1/* Perform branch target register load optimizations.
2   Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006
3   Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING.  If not, write to the Free
19Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2002110-1301, USA.  */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "tm.h"
26#include "rtl.h"
27#include "hard-reg-set.h"
28#include "regs.h"
29#include "fibheap.h"
30#include "output.h"
31#include "target.h"
32#include "expr.h"
33#include "flags.h"
34#include "insn-attr.h"
35#include "function.h"
36#include "except.h"
37#include "tm_p.h"
38#include "toplev.h"
39#include "tree-pass.h"
40
41/* Target register optimizations - these are performed after reload.  */
42
43typedef struct btr_def_group_s
44{
45  struct btr_def_group_s *next;
46  rtx src;
47  struct btr_def_s *members;
48} *btr_def_group;
49
50typedef struct btr_user_s
51{
52  struct btr_user_s *next;
53  basic_block bb;
54  int luid;
55  rtx insn;
56  /* If INSN has a single use of a single branch register, then
57     USE points to it within INSN.  If there is more than
58     one branch register use, or the use is in some way ambiguous,
59     then USE is NULL.  */
60  rtx use;
61  int n_reaching_defs;
62  int first_reaching_def;
63  char other_use_this_block;
64} *btr_user;
65
66/* btr_def structs appear on three lists:
67     1. A list of all btr_def structures (head is
68	ALL_BTR_DEFS, linked by the NEXT field).
69     2. A list of branch reg definitions per basic block (head is
70	BB_BTR_DEFS[i], linked by the NEXT_THIS_BB field).
71     3. A list of all branch reg definitions belonging to the same
72	group (head is in a BTR_DEF_GROUP struct, linked by
73	NEXT_THIS_GROUP field).  */
74
75typedef struct btr_def_s
76{
77  struct btr_def_s *next_this_bb;
78  struct btr_def_s *next_this_group;
79  basic_block bb;
80  int luid;
81  rtx insn;
82  int btr;
83  int cost;
84  /* For a branch register setting insn that has a constant
85     source (i.e. a label), group links together all the
86     insns with the same source.  For other branch register
87     setting insns, group is NULL.  */
88  btr_def_group group;
89  btr_user uses;
90  /* If this def has a reaching use which is not a simple use
91     in a branch instruction, then has_ambiguous_use will be true,
92     and we will not attempt to migrate this definition.  */
93  char has_ambiguous_use;
94  /* live_range is an approximation to the true live range for this
95     def/use web, because it records the set of blocks that contain
96     the live range.  There could be other live ranges for the same
97     branch register in that set of blocks, either in the block
98     containing the def (before the def), or in a block containing
99     a use (after the use).  If there are such other live ranges, then
100     other_btr_uses_before_def or other_btr_uses_after_use must be set true
101     as appropriate.  */
102  char other_btr_uses_before_def;
103  char other_btr_uses_after_use;
104  /* We set own_end when we have moved a definition into a dominator.
105     Thus, when a later combination removes this definition again, we know
106     to clear out trs_live_at_end again.  */
107  char own_end;
108  bitmap live_range;
109} *btr_def;
110
111static int issue_rate;
112
113static int basic_block_freq (basic_block);
114static int insn_sets_btr_p (rtx, int, int *);
115static rtx *find_btr_use (rtx);
116static int btr_referenced_p (rtx, rtx *);
117static int find_btr_reference (rtx *, void *);
118static void find_btr_def_group (btr_def_group *, btr_def);
119static btr_def add_btr_def (fibheap_t, basic_block, int, rtx,
120			    unsigned int, int, btr_def_group *);
121static btr_user new_btr_user (basic_block, int, rtx);
122static void dump_hard_reg_set (HARD_REG_SET);
123static void dump_btrs_live (int);
124static void note_other_use_this_block (unsigned int, btr_user);
125static void compute_defs_uses_and_gen (fibheap_t, btr_def *,btr_user *,
126				       sbitmap *, sbitmap *, HARD_REG_SET *);
127static void compute_kill (sbitmap *, sbitmap *, HARD_REG_SET *);
128static void compute_out (sbitmap *bb_out, sbitmap *, sbitmap *, int);
129static void link_btr_uses (btr_def *, btr_user *, sbitmap *, sbitmap *, int);
130static void build_btr_def_use_webs (fibheap_t);
131static int block_at_edge_of_live_range_p (int, btr_def);
132static void clear_btr_from_live_range (btr_def def);
133static void add_btr_to_live_range (btr_def, int);
134static void augment_live_range (bitmap, HARD_REG_SET *, basic_block,
135				basic_block, int);
136static int choose_btr (HARD_REG_SET);
137static void combine_btr_defs (btr_def, HARD_REG_SET *);
138static void btr_def_live_range (btr_def, HARD_REG_SET *);
139static void move_btr_def (basic_block, int, btr_def, bitmap, HARD_REG_SET *);
140static int migrate_btr_def (btr_def, int);
141static void migrate_btr_defs (enum reg_class, int);
142static int can_move_up (basic_block, rtx, int);
143static void note_btr_set (rtx, rtx, void *);
144
145/* The following code performs code motion of target load instructions
146   (instructions that set branch target registers), to move them
147   forward away from the branch instructions and out of loops (or,
148   more generally, from a more frequently executed place to a less
149   frequently executed place).
150   Moving target load instructions further in front of the branch
151   instruction that uses the target register value means that the hardware
152   has a better chance of preloading the instructions at the branch
153   target by the time the branch is reached.  This avoids bubbles
154   when a taken branch needs to flush out the pipeline.
155   Moving target load instructions out of loops means they are executed
156   less frequently.  */
157
158/* An obstack to hold the def-use web data structures built up for
159   migrating branch target load instructions.  */
160static struct obstack migrate_btrl_obstack;
161
162/* Array indexed by basic block number, giving the set of registers
163   live in that block.  */
164static HARD_REG_SET *btrs_live;
165
166/* Array indexed by basic block number, giving the set of registers live at
167  the end of that block, including any uses by a final jump insn, if any.  */
168static HARD_REG_SET *btrs_live_at_end;
169
170/* Set of all target registers that we are willing to allocate.  */
171static HARD_REG_SET all_btrs;
172
173/* Provide lower and upper bounds for target register numbers, so that
174   we don't need to search through all the hard registers all the time.  */
175static int first_btr, last_btr;
176
177
178
179/* Return an estimate of the frequency of execution of block bb.  */
180static int
181basic_block_freq (basic_block bb)
182{
183  return bb->frequency;
184}
185
186static rtx *btr_reference_found;
187
188/* A subroutine of btr_referenced_p, called through for_each_rtx.
189   PREG is a pointer to an rtx that is to be excluded from the
190   traversal.  If we find a reference to a target register anywhere
191   else, return 1, and put a pointer to it into btr_reference_found.  */
192static int
193find_btr_reference (rtx *px, void *preg)
194{
195  rtx x;
196  int regno, i;
197
198  if (px == preg)
199    return -1;
200  x = *px;
201  if (!REG_P (x))
202    return 0;
203  regno = REGNO (x);
204  for (i = hard_regno_nregs[regno][GET_MODE (x)] - 1; i >= 0; i--)
205    if (TEST_HARD_REG_BIT (all_btrs, regno+i))
206      {
207	btr_reference_found = px;
208	return 1;
209      }
210  return -1;
211}
212
213/* Return nonzero if X references (sets or reads) any branch target register.
