ffs_alloc.c revision 297787
1/*-
2 * Copyright (c) 2002 Networks Associates Technology, Inc.
3 * All rights reserved.
4 *
5 * This software was developed for the FreeBSD Project by Marshall
6 * Kirk McKusick and Network Associates Laboratories, the Security
7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9 * research program
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * Copyright (c) 1982, 1986, 1989, 1993
33 *	The Regents of the University of California.  All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 *    notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 *    notice, this list of conditions and the following disclaimer in the
42 *    documentation and/or other materials provided with the distribution.
43 * 4. Neither the name of the University nor the names of its contributors
44 *    may be used to endorse or promote products derived from this software
45 *    without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 *
59 *	@(#)ffs_alloc.c	8.18 (Berkeley) 5/26/95
60 */
61
62#include <sys/cdefs.h>
63__FBSDID("$FreeBSD: stable/10/sys/ufs/ffs/ffs_alloc.c 297787 2016-04-10 16:32:21Z kib $");
64
65#include "opt_quota.h"
66
67#include <sys/param.h>
68#include <sys/capsicum.h>
69#include <sys/systm.h>
70#include <sys/bio.h>
71#include <sys/buf.h>
72#include <sys/conf.h>
73#include <sys/fcntl.h>
74#include <sys/file.h>
75#include <sys/filedesc.h>
76#include <sys/priv.h>
77#include <sys/proc.h>
78#include <sys/vnode.h>
79#include <sys/mount.h>
80#include <sys/kernel.h>
81#include <sys/syscallsubr.h>
82#include <sys/sysctl.h>
83#include <sys/syslog.h>
84#include <sys/taskqueue.h>
85
86#include <security/audit/audit.h>
87
88#include <geom/geom.h>
89
90#include <ufs/ufs/dir.h>
91#include <ufs/ufs/extattr.h>
92#include <ufs/ufs/quota.h>
93#include <ufs/ufs/inode.h>
94#include <ufs/ufs/ufs_extern.h>
95#include <ufs/ufs/ufsmount.h>
96
97#include <ufs/ffs/fs.h>
98#include <ufs/ffs/ffs_extern.h>
99#include <ufs/ffs/softdep.h>
100
101typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref,
102				  int size, int rsize);
103
104static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int);
105static ufs2_daddr_t
106	      ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int);
107static void	ffs_blkfree_cg(struct ufsmount *, struct fs *,
108		    struct vnode *, ufs2_daddr_t, long, ino_t,
109		    struct workhead *);
110static void	ffs_blkfree_trim_completed(struct bio *);
111static void	ffs_blkfree_trim_task(void *ctx, int pending __unused);
112#ifdef INVARIANTS
113static int	ffs_checkblk(struct inode *, ufs2_daddr_t, long);
114#endif
115static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int);
116static ino_t	ffs_dirpref(struct inode *);
117static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t,
118		    int, int);
119static ufs2_daddr_t	ffs_hashalloc
120		(struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *);
121static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int,
122		    int);
123static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int);
124static int	ffs_reallocblks_ufs1(struct vop_reallocblks_args *);
125static int	ffs_reallocblks_ufs2(struct vop_reallocblks_args *);
126
127/*
128 * Allocate a block in the filesystem.
129 *
130 * The size of the requested block is given, which must be some
131 * multiple of fs_fsize and <= fs_bsize.
132 * A preference may be optionally specified. If a preference is given
133 * the following hierarchy is used to allocate a block:
134 *   1) allocate the requested block.
135 *   2) allocate a rotationally optimal block in the same cylinder.
136 *   3) allocate a block in the same cylinder group.
137 *   4) quadradically rehash into other cylinder groups, until an
138 *      available block is located.
139 * If no block preference is given the following hierarchy is used
140 * to allocate a block:
141 *   1) allocate a block in the cylinder group that contains the
142 *      inode for the file.
143 *   2) quadradically rehash into other cylinder groups, until an
144 *      available block is located.
145 */
146int
147ffs_alloc(ip, lbn, bpref, size, flags, cred, bnp)
148	struct inode *ip;
149	ufs2_daddr_t lbn, bpref;
150	int size, flags;
151	struct ucred *cred;
152	ufs2_daddr_t *bnp;
153{
154	struct fs *fs;
155	struct ufsmount *ump;
156	ufs2_daddr_t bno;
157	u_int cg, reclaimed;
158	static struct timeval lastfail;
159	static int curfail;
160	int64_t delta;
161#ifdef QUOTA
162	int error;
163#endif
164
165	*bnp = 0;
166	fs = ip->i_fs;
167	ump = ip->i_ump;
168	mtx_assert(UFS_MTX(ump), MA_OWNED);
169#ifdef INVARIANTS
170	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
171		printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
172		    devtoname(ip->i_dev), (long)fs->fs_bsize, size,
173		    fs->fs_fsmnt);
174		panic("ffs_alloc: bad size");
175	}
176	if (cred == NOCRED)
177		panic("ffs_alloc: missing credential");
178#endif /* INVARIANTS */
179	reclaimed = 0;
180retry:
181#ifdef QUOTA
182	UFS_UNLOCK(ump);
183	error = chkdq(ip, btodb(size), cred, 0);
184	if (error)
185		return (error);
186	UFS_LOCK(ump);
187#endif
188	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
189		goto nospace;
190	if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) &&
191	    freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
192		goto nospace;
193	if (bpref >= fs->fs_size)
194		bpref = 0;
195	if (bpref == 0)
196		cg = ino_to_cg(fs, ip->i_number);
197	else
198		cg = dtog(fs, bpref);
199	bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg);
200	if (bno > 0) {
201		delta = btodb(size);
202		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
203		if (flags & IO_EXT)
204			ip->i_flag |= IN_CHANGE;
205		else
206			ip->i_flag |= IN_CHANGE | IN_UPDATE;
207		*bnp = bno;
208		return (0);
209	}
210nospace:
211#ifdef QUOTA
212	UFS_UNLOCK(ump);
213	/*
214	 * Restore user's disk quota because allocation failed.
215	 */
216	(void) chkdq(ip, -btodb(size), cred, FORCE);
217	UFS_LOCK(ump);
218#endif
219	if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
220		reclaimed = 1;
221		softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT);
222		goto retry;
223	}
224	UFS_UNLOCK(ump);
225	if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) {
226		ffs_fserr(fs, ip->i_number, "filesystem full");
227		uprintf("\n%s: write failed, filesystem is full\n",
228		    fs->fs_fsmnt);
229	}
230	return (ENOSPC);
231}
232
233/*
234 * Reallocate a fragment to a bigger size
235 *
236 * The number and size of the old block is given, and a preference
237 * and new size is also specified. The allocator attempts to extend
238 * the original block. Failing that, the regular block allocator is
239 * invoked to get an appropriate block.
240 */
241int
242ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, flags, cred, bpp)
243	struct inode *ip;
244	ufs2_daddr_t lbprev;
245	ufs2_daddr_t bprev;
246	ufs2_daddr_t bpref;
247	int osize, nsize, flags;
248	struct ucred *cred;
249	struct buf **bpp;
250{
251	struct vnode *vp;
252	struct fs *fs;
253	struct buf *bp;
254	struct ufsmount *ump;
255	u_int cg, request, reclaimed;
256	int error, gbflags;
257	ufs2_daddr_t bno;
258	static struct timeval lastfail;
259	static int curfail;
260	int64_t delta;
261
262	*bpp = 0;
263	vp = ITOV(ip);
264	fs = ip->i_fs;
265	bp = NULL;
266	ump = ip->i_ump;
267	gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0;
268
269	mtx_assert(UFS_MTX(ump), MA_OWNED);
270#ifdef INVARIANTS
271	if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
272		panic("ffs_realloccg: allocation on suspended filesystem");
273	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
274	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
275		printf(
276		"dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
277		    devtoname(ip->i_dev), (long)fs->fs_bsize, osize,
278		    nsize, fs->fs_fsmnt);
279		panic("ffs_realloccg: bad size");
280	}
281	if (cred == NOCRED)
282		panic("ffs_realloccg: missing credential");
283#endif /* INVARIANTS */
284	reclaimed = 0;
285retry:
286	if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) &&
287	    freespace(fs, fs->fs_minfree) -  numfrags(fs, nsize - osize) < 0) {
288		goto nospace;
289	}
290	if (bprev == 0) {
291		printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n",
292		    devtoname(ip->i_dev), (long)fs->fs_bsize, (intmax_t)bprev,
293		    fs->fs_fsmnt);
294		panic("ffs_realloccg: bad bprev");
295	}
296	UFS_UNLOCK(ump);
297	/*
298	 * Allocate the extra space in the buffer.
299	 */
300	error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp);
301	if (error) {
302		brelse(bp);
303		return (error);
304	}
305
306	if (bp->b_blkno == bp->b_lblkno) {
307		if (lbprev >= NDADDR)
308			panic("ffs_realloccg: lbprev out of range");
309		bp->b_blkno = fsbtodb(fs, bprev);
310	}
311
312#ifdef QUOTA
313	error = chkdq(ip, btodb(nsize - osize), cred, 0);
314	if (error) {
315		brelse(bp);
316		return (error);
317	}
318#endif
319	/*
320	 * Check for extension in the existing location.
321	 */
322	cg = dtog(fs, bprev);
323	UFS_LOCK(ump);
324	bno = ffs_fragextend(ip, cg, bprev, osize, nsize);
325	if (bno) {
326		if (bp->b_blkno != fsbtodb(fs, bno))
327			panic("ffs_realloccg: bad blockno");
328		delta = btodb(nsize - osize);
329		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
330		if (flags & IO_EXT)
331			ip->i_flag |= IN_CHANGE;
332		else
333			ip->i_flag |= IN_CHANGE | IN_UPDATE;
334		allocbuf(bp, nsize);
335		bp->b_flags |= B_DONE;
336		vfs_bio_bzero_buf(bp, osize, nsize - osize);
337		if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
338			vfs_bio_set_valid(bp, osize, nsize - osize);
339		*bpp = bp;
340		return (0);
341	}
342	/*
343	 * Allocate a new disk location.
344	 */
345	if (bpref >= fs->fs_size)
346		bpref = 0;
347	switch ((int)fs->fs_optim) {
348	case FS_OPTSPACE:
349		/*
350		 * Allocate an exact sized fragment. Although this makes
351		 * best use of space, we will waste time relocating it if
352		 * the file continues to grow. If the fragmentation is
353		 * less than half of the minimum free reserve, we choose
354		 * to begin optimizing for time.
355		 */
356		request = nsize;
357		if (fs->fs_minfree <= 5 ||
358		    fs->fs_cstotal.cs_nffree >
359		    (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
360			break;
361		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
362			fs->fs_fsmnt);
363		fs->fs_optim = FS_OPTTIME;
364		break;
365	case FS_OPTTIME:
366		/*
367		 * At this point we have discovered a file that is trying to
368		 * grow a small fragment to a larger fragment. To save time,
369		 * we allocate a full sized block, then free the unused portion.
370		 * If the file continues to grow, the `ffs_fragextend' call
371		 * above will be able to grow it in place without further
372		 * copying. If aberrant programs cause disk fragmentation to
373		 * grow within 2% of the free reserve, we choose to begin
374		 * optimizing for space.
375		 */
376		request = fs->fs_bsize;
377		if (fs->fs_cstotal.cs_nffree <
378		    (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
379			break;
380		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
381			fs->fs_fsmnt);
382		fs->fs_optim = FS_OPTSPACE;
383		break;
384	default:
385		printf("dev = %s, optim = %ld, fs = %s\n",
386		    devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt);
387		panic("ffs_realloccg: bad optim");
388		/* NOTREACHED */
389	}
390	bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg);
391	if (bno > 0) {
392		bp->b_blkno = fsbtodb(fs, bno);
393		if (!DOINGSOFTDEP(vp))
394			ffs_blkfree(ump, fs, ip->i_devvp, bprev, (long)osize,
395			    ip->i_number, vp->v_type, NULL);
396		delta = btodb(nsize - osize);
397		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
398		if (flags & IO_EXT)
399			ip->i_flag |= IN_CHANGE;
400		else
401			ip->i_flag |= IN_CHANGE | IN_UPDATE;
402		allocbuf(bp, nsize);
403		bp->b_flags |= B_DONE;
404		vfs_bio_bzero_buf(bp, osize, nsize - osize);
405		if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
406			vfs_bio_set_valid(bp, osize, nsize - osize);
407		*bpp = bp;
408		return (0);
409	}
410#ifdef QUOTA
411	UFS_UNLOCK(ump);
412	/*
413	 * Restore user's disk quota because allocation failed.
414	 */
415	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
416	UFS_LOCK(ump);
417#endif
418nospace:
419	/*
420	 * no space available
421	 */
422	if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
423		reclaimed = 1;
424		UFS_UNLOCK(ump);
425		if (bp) {
426			brelse(bp);
427			bp = NULL;
428		}
429		UFS_LOCK(ump);
430		softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT);
431		goto retry;
432	}
433	UFS_UNLOCK(ump);
434	if (bp)
435		brelse(bp);
436	if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) {
437		ffs_fserr(fs, ip->i_number, "filesystem full");
438		uprintf("\n%s: write failed, filesystem is full\n",
439		    fs->fs_fsmnt);
440	}
441	return (ENOSPC);
442}
443
444/*
445 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
446 *
447 * The vnode and an array of buffer pointers for a range of sequential
448 * logical blocks to be made contiguous is given. The allocator attempts
449 * to find a range of sequential blocks starting as close as possible
450 * from the end of the allocation for the logical block immediately
451 * preceding the current range. If successful, the physical block numbers
452 * in the buffer pointers and in the inode are changed to reflect the new
453 * allocation. If unsuccessful, the allocation is left unchanged. The
454 * success in doing the reallocation is returned. Note that the error
455 * return is not reflected back to the user. Rather the previous block
456 * allocation will be used.
