno_save_mem[i + k][1])
323	    {
324	      do_save = 0;
325	      break;
326	    }
327	if (! do_save)
328	  continue;
329
330	for (k = 0; k < j; k++)
331	  if (! TEST_HARD_REG_BIT (hard_regs_used, i + k))
332	    {
333	      do_save = 0;
334	      break;
335	    }
336	if (! do_save)
337	  continue;
338
339	/* We have found an acceptable mode to store in.  */
340	regno_save_mem[i][j]
341	  = assign_stack_local (regno_save_mode[i][j],
342				GET_MODE_SIZE (regno_save_mode[i][j]), 0);
343
344	/* Setup single word save area just in case...  */
345	for (k = 0; k < j; k++)
346	  /* This should not depend on WORDS_BIG_ENDIAN.
347	     The order of words in regs is the same as in memory.  */
348	  regno_save_mem[i + k][1]
349	    = adjust_address_nv (regno_save_mem[i][j],
350				 regno_save_mode[i + k][1],
351				 k * UNITS_PER_WORD);
352      }
353
354  /* Now loop again and set the alias set of any save areas we made to
355     the alias set used to represent frame objects.  */
356  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
357    for (j = MOVE_MAX_WORDS; j > 0; j--)
358      if (regno_save_mem[i][j] != 0)
359	set_mem_alias_set (regno_save_mem[i][j], get_frame_alias_set ());
360}
361
362/* Find the places where hard regs are live across calls and save them.  */
363
364void
365save_call_clobbered_regs (void)
366{
367  struct insn_chain *chain, *next;
368  enum machine_mode save_mode [FIRST_PSEUDO_REGISTER];
369
370  /* Computed in mark_set_regs, holds all registers set by the current
371     instruction.  */
372  HARD_REG_SET this_insn_sets;
373
374  CLEAR_HARD_REG_SET (hard_regs_saved);
375  n_regs_saved = 0;
376
377  for (chain = reload_insn_chain; chain != 0; chain = next)
378    {
379      rtx insn = chain->insn;
380      enum rtx_code code = GET_CODE (insn);
381
382      next = chain->next;
383
384      gcc_assert (!chain->is_caller_save_insn);
385
386      if (INSN_P (insn))
387	{
388	  /* If some registers have been saved, see if INSN references
389	     any of them.  We must restore them before the insn if so.  */
390
391	  if (n_regs_saved)
392	    {
393	      int regno;
394
395	      if (code == JUMP_INSN)
396		/* Restore all registers if this is a JUMP_INSN.  */
397		COPY_HARD_REG_SET (referenced_regs, hard_regs_saved);
398	      else
399		{
400		  CLEAR_HARD_REG_SET (referenced_regs);
401		  mark_referenced_regs (PATTERN (insn));
402		  AND_HARD_REG_SET (referenced_regs, hard_regs_saved);
403		}
404
405	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
406		if (TEST_HARD_REG_BIT (referenced_regs, regno))
407		  regno += insert_restore (chain, 1, regno, MOVE_MAX_WORDS, save_mode);
408	    }
409
410	  if (code == CALL_INSN && ! find_reg_note (insn, REG_NORETURN, NULL))
411	    {
412	      unsigned regno;
413	      HARD_REG_SET hard_regs_to_save;
414	      reg_set_iterator rsi;
415
416	      /* Use the register life information in CHAIN to compute which
417		 regs are live during the call.  */
418	      REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
419				       &chain->live_throughout);
420	      /* Save hard registers always in the widest mode available.  */
421	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
422		if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
423		  save_mode [regno] = regno_save_mode [regno][1];
424		else
425		  save_mode [regno] = VOIDmode;
426
427	      /* Look through all live pseudos, mark their hard registers
428		 and choose proper mode for saving.  */
429	      EXECUTE_IF_SET_IN_REG_SET
430		(&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
431		{
