1/*-
2 * Copyright (c) 2002 Networks Associates Technology, Inc.
3 * All rights reserved.
4 *
5 * This software was developed for the FreeBSD Project by Marshall
6 * Kirk McKusick and Network Associates Laboratories, the Security
7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9 * research program
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * Copyright (c) 1982, 1986, 1989, 1993
33 *	The Regents of the University of California.  All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 *    notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 *    notice, this list of conditions and the following disclaimer in the
42 *    documentation and/or other materials provided with the distribution.
43 * 4. Neither the name of the University nor the names of its contributors
44 *    may be used to endorse or promote products derived from this software
45 *    without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 *
59 *	@(#)ffs_alloc.c	8.18 (Berkeley) 5/26/95
60 */
61
62#include <sys/cdefs.h>
63__FBSDID("$FreeBSD: stable/10/sys/ufs/ffs/ffs_alloc.c 306630 2016-10-03 10:15:16Z kib $");
64
65#include "opt_quota.h"
66
67#include <sys/param.h>
68#include <sys/capsicum.h>
69#include <sys/systm.h>
70#include <sys/bio.h>
71#include <sys/buf.h>
72#include <sys/conf.h>
73#include <sys/fcntl.h>
74#include <sys/file.h>
75#include <sys/filedesc.h>
76#include <sys/priv.h>
77#include <sys/proc.h>
78#include <sys/vnode.h>
79#include <sys/mount.h>
80#include <sys/kernel.h>
81#include <sys/syscallsubr.h>
82#include <sys/sysctl.h>
83#include <sys/syslog.h>
84#include <sys/taskqueue.h>
85
86#include <security/audit/audit.h>
87
88#include <geom/geom.h>
89
90#include <ufs/ufs/dir.h>
91#include <ufs/ufs/extattr.h>
92#include <ufs/ufs/quota.h>
93#include <ufs/ufs/inode.h>
94#include <ufs/ufs/ufs_extern.h>
95#include <ufs/ufs/ufsmount.h>
96
97#include <ufs/ffs/fs.h>
98#include <ufs/ffs/ffs_extern.h>
99#include <ufs/ffs/softdep.h>
100
101typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref,
102				  int size, int rsize);
103
104static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int);
105static ufs2_daddr_t
106	      ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int);
107static void	ffs_blkfree_cg(struct ufsmount *, struct fs *,
108		    struct vnode *, ufs2_daddr_t, long, ino_t,
109		    struct workhead *);
110static void	ffs_blkfree_trim_completed(struct bio *);
111static void	ffs_blkfree_trim_task(void *ctx, int pending __unused);
112#ifdef INVARIANTS
113static int	ffs_checkblk(struct inode *, ufs2_daddr_t, long);
114#endif
115static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int);
116static ino_t	ffs_dirpref(struct inode *);
117static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t,
118		    int, int);
119static ufs2_daddr_t	ffs_hashalloc
120		(struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *);
121static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int,
122		    int);
123static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int);
124static int	ffs_reallocblks_ufs1(struct vop_reallocblks_args *);
125static int	ffs_reallocblks_ufs2(struct vop_reallocblks_args *);
126
127/*
128 * Allocate a block in the filesystem.
129 *
130 * The size of the requested block is given, which must be some
131 * multiple of fs_fsize and <= fs_bsize.
132 * A preference may be optionally specified. If a preference is given
133 * the following hierarchy is used to allocate a block:
134 *   1) allocate the requested block.
135 *   2) allocate a rotationally optimal block in the same cylinder.
136 *   3) allocate a block in the same cylinder group.
137 *   4) quadradically rehash into other cylinder groups, until an
138 *      available block is located.
139 * If no block preference is given the following hierarchy is used
140 * to allocate a block:
141 *   1) allocate a block in the cylinder group that contains the
142 *      inode for the file.
143 *   2) quadradically rehash into other cylinder groups, until an
144 *      available block is located.