457 */
458
459SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
460
461static int doasyncfree = 1;
462SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0,
463"do not force synchronous writes when blocks are reallocated");
464
465static int doreallocblks = 1;
466SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0,
467"enable block reallocation");
468
469static int maxclustersearch = 10;
470SYSCTL_INT(_vfs_ffs, OID_AUTO, maxclustersearch, CTLFLAG_RW, &maxclustersearch,
4710, "max number of cylinder group to search for contigous blocks");
472
473#ifdef DEBUG
474static volatile int prtrealloc = 0;
475#endif
476
477int
478ffs_reallocblks(ap)
479	struct vop_reallocblks_args /* {
480		struct vnode *a_vp;
481		struct cluster_save *a_buflist;
482	} */ *ap;
483{
484
485	if (doreallocblks == 0)
486		return (ENOSPC);
487	/*
488	 * We can't wait in softdep prealloc as it may fsync and recurse
489	 * here.  Instead we simply fail to reallocate blocks if this
490	 * rare condition arises.
491	 */
492	if (DOINGSOFTDEP(ap->a_vp))
493		if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0)
494			return (ENOSPC);
495	if (VTOI(ap->a_vp)->i_ump->um_fstype == UFS1)
496		return (ffs_reallocblks_ufs1(ap));
497	return (ffs_reallocblks_ufs2(ap));
498}
499
500static int
501ffs_reallocblks_ufs1(ap)
502	struct vop_reallocblks_args /* {
503		struct vnode *a_vp;
504		struct cluster_save *a_buflist;
505	} */ *ap;
506{
507	struct fs *fs;
508	struct inode *ip;
509	struct vnode *vp;
510	struct buf *sbp, *ebp;
511	ufs1_daddr_t *bap, *sbap, *ebap = 0;
512	struct cluster_save *buflist;
513	struct ufsmount *ump;
514	ufs_lbn_t start_lbn, end_lbn;
515	ufs1_daddr_t soff, newblk, blkno;
516	ufs2_daddr_t pref;
517	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
518	int i, cg, len, start_lvl, end_lvl, ssize;
519
520	vp = ap->a_vp;
521	ip = VTOI(vp);
522	fs = ip->i_fs;
523	ump = ip->i_ump;
524	/*
525	 * If we are not tracking block clusters or if we have less than 4%
526	 * free blocks left, then do not attempt to cluster. Running with
527	 * less than 5% free block reserve is not recommended and those that
528	 * choose to do so do not expect to have good file layout.
529	 */
530	if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0)
531		return (ENOSPC);
532	buflist = ap->a_buflist;
533	len = buflist->bs_nchildren;
534	start_lbn = buflist->bs_children[0]->b_lblkno;
535	end_lbn = start_lbn + len - 1;
536#ifdef INVARIANTS
537	for (i = 0; i < len; i++)
538		if (!ffs_checkblk(ip,
539		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
540			panic("ffs_reallocblks: unallocated block 1");
541	for (i = 1; i < len; i++)
542		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
543			panic("ffs_reallocblks: non-logical cluster");
544	blkno = buflist->bs_children[0]->b_blkno;
545	ssize = fsbtodb(fs, fs->fs_frag);
546	for (i = 1; i < len - 1; i++)
547		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
548			panic("ffs_reallocblks: non-physical cluster %d", i);
549#endif
550	/*
551	 * If the cluster crosses the boundary for the first indirect
552	 * block, leave space for the indirect block. Indirect blocks
553	 * are initially laid out in a position after the last direct
554	 * block. Block reallocation would usually destroy locality by
555	 * moving the indirect block out of the way to make room for
556	 * data blocks if we didn't compensate here. We should also do
557	 * this for other indirect block boundaries, but it is only
558	 * important for the first one.
559	 */
560	if (start_lbn < NDADDR && end_lbn >= NDADDR)
561		return (ENOSPC);
562	/*
563	 * If the latest allocation is in a new cylinder group, assume that
564	 * the filesystem has decided to move and do not force it back to
565	 * the previous cylinder group.
566	 */
567	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
568	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
569		return (ENOSPC);
570	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
571	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
572		return (ENOSPC);
573	/*
574	 * Get the starting offset and block map for the first block.
575	 */
576	if (start_lvl == 0) {
577		sbap = &ip->i_din1->di_db[0];
578		soff = start_lbn;
579	} else {
580		idp = &start_ap[start_lvl - 1];
581		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
582			brelse(sbp);
583			return (ENOSPC);
584		}
585		sbap = (ufs1_daddr_t *)sbp->b_data;
586		soff = idp->in_off;
587	}
588	/*
589	 * If the block range spans two block maps, get the second map.
590	 */
591	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
592		ssize = len;
593	} else {
594#ifdef INVARIANTS
595		if (start_lvl > 0 &&
596		    start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
597			panic("ffs_reallocblk: start == end");
598#endif
599		ssize = len - (idp->in_off + 1);
600		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
601			goto fail;
602		ebap = (ufs1_daddr_t *)ebp->b_data;
603	}
604	/*
605	 * Find the preferred location for the cluster. If we have not
606	 * previously failed at this endeavor, then follow our standard
607	 * preference calculation. If we have failed at it, then pick up
608	 * where we last ended our search.
609	 */
610	UFS_LOCK(ump);
611	if (ip->i_nextclustercg == -1)
612		pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap);
613	else
614		pref = cgdata(fs, ip->i_nextclustercg);
615	/*
616	 * Search the block map looking for an allocation of the desired size.
617	 * To avoid wasting too much time, we limit the number of cylinder
618	 * groups that we will search.
619	 */
620	cg = dtog(fs, pref);
621	for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) {
622		if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0)
623			break;
624		cg += 1;
625		if (cg >= fs->fs_ncg)
626			cg = 0;
627	}
628	/*
629	 * If we have failed in our search, record where we gave up for
630	 * next time. Otherwise, fall back to our usual search citerion.
631	 */
632	if (newblk == 0) {
633		ip->i_nextclustercg = cg;
634		UFS_UNLOCK(ump);
635		goto fail;
636	}
637	ip->i_nextclustercg = -1;
638	/*
639	 * We have found a new contiguous block.
640	 *
641	 * First we have to replace the old block pointers with the new
642	 * block pointers in the inode and indirect blocks associated
643	 * with the file.
644	 */
645#ifdef DEBUG
646	if (prtrealloc)
647		printf("realloc: ino %ju, lbns %jd-%jd\n\told:",
648		    (uintmax_t)ip->i_number,
649		    (intmax_t)start_lbn, (intmax_t)end_lbn);
650#endif
651	blkno = newblk;
652	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
653		if (i == ssize) {
654			bap = ebap;
655			soff = -i;
656		}
657#ifdef INVARIANTS
658		if (!ffs_checkblk(ip,
659		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
660			panic("ffs_reallocblks: unallocated block 2");
661		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
662			panic("ffs_reallocblks: alloc mismatch");
663#endif
664#ifdef DEBUG
665		if (prtrealloc)
666			printf(" %d,", *bap);
667#endif
668		if (DOINGSOFTDEP(vp)) {
669			if (sbap == &ip->i_din1->di_db[0] && i < ssize)
670				softdep_setup_allocdirect(ip, start_lbn + i,
671				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
672				    buflist->bs_children[i]);
673			else
674				softdep_setup_allocindir_page(ip, start_lbn + i,
675				    i < ssize ? sbp : ebp, soff + i, blkno,
676				    *bap, buflist->bs_children[i]);
677		}
678		*bap++ = blkno;
679	}
680	/*
681	 * Next we must write out the modified inode and indirect blocks.
682	 * For strict correctness, the writes should be synchronous since
683	 * the old block values may have been written to disk. In practise
684	 * they are almost never written, but if we are concerned about
685	 * strict correctness, the `doasyncfree' flag should be set to zero.
686	 *
687	 * The test on `doasyncfree' should be changed to test a flag
688	 * that shows whether the associated buffers and inodes have
689	 * been written. The flag should be set when the cluster is
690	 * started and cleared whenever the buffer or inode is flushed.
691	 * We can then check below to see if it is set, and do the
692	 * synchronous write only when it has been cleared.
693	 */
694	if (sbap != &ip->i_din1->di_db[0]) {
695		if (doasyncfree)
696			bdwrite(sbp);
697		else
698			bwrite(sbp);
699	} else {
700		ip->i_flag |= IN_CHANGE | IN_UPDATE;
701		if (!doasyncfree)
702			ffs_update(vp, 1);
703	}
704	if (ssize < len) {
705		if (doasyncfree)
706			bdwrite(ebp);
707		else
708			bwrite(ebp);
709	}
710	/*
711	 * Last, free the old blocks and assign the new blocks to the buffers.
712	 */
713#ifdef DEBUG
714	if (prtrealloc)
715		printf("\n\tnew:");
716#endif
717	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
718		if (!DOINGSOFTDEP(vp))
719			ffs_blkfree(ump, fs, ip->i_devvp,
720			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
721			    fs->fs_bsize, ip->i_number, vp->v_type, NULL);
722		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
723#ifdef INVARIANTS
724		if (!ffs_checkblk(ip,
725		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
726			panic("ffs_reallocblks: unallocated block 3");
727#endif
728#ifdef DEBUG
729		if (prtrealloc)
730			printf(" %d,", blkno);
731#endif
732	}
733#ifdef DEBUG
734	if (prtrealloc) {
735		prtrealloc--;
736		printf("\n");
737	}
738#endif
739	return (0);
740
741fail:
742	if (ssize < len)
743		brelse(ebp);
744	if (sbap != &ip->i_din1->di_db[0])
745		brelse(sbp);
746	return (ENOSPC);
747}
748
749static int
750ffs_reallocblks_ufs2(ap)
751	struct vop_reallocblks_args /* {
752		struct vnode *a_vp;
753		struct cluster_save *a_buflist;
754	} */ *ap;
755{
756	struct fs *fs;
757	struct inode *ip;
758	struct vnode *vp;
759	struct buf *sbp, *ebp;
760	ufs2_daddr_t *bap, *sbap, *ebap = 0;
761	struct cluster_save *buflist;
762	struct ufsmount *ump;
763	ufs_lbn_t start_lbn, end_lbn;
764	ufs2_daddr_t soff, newblk, blkno, pref;
765	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
766	int i, cg, len, start_lvl, end_lvl, ssize;
767
768	vp = ap->a_vp;
769	ip = VTOI(vp);
770	fs = ip->i_fs;
771	ump = ip->i_ump;
772	/*
773	 * If we are not tracking block clusters or if we have less than 4%
774	 * free blocks left, then do not attempt to cluster. Running with
775	 * less than 5% free block reserve is not recommended and those that
776	 * choose to do so do not expect to have good file layout.
777	 */
778	if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0)
779		return (ENOSPC);
780	buflist = ap->a_buflist;
781	len = buflist->bs_nchildren;
782	start_lbn = buflist->bs_children[0]->b_lblkno;
783	end_lbn = start_lbn + len - 1;
784#ifdef INVARIANTS
785	for (i = 0; i < len; i++)
786		if (!ffs_checkblk(ip,
787		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
788			panic("ffs_reallocblks: unallocated block 1");
789	for (i = 1; i < len; i++)
790		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
791			panic("ffs_reallocblks: non-logical cluster");
792	blkno = buflist->bs_children[0]->b_blkno;
793	ssize = fsbtodb(fs, fs->fs_frag);
794	for (i = 1; i < len - 1; i++)
795		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
796			panic("ffs_reallocblks: non-physical cluster %d", i);
797#endif
798	/*
799	 * If the cluster crosses the boundary for the first indirect
800	 * block, do not move anything in it. Indirect blocks are
801	 * usually initially laid out in a position between the data
802	 * blocks. Block reallocation would usually destroy locality by
803	 * moving the indirect block out of the way to make room for
804	 * data blocks if we didn't compensate here. We should also do
805	 * this for other indirect block boundaries, but it is only
806	 * important for the first one.
807	 */
808	if (start_lbn < NDADDR && end_lbn >= NDADDR)
809		return (ENOSPC);
810	/*
811	 * If the latest allocation is in a new cylinder group, assume that
812	 * the filesystem has decided to move and do not force it back to
813	 * the previous cylinder group.
814	 */
815	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
816	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
817		return (ENOSPC);
818	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
819	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
820		return (ENOSPC);
821	/*
822	 * Get the starting offset and block map for the first block.
823	 */
824	if (start_lvl == 0) {
825		sbap = &ip->i_din2->di_db[0];
826		soff = start_lbn;
827	} else {
828		idp = &start_ap[start_lvl - 1];
829		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
830			brelse(sbp);
831			return (ENOSPC);
832		}
833		sbap = (ufs2_daddr_t *)sbp->b_data;
834		soff = idp->in_off;
835	}
836	/*
837	 * If the block range spans two block maps, get the second map.
838	 */
839	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
840		ssize = len;
841	} else {
842#ifdef INVARIANTS
843		if (start_lvl > 0 &&
844		    start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
845			panic("ffs_reallocblk: start == end");
846#endif
847		ssize = len - (idp->in_off + 1);
848		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
849			goto fail;
850		ebap = (ufs2_daddr_t *)ebp->b_data;
851	}
852	/*
853	 * Find the preferred location for the cluster. If we have not
854	 * previously failed at this endeavor, then follow our standard
855	 * preference calculation. If we have failed at it, then pick up
856	 * where we last ended our search.
857	 */
858	UFS_LOCK(ump);
859	if (ip->i_nextclustercg == -1)
860		pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap);
861	else
862		pref = cgdata(fs, ip->i_nextclustercg);
863	/*
864	 * Search the block map looking for an allocation of the desired size.
865	 * To avoid wasting too much time, we limit the number of cylinder
866	 * groups that we will search.
867	 */
868	cg = dtog(fs, pref);
869	for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) {
870		if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0)
871			break;
872		cg += 1;
873		if (cg >= fs->fs_ncg)
874			cg = 0;
875	}
876	/*
877	 * If we have failed in our search, record where we gave up for
878	 * next time. Otherwise, fall back to our usual search citerion.
879	 */
880	if (newblk == 0) {
881		ip->i_nextclustercg = cg;
882		UFS_UNLOCK(ump);
883		goto fail;
884	}
885	ip->i_nextclustercg = -1;
886	/*
887	 * We have found a new contiguous block.
