vm_page.c revision 283598
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- A page queue lock is required when adding or removing a page from a
67 *	  page queue regardless of other locks or the busy state of a page.
68 *
69 *		* In general, no thread besides the page daemon can acquire or
70 *		  hold more than one page queue lock at a time.
71 *
72 *		* The page daemon can acquire and hold any pair of page queue
73 *		  locks in any order.
74 *
75 *	- The object lock is required when inserting or removing
76 *	  pages from an object (vm_page_insert() or vm_page_remove()).
77 *
78 */
79
80/*
81 *	Resident memory management module.
82 */
83
84#include <sys/cdefs.h>
85__FBSDID("$FreeBSD: stable/10/sys/vm/vm_page.c 283598 2015-05-27 08:30:16Z kib $");
86
87#include "opt_vm.h"
88
89#include <sys/param.h>
90#include <sys/systm.h>
91#include <sys/lock.h>
92#include <sys/kernel.h>
93#include <sys/limits.h>
94#include <sys/malloc.h>
95#include <sys/mman.h>
96#include <sys/msgbuf.h>
97#include <sys/mutex.h>
98#include <sys/proc.h>
99#include <sys/rwlock.h>
100#include <sys/sysctl.h>
101#include <sys/vmmeter.h>
102#include <sys/vnode.h>
103
104#include <vm/vm.h>
105#include <vm/pmap.h>
106#include <vm/vm_param.h>
107#include <vm/vm_kern.h>
108#include <vm/vm_object.h>
109#include <vm/vm_page.h>
110#include <vm/vm_pageout.h>
111#include <vm/vm_pager.h>
112#include <vm/vm_phys.h>
113#include <vm/vm_radix.h>
114#include <vm/vm_reserv.h>
115#include <vm/vm_extern.h>
116#include <vm/uma.h>
117#include <vm/uma_int.h>
118
119#include <machine/md_var.h>
120
121/*
122 *	Associated with page of user-allocatable memory is a
123 *	page structure.
124 */
125
126struct vm_domain vm_dom[MAXMEMDOM];
127struct mtx_padalign vm_page_queue_free_mtx;
128
129struct mtx_padalign pa_lock[PA_LOCK_COUNT];
130
131vm_page_t vm_page_array;
132long vm_page_array_size;
133long first_page;
134int vm_page_zero_count;
135
136static int boot_pages = UMA_BOOT_PAGES;
137TUNABLE_INT("vm.boot_pages", &boot_pages);
138SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
139	"number of pages allocated for bootstrapping the VM system");
140
141static int pa_tryrelock_restart;
142SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
143    &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
144
145static uma_zone_t fakepg_zone;
146
147static struct vnode *vm_page_alloc_init(vm_page_t m);
148static void vm_page_cache_turn_free(vm_page_t m);
149static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
150static void vm_page_enqueue(int queue, vm_page_t m);
151static void vm_page_init_fakepg(void *dummy);
152static int vm_page_insert_after(vm_page_t m, vm_object_t object,
153    vm_pindex_t pindex, vm_page_t mpred);
154static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
155    vm_page_t mpred);
156
157SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
158
159static void
160vm_page_init_fakepg(void *dummy)
161{
162
163	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
164	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
165}
166
167/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
168#if PAGE_SIZE == 32768
169#ifdef CTASSERT
170CTASSERT(sizeof(u_long) >= 8);
171#endif
172#endif
173
174/*
175 * Try to acquire a physical address lock while a pmap is locked.  If we
176 * fail to trylock we unlock and lock the pmap directly and cache the
177 * locked pa in *locked.  The caller should then restart their loop in case
178 * the virtual to physical mapping has changed.
179 */
180int
181vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
182{
183	vm_paddr_t lockpa;
184
185	lockpa = *locked;
186	*locked = pa;
187	if (lockpa) {
188		PA_LOCK_ASSERT(lockpa, MA_OWNED);
189		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
190			return (0);
191		PA_UNLOCK(lockpa);
192	}
193	if (PA_TRYLOCK(pa))
194		return (0);
195	PMAP_UNLOCK(pmap);
196	atomic_add_int(&pa_tryrelock_restart, 1);
197	PA_LOCK(pa);
198	PMAP_LOCK(pmap);
199	return (EAGAIN);
200}
201
202/*
203 *	vm_set_page_size:
204 *
205 *	Sets the page size, perhaps based upon the memory
206 *	size.  Must be called before any use of page-size
207 *	dependent functions.
208 */
209void
210vm_set_page_size(void)
211{
212	if (cnt.v_page_size == 0)
213		cnt.v_page_size = PAGE_SIZE;
214	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
215		panic("vm_set_page_size: page size not a power of two");
216}
217
218/*
219 *	vm_page_blacklist_lookup:
220 *
221 *	See if a physical address in this page has been listed
222 *	in the blacklist tunable.  Entries in the tunable are
223 *	separated by spaces or commas.  If an invalid integer is
224 *	encountered then the rest of the string is skipped.
225 */
226static int
227vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
228{
229	vm_paddr_t bad;
230	char *cp, *pos;
231
232	for (pos = list; *pos != '\0'; pos = cp) {
233		bad = strtoq(pos, &cp, 0);
234		if (*cp != '\0') {
235			if (*cp == ' ' || *cp == ',') {
236				cp++;
237				if (cp == pos)
238					continue;
239			} else
240				break;
241		}
242		if (pa == trunc_page(bad))
243			return (1);
244	}
245	return (0);
246}
247
248static void
249vm_page_domain_init(struct vm_domain *vmd)
250{
251	struct vm_pagequeue *pq;
252	int i;
253
254	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
255	    "vm inactive pagequeue";
256	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) =
257	    &cnt.v_inactive_count;
258	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
259	    "vm active pagequeue";
260	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) =
261	    &cnt.v_active_count;
262	vmd->vmd_page_count = 0;
263	vmd->vmd_free_count = 0;
264	vmd->vmd_segs = 0;
265	vmd->vmd_oom = FALSE;
266	vmd->vmd_pass = 0;
267	for (i = 0; i < PQ_COUNT; i++) {
268		pq = &vmd->vmd_pagequeues[i];
269		TAILQ_INIT(&pq->pq_pl);
270		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
271		    MTX_DEF | MTX_DUPOK);
272	}
273}
274
275/*
276 *	vm_page_startup:
277 *
278 *	Initializes the resident memory module.
279 *
280 *	Allocates memory for the page cells, and
281 *	for the object/offset-to-page hash table headers.
282 *	Each page cell is initialized and placed on the free list.
283 */
284vm_offset_t
285vm_page_startup(vm_offset_t vaddr)
286{
287	vm_offset_t mapped;
288	vm_paddr_t page_range;
289	vm_paddr_t new_end;
290	int i;
291	vm_paddr_t pa;
292	vm_paddr_t last_pa;
293	char *list;
294
295	/* the biggest memory array is the second group of pages */
296	vm_paddr_t end;
297	vm_paddr_t biggestsize;
298	vm_paddr_t low_water, high_water;
299	int biggestone;
300
301	biggestsize = 0;
302	biggestone = 0;
303	vaddr = round_page(vaddr);
304
305	for (i = 0; phys_avail[i + 1]; i += 2) {
306		phys_avail[i] = round_page(phys_avail[i]);
307		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
308	}
309
310#ifdef XEN
311	/*
312	 * There is no obvious reason why i386 PV Xen needs vm_page structs
313	 * created for these pseudo-physical addresses.  XXX
314	 */
315	vm_phys_add_seg(0, phys_avail[0]);
316#endif
317
318	low_water = phys_avail[0];
319	high_water = phys_avail[1];
320
321	for (i = 0; i < vm_phys_nsegs; i++) {
322		if (vm_phys_segs[i].start < low_water)
323			low_water = vm_phys_segs[i].start;
324		if (vm_phys_segs[i].end > high_water)
325			high_water = vm_phys_segs[i].end;
326	}
327	for (i = 0; phys_avail[i + 1]; i += 2) {
328		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
329
330		if (size > biggestsize) {
331			biggestone = i;
332			biggestsize = size;
333		}
334		if (phys_avail[i] < low_water)
335			low_water = phys_avail[i];
336		if (phys_avail[i + 1] > high_water)
337			high_water = phys_avail[i + 1];
338	}
339
340	end = phys_avail[biggestone+1];
341
342	/*
343	 * Initialize the page and queue locks.
344	 */
345	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
346	for (i = 0; i < PA_LOCK_COUNT; i++)
347		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
348	for (i = 0; i < vm_ndomains; i++)
349		vm_page_domain_init(&vm_dom[i]);
350
351	/*
352	 * Allocate memory for use when boot strapping the kernel memory
353	 * allocator.
354	 */
355	new_end = end - (boot_pages * UMA_SLAB_SIZE);
356	new_end = trunc_page(new_end);
357	mapped = pmap_map(&vaddr, new_end, end,
358	    VM_PROT_READ | VM_PROT_WRITE);
359	bzero((void *)mapped, end - new_end);
360	uma_startup((void *)mapped, boot_pages);
361
362#if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
363    defined(__mips__)
364	/*
365	 * Allocate a bitmap to indicate that a random physical page
366	 * needs to be included in a minidump.
367	 *
368	 * The amd64 port needs this to indicate which direct map pages
369	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
370	 *
371	 * However, i386 still needs this workspace internally within the
372	 * minidump code.  In theory, they are not needed on i386, but are
373	 * included should the sf_buf code decide to use them.
374	 */
375	last_pa = 0;
376	for (i = 0; dump_avail[i + 1] != 0; i += 2)
377		if (dump_avail[i + 1] > last_pa)
378			last_pa = dump_avail[i + 1];
379	page_range = last_pa / PAGE_SIZE;
380	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
381	new_end -= vm_page_dump_size;
382	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
383	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
384	bzero((void *)vm_page_dump, vm_page_dump_size);
385#endif
386#ifdef __amd64__
387	/*
388	 * Request that the physical pages underlying the message buffer be
389	 * included in a crash dump.  Since the message buffer is accessed
390	 * through the direct map, they are not automatically included.
391	 */
392	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
393	last_pa = pa + round_page(msgbufsize);
394	while (pa < last_pa) {
395		dump_add_page(pa);
396		pa += PAGE_SIZE;
397	}
398#endif
399	/*
400	 * Compute the number of pages of memory that will be available for
401	 * use (taking into account the overhead of a page structure per
402	 * page).
403	 */
404	first_page = low_water / PAGE_SIZE;
405#ifdef VM_PHYSSEG_SPARSE
406	page_range = 0;
407	for (i = 0; i < vm_phys_nsegs; i++) {
408		page_range += atop(vm_phys_segs[i].end -
409		    vm_phys_segs[i].start);
410	}
411	for (i = 0; phys_avail[i + 1] != 0; i += 2)
412		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
413#elif defined(VM_PHYSSEG_DENSE)
414	page_range = high_water / PAGE_SIZE - first_page;
415#else
416#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
417#endif
418	end = new_end;
419
420	/*
421	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
422	 */
423	vaddr += PAGE_SIZE;
424
425	/*
426	 * Initialize the mem entry structures now, and put them in the free
427	 * queue.
428	 */
429	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
430	mapped = pmap_map(&vaddr, new_end, end,
431	    VM_PROT_READ | VM_PROT_WRITE);
432	vm_page_array = (vm_page_t) mapped;
433#if VM_NRESERVLEVEL > 0
434	/*
435	 * Allocate memory for the reservation management system's data
436	 * structures.
437	 */
438	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
439#endif
440#if defined(__amd64__) || defined(__mips__)
441	/*
442	 * pmap_map on amd64 and mips can come out of the direct-map, not kvm
443	 * like i386, so the pages must be tracked for a crashdump to include
444	 * this data.  This includes the vm_page_array and the early UMA
445	 * bootstrap pages.
446	 */
447	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
448		dump_add_page(pa);
449#endif
450	phys_avail[biggestone + 1] = new_end;
451
452	/*
453	 * Add physical memory segments corresponding to the available
454	 * physical pages.
455	 */
456	for (i = 0; phys_avail[i + 1] != 0; i += 2)
457		vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
458
459	/*
460	 * Clear all of the page structures
461	 */
462	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
463	for (i = 0; i < page_range; i++)
464		vm_page_array[i].order = VM_NFREEORDER;
465	vm_page_array_size = page_range;
466
467	/*
468	 * Initialize the physical memory allocator.
469	 */
470	vm_phys_init();
471
472	/*
473	 * Add every available physical page that is not blacklisted to
474	 * the free lists.
