vm_page.c revision 311515
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- A page queue lock is required when adding or removing a page from a
67 *	  page queue regardless of other locks or the busy state of a page.
68 *
69 *		* In general, no thread besides the page daemon can acquire or
70 *		  hold more than one page queue lock at a time.
71 *
72 *		* The page daemon can acquire and hold any pair of page queue
73 *		  locks in any order.
74 *
75 *	- The object lock is required when inserting or removing
76 *	  pages from an object (vm_page_insert() or vm_page_remove()).
77 *
78 */
79
80/*
81 *	Resident memory management module.
82 */
83
84#include <sys/cdefs.h>
85__FBSDID("$FreeBSD: stable/10/sys/vm/vm_page.c 311515 2017-01-06 12:11:16Z kib $");
86
87#include "opt_vm.h"
88
89#include <sys/param.h>
90#include <sys/systm.h>
91#include <sys/lock.h>
92#include <sys/kernel.h>
93#include <sys/limits.h>
94#include <sys/malloc.h>
95#include <sys/mman.h>
96#include <sys/msgbuf.h>
97#include <sys/mutex.h>
98#include <sys/proc.h>
99#include <sys/rwlock.h>
100#include <sys/sysctl.h>
101#include <sys/vmmeter.h>
102#include <sys/vnode.h>
103
104#include <vm/vm.h>
105#include <vm/pmap.h>
106#include <vm/vm_param.h>
107#include <vm/vm_kern.h>
108#include <vm/vm_object.h>
109#include <vm/vm_page.h>
110#include <vm/vm_pageout.h>
111#include <vm/vm_pager.h>
112#include <vm/vm_phys.h>
113#include <vm/vm_radix.h>
114#include <vm/vm_reserv.h>
115#include <vm/vm_extern.h>
116#include <vm/uma.h>
117#include <vm/uma_int.h>
118
119#include <machine/md_var.h>
120
121/*
122 *	Associated with page of user-allocatable memory is a
123 *	page structure.
124 */
125
126struct vm_domain vm_dom[MAXMEMDOM];
127struct mtx_padalign vm_page_queue_free_mtx;
128
129struct mtx_padalign pa_lock[PA_LOCK_COUNT];
130
131vm_page_t vm_page_array;
132long vm_page_array_size;
133long first_page;
134int vm_page_zero_count;
135
136static int boot_pages = UMA_BOOT_PAGES;
137TUNABLE_INT("vm.boot_pages", &boot_pages);
138SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
139	"number of pages allocated for bootstrapping the VM system");
140
141static int pa_tryrelock_restart;
142SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
143    &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
144
145static uma_zone_t fakepg_zone;
146
147static struct vnode *vm_page_alloc_init(vm_page_t m);
148static void vm_page_cache_turn_free(vm_page_t m);
149static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
150static void vm_page_enqueue(int queue, vm_page_t m);
151static void vm_page_init_fakepg(void *dummy);
152static int vm_page_insert_after(vm_page_t m, vm_object_t object,
153    vm_pindex_t pindex, vm_page_t mpred);
154static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
155    vm_page_t mpred);
156
157SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
158
159static void
160vm_page_init_fakepg(void *dummy)
161{
162
163	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
164	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
165}
166
167/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
168#if PAGE_SIZE == 32768
169#ifdef CTASSERT
170CTASSERT(sizeof(u_long) >= 8);
171#endif
172#endif
173
174/*
175 * Try to acquire a physical address lock while a pmap is locked.  If we
176 * fail to trylock we unlock and lock the pmap directly and cache the
177 * locked pa in *locked.  The caller should then restart their loop in case
178 * the virtual to physical mapping has changed.
179 */
180int
181vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
182{
183	vm_paddr_t lockpa;
184
185	lockpa = *locked;
186	*locked = pa;
187	if (lockpa) {
188		PA_LOCK_ASSERT(lockpa, MA_OWNED);
189		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
190			return (0);
191		PA_UNLOCK(lockpa);
192	}
193	if (PA_TRYLOCK(pa))
194		return (0);
195	PMAP_UNLOCK(pmap);
196	atomic_add_int(&pa_tryrelock_restart, 1);
197	PA_LOCK(pa);
198	PMAP_LOCK(pmap);
199	return (EAGAIN);
200}
201
202/*
203 *	vm_set_page_size:
204 *
205 *	Sets the page size, perhaps based upon the memory
206 *	size.  Must be called before any use of page-size
207 *	dependent functions.
208 */
209void
210vm_set_page_size(void)
211{
212	if (cnt.v_page_size == 0)
213		cnt.v_page_size = PAGE_SIZE;
214	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
215		panic("vm_set_page_size: page size not a power of two");
216}
217
218/*
219 *	vm_page_blacklist_lookup:
220 *
221 *	See if a physical address in this page has been listed
222 *	in the blacklist tunable.  Entries in the tunable are
223 *	separated by spaces or commas.  If an invalid integer is
224 *	encountered then the rest of the string is skipped.
225 */
226static int
227vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
228{
229	vm_paddr_t bad;
230	char *cp, *pos;
231
232	for (pos = list; *pos != '\0'; pos = cp) {
233		bad = strtoq(pos, &cp, 0);
234		if (*cp != '\0') {
235			if (*cp == ' ' || *cp == ',') {
236				cp++;
237				if (cp == pos)
238					continue;
239			} else
240				break;
241		}
242		if (pa == trunc_page(bad))
243			return (1);
244	}
245	return (0);
246}
247
248static void
249vm_page_domain_init(struct vm_domain *vmd)
250{
251	struct vm_pagequeue *pq;
252	int i;
253
254	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
255	    "vm inactive pagequeue";
256	*__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) =
257	    &cnt.v_inactive_count;
258	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
259	    "vm active pagequeue";
260	*__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) =
261	    &cnt.v_active_count;
262	vmd->vmd_page_count = 0;
263	vmd->vmd_free_count = 0;
264	vmd->vmd_segs = 0;
265	vmd->vmd_oom = FALSE;
266	vmd->vmd_pass = 0;
267	for (i = 0; i < PQ_COUNT; i++) {
268		pq = &vmd->vmd_pagequeues[i];
269		TAILQ_INIT(&pq->pq_pl);
270		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
271		    MTX_DEF | MTX_DUPOK);
272	}
273}
274
275/*
276 *	vm_page_startup:
277 *
278 *	Initializes the resident memory module.
279 *
280 *	Allocates memory for the page cells, and
281 *	for the object/offset-to-page hash table headers.
282 *	Each page cell is initialized and placed on the free list.
283 */
284vm_offset_t
285vm_page_startup(vm_offset_t vaddr)
286{
287	vm_offset_t mapped;
288	vm_paddr_t page_range;
289	vm_paddr_t new_end;
290	int i;
291	vm_paddr_t pa;
292	vm_paddr_t last_pa;
293	char *list;
294
295	/* the biggest memory array is the second group of pages */
296	vm_paddr_t end;
297	vm_paddr_t biggestsize;
298	vm_paddr_t low_water, high_water;
299	int biggestone;
300
301	biggestsize = 0;
302	biggestone = 0;
303	vaddr = round_page(vaddr);
304
305	for (i = 0; phys_avail[i + 1]; i += 2) {
306		phys_avail[i] = round_page(phys_avail[i]);
307		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
308	}
309
310#ifdef XEN
311	/*
312	 * There is no obvious reason why i386 PV Xen needs vm_page structs
313	 * created for these pseudo-physical addresses.  XXX
314	 */
315	vm_phys_add_seg(0, phys_avail[0]);
316#endif
317
318	low_water = phys_avail[0];
319	high_water = phys_avail[1];
320
321	for (i = 0; i < vm_phys_nsegs; i++) {
322		if (vm_phys_segs[i].start < low_water)
323			low_water = vm_phys_segs[i].start;
324		if (vm_phys_segs[i].end > high_water)
325			high_water = vm_phys_segs[i].end;
326	}
327	for (i = 0; phys_avail[i + 1]; i += 2) {
328		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
329
330		if (size > biggestsize) {
331			biggestone = i;
332			biggestsize = size;
333		}
334		if (phys_avail[i] < low_water)
335			low_water = phys_avail[i];
336		if (phys_avail[i + 1] > high_water)
337			high_water = phys_avail[i + 1];
338	}
339
340	end = phys_avail[biggestone+1];
341
342	/*
343	 * Initialize the page and queue locks.
344	 */
345	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
346	for (i = 0; i < PA_LOCK_COUNT; i++)
347		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
348	for (i = 0; i < vm_ndomains; i++)
349		vm_page_domain_init(&vm_dom[i]);
350
351	/*
352	 * Allocate memory for use when boot strapping the kernel memory
353	 * allocator.
354	 */
355	new_end = end - (boot_pages * UMA_SLAB_SIZE);
356	new_end = trunc_page(new_end);
357	mapped = pmap_map(&vaddr, new_end, end,
358	    VM_PROT_READ | VM_PROT_WRITE);
359	bzero((void *)mapped, end - new_end);
360	uma_startup((void *)mapped, boot_pages);
361
362#if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
363    defined(__mips__)
364	/*
365	 * Allocate a bitmap to indicate that a random physical page
366	 * needs to be included in a minidump.
367	 *
368	 * The amd64 port needs this to indicate which direct map pages
369	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
370	 *
371	 * However, i386 still needs this workspace internally within the
372	 * minidump code.  In theory, they are not needed on i386, but are
373	 * included should the sf_buf code decide to use them.
374	 */
375	last_pa = 0;
376	for (i = 0; dump_avail[i + 1] != 0; i += 2)
377		if (dump_avail[i + 1] > last_pa)
378			last_pa = dump_avail[i + 1];
379	page_range = last_pa / PAGE_SIZE;
380	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
381	new_end -= vm_page_dump_size;
382	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
383	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
384	bzero((void *)vm_page_dump, vm_page_dump_size);
385#endif
386#ifdef __amd64__
387	/*
388	 * Request that the physical pages underlying the message buffer be
389	 * included in a crash dump.  Since the message buffer is accessed
390	 * through the direct map, they are not automatically included.
391	 */
392	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
393	last_pa = pa + round_page(msgbufsize);
394	while (pa < last_pa) {
395		dump_add_page(pa);
396		pa += PAGE_SIZE;
397	}
398#endif
399	/*
400	 * Compute the number of pages of memory that will be available for
401	 * use (taking into account the overhead of a page structure per
402	 * page).
403	 */
404	first_page = low_water / PAGE_SIZE;
405#ifdef VM_PHYSSEG_SPARSE
406	page_range = 0;
407	for (i = 0; i < vm_phys_nsegs; i++) {
408		page_range += atop(vm_phys_segs[i].end -
409		    vm_phys_segs[i].start);
410	}
411	for (i = 0; phys_avail[i + 1] != 0; i += 2)
412		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
413#elif defined(VM_PHYSSEG_DENSE)
414	page_range = high_water / PAGE_SIZE - first_page;
415#else
416#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
417#endif
418	end = new_end;
419
420	/*
421	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
422	 */
423	vaddr += PAGE_SIZE;
424
425	/*
426	 * Initialize the mem entry structures now, and put them in the free
427	 * queue.
428	 */
429	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
430	mapped = pmap_map(&vaddr, new_end, end,
431	    VM_PROT_READ | VM_PROT_WRITE);
432	vm_page_array = (vm_page_t) mapped;
433#if VM_NRESERVLEVEL > 0
434	/*
435	 * Allocate memory for the reservation management system's data
436	 * structures.
437	 */
438	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
439#endif
440#if defined(__amd64__) || defined(__mips__)
441	/*
442	 * pmap_map on amd64 and mips can come out of the direct-map, not kvm
443	 * like i386, so the pages must be tracked for a crashdump to include
444	 * this data.  This includes the vm_page_array and the early UMA
445	 * bootstrap pages.
446	 */
447	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
448		dump_add_page(pa);
449#endif
450	phys_avail[biggestone + 1] = new_end;
451
452	/*
453	 * Add physical memory segments corresponding to the available
454	 * physical pages.
455	 */
456	for (i = 0; phys_avail[i + 1] != 0; i += 2)
457		vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
458
459	/*
460	 * Clear all of the page structures
461	 */
462	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
463	for (i = 0; i < page_range; i++)
464		vm_page_array[i].order = VM_NFREEORDER;
465	vm_page_array_size = page_range;
466
467	/*
468	 * Initialize the physical memory allocator.