145 */
146int
147ffs_alloc(ip, lbn, bpref, size, flags, cred, bnp)
148	struct inode *ip;
149	ufs2_daddr_t lbn, bpref;
150	int size, flags;
151	struct ucred *cred;
152	ufs2_daddr_t *bnp;
153{
154	struct fs *fs;
155	struct ufsmount *ump;
156	ufs2_daddr_t bno;
157	u_int cg, reclaimed;
158	static struct timeval lastfail;
159	static int curfail;
160	int64_t delta;
161#ifdef QUOTA
162	int error;
163#endif
164
165	*bnp = 0;
166	fs = ip->i_fs;
167	ump = ip->i_ump;
168	mtx_assert(UFS_MTX(ump), MA_OWNED);
169#ifdef INVARIANTS
170	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
171		printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
172		    devtoname(ip->i_dev), (long)fs->fs_bsize, size,
173		    fs->fs_fsmnt);
174		panic("ffs_alloc: bad size");
175	}
176	if (cred == NOCRED)
177		panic("ffs_alloc: missing credential");
178#endif /* INVARIANTS */
179	reclaimed = 0;
180retry:
181#ifdef QUOTA
182	UFS_UNLOCK(ump);
183	error = chkdq(ip, btodb(size), cred, 0);
184	if (error)
185		return (error);
186	UFS_LOCK(ump);
187#endif
188	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
189		goto nospace;
190	if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) &&
191	    freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
192		goto nospace;
193	if (bpref >= fs->fs_size)
194		bpref = 0;
195	if (bpref == 0)
196		cg = ino_to_cg(fs, ip->i_number);
197	else
198		cg = dtog(fs, bpref);
199	bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg);
200	if (bno > 0) {
201		delta = btodb(size);
202		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
203		if (flags & IO_EXT)
204			ip->i_flag |= IN_CHANGE;
205		else
206			ip->i_flag |= IN_CHANGE | IN_UPDATE;
207		*bnp = bno;
208		return (0);
209	}
210nospace:
211#ifdef QUOTA
212	UFS_UNLOCK(ump);
213	/*
214	 * Restore user's disk quota because allocation failed.
215	 */
216	(void) chkdq(ip, -btodb(size), cred, FORCE);
217	UFS_LOCK(ump);
218#endif
219	if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
220		reclaimed = 1;
221		softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT);
222		goto retry;
223	}
224	UFS_UNLOCK(ump);
225	if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) {
226		ffs_fserr(fs, ip->i_number, "filesystem full");
227		uprintf("\n%s: write failed, filesystem is full\n",
228		    fs->fs_fsmnt);
229	}
230	return (ENOSPC);
231}
232
233/*
234 * Reallocate a fragment to a bigger size
235 *
236 * The number and size of the old block is given, and a preference
237 * and new size is also specified. The allocator attempts to extend
238 * the original block. Failing that, the regular block allocator is
239 * invoked to get an appropriate block.
240 */
241int
242ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, flags, cred, bpp)
243	struct inode *ip;
244	ufs2_daddr_t lbprev;
245	ufs2_daddr_t bprev;
246	ufs2_daddr_t bpref;
247	int osize, nsize, flags;
248	struct ucred *cred;
249	struct buf **bpp;
250{
251	struct vnode *vp;
252	struct fs *fs;
253	struct buf *bp;
254	struct ufsmount *ump;
255	u_int cg, request, reclaimed;
256	int error, gbflags;
257	ufs2_daddr_t bno;
258	static struct timeval lastfail;
259	static int curfail;
260	int64_t delta;
261
262	vp = ITOV(ip);
263	fs = ip->i_fs;
264	bp = NULL;
265	ump = ip->i_ump;
266	gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0;
267
268	mtx_assert(UFS_MTX(ump), MA_OWNED);
269#ifdef INVARIANTS
270	if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
271		panic("ffs_realloccg: allocation on suspended filesystem");
272	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
273	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
274		printf(
275		"dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
276		    devtoname(ip->i_dev), (long)fs->fs_bsize, osize,
277		    nsize, fs->fs_fsmnt);
278		panic("ffs_realloccg: bad size");
279	}
280	if (cred == NOCRED)
281		panic("ffs_realloccg: missing credential");
282#endif /* INVARIANTS */
283	reclaimed = 0;
284retry:
285	if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) &&
286	    freespace(fs, fs->fs_minfree) -  numfrags(fs, nsize - osize) < 0) {
287		goto nospace;
288	}
289	if (bprev == 0) {
290		printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n",
291		    devtoname(ip->i_dev), (long)fs->fs_bsize, (intmax_t)bprev,
292		    fs->fs_fsmnt);
293		panic("ffs_realloccg: bad bprev");
294	}
295	UFS_UNLOCK(ump);
296	/*
297	 * Allocate the extra space in the buffer.