888	 *
889	 * First we have to replace the old block pointers with the new
890	 * block pointers in the inode and indirect blocks associated
891	 * with the file.
892	 */
893#ifdef DEBUG
894	if (prtrealloc)
895		printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number,
896		    (intmax_t)start_lbn, (intmax_t)end_lbn);
897#endif
898	blkno = newblk;
899	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
900		if (i == ssize) {
901			bap = ebap;
902			soff = -i;
903		}
904#ifdef INVARIANTS
905		if (!ffs_checkblk(ip,
906		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
907			panic("ffs_reallocblks: unallocated block 2");
908		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
909			panic("ffs_reallocblks: alloc mismatch");
910#endif
911#ifdef DEBUG
912		if (prtrealloc)
913			printf(" %jd,", (intmax_t)*bap);
914#endif
915		if (DOINGSOFTDEP(vp)) {
916			if (sbap == &ip->i_din2->di_db[0] && i < ssize)
917				softdep_setup_allocdirect(ip, start_lbn + i,
918				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
919				    buflist->bs_children[i]);
920			else
921				softdep_setup_allocindir_page(ip, start_lbn + i,
922				    i < ssize ? sbp : ebp, soff + i, blkno,
923				    *bap, buflist->bs_children[i]);
924		}
925		*bap++ = blkno;
926	}
927	/*
928	 * Next we must write out the modified inode and indirect blocks.
929	 * For strict correctness, the writes should be synchronous since
930	 * the old block values may have been written to disk. In practise
931	 * they are almost never written, but if we are concerned about
932	 * strict correctness, the `doasyncfree' flag should be set to zero.
933	 *
934	 * The test on `doasyncfree' should be changed to test a flag
935	 * that shows whether the associated buffers and inodes have
936	 * been written. The flag should be set when the cluster is
937	 * started and cleared whenever the buffer or inode is flushed.
938	 * We can then check below to see if it is set, and do the
939	 * synchronous write only when it has been cleared.
940	 */
941	if (sbap != &ip->i_din2->di_db[0]) {
942		if (doasyncfree)
943			bdwrite(sbp);
944		else
945			bwrite(sbp);
946	} else {
947		ip->i_flag |= IN_CHANGE | IN_UPDATE;
948		if (!doasyncfree)
949			ffs_update(vp, 1);
950	}
951	if (ssize < len) {
952		if (doasyncfree)
953			bdwrite(ebp);
954		else
955			bwrite(ebp);
956	}
957	/*
958	 * Last, free the old blocks and assign the new blocks to the buffers.
959	 */
960#ifdef DEBUG
961	if (prtrealloc)
962		printf("\n\tnew:");
963#endif
964	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
965		if (!DOINGSOFTDEP(vp))
966			ffs_blkfree(ump, fs, ip->i_devvp,
967			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
968			    fs->fs_bsize, ip->i_number, vp->v_type, NULL);
969		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
970#ifdef INVARIANTS
971		if (!ffs_checkblk(ip,
972		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
973			panic("ffs_reallocblks: unallocated block 3");
974#endif
975#ifdef DEBUG
976		if (prtrealloc)
977			printf(" %jd,", (intmax_t)blkno);
978#endif
979	}
980#ifdef DEBUG
981	if (prtrealloc) {
982		prtrealloc--;
983		printf("\n");
984	}
985#endif
986	return (0);
987
988fail:
989	if (ssize < len)
990		brelse(ebp);
991	if (sbap != &ip->i_din2->di_db[0])
992		brelse(sbp);
993	return (ENOSPC);
994}
995
996/*
997 * Allocate an inode in the filesystem.
998 *
999 * If allocating a directory, use ffs_dirpref to select the inode.
1000 * If allocating in a directory, the following hierarchy is followed:
1001 *   1) allocate the preferred inode.
1002 *   2) allocate an inode in the same cylinder group.
1003 *   3) quadradically rehash into other cylinder groups, until an
1004 *      available inode is located.
1005 * If no inode preference is given the following hierarchy is used
1006 * to allocate an inode:
1007 *   1) allocate an inode in cylinder group 0.
1008 *   2) quadradically rehash into other cylinder groups, until an
1009 *      available inode is located.
1010 */
1011int
1012ffs_valloc(pvp, mode, cred, vpp)
1013	struct vnode *pvp;
1014	int mode;
1015	struct ucred *cred;
1016	struct vnode **vpp;
1017{
1018	struct inode *pip;
1019	struct fs *fs;
1020	struct inode *ip;
1021	struct timespec ts;
1022	struct ufsmount *ump;
1023	ino_t ino, ipref;
1024	u_int cg;
1025	int error, error1, reclaimed;
1026	static struct timeval lastfail;
1027	static int curfail;
1028
1029	*vpp = NULL;
1030	pip = VTOI(pvp);
1031	fs = pip->i_fs;
1032	ump = pip->i_ump;
1033
1034	UFS_LOCK(ump);
1035	reclaimed = 0;
1036retry:
1037	if (fs->fs_cstotal.cs_nifree == 0)
1038		goto noinodes;
1039
1040	if ((mode & IFMT) == IFDIR)
1041		ipref = ffs_dirpref(pip);
1042	else
1043		ipref = pip->i_number;
1044	if (ipref >= fs->fs_ncg * fs->fs_ipg)
1045		ipref = 0;
1046	cg = ino_to_cg(fs, ipref);
1047	/*
1048	 * Track number of dirs created one after another
1049	 * in a same cg without intervening by files.
1050	 */
1051	if ((mode & IFMT) == IFDIR) {
1052		if (fs->fs_contigdirs[cg] < 255)
1053			fs->fs_contigdirs[cg]++;
1054	} else {
1055		if (fs->fs_contigdirs[cg] > 0)
1056			fs->fs_contigdirs[cg]--;
1057	}
1058	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0,
1059					(allocfcn_t *)ffs_nodealloccg);
1060	if (ino == 0)
1061		goto noinodes;
1062	error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp);
1063	if (error) {
1064		error1 = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp,
1065		    FFSV_FORCEINSMQ);
1066		ffs_vfree(pvp, ino, mode);
1067		if (error1 == 0) {
1068			ip = VTOI(*vpp);
1069			if (ip->i_mode)
1070				goto dup_alloc;
1071			ip->i_flag |= IN_MODIFIED;
1072			vput(*vpp);
1073		}
1074		return (error);
1075	}
1076	ip = VTOI(*vpp);
1077	if (ip->i_mode) {
1078dup_alloc:
1079		printf("mode = 0%o, inum = %lu, fs = %s\n",
1080		    ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt);
1081		panic("ffs_valloc: dup alloc");
1082	}
1083	if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) {  /* XXX */
1084		printf("free inode %s/%lu had %ld blocks\n",
1085		    fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks));
1086		DIP_SET(ip, i_blocks, 0);
1087	}
1088	ip->i_flags = 0;
1089	DIP_SET(ip, i_flags, 0);
1090	/*
1091	 * Set up a new generation number for this inode.
1092	 */
1093	if (ip->i_gen == 0 || ++ip->i_gen == 0)
1094		ip->i_gen = arc4random() / 2 + 1;
1095	DIP_SET(ip, i_gen, ip->i_gen);
1096	if (fs->fs_magic == FS_UFS2_MAGIC) {
1097		vfs_timestamp(&ts);
1098		ip->i_din2->di_birthtime = ts.tv_sec;
1099		ip->i_din2->di_birthnsec = ts.tv_nsec;
1100	}
1101	ufs_prepare_reclaim(*vpp);
1102	ip->i_flag = 0;
1103	(*vpp)->v_vflag = 0;
1104	(*vpp)->v_type = VNON;
1105	if (fs->fs_magic == FS_UFS2_MAGIC)
1106		(*vpp)->v_op = &ffs_vnodeops2;
1107	else
1108		(*vpp)->v_op = &ffs_vnodeops1;
1109	return (0);
1110noinodes:
1111	if (reclaimed == 0) {
1112		reclaimed = 1;
1113		softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT);
1114		goto retry;
1115	}
1116	UFS_UNLOCK(ump);
1117	if (ppsratecheck(&lastfail, &curfail, 1)) {
1118		ffs_fserr(fs, pip->i_number, "out of inodes");
1119		uprintf("\n%s: create/symlink failed, no inodes free\n",
1120		    fs->fs_fsmnt);
1121	}
1122	return (ENOSPC);
1123}
1124
1125/*
1126 * Find a cylinder group to place a directory.
1127 *
1128 * The policy implemented by this algorithm is to allocate a
1129 * directory inode in the same cylinder group as its parent
1130 * directory, but also to reserve space for its files inodes
1131 * and data. Restrict the number of directories which may be
1132 * allocated one after another in the same cylinder group
1133 * without intervening allocation of files.
1134 *
1135 * If we allocate a first level directory then force allocation
1136 * in another cylinder group.
1137 */
1138static ino_t
1139ffs_dirpref(pip)
1140	struct inode *pip;
1141{
1142	struct fs *fs;
1143	int cg, prefcg, dirsize, cgsize;
1144	u_int avgifree, avgbfree, avgndir, curdirsize;
1145	u_int minifree, minbfree, maxndir;
1146	u_int mincg, minndir;
1147	u_int maxcontigdirs;
1148
1149	mtx_assert(UFS_MTX(pip->i_ump), MA_OWNED);
1150	fs = pip->i_fs;
1151
1152	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
1153	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1154	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
1155
1156	/*
1157	 * Force allocation in another cg if creating a first level dir.
1158	 */
1159	ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref");
1160	if (ITOV(pip)->v_vflag & VV_ROOT) {
1161		prefcg = arc4random() % fs->fs_ncg;
1162		mincg = prefcg;
1163		minndir = fs->fs_ipg;
1164		for (cg = prefcg; cg < fs->fs_ncg; cg++)
1165			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
1166			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
1167			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1168				mincg = cg;
1169				minndir = fs->fs_cs(fs, cg).cs_ndir;
1170			}
1171		for (cg = 0; cg < prefcg; cg++)
1172			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
1173			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
1174			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1175				mincg = cg;
1176				minndir = fs->fs_cs(fs, cg).cs_ndir;
1177			}
1178		return ((ino_t)(fs->fs_ipg * mincg));
1179	}
1180
1181	/*
1182	 * Count various limits which used for
1183	 * optimal allocation of a directory inode.
1184	 */
1185	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
1186	minifree = avgifree - avgifree / 4;
1187	if (minifree < 1)
1188		minifree = 1;
1189	minbfree = avgbfree - avgbfree / 4;
1190	if (minbfree < 1)
1191		minbfree = 1;
1192	cgsize = fs->fs_fsize * fs->fs_fpg;
1193	dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
1194	curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
1195	if (dirsize < curdirsize)
1196		dirsize = curdirsize;
1197	if (dirsize <= 0)
1198		maxcontigdirs = 0;		/* dirsize overflowed */
1199	else
1200		maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
1201	if (fs->fs_avgfpdir > 0)
1202		maxcontigdirs = min(maxcontigdirs,
1203				    fs->fs_ipg / fs->fs_avgfpdir);
1204	if (maxcontigdirs == 0)
1205		maxcontigdirs = 1;
1206
1207	/*
1208	 * Limit number of dirs in one cg and reserve space for
1209	 * regular files, but only if we have no deficit in
1210	 * inodes or space.
1211	 *
1212	 * We are trying to find a suitable cylinder group nearby
1213	 * our preferred cylinder group to place a new directory.
1214	 * We scan from our preferred cylinder group forward looking
1215	 * for a cylinder group that meets our criterion. If we get
1216	 * to the final cylinder group and do not find anything,
1217	 * we start scanning backwards from our preferred cylinder
1218	 * group. The ideal would be to alternate looking forward
1219	 * and backward, but that is just too complex to code for
1220	 * the gain it would get. The most likely place where the
1221	 * backward scan would take effect is when we start near
1222	 * the end of the filesystem and do not find anything from
1223	 * where we are to the end. In that case, scanning backward
1224	 * will likely find us a suitable cylinder group much closer
1225	 * to our desired location than if we were to start scanning
1226	 * forward from the beginning of the filesystem.
1227	 */
1228	prefcg = ino_to_cg(fs, pip->i_number);
1229	for (cg = prefcg; cg < fs->fs_ncg; cg++)
1230		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1231		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1232		    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1233			if (fs->fs_contigdirs[cg] < maxcontigdirs)
1234				return ((ino_t)(fs->fs_ipg * cg));
1235		}
1236	for (cg = 0; cg < prefcg; cg++)
1237		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1238		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1239		    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1240			if (fs->fs_contigdirs[cg] < maxcontigdirs)
1241				return ((ino_t)(fs->fs_ipg * cg));
1242		}
1243	/*
1244	 * This is a backstop when we have deficit in space.
1245	 */
1246	for (cg = prefcg; cg < fs->fs_ncg; cg++)
1247		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1248			return ((ino_t)(fs->fs_ipg * cg));
1249	for (cg = 0; cg < prefcg; cg++)
1250		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1251			break;
1252	return ((ino_t)(fs->fs_ipg * cg));
1253}
1254
1255/*
1256 * Select the desired position for the next block in a file.  The file is
1257 * logically divided into sections. The first section is composed of the
1258 * direct blocks and the next fs_maxbpg blocks. Each additional section
1259 * contains fs_maxbpg blocks.
1260 *
1261 * If no blocks have been allocated in the first section, the policy is to
1262 * request a block in the same cylinder group as the inode that describes
1263 * the file. The first indirect is allocated immediately following the last
1264 * direct block and the data blocks for the first indirect immediately
1265 * follow it.
1266 *
1267 * If no blocks have been allocated in any other section, the indirect
1268 * block(s) are allocated in the same cylinder group as its inode in an
1269 * area reserved immediately following the inode blocks. The policy for
1270 * the data blocks is to place them in a cylinder group with a greater than
1271 * average number of free blocks. An appropriate cylinder group is found
1272 * by using a rotor that sweeps the cylinder groups. When a new group of
1273 * blocks is needed, the sweep begins in the cylinder group following the
1274 * cylinder group from which the previous allocation was made. The sweep
1275 * continues until a cylinder group with greater than the average number
1276 * of free blocks is found. If the allocation is for the first block in an
1277 * indirect block or the previous block is a hole, then the information on
1278 * the previous allocation is unavailable; here a best guess is made based
1279 * on the logical block number being allocated.