475	 */
476	cnt.v_page_count = 0;
477	cnt.v_free_count = 0;
478	list = getenv("vm.blacklist");
479	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
480		pa = phys_avail[i];
481		last_pa = phys_avail[i + 1];
482		while (pa < last_pa) {
483			if (list != NULL &&
484			    vm_page_blacklist_lookup(list, pa))
485				printf("Skipping page with pa 0x%jx\n",
486				    (uintmax_t)pa);
487			else
488				vm_phys_add_page(pa);
489			pa += PAGE_SIZE;
490		}
491	}
492	freeenv(list);
493#if VM_NRESERVLEVEL > 0
494	/*
495	 * Initialize the reservation management system.
496	 */
497	vm_reserv_init();
498#endif
499	return (vaddr);
500}
501
502void
503vm_page_reference(vm_page_t m)
504{
505
506	vm_page_aflag_set(m, PGA_REFERENCED);
507}
508
509/*
510 *	vm_page_busy_downgrade:
511 *
512 *	Downgrade an exclusive busy page into a single shared busy page.
513 */
514void
515vm_page_busy_downgrade(vm_page_t m)
516{
517	u_int x;
518
519	vm_page_assert_xbusied(m);
520
521	for (;;) {
522		x = m->busy_lock;
523		x &= VPB_BIT_WAITERS;
524		if (atomic_cmpset_rel_int(&m->busy_lock,
525		    VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1) | x))
526			break;
527	}
528}
529
530/*
531 *	vm_page_sbusied:
532 *
533 *	Return a positive value if the page is shared busied, 0 otherwise.
534 */
535int
536vm_page_sbusied(vm_page_t m)
537{
538	u_int x;
539
540	x = m->busy_lock;
541	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
542}
543
544/*
545 *	vm_page_sunbusy:
546 *
547 *	Shared unbusy a page.
548 */
549void
550vm_page_sunbusy(vm_page_t m)
551{
552	u_int x;
553
554	vm_page_assert_sbusied(m);
555
556	for (;;) {
557		x = m->busy_lock;
558		if (VPB_SHARERS(x) > 1) {
559			if (atomic_cmpset_int(&m->busy_lock, x,
560			    x - VPB_ONE_SHARER))
561				break;
562			continue;
563		}
564		if ((x & VPB_BIT_WAITERS) == 0) {
565			KASSERT(x == VPB_SHARERS_WORD(1),
566			    ("vm_page_sunbusy: invalid lock state"));
567			if (atomic_cmpset_int(&m->busy_lock,
568			    VPB_SHARERS_WORD(1), VPB_UNBUSIED))
569				break;
570			continue;
571		}
572		KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
573		    ("vm_page_sunbusy: invalid lock state for waiters"));
574
575		vm_page_lock(m);
576		if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
577			vm_page_unlock(m);
578			continue;
579		}
580		wakeup(m);
581		vm_page_unlock(m);
582		break;
583	}
584}
585
586/*
587 *	vm_page_busy_sleep:
588 *
589 *	Sleep and release the page lock, using the page pointer as wchan.
590 *	This is used to implement the hard-path of busying mechanism.
591 *
592 *	The given page must be locked.
593 */
594void
595vm_page_busy_sleep(vm_page_t m, const char *wmesg)
596{
597	u_int x;
598
599	vm_page_lock_assert(m, MA_OWNED);
600
601	x = m->busy_lock;
602	if (x == VPB_UNBUSIED) {
603		vm_page_unlock(m);
604		return;
605	}
606	if ((x & VPB_BIT_WAITERS) == 0 &&
607	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS)) {
608		vm_page_unlock(m);
609		return;
610	}
611	msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
612}
613
614/*
615 *	vm_page_trysbusy:
616 *
617 *	Try to shared busy a page.
618 *	If the operation succeeds 1 is returned otherwise 0.
619 *	The operation never sleeps.
620 */
621int
622vm_page_trysbusy(vm_page_t m)
623{
624	u_int x;
625
626	for (;;) {
627		x = m->busy_lock;
628		if ((x & VPB_BIT_SHARED) == 0)
629			return (0);
630		if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
631			return (1);
632	}
633}
634
635/*
636 *	vm_page_xunbusy_hard:
637 *
638 *	Called after the first try the exclusive unbusy of a page failed.
639 *	It is assumed that the waiters bit is on.
640 */
641void
642vm_page_xunbusy_hard(vm_page_t m)
643{
644
645	vm_page_assert_xbusied(m);
646
647	vm_page_lock(m);
648	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
649	wakeup(m);
650	vm_page_unlock(m);
651}
652
653/*
654 *	vm_page_flash:
655 *
656 *	Wakeup anyone waiting for the page.
657 *	The ownership bits do not change.
658 *
659 *	The given page must be locked.
660 */
661void
662vm_page_flash(vm_page_t m)
663{
664	u_int x;
665
666	vm_page_lock_assert(m, MA_OWNED);
667
668	for (;;) {
669		x = m->busy_lock;
670		if ((x & VPB_BIT_WAITERS) == 0)
671			return;
672		if (atomic_cmpset_int(&m->busy_lock, x,
673		    x & (~VPB_BIT_WAITERS)))
674			break;
675	}
676	wakeup(m);
677}
678
679/*
680 * Keep page from being freed by the page daemon
681 * much of the same effect as wiring, except much lower
682 * overhead and should be used only for *very* temporary
683 * holding ("wiring").
684 */
685void
686vm_page_hold(vm_page_t mem)
687{
688
689	vm_page_lock_assert(mem, MA_OWNED);
690        mem->hold_count++;
691}
692
693void
694vm_page_unhold(vm_page_t mem)
695{
696
697	vm_page_lock_assert(mem, MA_OWNED);
698	KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
699	--mem->hold_count;
700	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
701		vm_page_free_toq(mem);
702}
703
704/*
705 *	vm_page_unhold_pages:
706 *
707 *	Unhold each of the pages that is referenced by the given array.
708 */
709void
710vm_page_unhold_pages(vm_page_t *ma, int count)
711{
712	struct mtx *mtx, *new_mtx;
713
714	mtx = NULL;
715	for (; count != 0; count--) {
716		/*
717		 * Avoid releasing and reacquiring the same page lock.
718		 */
719		new_mtx = vm_page_lockptr(*ma);
720		if (mtx != new_mtx) {
721			if (mtx != NULL)
722				mtx_unlock(mtx);
723			mtx = new_mtx;
724			mtx_lock(mtx);
725		}
726		vm_page_unhold(*ma);
727		ma++;
728	}
729	if (mtx != NULL)
730		mtx_unlock(mtx);
731}
732
733vm_page_t
734PHYS_TO_VM_PAGE(vm_paddr_t pa)
735{
736	vm_page_t m;
737
738#ifdef VM_PHYSSEG_SPARSE
739	m = vm_phys_paddr_to_vm_page(pa);
740	if (m == NULL)
741		m = vm_phys_fictitious_to_vm_page(pa);
742	return (m);
743#elif defined(VM_PHYSSEG_DENSE)
744	long pi;
745
746	pi = atop(pa);
747	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
748		m = &vm_page_array[pi - first_page];
749		return (m);
750	}
751	return (vm_phys_fictitious_to_vm_page(pa));
752#else
753#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
754#endif
755}
756
757/*
758 *	vm_page_getfake:
759 *
760 *	Create a fictitious page with the specified physical address and
761 *	memory attribute.  The memory attribute is the only the machine-
762 *	dependent aspect of a fictitious page that must be initialized.
763 */
764vm_page_t
765vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
766{
767	vm_page_t m;
768
769	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
770	vm_page_initfake(m, paddr, memattr);
771	return (m);
772}
773
774void
775vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
776{
777
778	if ((m->flags & PG_FICTITIOUS) != 0) {
779		/*
780		 * The page's memattr might have changed since the
781		 * previous initialization.  Update the pmap to the
782		 * new memattr.
783		 */
784		goto memattr;
785	}
786	m->phys_addr = paddr;
787	m->queue = PQ_NONE;
788	/* Fictitious pages don't use "segind". */
789	m->flags = PG_FICTITIOUS;
790	/* Fictitious pages don't use "order" or "pool". */
791	m->oflags = VPO_UNMANAGED;
792	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
793	m->wire_count = 1;
794	pmap_page_init(m);
795memattr:
796	pmap_page_set_memattr(m, memattr);
797}
798
799/*
800 *	vm_page_putfake:
801 *
802 *	Release a fictitious page.
803 */
804void
805vm_page_putfake(vm_page_t m)
806{
807
808	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
809	KASSERT((m->flags & PG_FICTITIOUS) != 0,
810	    ("vm_page_putfake: bad page %p", m));
811	uma_zfree(fakepg_zone, m);
812}
813
814/*
815 *	vm_page_updatefake:
816 *
817 *	Update the given fictitious page to the specified physical address and
818 *	memory attribute.
819 */
820void
821vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
822{
823
824	KASSERT((m->flags & PG_FICTITIOUS) != 0,
825	    ("vm_page_updatefake: bad page %p", m));
826	m->phys_addr = paddr;
827	pmap_page_set_memattr(m, memattr);
828}
829
830/*
831 *	vm_page_free:
832 *
833 *	Free a page.
834 */
835void
836vm_page_free(vm_page_t m)
837{
838
839	m->flags &= ~PG_ZERO;
840	vm_page_free_toq(m);
841}
842
843/*
844 *	vm_page_free_zero:
845 *
846 *	Free a page to the zerod-pages queue
847 */
848void
849vm_page_free_zero(vm_page_t m)
850{
851
852	m->flags |= PG_ZERO;
853	vm_page_free_toq(m);
854}
855
856/*
857 * Unbusy and handle the page queueing for a page from the VOP_GETPAGES()
858 * array which is not the request page.
859 */
860void
861vm_page_readahead_finish(vm_page_t m)
862{
863
864	if (m->valid != 0) {
865		/*
866		 * Since the page is not the requested page, whether
867		 * it should be activated or deactivated is not
868		 * obvious.  Empirical results have shown that
869		 * deactivating the page is usually the best choice,
870		 * unless the page is wanted by another thread.
871		 */
872		vm_page_lock(m);
873		if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
874			vm_page_activate(m);
875		else
876			vm_page_deactivate(m);
877		vm_page_unlock(m);
878		vm_page_xunbusy(m);
879	} else {
880		/*
881		 * Free the completely invalid page.  Such page state
882		 * occurs due to the short read operation which did
883		 * not covered our page at all, or in case when a read
884		 * error happens.
885		 */
886		vm_page_lock(m);
887		vm_page_free(m);
888		vm_page_unlock(m);
889	}
890}
891
892/*
893 *	vm_page_sleep_if_busy:
894 *
895 *	Sleep and release the page queues lock if the page is busied.
896 *	Returns TRUE if the thread slept.
897 *
898 *	The given page must be unlocked and object containing it must
899 *	be locked.
900 */
901int
902vm_page_sleep_if_busy(vm_page_t m, const char *msg)
903{
904	vm_object_t obj;
905
906	vm_page_lock_assert(m, MA_NOTOWNED);
907	VM_OBJECT_ASSERT_WLOCKED(m->object);
908
909	if (vm_page_busied(m)) {
910		/*
911		 * The page-specific object must be cached because page
912		 * identity can change during the sleep, causing the
913		 * re-lock of a different object.
914		 * It is assumed that a reference to the object is already
915		 * held by the callers.
916		 */
917		obj = m->object;
918		vm_page_lock(m);
919		VM_OBJECT_WUNLOCK(obj);
920		vm_page_busy_sleep(m, msg);
921		VM_OBJECT_WLOCK(obj);
922		return (TRUE);
923	}
924	return (FALSE);
925}
926
927/*
928 *	vm_page_dirty_KBI:		[ internal use only ]
929 *
930 *	Set all bits in the page's dirty field.
931 *
932 *	The object containing the specified page must be locked if the
933 *	call is made from the machine-independent layer.
934 *
935 *	See vm_page_clear_dirty_mask().
936 *
937 *	This function should only be called by vm_page_dirty().
938 */
939void
940vm_page_dirty_KBI(vm_page_t m)
941{
942
943	/* These assertions refer to this operation by its public name. */
944	KASSERT((m->flags & PG_CACHED) == 0,
945	    ("vm_page_dirty: page in cache!"));
946	KASSERT(!VM_PAGE_IS_FREE(m),
947	    ("vm_page_dirty: page is free!"));
948	KASSERT(m->valid == VM_PAGE_BITS_ALL,
949	    ("vm_page_dirty: page is invalid!"));
950	m->dirty = VM_PAGE_BITS_ALL;
951}
952
953/*
954 *	vm_page_insert:		[ internal use only ]
955 *
956 *	Inserts the given mem entry into the object and object list.
