vm_page.c revision 288300
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- A page queue lock is required when adding or removing a page from a
67 *	  page queue regardless of other locks or the busy state of a page.
68 *
69 *		* In general, no thread besides the page daemon can acquire or
70 *		  hold more than one page queue lock at a time.
71 *
72 *		* The page daemon can acquire and hold any pair of page queue
73 *		  locks in any order.
74 *
75 *	- The object lock is required when inserting or removing
76 *	  pages from an object (vm_page_insert() or vm_page_remove()).
77 *
78 */
79
80/*
81 *	Resident memory management module.
82 */
83
84#include <sys/cdefs.h>
85__FBSDID("$FreeBSD: stable/10/sys/vm/vm_page.c 288300 2015-09-27 05:26:22Z alc $");
86
87#include "opt_vm.h"
88
89#include <sys/param.h>
90#include <sys/systm.h>
91#include <sys/lock.h>
92#include <sys/kernel.h>
93#include <sys/limits.h>
94#include <sys/malloc.h>
95#include <sys/mman.h>
96#include <sys/msgbuf.h>
97#include <sys/mutex.h>
98#include <sys/proc.h>
99#include <sys/rwlock.h>
100#include <sys/sysctl.h>
101#include <sys/vmmeter.h>
102#include <sys/vnode.h>
103
104#include <vm/vm.h>
105#include <vm/pmap.h>
106#include <vm/vm_param.h>
107#include <vm/vm_kern.h>
108#include <vm/vm_object.h>
109#include <vm/vm_page.h>
110#include <vm/vm_pageout.h>
111#include <vm/vm_pager.h>
112#include <vm/vm_phys.h>
113#include <vm/vm_radix.h>
114#include <vm/vm_reserv.h>
115#include <vm/vm_extern.h>
116#include <vm/uma.h>
117#include <vm/uma_int.h>
118
119#include <machine/md_var.h>
120
121/*
122 *	Associated with page of user-allocatable memory is a
123 *	page structure.
124 */
125
126struct vm_domain vm_dom[MAXMEMDOM];
127struct mtx_padalign vm_page_queue_free_mtx;
128
129struct mtx_padalign pa_lock[PA_LOCK_COUNT];
130
131vm_page_t vm_page_array;
132long vm_page_array_size;
133long first_page;
134int vm_page_zero_count;
135
136static int boot_pages = UMA_BOOT_PAGES;
137TUNABLE_INT("vm.boot_pages", &boot_pages);
138SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
139	"number of pages allocated for bootstrapping the VM system");
140
141static int pa_tryrelock_restart;
142SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
143    &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
144
145static uma_zone_t fakepg_zone;
146
147static struct vnode *vm_page_alloc_init(vm_page_t m);
148static void vm_page_cache_turn_free(vm_page_t m);
149static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
150static void vm_page_enqueue(int queue, vm_page_t m);
151static void vm_page_init_fakepg(void *dummy);
152static int vm_page_insert_after(vm_page_t m, vm_object_t object,
153    vm_pindex_t pindex, vm_page_t mpred);
154static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
155    vm_page_t mpred);
156
157SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
158
159static void
160vm_page_init_fakepg(void *dummy)
161{
162
163	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
164	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
165}
166
167/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
168#if PAGE_SIZE == 32768
169#ifdef CTASSERT
170CTASSERT(sizeof(u_long) >= 8);
171#endif
172#endif
173
174/*
175 * Try to acquire a physical address lock while a pmap is locked.  If we
176 * fail to trylock we unlock and lock the pmap directly and cache the
177 * locked pa in *locked.  The caller should then restart their loop in case
178 * the virtual to physical mapping has changed.
179 */
180int
181vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
182{
183	vm_paddr_t lockpa;
184
185	lockpa = *locked;
186	*locked = pa;
187	if (lockpa) {
188		PA_LOCK_ASSERT(lockpa, MA_OWNED);
189		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
190			return (0);
191		PA_UNLOCK(lockpa);
192	}
193	if (PA_TRYLOCK(pa))
194		return (0);
195	PMAP_UNLOCK(pmap);
196	atomic_add_int(&pa_tryrelock_restart, 1);
197	PA_LOCK(pa);
198	PMAP_LOCK(pmap);
199	return (EAGAIN);
200}
201
202/*
203 *	vm_set_page_size:
204 *
205 *	Sets the page size, perhaps based upon the memory
206 *	size.  Must be called before any use of page-size
207 *	dependent functions.
208 */
209void
210vm_set_page_size(void)
211{
212	if (cnt.v_page_size == 0)
213		cnt.v_page_size = PAGE_SIZE;
214	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
215		panic("vm_set_page_size: page size not a power of two");
216}
217
218/*
219 *	vm_page_blacklist_lookup:
220 *
221 *	See if a physical address in this page has been listed
222 *	in the blacklist tunable.  Entries in the tunable are
223 *	separated by spaces or commas.  If an invalid integer is
224 *	encountered then the rest of the string is skipped.
225 */
226static int
227vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
228{
229	vm_paddr_t bad;
230	char *cp, *pos;
231
232	for (pos = list; *pos != '\0'; pos = cp) {
233		bad = strtoq(pos, &cp, 0);
234		if (*cp != '\0') {
235			if (*cp == ' ' || *cp == ',') {
236				cp++;
237				if (cp == pos)
238					continue;
239			} else
240				break;
241		}
242		if (pa == trunc_page(bad))
243			return (1);
244	}
245	return (0);
246}
247
248static void
249vm_page_domain_init(struct vm_domain *vmd)
250{
251	struct vm_pagequeue *pq;
252	int i;
253
254	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
255	    "vm inactive pagequeue";
256	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) =
257	    &cnt.v_inactive_count;
258	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
259	    "vm active pagequeue";
260	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) =
261	    &cnt.v_active_count;
262	vmd->vmd_page_count = 0;
263	vmd->vmd_free_count = 0;
264	vmd->vmd_segs = 0;
265	vmd->vmd_oom = FALSE;
266	vmd->vmd_pass = 0;
267	for (i = 0; i < PQ_COUNT; i++) {
268		pq = &vmd->vmd_pagequeues[i];
269		TAILQ_INIT(&pq->pq_pl);
270		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
271		    MTX_DEF | MTX_DUPOK);
272	}
273}
274
275/*
276 *	vm_page_startup:
277 *
278 *	Initializes the resident memory module.
279 *
280 *	Allocates memory for the page cells, and
281 *	for the object/offset-to-page hash table headers.
282 *	Each page cell is initialized and placed on the free list.
283 */
284vm_offset_t
285vm_page_startup(vm_offset_t vaddr)
286{
287	vm_offset_t mapped;
288	vm_paddr_t page_range;
289	vm_paddr_t new_end;
290	int i;
291	vm_paddr_t pa;
292	vm_paddr_t last_pa;
293	char *list;
294
295	/* the biggest memory array is the second group of pages */
296	vm_paddr_t end;
297	vm_paddr_t biggestsize;
298	vm_paddr_t low_water, high_water;
299	int biggestone;
300
301	biggestsize = 0;
302	biggestone = 0;
303	vaddr = round_page(vaddr);
304
305	for (i = 0; phys_avail[i + 1]; i += 2) {
306		phys_avail[i] = round_page(phys_avail[i]);
307		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
308	}
309
310#ifdef XEN
311	/*
312	 * There is no obvious reason why i386 PV Xen needs vm_page structs
313	 * created for these pseudo-physical addresses.  XXX
314	 */
315	vm_phys_add_seg(0, phys_avail[0]);
316#endif
317
318	low_water = phys_avail[0];
319	high_water = phys_avail[1];
320
321	for (i = 0; i < vm_phys_nsegs; i++) {
322		if (vm_phys_segs[i].start < low_water)
323			low_water = vm_phys_segs[i].start;
324		if (vm_phys_segs[i].end > high_water)
325			high_water = vm_phys_segs[i].end;
326	}
327	for (i = 0; phys_avail[i + 1]; i += 2) {
328		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
329
330		if (size > biggestsize) {
331			biggestone = i;
332			biggestsize = size;
333		}
334		if (phys_avail[i] < low_water)
335			low_water = phys_avail[i];
336		if (phys_avail[i + 1] > high_water)
337			high_water = phys_avail[i + 1];
338	}
339
340	end = phys_avail[biggestone+1];
341
342	/*
343	 * Initialize the page and queue locks.
344	 */
345	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
346	for (i = 0; i < PA_LOCK_COUNT; i++)
347		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
348	for (i = 0; i < vm_ndomains; i++)
349		vm_page_domain_init(&vm_dom[i]);
350
351	/*
352	 * Allocate memory for use when boot strapping the kernel memory
353	 * allocator.
354	 */
355	new_end = end - (boot_pages * UMA_SLAB_SIZE);
356	new_end = trunc_page(new_end);
357	mapped = pmap_map(&vaddr, new_end, end,
358	    VM_PROT_READ | VM_PROT_WRITE);
359	bzero((void *)mapped, end - new_end);
360	uma_startup((void *)mapped, boot_pages);
361
362#if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
363    defined(__mips__)
364	/*
365	 * Allocate a bitmap to indicate that a random physical page
366	 * needs to be included in a minidump.
367	 *
368	 * The amd64 port needs this to indicate which direct map pages
369	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
370	 *
371	 * However, i386 still needs this workspace internally within the
372	 * minidump code.  In theory, they are not needed on i386, but are
373	 * included should the sf_buf code decide to use them.
374	 */
375	last_pa = 0;
376	for (i = 0; dump_avail[i + 1] != 0; i += 2)
377		if (dump_avail[i + 1] > last_pa)
378			last_pa = dump_avail[i + 1];
379	page_range = last_pa / PAGE_SIZE;
380	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
381	new_end -= vm_page_dump_size;
382	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
383	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
384	bzero((void *)vm_page_dump, vm_page_dump_size);
385#endif
386#ifdef __amd64__
387	/*
388	 * Request that the physical pages underlying the message buffer be
389	 * included in a crash dump.  Since the message buffer is accessed
390	 * through the direct map, they are not automatically included.
391	 */
392	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
393	last_pa = pa + round_page(msgbufsize);
394	while (pa < last_pa) {
395		dump_add_page(pa);
396		pa += PAGE_SIZE;
397	}
398#endif
399	/*
400	 * Compute the number of pages of memory that will be available for
401	 * use (taking into account the overhead of a page structure per
402	 * page).
403	 */
404	first_page = low_water / PAGE_SIZE;
405#ifdef VM_PHYSSEG_SPARSE
406	page_range = 0;
407	for (i = 0; i < vm_phys_nsegs; i++) {
408		page_range += atop(vm_phys_segs[i].end -
409		    vm_phys_segs[i].start);
410	}
411	for (i = 0; phys_avail[i + 1] != 0; i += 2)
412		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
413#elif defined(VM_PHYSSEG_DENSE)
414	page_range = high_water / PAGE_SIZE - first_page;
415#else
416#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
417#endif
418	end = new_end;
419
420	/*
421	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
422	 */
423	vaddr += PAGE_SIZE;
424
425	/*
426	 * Initialize the mem entry structures now, and put them in the free
427	 * queue.
428	 */
429	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
430	mapped = pmap_map(&vaddr, new_end, end,
431	    VM_PROT_READ | VM_PROT_WRITE);
432	vm_page_array = (vm_page_t) mapped;
433#if VM_NRESERVLEVEL > 0
434	/*
435	 * Allocate memory for the reservation management system's data
436	 * structures.
437	 */
438	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
439#endif
440#if defined(__amd64__) || defined(__mips__)
441	/*
442	 * pmap_map on amd64 and mips can come out of the direct-map, not kvm
443	 * like i386, so the pages must be tracked for a crashdump to include
444	 * this data.  This includes the vm_page_array and the early UMA
445	 * bootstrap pages.
446	 */
447	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
448		dump_add_page(pa);
449#endif
450	phys_avail[biggestone + 1] = new_end;
451
452	/*
453	 * Add physical memory segments corresponding to the available
454	 * physical pages.
455	 */
456	for (i = 0; phys_avail[i + 1] != 0; i += 2)
457		vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
458
459	/*
460	 * Clear all of the page structures
461	 */
462	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
463	for (i = 0; i < page_range; i++)
464		vm_page_array[i].order = VM_NFREEORDER;
465	vm_page_array_size = page_range;
466
467	/*
468	 * Initialize the physical memory allocator.
469	 */
470	vm_phys_init();
471
472	/*
473	 * Add every available physical page that is not blacklisted to
474	 * the free lists.
