1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- A page queue lock is required when adding or removing a page from a
67 *	  page queue regardless of other locks or the busy state of a page.
68 *
69 *		* In general, no thread besides the page daemon can acquire or
70 *		  hold more than one page queue lock at a time.
71 *
72 *		* The page daemon can acquire and hold any pair of page queue
73 *		  locks in any order.
74 *
75 *	- The object lock is required when inserting or removing
76 *	  pages from an object (vm_page_insert() or vm_page_remove()).
77 *
78 */
79
80/*
81 *	Resident memory management module.
82 */
83
84#include <sys/cdefs.h>
85__FBSDID("$FreeBSD: stable/10/sys/vm/vm_page.c 320190 2017-06-21 14:39:31Z jhb $");
86
87#include "opt_vm.h"
88
89#include <sys/param.h>
90#include <sys/systm.h>
91#include <sys/lock.h>
92#include <sys/kernel.h>
93#include <sys/limits.h>
94#include <sys/malloc.h>
95#include <sys/mman.h>
96#include <sys/msgbuf.h>
97#include <sys/mutex.h>
98#include <sys/proc.h>
99#include <sys/rwlock.h>
100#include <sys/sysctl.h>
101#include <sys/vmmeter.h>
102#include <sys/vnode.h>
103
104#include <vm/vm.h>
105#include <vm/pmap.h>
106#include <vm/vm_param.h>
107#include <vm/vm_kern.h>
108#include <vm/vm_object.h>
109#include <vm/vm_page.h>
110#include <vm/vm_pageout.h>
111#include <vm/vm_pager.h>
112#include <vm/vm_phys.h>
113#include <vm/vm_radix.h>
114#include <vm/vm_reserv.h>
115#include <vm/vm_extern.h>
116#include <vm/uma.h>
117#include <vm/uma_int.h>
118
119#include <machine/md_var.h>
120
121/*
122 *	Associated with page of user-allocatable memory is a
123 *	page structure.
124 */
125
126struct vm_domain vm_dom[MAXMEMDOM];
127struct mtx_padalign vm_page_queue_free_mtx;
128
129struct mtx_padalign pa_lock[PA_LOCK_COUNT];
130
131vm_page_t vm_page_array;
132long vm_page_array_size;
133long first_page;
134int vm_page_zero_count;
135
136static int boot_pages = UMA_BOOT_PAGES;
137TUNABLE_INT("vm.boot_pages", &boot_pages);
138SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
139	"number of pages allocated for bootstrapping the VM system");
140
141static int pa_tryrelock_restart;
142SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
143    &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
144
145static uma_zone_t fakepg_zone;
146
147static struct vnode *vm_page_alloc_init(vm_page_t m);
148static void vm_page_cache_turn_free(vm_page_t m);
149static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
150static void vm_page_enqueue(int queue, vm_page_t m);
151static void vm_page_init_fakepg(void *dummy);
152static int vm_page_insert_after(vm_page_t m, vm_object_t object,
153    vm_pindex_t pindex, vm_page_t mpred);
154static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
155    vm_page_t mpred);
156
157SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
158
159static void
160vm_page_init_fakepg(void *dummy)
161{
162
163	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
164	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
165}
166
167/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
168#if PAGE_SIZE == 32768
169#ifdef CTASSERT
170CTASSERT(sizeof(u_long) >= 8);
171#endif
172#endif
173
174/*
175 * Try to acquire a physical address lock while a pmap is locked.  If we
176 * fail to trylock we unlock and lock the pmap directly and cache the
177 * locked pa in *locked.  The caller should then restart their loop in case
178 * the virtual to physical mapping has changed.
179 */
180int
181vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
182{
183	vm_paddr_t lockpa;
184
185	lockpa = *locked;
186	*locked = pa;
187	if (lockpa) {
188		PA_LOCK_ASSERT(lockpa, MA_OWNED);
189		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
190			return (0);
191		PA_UNLOCK(lockpa);
192	}
193	if (PA_TRYLOCK(pa))
194		return (0);
195	PMAP_UNLOCK(pmap);
196	atomic_add_int(&pa_tryrelock_restart, 1);
197	PA_LOCK(pa);
198	PMAP_LOCK(pmap);
199	return (EAGAIN);
200}
201
202/*
203 *	vm_set_page_size:
204 *
205 *	Sets the page size, perhaps based upon the memory
206 *	size.  Must be called before any use of page-size
207 *	dependent functions.
208 */
209void
210vm_set_page_size(void)
211{
212	if (cnt.v_page_size == 0)
213		cnt.v_page_size = PAGE_SIZE;
214	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
215		panic("vm_set_page_size: page size not a power of two");
216}
217
218/*
219 *	vm_page_blacklist_lookup:
220 *
221 *	See if a physical address in this page has been listed
222 *	in the blacklist tunable.  Entries in the tunable are
223 *	separated by spaces or commas.  If an invalid integer is
224 *	encountered then the rest of the string is skipped.
225 */
226static int
227vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
228{
229	vm_paddr_t bad;
230	char *cp, *pos;
231
232	for (pos = list; *pos != '\0'; pos = cp) {
233		bad = strtoq(pos, &cp, 0);
234		if (*cp != '\0') {
235			if (*cp == ' ' || *cp == ',') {
236				cp++;
237				if (cp == pos)
238					continue;
239			} else
240				break;
241		}
242		if (pa == trunc_page(bad))
243			return (1);
244	}
245	return (0);
246}
247
248static void
249vm_page_domain_init(struct vm_domain *vmd)
250{
251	struct vm_pagequeue *pq;
252	int i;
253
254	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
255	    "vm inactive pagequeue";
256	*__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) =
257	    &cnt.v_inactive_count;
258	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
259	    "vm active pagequeue";
260	*__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) =
261	    &cnt.v_active_count;
262	vmd->vmd_page_count = 0;
263	vmd->vmd_free_count = 0;
264	vmd->vmd_segs = 0;
265	vmd->vmd_oom = FALSE;
266	vmd->vmd_pass = 0;
267	for (i = 0; i < PQ_COUNT; i++) {
268		pq = &vmd->vmd_pagequeues[i];
269		TAILQ_INIT(&pq->pq_pl);
270		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
271		    MTX_DEF | MTX_DUPOK);
272	}
273}
274
275/*
276 *	vm_page_startup:
277 *
278 *	Initializes the resident memory module.  Allocates physical memory for
279 *	bootstrapping UMA and some data structures that are used to manage
280 *	physical pages.  Initializes these structures, and populates the free
281 *	page queues.
282 */
283vm_offset_t
284vm_page_startup(vm_offset_t vaddr)
285{
286	vm_offset_t mapped;
287	vm_paddr_t high_avail, low_avail, page_range, size;
288	vm_paddr_t new_end;
289	int i;
290	vm_paddr_t pa;
291	vm_paddr_t last_pa;
292	char *list;
293
294	/* the biggest memory array is the second group of pages */
295	vm_paddr_t end;
296	vm_paddr_t biggestsize;
297	int biggestone;
298
299	biggestsize = 0;
300	biggestone = 0;
301	vaddr = round_page(vaddr);
302
303	for (i = 0; phys_avail[i + 1]; i += 2) {
304		phys_avail[i] = round_page(phys_avail[i]);
305		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
306	}
307
308#ifdef XEN
309	/*
310	 * There is no obvious reason why i386 PV Xen needs vm_page structs
311	 * created for these pseudo-physical addresses.  XXX
312	 */
313	vm_phys_add_seg(0, phys_avail[0]);
314#endif
315
316	for (i = 0; phys_avail[i + 1]; i += 2) {
317		size = phys_avail[i + 1] - phys_avail[i];
318		if (size > biggestsize) {
319			biggestone = i;
320			biggestsize = size;
321		}
322	}
323
324	end = phys_avail[biggestone+1];
325
326	/*
327	 * Initialize the page and queue locks.
328	 */
329	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
330	for (i = 0; i < PA_LOCK_COUNT; i++)
331		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
332	for (i = 0; i < vm_ndomains; i++)
333		vm_page_domain_init(&vm_dom[i]);
334
335	/*
336	 * Allocate memory for use when boot strapping the kernel memory
337	 * allocator.
338	 */
339	new_end = end - (boot_pages * UMA_SLAB_SIZE);
340	new_end = trunc_page(new_end);
341	mapped = pmap_map(&vaddr, new_end, end,
342	    VM_PROT_READ | VM_PROT_WRITE);
343	bzero((void *)mapped, end - new_end);
344	uma_startup((void *)mapped, boot_pages);
345
346#if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
347    defined(__mips__)
348	/*
349	 * Allocate a bitmap to indicate that a random physical page
350	 * needs to be included in a minidump.
351	 *
352	 * The amd64 port needs this to indicate which direct map pages
353	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
354	 *
355	 * However, i386 still needs this workspace internally within the
356	 * minidump code.  In theory, they are not needed on i386, but are
357	 * included should the sf_buf code decide to use them.
358	 */
359	last_pa = 0;
360	for (i = 0; dump_avail[i + 1] != 0; i += 2)
361		if (dump_avail[i + 1] > last_pa)
362			last_pa = dump_avail[i + 1];
363	page_range = last_pa / PAGE_SIZE;
364	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
365	new_end -= vm_page_dump_size;
366	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
367	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
368	bzero((void *)vm_page_dump, vm_page_dump_size);
369#endif
370#if defined(__amd64__) || defined(__mips__)
371	/*
372	 * Include the UMA bootstrap pages and vm_page_dump in a crash dump.
373	 * When pmap_map() uses the direct map, they are not automatically
374	 * included.
375	 */
376	for (pa = new_end; pa < end; pa += PAGE_SIZE)
377		dump_add_page(pa);
378#endif
379	phys_avail[biggestone + 1] = new_end;
380#ifdef __amd64__
381	/*
382	 * Request that the physical pages underlying the message buffer be
383	 * included in a crash dump.  Since the message buffer is accessed
384	 * through the direct map, they are not automatically included.
385	 */
386	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
387	last_pa = pa + round_page(msgbufsize);
388	while (pa < last_pa) {
389		dump_add_page(pa);
390		pa += PAGE_SIZE;
391	}
392#endif
393	/*
394	 * Compute the number of pages of memory that will be available for
395	 * use, taking into account the overhead of a page structure per page.
396	 * In other words, solve
397	 *	"available physical memory" - round_page(page_range *
398	 *	    sizeof(struct vm_page)) = page_range * PAGE_SIZE
399	 * for page_range.
400	 */
401	low_avail = phys_avail[0];
402	high_avail = phys_avail[1];
403	for (i = 0; i < vm_phys_nsegs; i++) {
404		if (vm_phys_segs[i].start < low_avail)
405			low_avail = vm_phys_segs[i].start;
406		if (vm_phys_segs[i].end > high_avail)
407			high_avail = vm_phys_segs[i].end;
408	}
409	/* Skip the first chunk.  It is already accounted for. */
410	for (i = 2; phys_avail[i + 1] != 0; i += 2) {
411		if (phys_avail[i] < low_avail)
412			low_avail = phys_avail[i];
413		if (phys_avail[i + 1] > high_avail)
414			high_avail = phys_avail[i + 1];
415	}
416	first_page = low_avail / PAGE_SIZE;
417#ifdef VM_PHYSSEG_SPARSE
418	size = 0;
419	for (i = 0; i < vm_phys_nsegs; i++)
420		size += vm_phys_segs[i].end - vm_phys_segs[i].start;
421	for (i = 0; phys_avail[i + 1] != 0; i += 2)
422		size += phys_avail[i + 1] - phys_avail[i];
423#elif defined(VM_PHYSSEG_DENSE)
424	size = high_avail - low_avail;
425#else
426#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
427#endif
428
429#ifdef VM_PHYSSEG_DENSE
430	/*
431	 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
432	 * the overhead of a page structure per page only if vm_page_array is
433	 * allocated from the last physical memory chunk.  Otherwise, we must
434	 * allocate page structures representing the physical memory
435	 * underlying vm_page_array, even though they will not be used.
436	 */
437	if (new_end != high_avail)
438		page_range = size / PAGE_SIZE;
439	else
440#endif
441	{
442		page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
443
444		/*
445		 * If the partial bytes remaining are large enough for
446		 * a page (PAGE_SIZE) without a corresponding
447		 * 'struct vm_page', then new_end will contain an
448		 * extra page after subtracting the length of the VM
449		 * page array.  Compensate by subtracting an extra
450		 * page from new_end.
451		 */
452		if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
453			if (new_end == high_avail)
454				high_avail -= PAGE_SIZE;
455			new_end -= PAGE_SIZE;
456		}
457	}
458	end = new_end;
459
460	/*
461	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
462	 * However, because this page is allocated from KVM, out-of-bounds
463	 * accesses using the direct map will not be trapped.