957 *
958 *	The object must be locked.
959 */
960int
961vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
962{
963	vm_page_t mpred;
964
965	VM_OBJECT_ASSERT_WLOCKED(object);
966	mpred = vm_radix_lookup_le(&object->rtree, pindex);
967	return (vm_page_insert_after(m, object, pindex, mpred));
968}
969
970/*
971 *	vm_page_insert_after:
972 *
973 *	Inserts the page "m" into the specified object at offset "pindex".
974 *
975 *	The page "mpred" must immediately precede the offset "pindex" within
976 *	the specified object.
977 *
978 *	The object must be locked.
979 */
980static int
981vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
982    vm_page_t mpred)
983{
984	vm_pindex_t sidx;
985	vm_object_t sobj;
986	vm_page_t msucc;
987
988	VM_OBJECT_ASSERT_WLOCKED(object);
989	KASSERT(m->object == NULL,
990	    ("vm_page_insert_after: page already inserted"));
991	if (mpred != NULL) {
992		KASSERT(mpred->object == object,
993		    ("vm_page_insert_after: object doesn't contain mpred"));
994		KASSERT(mpred->pindex < pindex,
995		    ("vm_page_insert_after: mpred doesn't precede pindex"));
996		msucc = TAILQ_NEXT(mpred, listq);
997	} else
998		msucc = TAILQ_FIRST(&object->memq);
999	if (msucc != NULL)
1000		KASSERT(msucc->pindex > pindex,
1001		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1002
1003	/*
1004	 * Record the object/offset pair in this page
1005	 */
1006	sobj = m->object;
1007	sidx = m->pindex;
1008	m->object = object;
1009	m->pindex = pindex;
1010
1011	/*
1012	 * Now link into the object's ordered list of backed pages.
1013	 */
1014	if (vm_radix_insert(&object->rtree, m)) {
1015		m->object = sobj;
1016		m->pindex = sidx;
1017		return (1);
1018	}
1019	vm_page_insert_radixdone(m, object, mpred);
1020	return (0);
1021}
1022
1023/*
1024 *	vm_page_insert_radixdone:
1025 *
1026 *	Complete page "m" insertion into the specified object after the
1027 *	radix trie hooking.
1028 *
1029 *	The page "mpred" must precede the offset "m->pindex" within the
1030 *	specified object.
1031 *
1032 *	The object must be locked.
1033 */
1034static void
1035vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1036{
1037
1038	VM_OBJECT_ASSERT_WLOCKED(object);
1039	KASSERT(object != NULL && m->object == object,
1040	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1041	if (mpred != NULL) {
1042		KASSERT(mpred->object == object,
1043		    ("vm_page_insert_after: object doesn't contain mpred"));
1044		KASSERT(mpred->pindex < m->pindex,
1045		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1046	}
1047
1048	if (mpred != NULL)
1049		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1050	else
1051		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1052
1053	/*
1054	 * Show that the object has one more resident page.
1055	 */
1056	object->resident_page_count++;
1057
1058	/*
1059	 * Hold the vnode until the last page is released.
1060	 */
1061	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1062		vhold(object->handle);
1063
1064	/*
1065	 * Since we are inserting a new and possibly dirty page,
1066	 * update the object's OBJ_MIGHTBEDIRTY flag.
1067	 */
1068	if (pmap_page_is_write_mapped(m))
1069		vm_object_set_writeable_dirty(object);
1070}
1071
1072/*
1073 *	vm_page_remove:
1074 *
1075 *	Removes the given mem entry from the object/offset-page
1076 *	table and the object page list, but do not invalidate/terminate
1077 *	the backing store.
1078 *
1079 *	The object must be locked.  The page must be locked if it is managed.
1080 */
1081void
1082vm_page_remove(vm_page_t m)
1083{
1084	vm_object_t object;
1085	boolean_t lockacq;
1086
1087	if ((m->oflags & VPO_UNMANAGED) == 0)
1088		vm_page_lock_assert(m, MA_OWNED);
1089	if ((object = m->object) == NULL)
1090		return;
1091	VM_OBJECT_ASSERT_WLOCKED(object);
1092	if (vm_page_xbusied(m)) {
1093		lockacq = FALSE;
1094		if ((m->oflags & VPO_UNMANAGED) != 0 &&
1095		    !mtx_owned(vm_page_lockptr(m))) {
1096			lockacq = TRUE;
1097			vm_page_lock(m);
1098		}
1099		vm_page_flash(m);
1100		atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1101		if (lockacq)
1102			vm_page_unlock(m);
1103	}
1104
1105	/*
1106	 * Now remove from the object's list of backed pages.
1107	 */
1108	vm_radix_remove(&object->rtree, m->pindex);
1109	TAILQ_REMOVE(&object->memq, m, listq);
1110
1111	/*
1112	 * And show that the object has one fewer resident page.
1113	 */
1114	object->resident_page_count--;
1115
1116	/*
1117	 * The vnode may now be recycled.
1118	 */
1119	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1120		vdrop(object->handle);
1121
1122	m->object = NULL;
1123}
1124
1125/*
1126 *	vm_page_lookup:
1127 *
1128 *	Returns the page associated with the object/offset
1129 *	pair specified; if none is found, NULL is returned.
1130 *
1131 *	The object must be locked.
1132 */
1133vm_page_t
1134vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1135{
1136
1137	VM_OBJECT_ASSERT_LOCKED(object);
1138	return (vm_radix_lookup(&object->rtree, pindex));
1139}
1140
1141/*
1142 *	vm_page_find_least:
1143 *
1144 *	Returns the page associated with the object with least pindex
1145 *	greater than or equal to the parameter pindex, or NULL.
1146 *
1147 *	The object must be locked.
1148 */
1149vm_page_t
1150vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1151{
1152	vm_page_t m;
1153
1154	VM_OBJECT_ASSERT_LOCKED(object);
1155	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1156		m = vm_radix_lookup_ge(&object->rtree, pindex);
1157	return (m);
1158}
1159
1160/*
1161 * Returns the given page's successor (by pindex) within the object if it is
1162 * resident; if none is found, NULL is returned.
1163 *
1164 * The object must be locked.
1165 */
1166vm_page_t
1167vm_page_next(vm_page_t m)
1168{
1169	vm_page_t next;
1170
1171	VM_OBJECT_ASSERT_WLOCKED(m->object);
1172	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
1173	    next->pindex != m->pindex + 1)
1174		next = NULL;
1175	return (next);
1176}
1177
1178/*
1179 * Returns the given page's predecessor (by pindex) within the object if it is
1180 * resident; if none is found, NULL is returned.
1181 *
1182 * The object must be locked.
1183 */
1184vm_page_t
1185vm_page_prev(vm_page_t m)
1186{
1187	vm_page_t prev;
1188
1189	VM_OBJECT_ASSERT_WLOCKED(m->object);
1190	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
1191	    prev->pindex != m->pindex - 1)
1192		prev = NULL;
1193	return (prev);
1194}
1195
1196/*
1197 * Uses the page mnew as a replacement for an existing page at index
1198 * pindex which must be already present in the object.
1199 *
1200 * The existing page must not be on a paging queue.
1201 */
1202vm_page_t
1203vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1204{
1205	vm_page_t mold, mpred;
1206
1207	VM_OBJECT_ASSERT_WLOCKED(object);
1208
1209	/*
1210	 * This function mostly follows vm_page_insert() and
1211	 * vm_page_remove() without the radix, object count and vnode
1212	 * dance.  Double check such functions for more comments.
1213	 */
1214	mpred = vm_radix_lookup(&object->rtree, pindex);
1215	KASSERT(mpred != NULL,
1216	    ("vm_page_replace: replacing page not present with pindex"));
1217	mpred = TAILQ_PREV(mpred, respgs, listq);
1218	if (mpred != NULL)
1219		KASSERT(mpred->pindex < pindex,
1220		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1221
1222	mnew->object = object;
1223	mnew->pindex = pindex;
1224	mold = vm_radix_replace(&object->rtree, mnew);
1225	KASSERT(mold->queue == PQ_NONE,
1226	    ("vm_page_replace: mold is on a paging queue"));
1227
1228	/* Detach the old page from the resident tailq. */
1229	TAILQ_REMOVE(&object->memq, mold, listq);
1230
1231	mold->object = NULL;
1232	vm_page_xunbusy(mold);
1233
1234	/* Insert the new page in the resident tailq. */
1235	if (mpred != NULL)
1236		TAILQ_INSERT_AFTER(&object->memq, mpred, mnew, listq);
1237	else
1238		TAILQ_INSERT_HEAD(&object->memq, mnew, listq);
1239	if (pmap_page_is_write_mapped(mnew))
1240		vm_object_set_writeable_dirty(object);
1241	return (mold);
1242}
1243
1244/*
1245 *	vm_page_rename:
1246 *
1247 *	Move the given memory entry from its
1248 *	current object to the specified target object/offset.
1249 *
1250 *	Note: swap associated with the page must be invalidated by the move.  We
1251 *	      have to do this for several reasons:  (1) we aren't freeing the
1252 *	      page, (2) we are dirtying the page, (3) the VM system is probably
1253 *	      moving the page from object A to B, and will then later move
1254 *	      the backing store from A to B and we can't have a conflict.
1255 *
1256 *	Note: we *always* dirty the page.  It is necessary both for the
1257 *	      fact that we moved it, and because we may be invalidating
1258 *	      swap.  If the page is on the cache, we have to deactivate it
1259 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1260 *	      on the cache.
1261 *
1262 *	The objects must be locked.
1263 */
1264int
1265vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1266{
1267	vm_page_t mpred;
1268	vm_pindex_t opidx;
1269
1270	VM_OBJECT_ASSERT_WLOCKED(new_object);
1271
1272	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1273	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1274	    ("vm_page_rename: pindex already renamed"));
1275
1276	/*
1277	 * Create a custom version of vm_page_insert() which does not depend
1278	 * by m_prev and can cheat on the implementation aspects of the
1279	 * function.
1280	 */
1281	opidx = m->pindex;
1282	m->pindex = new_pindex;
1283	if (vm_radix_insert(&new_object->rtree, m)) {
1284		m->pindex = opidx;
1285		return (1);
1286	}
1287
1288	/*
1289	 * The operation cannot fail anymore.  The removal must happen before
1290	 * the listq iterator is tainted.
1291	 */
1292	m->pindex = opidx;
1293	vm_page_lock(m);
1294	vm_page_remove(m);
1295
1296	/* Return back to the new pindex to complete vm_page_insert(). */
1297	m->pindex = new_pindex;
1298	m->object = new_object;
1299	vm_page_unlock(m);
1300	vm_page_insert_radixdone(m, new_object, mpred);
1301	vm_page_dirty(m);
1302	return (0);
1303}
1304
1305/*
1306 *	Convert all of the given object's cached pages that have a
1307 *	pindex within the given range into free pages.  If the value
1308 *	zero is given for "end", then the range's upper bound is
1309 *	infinity.  If the given object is backed by a vnode and it
1310 *	transitions from having one or more cached pages to none, the
1311 *	vnode's hold count is reduced.
1312 */
1313void
1314vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1315{
1316	vm_page_t m;
1317	boolean_t empty;
1318
1319	mtx_lock(&vm_page_queue_free_mtx);
1320	if (__predict_false(vm_radix_is_empty(&object->cache))) {
1321		mtx_unlock(&vm_page_queue_free_mtx);
1322		return;
1323	}
1324	while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) {
1325		if (end != 0 && m->pindex >= end)
1326			break;
1327		vm_radix_remove(&object->cache, m->pindex);
1328		vm_page_cache_turn_free(m);
1329	}
1330	empty = vm_radix_is_empty(&object->cache);
1331	mtx_unlock(&vm_page_queue_free_mtx);
1332	if (object->type == OBJT_VNODE && empty)
1333		vdrop(object->handle);
1334}
1335
1336/*
1337 *	Returns the cached page that is associated with the given
1338 *	object and offset.  If, however, none exists, returns NULL.
1339 *
1340 *	The free page queue must be locked.
1341 */
1342static inline vm_page_t
1343vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1344{
1345
1346	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1347	return (vm_radix_lookup(&object->cache, pindex));
1348}
1349
1350/*
1351 *	Remove the given cached page from its containing object's
1352 *	collection of cached pages.