475	 */
476	cnt.v_page_count = 0;
477	cnt.v_free_count = 0;
478	list = getenv("vm.blacklist");
479	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
480		pa = phys_avail[i];
481		last_pa = phys_avail[i + 1];
482		while (pa < last_pa) {
483			if (list != NULL &&
484			    vm_page_blacklist_lookup(list, pa))
485				printf("Skipping page with pa 0x%jx\n",
486				    (uintmax_t)pa);
487			else
488				vm_phys_add_page(pa);
489			pa += PAGE_SIZE;
490		}
491	}
492	freeenv(list);
493#if VM_NRESERVLEVEL > 0
494	/*
495	 * Initialize the reservation management system.
496	 */
497	vm_reserv_init();
498#endif
499	return (vaddr);
500}
501
502void
503vm_page_reference(vm_page_t m)
504{
505
506	vm_page_aflag_set(m, PGA_REFERENCED);
507}
508
509/*
510 *	vm_page_busy_downgrade:
511 *
512 *	Downgrade an exclusive busy page into a single shared busy page.
513 */
514void
515vm_page_busy_downgrade(vm_page_t m)
516{
517	u_int x;
518
519	vm_page_assert_xbusied(m);
520
521	for (;;) {
522		x = m->busy_lock;
523		x &= VPB_BIT_WAITERS;
524		if (atomic_cmpset_rel_int(&m->busy_lock,
525		    VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1) | x))
526			break;
527	}
528}
529
530/*
531 *	vm_page_sbusied:
532 *
533 *	Return a positive value if the page is shared busied, 0 otherwise.
534 */
535int
536vm_page_sbusied(vm_page_t m)
537{
538	u_int x;
539
540	x = m->busy_lock;
541	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
542}
543
544/*
545 *	vm_page_sunbusy:
546 *
547 *	Shared unbusy a page.
548 */
549void
550vm_page_sunbusy(vm_page_t m)
551{
552	u_int x;
553
554	vm_page_assert_sbusied(m);
555
556	for (;;) {
557		x = m->busy_lock;
558		if (VPB_SHARERS(x) > 1) {
559			if (atomic_cmpset_int(&m->busy_lock, x,
560			    x - VPB_ONE_SHARER))
561				break;
562			continue;
563		}
564		if ((x & VPB_BIT_WAITERS) == 0) {
565			KASSERT(x == VPB_SHARERS_WORD(1),
566			    ("vm_page_sunbusy: invalid lock state"));
567			if (atomic_cmpset_int(&m->busy_lock,
568			    VPB_SHARERS_WORD(1), VPB_UNBUSIED))
569				break;
570			continue;
571		}
572		KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
573		    ("vm_page_sunbusy: invalid lock state for waiters"));
574
575		vm_page_lock(m);
576		if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
577			vm_page_unlock(m);
578			continue;
579		}
580		wakeup(m);
581		vm_page_unlock(m);
582		break;
583	}
584}
585
586/*
587 *	vm_page_busy_sleep:
588 *
589 *	Sleep and release the page lock, using the page pointer as wchan.
590 *	This is used to implement the hard-path of busying mechanism.
591 *
592 *	The given page must be locked.
593 */
594void
595vm_page_busy_sleep(vm_page_t m, const char *wmesg)
596{
597	u_int x;
598
599	vm_page_lock_assert(m, MA_OWNED);
600
601	x = m->busy_lock;
602	if (x == VPB_UNBUSIED) {
603		vm_page_unlock(m);
604		return;
605	}
606	if ((x & VPB_BIT_WAITERS) == 0 &&
607	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS)) {
608		vm_page_unlock(m);
609		return;
610	}
611	msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
612}
613
614/*
615 *	vm_page_trysbusy:
616 *
617 *	Try to shared busy a page.
618 *	If the operation succeeds 1 is returned otherwise 0.
619 *	The operation never sleeps.
620 */
621int
622vm_page_trysbusy(vm_page_t m)
623{
624	u_int x;
625
626	for (;;) {
627		x = m->busy_lock;
628		if ((x & VPB_BIT_SHARED) == 0)
629			return (0);
630		if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
631			return (1);
632	}
633}
634
635/*
636 *	vm_page_xunbusy_hard:
637 *
638 *	Called after the first try the exclusive unbusy of a page failed.
639 *	It is assumed that the waiters bit is on.
640 */
641void
642vm_page_xunbusy_hard(vm_page_t m)
643{
644
645	vm_page_assert_xbusied(m);
646
647	vm_page_lock(m);
648	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
649	wakeup(m);
650	vm_page_unlock(m);
651}
652
653/*
654 *	vm_page_flash:
655 *
656 *	Wakeup anyone waiting for the page.
657 *	The ownership bits do not change.
658 *
659 *	The given page must be locked.
660 */
661void
662vm_page_flash(vm_page_t m)
663{
664	u_int x;
665
666	vm_page_lock_assert(m, MA_OWNED);
667
668	for (;;) {
669		x = m->busy_lock;
670		if ((x & VPB_BIT_WAITERS) == 0)
671			return;
672		if (atomic_cmpset_int(&m->busy_lock, x,
673		    x & (~VPB_BIT_WAITERS)))
674			break;
675	}
676	wakeup(m);
677}
678
679/*
680 * Keep page from being freed by the page daemon
681 * much of the same effect as wiring, except much lower
682 * overhead and should be used only for *very* temporary
683 * holding ("wiring").
684 */
685void
686vm_page_hold(vm_page_t mem)
687{
688
689	vm_page_lock_assert(mem, MA_OWNED);
690        mem->hold_count++;
691}
692
693void
694vm_page_unhold(vm_page_t mem)
695{
696
697	vm_page_lock_assert(mem, MA_OWNED);
698	KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
699	--mem->hold_count;
700	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
701		vm_page_free_toq(mem);
702}
703
704/*
705 *	vm_page_unhold_pages:
706 *
707 *	Unhold each of the pages that is referenced by the given array.
708 */
709void
710vm_page_unhold_pages(vm_page_t *ma, int count)
711{
712	struct mtx *mtx, *new_mtx;
713
714	mtx = NULL;
715	for (; count != 0; count--) {
716		/*
717		 * Avoid releasing and reacquiring the same page lock.
718		 */
719		new_mtx = vm_page_lockptr(*ma);
720		if (mtx != new_mtx) {
721			if (mtx != NULL)
722				mtx_unlock(mtx);
723			mtx = new_mtx;
724			mtx_lock(mtx);
725		}
726		vm_page_unhold(*ma);
727		ma++;
728	}
729	if (mtx != NULL)
730		mtx_unlock(mtx);
731}
732
733vm_page_t
734PHYS_TO_VM_PAGE(vm_paddr_t pa)
735{
736	vm_page_t m;
737
738#ifdef VM_PHYSSEG_SPARSE
739	m = vm_phys_paddr_to_vm_page(pa);
740	if (m == NULL)
741		m = vm_phys_fictitious_to_vm_page(pa);
742	return (m);
743#elif defined(VM_PHYSSEG_DENSE)
744	long pi;
745
746	pi = atop(pa);
747	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
748		m = &vm_page_array[pi - first_page];
749		return (m);
750	}
751	return (vm_phys_fictitious_to_vm_page(pa));
752#else
753#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
754#endif
755}
756
757/*
758 *	vm_page_getfake:
759 *
760 *	Create a fictitious page with the specified physical address and
761 *	memory attribute.  The memory attribute is the only the machine-
762 *	dependent aspect of a fictitious page that must be initialized.
763 */
764vm_page_t
765vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
766{
767	vm_page_t m;
768
769	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
770	vm_page_initfake(m, paddr, memattr);
771	return (m);
772}
773
774void
775vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
776{
777
778	if ((m->flags & PG_FICTITIOUS) != 0) {
779		/*
780		 * The page's memattr might have changed since the
781		 * previous initialization.  Update the pmap to the
782		 * new memattr.
783		 */
784		goto memattr;
785	}
786	m->phys_addr = paddr;
787	m->queue = PQ_NONE;
788	/* Fictitious pages don't use "segind". */
789	m->flags = PG_FICTITIOUS;
790	/* Fictitious pages don't use "order" or "pool". */
791	m->oflags = VPO_UNMANAGED;
792	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
793	m->wire_count = 1;
794	pmap_page_init(m);
795memattr:
796	pmap_page_set_memattr(m, memattr);
797}
798
799/*
800 *	vm_page_putfake:
801 *
802 *	Release a fictitious page.
803 */
804void
805vm_page_putfake(vm_page_t m)
806{
807
808	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
809	KASSERT((m->flags & PG_FICTITIOUS) != 0,
810	    ("vm_page_putfake: bad page %p", m));
811	uma_zfree(fakepg_zone, m);
812}
813
814/*
815 *	vm_page_updatefake:
816 *
817 *	Update the given fictitious page to the specified physical address and
818 *	memory attribute.
819 */
820void
821vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
822{
823
824	KASSERT((m->flags & PG_FICTITIOUS) != 0,
825	    ("vm_page_updatefake: bad page %p", m));
826	m->phys_addr = paddr;
827	pmap_page_set_memattr(m, memattr);
828}
829
830/*
831 *	vm_page_free:
832 *
833 *	Free a page.
834 */
835void
836vm_page_free(vm_page_t m)
837{
838
839	m->flags &= ~PG_ZERO;
840	vm_page_free_toq(m);
841}
842
843/*
844 *	vm_page_free_zero:
845 *
846 *	Free a page to the zerod-pages queue
847 */
848void
849vm_page_free_zero(vm_page_t m)
850{
851
852	m->flags |= PG_ZERO;
853	vm_page_free_toq(m);
854}
855
856/*
857 * Unbusy and handle the page queueing for a page from the VOP_GETPAGES()
858 * array which is not the request page.
859 */
860void
861vm_page_readahead_finish(vm_page_t m)
862{
863
864	if (m->valid != 0) {
865		/*
866		 * Since the page is not the requested page, whether
867		 * it should be activated or deactivated is not
868		 * obvious.  Empirical results have shown that
869		 * deactivating the page is usually the best choice,
870		 * unless the page is wanted by another thread.
871		 */
872		vm_page_lock(m);
873		if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
874			vm_page_activate(m);
875		else
876			vm_page_deactivate(m);
877		vm_page_unlock(m);
878		vm_page_xunbusy(m);
879	} else {
880		/*
881		 * Free the completely invalid page.  Such page state
882		 * occurs due to the short read operation which did
883		 * not covered our page at all, or in case when a read
884		 * error happens.
885		 */
886		vm_page_lock(m);
887		vm_page_free(m);
888		vm_page_unlock(m);
889	}
890}
891
892/*
893 *	vm_page_sleep_if_busy:
894 *
895 *	Sleep and release the page queues lock if the page is busied.
896 *	Returns TRUE if the thread slept.
897 *
898 *	The given page must be unlocked and object containing it must
899 *	be locked.
900 */
901int
902vm_page_sleep_if_busy(vm_page_t m, const char *msg)
903{
904	vm_object_t obj;
905
906	vm_page_lock_assert(m, MA_NOTOWNED);
907	VM_OBJECT_ASSERT_WLOCKED(m->object);
908
909	if (vm_page_busied(m)) {
910		/*
911		 * The page-specific object must be cached because page
912		 * identity can change during the sleep, causing the
913		 * re-lock of a different object.
914		 * It is assumed that a reference to the object is already
915		 * held by the callers.
916		 */
917		obj = m->object;
918		vm_page_lock(m);
919		VM_OBJECT_WUNLOCK(obj);
920		vm_page_busy_sleep(m, msg);
921		VM_OBJECT_WLOCK(obj);
922		return (TRUE);
923	}
924	return (FALSE);
925}
926
927/*
928 *	vm_page_dirty_KBI:		[ internal use only ]
929 *
930 *	Set all bits in the page's dirty field.
931 *
932 *	The object containing the specified page must be locked if the
933 *	call is made from the machine-independent layer.
934 *
935 *	See vm_page_clear_dirty_mask().
936 *
937 *	This function should only be called by vm_page_dirty().
938 */
939void
940vm_page_dirty_KBI(vm_page_t m)
941{
942
943	/* These assertions refer to this operation by its public name. */
944	KASSERT((m->flags & PG_CACHED) == 0,
945	    ("vm_page_dirty: page in cache!"));
946	KASSERT(!VM_PAGE_IS_FREE(m),
947	    ("vm_page_dirty: page is free!"));
948	KASSERT(m->valid == VM_PAGE_BITS_ALL,
949	    ("vm_page_dirty: page is invalid!"));
950	m->dirty = VM_PAGE_BITS_ALL;
951}
952
953/*
954 *	vm_page_insert:		[ internal use only ]
955 *
956 *	Inserts the given mem entry into the object and object list.