469	 */
470	vm_phys_init();
471
472	/*
473	 * Add every available physical page that is not blacklisted to
474	 * the free lists.
475	 */
476	cnt.v_page_count = 0;
477	cnt.v_free_count = 0;
478	list = getenv("vm.blacklist");
479	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
480		pa = phys_avail[i];
481		last_pa = phys_avail[i + 1];
482		while (pa < last_pa) {
483			if (list != NULL &&
484			    vm_page_blacklist_lookup(list, pa))
485				printf("Skipping page with pa 0x%jx\n",
486				    (uintmax_t)pa);
487			else
488				vm_phys_add_page(pa);
489			pa += PAGE_SIZE;
490		}
491	}
492	freeenv(list);
493#if VM_NRESERVLEVEL > 0
494	/*
495	 * Initialize the reservation management system.
496	 */
497	vm_reserv_init();
498#endif
499	return (vaddr);
500}
501
502void
503vm_page_reference(vm_page_t m)
504{
505
506	vm_page_aflag_set(m, PGA_REFERENCED);
507}
508
509/*
510 *	vm_page_busy_downgrade:
511 *
512 *	Downgrade an exclusive busy page into a single shared busy page.
513 */
514void
515vm_page_busy_downgrade(vm_page_t m)
516{
517	u_int x;
518	bool locked;
519
520	vm_page_assert_xbusied(m);
521	locked = mtx_owned(vm_page_lockptr(m));
522
523	for (;;) {
524		x = m->busy_lock;
525		x &= VPB_BIT_WAITERS;
526		if (x != 0 && !locked)
527			vm_page_lock(m);
528		if (atomic_cmpset_rel_int(&m->busy_lock,
529		    VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1)))
530			break;
531		if (x != 0 && !locked)
532			vm_page_unlock(m);
533	}
534	if (x != 0) {
535		wakeup(m);
536		if (!locked)
537			vm_page_unlock(m);
538	}
539}
540
541/*
542 *	vm_page_sbusied:
543 *
544 *	Return a positive value if the page is shared busied, 0 otherwise.
545 */
546int
547vm_page_sbusied(vm_page_t m)
548{
549	u_int x;
550
551	x = m->busy_lock;
552	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
553}
554
555/*
556 *	vm_page_sunbusy:
557 *
558 *	Shared unbusy a page.
559 */
560void
561vm_page_sunbusy(vm_page_t m)
562{
563	u_int x;
564
565	vm_page_assert_sbusied(m);
566
567	for (;;) {
568		x = m->busy_lock;
569		if (VPB_SHARERS(x) > 1) {
570			if (atomic_cmpset_int(&m->busy_lock, x,
571			    x - VPB_ONE_SHARER))
572				break;
573			continue;
574		}
575		if ((x & VPB_BIT_WAITERS) == 0) {
576			KASSERT(x == VPB_SHARERS_WORD(1),
577			    ("vm_page_sunbusy: invalid lock state"));
578			if (atomic_cmpset_int(&m->busy_lock,
579			    VPB_SHARERS_WORD(1), VPB_UNBUSIED))
580				break;
581			continue;
582		}
583		KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
584		    ("vm_page_sunbusy: invalid lock state for waiters"));
585
586		vm_page_lock(m);
587		if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
588			vm_page_unlock(m);
589			continue;
590		}
591		wakeup(m);
592		vm_page_unlock(m);
593		break;
594	}
595}
596
597/*
598 *	vm_page_busy_sleep:
599 *
600 *	Sleep and release the page lock, using the page pointer as wchan.
601 *	This is used to implement the hard-path of busying mechanism.
602 *
603 *	The given page must be locked.
604 *
605 *	If nonshared is true, sleep only if the page is xbusy.
606 */
607void
608vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
609{
610	u_int x;
611
612	vm_page_assert_locked(m);
613
614	x = m->busy_lock;
615	if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) ||
616	    ((x & VPB_BIT_WAITERS) == 0 &&
617	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) {
618		vm_page_unlock(m);
619		return;
620	}
621	msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
622}
623
624/*
625 *	vm_page_trysbusy:
626 *
627 *	Try to shared busy a page.
628 *	If the operation succeeds 1 is returned otherwise 0.
629 *	The operation never sleeps.
630 */
631int
632vm_page_trysbusy(vm_page_t m)
633{
634	u_int x;
635
636	for (;;) {
637		x = m->busy_lock;
638		if ((x & VPB_BIT_SHARED) == 0)
639			return (0);
640		if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
641			return (1);
642	}
643}
644
645/*
646 *	vm_page_xunbusy_hard:
647 *
648 *	Called after the first try the exclusive unbusy of a page failed.
649 *	It is assumed that the waiters bit is on.
650 */
651void
652vm_page_xunbusy_hard(vm_page_t m)
653{
654
655	vm_page_assert_xbusied(m);
656
657	vm_page_lock(m);
658	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
659	wakeup(m);
660	vm_page_unlock(m);
661}
662
663/*
664 *	vm_page_flash:
665 *
666 *	Wakeup anyone waiting for the page.
667 *	The ownership bits do not change.
668 *
669 *	The given page must be locked.
670 */
671void
672vm_page_flash(vm_page_t m)
673{
674	u_int x;
675
676	vm_page_lock_assert(m, MA_OWNED);
677
678	for (;;) {
679		x = m->busy_lock;
680		if ((x & VPB_BIT_WAITERS) == 0)
681			return;
682		if (atomic_cmpset_int(&m->busy_lock, x,
683		    x & (~VPB_BIT_WAITERS)))
684			break;
685	}
686	wakeup(m);
687}
688
689/*
690 * Keep page from being freed by the page daemon
691 * much of the same effect as wiring, except much lower
692 * overhead and should be used only for *very* temporary
693 * holding ("wiring").
694 */
695void
696vm_page_hold(vm_page_t mem)
697{
698
699	vm_page_lock_assert(mem, MA_OWNED);
700        mem->hold_count++;
701}
702
703void
704vm_page_unhold(vm_page_t mem)
705{
706
707	vm_page_lock_assert(mem, MA_OWNED);
708	KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
709	--mem->hold_count;
710	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
711		vm_page_free_toq(mem);
712}
713
714/*
715 *	vm_page_unhold_pages:
716 *
717 *	Unhold each of the pages that is referenced by the given array.
718 */
719void
720vm_page_unhold_pages(vm_page_t *ma, int count)
721{
722	struct mtx *mtx, *new_mtx;
723
724	mtx = NULL;
725	for (; count != 0; count--) {
726		/*
727		 * Avoid releasing and reacquiring the same page lock.
728		 */
729		new_mtx = vm_page_lockptr(*ma);
730		if (mtx != new_mtx) {
731			if (mtx != NULL)
732				mtx_unlock(mtx);
733			mtx = new_mtx;
734			mtx_lock(mtx);
735		}
736		vm_page_unhold(*ma);
737		ma++;
738	}
739	if (mtx != NULL)
740		mtx_unlock(mtx);
741}
742
743vm_page_t
744PHYS_TO_VM_PAGE(vm_paddr_t pa)
745{
746	vm_page_t m;
747
748#ifdef VM_PHYSSEG_SPARSE
749	m = vm_phys_paddr_to_vm_page(pa);
750	if (m == NULL)
751		m = vm_phys_fictitious_to_vm_page(pa);
752	return (m);
753#elif defined(VM_PHYSSEG_DENSE)
754	long pi;
755
756	pi = atop(pa);
757	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
758		m = &vm_page_array[pi - first_page];
759		return (m);
760	}
761	return (vm_phys_fictitious_to_vm_page(pa));
762#else
763#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
764#endif
765}
766
767/*
768 *	vm_page_getfake:
769 *
770 *	Create a fictitious page with the specified physical address and
771 *	memory attribute.  The memory attribute is the only the machine-
772 *	dependent aspect of a fictitious page that must be initialized.
773 */
774vm_page_t
775vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
776{
777	vm_page_t m;
778
779	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
780	vm_page_initfake(m, paddr, memattr);
781	return (m);
782}
783
784void
785vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
786{
787
788	if ((m->flags & PG_FICTITIOUS) != 0) {
789		/*
790		 * The page's memattr might have changed since the
791		 * previous initialization.  Update the pmap to the
792		 * new memattr.
793		 */
794		goto memattr;
795	}
796	m->phys_addr = paddr;
797	m->queue = PQ_NONE;
798	/* Fictitious pages don't use "segind". */
799	m->flags = PG_FICTITIOUS;
800	/* Fictitious pages don't use "order" or "pool". */
801	m->oflags = VPO_UNMANAGED;
802	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
803	m->wire_count = 1;
804	pmap_page_init(m);
805memattr:
806	pmap_page_set_memattr(m, memattr);
807}
808
809/*
810 *	vm_page_putfake:
811 *
812 *	Release a fictitious page.
813 */
814void
815vm_page_putfake(vm_page_t m)
816{
817
818	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
819	KASSERT((m->flags & PG_FICTITIOUS) != 0,
820	    ("vm_page_putfake: bad page %p", m));
821	uma_zfree(fakepg_zone, m);
822}
823
824/*
825 *	vm_page_updatefake:
826 *
827 *	Update the given fictitious page to the specified physical address and
828 *	memory attribute.
829 */
830void
831vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
832{
833
834	KASSERT((m->flags & PG_FICTITIOUS) != 0,
835	    ("vm_page_updatefake: bad page %p", m));
836	m->phys_addr = paddr;
837	pmap_page_set_memattr(m, memattr);
838}
839
840/*
841 *	vm_page_free:
842 *
843 *	Free a page.
844 */
845void
846vm_page_free(vm_page_t m)
847{
848
849	m->flags &= ~PG_ZERO;
850	vm_page_free_toq(m);
851}
852
853/*
854 *	vm_page_free_zero:
855 *
856 *	Free a page to the zerod-pages queue
857 */
858void
859vm_page_free_zero(vm_page_t m)
860{
861
862	m->flags |= PG_ZERO;
863	vm_page_free_toq(m);
864}
865
866/*
867 * Unbusy and handle the page queueing for a page from the VOP_GETPAGES()
868 * array which is not the request page.
869 */
870void
871vm_page_readahead_finish(vm_page_t m)
872{
873
874	if (m->valid != 0) {
875		/*
876		 * Since the page is not the requested page, whether
877		 * it should be activated or deactivated is not
878		 * obvious.  Empirical results have shown that
879		 * deactivating the page is usually the best choice,
880		 * unless the page is wanted by another thread.
881		 */
882		vm_page_lock(m);
883		if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
884			vm_page_activate(m);
885		else
886			vm_page_deactivate(m);
887		vm_page_unlock(m);
888		vm_page_xunbusy(m);
889	} else {
890		/*
891		 * Free the completely invalid page.  Such page state
892		 * occurs due to the short read operation which did
893		 * not covered our page at all, or in case when a read
894		 * error happens.
895		 */
896		vm_page_lock(m);
897		vm_page_free(m);
898		vm_page_unlock(m);
899	}
900}
901
902/*
903 *	vm_page_sleep_if_busy:
904 *
905 *	Sleep and release the page queues lock if the page is busied.
906 *	Returns TRUE if the thread slept.
907 *
908 *	The given page must be unlocked and object containing it must
909 *	be locked.
910 */
911int
912vm_page_sleep_if_busy(vm_page_t m, const char *msg)
913{
914	vm_object_t obj;
915
916	vm_page_lock_assert(m, MA_NOTOWNED);
917	VM_OBJECT_ASSERT_WLOCKED(m->object);
918
919	if (vm_page_busied(m)) {
920		/*
921		 * The page-specific object must be cached because page
922		 * identity can change during the sleep, causing the
923		 * re-lock of a different object.
924		 * It is assumed that a reference to the object is already
925		 * held by the callers.
926		 */
927		obj = m->object;
928		vm_page_lock(m);
929		VM_OBJECT_WUNLOCK(obj);
930		vm_page_busy_sleep(m, msg, false);
931		VM_OBJECT_WLOCK(obj);
932		return (TRUE);
933	}
934	return (FALSE);
935}
936
937/*
938 *	vm_page_dirty_KBI:		[ internal use only ]
939 *
940 *	Set all bits in the page's dirty field.
941 *
942 *	The object containing the specified page must be locked if the
943 *	call is made from the machine-independent layer.
944 *
945 *	See vm_page_clear_dirty_mask().
946 *
947 *	This function should only be called by vm_page_dirty().