214   If EXCLUDEP is set, disregard any references within the rtx pointed to
215   by it.  If returning nonzero, also set btr_reference_found as above.  */
216static int
217btr_referenced_p (rtx x, rtx *excludep)
218{
219  return for_each_rtx (&x, find_btr_reference, excludep);
220}
221
222/* Return true if insn is an instruction that sets a target register.
223   if CHECK_CONST is true, only return true if the source is constant.
224   If such a set is found and REGNO is nonzero, assign the register number
225   of the destination register to *REGNO.  */
226static int
227insn_sets_btr_p (rtx insn, int check_const, int *regno)
228{
229  rtx set;
230
231  if (NONJUMP_INSN_P (insn)
232      && (set = single_set (insn)))
233    {
234      rtx dest = SET_DEST (set);
235      rtx src = SET_SRC (set);
236
237      if (GET_CODE (dest) == SUBREG)
238	dest = XEXP (dest, 0);
239
240      if (REG_P (dest)
241	  && TEST_HARD_REG_BIT (all_btrs, REGNO (dest)))
242	{
243	  gcc_assert (!btr_referenced_p (src, NULL));
244
245	  if (!check_const || CONSTANT_P (src))
246	    {
247	      if (regno)
248		*regno = REGNO (dest);
249	      return 1;
250	    }
251	}
252    }
253  return 0;
254}
255
256/* Find and return a use of a target register within an instruction INSN.  */
257static rtx *
258find_btr_use (rtx insn)
259{
260  return btr_referenced_p (insn, NULL) ? btr_reference_found : NULL;
261}
262
263/* Find the group that the target register definition DEF belongs
264   to in the list starting with *ALL_BTR_DEF_GROUPS.  If no such
265   group exists, create one.  Add def to the group.  */
266static void
267find_btr_def_group (btr_def_group *all_btr_def_groups, btr_def def)
268{
269  if (insn_sets_btr_p (def->insn, 1, NULL))
270    {
271      btr_def_group this_group;
272      rtx def_src = SET_SRC (single_set (def->insn));
273
274      /* ?? This linear search is an efficiency concern, particularly
275	 as the search will almost always fail to find a match.  */
276      for (this_group = *all_btr_def_groups;
277	   this_group != NULL;
278	   this_group = this_group->next)
279	if (rtx_equal_p (def_src, this_group->src))
280	  break;
281
282      if (!this_group)
283	{
284	  this_group = obstack_alloc (&migrate_btrl_obstack,
285				      sizeof (struct btr_def_group_s));
286	  this_group->src = def_src;
287	  this_group->members = NULL;
288	  this_group->next = *all_btr_def_groups;
289	  *all_btr_def_groups = this_group;
290	}
291      def->group = this_group;
292      def->next_this_group = this_group->members;
293      this_group->members = def;
294    }
295  else
296    def->group = NULL;
297}
298
299/* Create a new target register definition structure, for a definition in
300   block BB, instruction INSN, and insert it into ALL_BTR_DEFS.  Return
301   the new definition.  */
302static btr_def
303add_btr_def (fibheap_t all_btr_defs, basic_block bb, int insn_luid, rtx insn,
304	     unsigned int dest_reg, int other_btr_uses_before_def,
305	     btr_def_group *all_btr_def_groups)
306{
307  btr_def this
308    = obstack_alloc (&migrate_btrl_obstack, sizeof (struct btr_def_s));
309  this->bb = bb;
310  this->luid = insn_luid;
311  this->insn = insn;
312  this->btr = dest_reg;
313  this->cost = basic_block_freq (bb);
314  this->has_ambiguous_use = 0;
315  this->other_btr_uses_before_def = other_btr_uses_before_def;
316  this->other_btr_uses_after_use = 0;
317  this->next_this_bb = NULL;
318  this->next_this_group = NULL;
319  this->uses = NULL;
320  this->live_range = NULL;
321  find_btr_def_group (all_btr_def_groups, this);
322
323  fibheap_insert (all_btr_defs, -this->cost, this);
324
325  if (dump_file)
326    fprintf (dump_file,
327      "Found target reg definition: sets %u { bb %d, insn %d }%s priority %d\n",
328      dest_reg, bb->index, INSN_UID (insn), (this->group ? "" : ":not const"),
329      this->cost);
330
331  return this;
332}
333
334/* Create a new target register user structure, for a use in block BB,
335   instruction INSN.  Return the new user.  */
336static btr_user
337new_btr_user (basic_block bb, int insn_luid, rtx insn)
338{
339  /* This instruction reads target registers.  We need
340     to decide whether we can replace all target register
341     uses easily.
342   */
343  rtx *usep = find_btr_use (PATTERN (insn));
344  rtx use;
345  btr_user user = NULL;
346
347  if (usep)
348    {
349      int unambiguous_single_use;
350
351      /* We want to ensure that USE is the only use of a target
352	 register in INSN, so that we know that to rewrite INSN to use
353	 a different target register, all we have to do is replace USE.  */
354      unambiguous_single_use = !btr_referenced_p (PATTERN (insn), usep);
355      if (!unambiguous_single_use)
356	usep = NULL;
357    }
358  use = usep ? *usep : NULL_RTX;
359  user = obstack_alloc (&migrate_btrl_obstack, sizeof (struct btr_user_s));
360  user->bb = bb;
361  user->luid = insn_luid;
362  user->insn = insn;
363  user->use = use;
364  user->other_use_this_block = 0;
365  user->next = NULL;
366  user->n_reaching_defs = 0;
367  user->first_reaching_def = -1;
368
369  if (dump_file)
370    {
371      fprintf (dump_file, "Uses target reg: { bb %d, insn %d }",
372	       bb->index, INSN_UID (insn));
373
374      if (user->use)
375	fprintf (dump_file, ": unambiguous use of reg %d\n",
376		 REGNO (user->use));
377    }
378
379  return user;
380}
381
382/* Write the contents of S to the dump file.  */
383static void
384dump_hard_reg_set (HARD_REG_SET s)
385{
386  int reg;
387  for (reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++)
388    if (TEST_HARD_REG_BIT (s, reg))
389      fprintf (dump_file, " %d", reg);
390}
391
392/* Write the set of target regs live in block BB to the dump file.  */
393static void
394dump_btrs_live (int bb)
395{
396  fprintf (dump_file, "BB%d live:", bb);
397  dump_hard_reg_set (btrs_live[bb]);
398  fprintf (dump_file, "\n");
399}
400
401/* REGNO is the number of a branch target register that is being used or
402   set.  USERS_THIS_BB is a list of preceding branch target register users;
403   If any of them use the same register, set their other_use_this_block
404   flag.  */
405static void
406note_other_use_this_block (unsigned int regno, btr_user users_this_bb)
407{
408  btr_user user;
409
410  for (user = users_this_bb; user != NULL; user = user->next)
411    if (user->use && REGNO (user->use) == regno)
412      user->other_use_this_block = 1;
413}
414
415typedef struct {
416  btr_user users_this_bb;
417  HARD_REG_SET btrs_written_in_block;
418  HARD_REG_SET btrs_live_in_block;
419  sbitmap bb_gen;
420  sbitmap *btr_defset;
421} defs_uses_info;
422
423/* Called via note_stores or directly to register stores into /
424   clobbers of a branch target register DEST that are not recognized as
425   straightforward definitions.  DATA points to information about the
426   current basic block that needs updating.  */
427static void
428note_btr_set (rtx dest, rtx set ATTRIBUTE_UNUSED, void *data)
429{
430  defs_uses_info *info = data;
431  int regno, end_regno;
432
433  if (!REG_P (dest))
434    return;
435  regno = REGNO (dest);
436  end_regno = regno + hard_regno_nregs[regno][GET_MODE (dest)];
437  for (; regno < end_regno; regno++)
438    if (TEST_HARD_REG_BIT (all_btrs, regno))
439      {
440	note_other_use_this_block (regno, info->users_this_bb);
441	SET_HARD_REG_BIT (info->btrs_written_in_block, regno);
442	SET_HARD_REG_BIT (info->btrs_live_in_block, regno);
443	sbitmap_difference (info->bb_gen, info->bb_gen,
444			    info->btr_defset[regno - first_btr]);
445      }
446}
447
448static void
449compute_defs_uses_and_gen (fibheap_t all_btr_defs, btr_def *def_array,
450			   btr_user *use_array, sbitmap *btr_defset,
451			   sbitmap *bb_gen, HARD_REG_SET *btrs_written)
452{
453  /* Scan the code building up the set of all defs and all uses.