957 *
958 *	The object must be locked.
959 */
960int
961vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
962{
963	vm_page_t mpred;
964
965	VM_OBJECT_ASSERT_WLOCKED(object);
966	mpred = vm_radix_lookup_le(&object->rtree, pindex);
967	return (vm_page_insert_after(m, object, pindex, mpred));
968}
969
970/*
971 *	vm_page_insert_after:
972 *
973 *	Inserts the page "m" into the specified object at offset "pindex".
974 *
975 *	The page "mpred" must immediately precede the offset "pindex" within
976 *	the specified object.
977 *
978 *	The object must be locked.
979 */
980static int
981vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
982    vm_page_t mpred)
983{
984	vm_pindex_t sidx;
985	vm_object_t sobj;
986	vm_page_t msucc;
987
988	VM_OBJECT_ASSERT_WLOCKED(object);
989	KASSERT(m->object == NULL,
990	    ("vm_page_insert_after: page already inserted"));
991	if (mpred != NULL) {
992		KASSERT(mpred->object == object,
993		    ("vm_page_insert_after: object doesn't contain mpred"));
994		KASSERT(mpred->pindex < pindex,
995		    ("vm_page_insert_after: mpred doesn't precede pindex"));
996		msucc = TAILQ_NEXT(mpred, listq);
997	} else
998		msucc = TAILQ_FIRST(&object->memq);
999	if (msucc != NULL)
1000		KASSERT(msucc->pindex > pindex,
1001		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1002
1003	/*
1004	 * Record the object/offset pair in this page
1005	 */
1006	sobj = m->object;
1007	sidx = m->pindex;
1008	m->object = object;
1009	m->pindex = pindex;
1010
1011	/*
1012	 * Now link into the object's ordered list of backed pages.
1013	 */
1014	if (vm_radix_insert(&object->rtree, m)) {
1015		m->object = sobj;
1016		m->pindex = sidx;
1017		return (1);
1018	}
1019	vm_page_insert_radixdone(m, object, mpred);
1020	return (0);
1021}
1022
1023/*
1024 *	vm_page_insert_radixdone:
1025 *
1026 *	Complete page "m" insertion into the specified object after the
1027 *	radix trie hooking.
1028 *
1029 *	The page "mpred" must precede the offset "m->pindex" within the
1030 *	specified object.
1031 *
1032 *	The object must be locked.
1033 */
1034static void
1035vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1036{
1037
1038	VM_OBJECT_ASSERT_WLOCKED(object);
1039	KASSERT(object != NULL && m->object == object,
1040	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1041	if (mpred != NULL) {
1042		KASSERT(mpred->object == object,
1043		    ("vm_page_insert_after: object doesn't contain mpred"));
1044		KASSERT(mpred->pindex < m->pindex,
1045		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1046	}
1047
1048	if (mpred != NULL)
1049		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1050	else
1051		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1052
1053	/*
1054	 * Show that the object has one more resident page.
1055	 */
1056	object->resident_page_count++;
1057
1058	/*
1059	 * Hold the vnode until the last page is released.
1060	 */
1061	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1062		vhold(object->handle);
1063
1064	/*
1065	 * Since we are inserting a new and possibly dirty page,
1066	 * update the object's OBJ_MIGHTBEDIRTY flag.
1067	 */
1068	if (pmap_page_is_write_mapped(m))
1069		vm_object_set_writeable_dirty(object);
1070}
1071
1072/*
1073 *	vm_page_remove:
1074 *
1075 *	Removes the given mem entry from the object/offset-page
1076 *	table and the object page list, but do not invalidate/terminate
1077 *	the backing store.
1078 *
1079 *	The object must be locked.  The page must be locked if it is managed.
1080 */
1081void
1082vm_page_remove(vm_page_t m)
1083{
1084	vm_object_t object;
1085	boolean_t lockacq;
1086
1087	if ((m->oflags & VPO_UNMANAGED) == 0)
1088		vm_page_lock_assert(m, MA_OWNED);
1089	if ((object = m->object) == NULL)
1090		return;
1091	VM_OBJECT_ASSERT_WLOCKED(object);
1092	if (vm_page_xbusied(m)) {
1093		lockacq = FALSE;
1094		if ((m->oflags & VPO_UNMANAGED) != 0 &&
1095		    !mtx_owned(vm_page_lockptr(m))) {
1096			lockacq = TRUE;
1097			vm_page_lock(m);
1098		}
1099		vm_page_flash(m);
1100		atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1101		if (lockacq)
1102			vm_page_unlock(m);
1103	}
1104
1105	/*
1106	 * Now remove from the object's list of backed pages.
1107	 */
1108	vm_radix_remove(&object->rtree, m->pindex);
1109	TAILQ_REMOVE(&object->memq, m, listq);
1110
1111	/*
1112	 * And show that the object has one fewer resident page.
1113	 */
1114	object->resident_page_count--;
1115
1116	/*
1117	 * The vnode may now be recycled.
1118	 */
1119	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1120		vdrop(object->handle);
1121
1122	m->object = NULL;
1123}
1124
1125/*
1126 *	vm_page_lookup:
1127 *
1128 *	Returns the page associated with the object/offset
1129 *	pair specified; if none is found, NULL is returned.
1130 *
1131 *	The object must be locked.
1132 */
1133vm_page_t
1134vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1135{
1136
1137	VM_OBJECT_ASSERT_LOCKED(object);
1138	return (vm_radix_lookup(&object->rtree, pindex));
1139}
1140
1141/*
1142 *	vm_page_find_least:
1143 *
1144 *	Returns the page associated with the object with least pindex
1145 *	greater than or equal to the parameter pindex, or NULL.
1146 *
1147 *	The object must be locked.
1148 */
1149vm_page_t
1150vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1151{
1152	vm_page_t m;
1153
1154	VM_OBJECT_ASSERT_LOCKED(object);
1155	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1156		m = vm_radix_lookup_ge(&object->rtree, pindex);
1157	return (m);
1158}
1159
1160/*
1161 * Returns the given page's successor (by pindex) within the object if it is
1162 * resident; if none is found, NULL is returned.
1163 *
1164 * The object must be locked.
1165 */
1166vm_page_t
1167vm_page_next(vm_page_t m)
1168{
1169	vm_page_t next;
1170
1171	VM_OBJECT_ASSERT_WLOCKED(m->object);
1172	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
1173	    next->pindex != m->pindex + 1)
1174		next = NULL;
1175	return (next);
1176}
1177
1178/*
1179 * Returns the given page's predecessor (by pindex) within the object if it is
1180 * resident; if none is found, NULL is returned.
1181 *
1182 * The object must be locked.
1183 */
1184vm_page_t
1185vm_page_prev(vm_page_t m)
1186{
1187	vm_page_t prev;
1188
1189	VM_OBJECT_ASSERT_WLOCKED(m->object);
1190	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
1191	    prev->pindex != m->pindex - 1)
1192		prev = NULL;
1193	return (prev);
1194}
1195
1196/*
1197 * Uses the page mnew as a replacement for an existing page at index
1198 * pindex which must be already present in the object.
1199 *
1200 * The existing page must not be on a paging queue.
1201 */
1202vm_page_t
1203vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1204{
1205	vm_page_t mold, mpred;
1206
1207	VM_OBJECT_ASSERT_WLOCKED(object);
1208
1209	/*
1210	 * This function mostly follows vm_page_insert() and
1211	 * vm_page_remove() without the radix, object count and vnode
1212	 * dance.  Double check such functions for more comments.
1213	 */
1214	mpred = vm_radix_lookup(&object->rtree, pindex);
1215	KASSERT(mpred != NULL,
1216	    ("vm_page_replace: replacing page not present with pindex"));
1217	mpred = TAILQ_PREV(mpred, respgs, listq);
1218	if (mpred != NULL)
1219		KASSERT(mpred->pindex < pindex,
1220		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1221
1222	mnew->object = object;
1223	mnew->pindex = pindex;
1224	mold = vm_radix_replace(&object->rtree, mnew);
1225	KASSERT(mold->queue == PQ_NONE,
1226	    ("vm_page_replace: mold is on a paging queue"));
1227
1228	/* Detach the old page from the resident tailq. */
1229	TAILQ_REMOVE(&object->memq, mold, listq);
1230
1231	mold->object = NULL;
1232	vm_page_xunbusy(mold);
1233
1234	/* Insert the new page in the resident tailq. */
1235	if (mpred != NULL)
1236		TAILQ_INSERT_AFTER(&object->memq, mpred, mnew, listq);
1237	else
1238		TAILQ_INSERT_HEAD(&object->memq, mnew, listq);
1239	if (pmap_page_is_write_mapped(mnew))
1240		vm_object_set_writeable_dirty(object);
1241	return (mold);
1242}
1243
1244/*
1245 *	vm_page_rename:
1246 *
1247 *	Move the given memory entry from its
1248 *	current object to the specified target object/offset.
1249 *
1250 *	Note: swap associated with the page must be invalidated by the move.  We
1251 *	      have to do this for several reasons:  (1) we aren't freeing the
1252 *	      page, (2) we are dirtying the page, (3) the VM system is probably
1253 *	      moving the page from object A to B, and will then later move
1254 *	      the backing store from A to B and we can't have a conflict.
1255 *
1256 *	Note: we *always* dirty the page.  It is necessary both for the
1257 *	      fact that we moved it, and because we may be invalidating
1258 *	      swap.  If the page is on the cache, we have to deactivate it
1259 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1260 *	      on the cache.
1261 *
1262 *	The objects must be locked.
1263 */
1264int
1265vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1266{
1267	vm_page_t mpred;
1268	vm_pindex_t opidx;
1269
1270	VM_OBJECT_ASSERT_WLOCKED(new_object);
1271
1272	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1273	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1274	    ("vm_page_rename: pindex already renamed"));
1275
1276	/*
1277	 * Create a custom version of vm_page_insert() which does not depend
1278	 * by m_prev and can cheat on the implementation aspects of the
1279	 * function.
1280	 */
1281	opidx = m->pindex;
1282	m->pindex = new_pindex;
1283	if (vm_radix_insert(&new_object->rtree, m)) {
1284		m->pindex = opidx;
1285		return (1);
1286	}
1287
1288	/*
1289	 * The operation cannot fail anymore.  The removal must happen before
1290	 * the listq iterator is tainted.
1291	 */
1292	m->pindex = opidx;
1293	vm_page_lock(m);
1294	vm_page_remove(m);
1295
1296	/* Return back to the new pindex to complete vm_page_insert(). */
1297	m->pindex = new_pindex;
1298	m->object = new_object;
1299	vm_page_unlock(m);
1300	vm_page_insert_radixdone(m, new_object, mpred);
1301	vm_page_dirty(m);
1302	return (0);
1303}
1304
1305/*
1306 *	Convert all of the given object's cached pages that have a
1307 *	pindex within the given range into free pages.  If the value
1308 *	zero is given for "end", then the range's upper bound is
1309 *	infinity.  If the given object is backed by a vnode and it
1310 *	transitions from having one or more cached pages to none, the
1311 *	vnode's hold count is reduced.
1312 */
1313void
1314vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1315{
1316	vm_page_t m;
1317	boolean_t empty;
1318
1319	mtx_lock(&vm_page_queue_free_mtx);
1320	if (__predict_false(vm_radix_is_empty(&object->cache))) {
1321		mtx_unlock(&vm_page_queue_free_mtx);
1322		return;
1323	}
1324	while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) {
1325		if (end != 0 && m->pindex >= end)
1326			break;
1327		vm_radix_remove(&object->cache, m->pindex);
1328		vm_page_cache_turn_free(m);
1329	}
1330	empty = vm_radix_is_empty(&object->cache);
1331	mtx_unlock(&vm_page_queue_free_mtx);
1332	if (object->type == OBJT_VNODE && empty)
1333		vdrop(object->handle);
1334}
1335
1336/*
1337 *	Returns the cached page that is associated with the given
1338 *	object and offset.  If, however, none exists, returns NULL.
1339 *
1340 *	The free page queue must be locked.
1341 */
1342static inline vm_page_t
1343vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1344{
1345
1346	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1347	return (vm_radix_lookup(&object->cache, pindex));
1348}
1349
1350/*
1351 *	Remove the given cached page from its containing object's
1352 *	collection of cached pages.
1353 *
1354 *	The free page queue must be locked.