948 */
949void
950vm_page_dirty_KBI(vm_page_t m)
951{
952
953	/* These assertions refer to this operation by its public name. */
954	KASSERT((m->flags & PG_CACHED) == 0,
955	    ("vm_page_dirty: page in cache!"));
956	KASSERT(!VM_PAGE_IS_FREE(m),
957	    ("vm_page_dirty: page is free!"));
958	KASSERT(m->valid == VM_PAGE_BITS_ALL,
959	    ("vm_page_dirty: page is invalid!"));
960	m->dirty = VM_PAGE_BITS_ALL;
961}
962
963/*
964 *	vm_page_insert:		[ internal use only ]
965 *
966 *	Inserts the given mem entry into the object and object list.
967 *
968 *	The object must be locked.
969 */
970int
971vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
972{
973	vm_page_t mpred;
974
975	VM_OBJECT_ASSERT_WLOCKED(object);
976	mpred = vm_radix_lookup_le(&object->rtree, pindex);
977	return (vm_page_insert_after(m, object, pindex, mpred));
978}
979
980/*
981 *	vm_page_insert_after:
982 *
983 *	Inserts the page "m" into the specified object at offset "pindex".
984 *
985 *	The page "mpred" must immediately precede the offset "pindex" within
986 *	the specified object.
987 *
988 *	The object must be locked.
989 */
990static int
991vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
992    vm_page_t mpred)
993{
994	vm_page_t msucc;
995
996	VM_OBJECT_ASSERT_WLOCKED(object);
997	KASSERT(m->object == NULL,
998	    ("vm_page_insert_after: page already inserted"));
999	if (mpred != NULL) {
1000		KASSERT(mpred->object == object,
1001		    ("vm_page_insert_after: object doesn't contain mpred"));
1002		KASSERT(mpred->pindex < pindex,
1003		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1004		msucc = TAILQ_NEXT(mpred, listq);
1005	} else
1006		msucc = TAILQ_FIRST(&object->memq);
1007	if (msucc != NULL)
1008		KASSERT(msucc->pindex > pindex,
1009		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1010
1011	/*
1012	 * Record the object/offset pair in this page
1013	 */
1014	m->object = object;
1015	m->pindex = pindex;
1016
1017	/*
1018	 * Now link into the object's ordered list of backed pages.
1019	 */
1020	if (vm_radix_insert(&object->rtree, m)) {
1021		m->object = NULL;
1022		m->pindex = 0;
1023		return (1);
1024	}
1025	vm_page_insert_radixdone(m, object, mpred);
1026	return (0);
1027}
1028
1029/*
1030 *	vm_page_insert_radixdone:
1031 *
1032 *	Complete page "m" insertion into the specified object after the
1033 *	radix trie hooking.
1034 *
1035 *	The page "mpred" must precede the offset "m->pindex" within the
1036 *	specified object.
1037 *
1038 *	The object must be locked.
1039 */
1040static void
1041vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1042{
1043
1044	VM_OBJECT_ASSERT_WLOCKED(object);
1045	KASSERT(object != NULL && m->object == object,
1046	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1047	if (mpred != NULL) {
1048		KASSERT(mpred->object == object,
1049		    ("vm_page_insert_after: object doesn't contain mpred"));
1050		KASSERT(mpred->pindex < m->pindex,
1051		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1052	}
1053
1054	if (mpred != NULL)
1055		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1056	else
1057		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1058
1059	/*
1060	 * Show that the object has one more resident page.
1061	 */
1062	object->resident_page_count++;
1063
1064	/*
1065	 * Hold the vnode until the last page is released.
1066	 */
1067	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1068		vhold(object->handle);
1069
1070	/*
1071	 * Since we are inserting a new and possibly dirty page,
1072	 * update the object's OBJ_MIGHTBEDIRTY flag.
1073	 */
1074	if (pmap_page_is_write_mapped(m))
1075		vm_object_set_writeable_dirty(object);
1076}
1077
1078/*
1079 *	vm_page_remove:
1080 *
1081 *	Removes the given mem entry from the object/offset-page
1082 *	table and the object page list, but do not invalidate/terminate
1083 *	the backing store.
1084 *
1085 *	The object must be locked.  The page must be locked if it is managed.
1086 */
1087void
1088vm_page_remove(vm_page_t m)
1089{
1090	vm_object_t object;
1091	boolean_t lockacq;
1092
1093	if ((m->oflags & VPO_UNMANAGED) == 0)
1094		vm_page_lock_assert(m, MA_OWNED);
1095	if ((object = m->object) == NULL)
1096		return;
1097	VM_OBJECT_ASSERT_WLOCKED(object);
1098	if (vm_page_xbusied(m)) {
1099		lockacq = FALSE;
1100		if ((m->oflags & VPO_UNMANAGED) != 0 &&
1101		    !mtx_owned(vm_page_lockptr(m))) {
1102			lockacq = TRUE;
1103			vm_page_lock(m);
1104		}
1105		vm_page_flash(m);
1106		atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1107		if (lockacq)
1108			vm_page_unlock(m);
1109	}
1110
1111	/*
1112	 * Now remove from the object's list of backed pages.
1113	 */
1114	vm_radix_remove(&object->rtree, m->pindex);
1115	TAILQ_REMOVE(&object->memq, m, listq);
1116
1117	/*
1118	 * And show that the object has one fewer resident page.
1119	 */
1120	object->resident_page_count--;
1121
1122	/*
1123	 * The vnode may now be recycled.
1124	 */
1125	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1126		vdrop(object->handle);
1127
1128	m->object = NULL;
1129}
1130
1131/*
1132 *	vm_page_lookup:
1133 *
1134 *	Returns the page associated with the object/offset
1135 *	pair specified; if none is found, NULL is returned.
1136 *
1137 *	The object must be locked.
1138 */
1139vm_page_t
1140vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1141{
1142
1143	VM_OBJECT_ASSERT_LOCKED(object);
1144	return (vm_radix_lookup(&object->rtree, pindex));
1145}
1146
1147/*
1148 *	vm_page_find_least:
1149 *
1150 *	Returns the page associated with the object with least pindex
1151 *	greater than or equal to the parameter pindex, or NULL.
1152 *
1153 *	The object must be locked.
1154 */
1155vm_page_t
1156vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1157{
1158	vm_page_t m;
1159
1160	VM_OBJECT_ASSERT_LOCKED(object);
1161	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1162		m = vm_radix_lookup_ge(&object->rtree, pindex);
1163	return (m);
1164}
1165
1166/*
1167 * Returns the given page's successor (by pindex) within the object if it is
1168 * resident; if none is found, NULL is returned.
1169 *
1170 * The object must be locked.
1171 */
1172vm_page_t
1173vm_page_next(vm_page_t m)
1174{
1175	vm_page_t next;
1176
1177	VM_OBJECT_ASSERT_WLOCKED(m->object);
1178	if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1179		MPASS(next->object == m->object);
1180		if (next->pindex != m->pindex + 1)
1181			next = NULL;
1182	}
1183	return (next);
1184}
1185
1186/*
1187 * Returns the given page's predecessor (by pindex) within the object if it is
1188 * resident; if none is found, NULL is returned.
1189 *
1190 * The object must be locked.
1191 */
1192vm_page_t
1193vm_page_prev(vm_page_t m)
1194{
1195	vm_page_t prev;
1196
1197	VM_OBJECT_ASSERT_WLOCKED(m->object);
1198	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1199		MPASS(prev->object == m->object);
1200		if (prev->pindex != m->pindex - 1)
1201			prev = NULL;
1202	}
1203	return (prev);
1204}
1205
1206/*
1207 * Uses the page mnew as a replacement for an existing page at index
1208 * pindex which must be already present in the object.
1209 *
1210 * The existing page must not be on a paging queue.
1211 */
1212vm_page_t
1213vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1214{
1215	vm_page_t mold, mpred;
1216
1217	VM_OBJECT_ASSERT_WLOCKED(object);
1218
1219	/*
1220	 * This function mostly follows vm_page_insert() and
1221	 * vm_page_remove() without the radix, object count and vnode
1222	 * dance.  Double check such functions for more comments.
1223	 */
1224	mpred = vm_radix_lookup(&object->rtree, pindex);
1225	KASSERT(mpred != NULL,
1226	    ("vm_page_replace: replacing page not present with pindex"));
1227	mpred = TAILQ_PREV(mpred, respgs, listq);
1228	if (mpred != NULL)
1229		KASSERT(mpred->pindex < pindex,
1230		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1231
1232	mnew->object = object;
1233	mnew->pindex = pindex;
1234	mold = vm_radix_replace(&object->rtree, mnew);
1235	KASSERT(mold->queue == PQ_NONE,
1236	    ("vm_page_replace: mold is on a paging queue"));
1237
1238	/* Detach the old page from the resident tailq. */
1239	TAILQ_REMOVE(&object->memq, mold, listq);
1240
1241	mold->object = NULL;
1242	vm_page_xunbusy(mold);
1243
1244	/* Insert the new page in the resident tailq. */
1245	if (mpred != NULL)
1246		TAILQ_INSERT_AFTER(&object->memq, mpred, mnew, listq);
1247	else
1248		TAILQ_INSERT_HEAD(&object->memq, mnew, listq);
1249	if (pmap_page_is_write_mapped(mnew))
1250		vm_object_set_writeable_dirty(object);
1251	return (mold);
1252}
1253
1254/*
1255 *	vm_page_rename:
1256 *
1257 *	Move the given memory entry from its
1258 *	current object to the specified target object/offset.
1259 *
1260 *	Note: swap associated with the page must be invalidated by the move.  We
1261 *	      have to do this for several reasons:  (1) we aren't freeing the
1262 *	      page, (2) we are dirtying the page, (3) the VM system is probably
1263 *	      moving the page from object A to B, and will then later move
1264 *	      the backing store from A to B and we can't have a conflict.
1265 *
1266 *	Note: we *always* dirty the page.  It is necessary both for the
1267 *	      fact that we moved it, and because we may be invalidating
1268 *	      swap.  If the page is on the cache, we have to deactivate it
1269 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1270 *	      on the cache.
1271 *
1272 *	The objects must be locked.
1273 */
1274int
1275vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1276{
1277	vm_page_t mpred;
1278	vm_pindex_t opidx;
1279
1280	VM_OBJECT_ASSERT_WLOCKED(new_object);
1281
1282	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1283	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1284	    ("vm_page_rename: pindex already renamed"));
1285
1286	/*
1287	 * Create a custom version of vm_page_insert() which does not depend
1288	 * by m_prev and can cheat on the implementation aspects of the
1289	 * function.
1290	 */
1291	opidx = m->pindex;
1292	m->pindex = new_pindex;
1293	if (vm_radix_insert(&new_object->rtree, m)) {
1294		m->pindex = opidx;
1295		return (1);
1296	}
1297
1298	/*
1299	 * The operation cannot fail anymore.  The removal must happen before
1300	 * the listq iterator is tainted.
1301	 */
1302	m->pindex = opidx;
1303	vm_page_lock(m);
1304	vm_page_remove(m);
1305
1306	/* Return back to the new pindex to complete vm_page_insert(). */
1307	m->pindex = new_pindex;
1308	m->object = new_object;
1309	vm_page_unlock(m);
1310	vm_page_insert_radixdone(m, new_object, mpred);
1311	vm_page_dirty(m);
1312	return (0);
1313}
1314
1315/*
1316 *	Convert all of the given object's cached pages that have a
1317 *	pindex within the given range into free pages.  If the value
1318 *	zero is given for "end", then the range's upper bound is
1319 *	infinity.  If the given object is backed by a vnode and it
1320 *	transitions from having one or more cached pages to none, the
1321 *	vnode's hold count is reduced.
1322 */
1323void
1324vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1325{
1326	vm_page_t m;
1327	boolean_t empty;
1328
1329	mtx_lock(&vm_page_queue_free_mtx);
1330	if (__predict_false(vm_radix_is_empty(&object->cache))) {
1331		mtx_unlock(&vm_page_queue_free_mtx);
1332		return;
1333	}
1334	while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) {
1335		if (end != 0 && m->pindex >= end)
1336			break;
1337		vm_radix_remove(&object->cache, m->pindex);
1338		vm_page_cache_turn_free(m);
1339	}
1340	empty = vm_radix_is_empty(&object->cache);
1341	mtx_unlock(&vm_page_queue_free_mtx);
1342	if (object->type == OBJT_VNODE && empty)
1343		vdrop(object->handle);
1344}
1345
1346/*
1347 *	Returns the cached page that is associated with the given
1348 *	object and offset.  If, however, none exists, returns NULL.