454     For each target register, build the set of defs of that register.
455     For each block, calculate the set of target registers
456     written in that block.
457     Also calculate the set of btrs ever live in that block.
458  */
459  int i;
460  int insn_luid = 0;
461  btr_def_group all_btr_def_groups = NULL;
462  defs_uses_info info;
463
464  sbitmap_vector_zero (bb_gen, n_basic_blocks);
465  for (i = NUM_FIXED_BLOCKS; i < n_basic_blocks; i++)
466    {
467      basic_block bb = BASIC_BLOCK (i);
468      int reg;
469      btr_def defs_this_bb = NULL;
470      rtx insn;
471      rtx last;
472      int can_throw = 0;
473
474      info.users_this_bb = NULL;
475      info.bb_gen = bb_gen[i];
476      info.btr_defset = btr_defset;
477
478      CLEAR_HARD_REG_SET (info.btrs_live_in_block);
479      CLEAR_HARD_REG_SET (info.btrs_written_in_block);
480      for (reg = first_btr; reg <= last_btr; reg++)
481	if (TEST_HARD_REG_BIT (all_btrs, reg)
482	    && REGNO_REG_SET_P (bb->il.rtl->global_live_at_start, reg))
483	  SET_HARD_REG_BIT (info.btrs_live_in_block, reg);
484
485      for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb));
486	   insn != last;
487	   insn = NEXT_INSN (insn), insn_luid++)
488	{
489	  if (INSN_P (insn))
490	    {
491	      int regno;
492	      int insn_uid = INSN_UID (insn);
493
494	      if (insn_sets_btr_p (insn, 0, &regno))
495		{
496		  btr_def def = add_btr_def (
497		      all_btr_defs, bb, insn_luid, insn, regno,
498		      TEST_HARD_REG_BIT (info.btrs_live_in_block, regno),
499		      &all_btr_def_groups);
500
501		  def_array[insn_uid] = def;
502		  SET_HARD_REG_BIT (info.btrs_written_in_block, regno);
503		  SET_HARD_REG_BIT (info.btrs_live_in_block, regno);
504		  sbitmap_difference (bb_gen[i], bb_gen[i],
505				      btr_defset[regno - first_btr]);
506		  SET_BIT (bb_gen[i], insn_uid);
507		  def->next_this_bb = defs_this_bb;
508		  defs_this_bb = def;
509		  SET_BIT (btr_defset[regno - first_btr], insn_uid);
510		  note_other_use_this_block (regno, info.users_this_bb);
511		}
512	      /* Check for the blockage emitted by expand_nl_goto_receiver.  */
513	      else if (current_function_has_nonlocal_label
514		       && GET_CODE (PATTERN (insn)) == ASM_INPUT)
515		{
516		  btr_user user;
517
518		  /* Do the equivalent of calling note_other_use_this_block
519		     for every target register.  */
520		  for (user = info.users_this_bb; user != NULL;
521		       user = user->next)
522		    if (user->use)
523		      user->other_use_this_block = 1;
524		  IOR_HARD_REG_SET (info.btrs_written_in_block, all_btrs);
525		  IOR_HARD_REG_SET (info.btrs_live_in_block, all_btrs);
526		  sbitmap_zero (info.bb_gen);
527		}
528	      else
529		{
530		  if (btr_referenced_p (PATTERN (insn), NULL))
531		    {
532		      btr_user user = new_btr_user (bb, insn_luid, insn);
533
534		      use_array[insn_uid] = user;
535		      if (user->use)
536			SET_HARD_REG_BIT (info.btrs_live_in_block,
537					  REGNO (user->use));
538		      else
539			{
540			  int reg;
541			  for (reg = first_btr; reg <= last_btr; reg++)
542			    if (TEST_HARD_REG_BIT (all_btrs, reg)
543				&& refers_to_regno_p (reg, reg + 1, user->insn,
544						      NULL))
545			      {
546				note_other_use_this_block (reg,
547							   info.users_this_bb);
548				SET_HARD_REG_BIT (info.btrs_live_in_block, reg);
549			      }
550			  note_stores (PATTERN (insn), note_btr_set, &info);
551			}
552		      user->next = info.users_this_bb;
553		      info.users_this_bb = user;
554		    }
555		  if (CALL_P (insn))
556		    {
557		      HARD_REG_SET *clobbered = &call_used_reg_set;
558		      HARD_REG_SET call_saved;
559		      rtx pat = PATTERN (insn);
560		      int i;
561
562		      /* Check for sibcall.  */
563		      if (GET_CODE (pat) == PARALLEL)
564			for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
565			  if (GET_CODE (XVECEXP (pat, 0, i)) == RETURN)
566			    {
567			      COMPL_HARD_REG_SET (call_saved,
568						  call_used_reg_set);
569			      clobbered = &call_saved;
570			    }
571
572		      for (regno = first_btr; regno <= last_btr; regno++)
573			if (TEST_HARD_REG_BIT (*clobbered, regno))
574			  note_btr_set (regno_reg_rtx[regno], NULL_RTX, &info);
575		    }
576		}
577	    }
578	}
579
580      COPY_HARD_REG_SET (btrs_live[i], info.btrs_live_in_block);
581      COPY_HARD_REG_SET (btrs_written[i], info.btrs_written_in_block);
582
583      REG_SET_TO_HARD_REG_SET (btrs_live_at_end[i], bb->il.rtl->global_live_at_end);
584      /* If this block ends in a jump insn, add any uses or even clobbers
585	 of branch target registers that it might have.  */
586      for (insn = BB_END (bb); insn != BB_HEAD (bb) && ! INSN_P (insn); )
587	insn = PREV_INSN (insn);
588      /* ??? for the fall-through edge, it would make sense to insert the
589	 btr set on the edge, but that would require to split the block
590	 early on so that we can distinguish between dominance from the fall
591	 through edge - which can use the call-clobbered registers - from
592	 dominance by the throw edge.  */
593      if (can_throw_internal (insn))
594	{
595	  HARD_REG_SET tmp;
596
597	  COPY_HARD_REG_SET (tmp, call_used_reg_set);
598	  AND_HARD_REG_SET (tmp, all_btrs);
599	  IOR_HARD_REG_SET (btrs_live_at_end[i], tmp);
600	  can_throw = 1;
601	}
602      if (can_throw || JUMP_P (insn))
603	{
604	  int regno;
605
606	  for (regno = first_btr; regno <= last_btr; regno++)
607	    if (refers_to_regno_p (regno, regno+1, insn, NULL))
608	      SET_HARD_REG_BIT (btrs_live_at_end[i], regno);
609	}
610
611      if (dump_file)
612	dump_btrs_live(i);
613    }
614}
615
616static void
617compute_kill (sbitmap *bb_kill, sbitmap *btr_defset,
618	      HARD_REG_SET *btrs_written)
619{
620  int i;
621  int regno;
622
623  /* For each basic block, form the set BB_KILL - the set
624     of definitions that the block kills.  */
625  sbitmap_vector_zero (bb_kill, n_basic_blocks);
626  for (i = NUM_FIXED_BLOCKS; i < n_basic_blocks; i++)
627    {
628      for (regno = first_btr; regno <= last_btr; regno++)
629	if (TEST_HARD_REG_BIT (all_btrs, regno)
630	    && TEST_HARD_REG_BIT (btrs_written[i], regno))
631	  sbitmap_a_or_b (bb_kill[i], bb_kill[i],
632			  btr_defset[regno - first_btr]);
633    }
634}
635
636static void
637compute_out (sbitmap *bb_out, sbitmap *bb_gen, sbitmap *bb_kill, int max_uid)
638{
639  /* Perform iterative dataflow:
640      Initially, for all blocks, BB_OUT = BB_GEN.
641      For each block,
642	BB_IN  = union over predecessors of BB_OUT(pred)
643	BB_OUT = (BB_IN - BB_KILL) + BB_GEN
644     Iterate until the bb_out sets stop growing.  */
645  int i;
646  int changed;
647  sbitmap bb_in = sbitmap_alloc (max_uid);
648
649  for (i = NUM_FIXED_BLOCKS; i < n_basic_blocks; i++)
650    sbitmap_copy (bb_out[i], bb_gen[i]);
651
652  changed = 1;
653  while (changed)
654    {
655      changed = 0;
656      for (i = NUM_FIXED_BLOCKS; i < n_basic_blocks; i++)
657	{
658	  sbitmap_union_of_preds (bb_in, bb_out, i);
659	  changed |= sbitmap_union_of_diff_cg (bb_out[i], bb_gen[i],
660					       bb_in, bb_kill[i]);
661	}
662    }
663  sbitmap_free (bb_in);
664}
665
666static void
667link_btr_uses (btr_def *def_array, btr_user *use_array, sbitmap *bb_out,
668	       sbitmap *btr_defset, int max_uid)
669{
670  int i;
671  sbitmap reaching_defs = sbitmap_alloc (max_uid);
672
673  /* Link uses to the uses lists of all of their reaching defs.
674     Count up the number of reaching defs of each use.  */
675  for (i = NUM_FIXED_BLOCKS; i < n_basic_blocks; i++)
676    {
677      basic_block bb = BASIC_BLOCK (i);
678      rtx insn;
679      rtx last;
680
681      sbitmap_union_of_preds (reaching_defs, bb_out, i);
682      for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb));
683	   insn != last;
684	   insn = NEXT_INSN (insn))
685	{
686	  if (INSN_P (insn))
687	    {
688	      int insn_uid = INSN_UID (insn);
689
690	      btr_def def   = def_array[insn_uid];
691	      btr_user user = use_array[insn_uid];
692	      if (def != NULL)
693		{
694		  /* Remove all reaching defs of regno except
695		     for this one.  */
696		  sbitmap_difference (reaching_defs, reaching_defs,
697				      btr_defset[def->btr - first_btr]);
698		  SET_BIT(reaching_defs, insn_uid);
699		}
700
701	      if (user != NULL)
702		{
703		  /* Find all the reaching defs for this use.  */
704		  sbitmap reaching_defs_of_reg = sbitmap_alloc(max_uid);
705		  unsigned int uid = 0;
706		  sbitmap_iterator sbi;
707
708		  if (user->use)
709		    sbitmap_a_and_b (
710		      reaching_defs_of_reg,
711		      reaching_defs,
712		      btr_defset[REGNO (user->use) - first_btr]);
713		  else
714		    {
715		      int reg;
716
717		      sbitmap_zero (reaching_defs_of_reg);
718		      for (reg = first_btr; reg <= last_btr; reg++)
719			if (TEST_HARD_REG_BIT (all_btrs, reg)
720			    && refers_to_regno_p (reg, reg + 1, user->insn,
721						  NULL))
722			  sbitmap_a_or_b_and_c (reaching_defs_of_reg,
723			    reaching_defs_of_reg,
724			    reaching_defs,
725			    btr_defset[reg - first_btr]);
726		    }
727		  EXECUTE_IF_SET_IN_SBITMAP (reaching_defs_of_reg, 0, uid, sbi)
728		    {
729		      btr_def def = def_array[uid];
730
731		      /* We now know that def reaches user.  */
732
733		      if (dump_file)
734			fprintf (dump_file,
735			  "Def in insn %d reaches use in insn %d\n",
736			  uid, insn_uid);
737
738		      user->n_reaching_defs++;
739		      if (!user->use)
740			def->has_ambiguous_use = 1;
741		      if (user->first_reaching_def != -1)
742			{ /* There is more than one reaching def.  This is
743			     a rare case, so just give up on this def/use
744			     web when it occurs.  */
745			  def->has_ambiguous_use = 1;
746			  def_array[user->first_reaching_def]
747			    ->has_ambiguous_use = 1;
748			  if (dump_file)
749			    fprintf (dump_file,
750				     "(use %d has multiple reaching defs)\n",
751				     insn_uid);
752			}
753		      else
754			user->first_reaching_def = uid;
755		      if (user->other_use_this_block)
756			def->other_btr_uses_after_use = 1;
757		      user->next = def->uses;
758		      def->uses = user;
759		    }
760		  sbitmap_free (reaching_defs_of_reg);
761		}
762
763	      if (CALL_P (insn))
764		{
765		  int regno;
766
767		  for (regno = first_btr; regno <= last_btr; regno++)
768		    if (TEST_HARD_REG_BIT (all_btrs, regno)
769			&& TEST_HARD_REG_BIT (call_used_reg_set, regno))
770		      sbitmap_difference (reaching_defs, reaching_defs,
771					  btr_defset[regno - first_btr]);
772		}
773	    }
774	}
775    }
776  sbitmap_free (reaching_defs);
777}
778
779static void
780build_btr_def_use_webs (fibheap_t all_btr_defs)
781{
782  const int max_uid = get_max_uid ();
783  btr_def  *def_array   = XCNEWVEC (btr_def, max_uid);
784  btr_user *use_array   = XCNEWVEC (btr_user, max_uid);
785  sbitmap *btr_defset   = sbitmap_vector_alloc (
786			   (last_btr - first_btr) + 1, max_uid);
787  sbitmap *bb_gen      = sbitmap_vector_alloc (n_basic_blocks, max_uid);
788  HARD_REG_SET *btrs_written = XCNEWVEC (HARD_REG_SET, n_basic_blocks);
789  sbitmap *bb_kill;
790  sbitmap *bb_out;
791
792  sbitmap_vector_zero (btr_defset, (last_btr - first_btr) + 1);
793
794  compute_defs_uses_and_gen (all_btr_defs, def_array, use_array, btr_defset,
795			     bb_gen, btrs_written);
796
797  bb_kill = sbitmap_vector_alloc (n_basic_blocks, max_uid);
798  compute_kill (bb_kill, btr_defset, btrs_written);
799  free (btrs_written);
800
801  bb_out = sbitmap_vector_alloc (n_basic_blocks, max_uid);
802  compute_out (bb_out, bb_gen, bb_kill, max_uid);
803
804  sbitmap_vector_free (bb_gen);
805  sbitmap_vector_free (bb_kill);
806
807  link_btr_uses (def_array, use_array, bb_out, btr_defset, max_uid);
808
809  sbitmap_vector_free (bb_out);
810  sbitmap_vector_free (btr_defset);
811  free (use_array);
812  free (def_array);
813}
814
815/* Return true if basic block BB contains the start or end of the
816   live range of the definition DEF, AND there are other live
817   ranges of the same target register that include BB.  */
818static int
819block_at_edge_of_live_range_p (int bb, btr_def def)
820{
821  if (def->other_btr_uses_before_def && BASIC_BLOCK (bb) == def->bb)
822    return 1;
823  else if (def->other_btr_uses_after_use)
824    {
825      btr_user user;
826      for (user = def->uses; user != NULL; user = user->next)
827	if (BASIC_BLOCK (bb) == user->bb)
828	  return 1;
829    }
830  return 0;
831}
832
833/* We are removing the def/use web DEF.  The target register
834   used in this web is therefore no longer live in the live range
835   of this web, so remove it from the live set of all basic blocks
836   in the live range of the web.