1355 */
1356static void
1357vm_page_cache_remove(vm_page_t m)
1358{
1359
1360	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1361	KASSERT((m->flags & PG_CACHED) != 0,
1362	    ("vm_page_cache_remove: page %p is not cached", m));
1363	vm_radix_remove(&m->object->cache, m->pindex);
1364	m->object = NULL;
1365	cnt.v_cache_count--;
1366}
1367
1368/*
1369 *	Transfer all of the cached pages with offset greater than or
1370 *	equal to 'offidxstart' from the original object's cache to the
1371 *	new object's cache.  However, any cached pages with offset
1372 *	greater than or equal to the new object's size are kept in the
1373 *	original object.  Initially, the new object's cache must be
1374 *	empty.  Offset 'offidxstart' in the original object must
1375 *	correspond to offset zero in the new object.
1376 *
1377 *	The new object must be locked.
1378 */
1379void
1380vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1381    vm_object_t new_object)
1382{
1383	vm_page_t m;
1384
1385	/*
1386	 * Insertion into an object's collection of cached pages
1387	 * requires the object to be locked.  In contrast, removal does
1388	 * not.
1389	 */
1390	VM_OBJECT_ASSERT_WLOCKED(new_object);
1391	KASSERT(vm_radix_is_empty(&new_object->cache),
1392	    ("vm_page_cache_transfer: object %p has cached pages",
1393	    new_object));
1394	mtx_lock(&vm_page_queue_free_mtx);
1395	while ((m = vm_radix_lookup_ge(&orig_object->cache,
1396	    offidxstart)) != NULL) {
1397		/*
1398		 * Transfer all of the pages with offset greater than or
1399		 * equal to 'offidxstart' from the original object's
1400		 * cache to the new object's cache.
1401		 */
1402		if ((m->pindex - offidxstart) >= new_object->size)
1403			break;
1404		vm_radix_remove(&orig_object->cache, m->pindex);
1405		/* Update the page's object and offset. */
1406		m->object = new_object;
1407		m->pindex -= offidxstart;
1408		if (vm_radix_insert(&new_object->cache, m))
1409			vm_page_cache_turn_free(m);
1410	}
1411	mtx_unlock(&vm_page_queue_free_mtx);
1412}
1413
1414/*
1415 *	Returns TRUE if a cached page is associated with the given object and
1416 *	offset, and FALSE otherwise.
1417 *
1418 *	The object must be locked.
1419 */
1420boolean_t
1421vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
1422{
1423	vm_page_t m;
1424
1425	/*
1426	 * Insertion into an object's collection of cached pages requires the
1427	 * object to be locked.  Therefore, if the object is locked and the
1428	 * object's collection is empty, there is no need to acquire the free
1429	 * page queues lock in order to prove that the specified page doesn't
1430	 * exist.
1431	 */
1432	VM_OBJECT_ASSERT_WLOCKED(object);
1433	if (__predict_true(vm_object_cache_is_empty(object)))
1434		return (FALSE);
1435	mtx_lock(&vm_page_queue_free_mtx);
1436	m = vm_page_cache_lookup(object, pindex);
1437	mtx_unlock(&vm_page_queue_free_mtx);
1438	return (m != NULL);
1439}
1440
1441/*
1442 *	vm_page_alloc:
1443 *
1444 *	Allocate and return a page that is associated with the specified
1445 *	object and offset pair.  By default, this page is exclusive busied.
1446 *
1447 *	The caller must always specify an allocation class.
1448 *
1449 *	allocation classes:
1450 *	VM_ALLOC_NORMAL		normal process request
1451 *	VM_ALLOC_SYSTEM		system *really* needs a page
1452 *	VM_ALLOC_INTERRUPT	interrupt time request
1453 *
1454 *	optional allocation flags:
1455 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1456 *				intends to allocate
1457 *	VM_ALLOC_IFCACHED	return page only if it is cached
1458 *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1459 *				is cached
1460 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1461 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1462 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1463 *				should not be exclusive busy
1464 *	VM_ALLOC_SBUSY		shared busy the allocated page
1465 *	VM_ALLOC_WIRED		wire the allocated page
1466 *	VM_ALLOC_ZERO		prefer a zeroed page
1467 *
1468 *	This routine may not sleep.
1469 */
1470vm_page_t
1471vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1472{
1473	struct vnode *vp = NULL;
1474	vm_object_t m_object;
1475	vm_page_t m, mpred;
1476	int flags, req_class;
1477
1478	mpred = 0;	/* XXX: pacify gcc */
1479	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1480	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1481	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1482	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1483	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1484	    req));
1485	if (object != NULL)
1486		VM_OBJECT_ASSERT_WLOCKED(object);
1487
1488	req_class = req & VM_ALLOC_CLASS_MASK;
1489
1490	/*
1491	 * The page daemon is allowed to dig deeper into the free page list.
1492	 */
1493	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1494		req_class = VM_ALLOC_SYSTEM;
1495
1496	if (object != NULL) {
1497		mpred = vm_radix_lookup_le(&object->rtree, pindex);
1498		KASSERT(mpred == NULL || mpred->pindex != pindex,
1499		   ("vm_page_alloc: pindex already allocated"));
1500	}
1501
1502	/*
1503	 * The page allocation request can came from consumers which already
1504	 * hold the free page queue mutex, like vm_page_insert() in
1505	 * vm_page_cache().
1506	 */
1507	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1508	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1509	    (req_class == VM_ALLOC_SYSTEM &&
1510	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1511	    (req_class == VM_ALLOC_INTERRUPT &&
1512	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1513		/*
1514		 * Allocate from the free queue if the number of free pages
1515		 * exceeds the minimum for the request class.
1516		 */
1517		if (object != NULL &&
1518		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1519			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1520				mtx_unlock(&vm_page_queue_free_mtx);
1521				return (NULL);
1522			}
1523			if (vm_phys_unfree_page(m))
1524				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1525#if VM_NRESERVLEVEL > 0
1526			else if (!vm_reserv_reactivate_page(m))
1527#else
1528			else
1529#endif
1530				panic("vm_page_alloc: cache page %p is missing"
1531				    " from the free queue", m);
1532		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1533			mtx_unlock(&vm_page_queue_free_mtx);
1534			return (NULL);
1535#if VM_NRESERVLEVEL > 0
1536		} else if (object == NULL || (object->flags & (OBJ_COLORED |
1537		    OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1538		    vm_reserv_alloc_page(object, pindex, mpred)) == NULL) {
1539#else
1540		} else {
1541#endif
1542			m = vm_phys_alloc_pages(object != NULL ?
1543			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1544#if VM_NRESERVLEVEL > 0
1545			if (m == NULL && vm_reserv_reclaim_inactive()) {
1546				m = vm_phys_alloc_pages(object != NULL ?
1547				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1548				    0);
1549			}
1550#endif
1551		}
1552	} else {
1553		/*
1554		 * Not allocatable, give up.
1555		 */
1556		mtx_unlock(&vm_page_queue_free_mtx);
1557		atomic_add_int(&vm_pageout_deficit,
1558		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1559		pagedaemon_wakeup();
1560		return (NULL);
1561	}
1562
1563	/*
1564	 *  At this point we had better have found a good page.
1565	 */
1566	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1567	KASSERT(m->queue == PQ_NONE,
1568	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1569	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1570	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1571	KASSERT(!vm_page_sbusied(m),
1572	    ("vm_page_alloc: page %p is busy", m));
1573	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1574	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1575	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1576	    pmap_page_get_memattr(m)));
1577	if ((m->flags & PG_CACHED) != 0) {
1578		KASSERT((m->flags & PG_ZERO) == 0,
1579		    ("vm_page_alloc: cached page %p is PG_ZERO", m));
1580		KASSERT(m->valid != 0,
1581		    ("vm_page_alloc: cached page %p is invalid", m));
1582		if (m->object == object && m->pindex == pindex)
1583	  		cnt.v_reactivated++;
1584		else
1585			m->valid = 0;
1586		m_object = m->object;
1587		vm_page_cache_remove(m);
1588		if (m_object->type == OBJT_VNODE &&
1589		    vm_object_cache_is_empty(m_object))
1590			vp = m_object->handle;
1591	} else {
1592		KASSERT(VM_PAGE_IS_FREE(m),
1593		    ("vm_page_alloc: page %p is not free", m));
1594		KASSERT(m->valid == 0,
1595		    ("vm_page_alloc: free page %p is valid", m));
1596		vm_phys_freecnt_adj(m, -1);
1597	}
1598
1599	/*
1600	 * Only the PG_ZERO flag is inherited.  The PG_CACHED or PG_FREE flag
1601	 * must be cleared before the free page queues lock is released.
1602	 */
1603	flags = 0;
1604	if (m->flags & PG_ZERO) {
1605		vm_page_zero_count--;
1606		if (req & VM_ALLOC_ZERO)
1607			flags = PG_ZERO;
1608	}
1609	if (req & VM_ALLOC_NODUMP)
1610		flags |= PG_NODUMP;
1611	m->flags = flags;
1612	mtx_unlock(&vm_page_queue_free_mtx);
1613	m->aflags = 0;
1614	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1615	    VPO_UNMANAGED : 0;
1616	m->busy_lock = VPB_UNBUSIED;
1617	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1618		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1619	if ((req & VM_ALLOC_SBUSY) != 0)
1620		m->busy_lock = VPB_SHARERS_WORD(1);
1621	if (req & VM_ALLOC_WIRED) {
1622		/*
1623		 * The page lock is not required for wiring a page until that
1624		 * page is inserted into the object.
1625		 */
1626		atomic_add_int(&cnt.v_wire_count, 1);
1627		m->wire_count = 1;
1628	}
1629	m->act_count = 0;
1630
1631	if (object != NULL) {
1632		if (vm_page_insert_after(m, object, pindex, mpred)) {
1633			/* See the comment below about hold count. */
1634			if (vp != NULL)
1635				vdrop(vp);
1636			pagedaemon_wakeup();
1637			if (req & VM_ALLOC_WIRED) {
1638				atomic_subtract_int(&cnt.v_wire_count, 1);
1639				m->wire_count = 0;
1640			}
1641			m->object = NULL;
1642			m->oflags = VPO_UNMANAGED;
1643			vm_page_free(m);
1644			return (NULL);
1645		}
1646
1647		/* Ignore device objects; the pager sets "memattr" for them. */
1648		if (object->memattr != VM_MEMATTR_DEFAULT &&
1649		    (object->flags & OBJ_FICTITIOUS) == 0)
1650			pmap_page_set_memattr(m, object->memattr);
1651	} else
1652		m->pindex = pindex;
1653
1654	/*
1655	 * The following call to vdrop() must come after the above call
1656	 * to vm_page_insert() in case both affect the same object and
1657	 * vnode.  Otherwise, the affected vnode's hold count could
1658	 * temporarily become zero.
1659	 */
1660	if (vp != NULL)
1661		vdrop(vp);
1662
1663	/*
1664	 * Don't wakeup too often - wakeup the pageout daemon when
1665	 * we would be nearly out of memory.
1666	 */
1667	if (vm_paging_needed())
1668		pagedaemon_wakeup();
1669
1670	return (m);
1671}
1672
1673static void
1674vm_page_alloc_contig_vdrop(struct spglist *lst)
1675{
1676
1677	while (!SLIST_EMPTY(lst)) {
1678		vdrop((struct vnode *)SLIST_FIRST(lst)-> plinks.s.pv);
1679		SLIST_REMOVE_HEAD(lst, plinks.s.ss);
1680	}
1681}
1682
1683/*
1684 *	vm_page_alloc_contig:
1685 *
1686 *	Allocate a contiguous set of physical pages of the given size "npages"
1687 *	from the free lists.  All of the physical pages must be at or above
1688 *	the given physical address "low" and below the given physical address
1689 *	"high".  The given value "alignment" determines the alignment of the
1690 *	first physical page in the set.  If the given value "boundary" is
1691 *	non-zero, then the set of physical pages cannot cross any physical
1692 *	address boundary that is a multiple of that value.  Both "alignment"
1693 *	and "boundary" must be a power of two.
1694 *
1695 *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1696 *	then the memory attribute setting for the physical pages is configured
1697 *	to the object's memory attribute setting.  Otherwise, the memory
1698 *	attribute setting for the physical pages is configured to "memattr",
1699 *	overriding the object's memory attribute setting.  However, if the
1700 *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1701 *	memory attribute setting for the physical pages cannot be configured
1702 *	to VM_MEMATTR_DEFAULT.