464	 */
465	vaddr += PAGE_SIZE;
466
467	/*
468	 * Allocate physical memory for the page structures, and map it.
469	 */
470	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
471	mapped = pmap_map(&vaddr, new_end, end,
472	    VM_PROT_READ | VM_PROT_WRITE);
473	vm_page_array = (vm_page_t) mapped;
474#if VM_NRESERVLEVEL > 0
475	/*
476	 * Allocate physical memory for the reservation management system's
477	 * data structures, and map it.
478	 */
479	if (high_avail == end)
480		high_avail = new_end;
481	new_end = vm_reserv_startup(&vaddr, new_end, high_avail);
482#endif
483#if defined(__amd64__) || defined(__mips__)
484	/*
485	 * Include vm_page_array and vm_reserv_array in a crash dump.
486	 */
487	for (pa = new_end; pa < end; pa += PAGE_SIZE)
488		dump_add_page(pa);
489#endif
490	phys_avail[biggestone + 1] = new_end;
491
492	/*
493	 * Add physical memory segments corresponding to the available
494	 * physical pages.
495	 */
496	for (i = 0; phys_avail[i + 1] != 0; i += 2)
497		vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
498
499	/*
500	 * Clear all of the page structures
501	 */
502	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
503	for (i = 0; i < page_range; i++)
504		vm_page_array[i].order = VM_NFREEORDER;
505	vm_page_array_size = page_range;
506
507	/*
508	 * Initialize the physical memory allocator.
509	 */
510	vm_phys_init();
511
512	/*
513	 * Add every available physical page that is not blacklisted to
514	 * the free lists.
515	 */
516	cnt.v_page_count = 0;
517	cnt.v_free_count = 0;
518	list = getenv("vm.blacklist");
519	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
520		pa = phys_avail[i];
521		last_pa = phys_avail[i + 1];
522		while (pa < last_pa) {
523			if (list != NULL &&
524			    vm_page_blacklist_lookup(list, pa))
525				printf("Skipping page with pa 0x%jx\n",
526				    (uintmax_t)pa);
527			else
528				vm_phys_add_page(pa);
529			pa += PAGE_SIZE;
530		}
531	}
532	freeenv(list);
533#if VM_NRESERVLEVEL > 0
534	/*
535	 * Initialize the reservation management system.
536	 */
537	vm_reserv_init();
538#endif
539	return (vaddr);
540}
541
542void
543vm_page_reference(vm_page_t m)
544{
545
546	vm_page_aflag_set(m, PGA_REFERENCED);
547}
548
549/*
550 *	vm_page_busy_downgrade:
551 *
552 *	Downgrade an exclusive busy page into a single shared busy page.
553 */
554void
555vm_page_busy_downgrade(vm_page_t m)
556{
557	u_int x;
558	bool locked;
559
560	vm_page_assert_xbusied(m);
561	locked = mtx_owned(vm_page_lockptr(m));
562
563	for (;;) {
564		x = m->busy_lock;
565		x &= VPB_BIT_WAITERS;
566		if (x != 0 && !locked)
567			vm_page_lock(m);
568		if (atomic_cmpset_rel_int(&m->busy_lock,
569		    VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1)))
570			break;
571		if (x != 0 && !locked)
572			vm_page_unlock(m);
573	}
574	if (x != 0) {
575		wakeup(m);
576		if (!locked)
577			vm_page_unlock(m);
578	}
579}
580
581/*
582 *	vm_page_sbusied:
583 *
584 *	Return a positive value if the page is shared busied, 0 otherwise.
585 */
586int
587vm_page_sbusied(vm_page_t m)
588{
589	u_int x;
590
591	x = m->busy_lock;
592	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
593}
594
595/*
596 *	vm_page_sunbusy:
597 *
598 *	Shared unbusy a page.
599 */
600void
601vm_page_sunbusy(vm_page_t m)
602{
603	u_int x;
604
605	vm_page_assert_sbusied(m);
606
607	for (;;) {
608		x = m->busy_lock;
609		if (VPB_SHARERS(x) > 1) {
610			if (atomic_cmpset_int(&m->busy_lock, x,
611			    x - VPB_ONE_SHARER))
612				break;
613			continue;
614		}
615		if ((x & VPB_BIT_WAITERS) == 0) {
616			KASSERT(x == VPB_SHARERS_WORD(1),
617			    ("vm_page_sunbusy: invalid lock state"));
618			if (atomic_cmpset_int(&m->busy_lock,
619			    VPB_SHARERS_WORD(1), VPB_UNBUSIED))
620				break;
621			continue;
622		}
623		KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
624		    ("vm_page_sunbusy: invalid lock state for waiters"));
625
626		vm_page_lock(m);
627		if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
628			vm_page_unlock(m);
629			continue;
630		}
631		wakeup(m);
632		vm_page_unlock(m);
633		break;
634	}
635}
636
637/*
638 *	vm_page_busy_sleep:
639 *
640 *	Sleep and release the page lock, using the page pointer as wchan.
641 *	This is used to implement the hard-path of busying mechanism.
642 *
643 *	The given page must be locked.
644 *
645 *	If nonshared is true, sleep only if the page is xbusy.
646 */
647void
648vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
649{
650	u_int x;
651
652	vm_page_assert_locked(m);
653
654	x = m->busy_lock;
655	if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) ||
656	    ((x & VPB_BIT_WAITERS) == 0 &&
657	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) {
658		vm_page_unlock(m);
659		return;
660	}
661	msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
662}
663
664/*
665 *	vm_page_trysbusy:
666 *
667 *	Try to shared busy a page.
668 *	If the operation succeeds 1 is returned otherwise 0.
669 *	The operation never sleeps.
670 */
671int
672vm_page_trysbusy(vm_page_t m)
673{
674	u_int x;
675
676	for (;;) {
677		x = m->busy_lock;
678		if ((x & VPB_BIT_SHARED) == 0)
679			return (0);
680		if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
681			return (1);
682	}
683}
684
685/*
686 *	vm_page_xunbusy_hard:
687 *
688 *	Called after the first try the exclusive unbusy of a page failed.
689 *	It is assumed that the waiters bit is on.
690 */
691void
692vm_page_xunbusy_hard(vm_page_t m)
693{
694
695	vm_page_assert_xbusied(m);
696
697	vm_page_lock(m);
698	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
699	wakeup(m);
700	vm_page_unlock(m);
701}
702
703/*
704 *	vm_page_flash:
705 *
706 *	Wakeup anyone waiting for the page.
707 *	The ownership bits do not change.
708 *
709 *	The given page must be locked.
710 */
711void
712vm_page_flash(vm_page_t m)
713{
714	u_int x;
715
716	vm_page_lock_assert(m, MA_OWNED);
717
718	for (;;) {
719		x = m->busy_lock;
720		if ((x & VPB_BIT_WAITERS) == 0)
721			return;
722		if (atomic_cmpset_int(&m->busy_lock, x,
723		    x & (~VPB_BIT_WAITERS)))
724			break;
725	}
726	wakeup(m);
727}
728
729/*
730 * Keep page from being freed by the page daemon
731 * much of the same effect as wiring, except much lower
732 * overhead and should be used only for *very* temporary
733 * holding ("wiring").
734 */
735void
736vm_page_hold(vm_page_t mem)
737{
738
739	vm_page_lock_assert(mem, MA_OWNED);
740        mem->hold_count++;
741}
742
743void
744vm_page_unhold(vm_page_t mem)
745{
746
747	vm_page_lock_assert(mem, MA_OWNED);
748	KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
749	--mem->hold_count;
750	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
751		vm_page_free_toq(mem);
752}
753
754/*
755 *	vm_page_unhold_pages:
756 *
757 *	Unhold each of the pages that is referenced by the given array.
758 */
759void
760vm_page_unhold_pages(vm_page_t *ma, int count)
761{
762	struct mtx *mtx, *new_mtx;
763
764	mtx = NULL;
765	for (; count != 0; count--) {
766		/*
767		 * Avoid releasing and reacquiring the same page lock.
768		 */
769		new_mtx = vm_page_lockptr(*ma);
770		if (mtx != new_mtx) {
771			if (mtx != NULL)
772				mtx_unlock(mtx);
773			mtx = new_mtx;
774			mtx_lock(mtx);
775		}
776		vm_page_unhold(*ma);
777		ma++;
778	}
779	if (mtx != NULL)
780		mtx_unlock(mtx);
781}
782
783vm_page_t
784PHYS_TO_VM_PAGE(vm_paddr_t pa)
785{
786	vm_page_t m;
787
788#ifdef VM_PHYSSEG_SPARSE
789	m = vm_phys_paddr_to_vm_page(pa);
790	if (m == NULL)
791		m = vm_phys_fictitious_to_vm_page(pa);
792	return (m);
793#elif defined(VM_PHYSSEG_DENSE)
794	long pi;
795
796	pi = atop(pa);
797	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
798		m = &vm_page_array[pi - first_page];
799		return (m);
800	}
801	return (vm_phys_fictitious_to_vm_page(pa));
802#else
803#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
804#endif
805}
806
807/*
808 *	vm_page_getfake:
809 *
810 *	Create a fictitious page with the specified physical address and
811 *	memory attribute.  The memory attribute is the only the machine-
812 *	dependent aspect of a fictitious page that must be initialized.
813 */
814vm_page_t
815vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
816{
817	vm_page_t m;
818
819	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
820	vm_page_initfake(m, paddr, memattr);
821	return (m);
822}
823
824void
825vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
826{
827
828	if ((m->flags & PG_FICTITIOUS) != 0) {
829		/*
830		 * The page's memattr might have changed since the
831		 * previous initialization.  Update the pmap to the
832		 * new memattr.
833		 */
834		goto memattr;
835	}
836	m->phys_addr = paddr;
837	m->queue = PQ_NONE;
838	/* Fictitious pages don't use "segind". */
839	m->flags = PG_FICTITIOUS;
840	/* Fictitious pages don't use "order" or "pool". */
841	m->oflags = VPO_UNMANAGED;
842	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
843	m->wire_count = 1;
844	pmap_page_init(m);
845memattr:
846	pmap_page_set_memattr(m, memattr);
847}
848
849/*
850 *	vm_page_putfake:
851 *
852 *	Release a fictitious page.
853 */
854void
855vm_page_putfake(vm_page_t m)
856{
857
858	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
859	KASSERT((m->flags & PG_FICTITIOUS) != 0,
860	    ("vm_page_putfake: bad page %p", m));
861	uma_zfree(fakepg_zone, m);
862}
863
864/*
865 *	vm_page_updatefake:
866 *
867 *	Update the given fictitious page to the specified physical address and
868 *	memory attribute.
869 */
870void
871vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
872{
873
874	KASSERT((m->flags & PG_FICTITIOUS) != 0,
875	    ("vm_page_updatefake: bad page %p", m));
876	m->phys_addr = paddr;
877	pmap_page_set_memattr(m, memattr);
878}
879
880/*
881 *	vm_page_free:
882 *
883 *	Free a page.
884 */
885void
886vm_page_free(vm_page_t m)
887{
888
889	m->flags &= ~PG_ZERO;
890	vm_page_free_toq(m);
891}
892
893/*
894 *	vm_page_free_zero:
895 *
896 *	Free a page to the zerod-pages queue
897 */
898void
899vm_page_free_zero(vm_page_t m)
900{
901
902	m->flags |= PG_ZERO;
903	vm_page_free_toq(m);
904}
905
906/*
907 * Unbusy and handle the page queueing for a page from the VOP_GETPAGES()
908 * array which is not the request page.
909 */
910void
911vm_page_readahead_finish(vm_page_t m)
912{
913
914	if (m->valid != 0) {
915		/*
916		 * Since the page is not the requested page, whether
917		 * it should be activated or deactivated is not
918		 * obvious.  Empirical results have shown that
919		 * deactivating the page is usually the best choice,
920		 * unless the page is wanted by another thread.
921		 */
922		vm_page_lock(m);
923		if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
924			vm_page_activate(m);
925		else
926			vm_page_deactivate(m);
927		vm_page_unlock(m);
928		vm_page_xunbusy(m);
929	} else {
930		/*
931		 * Free the completely invalid page.  Such page state
932		 * occurs due to the short read operation which did
933		 * not covered our page at all, or in case when a read
934		 * error happens.
935		 */
936		vm_page_lock(m);
937		vm_page_free(m);
938		vm_page_unlock(m);
939	}
940}
941
942/*
943 *	vm_page_sleep_if_busy:
944 *
945 *	Sleep and release the page queues lock if the page is busied.
946 *	Returns TRUE if the thread slept.