837   Blocks at the boundary of the live range may contain other live
838   ranges for the same target register, so we have to be careful
839   to remove the target register from the live set of these blocks
840   only if they do not contain other live ranges for the same register.  */
841static void
842clear_btr_from_live_range (btr_def def)
843{
844  unsigned bb;
845  bitmap_iterator bi;
846
847  EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
848    {
849      if ((!def->other_btr_uses_before_def
850	   && !def->other_btr_uses_after_use)
851	  || !block_at_edge_of_live_range_p (bb, def))
852	{
853	  CLEAR_HARD_REG_BIT (btrs_live[bb], def->btr);
854	  CLEAR_HARD_REG_BIT (btrs_live_at_end[bb], def->btr);
855	  if (dump_file)
856	    dump_btrs_live (bb);
857	}
858    }
859 if (def->own_end)
860   CLEAR_HARD_REG_BIT (btrs_live_at_end[def->bb->index], def->btr);
861}
862
863
864/* We are adding the def/use web DEF.  Add the target register used
865   in this web to the live set of all of the basic blocks that contain
866   the live range of the web.
867   If OWN_END is set, also show that the register is live from our
868   definitions at the end of the basic block where it is defined.  */
869static void
870add_btr_to_live_range (btr_def def, int own_end)
871{
872  unsigned bb;
873  bitmap_iterator bi;
874
875  EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
876    {
877      SET_HARD_REG_BIT (btrs_live[bb], def->btr);
878      SET_HARD_REG_BIT (btrs_live_at_end[bb], def->btr);
879      if (dump_file)
880	dump_btrs_live (bb);
881    }
882  if (own_end)
883    {
884      SET_HARD_REG_BIT (btrs_live_at_end[def->bb->index], def->btr);
885      def->own_end = 1;
886    }
887}
888
889/* Update a live range to contain the basic block NEW_BLOCK, and all
890   blocks on paths between the existing live range and NEW_BLOCK.
891   HEAD is a block contained in the existing live range that dominates
892   all other blocks in the existing live range.
893   Also add to the set BTRS_LIVE_IN_RANGE all target registers that
894   are live in the blocks that we add to the live range.
895   If FULL_RANGE is set, include the full live range of NEW_BB;
896   otherwise, if NEW_BB dominates HEAD_BB, only add registers that
897   are life at the end of NEW_BB for NEW_BB itself.
898   It is a precondition that either NEW_BLOCK dominates HEAD,or
899   HEAD dom NEW_BLOCK.  This is used to speed up the
900   implementation of this function.  */
901static void
902augment_live_range (bitmap live_range, HARD_REG_SET *btrs_live_in_range,
903		    basic_block head_bb, basic_block new_bb, int full_range)
904{
905  basic_block *worklist, *tos;
906
907  tos = worklist = XNEWVEC (basic_block, n_basic_blocks + 1);
908
909  if (dominated_by_p (CDI_DOMINATORS, new_bb, head_bb))
910    {
911      if (new_bb == head_bb)
912	{
913	  if (full_range)
914	    IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[new_bb->index]);
915	  free (tos);
916	  return;
917	}
918      *tos++ = new_bb;
919    }
920  else
921    {
922      edge e;
923      edge_iterator ei;
924      int new_block = new_bb->index;
925
926      gcc_assert (dominated_by_p (CDI_DOMINATORS, head_bb, new_bb));
927
928      IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[head_bb->index]);
929      bitmap_set_bit (live_range, new_block);
930      /* A previous btr migration could have caused a register to be
931	live just at the end of new_block which we need in full, so
932	use trs_live_at_end even if full_range is set.  */
933      IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live_at_end[new_block]);
934      if (full_range)
935	IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[new_block]);
936      if (dump_file)
937	{
938	  fprintf (dump_file,
939		   "Adding end of block %d and rest of %d to live range\n",
940		   new_block, head_bb->index);
941	  fprintf (dump_file,"Now live btrs are ");
942	  dump_hard_reg_set (*btrs_live_in_range);
943	  fprintf (dump_file, "\n");
944	}
945      FOR_EACH_EDGE (e, ei, head_bb->preds)
946	*tos++ = e->src;
947    }
948
949  while (tos != worklist)
950    {
951      basic_block bb = *--tos;
952      if (!bitmap_bit_p (live_range, bb->index))
953	{
954	  edge e;
955	  edge_iterator ei;
956
957	  bitmap_set_bit (live_range, bb->index);
958	  IOR_HARD_REG_SET (*btrs_live_in_range,
959	    btrs_live[bb->index]);
960	  /* A previous btr migration could have caused a register to be
961	     live just at the end of a block which we need in full.  */
962	  IOR_HARD_REG_SET (*btrs_live_in_range,
963	    btrs_live_at_end[bb->index]);
964	  if (dump_file)
965	    {
966	      fprintf (dump_file,
967		"Adding block %d to live range\n", bb->index);
968	      fprintf (dump_file,"Now live btrs are ");
969	      dump_hard_reg_set (*btrs_live_in_range);
970	      fprintf (dump_file, "\n");
971	    }
972
973	  FOR_EACH_EDGE (e, ei, bb->preds)
974	    {
975	      basic_block pred = e->src;
976	      if (!bitmap_bit_p (live_range, pred->index))
977		*tos++ = pred;
978	    }
979	}
980    }
981
982  free (worklist);
983}
984
985/*  Return the most desirable target register that is not in
986    the set USED_BTRS.  */
987static int
988choose_btr (HARD_REG_SET used_btrs)
989{
990  int i;
991  GO_IF_HARD_REG_SUBSET (all_btrs, used_btrs, give_up);
992
993  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
994    {
995#ifdef REG_ALLOC_ORDER
996      int regno = reg_alloc_order[i];
997#else
998      int regno = i;
999#endif
1000      if (TEST_HARD_REG_BIT (all_btrs, regno)
1001	  && !TEST_HARD_REG_BIT (used_btrs, regno))
1002	return regno;
1003    }
1004give_up:
1005  return -1;
1006}
1007
1008/* Calculate the set of basic blocks that contain the live range of
1009   the def/use web DEF.