1703 *
1704 *	The caller must always specify an allocation class.
1705 *
1706 *	allocation classes:
1707 *	VM_ALLOC_NORMAL		normal process request
1708 *	VM_ALLOC_SYSTEM		system *really* needs a page
1709 *	VM_ALLOC_INTERRUPT	interrupt time request
1710 *
1711 *	optional allocation flags:
1712 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1713 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1714 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1715 *				should not be exclusive busy
1716 *	VM_ALLOC_SBUSY		shared busy the allocated page
1717 *	VM_ALLOC_WIRED		wire the allocated page
1718 *	VM_ALLOC_ZERO		prefer a zeroed page
1719 *
1720 *	This routine may not sleep.
1721 */
1722vm_page_t
1723vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1724    u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1725    vm_paddr_t boundary, vm_memattr_t memattr)
1726{
1727	struct vnode *drop;
1728	struct spglist deferred_vdrop_list;
1729	vm_page_t m, m_tmp, m_ret;
1730	u_int flags, oflags;
1731	int req_class;
1732
1733	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1734	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1735	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1736	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1737	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1738	    req));
1739	if (object != NULL) {
1740		VM_OBJECT_ASSERT_WLOCKED(object);
1741		KASSERT(object->type == OBJT_PHYS,
1742		    ("vm_page_alloc_contig: object %p isn't OBJT_PHYS",
1743		    object));
1744	}
1745	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1746	req_class = req & VM_ALLOC_CLASS_MASK;
1747
1748	/*
1749	 * The page daemon is allowed to dig deeper into the free page list.
1750	 */
1751	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1752		req_class = VM_ALLOC_SYSTEM;
1753
1754	SLIST_INIT(&deferred_vdrop_list);
1755	mtx_lock(&vm_page_queue_free_mtx);
1756	if (cnt.v_free_count + cnt.v_cache_count >= npages +
1757	    cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM &&
1758	    cnt.v_free_count + cnt.v_cache_count >= npages +
1759	    cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT &&
1760	    cnt.v_free_count + cnt.v_cache_count >= npages)) {
1761#if VM_NRESERVLEVEL > 0
1762retry:
1763		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1764		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1765		    low, high, alignment, boundary)) == NULL)
1766#endif
1767			m_ret = vm_phys_alloc_contig(npages, low, high,
1768			    alignment, boundary);
1769	} else {
1770		mtx_unlock(&vm_page_queue_free_mtx);
1771		atomic_add_int(&vm_pageout_deficit, npages);
1772		pagedaemon_wakeup();
1773		return (NULL);
1774	}
1775	if (m_ret != NULL)
1776		for (m = m_ret; m < &m_ret[npages]; m++) {
1777			drop = vm_page_alloc_init(m);
1778			if (drop != NULL) {
1779				/*
1780				 * Enqueue the vnode for deferred vdrop().
1781				 */
1782				m->plinks.s.pv = drop;
1783				SLIST_INSERT_HEAD(&deferred_vdrop_list, m,
1784				    plinks.s.ss);
1785			}
1786		}
1787	else {
1788#if VM_NRESERVLEVEL > 0
1789		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1790		    boundary))
1791			goto retry;
1792#endif
1793	}
1794	mtx_unlock(&vm_page_queue_free_mtx);
1795	if (m_ret == NULL)
1796		return (NULL);
1797
1798	/*
1799	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1800	 */
1801	flags = 0;
1802	if ((req & VM_ALLOC_ZERO) != 0)
1803		flags = PG_ZERO;
1804	if ((req & VM_ALLOC_NODUMP) != 0)
1805		flags |= PG_NODUMP;
1806	if ((req & VM_ALLOC_WIRED) != 0)
1807		atomic_add_int(&cnt.v_wire_count, npages);
1808	oflags = VPO_UNMANAGED;
1809	if (object != NULL) {
1810		if (object->memattr != VM_MEMATTR_DEFAULT &&
1811		    memattr == VM_MEMATTR_DEFAULT)
1812			memattr = object->memattr;
1813	}
1814	for (m = m_ret; m < &m_ret[npages]; m++) {
1815		m->aflags = 0;
1816		m->flags = (m->flags | PG_NODUMP) & flags;
1817		m->busy_lock = VPB_UNBUSIED;
1818		if (object != NULL) {
1819			if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
1820				m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1821			if ((req & VM_ALLOC_SBUSY) != 0)
1822				m->busy_lock = VPB_SHARERS_WORD(1);
1823		}
1824		if ((req & VM_ALLOC_WIRED) != 0)
1825			m->wire_count = 1;
1826		/* Unmanaged pages don't use "act_count". */
1827		m->oflags = oflags;
1828		if (object != NULL) {
1829			if (vm_page_insert(m, object, pindex)) {
1830				vm_page_alloc_contig_vdrop(
1831				    &deferred_vdrop_list);
1832				if (vm_paging_needed())
1833					pagedaemon_wakeup();
1834				if ((req & VM_ALLOC_WIRED) != 0)
1835					atomic_subtract_int(&cnt.v_wire_count,
1836					    npages);
1837				for (m_tmp = m, m = m_ret;
1838				    m < &m_ret[npages]; m++) {
1839					if ((req & VM_ALLOC_WIRED) != 0)
1840						m->wire_count = 0;
1841					if (m >= m_tmp)
1842						m->object = NULL;
1843					vm_page_free(m);
1844				}
1845				return (NULL);
1846			}
1847		} else
1848			m->pindex = pindex;
1849		if (memattr != VM_MEMATTR_DEFAULT)
1850			pmap_page_set_memattr(m, memattr);
1851		pindex++;
1852	}
1853	vm_page_alloc_contig_vdrop(&deferred_vdrop_list);
1854	if (vm_paging_needed())
1855		pagedaemon_wakeup();
1856	return (m_ret);
1857}
1858
1859/*
1860 * Initialize a page that has been freshly dequeued from a freelist.
1861 * The caller has to drop the vnode returned, if it is not NULL.
1862 *
1863 * This function may only be used to initialize unmanaged pages.
1864 *
1865 * To be called with vm_page_queue_free_mtx held.
1866 */
1867static struct vnode *
1868vm_page_alloc_init(vm_page_t m)
1869{
1870	struct vnode *drop;
1871	vm_object_t m_object;
1872
1873	KASSERT(m->queue == PQ_NONE,
1874	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1875	    m, m->queue));
1876	KASSERT(m->wire_count == 0,
1877	    ("vm_page_alloc_init: page %p is wired", m));
1878	KASSERT(m->hold_count == 0,
1879	    ("vm_page_alloc_init: page %p is held", m));
1880	KASSERT(!vm_page_sbusied(m),
1881	    ("vm_page_alloc_init: page %p is busy", m));
1882	KASSERT(m->dirty == 0,
1883	    ("vm_page_alloc_init: page %p is dirty", m));
1884	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1885	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1886	    m, pmap_page_get_memattr(m)));
1887	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1888	drop = NULL;
1889	if ((m->flags & PG_CACHED) != 0) {
1890		KASSERT((m->flags & PG_ZERO) == 0,
1891		    ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
1892		m->valid = 0;
1893		m_object = m->object;
1894		vm_page_cache_remove(m);
1895		if (m_object->type == OBJT_VNODE &&
1896		    vm_object_cache_is_empty(m_object))
1897			drop = m_object->handle;
1898	} else {
1899		KASSERT(VM_PAGE_IS_FREE(m),
1900		    ("vm_page_alloc_init: page %p is not free", m));
1901		KASSERT(m->valid == 0,
1902		    ("vm_page_alloc_init: free page %p is valid", m));
1903		vm_phys_freecnt_adj(m, -1);
1904		if ((m->flags & PG_ZERO) != 0)
1905			vm_page_zero_count--;
1906	}
1907	/* Don't clear the PG_ZERO flag; we'll need it later. */
1908	m->flags &= PG_ZERO;
1909	return (drop);
1910}
1911
1912/*
1913 * 	vm_page_alloc_freelist:
1914 *
1915 *	Allocate a physical page from the specified free page list.
1916 *
1917 *	The caller must always specify an allocation class.
1918 *
1919 *	allocation classes:
1920 *	VM_ALLOC_NORMAL		normal process request
1921 *	VM_ALLOC_SYSTEM		system *really* needs a page
1922 *	VM_ALLOC_INTERRUPT	interrupt time request
1923 *
1924 *	optional allocation flags:
1925 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1926 *				intends to allocate
1927 *	VM_ALLOC_WIRED		wire the allocated page
1928 *	VM_ALLOC_ZERO		prefer a zeroed page
1929 *
1930 *	This routine may not sleep.
1931 */
1932vm_page_t
1933vm_page_alloc_freelist(int flind, int req)
1934{
1935	struct vnode *drop;
1936	vm_page_t m;
1937	u_int flags;
1938	int req_class;
1939
1940	req_class = req & VM_ALLOC_CLASS_MASK;
1941
1942	/*
1943	 * The page daemon is allowed to dig deeper into the free page list.
1944	 */
1945	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1946		req_class = VM_ALLOC_SYSTEM;
1947
1948	/*
1949	 * Do not allocate reserved pages unless the req has asked for it.
1950	 */
1951	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1952	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1953	    (req_class == VM_ALLOC_SYSTEM &&
1954	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1955	    (req_class == VM_ALLOC_INTERRUPT &&
1956	    cnt.v_free_count + cnt.v_cache_count > 0))
1957		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
1958	else {
1959		mtx_unlock(&vm_page_queue_free_mtx);
1960		atomic_add_int(&vm_pageout_deficit,
1961		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1962		pagedaemon_wakeup();
1963		return (NULL);
1964	}
1965	if (m == NULL) {
1966		mtx_unlock(&vm_page_queue_free_mtx);
1967		return (NULL);
1968	}
1969	drop = vm_page_alloc_init(m);
1970	mtx_unlock(&vm_page_queue_free_mtx);
1971
1972	/*
1973	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1974	 */
1975	m->aflags = 0;
1976	flags = 0;
1977	if ((req & VM_ALLOC_ZERO) != 0)
1978		flags = PG_ZERO;
1979	m->flags &= flags;
1980	if ((req & VM_ALLOC_WIRED) != 0) {
1981		/*
1982		 * The page lock is not required for wiring a page that does
1983		 * not belong to an object.
1984		 */
1985		atomic_add_int(&cnt.v_wire_count, 1);
1986		m->wire_count = 1;
1987	}
1988	/* Unmanaged pages don't use "act_count". */
1989	m->oflags = VPO_UNMANAGED;
1990	if (drop != NULL)
1991		vdrop(drop);
1992	if (vm_paging_needed())
1993		pagedaemon_wakeup();
1994	return (m);
1995}
1996
1997/*
1998 *	vm_wait:	(also see VM_WAIT macro)
1999 *
2000 *	Sleep until free pages are available for allocation.
2001 *	- Called in various places before memory allocations.
2002 */
2003void
2004vm_wait(void)
2005{
2006
2007	mtx_lock(&vm_page_queue_free_mtx);
2008	if (curproc == pageproc) {
2009		vm_pageout_pages_needed = 1;
2010		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
2011		    PDROP | PSWP, "VMWait", 0);
2012	} else {
2013		if (!vm_pages_needed) {
2014			vm_pages_needed = 1;
2015			wakeup(&vm_pages_needed);
2016		}
2017		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
2018		    "vmwait", 0);
2019	}
2020}
2021
2022/*
2023 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
2024 *
2025 *	Sleep until free pages are available for allocation.
2026 *	- Called only in vm_fault so that processes page faulting
2027 *	  can be easily tracked.
2028 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
2029 *	  processes will be able to grab memory first.  Do not change
2030 *	  this balance without careful testing first.
2031 */
2032void
2033vm_waitpfault(void)
2034{
2035
2036	mtx_lock(&vm_page_queue_free_mtx);
2037	if (!vm_pages_needed) {
2038		vm_pages_needed = 1;
2039		wakeup(&vm_pages_needed);
2040	}
2041	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
2042	    "pfault", 0);
2043}
2044
2045struct vm_pagequeue *
2046vm_page_pagequeue(vm_page_t m)
2047{
2048
2049	return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]);
2050}
2051
2052/*
2053 *	vm_page_dequeue:
2054 *
2055 *	Remove the given page from its current page queue.
2056 *
2057 *	The page must be locked.