947 *
948 *	The given page must be unlocked and object containing it must
949 *	be locked.
950 */
951int
952vm_page_sleep_if_busy(vm_page_t m, const char *msg)
953{
954	vm_object_t obj;
955
956	vm_page_lock_assert(m, MA_NOTOWNED);
957	VM_OBJECT_ASSERT_WLOCKED(m->object);
958
959	if (vm_page_busied(m)) {
960		/*
961		 * The page-specific object must be cached because page
962		 * identity can change during the sleep, causing the
963		 * re-lock of a different object.
964		 * It is assumed that a reference to the object is already
965		 * held by the callers.
966		 */
967		obj = m->object;
968		vm_page_lock(m);
969		VM_OBJECT_WUNLOCK(obj);
970		vm_page_busy_sleep(m, msg, false);
971		VM_OBJECT_WLOCK(obj);
972		return (TRUE);
973	}
974	return (FALSE);
975}
976
977/*
978 *	vm_page_dirty_KBI:		[ internal use only ]
979 *
980 *	Set all bits in the page's dirty field.
981 *
982 *	The object containing the specified page must be locked if the
983 *	call is made from the machine-independent layer.
984 *
985 *	See vm_page_clear_dirty_mask().
986 *
987 *	This function should only be called by vm_page_dirty().
988 */
989void
990vm_page_dirty_KBI(vm_page_t m)
991{
992
993	/* These assertions refer to this operation by its public name. */
994	KASSERT((m->flags & PG_CACHED) == 0,
995	    ("vm_page_dirty: page in cache!"));
996	KASSERT(!VM_PAGE_IS_FREE(m),
997	    ("vm_page_dirty: page is free!"));
998	KASSERT(m->valid == VM_PAGE_BITS_ALL,
999	    ("vm_page_dirty: page is invalid!"));
1000	m->dirty = VM_PAGE_BITS_ALL;
1001}
1002
1003/*
1004 *	vm_page_insert:		[ internal use only ]
1005 *
1006 *	Inserts the given mem entry into the object and object list.
1007 *
1008 *	The object must be locked.
1009 */
1010int
1011vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1012{
1013	vm_page_t mpred;
1014
1015	VM_OBJECT_ASSERT_WLOCKED(object);
1016	mpred = vm_radix_lookup_le(&object->rtree, pindex);
1017	return (vm_page_insert_after(m, object, pindex, mpred));
1018}
1019
1020/*
1021 *	vm_page_insert_after:
1022 *
1023 *	Inserts the page "m" into the specified object at offset "pindex".
1024 *
1025 *	The page "mpred" must immediately precede the offset "pindex" within
1026 *	the specified object.
1027 *
1028 *	The object must be locked.
1029 */
1030static int
1031vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1032    vm_page_t mpred)
1033{
1034	vm_page_t msucc;
1035
1036	VM_OBJECT_ASSERT_WLOCKED(object);
1037	KASSERT(m->object == NULL,
1038	    ("vm_page_insert_after: page already inserted"));
1039	if (mpred != NULL) {
1040		KASSERT(mpred->object == object,
1041		    ("vm_page_insert_after: object doesn't contain mpred"));
1042		KASSERT(mpred->pindex < pindex,
1043		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1044		msucc = TAILQ_NEXT(mpred, listq);
1045	} else
1046		msucc = TAILQ_FIRST(&object->memq);
1047	if (msucc != NULL)
1048		KASSERT(msucc->pindex > pindex,
1049		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1050
1051	/*
1052	 * Record the object/offset pair in this page
1053	 */
1054	m->object = object;
1055	m->pindex = pindex;
1056
1057	/*
1058	 * Now link into the object's ordered list of backed pages.
1059	 */
1060	if (vm_radix_insert(&object->rtree, m)) {
1061		m->object = NULL;
1062		m->pindex = 0;
1063		return (1);
1064	}
1065	vm_page_insert_radixdone(m, object, mpred);
1066	return (0);
1067}
1068
1069/*
1070 *	vm_page_insert_radixdone:
1071 *
1072 *	Complete page "m" insertion into the specified object after the
1073 *	radix trie hooking.
1074 *
1075 *	The page "mpred" must precede the offset "m->pindex" within the
1076 *	specified object.
1077 *
1078 *	The object must be locked.
1079 */
1080static void
1081vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1082{
1083
1084	VM_OBJECT_ASSERT_WLOCKED(object);
1085	KASSERT(object != NULL && m->object == object,
1086	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1087	if (mpred != NULL) {
1088		KASSERT(mpred->object == object,
1089		    ("vm_page_insert_after: object doesn't contain mpred"));
1090		KASSERT(mpred->pindex < m->pindex,
1091		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1092	}
1093
1094	if (mpred != NULL)
1095		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1096	else
1097		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1098
1099	/*
1100	 * Show that the object has one more resident page.
1101	 */
1102	object->resident_page_count++;
1103
1104	/*
1105	 * Hold the vnode until the last page is released.
1106	 */
1107	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1108		vhold(object->handle);
1109
1110	/*
1111	 * Since we are inserting a new and possibly dirty page,
1112	 * update the object's OBJ_MIGHTBEDIRTY flag.
1113	 */
1114	if (pmap_page_is_write_mapped(m))
1115		vm_object_set_writeable_dirty(object);
1116}
1117
1118/*
1119 *	vm_page_remove:
1120 *
1121 *	Removes the given mem entry from the object/offset-page
1122 *	table and the object page list, but do not invalidate/terminate
1123 *	the backing store.
1124 *
1125 *	The object must be locked.  The page must be locked if it is managed.
1126 */
1127void
1128vm_page_remove(vm_page_t m)
1129{
1130	vm_object_t object;
1131	boolean_t lockacq;
1132
1133	if ((m->oflags & VPO_UNMANAGED) == 0)
1134		vm_page_lock_assert(m, MA_OWNED);
1135	if ((object = m->object) == NULL)
1136		return;
1137	VM_OBJECT_ASSERT_WLOCKED(object);
1138	if (vm_page_xbusied(m)) {
1139		lockacq = FALSE;
1140		if ((m->oflags & VPO_UNMANAGED) != 0 &&
1141		    !mtx_owned(vm_page_lockptr(m))) {
1142			lockacq = TRUE;
1143			vm_page_lock(m);
1144		}
1145		vm_page_flash(m);
1146		atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1147		if (lockacq)
1148			vm_page_unlock(m);
1149	}
1150
1151	/*
1152	 * Now remove from the object's list of backed pages.
1153	 */
1154	vm_radix_remove(&object->rtree, m->pindex);
1155	TAILQ_REMOVE(&object->memq, m, listq);
1156
1157	/*
1158	 * And show that the object has one fewer resident page.
1159	 */
1160	object->resident_page_count--;
1161
1162	/*
1163	 * The vnode may now be recycled.
1164	 */
1165	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1166		vdrop(object->handle);
1167
1168	m->object = NULL;
1169}
1170
1171/*
1172 *	vm_page_lookup:
1173 *
1174 *	Returns the page associated with the object/offset
1175 *	pair specified; if none is found, NULL is returned.
1176 *
1177 *	The object must be locked.
1178 */
1179vm_page_t
1180vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1181{
1182
1183	VM_OBJECT_ASSERT_LOCKED(object);
1184	return (vm_radix_lookup(&object->rtree, pindex));
1185}
1186
1187/*
1188 *	vm_page_find_least:
1189 *
1190 *	Returns the page associated with the object with least pindex
1191 *	greater than or equal to the parameter pindex, or NULL.
1192 *
1193 *	The object must be locked.
1194 */
1195vm_page_t
1196vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1197{
1198	vm_page_t m;
1199
1200	VM_OBJECT_ASSERT_LOCKED(object);
1201	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1202		m = vm_radix_lookup_ge(&object->rtree, pindex);
1203	return (m);
1204}
1205
1206/*
1207 * Returns the given page's successor (by pindex) within the object if it is
1208 * resident; if none is found, NULL is returned.
1209 *
1210 * The object must be locked.
1211 */
1212vm_page_t
1213vm_page_next(vm_page_t m)
1214{
1215	vm_page_t next;
1216
1217	VM_OBJECT_ASSERT_WLOCKED(m->object);
1218	if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1219		MPASS(next->object == m->object);
1220		if (next->pindex != m->pindex + 1)
1221			next = NULL;
1222	}
1223	return (next);
1224}
1225
1226/*
1227 * Returns the given page's predecessor (by pindex) within the object if it is
1228 * resident; if none is found, NULL is returned.
1229 *
1230 * The object must be locked.
1231 */
1232vm_page_t
1233vm_page_prev(vm_page_t m)
1234{
1235	vm_page_t prev;
1236
1237	VM_OBJECT_ASSERT_WLOCKED(m->object);
1238	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1239		MPASS(prev->object == m->object);
1240		if (prev->pindex != m->pindex - 1)
1241			prev = NULL;
1242	}
1243	return (prev);
1244}
1245
1246/*
1247 * Uses the page mnew as a replacement for an existing page at index
1248 * pindex which must be already present in the object.
1249 *
1250 * The existing page must not be on a paging queue.
1251 */
1252vm_page_t
1253vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1254{
1255	vm_page_t mold, mpred;
1256
1257	VM_OBJECT_ASSERT_WLOCKED(object);
1258
1259	/*
1260	 * This function mostly follows vm_page_insert() and
1261	 * vm_page_remove() without the radix, object count and vnode
1262	 * dance.  Double check such functions for more comments.
1263	 */
1264	mpred = vm_radix_lookup(&object->rtree, pindex);
1265	KASSERT(mpred != NULL,
1266	    ("vm_page_replace: replacing page not present with pindex"));
1267	mpred = TAILQ_PREV(mpred, respgs, listq);
1268	if (mpred != NULL)
1269		KASSERT(mpred->pindex < pindex,
1270		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1271
1272	mnew->object = object;
1273	mnew->pindex = pindex;
1274	mold = vm_radix_replace(&object->rtree, mnew);
1275	KASSERT(mold->queue == PQ_NONE,
1276	    ("vm_page_replace: mold is on a paging queue"));
1277
1278	/* Detach the old page from the resident tailq. */
1279	TAILQ_REMOVE(&object->memq, mold, listq);
1280
1281	mold->object = NULL;
1282	vm_page_xunbusy(mold);
1283
1284	/* Insert the new page in the resident tailq. */
1285	if (mpred != NULL)
1286		TAILQ_INSERT_AFTER(&object->memq, mpred, mnew, listq);
1287	else
1288		TAILQ_INSERT_HEAD(&object->memq, mnew, listq);
1289	if (pmap_page_is_write_mapped(mnew))
1290		vm_object_set_writeable_dirty(object);
1291	return (mold);
1292}
1293
1294/*
1295 *	vm_page_rename:
1296 *
1297 *	Move the given memory entry from its
1298 *	current object to the specified target object/offset.
1299 *
1300 *	Note: swap associated with the page must be invalidated by the move.  We
1301 *	      have to do this for several reasons:  (1) we aren't freeing the
1302 *	      page, (2) we are dirtying the page, (3) the VM system is probably
1303 *	      moving the page from object A to B, and will then later move
1304 *	      the backing store from A to B and we can't have a conflict.
1305 *
1306 *	Note: we *always* dirty the page.  It is necessary both for the
1307 *	      fact that we moved it, and because we may be invalidating
1308 *	      swap.  If the page is on the cache, we have to deactivate it
1309 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1310 *	      on the cache.
1311 *
1312 *	The objects must be locked.
1313 */
1314int
1315vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1316{
1317	vm_page_t mpred;
1318	vm_pindex_t opidx;
1319
1320	VM_OBJECT_ASSERT_WLOCKED(new_object);
1321
1322	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1323	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1324	    ("vm_page_rename: pindex already renamed"));
1325
1326	/*
1327	 * Create a custom version of vm_page_insert() which does not depend
1328	 * by m_prev and can cheat on the implementation aspects of the
1329	 * function.
1330	 */
1331	opidx = m->pindex;
1332	m->pindex = new_pindex;
1333	if (vm_radix_insert(&new_object->rtree, m)) {
1334		m->pindex = opidx;
1335		return (1);
1336	}
1337
1338	/*
1339	 * The operation cannot fail anymore.  The removal must happen before
1340	 * the listq iterator is tainted.
1341	 */
1342	m->pindex = opidx;
1343	vm_page_lock(m);
1344	vm_page_remove(m);
1345
1346	/* Return back to the new pindex to complete vm_page_insert(). */
1347	m->pindex = new_pindex;
1348	m->object = new_object;
1349	vm_page_unlock(m);
1350	vm_page_insert_radixdone(m, new_object, mpred);
1351	vm_page_dirty(m);
1352	return (0);
1353}
1354
1355/*
1356 *	Convert all of the given object's cached pages that have a
1357 *	pindex within the given range into free pages.  If the value
1358 *	zero is given for "end", then the range's upper bound is
1359 *	infinity.  If the given object is backed by a vnode and it
1360 *	transitions from having one or more cached pages to none, the
1361 *	vnode's hold count is reduced.