432		  int r = reg_renumber[regno];
433		  int nregs;
434		  enum machine_mode mode;
435
436		  gcc_assert (r >= 0);
437		  nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
438		  mode = HARD_REGNO_CALLER_SAVE_MODE
439		    (r, nregs, PSEUDO_REGNO_MODE (regno));
440		  if (GET_MODE_BITSIZE (mode)
441		      > GET_MODE_BITSIZE (save_mode[r]))
442		    save_mode[r] = mode;
443		  while (nregs-- > 0)
444		    SET_HARD_REG_BIT (hard_regs_to_save, r + nregs);
445		}
446
447	      /* Record all registers set in this call insn.  These don't need
448		 to be saved.  N.B. the call insn might set a subreg of a
449		 multi-hard-reg pseudo; then the pseudo is considered live
450		 during the call, but the subreg that is set isn't.  */
451	      CLEAR_HARD_REG_SET (this_insn_sets);
452	      note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
453	      /* Sibcalls are considered to set the return value,
454		 compare flow.c:propagate_one_insn.  */
455	      if (SIBLING_CALL_P (insn) && current_function_return_rtx)
456		mark_set_regs (current_function_return_rtx, NULL_RTX,
457			       &this_insn_sets);
458
459	      /* Compute which hard regs must be saved before this call.  */
460	      AND_COMPL_HARD_REG_SET (hard_regs_to_save, call_fixed_reg_set);
461	      AND_COMPL_HARD_REG_SET (hard_regs_to_save, this_insn_sets);
462	      AND_COMPL_HARD_REG_SET (hard_regs_to_save, hard_regs_saved);
463	      AND_HARD_REG_SET (hard_regs_to_save, call_used_reg_set);
464
465	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
466		if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
467		  regno += insert_save (chain, 1, regno, &hard_regs_to_save, save_mode);
468
469	      /* Must recompute n_regs_saved.  */
470	      n_regs_saved = 0;
471	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
472		if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
473		  n_regs_saved++;
474	    }
475	}
476
477      if (chain->next == 0 || chain->next->block > chain->block)
478	{
479	  int regno;
480	  /* At the end of the basic block, we must restore any registers that
481	     remain saved.  If the last insn in the block is a JUMP_INSN, put
482	     the restore before the insn, otherwise, put it after the insn.  */
483
484	  if (n_regs_saved)
485	    for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
486	      if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
487		regno += insert_restore (chain, JUMP_P (insn),
488					 regno, MOVE_MAX_WORDS, save_mode);
489	}
490    }
491}
492
493/* Here from note_stores, or directly from save_call_clobbered_regs, when
494   an insn stores a value in a register.
495   Set the proper bit or bits in this_insn_sets.  All pseudos that have
496   been assigned hard regs have had their register number changed already,
497   so we can ignore pseudos.  */
498static void
499mark_set_regs (rtx reg, rtx setter ATTRIBUTE_UNUSED, void *data)
500{
501  int regno, endregno, i;
502  enum machine_mode mode = GET_MODE (reg);
503  HARD_REG_SET *this_insn_sets = data;
504
505  if (GET_CODE (reg) == SUBREG)
506    {
507      rtx inner = SUBREG_REG (reg);
508      if (!REG_P (inner) || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
509	return;
510      regno = subreg_regno (reg);
511    }
512  else if (REG_P (reg)
513	   && REGNO (reg) < FIRST_PSEUDO_REGISTER)
514    regno = REGNO (reg);
515  else
516    return;
517
518  endregno = regno + hard_regno_nregs[regno][mode];
519
520  for (i = regno; i < endregno; i++)
521    SET_HARD_REG_BIT (*this_insn_sets, i);
522}
523
524/* Here from note_stores when an insn stores a value in a register.