2058 */
2059void
2060vm_page_dequeue(vm_page_t m)
2061{
2062	struct vm_pagequeue *pq;
2063
2064	vm_page_lock_assert(m, MA_OWNED);
2065	KASSERT(m->queue != PQ_NONE,
2066	    ("vm_page_dequeue: page %p is not queued", m));
2067	pq = vm_page_pagequeue(m);
2068	vm_pagequeue_lock(pq);
2069	m->queue = PQ_NONE;
2070	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2071	vm_pagequeue_cnt_dec(pq);
2072	vm_pagequeue_unlock(pq);
2073}
2074
2075/*
2076 *	vm_page_dequeue_locked:
2077 *
2078 *	Remove the given page from its current page queue.
2079 *
2080 *	The page and page queue must be locked.
2081 */
2082void
2083vm_page_dequeue_locked(vm_page_t m)
2084{
2085	struct vm_pagequeue *pq;
2086
2087	vm_page_lock_assert(m, MA_OWNED);
2088	pq = vm_page_pagequeue(m);
2089	vm_pagequeue_assert_locked(pq);
2090	m->queue = PQ_NONE;
2091	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2092	vm_pagequeue_cnt_dec(pq);
2093}
2094
2095/*
2096 *	vm_page_enqueue:
2097 *
2098 *	Add the given page to the specified page queue.
2099 *
2100 *	The page must be locked.
2101 */
2102static void
2103vm_page_enqueue(int queue, vm_page_t m)
2104{
2105	struct vm_pagequeue *pq;
2106
2107	vm_page_lock_assert(m, MA_OWNED);
2108	pq = &vm_phys_domain(m)->vmd_pagequeues[queue];
2109	vm_pagequeue_lock(pq);
2110	m->queue = queue;
2111	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2112	vm_pagequeue_cnt_inc(pq);
2113	vm_pagequeue_unlock(pq);
2114}
2115
2116/*
2117 *	vm_page_requeue:
2118 *
2119 *	Move the given page to the tail of its current page queue.
2120 *
2121 *	The page must be locked.
2122 */
2123void
2124vm_page_requeue(vm_page_t m)
2125{
2126	struct vm_pagequeue *pq;
2127
2128	vm_page_lock_assert(m, MA_OWNED);
2129	KASSERT(m->queue != PQ_NONE,
2130	    ("vm_page_requeue: page %p is not queued", m));
2131	pq = vm_page_pagequeue(m);
2132	vm_pagequeue_lock(pq);
2133	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2134	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2135	vm_pagequeue_unlock(pq);
2136}
2137
2138/*
2139 *	vm_page_requeue_locked:
2140 *
2141 *	Move the given page to the tail of its current page queue.
2142 *
2143 *	The page queue must be locked.
2144 */
2145void
2146vm_page_requeue_locked(vm_page_t m)
2147{
2148	struct vm_pagequeue *pq;
2149
2150	KASSERT(m->queue != PQ_NONE,
2151	    ("vm_page_requeue_locked: page %p is not queued", m));
2152	pq = vm_page_pagequeue(m);
2153	vm_pagequeue_assert_locked(pq);
2154	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2155	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2156}
2157
2158/*
2159 *	vm_page_activate:
2160 *
2161 *	Put the specified page on the active list (if appropriate).
2162 *	Ensure that act_count is at least ACT_INIT but do not otherwise
2163 *	mess with it.
2164 *
2165 *	The page must be locked.
2166 */
2167void
2168vm_page_activate(vm_page_t m)
2169{
2170	int queue;
2171
2172	vm_page_lock_assert(m, MA_OWNED);
2173	if ((queue = m->queue) != PQ_ACTIVE) {
2174		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2175			if (m->act_count < ACT_INIT)
2176				m->act_count = ACT_INIT;
2177			if (queue != PQ_NONE)
2178				vm_page_dequeue(m);
2179			vm_page_enqueue(PQ_ACTIVE, m);
2180		} else
2181			KASSERT(queue == PQ_NONE,
2182			    ("vm_page_activate: wired page %p is queued", m));
2183	} else {
2184		if (m->act_count < ACT_INIT)
2185			m->act_count = ACT_INIT;
2186	}
2187}
2188
2189/*
2190 *	vm_page_free_wakeup:
2191 *
2192 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
2193 *	routine is called when a page has been added to the cache or free
2194 *	queues.
2195 *
2196 *	The page queues must be locked.
2197 */
2198static inline void
2199vm_page_free_wakeup(void)
2200{
2201
2202	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2203	/*
2204	 * if pageout daemon needs pages, then tell it that there are
2205	 * some free.
2206	 */
2207	if (vm_pageout_pages_needed &&
2208	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
2209		wakeup(&vm_pageout_pages_needed);
2210		vm_pageout_pages_needed = 0;
2211	}
2212	/*
2213	 * wakeup processes that are waiting on memory if we hit a
2214	 * high water mark. And wakeup scheduler process if we have
2215	 * lots of memory. this process will swapin processes.
2216	 */
2217	if (vm_pages_needed && !vm_page_count_min()) {
2218		vm_pages_needed = 0;
2219		wakeup(&cnt.v_free_count);
2220	}
2221}
2222
2223/*
2224 *	Turn a cached page into a free page, by changing its attributes.
2225 *	Keep the statistics up-to-date.
2226 *
2227 *	The free page queue must be locked.
2228 */
2229static void
2230vm_page_cache_turn_free(vm_page_t m)
2231{
2232
2233	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2234
2235	m->object = NULL;
2236	m->valid = 0;
2237	/* Clear PG_CACHED and set PG_FREE. */
2238	m->flags ^= PG_CACHED | PG_FREE;
2239	KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
2240	    ("vm_page_cache_free: page %p has inconsistent flags", m));
2241	cnt.v_cache_count--;
2242	vm_phys_freecnt_adj(m, 1);
2243}
2244
2245/*
2246 *	vm_page_free_toq:
2247 *
2248 *	Returns the given page to the free list,
2249 *	disassociating it with any VM object.
2250 *
2251 *	The object must be locked.  The page must be locked if it is managed.
2252 */
2253void
2254vm_page_free_toq(vm_page_t m)
2255{
2256
2257	if ((m->oflags & VPO_UNMANAGED) == 0) {
2258		vm_page_lock_assert(m, MA_OWNED);
2259		KASSERT(!pmap_page_is_mapped(m),
2260		    ("vm_page_free_toq: freeing mapped page %p", m));
2261	} else
2262		KASSERT(m->queue == PQ_NONE,
2263		    ("vm_page_free_toq: unmanaged page %p is queued", m));
2264	PCPU_INC(cnt.v_tfree);
2265
2266	if (VM_PAGE_IS_FREE(m))
2267		panic("vm_page_free: freeing free page %p", m);
2268	else if (vm_page_sbusied(m))
2269		panic("vm_page_free: freeing busy page %p", m);
2270
2271	/*
2272	 * Unqueue, then remove page.  Note that we cannot destroy
2273	 * the page here because we do not want to call the pager's
2274	 * callback routine until after we've put the page on the
2275	 * appropriate free queue.
2276	 */
2277	vm_page_remque(m);
2278	vm_page_remove(m);
2279
2280	/*
2281	 * If fictitious remove object association and
2282	 * return, otherwise delay object association removal.
2283	 */
2284	if ((m->flags & PG_FICTITIOUS) != 0) {
2285		return;
2286	}
2287
2288	m->valid = 0;
2289	vm_page_undirty(m);
2290
2291	if (m->wire_count != 0)
2292		panic("vm_page_free: freeing wired page %p", m);
2293	if (m->hold_count != 0) {
2294		m->flags &= ~PG_ZERO;
2295		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2296		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
2297		m->flags |= PG_UNHOLDFREE;
2298	} else {
2299		/*
2300		 * Restore the default memory attribute to the page.
2301		 */
2302		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2303			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2304
2305		/*
2306		 * Insert the page into the physical memory allocator's
2307		 * cache/free page queues.
2308		 */
2309		mtx_lock(&vm_page_queue_free_mtx);
2310		m->flags |= PG_FREE;
2311		vm_phys_freecnt_adj(m, 1);
2312#if VM_NRESERVLEVEL > 0
2313		if (!vm_reserv_free_page(m))
2314#else
2315		if (TRUE)
2316#endif
2317			vm_phys_free_pages(m, 0);
2318		if ((m->flags & PG_ZERO) != 0)
2319			++vm_page_zero_count;
2320		else
2321			vm_page_zero_idle_wakeup();
2322		vm_page_free_wakeup();
2323		mtx_unlock(&vm_page_queue_free_mtx);
2324	}
2325}
2326
2327/*
2328 *	vm_page_wire:
2329 *
2330 *	Mark this page as wired down by yet
2331 *	another map, removing it from paging queues
2332 *	as necessary.
2333 *
2334 *	If the page is fictitious, then its wire count must remain one.
2335 *
2336 *	The page must be locked.
2337 */
2338void
2339vm_page_wire(vm_page_t m)
2340{
2341
2342	/*
2343	 * Only bump the wire statistics if the page is not already wired,
2344	 * and only unqueue the page if it is on some queue (if it is unmanaged
2345	 * it is already off the queues).
2346	 */
2347	vm_page_lock_assert(m, MA_OWNED);
2348	if ((m->flags & PG_FICTITIOUS) != 0) {
2349		KASSERT(m->wire_count == 1,
2350		    ("vm_page_wire: fictitious page %p's wire count isn't one",
2351		    m));
2352		return;
2353	}
2354	if (m->wire_count == 0) {
2355		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
2356		    m->queue == PQ_NONE,
2357		    ("vm_page_wire: unmanaged page %p is queued", m));
2358		vm_page_remque(m);
2359		atomic_add_int(&cnt.v_wire_count, 1);
2360	}
2361	m->wire_count++;
2362	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
2363}
2364
2365/*
2366 * vm_page_unwire:
2367 *
2368 * Release one wiring of the specified page, potentially enabling it to be
2369 * paged again.  If paging is enabled, then the value of the parameter
2370 * "activate" determines to which queue the page is added.  If "activate" is
2371 * non-zero, then the page is added to the active queue.  Otherwise, it is
2372 * added to the inactive queue.
2373 *
2374 * However, unless the page belongs to an object, it is not enqueued because
2375 * it cannot be paged out.
2376 *
2377 * If a page is fictitious, then its wire count must always be one.
2378 *
2379 * A managed page must be locked.
2380 */
2381void
2382vm_page_unwire(vm_page_t m, int activate)
2383{
2384
2385	if ((m->oflags & VPO_UNMANAGED) == 0)
2386		vm_page_lock_assert(m, MA_OWNED);
2387	if ((m->flags & PG_FICTITIOUS) != 0) {
2388		KASSERT(m->wire_count == 1,
2389	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
2390		return;
2391	}
2392	if (m->wire_count > 0) {
2393		m->wire_count--;
2394		if (m->wire_count == 0) {
2395			atomic_subtract_int(&cnt.v_wire_count, 1);
2396			if ((m->oflags & VPO_UNMANAGED) != 0 ||
2397			    m->object == NULL)
2398				return;
2399			if (!activate)
2400				m->flags &= ~PG_WINATCFLS;
2401			vm_page_enqueue(activate ? PQ_ACTIVE : PQ_INACTIVE, m);
2402		}
2403	} else
2404		panic("vm_page_unwire: page %p's wire count is zero", m);
2405}
2406
2407/*
2408 * Move the specified page to the inactive queue.
2409 *
2410 * Many pages placed on the inactive queue should actually go
2411 * into the cache, but it is difficult to figure out which.  What
2412 * we do instead, if the inactive target is well met, is to put
2413 * clean pages at the head of the inactive queue instead of the tail.
2414 * This will cause them to be moved to the cache more quickly and
2415 * if not actively re-referenced, reclaimed more quickly.  If we just
2416 * stick these pages at the end of the inactive queue, heavy filesystem
2417 * meta-data accesses can cause an unnecessary paging load on memory bound
2418 * processes.  This optimization causes one-time-use metadata to be
2419 * reused more quickly.
2420 *
2421 * Normally athead is 0 resulting in LRU operation.  athead is set
2422 * to 1 if we want this page to be 'as if it were placed in the cache',
2423 * except without unmapping it from the process address space.
2424 *
2425 * The page must be locked.
2426 */
2427static inline void
2428_vm_page_deactivate(vm_page_t m, int athead)
2429{
2430	struct vm_pagequeue *pq;
2431	int queue;
2432
2433	vm_page_lock_assert(m, MA_OWNED);
2434
2435	/*
2436	 * Ignore if already inactive.