1362 */
1363void
1364vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1365{
1366	vm_page_t m;
1367	boolean_t empty;
1368
1369	mtx_lock(&vm_page_queue_free_mtx);
1370	if (__predict_false(vm_radix_is_empty(&object->cache))) {
1371		mtx_unlock(&vm_page_queue_free_mtx);
1372		return;
1373	}
1374	while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) {
1375		if (end != 0 && m->pindex >= end)
1376			break;
1377		vm_radix_remove(&object->cache, m->pindex);
1378		vm_page_cache_turn_free(m);
1379	}
1380	empty = vm_radix_is_empty(&object->cache);
1381	mtx_unlock(&vm_page_queue_free_mtx);
1382	if (object->type == OBJT_VNODE && empty)
1383		vdrop(object->handle);
1384}
1385
1386/*
1387 *	Returns the cached page that is associated with the given
1388 *	object and offset.  If, however, none exists, returns NULL.
1389 *
1390 *	The free page queue must be locked.
1391 */
1392static inline vm_page_t
1393vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1394{
1395
1396	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1397	return (vm_radix_lookup(&object->cache, pindex));
1398}
1399
1400/*
1401 *	Remove the given cached page from its containing object's
1402 *	collection of cached pages.
1403 *
1404 *	The free page queue must be locked.
1405 */
1406static void
1407vm_page_cache_remove(vm_page_t m)
1408{
1409
1410	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1411	KASSERT((m->flags & PG_CACHED) != 0,
1412	    ("vm_page_cache_remove: page %p is not cached", m));
1413	vm_radix_remove(&m->object->cache, m->pindex);
1414	m->object = NULL;
1415	cnt.v_cache_count--;
1416}
1417
1418/*
1419 *	Transfer all of the cached pages with offset greater than or
1420 *	equal to 'offidxstart' from the original object's cache to the
1421 *	new object's cache.  However, any cached pages with offset
1422 *	greater than or equal to the new object's size are kept in the
1423 *	original object.  Initially, the new object's cache must be
1424 *	empty.  Offset 'offidxstart' in the original object must
1425 *	correspond to offset zero in the new object.
1426 *
1427 *	The new object must be locked.
1428 */
1429void
1430vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1431    vm_object_t new_object)
1432{
1433	vm_page_t m;
1434
1435	/*
1436	 * Insertion into an object's collection of cached pages
1437	 * requires the object to be locked.  In contrast, removal does
1438	 * not.
1439	 */
1440	VM_OBJECT_ASSERT_WLOCKED(new_object);
1441	KASSERT(vm_radix_is_empty(&new_object->cache),
1442	    ("vm_page_cache_transfer: object %p has cached pages",
1443	    new_object));
1444	mtx_lock(&vm_page_queue_free_mtx);
1445	while ((m = vm_radix_lookup_ge(&orig_object->cache,
1446	    offidxstart)) != NULL) {
1447		/*
1448		 * Transfer all of the pages with offset greater than or
1449		 * equal to 'offidxstart' from the original object's
1450		 * cache to the new object's cache.
1451		 */
1452		if ((m->pindex - offidxstart) >= new_object->size)
1453			break;
1454		vm_radix_remove(&orig_object->cache, m->pindex);
1455		/* Update the page's object and offset. */
1456		m->object = new_object;
1457		m->pindex -= offidxstart;
1458		if (vm_radix_insert(&new_object->cache, m))
1459			vm_page_cache_turn_free(m);
1460	}
1461	mtx_unlock(&vm_page_queue_free_mtx);
1462}
1463
1464/*
1465 *	Returns TRUE if a cached page is associated with the given object and
1466 *	offset, and FALSE otherwise.
1467 *
1468 *	The object must be locked.
1469 */
1470boolean_t
1471vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
1472{
1473	vm_page_t m;
1474
1475	/*
1476	 * Insertion into an object's collection of cached pages requires the
1477	 * object to be locked.  Therefore, if the object is locked and the
1478	 * object's collection is empty, there is no need to acquire the free
1479	 * page queues lock in order to prove that the specified page doesn't
1480	 * exist.
1481	 */
1482	VM_OBJECT_ASSERT_WLOCKED(object);
1483	if (__predict_true(vm_object_cache_is_empty(object)))
1484		return (FALSE);
1485	mtx_lock(&vm_page_queue_free_mtx);
1486	m = vm_page_cache_lookup(object, pindex);
1487	mtx_unlock(&vm_page_queue_free_mtx);
1488	return (m != NULL);
1489}
1490
1491/*
1492 *	vm_page_alloc:
1493 *
1494 *	Allocate and return a page that is associated with the specified
1495 *	object and offset pair.  By default, this page is exclusive busied.
1496 *
1497 *	The caller must always specify an allocation class.
1498 *
1499 *	allocation classes:
1500 *	VM_ALLOC_NORMAL		normal process request
1501 *	VM_ALLOC_SYSTEM		system *really* needs a page
1502 *	VM_ALLOC_INTERRUPT	interrupt time request
1503 *
1504 *	optional allocation flags:
1505 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1506 *				intends to allocate
1507 *	VM_ALLOC_IFCACHED	return page only if it is cached
1508 *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1509 *				is cached
1510 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1511 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1512 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1513 *				should not be exclusive busy
1514 *	VM_ALLOC_SBUSY		shared busy the allocated page
1515 *	VM_ALLOC_WIRED		wire the allocated page
1516 *	VM_ALLOC_ZERO		prefer a zeroed page
1517 *
1518 *	This routine may not sleep.
1519 */
1520vm_page_t
1521vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1522{
1523	struct vnode *vp = NULL;
1524	vm_object_t m_object;
1525	vm_page_t m, mpred;
1526	int flags, req_class;
1527
1528	mpred = 0;	/* XXX: pacify gcc */
1529	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1530	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1531	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1532	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1533	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1534	    req));
1535	if (object != NULL)
1536		VM_OBJECT_ASSERT_WLOCKED(object);
1537
1538	req_class = req & VM_ALLOC_CLASS_MASK;
1539
1540	/*
1541	 * The page daemon is allowed to dig deeper into the free page list.
1542	 */
1543	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1544		req_class = VM_ALLOC_SYSTEM;
1545
1546	if (object != NULL) {
1547		mpred = vm_radix_lookup_le(&object->rtree, pindex);
1548		KASSERT(mpred == NULL || mpred->pindex != pindex,
1549		   ("vm_page_alloc: pindex already allocated"));
1550	}
1551
1552	/*
1553	 * The page allocation request can came from consumers which already
1554	 * hold the free page queue mutex, like vm_page_insert() in
1555	 * vm_page_cache().
1556	 */
1557	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1558	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1559	    (req_class == VM_ALLOC_SYSTEM &&
1560	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1561	    (req_class == VM_ALLOC_INTERRUPT &&
1562	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1563		/*
1564		 * Allocate from the free queue if the number of free pages
1565		 * exceeds the minimum for the request class.
1566		 */
1567		if (object != NULL &&
1568		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1569			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1570				mtx_unlock(&vm_page_queue_free_mtx);
1571				return (NULL);
1572			}
1573			if (vm_phys_unfree_page(m))
1574				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1575#if VM_NRESERVLEVEL > 0
1576			else if (!vm_reserv_reactivate_page(m))
1577#else
1578			else
1579#endif
1580				panic("vm_page_alloc: cache page %p is missing"
1581				    " from the free queue", m);
1582		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1583			mtx_unlock(&vm_page_queue_free_mtx);
1584			return (NULL);
1585#if VM_NRESERVLEVEL > 0
1586		} else if (object == NULL || (object->flags & (OBJ_COLORED |
1587		    OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1588		    vm_reserv_alloc_page(object, pindex, mpred)) == NULL) {
1589#else
1590		} else {
1591#endif
1592			m = vm_phys_alloc_pages(object != NULL ?
1593			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1594#if VM_NRESERVLEVEL > 0
1595			if (m == NULL && vm_reserv_reclaim_inactive()) {
1596				m = vm_phys_alloc_pages(object != NULL ?
1597				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1598				    0);
1599			}
1600#endif
1601		}
1602	} else {
1603		/*
1604		 * Not allocatable, give up.
1605		 */
1606		mtx_unlock(&vm_page_queue_free_mtx);
1607		atomic_add_int(&vm_pageout_deficit,
1608		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1609		pagedaemon_wakeup();
1610		return (NULL);
1611	}
1612
1613	/*
1614	 *  At this point we had better have found a good page.
1615	 */
1616	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1617	KASSERT(m->queue == PQ_NONE,
1618	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1619	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1620	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1621	KASSERT(!vm_page_busied(m), ("vm_page_alloc: page %p is busy", m));
1622	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1623	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1624	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1625	    pmap_page_get_memattr(m)));
1626	if ((m->flags & PG_CACHED) != 0) {
1627		KASSERT((m->flags & PG_ZERO) == 0,
1628		    ("vm_page_alloc: cached page %p is PG_ZERO", m));
1629		KASSERT(m->valid != 0,
1630		    ("vm_page_alloc: cached page %p is invalid", m));
1631		if (m->object == object && m->pindex == pindex)
1632	  		cnt.v_reactivated++;
1633		else
1634			m->valid = 0;
1635		m_object = m->object;
1636		vm_page_cache_remove(m);
1637		if (m_object->type == OBJT_VNODE &&
1638		    vm_object_cache_is_empty(m_object))
1639			vp = m_object->handle;
1640	} else {
1641		KASSERT(VM_PAGE_IS_FREE(m),
1642		    ("vm_page_alloc: page %p is not free", m));
1643		KASSERT(m->valid == 0,
1644		    ("vm_page_alloc: free page %p is valid", m));
1645		vm_phys_freecnt_adj(m, -1);
1646	}
1647
1648	/*
1649	 * Only the PG_ZERO flag is inherited.  The PG_CACHED or PG_FREE flag
1650	 * must be cleared before the free page queues lock is released.
1651	 */
1652	flags = 0;
1653	if (m->flags & PG_ZERO) {
1654		vm_page_zero_count--;
1655		if (req & VM_ALLOC_ZERO)
1656			flags = PG_ZERO;
1657	}
1658	if (req & VM_ALLOC_NODUMP)
1659		flags |= PG_NODUMP;
1660	m->flags = flags;
1661	mtx_unlock(&vm_page_queue_free_mtx);
1662	m->aflags = 0;
1663	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1664	    VPO_UNMANAGED : 0;
1665	m->busy_lock = VPB_UNBUSIED;
1666	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1667		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1668	if ((req & VM_ALLOC_SBUSY) != 0)
1669		m->busy_lock = VPB_SHARERS_WORD(1);
1670	if (req & VM_ALLOC_WIRED) {
1671		/*
1672		 * The page lock is not required for wiring a page until that
1673		 * page is inserted into the object.
1674		 */
1675		atomic_add_int(&cnt.v_wire_count, 1);
1676		m->wire_count = 1;
1677	}
1678	m->act_count = 0;
1679
1680	if (object != NULL) {
1681		if (vm_page_insert_after(m, object, pindex, mpred)) {
1682			/* See the comment below about hold count. */
1683			if (vp != NULL)
1684				vdrop(vp);
1685			pagedaemon_wakeup();
1686			if (req & VM_ALLOC_WIRED) {
1687				atomic_subtract_int(&cnt.v_wire_count, 1);
1688				m->wire_count = 0;
1689			}
1690			m->object = NULL;
1691			m->oflags = VPO_UNMANAGED;
1692			m->busy_lock = VPB_UNBUSIED;
1693			vm_page_free(m);
1694			return (NULL);
1695		}
1696
1697		/* Ignore device objects; the pager sets "memattr" for them. */
1698		if (object->memattr != VM_MEMATTR_DEFAULT &&
1699		    (object->flags & OBJ_FICTITIOUS) == 0)
1700			pmap_page_set_memattr(m, object->memattr);
1701	} else
1702		m->pindex = pindex;
1703
1704	/*
1705	 * The following call to vdrop() must come after the above call
1706	 * to vm_page_insert() in case both affect the same object and
1707	 * vnode.  Otherwise, the affected vnode's hold count could
1708	 * temporarily become zero.
1709	 */
1710	if (vp != NULL)
1711		vdrop(vp);
1712
1713	/*
1714	 * Don't wakeup too often - wakeup the pageout daemon when
1715	 * we would be nearly out of memory.