1349 *
1350 *	The free page queue must be locked.
1351 */
1352static inline vm_page_t
1353vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1354{
1355
1356	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1357	return (vm_radix_lookup(&object->cache, pindex));
1358}
1359
1360/*
1361 *	Remove the given cached page from its containing object's
1362 *	collection of cached pages.
1363 *
1364 *	The free page queue must be locked.
1365 */
1366static void
1367vm_page_cache_remove(vm_page_t m)
1368{
1369
1370	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1371	KASSERT((m->flags & PG_CACHED) != 0,
1372	    ("vm_page_cache_remove: page %p is not cached", m));
1373	vm_radix_remove(&m->object->cache, m->pindex);
1374	m->object = NULL;
1375	cnt.v_cache_count--;
1376}
1377
1378/*
1379 *	Transfer all of the cached pages with offset greater than or
1380 *	equal to 'offidxstart' from the original object's cache to the
1381 *	new object's cache.  However, any cached pages with offset
1382 *	greater than or equal to the new object's size are kept in the
1383 *	original object.  Initially, the new object's cache must be
1384 *	empty.  Offset 'offidxstart' in the original object must
1385 *	correspond to offset zero in the new object.
1386 *
1387 *	The new object must be locked.
1388 */
1389void
1390vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1391    vm_object_t new_object)
1392{
1393	vm_page_t m;
1394
1395	/*
1396	 * Insertion into an object's collection of cached pages
1397	 * requires the object to be locked.  In contrast, removal does
1398	 * not.
1399	 */
1400	VM_OBJECT_ASSERT_WLOCKED(new_object);
1401	KASSERT(vm_radix_is_empty(&new_object->cache),
1402	    ("vm_page_cache_transfer: object %p has cached pages",
1403	    new_object));
1404	mtx_lock(&vm_page_queue_free_mtx);
1405	while ((m = vm_radix_lookup_ge(&orig_object->cache,
1406	    offidxstart)) != NULL) {
1407		/*
1408		 * Transfer all of the pages with offset greater than or
1409		 * equal to 'offidxstart' from the original object's
1410		 * cache to the new object's cache.
1411		 */
1412		if ((m->pindex - offidxstart) >= new_object->size)
1413			break;
1414		vm_radix_remove(&orig_object->cache, m->pindex);
1415		/* Update the page's object and offset. */
1416		m->object = new_object;
1417		m->pindex -= offidxstart;
1418		if (vm_radix_insert(&new_object->cache, m))
1419			vm_page_cache_turn_free(m);
1420	}
1421	mtx_unlock(&vm_page_queue_free_mtx);
1422}
1423
1424/*
1425 *	Returns TRUE if a cached page is associated with the given object and
1426 *	offset, and FALSE otherwise.
1427 *
1428 *	The object must be locked.
1429 */
1430boolean_t
1431vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
1432{
1433	vm_page_t m;
1434
1435	/*
1436	 * Insertion into an object's collection of cached pages requires the
1437	 * object to be locked.  Therefore, if the object is locked and the
1438	 * object's collection is empty, there is no need to acquire the free
1439	 * page queues lock in order to prove that the specified page doesn't
1440	 * exist.
1441	 */
1442	VM_OBJECT_ASSERT_WLOCKED(object);
1443	if (__predict_true(vm_object_cache_is_empty(object)))
1444		return (FALSE);
1445	mtx_lock(&vm_page_queue_free_mtx);
1446	m = vm_page_cache_lookup(object, pindex);
1447	mtx_unlock(&vm_page_queue_free_mtx);
1448	return (m != NULL);
1449}
1450
1451/*
1452 *	vm_page_alloc:
1453 *
1454 *	Allocate and return a page that is associated with the specified
1455 *	object and offset pair.  By default, this page is exclusive busied.
1456 *
1457 *	The caller must always specify an allocation class.
1458 *
1459 *	allocation classes:
1460 *	VM_ALLOC_NORMAL		normal process request
1461 *	VM_ALLOC_SYSTEM		system *really* needs a page
1462 *	VM_ALLOC_INTERRUPT	interrupt time request
1463 *
1464 *	optional allocation flags:
1465 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1466 *				intends to allocate
1467 *	VM_ALLOC_IFCACHED	return page only if it is cached
1468 *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1469 *				is cached
1470 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1471 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1472 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1473 *				should not be exclusive busy
1474 *	VM_ALLOC_SBUSY		shared busy the allocated page
1475 *	VM_ALLOC_WIRED		wire the allocated page
1476 *	VM_ALLOC_ZERO		prefer a zeroed page
1477 *
1478 *	This routine may not sleep.
1479 */
1480vm_page_t
1481vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1482{
1483	struct vnode *vp = NULL;
1484	vm_object_t m_object;
1485	vm_page_t m, mpred;
1486	int flags, req_class;
1487
1488	mpred = 0;	/* XXX: pacify gcc */
1489	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1490	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1491	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1492	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1493	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1494	    req));
1495	if (object != NULL)
1496		VM_OBJECT_ASSERT_WLOCKED(object);
1497
1498	req_class = req & VM_ALLOC_CLASS_MASK;
1499
1500	/*
1501	 * The page daemon is allowed to dig deeper into the free page list.
1502	 */
1503	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1504		req_class = VM_ALLOC_SYSTEM;
1505
1506	if (object != NULL) {
1507		mpred = vm_radix_lookup_le(&object->rtree, pindex);
1508		KASSERT(mpred == NULL || mpred->pindex != pindex,
1509		   ("vm_page_alloc: pindex already allocated"));
1510	}
1511
1512	/*
1513	 * The page allocation request can came from consumers which already
1514	 * hold the free page queue mutex, like vm_page_insert() in
1515	 * vm_page_cache().
1516	 */
1517	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1518	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1519	    (req_class == VM_ALLOC_SYSTEM &&
1520	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1521	    (req_class == VM_ALLOC_INTERRUPT &&
1522	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1523		/*
1524		 * Allocate from the free queue if the number of free pages
1525		 * exceeds the minimum for the request class.
1526		 */
1527		if (object != NULL &&
1528		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1529			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1530				mtx_unlock(&vm_page_queue_free_mtx);
1531				return (NULL);
1532			}
1533			if (vm_phys_unfree_page(m))
1534				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1535#if VM_NRESERVLEVEL > 0
1536			else if (!vm_reserv_reactivate_page(m))
1537#else
1538			else
1539#endif
1540				panic("vm_page_alloc: cache page %p is missing"
1541				    " from the free queue", m);
1542		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1543			mtx_unlock(&vm_page_queue_free_mtx);
1544			return (NULL);
1545#if VM_NRESERVLEVEL > 0
1546		} else if (object == NULL || (object->flags & (OBJ_COLORED |
1547		    OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1548		    vm_reserv_alloc_page(object, pindex, mpred)) == NULL) {
1549#else
1550		} else {
1551#endif
1552			m = vm_phys_alloc_pages(object != NULL ?
1553			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1554#if VM_NRESERVLEVEL > 0
1555			if (m == NULL && vm_reserv_reclaim_inactive()) {
1556				m = vm_phys_alloc_pages(object != NULL ?
1557				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1558				    0);
1559			}
1560#endif
1561		}
1562	} else {
1563		/*
1564		 * Not allocatable, give up.
1565		 */
1566		mtx_unlock(&vm_page_queue_free_mtx);
1567		atomic_add_int(&vm_pageout_deficit,
1568		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1569		pagedaemon_wakeup();
1570		return (NULL);
1571	}
1572
1573	/*
1574	 *  At this point we had better have found a good page.
1575	 */
1576	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1577	KASSERT(m->queue == PQ_NONE,
1578	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1579	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1580	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1581	KASSERT(!vm_page_busied(m), ("vm_page_alloc: page %p is busy", m));
1582	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1583	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1584	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1585	    pmap_page_get_memattr(m)));
1586	if ((m->flags & PG_CACHED) != 0) {
1587		KASSERT((m->flags & PG_ZERO) == 0,
1588		    ("vm_page_alloc: cached page %p is PG_ZERO", m));
1589		KASSERT(m->valid != 0,
1590		    ("vm_page_alloc: cached page %p is invalid", m));
1591		if (m->object == object && m->pindex == pindex)
1592	  		cnt.v_reactivated++;
1593		else
1594			m->valid = 0;
1595		m_object = m->object;
1596		vm_page_cache_remove(m);
1597		if (m_object->type == OBJT_VNODE &&
1598		    vm_object_cache_is_empty(m_object))
1599			vp = m_object->handle;
1600	} else {
1601		KASSERT(VM_PAGE_IS_FREE(m),
1602		    ("vm_page_alloc: page %p is not free", m));
1603		KASSERT(m->valid == 0,
1604		    ("vm_page_alloc: free page %p is valid", m));
1605		vm_phys_freecnt_adj(m, -1);
1606	}
1607
1608	/*
1609	 * Only the PG_ZERO flag is inherited.  The PG_CACHED or PG_FREE flag
1610	 * must be cleared before the free page queues lock is released.
1611	 */
1612	flags = 0;
1613	if (m->flags & PG_ZERO) {
1614		vm_page_zero_count--;
1615		if (req & VM_ALLOC_ZERO)
1616			flags = PG_ZERO;
1617	}
1618	if (req & VM_ALLOC_NODUMP)
1619		flags |= PG_NODUMP;
1620	m->flags = flags;
1621	mtx_unlock(&vm_page_queue_free_mtx);
1622	m->aflags = 0;
1623	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1624	    VPO_UNMANAGED : 0;
1625	m->busy_lock = VPB_UNBUSIED;
1626	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1627		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1628	if ((req & VM_ALLOC_SBUSY) != 0)
1629		m->busy_lock = VPB_SHARERS_WORD(1);
1630	if (req & VM_ALLOC_WIRED) {
1631		/*
1632		 * The page lock is not required for wiring a page until that
1633		 * page is inserted into the object.
1634		 */
1635		atomic_add_int(&cnt.v_wire_count, 1);
1636		m->wire_count = 1;
1637	}
1638	m->act_count = 0;
1639
1640	if (object != NULL) {
1641		if (vm_page_insert_after(m, object, pindex, mpred)) {
1642			/* See the comment below about hold count. */
1643			if (vp != NULL)
1644				vdrop(vp);
1645			pagedaemon_wakeup();
1646			if (req & VM_ALLOC_WIRED) {
1647				atomic_subtract_int(&cnt.v_wire_count, 1);
1648				m->wire_count = 0;
1649			}
1650			m->object = NULL;
1651			m->oflags = VPO_UNMANAGED;
1652			m->busy_lock = VPB_UNBUSIED;
1653			vm_page_free(m);
1654			return (NULL);
1655		}
1656
1657		/* Ignore device objects; the pager sets "memattr" for them. */
1658		if (object->memattr != VM_MEMATTR_DEFAULT &&
1659		    (object->flags & OBJ_FICTITIOUS) == 0)
1660			pmap_page_set_memattr(m, object->memattr);
1661	} else
1662		m->pindex = pindex;
1663
1664	/*
1665	 * The following call to vdrop() must come after the above call
1666	 * to vm_page_insert() in case both affect the same object and
1667	 * vnode.  Otherwise, the affected vnode's hold count could
1668	 * temporarily become zero.
1669	 */
1670	if (vp != NULL)
1671		vdrop(vp);
1672
1673	/*
1674	 * Don't wakeup too often - wakeup the pageout daemon when
1675	 * we would be nearly out of memory.
1676	 */
1677	if (vm_paging_needed())
1678		pagedaemon_wakeup();
1679
1680	return (m);
1681}
1682
1683static void
1684vm_page_alloc_contig_vdrop(struct spglist *lst)
1685{
1686
1687	while (!SLIST_EMPTY(lst)) {
1688		vdrop((struct vnode *)SLIST_FIRST(lst)-> plinks.s.pv);
1689		SLIST_REMOVE_HEAD(lst, plinks.s.ss);
1690	}
1691}
1692
1693/*
1694 *	vm_page_alloc_contig:
1695 *
1696 *	Allocate a contiguous set of physical pages of the given size "npages"
1697 *	from the free lists.  All of the physical pages must be at or above
1698 *	the given physical address "low" and below the given physical address
1699 *	"high".  The given value "alignment" determines the alignment of the
1700 *	first physical page in the set.  If the given value "boundary" is
1701 *	non-zero, then the set of physical pages cannot cross any physical
1702 *	address boundary that is a multiple of that value.  Both "alignment"
1703 *	and "boundary" must be a power of two.