2437	 */
2438	if ((queue = m->queue) == PQ_INACTIVE)
2439		return;
2440	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2441		if (queue != PQ_NONE)
2442			vm_page_dequeue(m);
2443		m->flags &= ~PG_WINATCFLS;
2444		pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE];
2445		vm_pagequeue_lock(pq);
2446		m->queue = PQ_INACTIVE;
2447		if (athead)
2448			TAILQ_INSERT_HEAD(&pq->pq_pl, m, plinks.q);
2449		else
2450			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2451		vm_pagequeue_cnt_inc(pq);
2452		vm_pagequeue_unlock(pq);
2453	}
2454}
2455
2456/*
2457 * Move the specified page to the inactive queue.
2458 *
2459 * The page must be locked.
2460 */
2461void
2462vm_page_deactivate(vm_page_t m)
2463{
2464
2465	_vm_page_deactivate(m, 0);
2466}
2467
2468/*
2469 * vm_page_try_to_cache:
2470 *
2471 * Returns 0 on failure, 1 on success
2472 */
2473int
2474vm_page_try_to_cache(vm_page_t m)
2475{
2476
2477	vm_page_lock_assert(m, MA_OWNED);
2478	VM_OBJECT_ASSERT_WLOCKED(m->object);
2479	if (m->dirty || m->hold_count || m->wire_count ||
2480	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
2481		return (0);
2482	pmap_remove_all(m);
2483	if (m->dirty)
2484		return (0);
2485	vm_page_cache(m);
2486	return (1);
2487}
2488
2489/*
2490 * vm_page_try_to_free()
2491 *
2492 *	Attempt to free the page.  If we cannot free it, we do nothing.
2493 *	1 is returned on success, 0 on failure.
2494 */
2495int
2496vm_page_try_to_free(vm_page_t m)
2497{
2498
2499	vm_page_lock_assert(m, MA_OWNED);
2500	if (m->object != NULL)
2501		VM_OBJECT_ASSERT_WLOCKED(m->object);
2502	if (m->dirty || m->hold_count || m->wire_count ||
2503	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
2504		return (0);
2505	pmap_remove_all(m);
2506	if (m->dirty)
2507		return (0);
2508	vm_page_free(m);
2509	return (1);
2510}
2511
2512/*
2513 * vm_page_cache
2514 *
2515 * Put the specified page onto the page cache queue (if appropriate).
2516 *
2517 * The object and page must be locked.
2518 */
2519void
2520vm_page_cache(vm_page_t m)
2521{
2522	vm_object_t object;
2523	boolean_t cache_was_empty;
2524
2525	vm_page_lock_assert(m, MA_OWNED);
2526	object = m->object;
2527	VM_OBJECT_ASSERT_WLOCKED(object);
2528	if (vm_page_busied(m) || (m->oflags & VPO_UNMANAGED) ||
2529	    m->hold_count || m->wire_count)
2530		panic("vm_page_cache: attempting to cache busy page");
2531	KASSERT(!pmap_page_is_mapped(m),
2532	    ("vm_page_cache: page %p is mapped", m));
2533	KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m));
2534	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
2535	    (object->type == OBJT_SWAP &&
2536	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
2537		/*
2538		 * Hypothesis: A cache-elgible page belonging to a
2539		 * default object or swap object but without a backing
2540		 * store must be zero filled.
2541		 */
2542		vm_page_free(m);
2543		return;
2544	}
2545	KASSERT((m->flags & PG_CACHED) == 0,
2546	    ("vm_page_cache: page %p is already cached", m));
2547
2548	/*
2549	 * Remove the page from the paging queues.
2550	 */
2551	vm_page_remque(m);
2552
2553	/*
2554	 * Remove the page from the object's collection of resident
2555	 * pages.
2556	 */
2557	vm_radix_remove(&object->rtree, m->pindex);
2558	TAILQ_REMOVE(&object->memq, m, listq);
2559	object->resident_page_count--;
2560
2561	/*
2562	 * Restore the default memory attribute to the page.
2563	 */
2564	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2565		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2566
2567	/*
2568	 * Insert the page into the object's collection of cached pages
2569	 * and the physical memory allocator's cache/free page queues.
2570	 */
2571	m->flags &= ~PG_ZERO;
2572	mtx_lock(&vm_page_queue_free_mtx);
2573	cache_was_empty = vm_radix_is_empty(&object->cache);
2574	if (vm_radix_insert(&object->cache, m)) {
2575		mtx_unlock(&vm_page_queue_free_mtx);
2576		if (object->resident_page_count == 0)
2577			vdrop(object->handle);
2578		m->object = NULL;
2579		vm_page_free(m);
2580		return;
2581	}
2582
2583	/*
2584	 * The above call to vm_radix_insert() could reclaim the one pre-
2585	 * existing cached page from this object, resulting in a call to
2586	 * vdrop().
2587	 */
2588	if (!cache_was_empty)
2589		cache_was_empty = vm_radix_is_singleton(&object->cache);
2590
2591	m->flags |= PG_CACHED;
2592	cnt.v_cache_count++;
2593	PCPU_INC(cnt.v_tcached);
2594#if VM_NRESERVLEVEL > 0
2595	if (!vm_reserv_free_page(m)) {
2596#else
2597	if (TRUE) {
2598#endif
2599		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2600		vm_phys_free_pages(m, 0);
2601	}
2602	vm_page_free_wakeup();
2603	mtx_unlock(&vm_page_queue_free_mtx);
2604
2605	/*
2606	 * Increment the vnode's hold count if this is the object's only
2607	 * cached page.  Decrement the vnode's hold count if this was
2608	 * the object's only resident page.
2609	 */
2610	if (object->type == OBJT_VNODE) {
2611		if (cache_was_empty && object->resident_page_count != 0)
2612			vhold(object->handle);
2613		else if (!cache_was_empty && object->resident_page_count == 0)
2614			vdrop(object->handle);
2615	}
2616}
2617
2618/*
2619 * vm_page_advise
2620 *
2621 *	Cache, deactivate, or do nothing as appropriate.  This routine
2622 *	is used by madvise().
2623 *
2624 *	Generally speaking we want to move the page into the cache so
2625 *	it gets reused quickly.  However, this can result in a silly syndrome
2626 *	due to the page recycling too quickly.  Small objects will not be
2627 *	fully cached.  On the other hand, if we move the page to the inactive
2628 *	queue we wind up with a problem whereby very large objects
2629 *	unnecessarily blow away our inactive and cache queues.
2630 *
2631 *	The solution is to move the pages based on a fixed weighting.  We
2632 *	either leave them alone, deactivate them, or move them to the cache,
2633 *	where moving them to the cache has the highest weighting.
2634 *	By forcing some pages into other queues we eventually force the
2635 *	system to balance the queues, potentially recovering other unrelated
2636 *	space from active.  The idea is to not force this to happen too
2637 *	often.
2638 *
2639 *	The object and page must be locked.
2640 */
2641void
2642vm_page_advise(vm_page_t m, int advice)
2643{
2644	int dnw, head;
2645
2646	vm_page_assert_locked(m);
2647	VM_OBJECT_ASSERT_WLOCKED(m->object);
2648	if (advice == MADV_FREE) {
2649		/*
2650		 * Mark the page clean.  This will allow the page to be freed
2651		 * up by the system.  However, such pages are often reused
2652		 * quickly by malloc() so we do not do anything that would
2653		 * cause a page fault if we can help it.
2654		 *
2655		 * Specifically, we do not try to actually free the page now
2656		 * nor do we try to put it in the cache (which would cause a
2657		 * page fault on reuse).
2658		 *
2659		 * But we do make the page is freeable as we can without
2660		 * actually taking the step of unmapping it.
2661		 */
2662		m->dirty = 0;
2663		m->act_count = 0;
2664	} else if (advice != MADV_DONTNEED)
2665		return;
2666	dnw = PCPU_GET(dnweight);
2667	PCPU_INC(dnweight);
2668
2669	/*
2670	 * Occasionally leave the page alone.
2671	 */
2672	if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
2673		if (m->act_count >= ACT_INIT)
2674			--m->act_count;
2675		return;
2676	}
2677
2678	/*
2679	 * Clear any references to the page.  Otherwise, the page daemon will
2680	 * immediately reactivate the page.
2681	 */
2682	vm_page_aflag_clear(m, PGA_REFERENCED);
2683
2684	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
2685		vm_page_dirty(m);
2686
2687	if (m->dirty || (dnw & 0x0070) == 0) {
2688		/*
2689		 * Deactivate the page 3 times out of 32.
2690		 */
2691		head = 0;
2692	} else {
2693		/*
2694		 * Cache the page 28 times out of every 32.  Note that
2695		 * the page is deactivated instead of cached, but placed
2696		 * at the head of the queue instead of the tail.
2697		 */
2698		head = 1;
2699	}
2700	_vm_page_deactivate(m, head);
2701}
2702
2703/*
2704 * Grab a page, waiting until we are waken up due to the page
2705 * changing state.  We keep on waiting, if the page continues
2706 * to be in the object.  If the page doesn't exist, first allocate it
2707 * and then conditionally zero it.
2708 *
2709 * This routine may sleep.
2710 *
2711 * The object must be locked on entry.  The lock will, however, be released
2712 * and reacquired if the routine sleeps.
2713 */
2714vm_page_t
2715vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2716{
2717	vm_page_t m;
2718	int sleep;
2719
2720	VM_OBJECT_ASSERT_WLOCKED(object);
2721	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
2722	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
2723	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
2724retrylookup:
2725	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2726		sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
2727		    vm_page_xbusied(m) : vm_page_busied(m);
2728		if (sleep) {
2729			/*
2730			 * Reference the page before unlocking and
2731			 * sleeping so that the page daemon is less
2732			 * likely to reclaim it.
2733			 */
2734			vm_page_aflag_set(m, PGA_REFERENCED);
2735			vm_page_lock(m);
2736			VM_OBJECT_WUNLOCK(object);
2737			vm_page_busy_sleep(m, "pgrbwt");
2738			VM_OBJECT_WLOCK(object);
2739			goto retrylookup;
2740		} else {
2741			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2742				vm_page_lock(m);
2743				vm_page_wire(m);
2744				vm_page_unlock(m);
2745			}
2746			if ((allocflags &
2747			    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2748				vm_page_xbusy(m);
2749			if ((allocflags & VM_ALLOC_SBUSY) != 0)
2750				vm_page_sbusy(m);
2751			return (m);
2752		}
2753	}
2754	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_IGN_SBUSY);
2755	if (m == NULL) {
2756		VM_OBJECT_WUNLOCK(object);
2757		VM_WAIT;
2758		VM_OBJECT_WLOCK(object);
2759		goto retrylookup;
2760	} else if (m->valid != 0)
2761		return (m);
2762	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2763		pmap_zero_page(m);
2764	return (m);
2765}
2766
2767/*
2768 * Mapping function for valid or dirty bits in a page.
2769 *
2770 * Inputs are required to range within a page.
2771 */
2772vm_page_bits_t
2773vm_page_bits(int base, int size)
2774{
2775	int first_bit;
2776	int last_bit;
2777
2778	KASSERT(
2779	    base + size <= PAGE_SIZE,
2780	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2781	);
2782
2783	if (size == 0)		/* handle degenerate case */
2784		return (0);
2785
2786	first_bit = base >> DEV_BSHIFT;
2787	last_bit = (base + size - 1) >> DEV_BSHIFT;
2788
2789	return (((vm_page_bits_t)2 << last_bit) -
2790	    ((vm_page_bits_t)1 << first_bit));
2791}
2792
2793/*
2794 *	vm_page_set_valid_range:
2795 *
2796 *	Sets portions of a page valid.  The arguments are expected
2797 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2798 *	of any partial chunks touched by the range.  The invalid portion of
2799 *	such chunks will be zeroed.
2800 *
2801 *	(base + size) must be less then or equal to PAGE_SIZE.
2802 */
2803void
2804vm_page_set_valid_range(vm_page_t m, int base, int size)
2805{
2806	int endoff, frag;
2807
2808	VM_OBJECT_ASSERT_WLOCKED(m->object);
2809	if (size == 0)	/* handle degenerate case */
2810		return;
2811
2812	/*
2813	 * If the base is not DEV_BSIZE aligned and the valid
2814	 * bit is clear, we have to zero out a portion of the
2815	 * first block.
2816	 */
2817	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2818	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2819		pmap_zero_page_area(m, frag, base - frag);
2820
2821	/*
2822	 * If the ending offset is not DEV_BSIZE aligned and the
2823	 * valid bit is clear, we have to zero out a portion of
2824	 * the last block.