1716	 */
1717	if (vm_paging_needed())
1718		pagedaemon_wakeup();
1719
1720	return (m);
1721}
1722
1723static void
1724vm_page_alloc_contig_vdrop(struct spglist *lst)
1725{
1726
1727	while (!SLIST_EMPTY(lst)) {
1728		vdrop((struct vnode *)SLIST_FIRST(lst)-> plinks.s.pv);
1729		SLIST_REMOVE_HEAD(lst, plinks.s.ss);
1730	}
1731}
1732
1733/*
1734 *	vm_page_alloc_contig:
1735 *
1736 *	Allocate a contiguous set of physical pages of the given size "npages"
1737 *	from the free lists.  All of the physical pages must be at or above
1738 *	the given physical address "low" and below the given physical address
1739 *	"high".  The given value "alignment" determines the alignment of the
1740 *	first physical page in the set.  If the given value "boundary" is
1741 *	non-zero, then the set of physical pages cannot cross any physical
1742 *	address boundary that is a multiple of that value.  Both "alignment"
1743 *	and "boundary" must be a power of two.
1744 *
1745 *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1746 *	then the memory attribute setting for the physical pages is configured
1747 *	to the object's memory attribute setting.  Otherwise, the memory
1748 *	attribute setting for the physical pages is configured to "memattr",
1749 *	overriding the object's memory attribute setting.  However, if the
1750 *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1751 *	memory attribute setting for the physical pages cannot be configured
1752 *	to VM_MEMATTR_DEFAULT.
1753 *
1754 *	The caller must always specify an allocation class.
1755 *
1756 *	allocation classes:
1757 *	VM_ALLOC_NORMAL		normal process request
1758 *	VM_ALLOC_SYSTEM		system *really* needs a page
1759 *	VM_ALLOC_INTERRUPT	interrupt time request
1760 *
1761 *	optional allocation flags:
1762 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1763 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1764 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1765 *				should not be exclusive busy
1766 *	VM_ALLOC_SBUSY		shared busy the allocated page
1767 *	VM_ALLOC_WIRED		wire the allocated page
1768 *	VM_ALLOC_ZERO		prefer a zeroed page
1769 *
1770 *	This routine may not sleep.
1771 */
1772vm_page_t
1773vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1774    u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1775    vm_paddr_t boundary, vm_memattr_t memattr)
1776{
1777	struct vnode *drop;
1778	struct spglist deferred_vdrop_list;
1779	vm_page_t m, m_tmp, m_ret;
1780	u_int flags, oflags;
1781	int req_class;
1782
1783	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1784	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1785	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1786	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1787	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1788	    req));
1789	if (object != NULL) {
1790		VM_OBJECT_ASSERT_WLOCKED(object);
1791		KASSERT(object->type == OBJT_PHYS,
1792		    ("vm_page_alloc_contig: object %p isn't OBJT_PHYS",
1793		    object));
1794	}
1795	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1796	req_class = req & VM_ALLOC_CLASS_MASK;
1797
1798	/*
1799	 * The page daemon is allowed to dig deeper into the free page list.
1800	 */
1801	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1802		req_class = VM_ALLOC_SYSTEM;
1803
1804	SLIST_INIT(&deferred_vdrop_list);
1805	mtx_lock(&vm_page_queue_free_mtx);
1806	if (cnt.v_free_count + cnt.v_cache_count >= npages +
1807	    cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM &&
1808	    cnt.v_free_count + cnt.v_cache_count >= npages +
1809	    cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT &&
1810	    cnt.v_free_count + cnt.v_cache_count >= npages)) {
1811#if VM_NRESERVLEVEL > 0
1812retry:
1813		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1814		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1815		    low, high, alignment, boundary)) == NULL)
1816#endif
1817			m_ret = vm_phys_alloc_contig(npages, low, high,
1818			    alignment, boundary);
1819	} else {
1820		mtx_unlock(&vm_page_queue_free_mtx);
1821		atomic_add_int(&vm_pageout_deficit, npages);
1822		pagedaemon_wakeup();
1823		return (NULL);
1824	}
1825	if (m_ret != NULL)
1826		for (m = m_ret; m < &m_ret[npages]; m++) {
1827			drop = vm_page_alloc_init(m);
1828			if (drop != NULL) {
1829				/*
1830				 * Enqueue the vnode for deferred vdrop().
1831				 */
1832				m->plinks.s.pv = drop;
1833				SLIST_INSERT_HEAD(&deferred_vdrop_list, m,
1834				    plinks.s.ss);
1835			}
1836		}
1837	else {
1838#if VM_NRESERVLEVEL > 0
1839		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1840		    boundary))
1841			goto retry;
1842#endif
1843	}
1844	mtx_unlock(&vm_page_queue_free_mtx);
1845	if (m_ret == NULL)
1846		return (NULL);
1847
1848	/*
1849	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1850	 */
1851	flags = 0;
1852	if ((req & VM_ALLOC_ZERO) != 0)
1853		flags = PG_ZERO;
1854	if ((req & VM_ALLOC_NODUMP) != 0)
1855		flags |= PG_NODUMP;
1856	if ((req & VM_ALLOC_WIRED) != 0)
1857		atomic_add_int(&cnt.v_wire_count, npages);
1858	oflags = VPO_UNMANAGED;
1859	if (object != NULL) {
1860		if (object->memattr != VM_MEMATTR_DEFAULT &&
1861		    memattr == VM_MEMATTR_DEFAULT)
1862			memattr = object->memattr;
1863	}
1864	for (m = m_ret; m < &m_ret[npages]; m++) {
1865		m->aflags = 0;
1866		m->flags = (m->flags | PG_NODUMP) & flags;
1867		m->busy_lock = VPB_UNBUSIED;
1868		if (object != NULL) {
1869			if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
1870				m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1871			if ((req & VM_ALLOC_SBUSY) != 0)
1872				m->busy_lock = VPB_SHARERS_WORD(1);
1873		}
1874		if ((req & VM_ALLOC_WIRED) != 0)
1875			m->wire_count = 1;
1876		/* Unmanaged pages don't use "act_count". */
1877		m->oflags = oflags;
1878		if (object != NULL) {
1879			if (vm_page_insert(m, object, pindex)) {
1880				vm_page_alloc_contig_vdrop(
1881				    &deferred_vdrop_list);
1882				if (vm_paging_needed())
1883					pagedaemon_wakeup();
1884				if ((req & VM_ALLOC_WIRED) != 0)
1885					atomic_subtract_int(&cnt.v_wire_count,
1886					    npages);
1887				for (m_tmp = m, m = m_ret;
1888				    m < &m_ret[npages]; m++) {
1889					if ((req & VM_ALLOC_WIRED) != 0)
1890						m->wire_count = 0;
1891					if (m >= m_tmp) {
1892						m->object = NULL;
1893						m->oflags |= VPO_UNMANAGED;
1894					}
1895					m->busy_lock = VPB_UNBUSIED;
1896					vm_page_free(m);
1897				}
1898				return (NULL);
1899			}
1900		} else
1901			m->pindex = pindex;
1902		if (memattr != VM_MEMATTR_DEFAULT)
1903			pmap_page_set_memattr(m, memattr);
1904		pindex++;
1905	}
1906	vm_page_alloc_contig_vdrop(&deferred_vdrop_list);
1907	if (vm_paging_needed())
1908		pagedaemon_wakeup();
1909	return (m_ret);
1910}
1911
1912/*
1913 * Initialize a page that has been freshly dequeued from a freelist.
1914 * The caller has to drop the vnode returned, if it is not NULL.
1915 *
1916 * This function may only be used to initialize unmanaged pages.
1917 *
1918 * To be called with vm_page_queue_free_mtx held.
1919 */
1920static struct vnode *
1921vm_page_alloc_init(vm_page_t m)
1922{
1923	struct vnode *drop;
1924	vm_object_t m_object;
1925
1926	KASSERT(m->queue == PQ_NONE,
1927	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1928	    m, m->queue));
1929	KASSERT(m->wire_count == 0,
1930	    ("vm_page_alloc_init: page %p is wired", m));
1931	KASSERT(m->hold_count == 0,
1932	    ("vm_page_alloc_init: page %p is held", m));
1933	KASSERT(!vm_page_busied(m),
1934	    ("vm_page_alloc_init: page %p is busy", m));
1935	KASSERT(m->dirty == 0,
1936	    ("vm_page_alloc_init: page %p is dirty", m));
1937	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1938	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1939	    m, pmap_page_get_memattr(m)));
1940	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1941	drop = NULL;
1942	if ((m->flags & PG_CACHED) != 0) {
1943		KASSERT((m->flags & PG_ZERO) == 0,
1944		    ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
1945		m->valid = 0;
1946		m_object = m->object;
1947		vm_page_cache_remove(m);
1948		if (m_object->type == OBJT_VNODE &&
1949		    vm_object_cache_is_empty(m_object))
1950			drop = m_object->handle;
1951	} else {
1952		KASSERT(VM_PAGE_IS_FREE(m),
1953		    ("vm_page_alloc_init: page %p is not free", m));
1954		KASSERT(m->valid == 0,
1955		    ("vm_page_alloc_init: free page %p is valid", m));
1956		vm_phys_freecnt_adj(m, -1);
1957		if ((m->flags & PG_ZERO) != 0)
1958			vm_page_zero_count--;
1959	}
1960	/* Don't clear the PG_ZERO flag; we'll need it later. */
1961	m->flags &= PG_ZERO;
1962	return (drop);
1963}
1964
1965/*
1966 * 	vm_page_alloc_freelist:
1967 *
1968 *	Allocate a physical page from the specified free page list.
1969 *
1970 *	The caller must always specify an allocation class.
1971 *
1972 *	allocation classes:
1973 *	VM_ALLOC_NORMAL		normal process request
1974 *	VM_ALLOC_SYSTEM		system *really* needs a page
1975 *	VM_ALLOC_INTERRUPT	interrupt time request
1976 *
1977 *	optional allocation flags:
1978 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1979 *				intends to allocate
1980 *	VM_ALLOC_WIRED		wire the allocated page
1981 *	VM_ALLOC_ZERO		prefer a zeroed page
1982 *
1983 *	This routine may not sleep.
1984 */
1985vm_page_t
1986vm_page_alloc_freelist(int flind, int req)
1987{
1988	struct vnode *drop;
1989	vm_page_t m;
1990	u_int flags;
1991	int req_class;
1992
1993	req_class = req & VM_ALLOC_CLASS_MASK;
1994
1995	/*
1996	 * The page daemon is allowed to dig deeper into the free page list.
1997	 */
1998	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1999		req_class = VM_ALLOC_SYSTEM;
2000
2001	/*
2002	 * Do not allocate reserved pages unless the req has asked for it.
2003	 */
2004	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
2005	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
2006	    (req_class == VM_ALLOC_SYSTEM &&
2007	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
2008	    (req_class == VM_ALLOC_INTERRUPT &&
2009	    cnt.v_free_count + cnt.v_cache_count > 0))
2010		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
2011	else {
2012		mtx_unlock(&vm_page_queue_free_mtx);
2013		atomic_add_int(&vm_pageout_deficit,
2014		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
2015		pagedaemon_wakeup();
2016		return (NULL);
2017	}
2018	if (m == NULL) {
2019		mtx_unlock(&vm_page_queue_free_mtx);
2020		return (NULL);
2021	}
2022	drop = vm_page_alloc_init(m);
2023	mtx_unlock(&vm_page_queue_free_mtx);
2024
2025	/*
2026	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2027	 */
2028	m->aflags = 0;
2029	flags = 0;
2030	if ((req & VM_ALLOC_ZERO) != 0)
2031		flags = PG_ZERO;
2032	m->flags &= flags;
2033	if ((req & VM_ALLOC_WIRED) != 0) {
2034		/*
2035		 * The page lock is not required for wiring a page that does
2036		 * not belong to an object.
2037		 */
2038		atomic_add_int(&cnt.v_wire_count, 1);
2039		m->wire_count = 1;
2040	}
2041	/* Unmanaged pages don't use "act_count". */
2042	m->oflags = VPO_UNMANAGED;
2043	if (drop != NULL)
2044		vdrop(drop);
2045	if (vm_paging_needed())
2046		pagedaemon_wakeup();
2047	return (m);
2048}
2049
2050/*
2051 *	vm_wait:	(also see VM_WAIT macro)
2052 *
2053 *	Sleep until free pages are available for allocation.
2054 *	- Called in various places before memory allocations.