298	 */
299	error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp);
300	if (error) {
301		brelse(bp);
302		return (error);
303	}
304
305	if (bp->b_blkno == bp->b_lblkno) {
306		if (lbprev >= NDADDR)
307			panic("ffs_realloccg: lbprev out of range");
308		bp->b_blkno = fsbtodb(fs, bprev);
309	}
310
311#ifdef QUOTA
312	error = chkdq(ip, btodb(nsize - osize), cred, 0);
313	if (error) {
314		brelse(bp);
315		return (error);
316	}
317#endif
318	/*
319	 * Check for extension in the existing location.
320	 */
321	*bpp = NULL;
322	cg = dtog(fs, bprev);
323	UFS_LOCK(ump);
324	bno = ffs_fragextend(ip, cg, bprev, osize, nsize);
325	if (bno) {
326		if (bp->b_blkno != fsbtodb(fs, bno))
327			panic("ffs_realloccg: bad blockno");
328		delta = btodb(nsize - osize);
329		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
330		if (flags & IO_EXT)
331			ip->i_flag |= IN_CHANGE;
332		else
333			ip->i_flag |= IN_CHANGE | IN_UPDATE;
334		allocbuf(bp, nsize);
335		bp->b_flags |= B_DONE;
336		vfs_bio_bzero_buf(bp, osize, nsize - osize);
337		if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
338			vfs_bio_set_valid(bp, osize, nsize - osize);
339		*bpp = bp;
340		return (0);
341	}
342	/*
343	 * Allocate a new disk location.
344	 */
345	if (bpref >= fs->fs_size)
346		bpref = 0;
347	switch ((int)fs->fs_optim) {
348	case FS_OPTSPACE:
349		/*
350		 * Allocate an exact sized fragment. Although this makes
351		 * best use of space, we will waste time relocating it if
352		 * the file continues to grow. If the fragmentation is
353		 * less than half of the minimum free reserve, we choose
354		 * to begin optimizing for time.
355		 */
356		request = nsize;
357		if (fs->fs_minfree <= 5 ||
358		    fs->fs_cstotal.cs_nffree >
359		    (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
360			break;
361		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
362			fs->fs_fsmnt);
363		fs->fs_optim = FS_OPTTIME;
364		break;
365	case FS_OPTTIME:
366		/*
367		 * At this point we have discovered a file that is trying to
368		 * grow a small fragment to a larger fragment. To save time,
369		 * we allocate a full sized block, then free the unused portion.
370		 * If the file continues to grow, the `ffs_fragextend' call
371		 * above will be able to grow it in place without further
372		 * copying. If aberrant programs cause disk fragmentation to
373		 * grow within 2% of the free reserve, we choose to begin
374		 * optimizing for space.
375		 */
376		request = fs->fs_bsize;
377		if (fs->fs_cstotal.cs_nffree <
378		    (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
379			break;
380		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
381			fs->fs_fsmnt);
382		fs->fs_optim = FS_OPTSPACE;
383		break;
384	default:
385		printf("dev = %s, optim = %ld, fs = %s\n",
386		    devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt);
387		panic("ffs_realloccg: bad optim");
388		/* NOTREACHED */
389	}
390	bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg);
391	if (bno > 0) {
392		bp->b_blkno = fsbtodb(fs, bno);
393		if (!DOINGSOFTDEP(vp))
394			ffs_blkfree(ump, fs, ip->i_devvp, bprev, (long)osize,
395			    ip->i_number, vp->v_type, NULL);
396		delta = btodb(nsize - osize);
397		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
398		if (flags & IO_EXT)
399			ip->i_flag |= IN_CHANGE;
400		else
401			ip->i_flag |= IN_CHANGE | IN_UPDATE;
402		allocbuf(bp, nsize);
403		bp->b_flags |= B_DONE;
404		vfs_bio_bzero_buf(bp, osize, nsize - osize);
405		if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
406			vfs_bio_set_valid(bp, osize, nsize - osize);
407		*bpp = bp;
408		return (0);
409	}
410#ifdef QUOTA
411	UFS_UNLOCK(ump);
412	/*
413	 * Restore user's disk quota because allocation failed.