1704 *
1705 *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1706 *	then the memory attribute setting for the physical pages is configured
1707 *	to the object's memory attribute setting.  Otherwise, the memory
1708 *	attribute setting for the physical pages is configured to "memattr",
1709 *	overriding the object's memory attribute setting.  However, if the
1710 *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1711 *	memory attribute setting for the physical pages cannot be configured
1712 *	to VM_MEMATTR_DEFAULT.
1713 *
1714 *	The caller must always specify an allocation class.
1715 *
1716 *	allocation classes:
1717 *	VM_ALLOC_NORMAL		normal process request
1718 *	VM_ALLOC_SYSTEM		system *really* needs a page
1719 *	VM_ALLOC_INTERRUPT	interrupt time request
1720 *
1721 *	optional allocation flags:
1722 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1723 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1724 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1725 *				should not be exclusive busy
1726 *	VM_ALLOC_SBUSY		shared busy the allocated page
1727 *	VM_ALLOC_WIRED		wire the allocated page
1728 *	VM_ALLOC_ZERO		prefer a zeroed page
1729 *
1730 *	This routine may not sleep.
1731 */
1732vm_page_t
1733vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1734    u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1735    vm_paddr_t boundary, vm_memattr_t memattr)
1736{
1737	struct vnode *drop;
1738	struct spglist deferred_vdrop_list;
1739	vm_page_t m, m_tmp, m_ret;
1740	u_int flags, oflags;
1741	int req_class;
1742
1743	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1744	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1745	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1746	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1747	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1748	    req));
1749	if (object != NULL) {
1750		VM_OBJECT_ASSERT_WLOCKED(object);
1751		KASSERT(object->type == OBJT_PHYS,
1752		    ("vm_page_alloc_contig: object %p isn't OBJT_PHYS",
1753		    object));
1754	}
1755	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1756	req_class = req & VM_ALLOC_CLASS_MASK;
1757
1758	/*
1759	 * The page daemon is allowed to dig deeper into the free page list.
1760	 */
1761	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1762		req_class = VM_ALLOC_SYSTEM;
1763
1764	SLIST_INIT(&deferred_vdrop_list);
1765	mtx_lock(&vm_page_queue_free_mtx);
1766	if (cnt.v_free_count + cnt.v_cache_count >= npages +
1767	    cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM &&
1768	    cnt.v_free_count + cnt.v_cache_count >= npages +
1769	    cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT &&
1770	    cnt.v_free_count + cnt.v_cache_count >= npages)) {
1771#if VM_NRESERVLEVEL > 0
1772retry:
1773		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1774		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1775		    low, high, alignment, boundary)) == NULL)
1776#endif
1777			m_ret = vm_phys_alloc_contig(npages, low, high,
1778			    alignment, boundary);
1779	} else {
1780		mtx_unlock(&vm_page_queue_free_mtx);
1781		atomic_add_int(&vm_pageout_deficit, npages);
1782		pagedaemon_wakeup();
1783		return (NULL);
1784	}
1785	if (m_ret != NULL)
1786		for (m = m_ret; m < &m_ret[npages]; m++) {
1787			drop = vm_page_alloc_init(m);
1788			if (drop != NULL) {
1789				/*
1790				 * Enqueue the vnode for deferred vdrop().
1791				 */
1792				m->plinks.s.pv = drop;
1793				SLIST_INSERT_HEAD(&deferred_vdrop_list, m,
1794				    plinks.s.ss);
1795			}
1796		}
1797	else {
1798#if VM_NRESERVLEVEL > 0
1799		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1800		    boundary))
1801			goto retry;
1802#endif
1803	}
1804	mtx_unlock(&vm_page_queue_free_mtx);
1805	if (m_ret == NULL)
1806		return (NULL);
1807
1808	/*
1809	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1810	 */
1811	flags = 0;
1812	if ((req & VM_ALLOC_ZERO) != 0)
1813		flags = PG_ZERO;
1814	if ((req & VM_ALLOC_NODUMP) != 0)
1815		flags |= PG_NODUMP;
1816	if ((req & VM_ALLOC_WIRED) != 0)
1817		atomic_add_int(&cnt.v_wire_count, npages);
1818	oflags = VPO_UNMANAGED;
1819	if (object != NULL) {
1820		if (object->memattr != VM_MEMATTR_DEFAULT &&
1821		    memattr == VM_MEMATTR_DEFAULT)
1822			memattr = object->memattr;
1823	}
1824	for (m = m_ret; m < &m_ret[npages]; m++) {
1825		m->aflags = 0;
1826		m->flags = (m->flags | PG_NODUMP) & flags;
1827		m->busy_lock = VPB_UNBUSIED;
1828		if (object != NULL) {
1829			if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
1830				m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1831			if ((req & VM_ALLOC_SBUSY) != 0)
1832				m->busy_lock = VPB_SHARERS_WORD(1);
1833		}
1834		if ((req & VM_ALLOC_WIRED) != 0)
1835			m->wire_count = 1;
1836		/* Unmanaged pages don't use "act_count". */
1837		m->oflags = oflags;
1838		if (object != NULL) {
1839			if (vm_page_insert(m, object, pindex)) {
1840				vm_page_alloc_contig_vdrop(
1841				    &deferred_vdrop_list);
1842				if (vm_paging_needed())
1843					pagedaemon_wakeup();
1844				if ((req & VM_ALLOC_WIRED) != 0)
1845					atomic_subtract_int(&cnt.v_wire_count,
1846					    npages);
1847				for (m_tmp = m, m = m_ret;
1848				    m < &m_ret[npages]; m++) {
1849					if ((req & VM_ALLOC_WIRED) != 0)
1850						m->wire_count = 0;
1851					if (m >= m_tmp) {
1852						m->object = NULL;
1853						m->oflags |= VPO_UNMANAGED;
1854					}
1855					m->busy_lock = VPB_UNBUSIED;
1856					vm_page_free(m);
1857				}
1858				return (NULL);
1859			}
1860		} else
1861			m->pindex = pindex;
1862		if (memattr != VM_MEMATTR_DEFAULT)
1863			pmap_page_set_memattr(m, memattr);
1864		pindex++;
1865	}
1866	vm_page_alloc_contig_vdrop(&deferred_vdrop_list);
1867	if (vm_paging_needed())
1868		pagedaemon_wakeup();
1869	return (m_ret);
1870}
1871
1872/*
1873 * Initialize a page that has been freshly dequeued from a freelist.
1874 * The caller has to drop the vnode returned, if it is not NULL.
1875 *
1876 * This function may only be used to initialize unmanaged pages.
1877 *
1878 * To be called with vm_page_queue_free_mtx held.
1879 */
1880static struct vnode *
1881vm_page_alloc_init(vm_page_t m)
1882{
1883	struct vnode *drop;
1884	vm_object_t m_object;
1885
1886	KASSERT(m->queue == PQ_NONE,
1887	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1888	    m, m->queue));
1889	KASSERT(m->wire_count == 0,
1890	    ("vm_page_alloc_init: page %p is wired", m));
1891	KASSERT(m->hold_count == 0,
1892	    ("vm_page_alloc_init: page %p is held", m));
1893	KASSERT(!vm_page_busied(m),
1894	    ("vm_page_alloc_init: page %p is busy", m));
1895	KASSERT(m->dirty == 0,
1896	    ("vm_page_alloc_init: page %p is dirty", m));
1897	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1898	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1899	    m, pmap_page_get_memattr(m)));
1900	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1901	drop = NULL;
1902	if ((m->flags & PG_CACHED) != 0) {
1903		KASSERT((m->flags & PG_ZERO) == 0,
1904		    ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
1905		m->valid = 0;
1906		m_object = m->object;
1907		vm_page_cache_remove(m);
1908		if (m_object->type == OBJT_VNODE &&
1909		    vm_object_cache_is_empty(m_object))
1910			drop = m_object->handle;
1911	} else {
1912		KASSERT(VM_PAGE_IS_FREE(m),
1913		    ("vm_page_alloc_init: page %p is not free", m));
1914		KASSERT(m->valid == 0,
1915		    ("vm_page_alloc_init: free page %p is valid", m));
1916		vm_phys_freecnt_adj(m, -1);
1917		if ((m->flags & PG_ZERO) != 0)
1918			vm_page_zero_count--;
1919	}
1920	/* Don't clear the PG_ZERO flag; we'll need it later. */
1921	m->flags &= PG_ZERO;
1922	return (drop);
1923}
1924
1925/*
1926 * 	vm_page_alloc_freelist:
1927 *
1928 *	Allocate a physical page from the specified free page list.
1929 *
1930 *	The caller must always specify an allocation class.
1931 *
1932 *	allocation classes:
1933 *	VM_ALLOC_NORMAL		normal process request
1934 *	VM_ALLOC_SYSTEM		system *really* needs a page
1935 *	VM_ALLOC_INTERRUPT	interrupt time request
1936 *
1937 *	optional allocation flags:
1938 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1939 *				intends to allocate
1940 *	VM_ALLOC_WIRED		wire the allocated page
1941 *	VM_ALLOC_ZERO		prefer a zeroed page
1942 *
1943 *	This routine may not sleep.
1944 */
1945vm_page_t
1946vm_page_alloc_freelist(int flind, int req)
1947{
1948	struct vnode *drop;
1949	vm_page_t m;
1950	u_int flags;
1951	int req_class;
1952
1953	req_class = req & VM_ALLOC_CLASS_MASK;
1954
1955	/*
1956	 * The page daemon is allowed to dig deeper into the free page list.
1957	 */
1958	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1959		req_class = VM_ALLOC_SYSTEM;
1960
1961	/*
1962	 * Do not allocate reserved pages unless the req has asked for it.
1963	 */
1964	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1965	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1966	    (req_class == VM_ALLOC_SYSTEM &&
1967	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1968	    (req_class == VM_ALLOC_INTERRUPT &&
1969	    cnt.v_free_count + cnt.v_cache_count > 0))
1970		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
1971	else {
1972		mtx_unlock(&vm_page_queue_free_mtx);
1973		atomic_add_int(&vm_pageout_deficit,
1974		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1975		pagedaemon_wakeup();
1976		return (NULL);
1977	}
1978	if (m == NULL) {
1979		mtx_unlock(&vm_page_queue_free_mtx);
1980		return (NULL);
1981	}
1982	drop = vm_page_alloc_init(m);
1983	mtx_unlock(&vm_page_queue_free_mtx);
1984
1985	/*
1986	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1987	 */
1988	m->aflags = 0;
1989	flags = 0;
1990	if ((req & VM_ALLOC_ZERO) != 0)
1991		flags = PG_ZERO;
1992	m->flags &= flags;
1993	if ((req & VM_ALLOC_WIRED) != 0) {
1994		/*
1995		 * The page lock is not required for wiring a page that does
1996		 * not belong to an object.
1997		 */
1998		atomic_add_int(&cnt.v_wire_count, 1);
1999		m->wire_count = 1;
2000	}
2001	/* Unmanaged pages don't use "act_count". */
2002	m->oflags = VPO_UNMANAGED;
2003	if (drop != NULL)
2004		vdrop(drop);
2005	if (vm_paging_needed())
2006		pagedaemon_wakeup();
2007	return (m);
2008}
2009
2010/*
2011 *	vm_wait:	(also see VM_WAIT macro)
2012 *
2013 *	Sleep until free pages are available for allocation.
2014 *	- Called in various places before memory allocations.
2015 */
2016void
2017vm_wait(void)
2018{
2019
2020	mtx_lock(&vm_page_queue_free_mtx);
2021	if (curproc == pageproc) {
2022		vm_pageout_pages_needed = 1;
2023		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
2024		    PDROP | PSWP, "VMWait", 0);
2025	} else {
2026		if (!vm_pages_needed) {
2027			vm_pages_needed = 1;
2028			wakeup(&vm_pages_needed);
2029		}
2030		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
2031		    "vmwait", 0);
2032	}
2033}
2034
2035/*
2036 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
2037 *
2038 *	Sleep until free pages are available for allocation.
2039 *	- Called only in vm_fault so that processes page faulting
2040 *	  can be easily tracked.
2041 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
2042 *	  processes will be able to grab memory first.  Do not change
2043 *	  this balance without careful testing first.