1353 *
1354 *	The free page queue must be locked.
1355 */
1356static void
1357vm_page_cache_remove(vm_page_t m)
1358{
1359
1360	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1361	KASSERT((m->flags & PG_CACHED) != 0,
1362	    ("vm_page_cache_remove: page %p is not cached", m));
1363	vm_radix_remove(&m->object->cache, m->pindex);
1364	m->object = NULL;
1365	cnt.v_cache_count--;
1366}
1367
1368/*
1369 *	Transfer all of the cached pages with offset greater than or
1370 *	equal to 'offidxstart' from the original object's cache to the
1371 *	new object's cache.  However, any cached pages with offset
1372 *	greater than or equal to the new object's size are kept in the
1373 *	original object.  Initially, the new object's cache must be
1374 *	empty.  Offset 'offidxstart' in the original object must
1375 *	correspond to offset zero in the new object.
1376 *
1377 *	The new object must be locked.
1378 */
1379void
1380vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1381    vm_object_t new_object)
1382{
1383	vm_page_t m;
1384
1385	/*
1386	 * Insertion into an object's collection of cached pages
1387	 * requires the object to be locked.  In contrast, removal does
1388	 * not.
1389	 */
1390	VM_OBJECT_ASSERT_WLOCKED(new_object);
1391	KASSERT(vm_radix_is_empty(&new_object->cache),
1392	    ("vm_page_cache_transfer: object %p has cached pages",
1393	    new_object));
1394	mtx_lock(&vm_page_queue_free_mtx);
1395	while ((m = vm_radix_lookup_ge(&orig_object->cache,
1396	    offidxstart)) != NULL) {
1397		/*
1398		 * Transfer all of the pages with offset greater than or
1399		 * equal to 'offidxstart' from the original object's
1400		 * cache to the new object's cache.
1401		 */
1402		if ((m->pindex - offidxstart) >= new_object->size)
1403			break;
1404		vm_radix_remove(&orig_object->cache, m->pindex);
1405		/* Update the page's object and offset. */
1406		m->object = new_object;
1407		m->pindex -= offidxstart;
1408		if (vm_radix_insert(&new_object->cache, m))
1409			vm_page_cache_turn_free(m);
1410	}
1411	mtx_unlock(&vm_page_queue_free_mtx);
1412}
1413
1414/*
1415 *	Returns TRUE if a cached page is associated with the given object and
1416 *	offset, and FALSE otherwise.
1417 *
1418 *	The object must be locked.
1419 */
1420boolean_t
1421vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
1422{
1423	vm_page_t m;
1424
1425	/*
1426	 * Insertion into an object's collection of cached pages requires the
1427	 * object to be locked.  Therefore, if the object is locked and the
1428	 * object's collection is empty, there is no need to acquire the free
1429	 * page queues lock in order to prove that the specified page doesn't
1430	 * exist.
1431	 */
1432	VM_OBJECT_ASSERT_WLOCKED(object);
1433	if (__predict_true(vm_object_cache_is_empty(object)))
1434		return (FALSE);
1435	mtx_lock(&vm_page_queue_free_mtx);
1436	m = vm_page_cache_lookup(object, pindex);
1437	mtx_unlock(&vm_page_queue_free_mtx);
1438	return (m != NULL);
1439}
1440
1441/*
1442 *	vm_page_alloc:
1443 *
1444 *	Allocate and return a page that is associated with the specified
1445 *	object and offset pair.  By default, this page is exclusive busied.
1446 *
1447 *	The caller must always specify an allocation class.
1448 *
1449 *	allocation classes:
1450 *	VM_ALLOC_NORMAL		normal process request
1451 *	VM_ALLOC_SYSTEM		system *really* needs a page
1452 *	VM_ALLOC_INTERRUPT	interrupt time request
1453 *
1454 *	optional allocation flags:
1455 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1456 *				intends to allocate
1457 *	VM_ALLOC_IFCACHED	return page only if it is cached
1458 *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1459 *				is cached
1460 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1461 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1462 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1463 *				should not be exclusive busy
1464 *	VM_ALLOC_SBUSY		shared busy the allocated page
1465 *	VM_ALLOC_WIRED		wire the allocated page
1466 *	VM_ALLOC_ZERO		prefer a zeroed page
1467 *
1468 *	This routine may not sleep.
1469 */
1470vm_page_t
1471vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1472{
1473	struct vnode *vp = NULL;
1474	vm_object_t m_object;
1475	vm_page_t m, mpred;
1476	int flags, req_class;
1477
1478	mpred = 0;	/* XXX: pacify gcc */
1479	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1480	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1481	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1482	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1483	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1484	    req));
1485	if (object != NULL)
1486		VM_OBJECT_ASSERT_WLOCKED(object);
1487
1488	req_class = req & VM_ALLOC_CLASS_MASK;
1489
1490	/*
1491	 * The page daemon is allowed to dig deeper into the free page list.
1492	 */
1493	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1494		req_class = VM_ALLOC_SYSTEM;
1495
1496	if (object != NULL) {
1497		mpred = vm_radix_lookup_le(&object->rtree, pindex);
1498		KASSERT(mpred == NULL || mpred->pindex != pindex,
1499		   ("vm_page_alloc: pindex already allocated"));
1500	}
1501
1502	/*
1503	 * The page allocation request can came from consumers which already
1504	 * hold the free page queue mutex, like vm_page_insert() in
1505	 * vm_page_cache().
1506	 */
1507	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1508	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1509	    (req_class == VM_ALLOC_SYSTEM &&
1510	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1511	    (req_class == VM_ALLOC_INTERRUPT &&
1512	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1513		/*
1514		 * Allocate from the free queue if the number of free pages
1515		 * exceeds the minimum for the request class.
1516		 */
1517		if (object != NULL &&
1518		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1519			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1520				mtx_unlock(&vm_page_queue_free_mtx);
1521				return (NULL);
1522			}
1523			if (vm_phys_unfree_page(m))
1524				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1525#if VM_NRESERVLEVEL > 0
1526			else if (!vm_reserv_reactivate_page(m))
1527#else
1528			else
1529#endif
1530				panic("vm_page_alloc: cache page %p is missing"
1531				    " from the free queue", m);
1532		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1533			mtx_unlock(&vm_page_queue_free_mtx);
1534			return (NULL);
1535#if VM_NRESERVLEVEL > 0
1536		} else if (object == NULL || (object->flags & (OBJ_COLORED |
1537		    OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1538		    vm_reserv_alloc_page(object, pindex, mpred)) == NULL) {
1539#else
1540		} else {
1541#endif
1542			m = vm_phys_alloc_pages(object != NULL ?
1543			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1544#if VM_NRESERVLEVEL > 0
1545			if (m == NULL && vm_reserv_reclaim_inactive()) {
1546				m = vm_phys_alloc_pages(object != NULL ?
1547				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1548				    0);
1549			}
1550#endif
1551		}
1552	} else {
1553		/*
1554		 * Not allocatable, give up.
1555		 */
1556		mtx_unlock(&vm_page_queue_free_mtx);
1557		atomic_add_int(&vm_pageout_deficit,
1558		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1559		pagedaemon_wakeup();
1560		return (NULL);
1561	}
1562
1563	/*
1564	 *  At this point we had better have found a good page.
1565	 */
1566	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1567	KASSERT(m->queue == PQ_NONE,
1568	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1569	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1570	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1571	KASSERT(!vm_page_sbusied(m),
1572	    ("vm_page_alloc: page %p is busy", m));
1573	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1574	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1575	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1576	    pmap_page_get_memattr(m)));
1577	if ((m->flags & PG_CACHED) != 0) {
1578		KASSERT((m->flags & PG_ZERO) == 0,
1579		    ("vm_page_alloc: cached page %p is PG_ZERO", m));
1580		KASSERT(m->valid != 0,
1581		    ("vm_page_alloc: cached page %p is invalid", m));
1582		if (m->object == object && m->pindex == pindex)
1583	  		cnt.v_reactivated++;
1584		else
1585			m->valid = 0;
1586		m_object = m->object;
1587		vm_page_cache_remove(m);
1588		if (m_object->type == OBJT_VNODE &&
1589		    vm_object_cache_is_empty(m_object))
1590			vp = m_object->handle;
1591	} else {
1592		KASSERT(VM_PAGE_IS_FREE(m),
1593		    ("vm_page_alloc: page %p is not free", m));
1594		KASSERT(m->valid == 0,
1595		    ("vm_page_alloc: free page %p is valid", m));
1596		vm_phys_freecnt_adj(m, -1);
1597	}
1598
1599	/*
1600	 * Only the PG_ZERO flag is inherited.  The PG_CACHED or PG_FREE flag
1601	 * must be cleared before the free page queues lock is released.
1602	 */
1603	flags = 0;
1604	if (m->flags & PG_ZERO) {
1605		vm_page_zero_count--;
1606		if (req & VM_ALLOC_ZERO)
1607			flags = PG_ZERO;
1608	}
1609	if (req & VM_ALLOC_NODUMP)
1610		flags |= PG_NODUMP;
1611	m->flags = flags;
1612	mtx_unlock(&vm_page_queue_free_mtx);
1613	m->aflags = 0;
1614	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1615	    VPO_UNMANAGED : 0;
1616	m->busy_lock = VPB_UNBUSIED;
1617	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1618		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1619	if ((req & VM_ALLOC_SBUSY) != 0)
1620		m->busy_lock = VPB_SHARERS_WORD(1);
1621	if (req & VM_ALLOC_WIRED) {
1622		/*
1623		 * The page lock is not required for wiring a page until that
1624		 * page is inserted into the object.
1625		 */
1626		atomic_add_int(&cnt.v_wire_count, 1);
1627		m->wire_count = 1;
1628	}
1629	m->act_count = 0;
1630
1631	if (object != NULL) {
1632		if (vm_page_insert_after(m, object, pindex, mpred)) {
1633			/* See the comment below about hold count. */
1634			if (vp != NULL)
1635				vdrop(vp);
1636			pagedaemon_wakeup();
1637			if (req & VM_ALLOC_WIRED) {
1638				atomic_subtract_int(&cnt.v_wire_count, 1);
1639				m->wire_count = 0;
1640			}
1641			m->object = NULL;
1642			m->oflags = VPO_UNMANAGED;
1643			vm_page_free(m);
1644			return (NULL);
1645		}
1646
1647		/* Ignore device objects; the pager sets "memattr" for them. */
1648		if (object->memattr != VM_MEMATTR_DEFAULT &&
1649		    (object->flags & OBJ_FICTITIOUS) == 0)
1650			pmap_page_set_memattr(m, object->memattr);
1651	} else
1652		m->pindex = pindex;
1653
1654	/*
1655	 * The following call to vdrop() must come after the above call
1656	 * to vm_page_insert() in case both affect the same object and
1657	 * vnode.  Otherwise, the affected vnode's hold count could
1658	 * temporarily become zero.
1659	 */
1660	if (vp != NULL)
1661		vdrop(vp);
1662
1663	/*
1664	 * Don't wakeup too often - wakeup the pageout daemon when
1665	 * we would be nearly out of memory.
1666	 */
1667	if (vm_paging_needed())
1668		pagedaemon_wakeup();
1669
1670	return (m);
1671}
1672
1673static void
1674vm_page_alloc_contig_vdrop(struct spglist *lst)
1675{
1676
1677	while (!SLIST_EMPTY(lst)) {
1678		vdrop((struct vnode *)SLIST_FIRST(lst)-> plinks.s.pv);
1679		SLIST_REMOVE_HEAD(lst, plinks.s.ss);
1680	}
1681}
1682
1683/*
1684 *	vm_page_alloc_contig:
1685 *
1686 *	Allocate a contiguous set of physical pages of the given size "npages"
1687 *	from the free lists.  All of the physical pages must be at or above
1688 *	the given physical address "low" and below the given physical address
1689 *	"high".  The given value "alignment" determines the alignment of the
1690 *	first physical page in the set.  If the given value "boundary" is
1691 *	non-zero, then the set of physical pages cannot cross any physical
1692 *	address boundary that is a multiple of that value.  Both "alignment"
1693 *	and "boundary" must be a power of two.
1694 *
1695 *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1696 *	then the memory attribute setting for the physical pages is configured
1697 *	to the object's memory attribute setting.  Otherwise, the memory
1698 *	attribute setting for the physical pages is configured to "memattr",
1699 *	overriding the object's memory attribute setting.  However, if the
1700 *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1701 *	memory attribute setting for the physical pages cannot be configured
1702 *	to VM_MEMATTR_DEFAULT.