1010   Also calculate the set of target registers that are live at time
1011   in this live range, but ignore the live range represented by DEF
1012   when calculating this set.  */
1013static void
1014btr_def_live_range (btr_def def, HARD_REG_SET *btrs_live_in_range)
1015{
1016  if (!def->live_range)
1017    {
1018      btr_user user;
1019
1020      def->live_range = BITMAP_ALLOC (NULL);
1021
1022      bitmap_set_bit (def->live_range, def->bb->index);
1023      COPY_HARD_REG_SET (*btrs_live_in_range,
1024			 (flag_btr_bb_exclusive
1025			  ? btrs_live : btrs_live_at_end)[def->bb->index]);
1026
1027      for (user = def->uses; user != NULL; user = user->next)
1028	augment_live_range (def->live_range, btrs_live_in_range,
1029			    def->bb, user->bb,
1030			    (flag_btr_bb_exclusive
1031			     || user->insn != BB_END (def->bb)
1032			     || !JUMP_P (user->insn)));
1033    }
1034  else
1035    {
1036      /* def->live_range is accurate, but we need to recompute
1037	 the set of target registers live over it, because migration
1038	 of other PT instructions may have affected it.
1039      */
1040      unsigned bb;
1041      unsigned def_bb = flag_btr_bb_exclusive ? -1 : def->bb->index;
1042      bitmap_iterator bi;
1043
1044      CLEAR_HARD_REG_SET (*btrs_live_in_range);
1045      EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
1046	{
1047	  IOR_HARD_REG_SET (*btrs_live_in_range,
1048			    (def_bb == bb
1049			     ? btrs_live_at_end : btrs_live) [bb]);
1050	}
1051    }
1052  if (!def->other_btr_uses_before_def &&
1053      !def->other_btr_uses_after_use)
1054    CLEAR_HARD_REG_BIT (*btrs_live_in_range, def->btr);
1055}
1056
1057/* Merge into the def/use web DEF any other def/use webs in the same
1058   group that are dominated by DEF, provided that there is a target
1059   register available to allocate to the merged web.  */
1060static void
1061combine_btr_defs (btr_def def, HARD_REG_SET *btrs_live_in_range)
1062{
1063  btr_def other_def;
1064
1065  for (other_def = def->group->members;
1066       other_def != NULL;
1067       other_def = other_def->next_this_group)
1068    {
1069      if (other_def != def
1070	  && other_def->uses != NULL
1071	  && ! other_def->has_ambiguous_use
1072	  && dominated_by_p (CDI_DOMINATORS, other_def->bb, def->bb))
1073	{
1074	  /* def->bb dominates the other def, so def and other_def could
1075	     be combined.  */
1076	  /* Merge their live ranges, and get the set of
1077	     target registers live over the merged range.  */
1078	  int btr;
1079	  HARD_REG_SET combined_btrs_live;
1080	  bitmap combined_live_range = BITMAP_ALLOC (NULL);
1081	  btr_user user;
1082
1083	  if (other_def->live_range == NULL)
1084	    {
1085	      HARD_REG_SET dummy_btrs_live_in_range;
1086	      btr_def_live_range (other_def, &dummy_btrs_live_in_range);
1087	    }
1088	  COPY_HARD_REG_SET (combined_btrs_live, *btrs_live_in_range);
1089	  bitmap_copy (combined_live_range, def->live_range);
1090
1091	  for (user = other_def->uses; user != NULL; user = user->next)
1092	    augment_live_range (combined_live_range, &combined_btrs_live,
1093				def->bb, user->bb,
1094				(flag_btr_bb_exclusive
1095				 || user->insn != BB_END (def->bb)
1096				 || !JUMP_P (user->insn)));
1097
1098	  btr = choose_btr (combined_btrs_live);
1099	  if (btr != -1)
1100	    {
1101	      /* We can combine them.  */
1102	      if (dump_file)
1103		fprintf (dump_file,
1104			 "Combining def in insn %d with def in insn %d\n",
1105			 INSN_UID (other_def->insn), INSN_UID (def->insn));
1106
1107	      def->btr = btr;
1108	      user = other_def->uses;
1109	      while (user != NULL)
1110		{
1111		  btr_user next = user->next;
1112
1113		  user->next = def->uses;
1114		  def->uses = user;
1115		  user = next;
1116		}
1117	      /* Combining def/use webs can make target registers live
1118		 after uses where they previously were not.  This means
1119		 some REG_DEAD notes may no longer be correct.  We could
1120		 be more precise about this if we looked at the combined
1121		 live range, but here I just delete any REG_DEAD notes
1122		 in case they are no longer correct.  */
1123	      for (user = def->uses; user != NULL; user = user->next)
1124		remove_note (user->insn,
1125			     find_regno_note (user->insn, REG_DEAD,
1126					      REGNO (user->use)));
1127	      clear_btr_from_live_range (other_def);
1128	      other_def->uses = NULL;
1129	      bitmap_copy (def->live_range, combined_live_range);
1130	      if (other_def->btr == btr && other_def->other_btr_uses_after_use)
1131		def->other_btr_uses_after_use = 1;
1132	      COPY_HARD_REG_SET (*btrs_live_in_range, combined_btrs_live);
1133
1134	      /* Delete the old target register initialization.  */
1135	      delete_insn (other_def->insn);
1136
1137	    }
1138	  BITMAP_FREE (combined_live_range);
1139	}
1140    }
1141}
1142
1143/* Move the definition DEF from its current position to basic
1144   block NEW_DEF_BB, and modify it to use branch target register BTR.
1145   Delete the old defining insn, and insert a new one in NEW_DEF_BB.
1146   Update all reaching uses of DEF in the RTL to use BTR.
1147   If this new position means that other defs in the
1148   same group can be combined with DEF then combine them.  */
1149static void
1150move_btr_def (basic_block new_def_bb, int btr, btr_def def, bitmap live_range,
1151	     HARD_REG_SET *btrs_live_in_range)
1152{
1153  /* We can move the instruction.
1154     Set a target register in block NEW_DEF_BB to the value
1155     needed for this target register definition.