2044 */
2045void
2046vm_waitpfault(void)
2047{
2048
2049	mtx_lock(&vm_page_queue_free_mtx);
2050	if (!vm_pages_needed) {
2051		vm_pages_needed = 1;
2052		wakeup(&vm_pages_needed);
2053	}
2054	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
2055	    "pfault", 0);
2056}
2057
2058struct vm_pagequeue *
2059vm_page_pagequeue(vm_page_t m)
2060{
2061
2062	return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]);
2063}
2064
2065/*
2066 *	vm_page_dequeue:
2067 *
2068 *	Remove the given page from its current page queue.
2069 *
2070 *	The page must be locked.
2071 */
2072void
2073vm_page_dequeue(vm_page_t m)
2074{
2075	struct vm_pagequeue *pq;
2076
2077	vm_page_lock_assert(m, MA_OWNED);
2078	KASSERT(m->queue != PQ_NONE,
2079	    ("vm_page_dequeue: page %p is not queued", m));
2080	pq = vm_page_pagequeue(m);
2081	vm_pagequeue_lock(pq);
2082	m->queue = PQ_NONE;
2083	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2084	vm_pagequeue_cnt_dec(pq);
2085	vm_pagequeue_unlock(pq);
2086}
2087
2088/*
2089 *	vm_page_dequeue_locked:
2090 *
2091 *	Remove the given page from its current page queue.
2092 *
2093 *	The page and page queue must be locked.
2094 */
2095void
2096vm_page_dequeue_locked(vm_page_t m)
2097{
2098	struct vm_pagequeue *pq;
2099
2100	vm_page_lock_assert(m, MA_OWNED);
2101	pq = vm_page_pagequeue(m);
2102	vm_pagequeue_assert_locked(pq);
2103	m->queue = PQ_NONE;
2104	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2105	vm_pagequeue_cnt_dec(pq);
2106}
2107
2108/*
2109 *	vm_page_enqueue:
2110 *
2111 *	Add the given page to the specified page queue.
2112 *
2113 *	The page must be locked.
2114 */
2115static void
2116vm_page_enqueue(int queue, vm_page_t m)
2117{
2118	struct vm_pagequeue *pq;
2119
2120	vm_page_lock_assert(m, MA_OWNED);
2121	pq = &vm_phys_domain(m)->vmd_pagequeues[queue];
2122	vm_pagequeue_lock(pq);
2123	m->queue = queue;
2124	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2125	vm_pagequeue_cnt_inc(pq);
2126	vm_pagequeue_unlock(pq);
2127}
2128
2129/*
2130 *	vm_page_requeue:
2131 *
2132 *	Move the given page to the tail of its current page queue.
2133 *
2134 *	The page must be locked.
2135 */
2136void
2137vm_page_requeue(vm_page_t m)
2138{
2139	struct vm_pagequeue *pq;
2140
2141	vm_page_lock_assert(m, MA_OWNED);
2142	KASSERT(m->queue != PQ_NONE,
2143	    ("vm_page_requeue: page %p is not queued", m));
2144	pq = vm_page_pagequeue(m);
2145	vm_pagequeue_lock(pq);
2146	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2147	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2148	vm_pagequeue_unlock(pq);
2149}
2150
2151/*
2152 *	vm_page_requeue_locked:
2153 *
2154 *	Move the given page to the tail of its current page queue.
2155 *
2156 *	The page queue must be locked.
2157 */
2158void
2159vm_page_requeue_locked(vm_page_t m)
2160{
2161	struct vm_pagequeue *pq;
2162
2163	KASSERT(m->queue != PQ_NONE,
2164	    ("vm_page_requeue_locked: page %p is not queued", m));
2165	pq = vm_page_pagequeue(m);
2166	vm_pagequeue_assert_locked(pq);
2167	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2168	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2169}
2170
2171/*
2172 *	vm_page_activate:
2173 *
2174 *	Put the specified page on the active list (if appropriate).
2175 *	Ensure that act_count is at least ACT_INIT but do not otherwise
2176 *	mess with it.
2177 *
2178 *	The page must be locked.
2179 */
2180void
2181vm_page_activate(vm_page_t m)
2182{
2183	int queue;
2184
2185	vm_page_lock_assert(m, MA_OWNED);
2186	if ((queue = m->queue) != PQ_ACTIVE) {
2187		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2188			if (m->act_count < ACT_INIT)
2189				m->act_count = ACT_INIT;
2190			if (queue != PQ_NONE)
2191				vm_page_dequeue(m);
2192			vm_page_enqueue(PQ_ACTIVE, m);
2193		} else
2194			KASSERT(queue == PQ_NONE,
2195			    ("vm_page_activate: wired page %p is queued", m));
2196	} else {
2197		if (m->act_count < ACT_INIT)
2198			m->act_count = ACT_INIT;
2199	}
2200}
2201
2202/*
2203 *	vm_page_free_wakeup:
2204 *
2205 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
2206 *	routine is called when a page has been added to the cache or free
2207 *	queues.
2208 *
2209 *	The page queues must be locked.
2210 */
2211static inline void
2212vm_page_free_wakeup(void)
2213{
2214
2215	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2216	/*
2217	 * if pageout daemon needs pages, then tell it that there are
2218	 * some free.
2219	 */
2220	if (vm_pageout_pages_needed &&
2221	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
2222		wakeup(&vm_pageout_pages_needed);
2223		vm_pageout_pages_needed = 0;
2224	}
2225	/*
2226	 * wakeup processes that are waiting on memory if we hit a
2227	 * high water mark. And wakeup scheduler process if we have
2228	 * lots of memory. this process will swapin processes.
2229	 */
2230	if (vm_pages_needed && !vm_page_count_min()) {
2231		vm_pages_needed = 0;
2232		wakeup(&cnt.v_free_count);
2233	}
2234}
2235
2236/*
2237 *	Turn a cached page into a free page, by changing its attributes.
2238 *	Keep the statistics up-to-date.
2239 *
2240 *	The free page queue must be locked.
2241 */
2242static void
2243vm_page_cache_turn_free(vm_page_t m)
2244{
2245
2246	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2247
2248	m->object = NULL;
2249	m->valid = 0;
2250	/* Clear PG_CACHED and set PG_FREE. */
2251	m->flags ^= PG_CACHED | PG_FREE;
2252	KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
2253	    ("vm_page_cache_free: page %p has inconsistent flags", m));
2254	cnt.v_cache_count--;
2255	vm_phys_freecnt_adj(m, 1);
2256}
2257
2258/*
2259 *	vm_page_free_toq:
2260 *
2261 *	Returns the given page to the free list,
2262 *	disassociating it with any VM object.
2263 *
2264 *	The object must be locked.  The page must be locked if it is managed.
2265 */
2266void
2267vm_page_free_toq(vm_page_t m)
2268{
2269
2270	if ((m->oflags & VPO_UNMANAGED) == 0) {
2271		vm_page_lock_assert(m, MA_OWNED);
2272		KASSERT(!pmap_page_is_mapped(m),
2273		    ("vm_page_free_toq: freeing mapped page %p", m));
2274	} else
2275		KASSERT(m->queue == PQ_NONE,
2276		    ("vm_page_free_toq: unmanaged page %p is queued", m));
2277	PCPU_INC(cnt.v_tfree);
2278
2279	if (VM_PAGE_IS_FREE(m))
2280		panic("vm_page_free: freeing free page %p", m);
2281	else if (vm_page_sbusied(m))
2282		panic("vm_page_free: freeing busy page %p", m);
2283
2284	/*
2285	 * Unqueue, then remove page.  Note that we cannot destroy
2286	 * the page here because we do not want to call the pager's
2287	 * callback routine until after we've put the page on the
2288	 * appropriate free queue.
2289	 */
2290	vm_page_remque(m);
2291	vm_page_remove(m);
2292
2293	/*
2294	 * If fictitious remove object association and
2295	 * return, otherwise delay object association removal.
2296	 */
2297	if ((m->flags & PG_FICTITIOUS) != 0) {
2298		return;
2299	}
2300
2301	m->valid = 0;
2302	vm_page_undirty(m);
2303
2304	if (m->wire_count != 0)
2305		panic("vm_page_free: freeing wired page %p", m);
2306	if (m->hold_count != 0) {
2307		m->flags &= ~PG_ZERO;
2308		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2309		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
2310		m->flags |= PG_UNHOLDFREE;
2311	} else {
2312		/*
2313		 * Restore the default memory attribute to the page.
2314		 */
2315		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2316			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2317
2318		/*
2319		 * Insert the page into the physical memory allocator's
2320		 * cache/free page queues.
2321		 */
2322		mtx_lock(&vm_page_queue_free_mtx);
2323		m->flags |= PG_FREE;
2324		vm_phys_freecnt_adj(m, 1);
2325#if VM_NRESERVLEVEL > 0
2326		if (!vm_reserv_free_page(m))
2327#else
2328		if (TRUE)
2329#endif
2330			vm_phys_free_pages(m, 0);
2331		if ((m->flags & PG_ZERO) != 0)
2332			++vm_page_zero_count;
2333		else
2334			vm_page_zero_idle_wakeup();
2335		vm_page_free_wakeup();
2336		mtx_unlock(&vm_page_queue_free_mtx);
2337	}
2338}
2339
2340/*
2341 *	vm_page_wire:
2342 *
2343 *	Mark this page as wired down by yet
2344 *	another map, removing it from paging queues
2345 *	as necessary.
2346 *
2347 *	If the page is fictitious, then its wire count must remain one.
2348 *
2349 *	The page must be locked.
2350 */
2351void
2352vm_page_wire(vm_page_t m)
2353{
2354
2355	/*
2356	 * Only bump the wire statistics if the page is not already wired,
2357	 * and only unqueue the page if it is on some queue (if it is unmanaged
2358	 * it is already off the queues).
2359	 */
2360	vm_page_lock_assert(m, MA_OWNED);
2361	if ((m->flags & PG_FICTITIOUS) != 0) {
2362		KASSERT(m->wire_count == 1,
2363		    ("vm_page_wire: fictitious page %p's wire count isn't one",
2364		    m));
2365		return;
2366	}
2367	if (m->wire_count == 0) {
2368		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
2369		    m->queue == PQ_NONE,
2370		    ("vm_page_wire: unmanaged page %p is queued", m));
2371		vm_page_remque(m);
2372		atomic_add_int(&cnt.v_wire_count, 1);
2373	}
2374	m->wire_count++;
2375	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
2376}
2377
2378/*
2379 * vm_page_unwire:
2380 *
2381 * Release one wiring of the specified page, potentially enabling it to be
2382 * paged again.  If paging is enabled, then the value of the parameter
2383 * "activate" determines to which queue the page is added.  If "activate" is
2384 * non-zero, then the page is added to the active queue.  Otherwise, it is
2385 * added to the inactive queue.
2386 *
2387 * However, unless the page belongs to an object, it is not enqueued because
2388 * it cannot be paged out.
2389 *
2390 * If a page is fictitious, then its wire count must always be one.
2391 *
2392 * A managed page must be locked.
2393 */
2394void
2395vm_page_unwire(vm_page_t m, int activate)
2396{
2397
2398	if ((m->oflags & VPO_UNMANAGED) == 0)
2399		vm_page_lock_assert(m, MA_OWNED);
2400	if ((m->flags & PG_FICTITIOUS) != 0) {
2401		KASSERT(m->wire_count == 1,
2402	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
2403		return;
2404	}
2405	if (m->wire_count > 0) {
2406		m->wire_count--;
2407		if (m->wire_count == 0) {
2408			atomic_subtract_int(&cnt.v_wire_count, 1);
2409			if ((m->oflags & VPO_UNMANAGED) != 0 ||
2410			    m->object == NULL)
2411				return;
2412			if (!activate)
2413				m->flags &= ~PG_WINATCFLS;
2414			vm_page_enqueue(activate ? PQ_ACTIVE : PQ_INACTIVE, m);
2415		}
2416	} else
2417		panic("vm_page_unwire: page %p's wire count is zero", m);
2418}
2419
2420/*
2421 * Move the specified page to the inactive queue.
2422 *
2423 * Many pages placed on the inactive queue should actually go
2424 * into the cache, but it is difficult to figure out which.  What
2425 * we do instead, if the inactive target is well met, is to put
2426 * clean pages at the head of the inactive queue instead of the tail.
2427 * This will cause them to be moved to the cache more quickly and
2428 * if not actively re-referenced, reclaimed more quickly.  If we just
2429 * stick these pages at the end of the inactive queue, heavy filesystem
2430 * meta-data accesses can cause an unnecessary paging load on memory bound
2431 * processes.  This optimization causes one-time-use metadata to be
2432 * reused more quickly.