1703 *
1704 *	The caller must always specify an allocation class.
1705 *
1706 *	allocation classes:
1707 *	VM_ALLOC_NORMAL		normal process request
1708 *	VM_ALLOC_SYSTEM		system *really* needs a page
1709 *	VM_ALLOC_INTERRUPT	interrupt time request
1710 *
1711 *	optional allocation flags:
1712 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1713 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1714 *				should not be exclusive busy
1715 *	VM_ALLOC_SBUSY		shared busy the allocated page
1716 *	VM_ALLOC_WIRED		wire the allocated page
1717 *	VM_ALLOC_ZERO		prefer a zeroed page
1718 *
1719 *	This routine may not sleep.
1720 */
1721vm_page_t
1722vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1723    u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1724    vm_paddr_t boundary, vm_memattr_t memattr)
1725{
1726	struct vnode *drop;
1727	struct spglist deferred_vdrop_list;
1728	vm_page_t m, m_tmp, m_ret;
1729	u_int flags, oflags;
1730	int req_class;
1731
1732	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1733	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1734	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1735	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1736	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1737	    req));
1738	if (object != NULL) {
1739		VM_OBJECT_ASSERT_WLOCKED(object);
1740		KASSERT(object->type == OBJT_PHYS,
1741		    ("vm_page_alloc_contig: object %p isn't OBJT_PHYS",
1742		    object));
1743	}
1744	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1745	req_class = req & VM_ALLOC_CLASS_MASK;
1746
1747	/*
1748	 * The page daemon is allowed to dig deeper into the free page list.
1749	 */
1750	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1751		req_class = VM_ALLOC_SYSTEM;
1752
1753	SLIST_INIT(&deferred_vdrop_list);
1754	mtx_lock(&vm_page_queue_free_mtx);
1755	if (cnt.v_free_count + cnt.v_cache_count >= npages +
1756	    cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM &&
1757	    cnt.v_free_count + cnt.v_cache_count >= npages +
1758	    cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT &&
1759	    cnt.v_free_count + cnt.v_cache_count >= npages)) {
1760#if VM_NRESERVLEVEL > 0
1761retry:
1762		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1763		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1764		    low, high, alignment, boundary)) == NULL)
1765#endif
1766			m_ret = vm_phys_alloc_contig(npages, low, high,
1767			    alignment, boundary);
1768	} else {
1769		mtx_unlock(&vm_page_queue_free_mtx);
1770		atomic_add_int(&vm_pageout_deficit, npages);
1771		pagedaemon_wakeup();
1772		return (NULL);
1773	}
1774	if (m_ret != NULL)
1775		for (m = m_ret; m < &m_ret[npages]; m++) {
1776			drop = vm_page_alloc_init(m);
1777			if (drop != NULL) {
1778				/*
1779				 * Enqueue the vnode for deferred vdrop().
1780				 */
1781				m->plinks.s.pv = drop;
1782				SLIST_INSERT_HEAD(&deferred_vdrop_list, m,
1783				    plinks.s.ss);
1784			}
1785		}
1786	else {
1787#if VM_NRESERVLEVEL > 0
1788		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1789		    boundary))
1790			goto retry;
1791#endif
1792	}
1793	mtx_unlock(&vm_page_queue_free_mtx);
1794	if (m_ret == NULL)
1795		return (NULL);
1796
1797	/*
1798	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1799	 */
1800	flags = 0;
1801	if ((req & VM_ALLOC_ZERO) != 0)
1802		flags = PG_ZERO;
1803	if ((req & VM_ALLOC_NODUMP) != 0)
1804		flags |= PG_NODUMP;
1805	if ((req & VM_ALLOC_WIRED) != 0)
1806		atomic_add_int(&cnt.v_wire_count, npages);
1807	oflags = VPO_UNMANAGED;
1808	if (object != NULL) {
1809		if (object->memattr != VM_MEMATTR_DEFAULT &&
1810		    memattr == VM_MEMATTR_DEFAULT)
1811			memattr = object->memattr;
1812	}
1813	for (m = m_ret; m < &m_ret[npages]; m++) {
1814		m->aflags = 0;
1815		m->flags = (m->flags | PG_NODUMP) & flags;
1816		m->busy_lock = VPB_UNBUSIED;
1817		if (object != NULL) {
1818			if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
1819				m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1820			if ((req & VM_ALLOC_SBUSY) != 0)
1821				m->busy_lock = VPB_SHARERS_WORD(1);
1822		}
1823		if ((req & VM_ALLOC_WIRED) != 0)
1824			m->wire_count = 1;
1825		/* Unmanaged pages don't use "act_count". */
1826		m->oflags = oflags;
1827		if (object != NULL) {
1828			if (vm_page_insert(m, object, pindex)) {
1829				vm_page_alloc_contig_vdrop(
1830				    &deferred_vdrop_list);
1831				if (vm_paging_needed())
1832					pagedaemon_wakeup();
1833				if ((req & VM_ALLOC_WIRED) != 0)
1834					atomic_subtract_int(&cnt.v_wire_count,
1835					    npages);
1836				for (m_tmp = m, m = m_ret;
1837				    m < &m_ret[npages]; m++) {
1838					if ((req & VM_ALLOC_WIRED) != 0)
1839						m->wire_count = 0;
1840					if (m >= m_tmp)
1841						m->object = NULL;
1842					vm_page_free(m);
1843				}
1844				return (NULL);
1845			}
1846		} else
1847			m->pindex = pindex;
1848		if (memattr != VM_MEMATTR_DEFAULT)
1849			pmap_page_set_memattr(m, memattr);
1850		pindex++;
1851	}
1852	vm_page_alloc_contig_vdrop(&deferred_vdrop_list);
1853	if (vm_paging_needed())
1854		pagedaemon_wakeup();
1855	return (m_ret);
1856}
1857
1858/*
1859 * Initialize a page that has been freshly dequeued from a freelist.
1860 * The caller has to drop the vnode returned, if it is not NULL.
1861 *
1862 * This function may only be used to initialize unmanaged pages.
1863 *
1864 * To be called with vm_page_queue_free_mtx held.
1865 */
1866static struct vnode *
1867vm_page_alloc_init(vm_page_t m)
1868{
1869	struct vnode *drop;
1870	vm_object_t m_object;
1871
1872	KASSERT(m->queue == PQ_NONE,
1873	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1874	    m, m->queue));
1875	KASSERT(m->wire_count == 0,
1876	    ("vm_page_alloc_init: page %p is wired", m));
1877	KASSERT(m->hold_count == 0,
1878	    ("vm_page_alloc_init: page %p is held", m));
1879	KASSERT(!vm_page_sbusied(m),
1880	    ("vm_page_alloc_init: page %p is busy", m));
1881	KASSERT(m->dirty == 0,
1882	    ("vm_page_alloc_init: page %p is dirty", m));
1883	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1884	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1885	    m, pmap_page_get_memattr(m)));
1886	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1887	drop = NULL;
1888	if ((m->flags & PG_CACHED) != 0) {
1889		KASSERT((m->flags & PG_ZERO) == 0,
1890		    ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
1891		m->valid = 0;
1892		m_object = m->object;
1893		vm_page_cache_remove(m);
1894		if (m_object->type == OBJT_VNODE &&
1895		    vm_object_cache_is_empty(m_object))
1896			drop = m_object->handle;
1897	} else {
1898		KASSERT(VM_PAGE_IS_FREE(m),
1899		    ("vm_page_alloc_init: page %p is not free", m));
1900		KASSERT(m->valid == 0,
1901		    ("vm_page_alloc_init: free page %p is valid", m));
1902		vm_phys_freecnt_adj(m, -1);
1903		if ((m->flags & PG_ZERO) != 0)
1904			vm_page_zero_count--;
1905	}
1906	/* Don't clear the PG_ZERO flag; we'll need it later. */
1907	m->flags &= PG_ZERO;
1908	return (drop);
1909}
1910
1911/*
1912 * 	vm_page_alloc_freelist:
1913 *
1914 *	Allocate a physical page from the specified free page list.
1915 *
1916 *	The caller must always specify an allocation class.
1917 *
1918 *	allocation classes:
1919 *	VM_ALLOC_NORMAL		normal process request
1920 *	VM_ALLOC_SYSTEM		system *really* needs a page
1921 *	VM_ALLOC_INTERRUPT	interrupt time request
1922 *
1923 *	optional allocation flags:
1924 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1925 *				intends to allocate
1926 *	VM_ALLOC_WIRED		wire the allocated page
1927 *	VM_ALLOC_ZERO		prefer a zeroed page
1928 *
1929 *	This routine may not sleep.
1930 */
1931vm_page_t
1932vm_page_alloc_freelist(int flind, int req)
1933{
1934	struct vnode *drop;
1935	vm_page_t m;
1936	u_int flags;
1937	int req_class;
1938
1939	req_class = req & VM_ALLOC_CLASS_MASK;
1940
1941	/*
1942	 * The page daemon is allowed to dig deeper into the free page list.
1943	 */
1944	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1945		req_class = VM_ALLOC_SYSTEM;
1946
1947	/*
1948	 * Do not allocate reserved pages unless the req has asked for it.
1949	 */
1950	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1951	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1952	    (req_class == VM_ALLOC_SYSTEM &&
1953	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1954	    (req_class == VM_ALLOC_INTERRUPT &&
1955	    cnt.v_free_count + cnt.v_cache_count > 0))
1956		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
1957	else {
1958		mtx_unlock(&vm_page_queue_free_mtx);
1959		atomic_add_int(&vm_pageout_deficit,
1960		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1961		pagedaemon_wakeup();
1962		return (NULL);
1963	}
1964	if (m == NULL) {
1965		mtx_unlock(&vm_page_queue_free_mtx);
1966		return (NULL);
1967	}
1968	drop = vm_page_alloc_init(m);
1969	mtx_unlock(&vm_page_queue_free_mtx);
1970
1971	/*
1972	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1973	 */
1974	m->aflags = 0;
1975	flags = 0;
1976	if ((req & VM_ALLOC_ZERO) != 0)
1977		flags = PG_ZERO;
1978	m->flags &= flags;
1979	if ((req & VM_ALLOC_WIRED) != 0) {
1980		/*
1981		 * The page lock is not required for wiring a page that does
1982		 * not belong to an object.
1983		 */
1984		atomic_add_int(&cnt.v_wire_count, 1);
1985		m->wire_count = 1;
1986	}
1987	/* Unmanaged pages don't use "act_count". */
1988	m->oflags = VPO_UNMANAGED;
1989	if (drop != NULL)
1990		vdrop(drop);
1991	if (vm_paging_needed())
1992		pagedaemon_wakeup();
1993	return (m);
1994}
1995
1996/*
1997 *	vm_wait:	(also see VM_WAIT macro)
1998 *
1999 *	Sleep until free pages are available for allocation.
2000 *	- Called in various places before memory allocations.
2001 */
2002void
2003vm_wait(void)
2004{
2005
2006	mtx_lock(&vm_page_queue_free_mtx);
2007	if (curproc == pageproc) {
2008		vm_pageout_pages_needed = 1;
2009		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
2010		    PDROP | PSWP, "VMWait", 0);
2011	} else {
2012		if (!vm_pages_needed) {
2013			vm_pages_needed = 1;
2014			wakeup(&vm_pages_needed);
2015		}
2016		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
2017		    "vmwait", 0);
2018	}
2019}
2020
2021/*
2022 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
2023 *
2024 *	Sleep until free pages are available for allocation.
2025 *	- Called only in vm_fault so that processes page faulting
2026 *	  can be easily tracked.
2027 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
2028 *	  processes will be able to grab memory first.  Do not change
2029 *	  this balance without careful testing first.
2030 */
2031void
2032vm_waitpfault(void)
2033{
2034
2035	mtx_lock(&vm_page_queue_free_mtx);
2036	if (!vm_pages_needed) {
2037		vm_pages_needed = 1;
2038		wakeup(&vm_pages_needed);
2039	}
2040	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
2041	    "pfault", 0);
2042}
2043
2044struct vm_pagequeue *
2045vm_page_pagequeue(vm_page_t m)
2046{
2047
2048	return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]);
2049}
2050
2051/*
2052 *	vm_page_dequeue:
2053 *
2054 *	Remove the given page from its current page queue.
2055 *
2056 *	The page must be locked.