1280 *
1281 * If a section is already partially allocated, the policy is to
1282 * allocate blocks contiguously within the section if possible.
1283 */
1284ufs2_daddr_t
1285ffs_blkpref_ufs1(ip, lbn, indx, bap)
1286	struct inode *ip;
1287	ufs_lbn_t lbn;
1288	int indx;
1289	ufs1_daddr_t *bap;
1290{
1291	struct fs *fs;
1292	u_int cg, inocg;
1293	u_int avgbfree, startcg;
1294	ufs2_daddr_t pref;
1295
1296	KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
1297	mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED);
1298	fs = ip->i_fs;
1299	/*
1300	 * Allocation of indirect blocks is indicated by passing negative
1301	 * values in indx: -1 for single indirect, -2 for double indirect,
1302	 * -3 for triple indirect. As noted below, we attempt to allocate
1303	 * the first indirect inline with the file data. For all later
1304	 * indirect blocks, the data is often allocated in other cylinder
1305	 * groups. However to speed random file access and to speed up
1306	 * fsck, the filesystem reserves the first fs_metaspace blocks
1307	 * (typically half of fs_minfree) of the data area of each cylinder
1308	 * group to hold these later indirect blocks.
1309	 */
1310	inocg = ino_to_cg(fs, ip->i_number);
1311	if (indx < 0) {
1312		/*
1313		 * Our preference for indirect blocks is the zone at the
1314		 * beginning of the inode's cylinder group data area that
1315		 * we try to reserve for indirect blocks.
1316		 */
1317		pref = cgmeta(fs, inocg);
1318		/*
1319		 * If we are allocating the first indirect block, try to
1320		 * place it immediately following the last direct block.
1321		 */
1322		if (indx == -1 && lbn < NDADDR + NINDIR(fs) &&
1323		    ip->i_din1->di_db[NDADDR - 1] != 0)
1324			pref = ip->i_din1->di_db[NDADDR - 1] + fs->fs_frag;
1325		return (pref);
1326	}
1327	/*
1328	 * If we are allocating the first data block in the first indirect
1329	 * block and the indirect has been allocated in the data block area,
1330	 * try to place it immediately following the indirect block.
1331	 */
1332	if (lbn == NDADDR) {
1333		pref = ip->i_din1->di_ib[0];
1334		if (pref != 0 && pref >= cgdata(fs, inocg) &&
1335		    pref < cgbase(fs, inocg + 1))
1336			return (pref + fs->fs_frag);
1337	}
1338	/*
1339	 * If we are at the beginning of a file, or we have already allocated
1340	 * the maximum number of blocks per cylinder group, or we do not
1341	 * have a block allocated immediately preceeding us, then we need
1342	 * to decide where to start allocating new blocks.
1343	 */
1344	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1345		/*
1346		 * If we are allocating a directory data block, we want
1347		 * to place it in the metadata area.
1348		 */
1349		if ((ip->i_mode & IFMT) == IFDIR)
1350			return (cgmeta(fs, inocg));
1351		/*
1352		 * Until we fill all the direct and all the first indirect's
1353		 * blocks, we try to allocate in the data area of the inode's
1354		 * cylinder group.
1355		 */
1356		if (lbn < NDADDR + NINDIR(fs))
1357			return (cgdata(fs, inocg));
1358		/*
1359		 * Find a cylinder with greater than average number of
1360		 * unused data blocks.
1361		 */
1362		if (indx == 0 || bap[indx - 1] == 0)
1363			startcg = inocg + lbn / fs->fs_maxbpg;
1364		else
1365			startcg = dtog(fs, bap[indx - 1]) + 1;
1366		startcg %= fs->fs_ncg;
1367		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1368		for (cg = startcg; cg < fs->fs_ncg; cg++)
1369			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1370				fs->fs_cgrotor = cg;
1371				return (cgdata(fs, cg));
1372			}
1373		for (cg = 0; cg <= startcg; cg++)
1374			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1375				fs->fs_cgrotor = cg;
1376				return (cgdata(fs, cg));
1377			}
1378		return (0);
1379	}
1380	/*
1381	 * Otherwise, we just always try to lay things out contiguously.
1382	 */
1383	return (bap[indx - 1] + fs->fs_frag);
1384}
1385
1386/*
1387 * Same as above, but for UFS2
1388 */
1389ufs2_daddr_t
1390ffs_blkpref_ufs2(ip, lbn, indx, bap)
1391	struct inode *ip;
1392	ufs_lbn_t lbn;
1393	int indx;
1394	ufs2_daddr_t *bap;
1395{
1396	struct fs *fs;
1397	u_int cg, inocg;
1398	u_int avgbfree, startcg;
1399	ufs2_daddr_t pref;
1400
1401	KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
1402	mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED);
1403	fs = ip->i_fs;
1404	/*
1405	 * Allocation of indirect blocks is indicated by passing negative
1406	 * values in indx: -1 for single indirect, -2 for double indirect,
1407	 * -3 for triple indirect. As noted below, we attempt to allocate
1408	 * the first indirect inline with the file data. For all later
1409	 * indirect blocks, the data is often allocated in other cylinder
1410	 * groups. However to speed random file access and to speed up
1411	 * fsck, the filesystem reserves the first fs_metaspace blocks
1412	 * (typically half of fs_minfree) of the data area of each cylinder
1413	 * group to hold these later indirect blocks.
1414	 */
1415	inocg = ino_to_cg(fs, ip->i_number);
1416	if (indx < 0) {
1417		/*
1418		 * Our preference for indirect blocks is the zone at the
1419		 * beginning of the inode's cylinder group data area that
1420		 * we try to reserve for indirect blocks.
1421		 */
1422		pref = cgmeta(fs, inocg);
1423		/*
1424		 * If we are allocating the first indirect block, try to
1425		 * place it immediately following the last direct block.
1426		 */
1427		if (indx == -1 && lbn < NDADDR + NINDIR(fs) &&
1428		    ip->i_din2->di_db[NDADDR - 1] != 0)
1429			pref = ip->i_din2->di_db[NDADDR - 1] + fs->fs_frag;
1430		return (pref);
1431	}
1432	/*
1433	 * If we are allocating the first data block in the first indirect
1434	 * block and the indirect has been allocated in the data block area,
1435	 * try to place it immediately following the indirect block.
1436	 */
1437	if (lbn == NDADDR) {
1438		pref = ip->i_din2->di_ib[0];
1439		if (pref != 0 && pref >= cgdata(fs, inocg) &&
1440		    pref < cgbase(fs, inocg + 1))
1441			return (pref + fs->fs_frag);
1442	}
1443	/*
1444	 * If we are at the beginning of a file, or we have already allocated
1445	 * the maximum number of blocks per cylinder group, or we do not
1446	 * have a block allocated immediately preceeding us, then we need
1447	 * to decide where to start allocating new blocks.
1448	 */
1449	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1450		/*
1451		 * If we are allocating a directory data block, we want
1452		 * to place it in the metadata area.
1453		 */
1454		if ((ip->i_mode & IFMT) == IFDIR)
1455			return (cgmeta(fs, inocg));
1456		/*
1457		 * Until we fill all the direct and all the first indirect's
1458		 * blocks, we try to allocate in the data area of the inode's
1459		 * cylinder group.
1460		 */
1461		if (lbn < NDADDR + NINDIR(fs))
1462			return (cgdata(fs, inocg));
1463		/*
1464		 * Find a cylinder with greater than average number of
1465		 * unused data blocks.
1466		 */
1467		if (indx == 0 || bap[indx - 1] == 0)
1468			startcg = inocg + lbn / fs->fs_maxbpg;
1469		else
1470			startcg = dtog(fs, bap[indx - 1]) + 1;
1471		startcg %= fs->fs_ncg;
1472		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1473		for (cg = startcg; cg < fs->fs_ncg; cg++)
1474			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1475				fs->fs_cgrotor = cg;
1476				return (cgdata(fs, cg));
1477			}
1478		for (cg = 0; cg <= startcg; cg++)
1479			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1480				fs->fs_cgrotor = cg;
1481				return (cgdata(fs, cg));
1482			}
1483		return (0);
1484	}
1485	/*
1486	 * Otherwise, we just always try to lay things out contiguously.
1487	 */
1488	return (bap[indx - 1] + fs->fs_frag);
1489}
1490
1491/*
1492 * Implement the cylinder overflow algorithm.
1493 *
1494 * The policy implemented by this algorithm is:
1495 *   1) allocate the block in its requested cylinder group.
1496 *   2) quadradically rehash on the cylinder group number.
1497 *   3) brute force search for a free block.
1498 *
1499 * Must be called with the UFS lock held.  Will release the lock on success
1500 * and return with it held on failure.
1501 */
1502/*VARARGS5*/
1503static ufs2_daddr_t
1504ffs_hashalloc(ip, cg, pref, size, rsize, allocator)
1505	struct inode *ip;
1506	u_int cg;
1507	ufs2_daddr_t pref;
1508	int size;	/* Search size for data blocks, mode for inodes */
1509	int rsize;	/* Real allocated size. */
1510	allocfcn_t *allocator;
1511{
1512	struct fs *fs;
1513	ufs2_daddr_t result;
1514	u_int i, icg = cg;
1515
1516	mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED);
1517#ifdef INVARIANTS
1518	if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
1519		panic("ffs_hashalloc: allocation on suspended filesystem");
1520#endif
1521	fs = ip->i_fs;
1522	/*
1523	 * 1: preferred cylinder group
1524	 */
1525	result = (*allocator)(ip, cg, pref, size, rsize);
1526	if (result)
1527		return (result);
1528	/*
1529	 * 2: quadratic rehash
1530	 */
1531	for (i = 1; i < fs->fs_ncg; i *= 2) {
1532		cg += i;
1533		if (cg >= fs->fs_ncg)
1534			cg -= fs->fs_ncg;
1535		result = (*allocator)(ip, cg, 0, size, rsize);
1536		if (result)
1537			return (result);
1538	}
1539	/*
1540	 * 3: brute force search
1541	 * Note that we start at i == 2, since 0 was checked initially,
1542	 * and 1 is always checked in the quadratic rehash.
1543	 */
1544	cg = (icg + 2) % fs->fs_ncg;
1545	for (i = 2; i < fs->fs_ncg; i++) {
1546		result = (*allocator)(ip, cg, 0, size, rsize);
1547		if (result)
1548			return (result);
1549		cg++;
1550		if (cg == fs->fs_ncg)
1551			cg = 0;
1552	}
1553	return (0);
1554}
1555
1556/*
1557 * Determine whether a fragment can be extended.
1558 *
1559 * Check to see if the necessary fragments are available, and
1560 * if they are, allocate them.
1561 */
1562static ufs2_daddr_t
1563ffs_fragextend(ip, cg, bprev, osize, nsize)
1564	struct inode *ip;
1565	u_int cg;
1566	ufs2_daddr_t bprev;
1567	int osize, nsize;
1568{
1569	struct fs *fs;
1570	struct cg *cgp;
1571	struct buf *bp;
1572	struct ufsmount *ump;
1573	int nffree;
1574	long bno;
1575	int frags, bbase;
1576	int i, error;
1577	u_int8_t *blksfree;
1578
1579	ump = ip->i_ump;
1580	fs = ip->i_fs;
1581	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1582		return (0);
1583	frags = numfrags(fs, nsize);
1584	bbase = fragnum(fs, bprev);
1585	if (bbase > fragnum(fs, (bprev + frags - 1))) {
1586		/* cannot extend across a block boundary */
1587		return (0);
1588	}
1589	UFS_UNLOCK(ump);
1590	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1591		(int)fs->fs_cgsize, NOCRED, &bp);
1592	if (error)
1593		goto fail;
1594	cgp = (struct cg *)bp->b_data;
1595	if (!cg_chkmagic(cgp))
1596		goto fail;
1597	bp->b_xflags |= BX_BKGRDWRITE;
1598	cgp->cg_old_time = cgp->cg_time = time_second;
1599	bno = dtogd(fs, bprev);
1600	blksfree = cg_blksfree(cgp);
1601	for (i = numfrags(fs, osize); i < frags; i++)
1602		if (isclr(blksfree, bno + i))
1603			goto fail;
1604	/*
1605	 * the current fragment can be extended
1606	 * deduct the count on fragment being extended into
1607	 * increase the count on the remaining fragment (if any)
1608	 * allocate the extended piece
1609	 */
1610	for (i = frags; i < fs->fs_frag - bbase; i++)
1611		if (isclr(blksfree, bno + i))
1612			break;
1613	cgp->cg_frsum[i - numfrags(fs, osize)]--;
1614	if (i != frags)
1615		cgp->cg_frsum[i - frags]++;
1616	for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) {
1617		clrbit(blksfree, bno + i);
1618		cgp->cg_cs.cs_nffree--;
1619		nffree++;
1620	}
1621	UFS_LOCK(ump);
1622	fs->fs_cstotal.cs_nffree -= nffree;
1623	fs->fs_cs(fs, cg).cs_nffree -= nffree;
1624	fs->fs_fmod = 1;
1625	ACTIVECLEAR(fs, cg);
1626	UFS_UNLOCK(ump);
1627	if (DOINGSOFTDEP(ITOV(ip)))
1628		softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev,
1629		    frags, numfrags(fs, osize));
1630	bdwrite(bp);
1631	return (bprev);
1632
1633fail:
1634	brelse(bp);
1635	UFS_LOCK(ump);
1636	return (0);
1637
1638}
1639
1640/*
1641 * Determine whether a block can be allocated.
1642 *
1643 * Check to see if a block of the appropriate size is available,
1644 * and if it is, allocate it.