2433 *
2434 * Normally athead is 0 resulting in LRU operation.  athead is set
2435 * to 1 if we want this page to be 'as if it were placed in the cache',
2436 * except without unmapping it from the process address space.
2437 *
2438 * The page must be locked.
2439 */
2440static inline void
2441_vm_page_deactivate(vm_page_t m, int athead)
2442{
2443	struct vm_pagequeue *pq;
2444	int queue;
2445
2446	vm_page_assert_locked(m);
2447
2448	/*
2449	 * Ignore if the page is already inactive, unless it is unlikely to be
2450	 * reactivated.
2451	 */
2452	if ((queue = m->queue) == PQ_INACTIVE && !athead)
2453		return;
2454	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2455		pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE];
2456		/* Avoid multiple acquisitions of the inactive queue lock. */
2457		if (queue == PQ_INACTIVE) {
2458			vm_pagequeue_lock(pq);
2459			vm_page_dequeue_locked(m);
2460		} else {
2461			if (queue != PQ_NONE)
2462				vm_page_dequeue(m);
2463			m->flags &= ~PG_WINATCFLS;
2464			vm_pagequeue_lock(pq);
2465		}
2466		m->queue = PQ_INACTIVE;
2467		if (athead)
2468			TAILQ_INSERT_HEAD(&pq->pq_pl, m, plinks.q);
2469		else
2470			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2471		vm_pagequeue_cnt_inc(pq);
2472		vm_pagequeue_unlock(pq);
2473	}
2474}
2475
2476/*
2477 * Move the specified page to the inactive queue.
2478 *
2479 * The page must be locked.
2480 */
2481void
2482vm_page_deactivate(vm_page_t m)
2483{
2484
2485	_vm_page_deactivate(m, 0);
2486}
2487
2488/*
2489 * vm_page_try_to_cache:
2490 *
2491 * Returns 0 on failure, 1 on success
2492 */
2493int
2494vm_page_try_to_cache(vm_page_t m)
2495{
2496
2497	vm_page_lock_assert(m, MA_OWNED);
2498	VM_OBJECT_ASSERT_WLOCKED(m->object);
2499	if (m->dirty || m->hold_count || m->wire_count ||
2500	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
2501		return (0);
2502	pmap_remove_all(m);
2503	if (m->dirty)
2504		return (0);
2505	vm_page_cache(m);
2506	return (1);
2507}
2508
2509/*
2510 * vm_page_try_to_free()
2511 *
2512 *	Attempt to free the page.  If we cannot free it, we do nothing.
2513 *	1 is returned on success, 0 on failure.
2514 */
2515int
2516vm_page_try_to_free(vm_page_t m)
2517{
2518
2519	vm_page_lock_assert(m, MA_OWNED);
2520	if (m->object != NULL)
2521		VM_OBJECT_ASSERT_WLOCKED(m->object);
2522	if (m->dirty || m->hold_count || m->wire_count ||
2523	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
2524		return (0);
2525	pmap_remove_all(m);
2526	if (m->dirty)
2527		return (0);
2528	vm_page_free(m);
2529	return (1);
2530}
2531
2532/*
2533 * vm_page_cache
2534 *
2535 * Put the specified page onto the page cache queue (if appropriate).
2536 *
2537 * The object and page must be locked.
2538 */
2539void
2540vm_page_cache(vm_page_t m)
2541{
2542	vm_object_t object;
2543	boolean_t cache_was_empty;
2544
2545	vm_page_lock_assert(m, MA_OWNED);
2546	object = m->object;
2547	VM_OBJECT_ASSERT_WLOCKED(object);
2548	if (vm_page_busied(m) || (m->oflags & VPO_UNMANAGED) ||
2549	    m->hold_count || m->wire_count)
2550		panic("vm_page_cache: attempting to cache busy page");
2551	KASSERT(!pmap_page_is_mapped(m),
2552	    ("vm_page_cache: page %p is mapped", m));
2553	KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m));
2554	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
2555	    (object->type == OBJT_SWAP &&
2556	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
2557		/*
2558		 * Hypothesis: A cache-elgible page belonging to a
2559		 * default object or swap object but without a backing
2560		 * store must be zero filled.
2561		 */
2562		vm_page_free(m);
2563		return;
2564	}
2565	KASSERT((m->flags & PG_CACHED) == 0,
2566	    ("vm_page_cache: page %p is already cached", m));
2567
2568	/*
2569	 * Remove the page from the paging queues.
2570	 */
2571	vm_page_remque(m);
2572
2573	/*
2574	 * Remove the page from the object's collection of resident
2575	 * pages.
2576	 */
2577	vm_radix_remove(&object->rtree, m->pindex);
2578	TAILQ_REMOVE(&object->memq, m, listq);
2579	object->resident_page_count--;
2580
2581	/*
2582	 * Restore the default memory attribute to the page.
2583	 */
2584	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2585		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2586
2587	/*
2588	 * Insert the page into the object's collection of cached pages
2589	 * and the physical memory allocator's cache/free page queues.
2590	 */
2591	m->flags &= ~PG_ZERO;
2592	mtx_lock(&vm_page_queue_free_mtx);
2593	cache_was_empty = vm_radix_is_empty(&object->cache);
2594	if (vm_radix_insert(&object->cache, m)) {
2595		mtx_unlock(&vm_page_queue_free_mtx);
2596		if (object->type == OBJT_VNODE &&
2597		    object->resident_page_count == 0)
2598			vdrop(object->handle);
2599		m->object = NULL;
2600		vm_page_free(m);
2601		return;
2602	}
2603
2604	/*
2605	 * The above call to vm_radix_insert() could reclaim the one pre-
2606	 * existing cached page from this object, resulting in a call to
2607	 * vdrop().
2608	 */
2609	if (!cache_was_empty)
2610		cache_was_empty = vm_radix_is_singleton(&object->cache);
2611
2612	m->flags |= PG_CACHED;
2613	cnt.v_cache_count++;
2614	PCPU_INC(cnt.v_tcached);
2615#if VM_NRESERVLEVEL > 0
2616	if (!vm_reserv_free_page(m)) {
2617#else
2618	if (TRUE) {
2619#endif
2620		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2621		vm_phys_free_pages(m, 0);
2622	}
2623	vm_page_free_wakeup();
2624	mtx_unlock(&vm_page_queue_free_mtx);
2625
2626	/*
2627	 * Increment the vnode's hold count if this is the object's only
2628	 * cached page.  Decrement the vnode's hold count if this was
2629	 * the object's only resident page.
2630	 */
2631	if (object->type == OBJT_VNODE) {
2632		if (cache_was_empty && object->resident_page_count != 0)
2633			vhold(object->handle);
2634		else if (!cache_was_empty && object->resident_page_count == 0)
2635			vdrop(object->handle);
2636	}
2637}
2638
2639/*
2640 * vm_page_advise
2641 *
2642 * 	Deactivate or do nothing, as appropriate.  This routine is used
2643 * 	by madvise() and vop_stdadvise().
2644 *
2645 *	The object and page must be locked.
2646 */
2647void
2648vm_page_advise(vm_page_t m, int advice)
2649{
2650
2651	vm_page_assert_locked(m);
2652	VM_OBJECT_ASSERT_WLOCKED(m->object);
2653	if (advice == MADV_FREE)
2654		/*
2655		 * Mark the page clean.  This will allow the page to be freed
2656		 * up by the system.  However, such pages are often reused
2657		 * quickly by malloc() so we do not do anything that would
2658		 * cause a page fault if we can help it.
2659		 *
2660		 * Specifically, we do not try to actually free the page now
2661		 * nor do we try to put it in the cache (which would cause a
2662		 * page fault on reuse).
2663		 *
2664		 * But we do make the page as freeable as we can without
2665		 * actually taking the step of unmapping it.
2666		 */
2667		vm_page_undirty(m);
2668	else if (advice != MADV_DONTNEED)
2669		return;
2670
2671	/*
2672	 * Clear any references to the page.  Otherwise, the page daemon will
2673	 * immediately reactivate the page.
2674	 */
2675	vm_page_aflag_clear(m, PGA_REFERENCED);
2676
2677	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
2678		vm_page_dirty(m);
2679
2680	/*
2681	 * Place clean pages at the head of the inactive queue rather than the
2682	 * tail, thus defeating the queue's LRU operation and ensuring that the
2683	 * page will be reused quickly.
2684	 */
2685	_vm_page_deactivate(m, m->dirty == 0);
2686}
2687
2688/*
2689 * Grab a page, waiting until we are waken up due to the page
2690 * changing state.  We keep on waiting, if the page continues
2691 * to be in the object.  If the page doesn't exist, first allocate it
2692 * and then conditionally zero it.
2693 *
2694 * This routine may sleep.
2695 *
2696 * The object must be locked on entry.  The lock will, however, be released
2697 * and reacquired if the routine sleeps.
2698 */
2699vm_page_t
2700vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2701{
2702	vm_page_t m;
2703	int sleep;
2704
2705	VM_OBJECT_ASSERT_WLOCKED(object);
2706	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
2707	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
2708	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
2709retrylookup:
2710	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2711		sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
2712		    vm_page_xbusied(m) : vm_page_busied(m);
2713		if (sleep) {
2714			/*
2715			 * Reference the page before unlocking and
2716			 * sleeping so that the page daemon is less
2717			 * likely to reclaim it.
2718			 */
2719			vm_page_aflag_set(m, PGA_REFERENCED);
2720			vm_page_lock(m);
2721			VM_OBJECT_WUNLOCK(object);
2722			vm_page_busy_sleep(m, "pgrbwt", (allocflags &
2723			    VM_ALLOC_IGN_SBUSY) != 0);
2724			VM_OBJECT_WLOCK(object);
2725			goto retrylookup;
2726		} else {
2727			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2728				vm_page_lock(m);
2729				vm_page_wire(m);
2730				vm_page_unlock(m);
2731			}
2732			if ((allocflags &
2733			    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2734				vm_page_xbusy(m);
2735			if ((allocflags & VM_ALLOC_SBUSY) != 0)
2736				vm_page_sbusy(m);
2737			return (m);
2738		}
2739	}
2740	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_IGN_SBUSY);
2741	if (m == NULL) {
2742		VM_OBJECT_WUNLOCK(object);
2743		VM_WAIT;
2744		VM_OBJECT_WLOCK(object);
2745		goto retrylookup;
2746	} else if (m->valid != 0)
2747		return (m);
2748	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2749		pmap_zero_page(m);
2750	return (m);
2751}
2752
2753/*
2754 * Mapping function for valid or dirty bits in a page.
2755 *
2756 * Inputs are required to range within a page.
2757 */
2758vm_page_bits_t
2759vm_page_bits(int base, int size)
2760{
2761	int first_bit;
2762	int last_bit;
2763
2764	KASSERT(
2765	    base + size <= PAGE_SIZE,
2766	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2767	);
2768
2769	if (size == 0)		/* handle degenerate case */
2770		return (0);
2771
2772	first_bit = base >> DEV_BSHIFT;
2773	last_bit = (base + size - 1) >> DEV_BSHIFT;
2774
2775	return (((vm_page_bits_t)2 << last_bit) -
2776	    ((vm_page_bits_t)1 << first_bit));
2777}
2778
2779/*
2780 *	vm_page_set_valid_range:
2781 *
2782 *	Sets portions of a page valid.  The arguments are expected
2783 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2784 *	of any partial chunks touched by the range.  The invalid portion of
2785 *	such chunks will be zeroed.
2786 *
2787 *	(base + size) must be less then or equal to PAGE_SIZE.
2788 */
2789void
2790vm_page_set_valid_range(vm_page_t m, int base, int size)
2791{
2792	int endoff, frag;
2793
2794	VM_OBJECT_ASSERT_WLOCKED(m->object);
2795	if (size == 0)	/* handle degenerate case */
2796		return;
2797
2798	/*
2799	 * If the base is not DEV_BSIZE aligned and the valid
2800	 * bit is clear, we have to zero out a portion of the
2801	 * first block.
2802	 */
2803	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2804	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2805		pmap_zero_page_area(m, frag, base - frag);
2806
2807	/*
2808	 * If the ending offset is not DEV_BSIZE aligned and the
2809	 * valid bit is clear, we have to zero out a portion of
2810	 * the last block.
2811	 */
2812	endoff = base + size;
2813	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2814	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2815		pmap_zero_page_area(m, endoff,
2816		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2817
2818	/*
2819	 * Assert that no previously invalid block that is now being validated
2820	 * is already dirty.