2057 */
2058void
2059vm_page_dequeue(vm_page_t m)
2060{
2061	struct vm_pagequeue *pq;
2062
2063	vm_page_lock_assert(m, MA_OWNED);
2064	KASSERT(m->queue != PQ_NONE,
2065	    ("vm_page_dequeue: page %p is not queued", m));
2066	pq = vm_page_pagequeue(m);
2067	vm_pagequeue_lock(pq);
2068	m->queue = PQ_NONE;
2069	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2070	vm_pagequeue_cnt_dec(pq);
2071	vm_pagequeue_unlock(pq);
2072}
2073
2074/*
2075 *	vm_page_dequeue_locked:
2076 *
2077 *	Remove the given page from its current page queue.
2078 *
2079 *	The page and page queue must be locked.
2080 */
2081void
2082vm_page_dequeue_locked(vm_page_t m)
2083{
2084	struct vm_pagequeue *pq;
2085
2086	vm_page_lock_assert(m, MA_OWNED);
2087	pq = vm_page_pagequeue(m);
2088	vm_pagequeue_assert_locked(pq);
2089	m->queue = PQ_NONE;
2090	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2091	vm_pagequeue_cnt_dec(pq);
2092}
2093
2094/*
2095 *	vm_page_enqueue:
2096 *
2097 *	Add the given page to the specified page queue.
2098 *
2099 *	The page must be locked.
2100 */
2101static void
2102vm_page_enqueue(int queue, vm_page_t m)
2103{
2104	struct vm_pagequeue *pq;
2105
2106	vm_page_lock_assert(m, MA_OWNED);
2107	pq = &vm_phys_domain(m)->vmd_pagequeues[queue];
2108	vm_pagequeue_lock(pq);
2109	m->queue = queue;
2110	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2111	vm_pagequeue_cnt_inc(pq);
2112	vm_pagequeue_unlock(pq);
2113}
2114
2115/*
2116 *	vm_page_requeue:
2117 *
2118 *	Move the given page to the tail of its current page queue.
2119 *
2120 *	The page must be locked.
2121 */
2122void
2123vm_page_requeue(vm_page_t m)
2124{
2125	struct vm_pagequeue *pq;
2126
2127	vm_page_lock_assert(m, MA_OWNED);
2128	KASSERT(m->queue != PQ_NONE,
2129	    ("vm_page_requeue: page %p is not queued", m));
2130	pq = vm_page_pagequeue(m);
2131	vm_pagequeue_lock(pq);
2132	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2133	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2134	vm_pagequeue_unlock(pq);
2135}
2136
2137/*
2138 *	vm_page_requeue_locked:
2139 *
2140 *	Move the given page to the tail of its current page queue.
2141 *
2142 *	The page queue must be locked.
2143 */
2144void
2145vm_page_requeue_locked(vm_page_t m)
2146{
2147	struct vm_pagequeue *pq;
2148
2149	KASSERT(m->queue != PQ_NONE,
2150	    ("vm_page_requeue_locked: page %p is not queued", m));
2151	pq = vm_page_pagequeue(m);
2152	vm_pagequeue_assert_locked(pq);
2153	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2154	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2155}
2156
2157/*
2158 *	vm_page_activate:
2159 *
2160 *	Put the specified page on the active list (if appropriate).
2161 *	Ensure that act_count is at least ACT_INIT but do not otherwise
2162 *	mess with it.
2163 *
2164 *	The page must be locked.
2165 */
2166void
2167vm_page_activate(vm_page_t m)
2168{
2169	int queue;
2170
2171	vm_page_lock_assert(m, MA_OWNED);
2172	if ((queue = m->queue) != PQ_ACTIVE) {
2173		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2174			if (m->act_count < ACT_INIT)
2175				m->act_count = ACT_INIT;
2176			if (queue != PQ_NONE)
2177				vm_page_dequeue(m);
2178			vm_page_enqueue(PQ_ACTIVE, m);
2179		} else
2180			KASSERT(queue == PQ_NONE,
2181			    ("vm_page_activate: wired page %p is queued", m));
2182	} else {
2183		if (m->act_count < ACT_INIT)
2184			m->act_count = ACT_INIT;
2185	}
2186}
2187
2188/*
2189 *	vm_page_free_wakeup:
2190 *
2191 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
2192 *	routine is called when a page has been added to the cache or free
2193 *	queues.
2194 *
2195 *	The page queues must be locked.
2196 */
2197static inline void
2198vm_page_free_wakeup(void)
2199{
2200
2201	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2202	/*
2203	 * if pageout daemon needs pages, then tell it that there are
2204	 * some free.
2205	 */
2206	if (vm_pageout_pages_needed &&
2207	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
2208		wakeup(&vm_pageout_pages_needed);
2209		vm_pageout_pages_needed = 0;
2210	}
2211	/*
2212	 * wakeup processes that are waiting on memory if we hit a
2213	 * high water mark. And wakeup scheduler process if we have
2214	 * lots of memory. this process will swapin processes.
2215	 */
2216	if (vm_pages_needed && !vm_page_count_min()) {
2217		vm_pages_needed = 0;
2218		wakeup(&cnt.v_free_count);
2219	}
2220}
2221
2222/*
2223 *	Turn a cached page into a free page, by changing its attributes.
2224 *	Keep the statistics up-to-date.
2225 *
2226 *	The free page queue must be locked.
2227 */
2228static void
2229vm_page_cache_turn_free(vm_page_t m)
2230{
2231
2232	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2233
2234	m->object = NULL;
2235	m->valid = 0;
2236	/* Clear PG_CACHED and set PG_FREE. */
2237	m->flags ^= PG_CACHED | PG_FREE;
2238	KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
2239	    ("vm_page_cache_free: page %p has inconsistent flags", m));
2240	cnt.v_cache_count--;
2241	vm_phys_freecnt_adj(m, 1);
2242}
2243
2244/*
2245 *	vm_page_free_toq:
2246 *
2247 *	Returns the given page to the free list,
2248 *	disassociating it with any VM object.
2249 *
2250 *	The object must be locked.  The page must be locked if it is managed.
2251 */
2252void
2253vm_page_free_toq(vm_page_t m)
2254{
2255
2256	if ((m->oflags & VPO_UNMANAGED) == 0) {
2257		vm_page_lock_assert(m, MA_OWNED);
2258		KASSERT(!pmap_page_is_mapped(m),
2259		    ("vm_page_free_toq: freeing mapped page %p", m));
2260	} else
2261		KASSERT(m->queue == PQ_NONE,
2262		    ("vm_page_free_toq: unmanaged page %p is queued", m));
2263	PCPU_INC(cnt.v_tfree);
2264
2265	if (VM_PAGE_IS_FREE(m))
2266		panic("vm_page_free: freeing free page %p", m);
2267	else if (vm_page_sbusied(m))
2268		panic("vm_page_free: freeing busy page %p", m);
2269
2270	/*
2271	 * Unqueue, then remove page.  Note that we cannot destroy
2272	 * the page here because we do not want to call the pager's
2273	 * callback routine until after we've put the page on the
2274	 * appropriate free queue.
2275	 */
2276	vm_page_remque(m);
2277	vm_page_remove(m);
2278
2279	/*
2280	 * If fictitious remove object association and
2281	 * return, otherwise delay object association removal.
2282	 */
2283	if ((m->flags & PG_FICTITIOUS) != 0) {
2284		return;
2285	}
2286
2287	m->valid = 0;
2288	vm_page_undirty(m);
2289
2290	if (m->wire_count != 0)
2291		panic("vm_page_free: freeing wired page %p", m);
2292	if (m->hold_count != 0) {
2293		m->flags &= ~PG_ZERO;
2294		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2295		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
2296		m->flags |= PG_UNHOLDFREE;
2297	} else {
2298		/*
2299		 * Restore the default memory attribute to the page.
2300		 */
2301		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2302			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2303
2304		/*
2305		 * Insert the page into the physical memory allocator's
2306		 * cache/free page queues.
2307		 */
2308		mtx_lock(&vm_page_queue_free_mtx);
2309		m->flags |= PG_FREE;
2310		vm_phys_freecnt_adj(m, 1);
2311#if VM_NRESERVLEVEL > 0
2312		if (!vm_reserv_free_page(m))
2313#else
2314		if (TRUE)
2315#endif
2316			vm_phys_free_pages(m, 0);
2317		if ((m->flags & PG_ZERO) != 0)
2318			++vm_page_zero_count;
2319		else
2320			vm_page_zero_idle_wakeup();
2321		vm_page_free_wakeup();
2322		mtx_unlock(&vm_page_queue_free_mtx);
2323	}
2324}
2325
2326/*
2327 *	vm_page_wire:
2328 *
2329 *	Mark this page as wired down by yet
2330 *	another map, removing it from paging queues
2331 *	as necessary.
2332 *
2333 *	If the page is fictitious, then its wire count must remain one.
2334 *
2335 *	The page must be locked.
2336 */
2337void
2338vm_page_wire(vm_page_t m)
2339{
2340
2341	/*
2342	 * Only bump the wire statistics if the page is not already wired,
2343	 * and only unqueue the page if it is on some queue (if it is unmanaged
2344	 * it is already off the queues).
2345	 */
2346	vm_page_lock_assert(m, MA_OWNED);
2347	if ((m->flags & PG_FICTITIOUS) != 0) {
2348		KASSERT(m->wire_count == 1,
2349		    ("vm_page_wire: fictitious page %p's wire count isn't one",
2350		    m));
2351		return;
2352	}
2353	if (m->wire_count == 0) {
2354		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
2355		    m->queue == PQ_NONE,
2356		    ("vm_page_wire: unmanaged page %p is queued", m));
2357		vm_page_remque(m);
2358		atomic_add_int(&cnt.v_wire_count, 1);
2359	}
2360	m->wire_count++;
2361	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
2362}
2363
2364/*
2365 * vm_page_unwire:
2366 *
2367 * Release one wiring of the specified page, potentially enabling it to be
2368 * paged again.  If paging is enabled, then the value of the parameter
2369 * "activate" determines to which queue the page is added.  If "activate" is
2370 * non-zero, then the page is added to the active queue.  Otherwise, it is
2371 * added to the inactive queue.
2372 *
2373 * However, unless the page belongs to an object, it is not enqueued because
2374 * it cannot be paged out.
2375 *
2376 * If a page is fictitious, then its wire count must always be one.
2377 *
2378 * A managed page must be locked.
2379 */
2380void
2381vm_page_unwire(vm_page_t m, int activate)
2382{
2383
2384	if ((m->oflags & VPO_UNMANAGED) == 0)
2385		vm_page_lock_assert(m, MA_OWNED);
2386	if ((m->flags & PG_FICTITIOUS) != 0) {
2387		KASSERT(m->wire_count == 1,
2388	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
2389		return;
2390	}
2391	if (m->wire_count > 0) {
2392		m->wire_count--;
2393		if (m->wire_count == 0) {
2394			atomic_subtract_int(&cnt.v_wire_count, 1);
2395			if ((m->oflags & VPO_UNMANAGED) != 0 ||
2396			    m->object == NULL)
2397				return;
2398			if (!activate)
2399				m->flags &= ~PG_WINATCFLS;
2400			vm_page_enqueue(activate ? PQ_ACTIVE : PQ_INACTIVE, m);
2401		}
2402	} else
2403		panic("vm_page_unwire: page %p's wire count is zero", m);
2404}
2405
2406/*
2407 * Move the specified page to the inactive queue.
2408 *
2409 * Many pages placed on the inactive queue should actually go
2410 * into the cache, but it is difficult to figure out which.  What
2411 * we do instead, if the inactive target is well met, is to put
2412 * clean pages at the head of the inactive queue instead of the tail.
2413 * This will cause them to be moved to the cache more quickly and
2414 * if not actively re-referenced, reclaimed more quickly.  If we just
2415 * stick these pages at the end of the inactive queue, heavy filesystem
2416 * meta-data accesses can cause an unnecessary paging load on memory bound
2417 * processes.  This optimization causes one-time-use metadata to be
2418 * reused more quickly.
2419 *
2420 * Normally athead is 0 resulting in LRU operation.  athead is set
2421 * to 1 if we want this page to be 'as if it were placed in the cache',
2422 * except without unmapping it from the process address space.
2423 *
2424 * The page must be locked.
2425 */
2426static inline void
2427_vm_page_deactivate(vm_page_t m, int athead)
2428{
2429	struct vm_pagequeue *pq;
2430	int queue;
2431
2432	vm_page_lock_assert(m, MA_OWNED);
2433
2434	/*
2435	 * Ignore if already inactive.