2825	 */
2826	endoff = base + size;
2827	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2828	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2829		pmap_zero_page_area(m, endoff,
2830		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2831
2832	/*
2833	 * Assert that no previously invalid block that is now being validated
2834	 * is already dirty.
2835	 */
2836	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2837	    ("vm_page_set_valid_range: page %p is dirty", m));
2838
2839	/*
2840	 * Set valid bits inclusive of any overlap.
2841	 */
2842	m->valid |= vm_page_bits(base, size);
2843}
2844
2845/*
2846 * Clear the given bits from the specified page's dirty field.
2847 */
2848static __inline void
2849vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
2850{
2851	uintptr_t addr;
2852#if PAGE_SIZE < 16384
2853	int shift;
2854#endif
2855
2856	/*
2857	 * If the object is locked and the page is neither exclusive busy nor
2858	 * write mapped, then the page's dirty field cannot possibly be
2859	 * set by a concurrent pmap operation.
2860	 */
2861	VM_OBJECT_ASSERT_WLOCKED(m->object);
2862	if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
2863		m->dirty &= ~pagebits;
2864	else {
2865		/*
2866		 * The pmap layer can call vm_page_dirty() without
2867		 * holding a distinguished lock.  The combination of
2868		 * the object's lock and an atomic operation suffice
2869		 * to guarantee consistency of the page dirty field.
2870		 *
2871		 * For PAGE_SIZE == 32768 case, compiler already
2872		 * properly aligns the dirty field, so no forcible
2873		 * alignment is needed. Only require existence of
2874		 * atomic_clear_64 when page size is 32768.
2875		 */
2876		addr = (uintptr_t)&m->dirty;
2877#if PAGE_SIZE == 32768
2878		atomic_clear_64((uint64_t *)addr, pagebits);
2879#elif PAGE_SIZE == 16384
2880		atomic_clear_32((uint32_t *)addr, pagebits);
2881#else		/* PAGE_SIZE <= 8192 */
2882		/*
2883		 * Use a trick to perform a 32-bit atomic on the
2884		 * containing aligned word, to not depend on the existence
2885		 * of atomic_clear_{8, 16}.
2886		 */
2887		shift = addr & (sizeof(uint32_t) - 1);
2888#if BYTE_ORDER == BIG_ENDIAN
2889		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
2890#else
2891		shift *= NBBY;
2892#endif
2893		addr &= ~(sizeof(uint32_t) - 1);
2894		atomic_clear_32((uint32_t *)addr, pagebits << shift);
2895#endif		/* PAGE_SIZE */
2896	}
2897}
2898
2899/*
2900 *	vm_page_set_validclean:
2901 *
2902 *	Sets portions of a page valid and clean.  The arguments are expected
2903 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2904 *	of any partial chunks touched by the range.  The invalid portion of
2905 *	such chunks will be zero'd.
2906 *
2907 *	(base + size) must be less then or equal to PAGE_SIZE.
2908 */
2909void
2910vm_page_set_validclean(vm_page_t m, int base, int size)
2911{
2912	vm_page_bits_t oldvalid, pagebits;
2913	int endoff, frag;
2914
2915	VM_OBJECT_ASSERT_WLOCKED(m->object);
2916	if (size == 0)	/* handle degenerate case */
2917		return;
2918
2919	/*
2920	 * If the base is not DEV_BSIZE aligned and the valid
2921	 * bit is clear, we have to zero out a portion of the
2922	 * first block.
2923	 */
2924	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2925	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
2926		pmap_zero_page_area(m, frag, base - frag);
2927
2928	/*
2929	 * If the ending offset is not DEV_BSIZE aligned and the
2930	 * valid bit is clear, we have to zero out a portion of
2931	 * the last block.
2932	 */
2933	endoff = base + size;
2934	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2935	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
2936		pmap_zero_page_area(m, endoff,
2937		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2938
2939	/*
2940	 * Set valid, clear dirty bits.  If validating the entire
2941	 * page we can safely clear the pmap modify bit.  We also
2942	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2943	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2944	 * be set again.
2945	 *
2946	 * We set valid bits inclusive of any overlap, but we can only
2947	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2948	 * the range.
2949	 */
2950	oldvalid = m->valid;
2951	pagebits = vm_page_bits(base, size);
2952	m->valid |= pagebits;
2953#if 0	/* NOT YET */
2954	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2955		frag = DEV_BSIZE - frag;
2956		base += frag;
2957		size -= frag;
2958		if (size < 0)
2959			size = 0;
2960	}
2961	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2962#endif
2963	if (base == 0 && size == PAGE_SIZE) {
2964		/*
2965		 * The page can only be modified within the pmap if it is
2966		 * mapped, and it can only be mapped if it was previously
2967		 * fully valid.
2968		 */
2969		if (oldvalid == VM_PAGE_BITS_ALL)
2970			/*
2971			 * Perform the pmap_clear_modify() first.  Otherwise,
2972			 * a concurrent pmap operation, such as
2973			 * pmap_protect(), could clear a modification in the
2974			 * pmap and set the dirty field on the page before
2975			 * pmap_clear_modify() had begun and after the dirty
2976			 * field was cleared here.
2977			 */
2978			pmap_clear_modify(m);
2979		m->dirty = 0;
2980		m->oflags &= ~VPO_NOSYNC;
2981	} else if (oldvalid != VM_PAGE_BITS_ALL)
2982		m->dirty &= ~pagebits;
2983	else
2984		vm_page_clear_dirty_mask(m, pagebits);
2985}
2986
2987void
2988vm_page_clear_dirty(vm_page_t m, int base, int size)
2989{
2990
2991	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2992}
2993
2994/*
2995 *	vm_page_set_invalid:
2996 *
2997 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2998 *	valid and dirty bits for the effected areas are cleared.
2999 */
3000void
3001vm_page_set_invalid(vm_page_t m, int base, int size)
3002{
3003	vm_page_bits_t bits;
3004	vm_object_t object;
3005
3006	object = m->object;
3007	VM_OBJECT_ASSERT_WLOCKED(object);
3008	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
3009	    size >= object->un_pager.vnp.vnp_size)
3010		bits = VM_PAGE_BITS_ALL;
3011	else
3012		bits = vm_page_bits(base, size);
3013	if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL &&
3014	    bits != 0)
3015		pmap_remove_all(m);
3016	KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
3017	    !pmap_page_is_mapped(m),
3018	    ("vm_page_set_invalid: page %p is mapped", m));
3019	m->valid &= ~bits;
3020	m->dirty &= ~bits;
3021}
3022
3023/*
3024 * vm_page_zero_invalid()
3025 *
3026 *	The kernel assumes that the invalid portions of a page contain
3027 *	garbage, but such pages can be mapped into memory by user code.
3028 *	When this occurs, we must zero out the non-valid portions of the
3029 *	page so user code sees what it expects.
3030 *
3031 *	Pages are most often semi-valid when the end of a file is mapped
3032 *	into memory and the file's size is not page aligned.
3033 */
3034void
3035vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3036{
3037	int b;
3038	int i;
3039
3040	VM_OBJECT_ASSERT_WLOCKED(m->object);
3041	/*
3042	 * Scan the valid bits looking for invalid sections that
3043	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
3044	 * valid bit may be set ) have already been zeroed by
3045	 * vm_page_set_validclean().
3046	 */
3047	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3048		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3049		    (m->valid & ((vm_page_bits_t)1 << i))) {
3050			if (i > b) {
3051				pmap_zero_page_area(m,
3052				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
3053			}
3054			b = i + 1;
3055		}
3056	}
3057
3058	/*
3059	 * setvalid is TRUE when we can safely set the zero'd areas
3060	 * as being valid.  We can do this if there are no cache consistancy
3061	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3062	 */
3063	if (setvalid)
3064		m->valid = VM_PAGE_BITS_ALL;
3065}
3066
3067/*
3068 *	vm_page_is_valid:
3069 *
3070 *	Is (partial) page valid?  Note that the case where size == 0
3071 *	will return FALSE in the degenerate case where the page is
3072 *	entirely invalid, and TRUE otherwise.
3073 */
3074int
3075vm_page_is_valid(vm_page_t m, int base, int size)
3076{
3077	vm_page_bits_t bits;
3078
3079	VM_OBJECT_ASSERT_LOCKED(m->object);
3080	bits = vm_page_bits(base, size);
3081	return (m->valid != 0 && (m->valid & bits) == bits);
3082}
3083
3084/*
3085 *	vm_page_ps_is_valid:
3086 *
3087 *	Returns TRUE if the entire (super)page is valid and FALSE otherwise.
3088 */
3089boolean_t
3090vm_page_ps_is_valid(vm_page_t m)
3091{
3092	int i, npages;
3093
3094	VM_OBJECT_ASSERT_LOCKED(m->object);
3095	npages = atop(pagesizes[m->psind]);
3096
3097	/*
3098	 * The physically contiguous pages that make up a superpage, i.e., a
3099	 * page with a page size index ("psind") greater than zero, will
3100	 * occupy adjacent entries in vm_page_array[].
3101	 */
3102	for (i = 0; i < npages; i++) {
3103		if (m[i].valid != VM_PAGE_BITS_ALL)
3104			return (FALSE);
3105	}
3106	return (TRUE);
3107}
3108
3109/*
3110 * Set the page's dirty bits if the page is modified.
3111 */
3112void
3113vm_page_test_dirty(vm_page_t m)
3114{
3115
3116	VM_OBJECT_ASSERT_WLOCKED(m->object);
3117	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
3118		vm_page_dirty(m);
3119}
3120
3121void
3122vm_page_lock_KBI(vm_page_t m, const char *file, int line)
3123{
3124
3125	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
3126}
3127
3128void
3129vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
3130{
3131
3132	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
3133}
3134
3135int
3136vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
3137{
3138
3139	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
3140}
3141
3142#if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
3143void
3144vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
3145{
3146
3147	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
3148}
3149
3150void
3151vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
3152{
3153
3154	mtx_assert_(vm_page_lockptr(m), a, file, line);
3155}
3156#endif
3157
3158#ifdef INVARIANTS
3159void
3160vm_page_object_lock_assert(vm_page_t m)
3161{
3162
3163	/*
3164	 * Certain of the page's fields may only be modified by the
3165	 * holder of the containing object's lock or the exclusive busy.
3166	 * holder.  Unfortunately, the holder of the write busy is
3167	 * not recorded, and thus cannot be checked here.
3168	 */
3169	if (m->object != NULL && !vm_page_xbusied(m))
3170		VM_OBJECT_ASSERT_WLOCKED(m->object);
3171}
3172
3173void
3174vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
3175{
3176
3177	if ((bits & PGA_WRITEABLE) == 0)
3178		return;
3179
3180	/*
3181	 * The PGA_WRITEABLE flag can only be set if the page is
3182	 * managed, is exclusively busied or the object is locked.
3183	 * Currently, this flag is only set by pmap_enter().
3184	 */
3185	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3186	    ("PGA_WRITEABLE on unmanaged page"));
3187	if (!vm_page_xbusied(m))
3188		VM_OBJECT_ASSERT_LOCKED(m->object);
3189}
3190#endif
3191
3192#include "opt_ddb.h"
3193#ifdef DDB
3194#include <sys/kernel.h>
3195
3196#include <ddb/ddb.h>
3197
3198DB_SHOW_COMMAND(page, vm_page_print_page_info)
3199{
3200	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
3201	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
3202	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
3203	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
3204	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
3205	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
3206	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
3207	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
3208	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
3209	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
3210}
3211
3212DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3213{
3214	int dom;
3215
3216	db_printf("pq_free %d pq_cache %d\n",
3217	    cnt.v_free_count, cnt.v_cache_count);
3218	for (dom = 0; dom < vm_ndomains; dom++) {
3219		db_printf(
3220	"dom %d page_cnt %d free %d pq_act %d pq_inact %d pass %d\n",
3221		    dom,
3222		    vm_dom[dom].vmd_page_count,
3223		    vm_dom[dom].vmd_free_count,
3224		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
3225		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
3226		    vm_dom[dom].vmd_pass);
3227	}
3228}
3229
3230DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
3231{
3232	vm_page_t m;
3233	boolean_t phys;
3234
3235	if (!have_addr) {
3236		db_printf("show pginfo addr\n");
3237		return;
3238	}
3239
3240	phys = strchr(modif, 'p') != NULL;
3241	if (phys)
3242		m = PHYS_TO_VM_PAGE(addr);
3243	else
3244		m = (vm_page_t)addr;
3245	db_printf(
3246    "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
3247    "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
3248	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
3249	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
3250	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
3251}
3252#endif /* DDB */
3253