525   Set the proper bit or bits in the passed regset.  All pseudos that have
526   been assigned hard regs have had their register number changed already,
527   so we can ignore pseudos.  */
528static void
529add_stored_regs (rtx reg, rtx setter, void *data)
530{
531  int regno, endregno, i;
532  enum machine_mode mode = GET_MODE (reg);
533  int offset = 0;
534
535  if (GET_CODE (setter) == CLOBBER)
536    return;
537
538  if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
539    {
540      offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
541				    GET_MODE (SUBREG_REG (reg)),
542				    SUBREG_BYTE (reg),
543				    GET_MODE (reg));
544      reg = SUBREG_REG (reg);
545    }
546
547  if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
548    return;
549
550  regno = REGNO (reg) + offset;
551  endregno = regno + hard_regno_nregs[regno][mode];
552
553  for (i = regno; i < endregno; i++)
554    SET_REGNO_REG_SET ((regset) data, i);
555}
556
557/* Walk X and record all referenced registers in REFERENCED_REGS.  */
558static void
559mark_referenced_regs (rtx x)
560{
561  enum rtx_code code = GET_CODE (x);
562  const char *fmt;
563  int i, j;
564
565  if (code == SET)
566    mark_referenced_regs (SET_SRC (x));
567  if (code == SET || code == CLOBBER)
568    {
569      x = SET_DEST (x);
570      code = GET_CODE (x);
571      if ((code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
572	  || code == PC || code == CC0
573	  || (code == SUBREG && REG_P (SUBREG_REG (x))
574	      && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
575	      /* If we're setting only part of a multi-word register,
576		 we shall mark it as referenced, because the words
577		 that are not being set should be restored.  */
578	      && ((GET_MODE_SIZE (GET_MODE (x))
579		   >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
580		  || (GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
581		      <= UNITS_PER_WORD))))
582	return;
583    }
584  if (code == MEM || code == SUBREG)
585    {
586      x = XEXP (x, 0);
587      code = GET_CODE (x);
588    }
589
590  if (code == REG)
591    {
592      int regno = REGNO (x);
593      int hardregno = (regno < FIRST_PSEUDO_REGISTER ? regno
594		       : reg_renumber[regno]);
595
596      if (hardregno >= 0)
597	{
598	  int nregs = hard_regno_nregs[hardregno][GET_MODE (x)];
599	  while (nregs-- > 0)
600	    SET_HARD_REG_BIT (referenced_regs, hardregno + nregs);
601	}
602      /* If this is a pseudo that did not get a hard register, scan its
603	 memory location, since it might involve the use of another
604	 register, which might be saved.  */
605      else if (reg_equiv_mem[regno] != 0)
606	mark_referenced_regs (XEXP (reg_equiv_mem[regno], 0));
607      else if (reg_equiv_address[regno] != 0)
608	mark_referenced_regs (reg_equiv_address[regno]);
609      return;
610    }
611
612  fmt = GET_RTX_FORMAT (code);
613  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
614    {
615      if (fmt[i] == 'e')
616	mark_referenced_regs (XEXP (x, i));
617      else if (fmt[i] == 'E')
618	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
619	  mark_referenced_regs (XVECEXP (x, i, j));
620    }
621}
622
623/* Insert a sequence of insns to restore.  Place these insns in front of
624   CHAIN if BEFORE_P is nonzero, behind the insn otherwise.  MAXRESTORE is
625   the maximum number of registers which should be restored during this call.
626   It should never be less than 1 since we only work with entire registers.
627
628   Note that we have verified in init_caller_save that we can do this
629   with a simple SET, so use it.  Set INSN_CODE to what we save there
630   since the address might not be valid so the insn might not be recognized.
631   These insns will be reloaded and have register elimination done by
632   find_reload, so we need not worry about that here.
633
634   Return the extra number of registers saved.  */
635
636static int
637insert_restore (struct insn_chain *chain, int before_p, int regno,
638		int maxrestore, enum machine_mode *save_mode)
639{
640  int i, k;
641  rtx pat = NULL_RTX;
642  int code;
643  unsigned int numregs = 0;
644  struct insn_chain *new;
645  rtx mem;
646
647  /* A common failure mode if register status is not correct in the
648     RTL is for this routine to be called with a REGNO we didn't
649     expect to save.  That will cause us to write an insn with a (nil)
650     SET_DEST or SET_SRC.  Instead of doing so and causing a crash
651     later, check for this common case here instead.  This will remove
652     one step in debugging such problems.  */
653  gcc_assert (regno_save_mem[regno][1]);
654
655  /* Get the pattern to emit and update our status.