2436	 */
2437	if ((queue = m->queue) == PQ_INACTIVE)
2438		return;
2439	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2440		if (queue != PQ_NONE)
2441			vm_page_dequeue(m);
2442		m->flags &= ~PG_WINATCFLS;
2443		pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE];
2444		vm_pagequeue_lock(pq);
2445		m->queue = PQ_INACTIVE;
2446		if (athead)
2447			TAILQ_INSERT_HEAD(&pq->pq_pl, m, plinks.q);
2448		else
2449			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2450		vm_pagequeue_cnt_inc(pq);
2451		vm_pagequeue_unlock(pq);
2452	}
2453}
2454
2455/*
2456 * Move the specified page to the inactive queue.
2457 *
2458 * The page must be locked.
2459 */
2460void
2461vm_page_deactivate(vm_page_t m)
2462{
2463
2464	_vm_page_deactivate(m, 0);
2465}
2466
2467/*
2468 * vm_page_try_to_cache:
2469 *
2470 * Returns 0 on failure, 1 on success
2471 */
2472int
2473vm_page_try_to_cache(vm_page_t m)
2474{
2475
2476	vm_page_lock_assert(m, MA_OWNED);
2477	VM_OBJECT_ASSERT_WLOCKED(m->object);
2478	if (m->dirty || m->hold_count || m->wire_count ||
2479	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
2480		return (0);
2481	pmap_remove_all(m);
2482	if (m->dirty)
2483		return (0);
2484	vm_page_cache(m);
2485	return (1);
2486}
2487
2488/*
2489 * vm_page_try_to_free()
2490 *
2491 *	Attempt to free the page.  If we cannot free it, we do nothing.
2492 *	1 is returned on success, 0 on failure.
2493 */
2494int
2495vm_page_try_to_free(vm_page_t m)
2496{
2497
2498	vm_page_lock_assert(m, MA_OWNED);
2499	if (m->object != NULL)
2500		VM_OBJECT_ASSERT_WLOCKED(m->object);
2501	if (m->dirty || m->hold_count || m->wire_count ||
2502	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
2503		return (0);
2504	pmap_remove_all(m);
2505	if (m->dirty)
2506		return (0);
2507	vm_page_free(m);
2508	return (1);
2509}
2510
2511/*
2512 * vm_page_cache
2513 *
2514 * Put the specified page onto the page cache queue (if appropriate).
2515 *
2516 * The object and page must be locked.
2517 */
2518void
2519vm_page_cache(vm_page_t m)
2520{
2521	vm_object_t object;
2522	boolean_t cache_was_empty;
2523
2524	vm_page_lock_assert(m, MA_OWNED);
2525	object = m->object;
2526	VM_OBJECT_ASSERT_WLOCKED(object);
2527	if (vm_page_busied(m) || (m->oflags & VPO_UNMANAGED) ||
2528	    m->hold_count || m->wire_count)
2529		panic("vm_page_cache: attempting to cache busy page");
2530	KASSERT(!pmap_page_is_mapped(m),
2531	    ("vm_page_cache: page %p is mapped", m));
2532	KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m));
2533	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
2534	    (object->type == OBJT_SWAP &&
2535	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
2536		/*
2537		 * Hypothesis: A cache-elgible page belonging to a
2538		 * default object or swap object but without a backing
2539		 * store must be zero filled.
2540		 */
2541		vm_page_free(m);
2542		return;
2543	}
2544	KASSERT((m->flags & PG_CACHED) == 0,
2545	    ("vm_page_cache: page %p is already cached", m));
2546
2547	/*
2548	 * Remove the page from the paging queues.
2549	 */
2550	vm_page_remque(m);
2551
2552	/*
2553	 * Remove the page from the object's collection of resident
2554	 * pages.
2555	 */
2556	vm_radix_remove(&object->rtree, m->pindex);
2557	TAILQ_REMOVE(&object->memq, m, listq);
2558	object->resident_page_count--;
2559
2560	/*
2561	 * Restore the default memory attribute to the page.
2562	 */
2563	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2564		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2565
2566	/*
2567	 * Insert the page into the object's collection of cached pages
2568	 * and the physical memory allocator's cache/free page queues.
2569	 */
2570	m->flags &= ~PG_ZERO;
2571	mtx_lock(&vm_page_queue_free_mtx);
2572	cache_was_empty = vm_radix_is_empty(&object->cache);
2573	if (vm_radix_insert(&object->cache, m)) {
2574		mtx_unlock(&vm_page_queue_free_mtx);
2575		if (object->resident_page_count == 0)
2576			vdrop(object->handle);
2577		m->object = NULL;
2578		vm_page_free(m);
2579		return;
2580	}
2581
2582	/*
2583	 * The above call to vm_radix_insert() could reclaim the one pre-
2584	 * existing cached page from this object, resulting in a call to
2585	 * vdrop().
2586	 */
2587	if (!cache_was_empty)
2588		cache_was_empty = vm_radix_is_singleton(&object->cache);
2589
2590	m->flags |= PG_CACHED;
2591	cnt.v_cache_count++;
2592	PCPU_INC(cnt.v_tcached);
2593#if VM_NRESERVLEVEL > 0
2594	if (!vm_reserv_free_page(m)) {
2595#else
2596	if (TRUE) {
2597#endif
2598		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2599		vm_phys_free_pages(m, 0);
2600	}
2601	vm_page_free_wakeup();
2602	mtx_unlock(&vm_page_queue_free_mtx);
2603
2604	/*
2605	 * Increment the vnode's hold count if this is the object's only
2606	 * cached page.  Decrement the vnode's hold count if this was
2607	 * the object's only resident page.
2608	 */
2609	if (object->type == OBJT_VNODE) {
2610		if (cache_was_empty && object->resident_page_count != 0)
2611			vhold(object->handle);
2612		else if (!cache_was_empty && object->resident_page_count == 0)
2613			vdrop(object->handle);
2614	}
2615}
2616
2617/*
2618 * vm_page_advise
2619 *
2620 *	Cache, deactivate, or do nothing as appropriate.  This routine
2621 *	is used by madvise().
2622 *
2623 *	Generally speaking we want to move the page into the cache so
2624 *	it gets reused quickly.  However, this can result in a silly syndrome
2625 *	due to the page recycling too quickly.  Small objects will not be
2626 *	fully cached.  On the other hand, if we move the page to the inactive
2627 *	queue we wind up with a problem whereby very large objects
2628 *	unnecessarily blow away our inactive and cache queues.
2629 *
2630 *	The solution is to move the pages based on a fixed weighting.  We
2631 *	either leave them alone, deactivate them, or move them to the cache,
2632 *	where moving them to the cache has the highest weighting.
2633 *	By forcing some pages into other queues we eventually force the
2634 *	system to balance the queues, potentially recovering other unrelated
2635 *	space from active.  The idea is to not force this to happen too
2636 *	often.
2637 *
2638 *	The object and page must be locked.
2639 */
2640void
2641vm_page_advise(vm_page_t m, int advice)
2642{
2643	int dnw, head;
2644
2645	vm_page_assert_locked(m);
2646	VM_OBJECT_ASSERT_WLOCKED(m->object);
2647	if (advice == MADV_FREE) {
2648		/*
2649		 * Mark the page clean.  This will allow the page to be freed
2650		 * up by the system.  However, such pages are often reused
2651		 * quickly by malloc() so we do not do anything that would
2652		 * cause a page fault if we can help it.
2653		 *
2654		 * Specifically, we do not try to actually free the page now
2655		 * nor do we try to put it in the cache (which would cause a
2656		 * page fault on reuse).
2657		 *
2658		 * But we do make the page is freeable as we can without
2659		 * actually taking the step of unmapping it.
2660		 */
2661		m->dirty = 0;
2662		m->act_count = 0;
2663	} else if (advice != MADV_DONTNEED)
2664		return;
2665	dnw = PCPU_GET(dnweight);
2666	PCPU_INC(dnweight);
2667
2668	/*
2669	 * Occasionally leave the page alone.
2670	 */
2671	if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
2672		if (m->act_count >= ACT_INIT)
2673			--m->act_count;
2674		return;
2675	}
2676
2677	/*
2678	 * Clear any references to the page.  Otherwise, the page daemon will
2679	 * immediately reactivate the page.
2680	 */
2681	vm_page_aflag_clear(m, PGA_REFERENCED);
2682
2683	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
2684		vm_page_dirty(m);
2685
2686	if (m->dirty || (dnw & 0x0070) == 0) {
2687		/*
2688		 * Deactivate the page 3 times out of 32.
2689		 */
2690		head = 0;
2691	} else {
2692		/*
2693		 * Cache the page 28 times out of every 32.  Note that
2694		 * the page is deactivated instead of cached, but placed
2695		 * at the head of the queue instead of the tail.
2696		 */
2697		head = 1;
2698	}
2699	_vm_page_deactivate(m, head);
2700}
2701
2702/*
2703 * Grab a page, waiting until we are waken up due to the page
2704 * changing state.  We keep on waiting, if the page continues
2705 * to be in the object.  If the page doesn't exist, first allocate it
2706 * and then conditionally zero it.
2707 *
2708 * This routine may sleep.
2709 *
2710 * The object must be locked on entry.  The lock will, however, be released
2711 * and reacquired if the routine sleeps.
2712 */
2713vm_page_t
2714vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2715{
2716	vm_page_t m;
2717	int sleep;
2718
2719	VM_OBJECT_ASSERT_WLOCKED(object);
2720	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
2721	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
2722	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
2723retrylookup:
2724	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2725		sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
2726		    vm_page_xbusied(m) : vm_page_busied(m);
2727		if (sleep) {
2728			/*
2729			 * Reference the page before unlocking and
2730			 * sleeping so that the page daemon is less
2731			 * likely to reclaim it.
2732			 */
2733			vm_page_aflag_set(m, PGA_REFERENCED);
2734			vm_page_lock(m);
2735			VM_OBJECT_WUNLOCK(object);
2736			vm_page_busy_sleep(m, "pgrbwt");
2737			VM_OBJECT_WLOCK(object);
2738			goto retrylookup;
2739		} else {
2740			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2741				vm_page_lock(m);
2742				vm_page_wire(m);
2743				vm_page_unlock(m);
2744			}
2745			if ((allocflags &
2746			    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2747				vm_page_xbusy(m);
2748			if ((allocflags & VM_ALLOC_SBUSY) != 0)
2749				vm_page_sbusy(m);
2750			return (m);
2751		}
2752	}
2753	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_IGN_SBUSY);
2754	if (m == NULL) {
2755		VM_OBJECT_WUNLOCK(object);
2756		VM_WAIT;
2757		VM_OBJECT_WLOCK(object);
2758		goto retrylookup;
2759	} else if (m->valid != 0)
2760		return (m);
2761	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2762		pmap_zero_page(m);
2763	return (m);
2764}
2765
2766/*
2767 * Mapping function for valid or dirty bits in a page.
2768 *
2769 * Inputs are required to range within a page.
2770 */
2771vm_page_bits_t
2772vm_page_bits(int base, int size)
2773{
2774	int first_bit;
2775	int last_bit;
2776
2777	KASSERT(
2778	    base + size <= PAGE_SIZE,
2779	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2780	);
2781
2782	if (size == 0)		/* handle degenerate case */
2783		return (0);
2784
2785	first_bit = base >> DEV_BSHIFT;
2786	last_bit = (base + size - 1) >> DEV_BSHIFT;
2787
2788	return (((vm_page_bits_t)2 << last_bit) -
2789	    ((vm_page_bits_t)1 << first_bit));
2790}
2791
2792/*
2793 *	vm_page_set_valid_range:
2794 *
2795 *	Sets portions of a page valid.  The arguments are expected
2796 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2797 *	of any partial chunks touched by the range.  The invalid portion of
2798 *	such chunks will be zeroed.
2799 *
2800 *	(base + size) must be less then or equal to PAGE_SIZE.
2801 */
2802void
2803vm_page_set_valid_range(vm_page_t m, int base, int size)
2804{
2805	int endoff, frag;
2806
2807	VM_OBJECT_ASSERT_WLOCKED(m->object);
2808	if (size == 0)	/* handle degenerate case */
2809		return;
2810
2811	/*
2812	 * If the base is not DEV_BSIZE aligned and the valid
2813	 * bit is clear, we have to zero out a portion of the
2814	 * first block.
2815	 */
2816	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2817	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2818		pmap_zero_page_area(m, frag, base - frag);
2819
2820	/*
2821	 * If the ending offset is not DEV_BSIZE aligned and the
2822	 * valid bit is clear, we have to zero out a portion of
2823	 * the last block.