414	 */
415	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
416	UFS_LOCK(ump);
417#endif
418nospace:
419	/*
420	 * no space available
421	 */
422	if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
423		reclaimed = 1;
424		UFS_UNLOCK(ump);
425		if (bp) {
426			brelse(bp);
427			bp = NULL;
428		}
429		UFS_LOCK(ump);
430		softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT);
431		goto retry;
432	}
433	UFS_UNLOCK(ump);
434	if (bp)
435		brelse(bp);
436	if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) {
437		ffs_fserr(fs, ip->i_number, "filesystem full");
438		uprintf("\n%s: write failed, filesystem is full\n",
439		    fs->fs_fsmnt);
440	}
441	return (ENOSPC);
442}
443
444/*
445 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
446 *
447 * The vnode and an array of buffer pointers for a range of sequential
448 * logical blocks to be made contiguous is given. The allocator attempts
449 * to find a range of sequential blocks starting as close as possible
450 * from the end of the allocation for the logical block immediately
451 * preceding the current range. If successful, the physical block numbers
452 * in the buffer pointers and in the inode are changed to reflect the new
453 * allocation. If unsuccessful, the allocation is left unchanged. The
454 * success in doing the reallocation is returned. Note that the error
455 * return is not reflected back to the user. Rather the previous block
456 * allocation will be used.
457 */
458
459SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
460
461static int doasyncfree = 1;
462SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0,
463"do not force synchronous writes when blocks are reallocated");
464
465static int doreallocblks = 1;
466SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0,
467"enable block reallocation");
468
469static int maxclustersearch = 10;
470SYSCTL_INT(_vfs_ffs, OID_AUTO, maxclustersearch, CTLFLAG_RW, &maxclustersearch,
4710, "max number of cylinder group to search for contigous blocks");
472
473#ifdef DEBUG
474static volatile int prtrealloc = 0;
475#endif
476
477int
478ffs_reallocblks(ap)
479	struct vop_reallocblks_args /* {
480		struct vnode *a_vp;
481		struct cluster_save *a_buflist;
482	} */ *ap;
483{
484
485	if (doreallocblks == 0)
486		return (ENOSPC);
487	/*
488	 * We can't wait in softdep prealloc as it may fsync and recurse
489	 * here.  Instead we simply fail to reallocate blocks if this
490	 * rare condition arises.
491	 */
492	if (DOINGSOFTDEP(ap->a_vp))
493		if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0)
494			return (ENOSPC);
495	if (VTOI(ap->a_vp)->i_ump->um_fstype == UFS1)
496		return (ffs_reallocblks_ufs1(ap));
497	return (ffs_reallocblks_ufs2(ap));
498}
499
500static int
501ffs_reallocblks_ufs1(ap)
502	struct vop_reallocblks_args /* {
503		struct vnode *a_vp;
504		struct cluster_save *a_buflist;
505	} */ *ap;
506{
507	struct fs *fs;
508	struct inode *ip;
509	struct vnode *vp;
510	struct buf *sbp, *ebp;
511	ufs1_daddr_t *bap, *sbap, *ebap;
512	struct cluster_save *buflist;
513	struct ufsmount *ump;
514	ufs_lbn_t start_lbn, end_lbn;
515	ufs1_daddr_t soff, newblk, blkno;
516	ufs2_daddr_t pref;
517	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
518	int i, cg, len, start_lvl, end_lvl, ssize;
519
520	vp = ap->a_vp;
521	ip = VTOI(vp);
522	fs = ip->i_fs;
523	ump = ip->i_ump;
524	/*
525	 * If we are not tracking block clusters or if we have less than 4%
526	 * free blocks left, then do not attempt to cluster. Running with
527	 * less than 5% free block reserve is not recommended and those that
528	 * choose to do so do not expect to have good file layout.