656
657     See if we can restore `maxrestore' registers at once.  Work
658     backwards to the single register case.  */
659  for (i = maxrestore; i > 0; i--)
660    {
661      int j;
662      int ok = 1;
663
664      if (regno_save_mem[regno][i] == 0)
665	continue;
666
667      for (j = 0; j < i; j++)
668	if (! TEST_HARD_REG_BIT (hard_regs_saved, regno + j))
669	  {
670	    ok = 0;
671	    break;
672	  }
673      /* Must do this one restore at a time.  */
674      if (! ok)
675	continue;
676
677      numregs = i;
678      break;
679    }
680
681  mem = regno_save_mem [regno][numregs];
682  if (save_mode [regno] != VOIDmode
683      && save_mode [regno] != GET_MODE (mem)
684      && numregs == (unsigned int) hard_regno_nregs[regno][save_mode [regno]])
685    mem = adjust_address (mem, save_mode[regno], 0);
686  else
687    mem = copy_rtx (mem);
688  pat = gen_rtx_SET (VOIDmode,
689		     gen_rtx_REG (GET_MODE (mem),
690				  regno), mem);
691  code = reg_restore_code[regno][GET_MODE (mem)];
692  new = insert_one_insn (chain, before_p, code, pat);
693
694  /* Clear status for all registers we restored.  */
695  for (k = 0; k < i; k++)
696    {
697      CLEAR_HARD_REG_BIT (hard_regs_saved, regno + k);
698      SET_REGNO_REG_SET (&new->dead_or_set, regno + k);
699      n_regs_saved--;
700    }
701
702  /* Tell our callers how many extra registers we saved/restored.  */
703  return numregs - 1;
704}
705
706/* Like insert_restore above, but save registers instead.  */
707
708static int
709insert_save (struct insn_chain *chain, int before_p, int regno,
710	     HARD_REG_SET (*to_save), enum machine_mode *save_mode)
711{
712  int i;
713  unsigned int k;
714  rtx pat = NULL_RTX;
715  int code;
716  unsigned int numregs = 0;
717  struct insn_chain *new;
718  rtx mem;
719
720  /* A common failure mode if register status is not correct in the
721     RTL is for this routine to be called with a REGNO we didn't
722     expect to save.  That will cause us to write an insn with a (nil)
723     SET_DEST or SET_SRC.  Instead of doing so and causing a crash
724     later, check for this common case here.  This will remove one
725     step in debugging such problems.  */
726  gcc_assert (regno_save_mem[regno][1]);
727
728  /* Get the pattern to emit and update our status.
729
730     See if we can save several registers with a single instruction.
731     Work backwards to the single register case.  */
732  for (i = MOVE_MAX_WORDS; i > 0; i--)
733    {
734      int j;
735      int ok = 1;
736      if (regno_save_mem[regno][i] == 0)
737	continue;
738
739      for (j = 0; j < i; j++)
740	if (! TEST_HARD_REG_BIT (*to_save, regno + j))
741	  {
742	    ok = 0;
743	    break;
744	  }
745      /* Must do this one save at a time.  */
746      if (! ok)
747	continue;
748
749      numregs = i;
750      break;
751    }
752
753  mem = regno_save_mem [regno][numregs];
754  if (save_mode [regno] != VOIDmode
755      && save_mode [regno] != GET_MODE (mem)
756      && numregs == (unsigned int) hard_regno_nregs[regno][save_mode [regno]])
757    mem = adjust_address (mem, save_mode[regno], 0);
758  else
759    mem = copy_rtx (mem);
760  pat = gen_rtx_SET (VOIDmode, mem,
761		     gen_rtx_REG (GET_MODE (mem),
762				  regno));
763  code = reg_save_code[regno][GET_MODE (mem)];
764  new = insert_one_insn (chain, before_p, code, pat);
765
766  /* Set hard_regs_saved and dead_or_set for all the registers we saved.  */