2821	 */
2822	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2823	    ("vm_page_set_valid_range: page %p is dirty", m));
2824
2825	/*
2826	 * Set valid bits inclusive of any overlap.
2827	 */
2828	m->valid |= vm_page_bits(base, size);
2829}
2830
2831/*
2832 * Clear the given bits from the specified page's dirty field.
2833 */
2834static __inline void
2835vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
2836{
2837	uintptr_t addr;
2838#if PAGE_SIZE < 16384
2839	int shift;
2840#endif
2841
2842	/*
2843	 * If the object is locked and the page is neither exclusive busy nor
2844	 * write mapped, then the page's dirty field cannot possibly be
2845	 * set by a concurrent pmap operation.
2846	 */
2847	VM_OBJECT_ASSERT_WLOCKED(m->object);
2848	if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
2849		m->dirty &= ~pagebits;
2850	else {
2851		/*
2852		 * The pmap layer can call vm_page_dirty() without
2853		 * holding a distinguished lock.  The combination of
2854		 * the object's lock and an atomic operation suffice
2855		 * to guarantee consistency of the page dirty field.
2856		 *
2857		 * For PAGE_SIZE == 32768 case, compiler already
2858		 * properly aligns the dirty field, so no forcible
2859		 * alignment is needed. Only require existence of
2860		 * atomic_clear_64 when page size is 32768.
2861		 */
2862		addr = (uintptr_t)&m->dirty;
2863#if PAGE_SIZE == 32768
2864		atomic_clear_64((uint64_t *)addr, pagebits);
2865#elif PAGE_SIZE == 16384
2866		atomic_clear_32((uint32_t *)addr, pagebits);
2867#else		/* PAGE_SIZE <= 8192 */
2868		/*
2869		 * Use a trick to perform a 32-bit atomic on the
2870		 * containing aligned word, to not depend on the existence
2871		 * of atomic_clear_{8, 16}.
2872		 */
2873		shift = addr & (sizeof(uint32_t) - 1);
2874#if BYTE_ORDER == BIG_ENDIAN
2875		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
2876#else
2877		shift *= NBBY;
2878#endif
2879		addr &= ~(sizeof(uint32_t) - 1);
2880		atomic_clear_32((uint32_t *)addr, pagebits << shift);
2881#endif		/* PAGE_SIZE */
2882	}
2883}
2884
2885/*
2886 *	vm_page_set_validclean:
2887 *
2888 *	Sets portions of a page valid and clean.  The arguments are expected
2889 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2890 *	of any partial chunks touched by the range.  The invalid portion of
2891 *	such chunks will be zero'd.
2892 *
2893 *	(base + size) must be less then or equal to PAGE_SIZE.
2894 */
2895void
2896vm_page_set_validclean(vm_page_t m, int base, int size)
2897{
2898	vm_page_bits_t oldvalid, pagebits;
2899	int endoff, frag;
2900
2901	VM_OBJECT_ASSERT_WLOCKED(m->object);
2902	if (size == 0)	/* handle degenerate case */
2903		return;
2904
2905	/*
2906	 * If the base is not DEV_BSIZE aligned and the valid
2907	 * bit is clear, we have to zero out a portion of the
2908	 * first block.
2909	 */
2910	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2911	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
2912		pmap_zero_page_area(m, frag, base - frag);
2913
2914	/*
2915	 * If the ending offset is not DEV_BSIZE aligned and the
2916	 * valid bit is clear, we have to zero out a portion of
2917	 * the last block.
2918	 */
2919	endoff = base + size;
2920	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2921	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
2922		pmap_zero_page_area(m, endoff,
2923		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2924
2925	/*
2926	 * Set valid, clear dirty bits.  If validating the entire
2927	 * page we can safely clear the pmap modify bit.  We also
2928	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2929	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2930	 * be set again.
2931	 *
2932	 * We set valid bits inclusive of any overlap, but we can only
2933	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2934	 * the range.
2935	 */
2936	oldvalid = m->valid;
2937	pagebits = vm_page_bits(base, size);
2938	m->valid |= pagebits;
2939#if 0	/* NOT YET */
2940	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2941		frag = DEV_BSIZE - frag;
2942		base += frag;
2943		size -= frag;
2944		if (size < 0)
2945			size = 0;
2946	}
2947	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2948#endif
2949	if (base == 0 && size == PAGE_SIZE) {
2950		/*
2951		 * The page can only be modified within the pmap if it is
2952		 * mapped, and it can only be mapped if it was previously
2953		 * fully valid.
2954		 */
2955		if (oldvalid == VM_PAGE_BITS_ALL)
2956			/*
2957			 * Perform the pmap_clear_modify() first.  Otherwise,
2958			 * a concurrent pmap operation, such as
2959			 * pmap_protect(), could clear a modification in the
2960			 * pmap and set the dirty field on the page before
2961			 * pmap_clear_modify() had begun and after the dirty
2962			 * field was cleared here.
2963			 */
2964			pmap_clear_modify(m);
2965		m->dirty = 0;
2966		m->oflags &= ~VPO_NOSYNC;
2967	} else if (oldvalid != VM_PAGE_BITS_ALL)
2968		m->dirty &= ~pagebits;
2969	else
2970		vm_page_clear_dirty_mask(m, pagebits);
2971}
2972
2973void
2974vm_page_clear_dirty(vm_page_t m, int base, int size)
2975{
2976
2977	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2978}
2979
2980/*
2981 *	vm_page_set_invalid:
2982 *
2983 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2984 *	valid and dirty bits for the effected areas are cleared.
2985 */
2986void
2987vm_page_set_invalid(vm_page_t m, int base, int size)
2988{
2989	vm_page_bits_t bits;
2990	vm_object_t object;
2991
2992	object = m->object;
2993	VM_OBJECT_ASSERT_WLOCKED(object);
2994	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
2995	    size >= object->un_pager.vnp.vnp_size)
2996		bits = VM_PAGE_BITS_ALL;
2997	else
2998		bits = vm_page_bits(base, size);
2999	if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL &&
3000	    bits != 0)
3001		pmap_remove_all(m);
3002	KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
3003	    !pmap_page_is_mapped(m),
3004	    ("vm_page_set_invalid: page %p is mapped", m));
3005	m->valid &= ~bits;
3006	m->dirty &= ~bits;
3007}
3008
3009/*
3010 * vm_page_zero_invalid()
3011 *
3012 *	The kernel assumes that the invalid portions of a page contain
3013 *	garbage, but such pages can be mapped into memory by user code.
3014 *	When this occurs, we must zero out the non-valid portions of the
3015 *	page so user code sees what it expects.
3016 *
3017 *	Pages are most often semi-valid when the end of a file is mapped
3018 *	into memory and the file's size is not page aligned.
3019 */
3020void
3021vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3022{
3023	int b;
3024	int i;
3025
3026	VM_OBJECT_ASSERT_WLOCKED(m->object);
3027	/*
3028	 * Scan the valid bits looking for invalid sections that
3029	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
3030	 * valid bit may be set ) have already been zeroed by
3031	 * vm_page_set_validclean().
3032	 */
3033	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3034		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3035		    (m->valid & ((vm_page_bits_t)1 << i))) {
3036			if (i > b) {
3037				pmap_zero_page_area(m,
3038				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
3039			}
3040			b = i + 1;
3041		}
3042	}
3043
3044	/*
3045	 * setvalid is TRUE when we can safely set the zero'd areas
3046	 * as being valid.  We can do this if there are no cache consistancy
3047	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3048	 */
3049	if (setvalid)
3050		m->valid = VM_PAGE_BITS_ALL;
3051}
3052
3053/*
3054 *	vm_page_is_valid:
3055 *
3056 *	Is (partial) page valid?  Note that the case where size == 0
3057 *	will return FALSE in the degenerate case where the page is
3058 *	entirely invalid, and TRUE otherwise.
3059 */
3060int
3061vm_page_is_valid(vm_page_t m, int base, int size)
3062{
3063	vm_page_bits_t bits;
3064
3065	VM_OBJECT_ASSERT_LOCKED(m->object);
3066	bits = vm_page_bits(base, size);
3067	return (m->valid != 0 && (m->valid & bits) == bits);
3068}
3069
3070/*
3071 *	vm_page_ps_is_valid:
3072 *
3073 *	Returns TRUE if the entire (super)page is valid and FALSE otherwise.
3074 */
3075boolean_t
3076vm_page_ps_is_valid(vm_page_t m)
3077{
3078	int i, npages;
3079
3080	VM_OBJECT_ASSERT_LOCKED(m->object);
3081	npages = atop(pagesizes[m->psind]);
3082
3083	/*
3084	 * The physically contiguous pages that make up a superpage, i.e., a
3085	 * page with a page size index ("psind") greater than zero, will
3086	 * occupy adjacent entries in vm_page_array[].
3087	 */
3088	for (i = 0; i < npages; i++) {
3089		if (m[i].valid != VM_PAGE_BITS_ALL)
3090			return (FALSE);
3091	}
3092	return (TRUE);
3093}
3094
3095/*
3096 * Set the page's dirty bits if the page is modified.
3097 */
3098void
3099vm_page_test_dirty(vm_page_t m)
3100{
3101
3102	VM_OBJECT_ASSERT_WLOCKED(m->object);
3103	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
3104		vm_page_dirty(m);
3105}
3106
3107void
3108vm_page_lock_KBI(vm_page_t m, const char *file, int line)
3109{
3110
3111	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
3112}
3113
3114void
3115vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
3116{
3117
3118	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
3119}
3120
3121int
3122vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
3123{
3124
3125	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
3126}
3127
3128#if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
3129void
3130vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
3131{
3132
3133	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
3134}
3135
3136void
3137vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
3138{
3139
3140	mtx_assert_(vm_page_lockptr(m), a, file, line);
3141}
3142#endif
3143
3144#ifdef INVARIANTS
3145void
3146vm_page_object_lock_assert(vm_page_t m)
3147{
3148
3149	/*
3150	 * Certain of the page's fields may only be modified by the
3151	 * holder of the containing object's lock or the exclusive busy.
3152	 * holder.  Unfortunately, the holder of the write busy is
3153	 * not recorded, and thus cannot be checked here.
3154	 */
3155	if (m->object != NULL && !vm_page_xbusied(m))
3156		VM_OBJECT_ASSERT_WLOCKED(m->object);
3157}
3158
3159void
3160vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
3161{
3162
3163	if ((bits & PGA_WRITEABLE) == 0)
3164		return;
3165
3166	/*
3167	 * The PGA_WRITEABLE flag can only be set if the page is
3168	 * managed, is exclusively busied or the object is locked.
3169	 * Currently, this flag is only set by pmap_enter().
3170	 */
3171	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3172	    ("PGA_WRITEABLE on unmanaged page"));
3173	if (!vm_page_xbusied(m))
3174		VM_OBJECT_ASSERT_LOCKED(m->object);
3175}
3176#endif
3177
3178#include "opt_ddb.h"
3179#ifdef DDB
3180#include <sys/kernel.h>
3181
3182#include <ddb/ddb.h>
3183
3184DB_SHOW_COMMAND(page, vm_page_print_page_info)
3185{
3186	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
3187	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
3188	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
3189	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
3190	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
3191	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
3192	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
3193	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
3194	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
3195	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
3196}
3197
3198DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3199{
3200	int dom;
3201
3202	db_printf("pq_free %d pq_cache %d\n",
3203	    cnt.v_free_count, cnt.v_cache_count);
3204	for (dom = 0; dom < vm_ndomains; dom++) {
3205		db_printf(
3206	"dom %d page_cnt %d free %d pq_act %d pq_inact %d pass %d\n",
3207		    dom,
3208		    vm_dom[dom].vmd_page_count,
3209		    vm_dom[dom].vmd_free_count,
3210		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
3211		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
3212		    vm_dom[dom].vmd_pass);
3213	}
3214}
3215
3216DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
3217{
3218	vm_page_t m;
3219	boolean_t phys;
3220
3221	if (!have_addr) {
3222		db_printf("show pginfo addr\n");
3223		return;
3224	}
3225
3226	phys = strchr(modif, 'p') != NULL;
3227	if (phys)
3228		m = PHYS_TO_VM_PAGE(addr);
3229	else
3230		m = (vm_page_t)addr;
3231	db_printf(
3232    "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
3233    "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
3234	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
3235	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
3236	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
3237}
3238#endif /* DDB */
3239