2055 */
2056void
2057vm_wait(void)
2058{
2059
2060	mtx_lock(&vm_page_queue_free_mtx);
2061	if (curproc == pageproc) {
2062		vm_pageout_pages_needed = 1;
2063		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
2064		    PDROP | PSWP, "VMWait", 0);
2065	} else {
2066		if (!vm_pages_needed) {
2067			vm_pages_needed = 1;
2068			wakeup(&vm_pages_needed);
2069		}
2070		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
2071		    "vmwait", 0);
2072	}
2073}
2074
2075/*
2076 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
2077 *
2078 *	Sleep until free pages are available for allocation.
2079 *	- Called only in vm_fault so that processes page faulting
2080 *	  can be easily tracked.
2081 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
2082 *	  processes will be able to grab memory first.  Do not change
2083 *	  this balance without careful testing first.
2084 */
2085void
2086vm_waitpfault(void)
2087{
2088
2089	mtx_lock(&vm_page_queue_free_mtx);
2090	if (!vm_pages_needed) {
2091		vm_pages_needed = 1;
2092		wakeup(&vm_pages_needed);
2093	}
2094	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
2095	    "pfault", 0);
2096}
2097
2098struct vm_pagequeue *
2099vm_page_pagequeue(vm_page_t m)
2100{
2101
2102	return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]);
2103}
2104
2105/*
2106 *	vm_page_dequeue:
2107 *
2108 *	Remove the given page from its current page queue.
2109 *
2110 *	The page must be locked.
2111 */
2112void
2113vm_page_dequeue(vm_page_t m)
2114{
2115	struct vm_pagequeue *pq;
2116
2117	vm_page_lock_assert(m, MA_OWNED);
2118	KASSERT(m->queue != PQ_NONE,
2119	    ("vm_page_dequeue: page %p is not queued", m));
2120	pq = vm_page_pagequeue(m);
2121	vm_pagequeue_lock(pq);
2122	m->queue = PQ_NONE;
2123	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2124	vm_pagequeue_cnt_dec(pq);
2125	vm_pagequeue_unlock(pq);
2126}
2127
2128/*
2129 *	vm_page_dequeue_locked:
2130 *
2131 *	Remove the given page from its current page queue.
2132 *
2133 *	The page and page queue must be locked.
2134 */
2135void
2136vm_page_dequeue_locked(vm_page_t m)
2137{
2138	struct vm_pagequeue *pq;
2139
2140	vm_page_lock_assert(m, MA_OWNED);
2141	pq = vm_page_pagequeue(m);
2142	vm_pagequeue_assert_locked(pq);
2143	m->queue = PQ_NONE;
2144	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2145	vm_pagequeue_cnt_dec(pq);
2146}
2147
2148/*
2149 *	vm_page_enqueue:
2150 *
2151 *	Add the given page to the specified page queue.
2152 *
2153 *	The page must be locked.
2154 */
2155static void
2156vm_page_enqueue(int queue, vm_page_t m)
2157{
2158	struct vm_pagequeue *pq;
2159
2160	vm_page_lock_assert(m, MA_OWNED);
2161	pq = &vm_phys_domain(m)->vmd_pagequeues[queue];
2162	vm_pagequeue_lock(pq);
2163	m->queue = queue;
2164	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2165	vm_pagequeue_cnt_inc(pq);
2166	vm_pagequeue_unlock(pq);
2167}
2168
2169/*
2170 *	vm_page_requeue:
2171 *
2172 *	Move the given page to the tail of its current page queue.
2173 *
2174 *	The page must be locked.
2175 */
2176void
2177vm_page_requeue(vm_page_t m)
2178{
2179	struct vm_pagequeue *pq;
2180
2181	vm_page_lock_assert(m, MA_OWNED);
2182	KASSERT(m->queue != PQ_NONE,
2183	    ("vm_page_requeue: page %p is not queued", m));
2184	pq = vm_page_pagequeue(m);
2185	vm_pagequeue_lock(pq);
2186	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2187	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2188	vm_pagequeue_unlock(pq);
2189}
2190
2191/*
2192 *	vm_page_requeue_locked:
2193 *
2194 *	Move the given page to the tail of its current page queue.
2195 *
2196 *	The page queue must be locked.
2197 */
2198void
2199vm_page_requeue_locked(vm_page_t m)
2200{
2201	struct vm_pagequeue *pq;
2202
2203	KASSERT(m->queue != PQ_NONE,
2204	    ("vm_page_requeue_locked: page %p is not queued", m));
2205	pq = vm_page_pagequeue(m);
2206	vm_pagequeue_assert_locked(pq);
2207	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2208	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2209}
2210
2211/*
2212 *	vm_page_activate:
2213 *
2214 *	Put the specified page on the active list (if appropriate).
2215 *	Ensure that act_count is at least ACT_INIT but do not otherwise
2216 *	mess with it.
2217 *
2218 *	The page must be locked.
2219 */
2220void
2221vm_page_activate(vm_page_t m)
2222{
2223	int queue;
2224
2225	vm_page_lock_assert(m, MA_OWNED);
2226	if ((queue = m->queue) != PQ_ACTIVE) {
2227		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2228			if (m->act_count < ACT_INIT)
2229				m->act_count = ACT_INIT;
2230			if (queue != PQ_NONE)
2231				vm_page_dequeue(m);
2232			vm_page_enqueue(PQ_ACTIVE, m);
2233		} else
2234			KASSERT(queue == PQ_NONE,
2235			    ("vm_page_activate: wired page %p is queued", m));
2236	} else {
2237		if (m->act_count < ACT_INIT)
2238			m->act_count = ACT_INIT;
2239	}
2240}
2241
2242/*
2243 *	vm_page_free_wakeup:
2244 *
2245 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
2246 *	routine is called when a page has been added to the cache or free
2247 *	queues.
2248 *
2249 *	The page queues must be locked.
2250 */
2251static inline void
2252vm_page_free_wakeup(void)
2253{
2254
2255	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2256	/*
2257	 * if pageout daemon needs pages, then tell it that there are
2258	 * some free.
2259	 */
2260	if (vm_pageout_pages_needed &&
2261	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
2262		wakeup(&vm_pageout_pages_needed);
2263		vm_pageout_pages_needed = 0;
2264	}
2265	/*
2266	 * wakeup processes that are waiting on memory if we hit a
2267	 * high water mark. And wakeup scheduler process if we have
2268	 * lots of memory. this process will swapin processes.
2269	 */
2270	if (vm_pages_needed && !vm_page_count_min()) {
2271		vm_pages_needed = 0;
2272		wakeup(&cnt.v_free_count);
2273	}
2274}
2275
2276/*
2277 *	Turn a cached page into a free page, by changing its attributes.
2278 *	Keep the statistics up-to-date.
2279 *
2280 *	The free page queue must be locked.
2281 */
2282static void
2283vm_page_cache_turn_free(vm_page_t m)
2284{
2285
2286	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2287
2288	m->object = NULL;
2289	m->valid = 0;
2290	/* Clear PG_CACHED and set PG_FREE. */
2291	m->flags ^= PG_CACHED | PG_FREE;
2292	KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
2293	    ("vm_page_cache_free: page %p has inconsistent flags", m));
2294	cnt.v_cache_count--;
2295	vm_phys_freecnt_adj(m, 1);
2296}
2297
2298/*
2299 *	vm_page_free_toq:
2300 *
2301 *	Returns the given page to the free list,
2302 *	disassociating it with any VM object.
2303 *
2304 *	The object must be locked.  The page must be locked if it is managed.
2305 */
2306void
2307vm_page_free_toq(vm_page_t m)
2308{
2309
2310	if ((m->oflags & VPO_UNMANAGED) == 0) {
2311		vm_page_lock_assert(m, MA_OWNED);
2312		KASSERT(!pmap_page_is_mapped(m),
2313		    ("vm_page_free_toq: freeing mapped page %p", m));
2314	} else
2315		KASSERT(m->queue == PQ_NONE,
2316		    ("vm_page_free_toq: unmanaged page %p is queued", m));
2317	PCPU_INC(cnt.v_tfree);
2318
2319	if (VM_PAGE_IS_FREE(m))
2320		panic("vm_page_free: freeing free page %p", m);
2321	else if (vm_page_sbusied(m))
2322		panic("vm_page_free: freeing busy page %p", m);
2323
2324	/*
2325	 * Unqueue, then remove page.  Note that we cannot destroy
2326	 * the page here because we do not want to call the pager's
2327	 * callback routine until after we've put the page on the
2328	 * appropriate free queue.
2329	 */
2330	vm_page_remque(m);
2331	vm_page_remove(m);
2332
2333	/*
2334	 * If fictitious remove object association and
2335	 * return, otherwise delay object association removal.
2336	 */
2337	if ((m->flags & PG_FICTITIOUS) != 0) {
2338		return;
2339	}
2340
2341	m->valid = 0;
2342	vm_page_undirty(m);
2343
2344	if (m->wire_count != 0)
2345		panic("vm_page_free: freeing wired page %p", m);
2346	if (m->hold_count != 0) {
2347		m->flags &= ~PG_ZERO;
2348		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2349		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
2350		m->flags |= PG_UNHOLDFREE;
2351	} else {
2352		/*
2353		 * Restore the default memory attribute to the page.
2354		 */
2355		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2356			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2357
2358		/*
2359		 * Insert the page into the physical memory allocator's
2360		 * cache/free page queues.
2361		 */
2362		mtx_lock(&vm_page_queue_free_mtx);
2363		m->flags |= PG_FREE;
2364		vm_phys_freecnt_adj(m, 1);
2365#if VM_NRESERVLEVEL > 0
2366		if (!vm_reserv_free_page(m))
2367#else
2368		if (TRUE)
2369#endif
2370			vm_phys_free_pages(m, 0);
2371		if ((m->flags & PG_ZERO) != 0)
2372			++vm_page_zero_count;
2373		else
2374			vm_page_zero_idle_wakeup();
2375		vm_page_free_wakeup();
2376		mtx_unlock(&vm_page_queue_free_mtx);
2377	}
2378}
2379
2380/*
2381 *	vm_page_wire:
2382 *
2383 *	Mark this page as wired down by yet
2384 *	another map, removing it from paging queues
2385 *	as necessary.
2386 *
2387 *	If the page is fictitious, then its wire count must remain one.
2388 *
2389 *	The page must be locked.
2390 */
2391void
2392vm_page_wire(vm_page_t m)
2393{
2394
2395	/*
2396	 * Only bump the wire statistics if the page is not already wired,
2397	 * and only unqueue the page if it is on some queue (if it is unmanaged
2398	 * it is already off the queues).
2399	 */
2400	vm_page_lock_assert(m, MA_OWNED);
2401	if ((m->flags & PG_FICTITIOUS) != 0) {
2402		KASSERT(m->wire_count == 1,
2403		    ("vm_page_wire: fictitious page %p's wire count isn't one",
2404		    m));
2405		return;
2406	}
2407	if (m->wire_count == 0) {
2408		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
2409		    m->queue == PQ_NONE,
2410		    ("vm_page_wire: unmanaged page %p is queued", m));
2411		vm_page_remque(m);
2412		atomic_add_int(&cnt.v_wire_count, 1);
2413	}
2414	m->wire_count++;
2415	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
2416}
2417
2418/*
2419 * vm_page_unwire:
2420 *
2421 * Release one wiring of the specified page, potentially enabling it to be
2422 * paged again.  If paging is enabled, then the value of the parameter
2423 * "activate" determines to which queue the page is added.  If "activate" is
2424 * non-zero, then the page is added to the active queue.  Otherwise, it is
2425 * added to the inactive queue.
2426 *
2427 * However, unless the page belongs to an object, it is not enqueued because
2428 * it cannot be paged out.
2429 *
2430 * If a page is fictitious, then its wire count must always be one.
2431 *
2432 * A managed page must be locked.
2433 */
2434void
2435vm_page_unwire(vm_page_t m, int activate)
2436{
2437
2438	if ((m->oflags & VPO_UNMANAGED) == 0)
2439		vm_page_lock_assert(m, MA_OWNED);
2440	if ((m->flags & PG_FICTITIOUS) != 0) {
2441		KASSERT(m->wire_count == 1,
2442	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
2443		return;
2444	}
2445	if (m->wire_count > 0) {
2446		m->wire_count--;
2447		if (m->wire_count == 0) {
2448			atomic_subtract_int(&cnt.v_wire_count, 1);
2449			if ((m->oflags & VPO_UNMANAGED) != 0 ||
2450			    m->object == NULL)
2451				return;
2452			if (!activate)
2453				m->flags &= ~PG_WINATCFLS;
2454			vm_page_enqueue(activate ? PQ_ACTIVE : PQ_INACTIVE, m);
2455		}
2456	} else
2457		panic("vm_page_unwire: page %p's wire count is zero", m);
2458}
2459
2460/*
2461 * Move the specified page to the inactive queue.