1645 */
1646static ufs2_daddr_t
1647ffs_alloccg(ip, cg, bpref, size, rsize)
1648	struct inode *ip;
1649	u_int cg;
1650	ufs2_daddr_t bpref;
1651	int size;
1652	int rsize;
1653{
1654	struct fs *fs;
1655	struct cg *cgp;
1656	struct buf *bp;
1657	struct ufsmount *ump;
1658	ufs1_daddr_t bno;
1659	ufs2_daddr_t blkno;
1660	int i, allocsiz, error, frags;
1661	u_int8_t *blksfree;
1662
1663	ump = ip->i_ump;
1664	fs = ip->i_fs;
1665	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1666		return (0);
1667	UFS_UNLOCK(ump);
1668	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1669		(int)fs->fs_cgsize, NOCRED, &bp);
1670	if (error)
1671		goto fail;
1672	cgp = (struct cg *)bp->b_data;
1673	if (!cg_chkmagic(cgp) ||
1674	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1675		goto fail;
1676	bp->b_xflags |= BX_BKGRDWRITE;
1677	cgp->cg_old_time = cgp->cg_time = time_second;
1678	if (size == fs->fs_bsize) {
1679		UFS_LOCK(ump);
1680		blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
1681		ACTIVECLEAR(fs, cg);
1682		UFS_UNLOCK(ump);
1683		bdwrite(bp);
1684		return (blkno);
1685	}
1686	/*
1687	 * check to see if any fragments are already available
1688	 * allocsiz is the size which will be allocated, hacking
1689	 * it down to a smaller size if necessary
1690	 */
1691	blksfree = cg_blksfree(cgp);
1692	frags = numfrags(fs, size);
1693	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1694		if (cgp->cg_frsum[allocsiz] != 0)
1695			break;
1696	if (allocsiz == fs->fs_frag) {
1697		/*
1698		 * no fragments were available, so a block will be
1699		 * allocated, and hacked up
1700		 */
1701		if (cgp->cg_cs.cs_nbfree == 0)
1702			goto fail;
1703		UFS_LOCK(ump);
1704		blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
1705		ACTIVECLEAR(fs, cg);
1706		UFS_UNLOCK(ump);
1707		bdwrite(bp);
1708		return (blkno);
1709	}
1710	KASSERT(size == rsize,
1711	    ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize));
1712	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1713	if (bno < 0)
1714		goto fail;
1715	for (i = 0; i < frags; i++)
1716		clrbit(blksfree, bno + i);
1717	cgp->cg_cs.cs_nffree -= frags;
1718	cgp->cg_frsum[allocsiz]--;
1719	if (frags != allocsiz)
1720		cgp->cg_frsum[allocsiz - frags]++;
1721	UFS_LOCK(ump);
1722	fs->fs_cstotal.cs_nffree -= frags;
1723	fs->fs_cs(fs, cg).cs_nffree -= frags;
1724	fs->fs_fmod = 1;
1725	blkno = cgbase(fs, cg) + bno;
1726	ACTIVECLEAR(fs, cg);
1727	UFS_UNLOCK(ump);
1728	if (DOINGSOFTDEP(ITOV(ip)))
1729		softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0);
1730	bdwrite(bp);
1731	return (blkno);
1732
1733fail:
1734	brelse(bp);
1735	UFS_LOCK(ump);
1736	return (0);
1737}
1738
1739/*
1740 * Allocate a block in a cylinder group.
1741 *
1742 * This algorithm implements the following policy:
1743 *   1) allocate the requested block.
1744 *   2) allocate a rotationally optimal block in the same cylinder.
1745 *   3) allocate the next available block on the block rotor for the
1746 *      specified cylinder group.
1747 * Note that this routine only allocates fs_bsize blocks; these
1748 * blocks may be fragmented by the routine that allocates them.
1749 */
1750static ufs2_daddr_t
1751ffs_alloccgblk(ip, bp, bpref, size)
1752	struct inode *ip;
1753	struct buf *bp;
1754	ufs2_daddr_t bpref;
1755	int size;
1756{
1757	struct fs *fs;
1758	struct cg *cgp;
1759	struct ufsmount *ump;
1760	ufs1_daddr_t bno;
1761	ufs2_daddr_t blkno;
1762	u_int8_t *blksfree;
1763	int i, cgbpref;
1764
1765	fs = ip->i_fs;
1766	ump = ip->i_ump;
1767	mtx_assert(UFS_MTX(ump), MA_OWNED);
1768	cgp = (struct cg *)bp->b_data;
1769	blksfree = cg_blksfree(cgp);
1770	if (bpref == 0) {
1771		bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag;
1772	} else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) {
1773		/* map bpref to correct zone in this cg */
1774		if (bpref < cgdata(fs, cgbpref))
1775			bpref = cgmeta(fs, cgp->cg_cgx);
1776		else
1777			bpref = cgdata(fs, cgp->cg_cgx);
1778	}
1779	/*
1780	 * if the requested block is available, use it
1781	 */
1782	bno = dtogd(fs, blknum(fs, bpref));
1783	if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1784		goto gotit;
1785	/*
1786	 * Take the next available block in this cylinder group.
1787	 */
1788	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1789	if (bno < 0)
1790		return (0);
1791	/* Update cg_rotor only if allocated from the data zone */
1792	if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx)))
1793		cgp->cg_rotor = bno;
1794gotit:
1795	blkno = fragstoblks(fs, bno);
1796	ffs_clrblock(fs, blksfree, (long)blkno);
1797	ffs_clusteracct(fs, cgp, blkno, -1);
1798	cgp->cg_cs.cs_nbfree--;
1799	fs->fs_cstotal.cs_nbfree--;
1800	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1801	fs->fs_fmod = 1;
1802	blkno = cgbase(fs, cgp->cg_cgx) + bno;
1803	/*
1804	 * If the caller didn't want the whole block free the frags here.
1805	 */
1806	size = numfrags(fs, size);
1807	if (size != fs->fs_frag) {
1808		bno = dtogd(fs, blkno);
1809		for (i = size; i < fs->fs_frag; i++)
1810			setbit(blksfree, bno + i);
1811		i = fs->fs_frag - size;
1812		cgp->cg_cs.cs_nffree += i;
1813		fs->fs_cstotal.cs_nffree += i;
1814		fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i;
1815		fs->fs_fmod = 1;
1816		cgp->cg_frsum[i]++;
1817	}
1818	/* XXX Fixme. */
1819	UFS_UNLOCK(ump);
1820	if (DOINGSOFTDEP(ITOV(ip)))
1821		softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno,
1822		    size, 0);
1823	UFS_LOCK(ump);
1824	return (blkno);
1825}
1826
1827/*
1828 * Determine whether a cluster can be allocated.
1829 *
1830 * We do not currently check for optimal rotational layout if there
1831 * are multiple choices in the same cylinder group. Instead we just
1832 * take the first one that we find following bpref.
1833 */
1834static ufs2_daddr_t
1835ffs_clusteralloc(ip, cg, bpref, len)
1836	struct inode *ip;
1837	u_int cg;
1838	ufs2_daddr_t bpref;
1839	int len;
1840{
1841	struct fs *fs;
1842	struct cg *cgp;
1843	struct buf *bp;
1844	struct ufsmount *ump;
1845	int i, run, bit, map, got;
1846	ufs2_daddr_t bno;
1847	u_char *mapp;
1848	int32_t *lp;
1849	u_int8_t *blksfree;
1850
1851	fs = ip->i_fs;
1852	ump = ip->i_ump;
1853	if (fs->fs_maxcluster[cg] < len)
1854		return (0);
1855	UFS_UNLOCK(ump);
1856	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1857	    NOCRED, &bp))
1858		goto fail_lock;
1859	cgp = (struct cg *)bp->b_data;
1860	if (!cg_chkmagic(cgp))
1861		goto fail_lock;
1862	bp->b_xflags |= BX_BKGRDWRITE;
1863	/*
1864	 * Check to see if a cluster of the needed size (or bigger) is
1865	 * available in this cylinder group.
1866	 */
1867	lp = &cg_clustersum(cgp)[len];
1868	for (i = len; i <= fs->fs_contigsumsize; i++)
1869		if (*lp++ > 0)
1870			break;
1871	if (i > fs->fs_contigsumsize) {
1872		/*
1873		 * This is the first time looking for a cluster in this
1874		 * cylinder group. Update the cluster summary information
1875		 * to reflect the true maximum sized cluster so that
1876		 * future cluster allocation requests can avoid reading
1877		 * the cylinder group map only to find no clusters.
1878		 */
1879		lp = &cg_clustersum(cgp)[len - 1];
1880		for (i = len - 1; i > 0; i--)
1881			if (*lp-- > 0)
1882				break;
1883		UFS_LOCK(ump);
1884		fs->fs_maxcluster[cg] = i;
1885		goto fail;
1886	}
1887	/*
1888	 * Search the cluster map to find a big enough cluster.
1889	 * We take the first one that we find, even if it is larger
1890	 * than we need as we prefer to get one close to the previous
1891	 * block allocation. We do not search before the current
1892	 * preference point as we do not want to allocate a block
1893	 * that is allocated before the previous one (as we will
1894	 * then have to wait for another pass of the elevator
1895	 * algorithm before it will be read). We prefer to fail and
1896	 * be recalled to try an allocation in the next cylinder group.
1897	 */
1898	if (dtog(fs, bpref) != cg)
1899		bpref = cgdata(fs, cg);
1900	else
1901		bpref = blknum(fs, bpref);
1902	bpref = fragstoblks(fs, dtogd(fs, bpref));
1903	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1904	map = *mapp++;
1905	bit = 1 << (bpref % NBBY);
1906	for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1907		if ((map & bit) == 0) {
1908			run = 0;
1909		} else {
1910			run++;
1911			if (run == len)
1912				break;
1913		}
1914		if ((got & (NBBY - 1)) != (NBBY - 1)) {
1915			bit <<= 1;
1916		} else {
1917			map = *mapp++;
1918			bit = 1;
1919		}
1920	}
1921	if (got >= cgp->cg_nclusterblks)
1922		goto fail_lock;
1923	/*
1924	 * Allocate the cluster that we have found.
1925	 */
1926	blksfree = cg_blksfree(cgp);
1927	for (i = 1; i <= len; i++)
1928		if (!ffs_isblock(fs, blksfree, got - run + i))
1929			panic("ffs_clusteralloc: map mismatch");
1930	bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1);
1931	if (dtog(fs, bno) != cg)
1932		panic("ffs_clusteralloc: allocated out of group");
1933	len = blkstofrags(fs, len);
1934	UFS_LOCK(ump);
1935	for (i = 0; i < len; i += fs->fs_frag)
1936		if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i)
1937			panic("ffs_clusteralloc: lost block");
1938	ACTIVECLEAR(fs, cg);
1939	UFS_UNLOCK(ump);
1940	bdwrite(bp);
1941	return (bno);
1942
1943fail_lock:
1944	UFS_LOCK(ump);
1945fail:
1946	brelse(bp);
1947	return (0);
1948}
1949
1950static inline struct buf *
1951getinobuf(struct inode *ip, u_int cg, u_int32_t cginoblk, int gbflags)
1952{
1953	struct fs *fs;
1954
1955	fs = ip->i_fs;
1956	return (getblk(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs,
1957	    cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0,
1958	    gbflags));
1959}
1960
1961/*
1962 * Determine whether an inode can be allocated.
1963 *
1964 * Check to see if an inode is available, and if it is,
1965 * allocate it using the following policy:
1966 *   1) allocate the requested inode.
1967 *   2) allocate the next available inode after the requested
1968 *      inode in the specified cylinder group.
1969 */
1970static ufs2_daddr_t
1971ffs_nodealloccg(ip, cg, ipref, mode, unused)
1972	struct inode *ip;
1973	u_int cg;
1974	ufs2_daddr_t ipref;
1975	int mode;
1976	int unused;
1977{
1978	struct fs *fs;
1979	struct cg *cgp;
1980	struct buf *bp, *ibp;
1981	struct ufsmount *ump;
1982	u_int8_t *inosused, *loc;
1983	struct ufs2_dinode *dp2;
1984	int error, start, len, i;
1985	u_int32_t old_initediblk;
1986
1987	fs = ip->i_fs;
1988	ump = ip->i_ump;
1989check_nifree:
1990	if (fs->fs_cs(fs, cg).cs_nifree == 0)
1991		return (0);
1992	UFS_UNLOCK(ump);
1993	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1994		(int)fs->fs_cgsize, NOCRED, &bp);
1995	if (error) {
1996		brelse(bp);
1997		UFS_LOCK(ump);
1998		return (0);
1999	}
2000	cgp = (struct cg *)bp->b_data;
2001restart:
2002	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
2003		brelse(bp);
2004		UFS_LOCK(ump);
2005		return (0);
2006	}
2007	bp->b_xflags |= BX_BKGRDWRITE;
2008	inosused = cg_inosused(cgp);
2009	if (ipref) {
2010		ipref %= fs->fs_ipg;
2011		if (isclr(inosused, ipref))
2012			goto gotit;
2013	}
2014	start = cgp->cg_irotor / NBBY;
2015	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
2016	loc = memcchr(&inosused[start], 0xff, len);
2017	if (loc == NULL) {
2018		len = start + 1;
2019		start = 0;
2020		loc = memcchr(&inosused[start], 0xff, len);
2021		if (loc == NULL) {
2022			printf("cg = %d, irotor = %ld, fs = %s\n",
2023			    cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
2024			panic("ffs_nodealloccg: map corrupted");
2025			/* NOTREACHED */
2026		}
2027	}
2028	ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1;
2029gotit:
2030	/*
2031	 * Check to see if we need to initialize more inodes.
2032	 */
2033	if (fs->fs_magic == FS_UFS2_MAGIC &&
2034	    ipref + INOPB(fs) > cgp->cg_initediblk &&
2035	    cgp->cg_initediblk < cgp->cg_niblk) {
2036		old_initediblk = cgp->cg_initediblk;
2037
2038		/*
2039		 * Free the cylinder group lock before writing the
2040		 * initialized inode block.  Entering the
2041		 * babarrierwrite() with the cylinder group lock
2042		 * causes lock order violation between the lock and
2043		 * snaplk.
2044		 *
2045		 * Another thread can decide to initialize the same
2046		 * inode block, but whichever thread first gets the
2047		 * cylinder group lock after writing the newly
2048		 * allocated inode block will update it and the other
2049		 * will realize that it has lost and leave the
2050		 * cylinder group unchanged.