2824	 */
2825	endoff = base + size;
2826	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2827	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2828		pmap_zero_page_area(m, endoff,
2829		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2830
2831	/*
2832	 * Assert that no previously invalid block that is now being validated
2833	 * is already dirty.
2834	 */
2835	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2836	    ("vm_page_set_valid_range: page %p is dirty", m));
2837
2838	/*
2839	 * Set valid bits inclusive of any overlap.
2840	 */
2841	m->valid |= vm_page_bits(base, size);
2842}
2843
2844/*
2845 * Clear the given bits from the specified page's dirty field.
2846 */
2847static __inline void
2848vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
2849{
2850	uintptr_t addr;
2851#if PAGE_SIZE < 16384
2852	int shift;
2853#endif
2854
2855	/*
2856	 * If the object is locked and the page is neither exclusive busy nor
2857	 * write mapped, then the page's dirty field cannot possibly be
2858	 * set by a concurrent pmap operation.
2859	 */
2860	VM_OBJECT_ASSERT_WLOCKED(m->object);
2861	if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
2862		m->dirty &= ~pagebits;
2863	else {
2864		/*
2865		 * The pmap layer can call vm_page_dirty() without
2866		 * holding a distinguished lock.  The combination of
2867		 * the object's lock and an atomic operation suffice
2868		 * to guarantee consistency of the page dirty field.
2869		 *
2870		 * For PAGE_SIZE == 32768 case, compiler already
2871		 * properly aligns the dirty field, so no forcible
2872		 * alignment is needed. Only require existence of
2873		 * atomic_clear_64 when page size is 32768.
2874		 */
2875		addr = (uintptr_t)&m->dirty;
2876#if PAGE_SIZE == 32768
2877		atomic_clear_64((uint64_t *)addr, pagebits);
2878#elif PAGE_SIZE == 16384
2879		atomic_clear_32((uint32_t *)addr, pagebits);
2880#else		/* PAGE_SIZE <= 8192 */
2881		/*
2882		 * Use a trick to perform a 32-bit atomic on the
2883		 * containing aligned word, to not depend on the existence
2884		 * of atomic_clear_{8, 16}.
2885		 */
2886		shift = addr & (sizeof(uint32_t) - 1);
2887#if BYTE_ORDER == BIG_ENDIAN
2888		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
2889#else
2890		shift *= NBBY;
2891#endif
2892		addr &= ~(sizeof(uint32_t) - 1);
2893		atomic_clear_32((uint32_t *)addr, pagebits << shift);
2894#endif		/* PAGE_SIZE */
2895	}
2896}
2897
2898/*
2899 *	vm_page_set_validclean:
2900 *
2901 *	Sets portions of a page valid and clean.  The arguments are expected
2902 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2903 *	of any partial chunks touched by the range.  The invalid portion of
2904 *	such chunks will be zero'd.
2905 *
2906 *	(base + size) must be less then or equal to PAGE_SIZE.
2907 */
2908void
2909vm_page_set_validclean(vm_page_t m, int base, int size)
2910{
2911	vm_page_bits_t oldvalid, pagebits;
2912	int endoff, frag;
2913
2914	VM_OBJECT_ASSERT_WLOCKED(m->object);
2915	if (size == 0)	/* handle degenerate case */
2916		return;
2917
2918	/*
2919	 * If the base is not DEV_BSIZE aligned and the valid
2920	 * bit is clear, we have to zero out a portion of the
2921	 * first block.
2922	 */
2923	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2924	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
2925		pmap_zero_page_area(m, frag, base - frag);
2926
2927	/*
2928	 * If the ending offset is not DEV_BSIZE aligned and the
2929	 * valid bit is clear, we have to zero out a portion of
2930	 * the last block.
2931	 */
2932	endoff = base + size;
2933	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2934	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
2935		pmap_zero_page_area(m, endoff,
2936		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2937
2938	/*
2939	 * Set valid, clear dirty bits.  If validating the entire
2940	 * page we can safely clear the pmap modify bit.  We also
2941	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2942	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2943	 * be set again.
2944	 *
2945	 * We set valid bits inclusive of any overlap, but we can only
2946	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2947	 * the range.
2948	 */
2949	oldvalid = m->valid;
2950	pagebits = vm_page_bits(base, size);
2951	m->valid |= pagebits;
2952#if 0	/* NOT YET */
2953	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2954		frag = DEV_BSIZE - frag;
2955		base += frag;
2956		size -= frag;
2957		if (size < 0)
2958			size = 0;
2959	}
2960	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2961#endif
2962	if (base == 0 && size == PAGE_SIZE) {
2963		/*
2964		 * The page can only be modified within the pmap if it is
2965		 * mapped, and it can only be mapped if it was previously
2966		 * fully valid.
2967		 */
2968		if (oldvalid == VM_PAGE_BITS_ALL)
2969			/*
2970			 * Perform the pmap_clear_modify() first.  Otherwise,
2971			 * a concurrent pmap operation, such as
2972			 * pmap_protect(), could clear a modification in the
2973			 * pmap and set the dirty field on the page before
2974			 * pmap_clear_modify() had begun and after the dirty
2975			 * field was cleared here.
2976			 */
2977			pmap_clear_modify(m);
2978		m->dirty = 0;
2979		m->oflags &= ~VPO_NOSYNC;
2980	} else if (oldvalid != VM_PAGE_BITS_ALL)
2981		m->dirty &= ~pagebits;
2982	else
2983		vm_page_clear_dirty_mask(m, pagebits);
2984}
2985
2986void
2987vm_page_clear_dirty(vm_page_t m, int base, int size)
2988{
2989
2990	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2991}
2992
2993/*
2994 *	vm_page_set_invalid:
2995 *
2996 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2997 *	valid and dirty bits for the effected areas are cleared.
2998 */
2999void
3000vm_page_set_invalid(vm_page_t m, int base, int size)
3001{
3002	vm_page_bits_t bits;
3003	vm_object_t object;
3004
3005	object = m->object;
3006	VM_OBJECT_ASSERT_WLOCKED(object);
3007	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
3008	    size >= object->un_pager.vnp.vnp_size)
3009		bits = VM_PAGE_BITS_ALL;
3010	else
3011		bits = vm_page_bits(base, size);
3012	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
3013		pmap_remove_all(m);
3014	KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
3015	    !pmap_page_is_mapped(m),
3016	    ("vm_page_set_invalid: page %p is mapped", m));
3017	m->valid &= ~bits;
3018	m->dirty &= ~bits;
3019}
3020
3021/*
3022 * vm_page_zero_invalid()
3023 *
3024 *	The kernel assumes that the invalid portions of a page contain
3025 *	garbage, but such pages can be mapped into memory by user code.
3026 *	When this occurs, we must zero out the non-valid portions of the
3027 *	page so user code sees what it expects.
3028 *
3029 *	Pages are most often semi-valid when the end of a file is mapped
3030 *	into memory and the file's size is not page aligned.
3031 */
3032void
3033vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3034{
3035	int b;
3036	int i;
3037
3038	VM_OBJECT_ASSERT_WLOCKED(m->object);
3039	/*
3040	 * Scan the valid bits looking for invalid sections that
3041	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
3042	 * valid bit may be set ) have already been zeroed by
3043	 * vm_page_set_validclean().
3044	 */
3045	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3046		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3047		    (m->valid & ((vm_page_bits_t)1 << i))) {
3048			if (i > b) {
3049				pmap_zero_page_area(m,
3050				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
3051			}
3052			b = i + 1;
3053		}
3054	}
3055
3056	/*
3057	 * setvalid is TRUE when we can safely set the zero'd areas
3058	 * as being valid.  We can do this if there are no cache consistancy
3059	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3060	 */
3061	if (setvalid)
3062		m->valid = VM_PAGE_BITS_ALL;
3063}
3064
3065/*
3066 *	vm_page_is_valid:
3067 *
3068 *	Is (partial) page valid?  Note that the case where size == 0
3069 *	will return FALSE in the degenerate case where the page is
3070 *	entirely invalid, and TRUE otherwise.
3071 */
3072int
3073vm_page_is_valid(vm_page_t m, int base, int size)
3074{
3075	vm_page_bits_t bits;
3076
3077	VM_OBJECT_ASSERT_LOCKED(m->object);
3078	bits = vm_page_bits(base, size);
3079	return (m->valid != 0 && (m->valid & bits) == bits);
3080}
3081
3082/*
3083 *	vm_page_ps_is_valid:
3084 *
3085 *	Returns TRUE if the entire (super)page is valid and FALSE otherwise.
3086 */
3087boolean_t
3088vm_page_ps_is_valid(vm_page_t m)
3089{
3090	int i, npages;
3091
3092	VM_OBJECT_ASSERT_LOCKED(m->object);
3093	npages = atop(pagesizes[m->psind]);
3094
3095	/*
3096	 * The physically contiguous pages that make up a superpage, i.e., a
3097	 * page with a page size index ("psind") greater than zero, will
3098	 * occupy adjacent entries in vm_page_array[].
3099	 */
3100	for (i = 0; i < npages; i++) {
3101		if (m[i].valid != VM_PAGE_BITS_ALL)
3102			return (FALSE);
3103	}
3104	return (TRUE);
3105}
3106
3107/*
3108 * Set the page's dirty bits if the page is modified.
3109 */
3110void
3111vm_page_test_dirty(vm_page_t m)
3112{
3113
3114	VM_OBJECT_ASSERT_WLOCKED(m->object);
3115	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
3116		vm_page_dirty(m);
3117}
3118
3119void
3120vm_page_lock_KBI(vm_page_t m, const char *file, int line)
3121{
3122
3123	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
3124}
3125
3126void
3127vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
3128{
3129
3130	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
3131}
3132
3133int
3134vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
3135{
3136
3137	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
3138}
3139
3140#if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
3141void
3142vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
3143{
3144
3145	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
3146}
3147
3148void
3149vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
3150{
3151
3152	mtx_assert_(vm_page_lockptr(m), a, file, line);
3153}
3154#endif
3155
3156#ifdef INVARIANTS
3157void
3158vm_page_object_lock_assert(vm_page_t m)
3159{
3160
3161	/*
3162	 * Certain of the page's fields may only be modified by the
3163	 * holder of the containing object's lock or the exclusive busy.
3164	 * holder.  Unfortunately, the holder of the write busy is
3165	 * not recorded, and thus cannot be checked here.
3166	 */
3167	if (m->object != NULL && !vm_page_xbusied(m))
3168		VM_OBJECT_ASSERT_WLOCKED(m->object);
3169}
3170
3171void
3172vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
3173{
3174
3175	if ((bits & PGA_WRITEABLE) == 0)
3176		return;
3177
3178	/*
3179	 * The PGA_WRITEABLE flag can only be set if the page is
3180	 * managed, is exclusively busied or the object is locked.
3181	 * Currently, this flag is only set by pmap_enter().
3182	 */
3183	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3184	    ("PGA_WRITEABLE on unmanaged page"));
3185	if (!vm_page_xbusied(m))
3186		VM_OBJECT_ASSERT_LOCKED(m->object);
3187}
3188#endif
3189
3190#include "opt_ddb.h"
3191#ifdef DDB
3192#include <sys/kernel.h>
3193
3194#include <ddb/ddb.h>
3195
3196DB_SHOW_COMMAND(page, vm_page_print_page_info)
3197{
3198	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
3199	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
3200	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
3201	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
3202	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
3203	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
3204	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
3205	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
3206	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
3207	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
3208}
3209
3210DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3211{
3212	int dom;
3213
3214	db_printf("pq_free %d pq_cache %d\n",
3215	    cnt.v_free_count, cnt.v_cache_count);
3216	for (dom = 0; dom < vm_ndomains; dom++) {
3217		db_printf(
3218	"dom %d page_cnt %d free %d pq_act %d pq_inact %d pass %d\n",
3219		    dom,
3220		    vm_dom[dom].vmd_page_count,
3221		    vm_dom[dom].vmd_free_count,
3222		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
3223		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
3224		    vm_dom[dom].vmd_pass);
3225	}
3226}
3227
3228DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
3229{
3230	vm_page_t m;
3231	boolean_t phys;
3232
3233	if (!have_addr) {
3234		db_printf("show pginfo addr\n");
3235		return;
3236	}
3237
3238	phys = strchr(modif, 'p') != NULL;
3239	if (phys)
3240		m = PHYS_TO_VM_PAGE(addr);
3241	else
3242		m = (vm_page_t)addr;
3243	db_printf(
3244    "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
3245    "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
3246	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
3247	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
3248	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
3249}
3250#endif /* DDB */
3251