1156     Replace all uses of the old target register definition by
1157     uses of the new definition.  Delete the old definition.  */
1158  basic_block b = new_def_bb;
1159  rtx insp = BB_HEAD (b);
1160  rtx old_insn = def->insn;
1161  rtx src;
1162  rtx btr_rtx;
1163  rtx new_insn;
1164  enum machine_mode btr_mode;
1165  btr_user user;
1166  rtx set;
1167
1168  if (dump_file)
1169    fprintf(dump_file, "migrating to basic block %d, using reg %d\n",
1170	    new_def_bb->index, btr);
1171
1172  clear_btr_from_live_range (def);
1173  def->btr = btr;
1174  def->bb = new_def_bb;
1175  def->luid = 0;
1176  def->cost = basic_block_freq (new_def_bb);
1177  bitmap_copy (def->live_range, live_range);
1178  combine_btr_defs (def, btrs_live_in_range);
1179  btr = def->btr;
1180  def->other_btr_uses_before_def
1181    = TEST_HARD_REG_BIT (btrs_live[b->index], btr) ? 1 : 0;
1182  add_btr_to_live_range (def, 1);
1183  if (LABEL_P (insp))
1184    insp = NEXT_INSN (insp);
1185  /* N.B.: insp is expected to be NOTE_INSN_BASIC_BLOCK now.  Some
1186     optimizations can result in insp being both first and last insn of
1187     its basic block.  */
1188  /* ?? some assertions to check that insp is sensible? */
1189
1190  if (def->other_btr_uses_before_def)
1191    {
1192      insp = BB_END (b);
1193      for (insp = BB_END (b); ! INSN_P (insp); insp = PREV_INSN (insp))
1194	gcc_assert (insp != BB_HEAD (b));
1195
1196      if (JUMP_P (insp) || can_throw_internal (insp))
1197	insp = PREV_INSN (insp);
1198    }
1199
1200  set = single_set (old_insn);
1201  src = SET_SRC (set);
1202  btr_mode = GET_MODE (SET_DEST (set));
1203  btr_rtx = gen_rtx_REG (btr_mode, btr);
1204
1205  new_insn = gen_move_insn (btr_rtx, src);
1206
1207  /* Insert target register initialization at head of basic block.  */
1208  def->insn = emit_insn_after (new_insn, insp);
1209
1210  regs_ever_live[btr] = 1;
1211
1212  if (dump_file)
1213    fprintf (dump_file, "New pt is insn %d, inserted after insn %d\n",
1214	     INSN_UID (def->insn), INSN_UID (insp));
1215
1216  /* Delete the old target register initialization.  */
1217  delete_insn (old_insn);
1218
1219  /* Replace each use of the old target register by a use of the new target
1220     register.  */
1221  for (user = def->uses; user != NULL; user = user->next)
1222    {
1223      /* Some extra work here to ensure consistent modes, because
1224	 it seems that a target register REG rtx can be given a different
1225	 mode depending on the context (surely that should not be
1226	 the case?).  */
1227      rtx replacement_rtx;
1228      if (GET_MODE (user->use) == GET_MODE (btr_rtx)
1229	  || GET_MODE (user->use) == VOIDmode)
1230	replacement_rtx = btr_rtx;
1231      else
1232	replacement_rtx = gen_rtx_REG (GET_MODE (user->use), btr);
1233      replace_rtx (user->insn, user->use, replacement_rtx);
1234      user->use = replacement_rtx;
1235    }
1236}
1237
1238/* We anticipate intra-block scheduling to be done.  See if INSN could move
1239   up within BB by N_INSNS.  */
1240static int
1241can_move_up (basic_block bb, rtx insn, int n_insns)
1242{
1243  while (insn != BB_HEAD (bb) && n_insns > 0)
1244    {
1245      insn = PREV_INSN (insn);
1246      /* ??? What if we have an anti-dependency that actually prevents the
1247	 scheduler from doing the move?  We'd like to re-allocate the register,
1248	 but not necessarily put the load into another basic block.  */
1249      if (INSN_P (insn))
1250	n_insns--;
1251    }
1252  return n_insns <= 0;
1253}
1254
1255/* Attempt to migrate the target register definition DEF to an
1256   earlier point in the flowgraph.
1257
1258   It is a precondition of this function that DEF is migratable:
1259   i.e. it has a constant source, and all uses are unambiguous.
1260
1261   Only migrations that reduce the cost of DEF will be made.
1262   MIN_COST is the lower bound on the cost of the DEF after migration.
1263   If we migrate DEF so that its cost falls below MIN_COST,
1264   then we do not attempt to migrate further.  The idea is that
1265   we migrate definitions in a priority order based on their cost,
1266   when the cost of this definition falls below MIN_COST, then
1267   there is another definition with cost == MIN_COST which now
1268   has a higher priority than this definition.
1269
1270   Return nonzero if there may be benefit from attempting to
1271   migrate this DEF further (i.e. we have reduced the cost below
1272   MIN_COST, but we may be able to reduce it further).
1273   Return zero if no further migration is possible.  */
1274static int
1275migrate_btr_def (btr_def def, int min_cost)
1276{
1277  bitmap live_range;
1278  HARD_REG_SET btrs_live_in_range;
1279  int btr_used_near_def = 0;
1280  int def_basic_block_freq;
1281  basic_block try;
1282  int give_up = 0;
1283  int def_moved = 0;
1284  btr_user user;
1285  int def_latency;
1286
1287  if (dump_file)
1288    fprintf (dump_file,
1289	     "Attempting to migrate pt from insn %d (cost = %d, min_cost = %d) ... ",
1290	     INSN_UID (def->insn), def->cost, min_cost);
1291
1292  if (!def->group || def->has_ambiguous_use)
1293    /* These defs are not migratable.  */
1294    {
1295      if (dump_file)
1296	fprintf (dump_file, "it's not migratable\n");
1297      return 0;
1298    }
1299
1300  if (!def->uses)
1301    /* We have combined this def with another in the same group, so
1302       no need to consider it further.