2051		 */
2052		ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT);
2053		brelse(bp);
2054		if (ibp == NULL) {
2055			/*
2056			 * The inode block buffer is already owned by
2057			 * another thread, which must initialize it.
2058			 * Wait on the buffer to allow another thread
2059			 * to finish the updates, with dropped cg
2060			 * buffer lock, then retry.
2061			 */
2062			ibp = getinobuf(ip, cg, old_initediblk, 0);
2063			brelse(ibp);
2064			UFS_LOCK(ump);
2065			goto check_nifree;
2066		}
2067		bzero(ibp->b_data, (int)fs->fs_bsize);
2068		dp2 = (struct ufs2_dinode *)(ibp->b_data);
2069		for (i = 0; i < INOPB(fs); i++) {
2070			dp2->di_gen = arc4random() / 2 + 1;
2071			dp2++;
2072		}
2073		/*
2074		 * Rather than adding a soft updates dependency to ensure
2075		 * that the new inode block is written before it is claimed
2076		 * by the cylinder group map, we just do a barrier write
2077		 * here. The barrier write will ensure that the inode block
2078		 * gets written before the updated cylinder group map can be
2079		 * written. The barrier write should only slow down bulk
2080		 * loading of newly created filesystems.
2081		 */
2082		babarrierwrite(ibp);
2083
2084		/*
2085		 * After the inode block is written, try to update the
2086		 * cg initediblk pointer.  If another thread beat us
2087		 * to it, then leave it unchanged as the other thread
2088		 * has already set it correctly.
2089		 */
2090		error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
2091		    (int)fs->fs_cgsize, NOCRED, &bp);
2092		UFS_LOCK(ump);
2093		ACTIVECLEAR(fs, cg);
2094		UFS_UNLOCK(ump);
2095		if (error != 0) {
2096			brelse(bp);
2097			return (error);
2098		}
2099		cgp = (struct cg *)bp->b_data;
2100		if (cgp->cg_initediblk == old_initediblk)
2101			cgp->cg_initediblk += INOPB(fs);
2102		goto restart;
2103	}
2104	cgp->cg_old_time = cgp->cg_time = time_second;
2105	cgp->cg_irotor = ipref;
2106	UFS_LOCK(ump);
2107	ACTIVECLEAR(fs, cg);
2108	setbit(inosused, ipref);
2109	cgp->cg_cs.cs_nifree--;
2110	fs->fs_cstotal.cs_nifree--;
2111	fs->fs_cs(fs, cg).cs_nifree--;
2112	fs->fs_fmod = 1;
2113	if ((mode & IFMT) == IFDIR) {
2114		cgp->cg_cs.cs_ndir++;
2115		fs->fs_cstotal.cs_ndir++;
2116		fs->fs_cs(fs, cg).cs_ndir++;
2117	}
2118	UFS_UNLOCK(ump);
2119	if (DOINGSOFTDEP(ITOV(ip)))
2120		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode);
2121	bdwrite(bp);
2122	return ((ino_t)(cg * fs->fs_ipg + ipref));
2123}
2124
2125/*
2126 * Free a block or fragment.
2127 *
2128 * The specified block or fragment is placed back in the
2129 * free map. If a fragment is deallocated, a possible
2130 * block reassembly is checked.
2131 */
2132static void
2133ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd)
2134	struct ufsmount *ump;
2135	struct fs *fs;
2136	struct vnode *devvp;
2137	ufs2_daddr_t bno;
2138	long size;
2139	ino_t inum;
2140	struct workhead *dephd;
2141{
2142	struct mount *mp;
2143	struct cg *cgp;
2144	struct buf *bp;
2145	ufs1_daddr_t fragno, cgbno;
2146	ufs2_daddr_t cgblkno;
2147	int i, blk, frags, bbase;
2148	u_int cg;
2149	u_int8_t *blksfree;
2150	struct cdev *dev;
2151
2152	cg = dtog(fs, bno);
2153	if (devvp->v_type == VREG) {
2154		/* devvp is a snapshot */
2155		dev = VTOI(devvp)->i_devvp->v_rdev;
2156		cgblkno = fragstoblks(fs, cgtod(fs, cg));
2157	} else {
2158		/* devvp is a normal disk device */
2159		dev = devvp->v_rdev;
2160		cgblkno = fsbtodb(fs, cgtod(fs, cg));
2161		ASSERT_VOP_LOCKED(devvp, "ffs_blkfree_cg");
2162	}
2163#ifdef INVARIANTS
2164	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
2165	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
2166		printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n",
2167		    devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize,
2168		    size, fs->fs_fsmnt);
2169		panic("ffs_blkfree_cg: bad size");
2170	}
2171#endif
2172	if ((u_int)bno >= fs->fs_size) {
2173		printf("bad block %jd, ino %lu\n", (intmax_t)bno,
2174		    (u_long)inum);
2175		ffs_fserr(fs, inum, "bad block");
2176		return;
2177	}
2178	if (bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp)) {
2179		brelse(bp);
2180		return;
2181	}
2182	cgp = (struct cg *)bp->b_data;
2183	if (!cg_chkmagic(cgp)) {
2184		brelse(bp);
2185		return;
2186	}
2187	bp->b_xflags |= BX_BKGRDWRITE;
2188	cgp->cg_old_time = cgp->cg_time = time_second;
2189	cgbno = dtogd(fs, bno);
2190	blksfree = cg_blksfree(cgp);
2191	UFS_LOCK(ump);
2192	if (size == fs->fs_bsize) {
2193		fragno = fragstoblks(fs, cgbno);
2194		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
2195			if (devvp->v_type == VREG) {
2196				UFS_UNLOCK(ump);
2197				/* devvp is a snapshot */
2198				brelse(bp);
2199				return;
2200			}
2201			printf("dev = %s, block = %jd, fs = %s\n",
2202			    devtoname(dev), (intmax_t)bno, fs->fs_fsmnt);
2203			panic("ffs_blkfree_cg: freeing free block");
2204		}
2205		ffs_setblock(fs, blksfree, fragno);
2206		ffs_clusteracct(fs, cgp, fragno, 1);
2207		cgp->cg_cs.cs_nbfree++;
2208		fs->fs_cstotal.cs_nbfree++;
2209		fs->fs_cs(fs, cg).cs_nbfree++;
2210	} else {
2211		bbase = cgbno - fragnum(fs, cgbno);
2212		/*
2213		 * decrement the counts associated with the old frags
2214		 */
2215		blk = blkmap(fs, blksfree, bbase);
2216		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
2217		/*
2218		 * deallocate the fragment
2219		 */
2220		frags = numfrags(fs, size);
2221		for (i = 0; i < frags; i++) {
2222			if (isset(blksfree, cgbno + i)) {
2223				printf("dev = %s, block = %jd, fs = %s\n",
2224				    devtoname(dev), (intmax_t)(bno + i),
2225				    fs->fs_fsmnt);
2226				panic("ffs_blkfree_cg: freeing free frag");
2227			}
2228			setbit(blksfree, cgbno + i);
2229		}
2230		cgp->cg_cs.cs_nffree += i;
2231		fs->fs_cstotal.cs_nffree += i;
2232		fs->fs_cs(fs, cg).cs_nffree += i;
2233		/*
2234		 * add back in counts associated with the new frags
2235		 */
2236		blk = blkmap(fs, blksfree, bbase);
2237		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
2238		/*
2239		 * if a complete block has been reassembled, account for it
2240		 */
2241		fragno = fragstoblks(fs, bbase);
2242		if (ffs_isblock(fs, blksfree, fragno)) {
2243			cgp->cg_cs.cs_nffree -= fs->fs_frag;
2244			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
2245			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
2246			ffs_clusteracct(fs, cgp, fragno, 1);
2247			cgp->cg_cs.cs_nbfree++;
2248			fs->fs_cstotal.cs_nbfree++;
2249			fs->fs_cs(fs, cg).cs_nbfree++;
2250		}
2251	}
2252	fs->fs_fmod = 1;
2253	ACTIVECLEAR(fs, cg);
2254	UFS_UNLOCK(ump);
2255	mp = UFSTOVFS(ump);
2256	if (MOUNTEDSOFTDEP(mp) && devvp->v_type != VREG)
2257		softdep_setup_blkfree(UFSTOVFS(ump), bp, bno,
2258		    numfrags(fs, size), dephd);
2259	bdwrite(bp);
2260}
2261
2262struct ffs_blkfree_trim_params {
2263	struct task task;
2264	struct ufsmount *ump;
2265	struct vnode *devvp;
2266	ufs2_daddr_t bno;
2267	long size;
2268	ino_t inum;
2269	struct workhead *pdephd;
2270	struct workhead dephd;
2271};
2272
2273static void
2274ffs_blkfree_trim_task(ctx, pending)
2275	void *ctx;
2276	int pending;
2277{
2278	struct ffs_blkfree_trim_params *tp;
2279
2280	tp = ctx;
2281	ffs_blkfree_cg(tp->ump, tp->ump->um_fs, tp->devvp, tp->bno, tp->size,
2282	    tp->inum, tp->pdephd);
2283	vn_finished_secondary_write(UFSTOVFS(tp->ump));
2284	atomic_add_int(&tp->ump->um_trim_inflight, -1);
2285	free(tp, M_TEMP);
2286}
2287
2288static void
2289ffs_blkfree_trim_completed(bip)
2290	struct bio *bip;
2291{
2292	struct ffs_blkfree_trim_params *tp;
2293
2294	tp = bip->bio_caller2;
2295	g_destroy_bio(bip);
2296	TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp);
2297	taskqueue_enqueue(tp->ump->um_trim_tq, &tp->task);
2298}
2299
2300void
2301ffs_blkfree(ump, fs, devvp, bno, size, inum, vtype, dephd)
2302	struct ufsmount *ump;
2303	struct fs *fs;
2304	struct vnode *devvp;
2305	ufs2_daddr_t bno;
2306	long size;
2307	ino_t inum;
2308	enum vtype vtype;
2309	struct workhead *dephd;
2310{
2311	struct mount *mp;
2312	struct bio *bip;
2313	struct ffs_blkfree_trim_params *tp;
2314
2315	/*
2316	 * Check to see if a snapshot wants to claim the block.
2317	 * Check that devvp is a normal disk device, not a snapshot,
2318	 * it has a snapshot(s) associated with it, and one of the
2319	 * snapshots wants to claim the block.
2320	 */
2321	if (devvp->v_type != VREG &&
2322	    (devvp->v_vflag & VV_COPYONWRITE) &&
2323	    ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) {
2324		return;
2325	}
2326	/*
2327	 * Nothing to delay if TRIM is disabled, or the operation is
2328	 * performed on the snapshot.
2329	 */
2330	if (!ump->um_candelete || devvp->v_type == VREG) {
2331		ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd);
2332		return;
2333	}
2334
2335	/*
2336	 * Postpone the set of the free bit in the cg bitmap until the
2337	 * BIO_DELETE is completed.  Otherwise, due to disk queue
2338	 * reordering, TRIM might be issued after we reuse the block
2339	 * and write some new data into it.
2340	 */
2341	atomic_add_int(&ump->um_trim_inflight, 1);
2342	tp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TEMP, M_WAITOK);
2343	tp->ump = ump;
2344	tp->devvp = devvp;
2345	tp->bno = bno;
2346	tp->size = size;
2347	tp->inum = inum;
2348	if (dephd != NULL) {
2349		LIST_INIT(&tp->dephd);
2350		LIST_SWAP(dephd, &tp->dephd, worklist, wk_list);
2351		tp->pdephd = &tp->dephd;
2352	} else
2353		tp->pdephd = NULL;
2354
2355	bip = g_alloc_bio();
2356	bip->bio_cmd = BIO_DELETE;
2357	bip->bio_offset = dbtob(fsbtodb(fs, bno));
2358	bip->bio_done = ffs_blkfree_trim_completed;
2359	bip->bio_length = size;
2360	bip->bio_caller2 = tp;
2361
2362	mp = UFSTOVFS(ump);
2363	vn_start_secondary_write(NULL, &mp, 0);
2364	g_io_request(bip, (struct g_consumer *)devvp->v_bufobj.bo_private);
2365}
2366
2367#ifdef INVARIANTS
2368/*
2369 * Verify allocation of a block or fragment. Returns true if block or
2370 * fragment is allocated, false if it is free.
2371 */
2372static int
2373ffs_checkblk(ip, bno, size)
2374	struct inode *ip;
2375	ufs2_daddr_t bno;
2376	long size;
2377{
2378	struct fs *fs;
2379	struct cg *cgp;
2380	struct buf *bp;
2381	ufs1_daddr_t cgbno;
2382	int i, error, frags, free;
2383	u_int8_t *blksfree;
2384
2385	fs = ip->i_fs;
2386	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
2387		printf("bsize = %ld, size = %ld, fs = %s\n",
2388		    (long)fs->fs_bsize, size, fs->fs_fsmnt);
2389		panic("ffs_checkblk: bad size");
2390	}
2391	if ((u_int)bno >= fs->fs_size)
2392		panic("ffs_checkblk: bad block %jd", (intmax_t)bno);
2393	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
2394		(int)fs->fs_cgsize, NOCRED, &bp);
2395	if (error)
2396		panic("ffs_checkblk: cg bread failed");
2397	cgp = (struct cg *)bp->b_data;
2398	if (!cg_chkmagic(cgp))
2399		panic("ffs_checkblk: cg magic mismatch");
2400	bp->b_xflags |= BX_BKGRDWRITE;
2401	blksfree = cg_blksfree(cgp);
2402	cgbno = dtogd(fs, bno);
2403	if (size == fs->fs_bsize) {
2404		free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno));
2405	} else {
2406		frags = numfrags(fs, size);
2407		for (free = 0, i = 0; i < frags; i++)
2408			if (isset(blksfree, cgbno + i))
2409				free++;
2410		if (free != 0 && free != frags)
2411			panic("ffs_checkblk: partially free fragment");
2412	}
2413	brelse(bp);
2414	return (!free);
2415}
2416#endif /* INVARIANTS */
2417
2418/*
2419 * Free an inode.