2462 *
2463 * Many pages placed on the inactive queue should actually go
2464 * into the cache, but it is difficult to figure out which.  What
2465 * we do instead, if the inactive target is well met, is to put
2466 * clean pages at the head of the inactive queue instead of the tail.
2467 * This will cause them to be moved to the cache more quickly and
2468 * if not actively re-referenced, reclaimed more quickly.  If we just
2469 * stick these pages at the end of the inactive queue, heavy filesystem
2470 * meta-data accesses can cause an unnecessary paging load on memory bound
2471 * processes.  This optimization causes one-time-use metadata to be
2472 * reused more quickly.
2473 *
2474 * Normally athead is 0 resulting in LRU operation.  athead is set
2475 * to 1 if we want this page to be 'as if it were placed in the cache',
2476 * except without unmapping it from the process address space.
2477 *
2478 * The page must be locked.
2479 */
2480static inline void
2481_vm_page_deactivate(vm_page_t m, int athead)
2482{
2483	struct vm_pagequeue *pq;
2484	int queue;
2485
2486	vm_page_assert_locked(m);
2487
2488	/*
2489	 * Ignore if the page is already inactive, unless it is unlikely to be
2490	 * reactivated.
2491	 */
2492	if ((queue = m->queue) == PQ_INACTIVE && !athead)
2493		return;
2494	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2495		pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE];
2496		/* Avoid multiple acquisitions of the inactive queue lock. */
2497		if (queue == PQ_INACTIVE) {
2498			vm_pagequeue_lock(pq);
2499			vm_page_dequeue_locked(m);
2500		} else {
2501			if (queue != PQ_NONE)
2502				vm_page_dequeue(m);
2503			m->flags &= ~PG_WINATCFLS;
2504			vm_pagequeue_lock(pq);
2505		}
2506		m->queue = PQ_INACTIVE;
2507		if (athead)
2508			TAILQ_INSERT_HEAD(&pq->pq_pl, m, plinks.q);
2509		else
2510			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2511		vm_pagequeue_cnt_inc(pq);
2512		vm_pagequeue_unlock(pq);
2513	}
2514}
2515
2516/*
2517 * Move the specified page to the inactive queue.
2518 *
2519 * The page must be locked.
2520 */
2521void
2522vm_page_deactivate(vm_page_t m)
2523{
2524
2525	_vm_page_deactivate(m, 0);
2526}
2527
2528/*
2529 * vm_page_try_to_cache:
2530 *
2531 * Returns 0 on failure, 1 on success
2532 */
2533int
2534vm_page_try_to_cache(vm_page_t m)
2535{
2536
2537	vm_page_lock_assert(m, MA_OWNED);
2538	VM_OBJECT_ASSERT_WLOCKED(m->object);
2539	if (m->dirty || m->hold_count || m->wire_count ||
2540	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
2541		return (0);
2542	pmap_remove_all(m);
2543	if (m->dirty)
2544		return (0);
2545	vm_page_cache(m);
2546	return (1);
2547}
2548
2549/*
2550 * vm_page_try_to_free()
2551 *
2552 *	Attempt to free the page.  If we cannot free it, we do nothing.
2553 *	1 is returned on success, 0 on failure.
2554 */
2555int
2556vm_page_try_to_free(vm_page_t m)
2557{
2558
2559	vm_page_lock_assert(m, MA_OWNED);
2560	if (m->object != NULL)
2561		VM_OBJECT_ASSERT_WLOCKED(m->object);
2562	if (m->dirty || m->hold_count || m->wire_count ||
2563	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
2564		return (0);
2565	pmap_remove_all(m);
2566	if (m->dirty)
2567		return (0);
2568	vm_page_free(m);
2569	return (1);
2570}
2571
2572/*
2573 * vm_page_cache
2574 *
2575 * Put the specified page onto the page cache queue (if appropriate).
2576 *
2577 * The object and page must be locked.
2578 */
2579void
2580vm_page_cache(vm_page_t m)
2581{
2582	vm_object_t object;
2583	boolean_t cache_was_empty;
2584
2585	vm_page_lock_assert(m, MA_OWNED);
2586	object = m->object;
2587	VM_OBJECT_ASSERT_WLOCKED(object);
2588	if (vm_page_busied(m) || (m->oflags & VPO_UNMANAGED) ||
2589	    m->hold_count || m->wire_count)
2590		panic("vm_page_cache: attempting to cache busy page");
2591	KASSERT(!pmap_page_is_mapped(m),
2592	    ("vm_page_cache: page %p is mapped", m));
2593	KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m));
2594	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
2595	    (object->type == OBJT_SWAP &&
2596	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
2597		/*
2598		 * Hypothesis: A cache-elgible page belonging to a
2599		 * default object or swap object but without a backing
2600		 * store must be zero filled.
2601		 */
2602		vm_page_free(m);
2603		return;
2604	}
2605	KASSERT((m->flags & PG_CACHED) == 0,
2606	    ("vm_page_cache: page %p is already cached", m));
2607
2608	/*
2609	 * Remove the page from the paging queues.
2610	 */
2611	vm_page_remque(m);
2612
2613	/*
2614	 * Remove the page from the object's collection of resident
2615	 * pages.
2616	 */
2617	vm_radix_remove(&object->rtree, m->pindex);
2618	TAILQ_REMOVE(&object->memq, m, listq);
2619	object->resident_page_count--;
2620
2621	/*
2622	 * Restore the default memory attribute to the page.
2623	 */
2624	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2625		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2626
2627	/*
2628	 * Insert the page into the object's collection of cached pages
2629	 * and the physical memory allocator's cache/free page queues.
2630	 */
2631	m->flags &= ~PG_ZERO;
2632	mtx_lock(&vm_page_queue_free_mtx);
2633	cache_was_empty = vm_radix_is_empty(&object->cache);
2634	if (vm_radix_insert(&object->cache, m)) {
2635		mtx_unlock(&vm_page_queue_free_mtx);
2636		if (object->type == OBJT_VNODE &&
2637		    object->resident_page_count == 0)
2638			vdrop(object->handle);
2639		m->object = NULL;
2640		vm_page_free(m);
2641		return;
2642	}
2643
2644	/*
2645	 * The above call to vm_radix_insert() could reclaim the one pre-
2646	 * existing cached page from this object, resulting in a call to
2647	 * vdrop().
2648	 */
2649	if (!cache_was_empty)
2650		cache_was_empty = vm_radix_is_singleton(&object->cache);
2651
2652	m->flags |= PG_CACHED;
2653	cnt.v_cache_count++;
2654	PCPU_INC(cnt.v_tcached);
2655#if VM_NRESERVLEVEL > 0
2656	if (!vm_reserv_free_page(m)) {
2657#else
2658	if (TRUE) {
2659#endif
2660		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2661		vm_phys_free_pages(m, 0);
2662	}
2663	vm_page_free_wakeup();
2664	mtx_unlock(&vm_page_queue_free_mtx);
2665
2666	/*
2667	 * Increment the vnode's hold count if this is the object's only
2668	 * cached page.  Decrement the vnode's hold count if this was
2669	 * the object's only resident page.
2670	 */
2671	if (object->type == OBJT_VNODE) {
2672		if (cache_was_empty && object->resident_page_count != 0)
2673			vhold(object->handle);
2674		else if (!cache_was_empty && object->resident_page_count == 0)
2675			vdrop(object->handle);
2676	}
2677}
2678
2679/*
2680 * vm_page_advise
2681 *
2682 * 	Deactivate or do nothing, as appropriate.  This routine is used
2683 * 	by madvise() and vop_stdadvise().
2684 *
2685 *	The object and page must be locked.
2686 */
2687void
2688vm_page_advise(vm_page_t m, int advice)
2689{
2690
2691	vm_page_assert_locked(m);
2692	VM_OBJECT_ASSERT_WLOCKED(m->object);
2693	if (advice == MADV_FREE)
2694		/*
2695		 * Mark the page clean.  This will allow the page to be freed
2696		 * up by the system.  However, such pages are often reused
2697		 * quickly by malloc() so we do not do anything that would
2698		 * cause a page fault if we can help it.
2699		 *
2700		 * Specifically, we do not try to actually free the page now
2701		 * nor do we try to put it in the cache (which would cause a
2702		 * page fault on reuse).
2703		 *
2704		 * But we do make the page as freeable as we can without
2705		 * actually taking the step of unmapping it.
2706		 */
2707		vm_page_undirty(m);
2708	else if (advice != MADV_DONTNEED)
2709		return;
2710
2711	/*
2712	 * Clear any references to the page.  Otherwise, the page daemon will
2713	 * immediately reactivate the page.
2714	 */
2715	vm_page_aflag_clear(m, PGA_REFERENCED);
2716
2717	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
2718		vm_page_dirty(m);
2719
2720	/*
2721	 * Place clean pages at the head of the inactive queue rather than the
2722	 * tail, thus defeating the queue's LRU operation and ensuring that the
2723	 * page will be reused quickly.
2724	 */
2725	_vm_page_deactivate(m, m->dirty == 0);
2726}
2727
2728/*
2729 * Grab a page, waiting until we are waken up due to the page
2730 * changing state.  We keep on waiting, if the page continues
2731 * to be in the object.  If the page doesn't exist, first allocate it
2732 * and then conditionally zero it.
2733 *
2734 * This routine may sleep.
2735 *
2736 * The object must be locked on entry.  The lock will, however, be released
2737 * and reacquired if the routine sleeps.
2738 */
2739vm_page_t
2740vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2741{
2742	vm_page_t m;
2743	int sleep;
2744
2745	VM_OBJECT_ASSERT_WLOCKED(object);
2746	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
2747	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
2748	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
2749retrylookup:
2750	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2751		sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
2752		    vm_page_xbusied(m) : vm_page_busied(m);
2753		if (sleep) {
2754			/*
2755			 * Reference the page before unlocking and
2756			 * sleeping so that the page daemon is less
2757			 * likely to reclaim it.
2758			 */
2759			vm_page_aflag_set(m, PGA_REFERENCED);
2760			vm_page_lock(m);
2761			VM_OBJECT_WUNLOCK(object);
2762			vm_page_busy_sleep(m, "pgrbwt", (allocflags &
2763			    VM_ALLOC_IGN_SBUSY) != 0);
2764			VM_OBJECT_WLOCK(object);
2765			goto retrylookup;
2766		} else {
2767			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2768				vm_page_lock(m);
2769				vm_page_wire(m);
2770				vm_page_unlock(m);
2771			}
2772			if ((allocflags &
2773			    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2774				vm_page_xbusy(m);
2775			if ((allocflags & VM_ALLOC_SBUSY) != 0)
2776				vm_page_sbusy(m);
2777			return (m);
2778		}
2779	}
2780	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_IGN_SBUSY);
2781	if (m == NULL) {
2782		VM_OBJECT_WUNLOCK(object);
2783		VM_WAIT;
2784		VM_OBJECT_WLOCK(object);
2785		goto retrylookup;
2786	} else if (m->valid != 0)
2787		return (m);
2788	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2789		pmap_zero_page(m);
2790	return (m);
2791}
2792
2793/*
2794 * Mapping function for valid or dirty bits in a page.
2795 *
2796 * Inputs are required to range within a page.
2797 */
2798vm_page_bits_t
2799vm_page_bits(int base, int size)
2800{
2801	int first_bit;
2802	int last_bit;
2803
2804	KASSERT(
2805	    base + size <= PAGE_SIZE,
2806	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2807	);
2808
2809	if (size == 0)		/* handle degenerate case */
2810		return (0);
2811
2812	first_bit = base >> DEV_BSHIFT;
2813	last_bit = (base + size - 1) >> DEV_BSHIFT;
2814
2815	return (((vm_page_bits_t)2 << last_bit) -
2816	    ((vm_page_bits_t)1 << first_bit));
2817}
2818
2819/*
2820 *	vm_page_set_valid_range:
2821 *
2822 *	Sets portions of a page valid.  The arguments are expected
2823 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2824 *	of any partial chunks touched by the range.  The invalid portion of
2825 *	such chunks will be zeroed.
2826 *
2827 *	(base + size) must be less then or equal to PAGE_SIZE.
2828 */
2829void
2830vm_page_set_valid_range(vm_page_t m, int base, int size)
2831{
2832	int endoff, frag;
2833
2834	VM_OBJECT_ASSERT_WLOCKED(m->object);
2835	if (size == 0)	/* handle degenerate case */
2836		return;
2837
2838	/*
2839	 * If the base is not DEV_BSIZE aligned and the valid
2840	 * bit is clear, we have to zero out a portion of the
2841	 * first block.
2842	 */
2843	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2844	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2845		pmap_zero_page_area(m, frag, base - frag);
2846
2847	/*
2848	 * If the ending offset is not DEV_BSIZE aligned and the
2849	 * valid bit is clear, we have to zero out a portion of
2850	 * the last block.