1303    */
1304    {
1305      if (dump_file)
1306	fprintf (dump_file, "it's already combined with another pt\n");
1307      return 0;
1308    }
1309
1310  btr_def_live_range (def, &btrs_live_in_range);
1311  live_range = BITMAP_ALLOC (NULL);
1312  bitmap_copy (live_range, def->live_range);
1313
1314#ifdef INSN_SCHEDULING
1315  def_latency = insn_default_latency (def->insn) * issue_rate;
1316#else
1317  def_latency = issue_rate;
1318#endif
1319
1320  for (user = def->uses; user != NULL; user = user->next)
1321    {
1322      if (user->bb == def->bb
1323	  && user->luid > def->luid
1324	  && (def->luid + def_latency) > user->luid
1325	  && ! can_move_up (def->bb, def->insn,
1326			    (def->luid + def_latency) - user->luid))
1327	{
1328	  btr_used_near_def = 1;
1329	  break;
1330	}
1331    }
1332
1333  def_basic_block_freq = basic_block_freq (def->bb);
1334
1335  for (try = get_immediate_dominator (CDI_DOMINATORS, def->bb);
1336       !give_up && try && try != ENTRY_BLOCK_PTR && def->cost >= min_cost;
1337       try = get_immediate_dominator (CDI_DOMINATORS, try))
1338    {
1339      /* Try to move the instruction that sets the target register into
1340	 basic block TRY.  */
1341      int try_freq = basic_block_freq (try);
1342      edge_iterator ei;
1343      edge e;
1344
1345      /* If TRY has abnormal edges, skip it.  */
1346      FOR_EACH_EDGE (e, ei, try->succs)
1347	if (e->flags & EDGE_COMPLEX)
1348	  break;
1349      if (e)
1350	continue;
1351
1352      if (dump_file)
1353	fprintf (dump_file, "trying block %d ...", try->index);
1354
1355      if (try_freq < def_basic_block_freq
1356	  || (try_freq == def_basic_block_freq && btr_used_near_def))
1357	{
1358	  int btr;
1359	  augment_live_range (live_range, &btrs_live_in_range, def->bb, try,
1360			      flag_btr_bb_exclusive);
1361	  if (dump_file)
1362	    {
1363	      fprintf (dump_file, "Now btrs live in range are: ");
1364	      dump_hard_reg_set (btrs_live_in_range);
1365	      fprintf (dump_file, "\n");
1366	    }
1367	  btr = choose_btr (btrs_live_in_range);
1368	  if (btr != -1)
1369	    {
1370	      move_btr_def (try, btr, def, live_range, &btrs_live_in_range);
1371	      bitmap_copy(live_range, def->live_range);
1372	      btr_used_near_def = 0;
1373	      def_moved = 1;
1374	      def_basic_block_freq = basic_block_freq (def->bb);
1375	    }
1376	  else
1377	    {
1378	      /* There are no free target registers available to move
1379		 this far forward, so give up */
1380	      give_up = 1;
1381	      if (dump_file)
1382		fprintf (dump_file,
1383			 "giving up because there are no free target registers\n");
1384	    }
1385
1386	}
1387    }
1388  if (!def_moved)
1389    {
1390      give_up = 1;
1391      if (dump_file)
1392	fprintf (dump_file, "failed to move\n");
1393    }
1394  BITMAP_FREE (live_range);
1395  return !give_up;
1396}
1397
1398/* Attempt to move instructions that set target registers earlier
1399   in the flowgraph, away from their corresponding uses.  */
1400static void
1401migrate_btr_defs (enum reg_class btr_class, int allow_callee_save)
1402{
1403  fibheap_t all_btr_defs = fibheap_new ();
1404  int reg;
1405
1406  gcc_obstack_init (&migrate_btrl_obstack);
1407  if (dump_file)
1408    {
1409      int i;
1410
1411      for (i = NUM_FIXED_BLOCKS; i < n_basic_blocks; i++)
1412	{
1413	  basic_block bb = BASIC_BLOCK (i);
1414	  fprintf(dump_file,
1415	    "Basic block %d: count = " HOST_WIDEST_INT_PRINT_DEC
1416	    " loop-depth = %d idom = %d\n",
1417	    i, (HOST_WIDEST_INT) bb->count, bb->loop_depth,
1418	    get_immediate_dominator (CDI_DOMINATORS, bb)->index);
1419	}
1420    }
1421
1422  CLEAR_HARD_REG_SET (all_btrs);
1423  for (first_btr = -1, reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++)
1424    if (TEST_HARD_REG_BIT (reg_class_contents[(int) btr_class], reg)
1425	&& (allow_callee_save || call_used_regs[reg] || regs_ever_live[reg]))
1426      {
1427	SET_HARD_REG_BIT (all_btrs, reg);
1428	last_btr = reg;
1429	if (first_btr < 0)
1430	  first_btr = reg;
1431      }
1432
1433  btrs_live = xcalloc (n_basic_blocks, sizeof (HARD_REG_SET));
1434  btrs_live_at_end = xcalloc (n_basic_blocks, sizeof (HARD_REG_SET));
1435
1436  build_btr_def_use_webs (all_btr_defs);
1437
1438  while (!fibheap_empty (all_btr_defs))
1439    {
1440      btr_def def = fibheap_extract_min (all_btr_defs);
1441      int min_cost = -fibheap_min_key (all_btr_defs);
1442      if (migrate_btr_def (def, min_cost))
1443	{
1444	  fibheap_insert (all_btr_defs, -def->cost, (void *) def);
1445	  if (dump_file)
1446	    {
1447	      fprintf (dump_file,
1448		"Putting insn %d back on queue with priority %d\n",
1449		INSN_UID (def->insn), def->cost);
1450	    }
1451	}
1452      else
1453	BITMAP_FREE (def->live_range);
1454    }
1455
1456  free (btrs_live);
1457  free (btrs_live_at_end);
1458  obstack_free (&migrate_btrl_obstack, NULL);
1459  fibheap_delete (all_btr_defs);
1460}
1461
1462void
1463branch_target_load_optimize (bool after_prologue_epilogue_gen)
1464{
1465  enum reg_class class = targetm.branch_target_register_class ();
1466  if (class != NO_REGS)
1467    {
1468      /* Initialize issue_rate.  */
1469      if (targetm.sched.issue_rate)
1470	issue_rate = targetm.sched.issue_rate ();
1471      else
1472	issue_rate = 1;
1473
1474      /* Build the CFG for migrate_btr_defs.  */
1475#if 1
1476      /* This may or may not be needed, depending on where we
1477	 run this phase.  */
1478      cleanup_cfg (optimize ? CLEANUP_EXPENSIVE : 0);
1479#endif
1480
1481      life_analysis (0);
1482
1483      /* Dominator info is also needed for migrate_btr_def.  */
1484      calculate_dominance_info (CDI_DOMINATORS);
1485      migrate_btr_defs (class,
1486		       (targetm.branch_target_register_callee_saved
1487			(after_prologue_epilogue_gen)));
1488
1489      free_dominance_info (CDI_DOMINATORS);
1490
1491      update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
1492			PROP_DEATH_NOTES | PROP_REG_INFO);
1493    }
1494}
1495
1496static bool
1497gate_handle_branch_target_load_optimize (void)
1498{
1499  return (optimize > 0 && flag_branch_target_load_optimize2);
1500}
1501
1502
1503static unsigned int
1504rest_of_handle_branch_target_load_optimize (void)
1505{
1506  static int warned = 0;
1507
1508  /* Leave this a warning for now so that it is possible to experiment
1509     with running this pass twice.  In 3.6, we should either make this
1510     an error, or use separate dump files.  */
1511  if (flag_branch_target_load_optimize
1512      && flag_branch_target_load_optimize2
1513      && !warned)
1514    {
1515      warning (0, "branch target register load optimization is not intended "
1516		  "to be run twice");
1517
1518      warned = 1;
1519    }
1520
1521  branch_target_load_optimize (epilogue_completed);
1522  return 0;
1523}
1524
1525struct tree_opt_pass pass_branch_target_load_optimize =
1526{
1527  "btl",                               /* name */
1528  gate_handle_branch_target_load_optimize,      /* gate */
1529  rest_of_handle_branch_target_load_optimize,   /* execute */
1530  NULL,                                 /* sub */
1531  NULL,                                 /* next */
1532  0,                                    /* static_pass_number */
1533  0,					/* tv_id */
1534  0,                                    /* properties_required */
1535  0,                                    /* properties_provided */
1536  0,                                    /* properties_destroyed */
1537  0,                                    /* todo_flags_start */
1538  TODO_dump_func |
1539  TODO_ggc_collect,                     /* todo_flags_finish */
1540  'd'                                   /* letter */
1541};
1542
1543