2420 */
2421int
2422ffs_vfree(pvp, ino, mode)
2423	struct vnode *pvp;
2424	ino_t ino;
2425	int mode;
2426{
2427	struct inode *ip;
2428
2429	if (DOINGSOFTDEP(pvp)) {
2430		softdep_freefile(pvp, ino, mode);
2431		return (0);
2432	}
2433	ip = VTOI(pvp);
2434	return (ffs_freefile(ip->i_ump, ip->i_fs, ip->i_devvp, ino, mode,
2435	    NULL));
2436}
2437
2438/*
2439 * Do the actual free operation.
2440 * The specified inode is placed back in the free map.
2441 */
2442int
2443ffs_freefile(ump, fs, devvp, ino, mode, wkhd)
2444	struct ufsmount *ump;
2445	struct fs *fs;
2446	struct vnode *devvp;
2447	ino_t ino;
2448	int mode;
2449	struct workhead *wkhd;
2450{
2451	struct cg *cgp;
2452	struct buf *bp;
2453	ufs2_daddr_t cgbno;
2454	int error;
2455	u_int cg;
2456	u_int8_t *inosused;
2457	struct cdev *dev;
2458
2459	cg = ino_to_cg(fs, ino);
2460	if (devvp->v_type == VREG) {
2461		/* devvp is a snapshot */
2462		dev = VTOI(devvp)->i_devvp->v_rdev;
2463		cgbno = fragstoblks(fs, cgtod(fs, cg));
2464	} else {
2465		/* devvp is a normal disk device */
2466		dev = devvp->v_rdev;
2467		cgbno = fsbtodb(fs, cgtod(fs, cg));
2468	}
2469	if (ino >= fs->fs_ipg * fs->fs_ncg)
2470		panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s",
2471		    devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt);
2472	if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) {
2473		brelse(bp);
2474		return (error);
2475	}
2476	cgp = (struct cg *)bp->b_data;
2477	if (!cg_chkmagic(cgp)) {
2478		brelse(bp);
2479		return (0);
2480	}
2481	bp->b_xflags |= BX_BKGRDWRITE;
2482	cgp->cg_old_time = cgp->cg_time = time_second;
2483	inosused = cg_inosused(cgp);
2484	ino %= fs->fs_ipg;
2485	if (isclr(inosused, ino)) {
2486		printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev),
2487		    (uintmax_t)(ino + cg * fs->fs_ipg), fs->fs_fsmnt);
2488		if (fs->fs_ronly == 0)
2489			panic("ffs_freefile: freeing free inode");
2490	}
2491	clrbit(inosused, ino);
2492	if (ino < cgp->cg_irotor)
2493		cgp->cg_irotor = ino;
2494	cgp->cg_cs.cs_nifree++;
2495	UFS_LOCK(ump);
2496	fs->fs_cstotal.cs_nifree++;
2497	fs->fs_cs(fs, cg).cs_nifree++;
2498	if ((mode & IFMT) == IFDIR) {
2499		cgp->cg_cs.cs_ndir--;
2500		fs->fs_cstotal.cs_ndir--;
2501		fs->fs_cs(fs, cg).cs_ndir--;
2502	}
2503	fs->fs_fmod = 1;
2504	ACTIVECLEAR(fs, cg);
2505	UFS_UNLOCK(ump);
2506	if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type != VREG)
2507		softdep_setup_inofree(UFSTOVFS(ump), bp,
2508		    ino + cg * fs->fs_ipg, wkhd);
2509	bdwrite(bp);
2510	return (0);
2511}
2512
2513/*
2514 * Check to see if a file is free.
2515 */
2516int
2517ffs_checkfreefile(fs, devvp, ino)
2518	struct fs *fs;
2519	struct vnode *devvp;
2520	ino_t ino;
2521{
2522	struct cg *cgp;
2523	struct buf *bp;
2524	ufs2_daddr_t cgbno;
2525	int ret;
2526	u_int cg;
2527	u_int8_t *inosused;
2528
2529	cg = ino_to_cg(fs, ino);
2530	if (devvp->v_type == VREG) {
2531		/* devvp is a snapshot */
2532		cgbno = fragstoblks(fs, cgtod(fs, cg));
2533	} else {
2534		/* devvp is a normal disk device */
2535		cgbno = fsbtodb(fs, cgtod(fs, cg));
2536	}
2537	if (ino >= fs->fs_ipg * fs->fs_ncg)
2538		return (1);
2539	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) {
2540		brelse(bp);
2541		return (1);
2542	}
2543	cgp = (struct cg *)bp->b_data;
2544	if (!cg_chkmagic(cgp)) {
2545		brelse(bp);
2546		return (1);
2547	}
2548	inosused = cg_inosused(cgp);
2549	ino %= fs->fs_ipg;
2550	ret = isclr(inosused, ino);
2551	brelse(bp);
2552	return (ret);
2553}
2554
2555/*
2556 * Find a block of the specified size in the specified cylinder group.
2557 *
2558 * It is a panic if a request is made to find a block if none are
2559 * available.
2560 */
2561static ufs1_daddr_t
2562ffs_mapsearch(fs, cgp, bpref, allocsiz)
2563	struct fs *fs;
2564	struct cg *cgp;
2565	ufs2_daddr_t bpref;
2566	int allocsiz;
2567{
2568	ufs1_daddr_t bno;
2569	int start, len, loc, i;
2570	int blk, field, subfield, pos;
2571	u_int8_t *blksfree;
2572
2573	/*
2574	 * find the fragment by searching through the free block
2575	 * map for an appropriate bit pattern
2576	 */
2577	if (bpref)
2578		start = dtogd(fs, bpref) / NBBY;
2579	else
2580		start = cgp->cg_frotor / NBBY;
2581	blksfree = cg_blksfree(cgp);
2582	len = howmany(fs->fs_fpg, NBBY) - start;
2583	loc = scanc((u_int)len, (u_char *)&blksfree[start],
2584		fragtbl[fs->fs_frag],
2585		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2586	if (loc == 0) {
2587		len = start + 1;
2588		start = 0;
2589		loc = scanc((u_int)len, (u_char *)&blksfree[0],
2590			fragtbl[fs->fs_frag],
2591			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2592		if (loc == 0) {
2593			printf("start = %d, len = %d, fs = %s\n",
2594			    start, len, fs->fs_fsmnt);
2595			panic("ffs_alloccg: map corrupted");
2596			/* NOTREACHED */
2597		}
2598	}
2599	bno = (start + len - loc) * NBBY;
2600	cgp->cg_frotor = bno;
2601	/*
2602	 * found the byte in the map
2603	 * sift through the bits to find the selected frag
2604	 */
2605	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
2606		blk = blkmap(fs, blksfree, bno);
2607		blk <<= 1;
2608		field = around[allocsiz];
2609		subfield = inside[allocsiz];
2610		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
2611			if ((blk & field) == subfield)
2612				return (bno + pos);
2613			field <<= 1;
2614			subfield <<= 1;
2615		}
2616	}
2617	printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
2618	panic("ffs_alloccg: block not in map");
2619	return (-1);
2620}
2621
2622/*
2623 * Fserr prints the name of a filesystem with an error diagnostic.
2624 *
2625 * The form of the error message is:
2626 *	fs: error message
2627 */
2628void
2629ffs_fserr(fs, inum, cp)
2630	struct fs *fs;
2631	ino_t inum;
2632	char *cp;
2633{
2634	struct thread *td = curthread;	/* XXX */
2635	struct proc *p = td->td_proc;
2636
2637	log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n",
2638	    p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum,
2639	    fs->fs_fsmnt, cp);
2640}
2641
2642/*
2643 * This function provides the capability for the fsck program to
2644 * update an active filesystem. Fourteen operations are provided:
2645 *
2646 * adjrefcnt(inode, amt) - adjusts the reference count on the
2647 *	specified inode by the specified amount. Under normal
2648 *	operation the count should always go down. Decrementing
2649 *	the count to zero will cause the inode to be freed.
2650 * adjblkcnt(inode, amt) - adjust the number of blocks used by the
2651 *	inode by the specified amount.
2652 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) -
2653 *	adjust the superblock summary.
2654 * freedirs(inode, count) - directory inodes [inode..inode + count - 1]
2655 *	are marked as free. Inodes should never have to be marked
2656 *	as in use.
2657 * freefiles(inode, count) - file inodes [inode..inode + count - 1]
2658 *	are marked as free. Inodes should never have to be marked
2659 *	as in use.
2660 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1]
2661 *	are marked as free. Blocks should never have to be marked
2662 *	as in use.
2663 * setflags(flags, set/clear) - the fs_flags field has the specified
2664 *	flags set (second parameter +1) or cleared (second parameter -1).
2665 * setcwd(dirinode) - set the current directory to dirinode in the
2666 *	filesystem associated with the snapshot.
2667 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".."
2668 *	in the current directory is oldvalue then change it to newvalue.
2669 * unlink(nameptr, oldvalue) - Verify that the inode number associated
2670 *	with nameptr in the current directory is oldvalue then unlink it.
2671 *
2672 * The following functions may only be used on a quiescent filesystem
2673 * by the soft updates journal. They are not safe to be run on an active
2674 * filesystem.
2675 *
2676 * setinode(inode, dip) - the specified disk inode is replaced with the
2677 *	contents pointed to by dip.
2678 * setbufoutput(fd, flags) - output associated with the specified file
2679 *	descriptor (which must reference the character device supporting
2680 *	the filesystem) switches from using physio to running through the
2681 *	buffer cache when flags is set to 1. The descriptor reverts to
2682 *	physio for output when flags is set to zero.
2683 */
2684
2685static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS);
2686
2687SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT,
2688	0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count");
2689
2690static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR,
2691	sysctl_ffs_fsck, "Adjust Inode Used Blocks Count");
2692
2693static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR,
2694	sysctl_ffs_fsck, "Adjust number of directories");
2695
2696static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR,
2697	sysctl_ffs_fsck, "Adjust number of free blocks");
2698
2699static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR,
2700	sysctl_ffs_fsck, "Adjust number of free inodes");
2701
2702static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR,
2703	sysctl_ffs_fsck, "Adjust number of free frags");
2704
2705static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR,
2706	sysctl_ffs_fsck, "Adjust number of free clusters");
2707
2708static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR,
2709	sysctl_ffs_fsck, "Free Range of Directory Inodes");
2710
2711static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR,
2712	sysctl_ffs_fsck, "Free Range of File Inodes");
2713
2714static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR,
2715	sysctl_ffs_fsck, "Free Range of Blocks");
2716
2717static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR,
2718	sysctl_ffs_fsck, "Change Filesystem Flags");
2719
2720static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, CTLFLAG_WR,
2721	sysctl_ffs_fsck, "Set Current Working Directory");
2722
2723static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, CTLFLAG_WR,
2724	sysctl_ffs_fsck, "Change Value of .. Entry");
2725
2726static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, CTLFLAG_WR,
2727	sysctl_ffs_fsck, "Unlink a Duplicate Name");
2728
2729static SYSCTL_NODE(_vfs_ffs, FFS_SET_INODE, setinode, CTLFLAG_WR,
2730	sysctl_ffs_fsck, "Update an On-Disk Inode");
2731
2732static SYSCTL_NODE(_vfs_ffs, FFS_SET_BUFOUTPUT, setbufoutput, CTLFLAG_WR,
2733	sysctl_ffs_fsck, "Set Buffered Writing for Descriptor");
2734
2735#define DEBUG 1
2736#ifdef DEBUG
2737static int fsckcmds = 0;
2738SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, "");
2739#endif /* DEBUG */
2740
2741static int buffered_write(struct file *, struct uio *, struct ucred *,
2742	int, struct thread *);
2743
2744static int
2745sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)
2746{
2747	struct thread *td = curthread;
2748	struct fsck_cmd cmd;
2749	struct ufsmount *ump;
2750	struct vnode *vp, *vpold, *dvp, *fdvp;
2751	struct inode *ip, *dp;
2752	struct mount *mp;
2753	struct fs *fs;
2754	ufs2_daddr_t blkno;
2755	long blkcnt, blksize;
2756	struct filedesc *fdp;
2757	struct file *fp, *vfp;
2758	cap_rights_t rights;
2759	int filetype, error;
2760	static struct fileops *origops, bufferedops;
2761
2762	if (req->newlen > sizeof cmd)
2763		return (EBADRPC);
2764	if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0)
2765		return (error);
2766	if (cmd.version != FFS_CMD_VERSION)
2767		return (ERPCMISMATCH);
2768	if ((error = getvnode(td->td_proc->p_fd, cmd.handle,
2769	    cap_rights_init(&rights, CAP_FSCK), &fp)) != 0)
2770		return (error);
2771	vp = fp->f_data;
2772	if (vp->v_type != VREG && vp->v_type != VDIR) {
2773		fdrop(fp, td);
2774		return (EINVAL);
2775	}
2776	vn_start_write(vp, &mp, V_WAIT);
2777	if (mp == 0 || strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) {
2778		vn_finished_write(mp);
2779		fdrop(fp, td);
2780		return (EINVAL);
2781	}
2782	ump = VFSTOUFS(mp);
2783	if ((mp->mnt_flag & MNT_RDONLY) &&
2784	    ump->um_fsckpid != td->td_proc->p_pid) {
2785		vn_finished_write(mp);
2786		fdrop(fp, td);
2787		return (EROFS);
2788	}
2789	fs = ump->um_fs;
2790	filetype = IFREG;
2791
2792	switch (oidp->oid_number) {
2793
2794	case FFS_SET_FLAGS:
2795#ifdef DEBUG
2796		if (fsckcmds)
2797			printf("%s: %s flags\n", mp->mnt_stat.f_mntonname,
2798			    cmd.size > 0 ? "set" : "clear");
2799#endif /* DEBUG */
2800		if (cmd.size > 0)
2801			fs->fs_flags |= (long)cmd.value;
2802		else
2803			fs->fs_flags &= ~(long)cmd.value;
2804		break;
2805
2806	case FFS_ADJ_REFCNT:
2807#ifdef DEBUG
2808		if (fsckcmds) {
2809			printf("%s: adjust inode %jd link count by %jd\n",
2810			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
2811			    (intmax_t)cmd.size);
2812		}
2813#endif /* DEBUG */
2814		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
2815			break;
2816		ip = VTOI(vp);
2817		ip->i_nlink += cmd.size;
2818		DIP_SET(ip, i_nlink, ip->i_nlink);
2819		ip->i_effnlink += cmd.size;
2820		ip->i_flag |= IN_CHANGE | IN_MODIFIED;
2821		error = ffs_update(vp, 1);
2822		if (DOINGSOFTDEP(vp))
2823			softdep_change_linkcnt(ip);
2824		vput(vp);
2825		break;
2826
2827	case FFS_ADJ_BLKCNT:
2828#ifdef DEBUG
2829		if (fsckcmds) {
2830			printf("%s: adjust inode %jd block count by %jd\n",
2831			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
2832			    (intmax_t)cmd.size);
2833		}
2834#endif /* DEBUG */
2835		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
2836			break;
2837		ip = VTOI(vp);
2838		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size);
2839		ip->i_flag |= IN_CHANGE | IN_MODIFIED;
2840		error = ffs_update(vp, 1);
2841		vput(vp);
2842		break;
2843
2844	case FFS_DIR_FREE:
2845		filetype = IFDIR;
2846		/* fall through */
2847
2848	case FFS_FILE_FREE:
2849#ifdef DEBUG
2850		if (fsckcmds) {
2851			if (cmd.size == 1)
2852				printf("%s: free %s inode %ju\n",
2853				    mp->mnt_stat.f_mntonname,
2854				    filetype == IFDIR ? "directory" : "file",
2855				    (uintmax_t)cmd.value);
2856			else
2857				printf("%s: free %s inodes %ju-%ju\n",
2858				    mp->mnt_stat.f_mntonname,
2859				    filetype == IFDIR ? "directory" : "file",
2860				    (uintmax_t)cmd.value,
2861				    (uintmax_t)(cmd.value + cmd.size - 1));
2862		}
2863#endif /* DEBUG */
2864		while (cmd.size > 0) {
2865			if ((error = ffs_freefile(ump, fs, ump->um_devvp,
2866			    cmd.value, filetype, NULL)))
2867				break;
2868			cmd.size -= 1;
2869			cmd.value += 1;
2870		}
2871		break;
2872
2873	case FFS_BLK_FREE:
2874#ifdef DEBUG
2875		if (fsckcmds) {
2876			if (cmd.size == 1)
2877				printf("%s: free block %jd\n",
2878				    mp->mnt_stat.f_mntonname,
2879				    (intmax_t)cmd.value);
2880			else
2881				printf("%s: free blocks %jd-%jd\n",
2882				    mp->mnt_stat.f_mntonname,
2883				    (intmax_t)cmd.value,
2884				    (intmax_t)cmd.value + cmd.size - 1);
2885		}
2886#endif /* DEBUG */
2887		blkno = cmd.value;
2888		blkcnt = cmd.size;
2889		blksize = fs->fs_frag - (blkno % fs->fs_frag);
2890		while (blkcnt > 0) {
2891			if (blksize > blkcnt)
2892				blksize = blkcnt;
2893			ffs_blkfree(ump, fs, ump->um_devvp, blkno,
2894			    blksize * fs->fs_fsize, ROOTINO, VDIR, NULL);
2895			blkno += blksize;
2896			blkcnt -= blksize;
2897			blksize = fs->fs_frag;
2898		}
2899		break;
2900
2901	/*
2902	 * Adjust superblock summaries.  fsck(8) is expected to
2903	 * submit deltas when necessary.