2851	 */
2852	endoff = base + size;
2853	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2854	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2855		pmap_zero_page_area(m, endoff,
2856		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2857
2858	/*
2859	 * Assert that no previously invalid block that is now being validated
2860	 * is already dirty.
2861	 */
2862	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2863	    ("vm_page_set_valid_range: page %p is dirty", m));
2864
2865	/*
2866	 * Set valid bits inclusive of any overlap.
2867	 */
2868	m->valid |= vm_page_bits(base, size);
2869}
2870
2871/*
2872 * Clear the given bits from the specified page's dirty field.
2873 */
2874static __inline void
2875vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
2876{
2877	uintptr_t addr;
2878#if PAGE_SIZE < 16384
2879	int shift;
2880#endif
2881
2882	/*
2883	 * If the object is locked and the page is neither exclusive busy nor
2884	 * write mapped, then the page's dirty field cannot possibly be
2885	 * set by a concurrent pmap operation.
2886	 */
2887	VM_OBJECT_ASSERT_WLOCKED(m->object);
2888	if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
2889		m->dirty &= ~pagebits;
2890	else {
2891		/*
2892		 * The pmap layer can call vm_page_dirty() without
2893		 * holding a distinguished lock.  The combination of
2894		 * the object's lock and an atomic operation suffice
2895		 * to guarantee consistency of the page dirty field.
2896		 *
2897		 * For PAGE_SIZE == 32768 case, compiler already
2898		 * properly aligns the dirty field, so no forcible
2899		 * alignment is needed. Only require existence of
2900		 * atomic_clear_64 when page size is 32768.
2901		 */
2902		addr = (uintptr_t)&m->dirty;
2903#if PAGE_SIZE == 32768
2904		atomic_clear_64((uint64_t *)addr, pagebits);
2905#elif PAGE_SIZE == 16384
2906		atomic_clear_32((uint32_t *)addr, pagebits);
2907#else		/* PAGE_SIZE <= 8192 */
2908		/*
2909		 * Use a trick to perform a 32-bit atomic on the
2910		 * containing aligned word, to not depend on the existence
2911		 * of atomic_clear_{8, 16}.
2912		 */
2913		shift = addr & (sizeof(uint32_t) - 1);
2914#if BYTE_ORDER == BIG_ENDIAN
2915		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
2916#else
2917		shift *= NBBY;
2918#endif
2919		addr &= ~(sizeof(uint32_t) - 1);
2920		atomic_clear_32((uint32_t *)addr, pagebits << shift);
2921#endif		/* PAGE_SIZE */
2922	}
2923}
2924
2925/*
2926 *	vm_page_set_validclean:
2927 *
2928 *	Sets portions of a page valid and clean.  The arguments are expected
2929 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2930 *	of any partial chunks touched by the range.  The invalid portion of
2931 *	such chunks will be zero'd.
2932 *
2933 *	(base + size) must be less then or equal to PAGE_SIZE.
2934 */
2935void
2936vm_page_set_validclean(vm_page_t m, int base, int size)
2937{
2938	vm_page_bits_t oldvalid, pagebits;
2939	int endoff, frag;
2940
2941	VM_OBJECT_ASSERT_WLOCKED(m->object);
2942	if (size == 0)	/* handle degenerate case */
2943		return;
2944
2945	/*
2946	 * If the base is not DEV_BSIZE aligned and the valid
2947	 * bit is clear, we have to zero out a portion of the
2948	 * first block.
2949	 */
2950	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2951	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
2952		pmap_zero_page_area(m, frag, base - frag);
2953
2954	/*
2955	 * If the ending offset is not DEV_BSIZE aligned and the
2956	 * valid bit is clear, we have to zero out a portion of
2957	 * the last block.
2958	 */
2959	endoff = base + size;
2960	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2961	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
2962		pmap_zero_page_area(m, endoff,
2963		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2964
2965	/*
2966	 * Set valid, clear dirty bits.  If validating the entire
2967	 * page we can safely clear the pmap modify bit.  We also
2968	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2969	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2970	 * be set again.
2971	 *
2972	 * We set valid bits inclusive of any overlap, but we can only
2973	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2974	 * the range.
2975	 */
2976	oldvalid = m->valid;
2977	pagebits = vm_page_bits(base, size);
2978	m->valid |= pagebits;
2979#if 0	/* NOT YET */
2980	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2981		frag = DEV_BSIZE - frag;
2982		base += frag;
2983		size -= frag;
2984		if (size < 0)
2985			size = 0;
2986	}
2987	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2988#endif
2989	if (base == 0 && size == PAGE_SIZE) {
2990		/*
2991		 * The page can only be modified within the pmap if it is
2992		 * mapped, and it can only be mapped if it was previously
2993		 * fully valid.
2994		 */
2995		if (oldvalid == VM_PAGE_BITS_ALL)
2996			/*
2997			 * Perform the pmap_clear_modify() first.  Otherwise,
2998			 * a concurrent pmap operation, such as
2999			 * pmap_protect(), could clear a modification in the
3000			 * pmap and set the dirty field on the page before
3001			 * pmap_clear_modify() had begun and after the dirty
3002			 * field was cleared here.
3003			 */
3004			pmap_clear_modify(m);
3005		m->dirty = 0;
3006		m->oflags &= ~VPO_NOSYNC;
3007	} else if (oldvalid != VM_PAGE_BITS_ALL)
3008		m->dirty &= ~pagebits;
3009	else
3010		vm_page_clear_dirty_mask(m, pagebits);
3011}
3012
3013void
3014vm_page_clear_dirty(vm_page_t m, int base, int size)
3015{
3016
3017	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
3018}
3019
3020/*
3021 *	vm_page_set_invalid:
3022 *
3023 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
3024 *	valid and dirty bits for the effected areas are cleared.
3025 */
3026void
3027vm_page_set_invalid(vm_page_t m, int base, int size)
3028{
3029	vm_page_bits_t bits;
3030	vm_object_t object;
3031
3032	object = m->object;
3033	VM_OBJECT_ASSERT_WLOCKED(object);
3034	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
3035	    size >= object->un_pager.vnp.vnp_size)
3036		bits = VM_PAGE_BITS_ALL;
3037	else
3038		bits = vm_page_bits(base, size);
3039	if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL &&
3040	    bits != 0)
3041		pmap_remove_all(m);
3042	KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
3043	    !pmap_page_is_mapped(m),
3044	    ("vm_page_set_invalid: page %p is mapped", m));
3045	m->valid &= ~bits;
3046	m->dirty &= ~bits;
3047}
3048
3049/*
3050 * vm_page_zero_invalid()
3051 *
3052 *	The kernel assumes that the invalid portions of a page contain
3053 *	garbage, but such pages can be mapped into memory by user code.
3054 *	When this occurs, we must zero out the non-valid portions of the
3055 *	page so user code sees what it expects.
3056 *
3057 *	Pages are most often semi-valid when the end of a file is mapped
3058 *	into memory and the file's size is not page aligned.
3059 */
3060void
3061vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3062{
3063	int b;
3064	int i;
3065
3066	VM_OBJECT_ASSERT_WLOCKED(m->object);
3067	/*
3068	 * Scan the valid bits looking for invalid sections that
3069	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
3070	 * valid bit may be set ) have already been zeroed by
3071	 * vm_page_set_validclean().
3072	 */
3073	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3074		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3075		    (m->valid & ((vm_page_bits_t)1 << i))) {
3076			if (i > b) {
3077				pmap_zero_page_area(m,
3078				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
3079			}
3080			b = i + 1;
3081		}
3082	}
3083
3084	/*
3085	 * setvalid is TRUE when we can safely set the zero'd areas
3086	 * as being valid.  We can do this if there are no cache consistancy
3087	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3088	 */
3089	if (setvalid)
3090		m->valid = VM_PAGE_BITS_ALL;
3091}
3092
3093/*
3094 *	vm_page_is_valid:
3095 *
3096 *	Is (partial) page valid?  Note that the case where size == 0
3097 *	will return FALSE in the degenerate case where the page is
3098 *	entirely invalid, and TRUE otherwise.
3099 */
3100int
3101vm_page_is_valid(vm_page_t m, int base, int size)
3102{
3103	vm_page_bits_t bits;
3104
3105	VM_OBJECT_ASSERT_LOCKED(m->object);
3106	bits = vm_page_bits(base, size);
3107	return (m->valid != 0 && (m->valid & bits) == bits);
3108}
3109
3110/*
3111 *	vm_page_ps_is_valid:
3112 *
3113 *	Returns TRUE if the entire (super)page is valid and FALSE otherwise.
3114 */
3115boolean_t
3116vm_page_ps_is_valid(vm_page_t m)
3117{
3118	int i, npages;
3119
3120	VM_OBJECT_ASSERT_LOCKED(m->object);
3121	npages = atop(pagesizes[m->psind]);
3122
3123	/*
3124	 * The physically contiguous pages that make up a superpage, i.e., a
3125	 * page with a page size index ("psind") greater than zero, will
3126	 * occupy adjacent entries in vm_page_array[].
3127	 */
3128	for (i = 0; i < npages; i++) {
3129		if (m[i].valid != VM_PAGE_BITS_ALL)
3130			return (FALSE);
3131	}
3132	return (TRUE);
3133}
3134
3135/*
3136 * Set the page's dirty bits if the page is modified.
3137 */
3138void
3139vm_page_test_dirty(vm_page_t m)
3140{
3141
3142	VM_OBJECT_ASSERT_WLOCKED(m->object);
3143	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
3144		vm_page_dirty(m);
3145}
3146
3147void
3148vm_page_lock_KBI(vm_page_t m, const char *file, int line)
3149{
3150
3151	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
3152}
3153
3154void
3155vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
3156{
3157
3158	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
3159}
3160
3161int
3162vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
3163{
3164
3165	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
3166}
3167
3168#if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
3169void
3170vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
3171{
3172
3173	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
3174}
3175
3176void
3177vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
3178{
3179
3180	mtx_assert_(vm_page_lockptr(m), a, file, line);
3181}
3182#endif
3183
3184#ifdef INVARIANTS
3185void
3186vm_page_object_lock_assert(vm_page_t m)
3187{
3188
3189	/*
3190	 * Certain of the page's fields may only be modified by the
3191	 * holder of the containing object's lock or the exclusive busy.
3192	 * holder.  Unfortunately, the holder of the write busy is
3193	 * not recorded, and thus cannot be checked here.
3194	 */
3195	if (m->object != NULL && !vm_page_xbusied(m))
3196		VM_OBJECT_ASSERT_WLOCKED(m->object);
3197}
3198
3199void
3200vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
3201{
3202
3203	if ((bits & PGA_WRITEABLE) == 0)
3204		return;
3205
3206	/*
3207	 * The PGA_WRITEABLE flag can only be set if the page is
3208	 * managed, is exclusively busied or the object is locked.
3209	 * Currently, this flag is only set by pmap_enter().
3210	 */
3211	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3212	    ("PGA_WRITEABLE on unmanaged page"));
3213	if (!vm_page_xbusied(m))
3214		VM_OBJECT_ASSERT_LOCKED(m->object);
3215}
3216#endif
3217
3218#include "opt_ddb.h"
3219#ifdef DDB
3220#include <sys/kernel.h>
3221
3222#include <ddb/ddb.h>
3223
3224DB_SHOW_COMMAND(page, vm_page_print_page_info)
3225{
3226	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
3227	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
3228	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
3229	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
3230	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
3231	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
3232	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
3233	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
3234	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
3235	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
3236}
3237
3238DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3239{
3240	int dom;
3241
3242	db_printf("pq_free %d pq_cache %d\n",
3243	    cnt.v_free_count, cnt.v_cache_count);
3244	for (dom = 0; dom < vm_ndomains; dom++) {
3245		db_printf(
3246	"dom %d page_cnt %d free %d pq_act %d pq_inact %d pass %d\n",
3247		    dom,
3248		    vm_dom[dom].vmd_page_count,
3249		    vm_dom[dom].vmd_free_count,
3250		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
3251		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
3252		    vm_dom[dom].vmd_pass);
3253	}
3254}
3255
3256DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
3257{
3258	vm_page_t m;
3259	boolean_t phys;
3260
3261	if (!have_addr) {
3262		db_printf("show pginfo addr\n");
3263		return;
3264	}
3265
3266	phys = strchr(modif, 'p') != NULL;
3267	if (phys)
3268		m = PHYS_TO_VM_PAGE(addr);
3269	else
3270		m = (vm_page_t)addr;
3271	db_printf(
3272    "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
3273    "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
3274	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
3275	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
3276	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
3277}
3278#endif /* DDB */
3279