767  for (k = 0; k < numregs; k++)
768    {
769      SET_HARD_REG_BIT (hard_regs_saved, regno + k);
770      SET_REGNO_REG_SET (&new->dead_or_set, regno + k);
771      n_regs_saved++;
772    }
773
774  /* Tell our callers how many extra registers we saved/restored.  */
775  return numregs - 1;
776}
777
778/* Emit a new caller-save insn and set the code.  */
779static struct insn_chain *
780insert_one_insn (struct insn_chain *chain, int before_p, int code, rtx pat)
781{
782  rtx insn = chain->insn;
783  struct insn_chain *new;
784
785#ifdef HAVE_cc0
786  /* If INSN references CC0, put our insns in front of the insn that sets
787     CC0.  This is always safe, since the only way we could be passed an
788     insn that references CC0 is for a restore, and doing a restore earlier
789     isn't a problem.  We do, however, assume here that CALL_INSNs don't
790     reference CC0.  Guard against non-INSN's like CODE_LABEL.  */
791
792  if ((NONJUMP_INSN_P (insn) || JUMP_P (insn))
793      && before_p
794      && reg_referenced_p (cc0_rtx, PATTERN (insn)))
795    chain = chain->prev, insn = chain->insn;
796#endif
797
798  new = new_insn_chain ();
799  if (before_p)
800    {
801      rtx link;
802
803      new->prev = chain->prev;
804      if (new->prev != 0)
805	new->prev->next = new;
806      else
807	reload_insn_chain = new;
808
809      chain->prev = new;
810      new->next = chain;
811      new->insn = emit_insn_before (pat, insn);
812      /* ??? It would be nice if we could exclude the already / still saved
813	 registers from the live sets.  */
814      COPY_REG_SET (&new->live_throughout, &chain->live_throughout);
815      /* Registers that die in CHAIN->INSN still live in the new insn.  */
816      for (link = REG_NOTES (chain->insn); link; link = XEXP (link, 1))
817	{
818	  if (REG_NOTE_KIND (link) == REG_DEAD)
819	    {
820	      rtx reg = XEXP (link, 0);
821	      int regno, i;
822
823	      gcc_assert (REG_P (reg));
824	      regno = REGNO (reg);
825	      if (regno >= FIRST_PSEUDO_REGISTER)
826		regno = reg_renumber[regno];
827	      if (regno < 0)
828		continue;
829	      for (i = hard_regno_nregs[regno][GET_MODE (reg)] - 1;
830		   i >= 0; i--)
831		SET_REGNO_REG_SET (&new->live_throughout, regno + i);
832	    }
833	}
834      CLEAR_REG_SET (&new->dead_or_set);
835      if (chain->insn == BB_HEAD (BASIC_BLOCK (chain->block)))
836	BB_HEAD (BASIC_BLOCK (chain->block)) = new->insn;
837    }
838  else
839    {
840      new->next = chain->next;
841      if (new->next != 0)
842	new->next->prev = new;
843      chain->next = new;
844      new->prev = chain;
845      new->insn = emit_insn_after (pat, insn);
846      /* ??? It would be nice if we could exclude the already / still saved
847	 registers from the live sets, and observe REG_UNUSED notes.  */
848      COPY_REG_SET (&new->live_throughout, &chain->live_throughout);
849      /* Registers that are set in CHAIN->INSN live in the new insn.
850	 (Unless there is a REG_UNUSED note for them, but we don't
851	  look for them here.) */
852      note_stores (PATTERN (chain->insn), add_stored_regs,
853		   &new->live_throughout);
854      CLEAR_REG_SET (&new->dead_or_set);
855      if (chain->insn == BB_END (BASIC_BLOCK (chain->block)))
856	BB_END (BASIC_BLOCK (chain->block)) = new->insn;
857    }
858  new->block = chain->block;
859  new->is_caller_save_insn = 1;
860
861  INSN_CODE (new->insn) = code;
862  return new;
863}
864