2904	 */
2905	case FFS_ADJ_NDIR:
2906#ifdef DEBUG
2907		if (fsckcmds) {
2908			printf("%s: adjust number of directories by %jd\n",
2909			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2910		}
2911#endif /* DEBUG */
2912		fs->fs_cstotal.cs_ndir += cmd.value;
2913		break;
2914
2915	case FFS_ADJ_NBFREE:
2916#ifdef DEBUG
2917		if (fsckcmds) {
2918			printf("%s: adjust number of free blocks by %+jd\n",
2919			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2920		}
2921#endif /* DEBUG */
2922		fs->fs_cstotal.cs_nbfree += cmd.value;
2923		break;
2924
2925	case FFS_ADJ_NIFREE:
2926#ifdef DEBUG
2927		if (fsckcmds) {
2928			printf("%s: adjust number of free inodes by %+jd\n",
2929			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2930		}
2931#endif /* DEBUG */
2932		fs->fs_cstotal.cs_nifree += cmd.value;
2933		break;
2934
2935	case FFS_ADJ_NFFREE:
2936#ifdef DEBUG
2937		if (fsckcmds) {
2938			printf("%s: adjust number of free frags by %+jd\n",
2939			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2940		}
2941#endif /* DEBUG */
2942		fs->fs_cstotal.cs_nffree += cmd.value;
2943		break;
2944
2945	case FFS_ADJ_NUMCLUSTERS:
2946#ifdef DEBUG
2947		if (fsckcmds) {
2948			printf("%s: adjust number of free clusters by %+jd\n",
2949			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2950		}
2951#endif /* DEBUG */
2952		fs->fs_cstotal.cs_numclusters += cmd.value;
2953		break;
2954
2955	case FFS_SET_CWD:
2956#ifdef DEBUG
2957		if (fsckcmds) {
2958			printf("%s: set current directory to inode %jd\n",
2959			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2960		}
2961#endif /* DEBUG */
2962		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp)))
2963			break;
2964		AUDIT_ARG_VNODE1(vp);
2965		if ((error = change_dir(vp, td)) != 0) {
2966			vput(vp);
2967			break;
2968		}
2969		VOP_UNLOCK(vp, 0);
2970		fdp = td->td_proc->p_fd;
2971		FILEDESC_XLOCK(fdp);
2972		vpold = fdp->fd_cdir;
2973		fdp->fd_cdir = vp;
2974		FILEDESC_XUNLOCK(fdp);
2975		vrele(vpold);
2976		break;
2977
2978	case FFS_SET_DOTDOT:
2979#ifdef DEBUG
2980		if (fsckcmds) {
2981			printf("%s: change .. in cwd from %jd to %jd\n",
2982			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
2983			    (intmax_t)cmd.size);
2984		}
2985#endif /* DEBUG */
2986		/*
2987		 * First we have to get and lock the parent directory
2988		 * to which ".." points.
2989		 */
2990		error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp);
2991		if (error)
2992			break;
2993		/*
2994		 * Now we get and lock the child directory containing "..".
2995		 */
2996		FILEDESC_SLOCK(td->td_proc->p_fd);
2997		dvp = td->td_proc->p_fd->fd_cdir;
2998		FILEDESC_SUNLOCK(td->td_proc->p_fd);
2999		if ((error = vget(dvp, LK_EXCLUSIVE, td)) != 0) {
3000			vput(fdvp);
3001			break;
3002		}
3003		dp = VTOI(dvp);
3004		dp->i_offset = 12;	/* XXX mastertemplate.dot_reclen */
3005		error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size,
3006		    DT_DIR, 0);
3007		cache_purge(fdvp);
3008		cache_purge(dvp);
3009		vput(dvp);
3010		vput(fdvp);
3011		break;
3012
3013	case FFS_UNLINK:
3014#ifdef DEBUG
3015		if (fsckcmds) {
3016			char buf[32];
3017
3018			if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL))
3019				strncpy(buf, "Name_too_long", 32);
3020			printf("%s: unlink %s (inode %jd)\n",
3021			    mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size);
3022		}
3023#endif /* DEBUG */
3024		/*
3025		 * kern_unlinkat will do its own start/finish writes and
3026		 * they do not nest, so drop ours here. Setting mp == NULL
3027		 * indicates that vn_finished_write is not needed down below.
3028		 */
3029		vn_finished_write(mp);
3030		mp = NULL;
3031		error = kern_unlinkat(td, AT_FDCWD, (char *)(intptr_t)cmd.value,
3032		    UIO_USERSPACE, (ino_t)cmd.size);
3033		break;
3034
3035	case FFS_SET_INODE:
3036		if (ump->um_fsckpid != td->td_proc->p_pid) {
3037			error = EPERM;
3038			break;
3039		}
3040#ifdef DEBUG
3041		if (fsckcmds) {
3042			printf("%s: update inode %jd\n",
3043			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3044		}
3045#endif /* DEBUG */
3046		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3047			break;
3048		AUDIT_ARG_VNODE1(vp);
3049		ip = VTOI(vp);
3050		if (ip->i_ump->um_fstype == UFS1)
3051			error = copyin((void *)(intptr_t)cmd.size, ip->i_din1,
3052			    sizeof(struct ufs1_dinode));
3053		else
3054			error = copyin((void *)(intptr_t)cmd.size, ip->i_din2,
3055			    sizeof(struct ufs2_dinode));
3056		if (error) {
3057			vput(vp);
3058			break;
3059		}
3060		ip->i_flag |= IN_CHANGE | IN_MODIFIED;
3061		error = ffs_update(vp, 1);
3062		vput(vp);
3063		break;
3064
3065	case FFS_SET_BUFOUTPUT:
3066		if (ump->um_fsckpid != td->td_proc->p_pid) {
3067			error = EPERM;
3068			break;
3069		}
3070		if (VTOI(vp)->i_ump != ump) {
3071			error = EINVAL;
3072			break;
3073		}
3074#ifdef DEBUG
3075		if (fsckcmds) {
3076			printf("%s: %s buffered output for descriptor %jd\n",
3077			    mp->mnt_stat.f_mntonname,
3078			    cmd.size == 1 ? "enable" : "disable",
3079			    (intmax_t)cmd.value);
3080		}
3081#endif /* DEBUG */
3082		if ((error = getvnode(td->td_proc->p_fd, cmd.value,
3083		    cap_rights_init(&rights, CAP_FSCK), &vfp)) != 0)
3084			break;
3085		if (vfp->f_vnode->v_type != VCHR) {
3086			fdrop(vfp, td);
3087			error = EINVAL;
3088			break;
3089		}
3090		if (origops == NULL) {
3091			origops = vfp->f_ops;
3092			bcopy((void *)origops, (void *)&bufferedops,
3093			    sizeof(bufferedops));
3094			bufferedops.fo_write = buffered_write;
3095		}
3096		if (cmd.size == 1)
3097			atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops,
3098			    (uintptr_t)&bufferedops);
3099		else
3100			atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops,
3101			    (uintptr_t)origops);
3102		fdrop(vfp, td);
3103		break;
3104
3105	default:
3106#ifdef DEBUG
3107		if (fsckcmds) {
3108			printf("Invalid request %d from fsck\n",
3109			    oidp->oid_number);
3110		}
3111#endif /* DEBUG */
3112		error = EINVAL;
3113		break;
3114
3115	}
3116	fdrop(fp, td);
3117	vn_finished_write(mp);
3118	return (error);
3119}
3120
3121/*
3122 * Function to switch a descriptor to use the buffer cache to stage
3123 * its I/O. This is needed so that writes to the filesystem device
3124 * will give snapshots a chance to copy modified blocks for which it
3125 * needs to retain copies.
3126 */
3127static int
3128buffered_write(fp, uio, active_cred, flags, td)
3129	struct file *fp;
3130	struct uio *uio;
3131	struct ucred *active_cred;
3132	int flags;
3133	struct thread *td;
3134{
3135	struct vnode *devvp, *vp;
3136	struct inode *ip;
3137	struct buf *bp;
3138	struct fs *fs;
3139	struct filedesc *fdp;
3140	int error;
3141	daddr_t lbn;
3142
3143	/*
3144	 * The devvp is associated with the /dev filesystem. To discover
3145	 * the filesystem with which the device is associated, we depend
3146	 * on the application setting the current directory to a location
3147	 * within the filesystem being written. Yes, this is an ugly hack.
3148	 */
3149	devvp = fp->f_vnode;
3150	if (!vn_isdisk(devvp, NULL))
3151		return (EINVAL);
3152	fdp = td->td_proc->p_fd;
3153	FILEDESC_SLOCK(fdp);
3154	vp = fdp->fd_cdir;
3155	vref(vp);
3156	FILEDESC_SUNLOCK(fdp);
3157	vn_lock(vp, LK_SHARED | LK_RETRY);
3158	/*
3159	 * Check that the current directory vnode indeed belongs to
3160	 * UFS before trying to dereference UFS-specific v_data fields.
3161	 */
3162	if (vp->v_op != &ffs_vnodeops1 && vp->v_op != &ffs_vnodeops2) {
3163		vput(vp);
3164		return (EINVAL);
3165	}
3166	ip = VTOI(vp);
3167	if (ip->i_devvp != devvp) {
3168		vput(vp);
3169		return (EINVAL);
3170	}
3171	fs = ip->i_fs;
3172	vput(vp);
3173	foffset_lock_uio(fp, uio, flags);
3174	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
3175#ifdef DEBUG
3176	if (fsckcmds) {
3177		printf("%s: buffered write for block %jd\n",
3178		    fs->fs_fsmnt, (intmax_t)btodb(uio->uio_offset));
3179	}
3180#endif /* DEBUG */
3181	/*
3182	 * All I/O must be contained within a filesystem block, start on
3183	 * a fragment boundary, and be a multiple of fragments in length.
3184	 */
3185	if (uio->uio_resid > fs->fs_bsize - (uio->uio_offset % fs->fs_bsize) ||
3186	    fragoff(fs, uio->uio_offset) != 0 ||
3187	    fragoff(fs, uio->uio_resid) != 0) {
3188		error = EINVAL;
3189		goto out;
3190	}
3191	lbn = numfrags(fs, uio->uio_offset);
3192	bp = getblk(devvp, lbn, uio->uio_resid, 0, 0, 0);
3193	bp->b_flags |= B_RELBUF;
3194	if ((error = uiomove((char *)bp->b_data, uio->uio_resid, uio)) != 0) {
3195		brelse(bp);
3196		goto out;
3197	}
3198	error = bwrite(bp);
3199out:
3200	VOP_UNLOCK(devvp, 0);
3201	foffset_unlock_uio(fp, uio, flags | FOF_NEXTOFF);
3202	return (error);
3203}
3204