529	 */
530	if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0)
531		return (ENOSPC);
532	buflist = ap->a_buflist;
533	len = buflist->bs_nchildren;
534	start_lbn = buflist->bs_children[0]->b_lblkno;
535	end_lbn = start_lbn + len - 1;
536#ifdef INVARIANTS
537	for (i = 0; i < len; i++)
538		if (!ffs_checkblk(ip,
539		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
540			panic("ffs_reallocblks: unallocated block 1");
541	for (i = 1; i < len; i++)
542		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
543			panic("ffs_reallocblks: non-logical cluster");
544	blkno = buflist->bs_children[0]->b_blkno;
545	ssize = fsbtodb(fs, fs->fs_frag);
546	for (i = 1; i < len - 1; i++)
547		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
548			panic("ffs_reallocblks: non-physical cluster %d", i);
549#endif
550	/*
551	 * If the cluster crosses the boundary for the first indirect
552	 * block, leave space for the indirect block. Indirect blocks
553	 * are initially laid out in a position after the last direct
554	 * block. Block reallocation would usually destroy locality by
555	 * moving the indirect block out of the way to make room for
556	 * data blocks if we didn't compensate here. We should also do
557	 * this for other indirect block boundaries, but it is only
558	 * important for the first one.
559	 */
560	if (start_lbn < NDADDR && end_lbn >= NDADDR)
561		return (ENOSPC);
562	/*
563	 * If the latest allocation is in a new cylinder group, assume that
564	 * the filesystem has decided to move and do not force it back to
565	 * the previous cylinder group.
566	 */
567	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
568	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
569		return (ENOSPC);
570	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
571	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
572		return (ENOSPC);
573	/*
574	 * Get the starting offset and block map for the first block.
575	 */
576	if (start_lvl == 0) {
577		sbap = &ip->i_din1->di_db[0];
578		soff = start_lbn;
579	} else {
580		idp = &start_ap[start_lvl - 1];
581		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
582			brelse(sbp);
583			return (ENOSPC);
584		}
585		sbap = (ufs1_daddr_t *)sbp->b_data;
586		soff = idp->in_off;
587	}
588	/*
589	 * If the block range spans two block maps, get the second map.
590	 */
591	ebap = NULL;
592	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
593		ssize = len;
594	} else {
595#ifdef INVARIANTS
596		if (start_lvl > 0 &&
597		    start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
598			panic("ffs_reallocblk: start == end");
599#endif
600		ssize = len - (idp->in_off + 1);
601		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
602			goto fail;
603		ebap = (ufs1_daddr_t *)ebp->b_data;
604	}
605	/*
606	 * Find the preferred location for the cluster. If we have not
607	 * previously failed at this endeavor, then follow our standard
608	 * preference calculation. If we have failed at it, then pick up
609	 * where we last ended our search.
610	 */
611	UFS_LOCK(ump);
612	if (ip->i_nextclustercg == -1)
613		pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap);
614	else
615		pref = cgdata(fs, ip->i_nextclustercg);
616	/*
617	 * Search the block map looking for an allocation of the desired size.
618	 * To avoid wasting too much time, we limit the number of cylinder
619	 * groups that we will search.
620	 */
621	cg = dtog(fs, pref);
622	for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) {
623		if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0)
624			break;
625		cg += 1;
626		if (cg >= fs->fs_ncg)
627			cg = 0;
628	}
629	/*
630	 * If we have failed in our search, record where we gave up for
631	 * next time. Otherwise, fall back to our usual search citerion.
632	 */
633	if (newblk == 0) {
634		ip->i_nextclustercg = cg;
635		UFS_UNLOCK(ump);
636		goto fail;
637	}
638	ip->i_nextclustercg = -1;
639	/*
640	 * We have found a new contiguous block.
641	 *
642	 * First we have to replace the old block pointers with the new
643	 * block pointers in the inode and indirect blocks associated
644	 * with the file.
645	 */
646#ifdef DEBUG
647	if (prtrealloc)
648		printf("realloc: ino %ju, lbns %jd-%jd\n\told:",
649		    (uintmax_t)ip->i_number,
650		    (intmax_t)start_lbn, (intmax_t)end_lbn);
651#endif
652	blkno = newblk;
653	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
654		if (i == ssize) {
655			bap = ebap;
656			soff = -i;
657		}
658#ifdef INVARIANTS
659		if (!ffs_checkblk(ip,
660		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
661			panic("ffs_reallocblks: unallocated block 2");
662		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
663			panic("ffs_reallocblks: alloc mismatch");
664#endif
665#ifdef DEBUG
666		if (prtrealloc)
667			printf(" %d,", *bap);
668#endif
669		if (DOINGSOFTDEP(vp)) {
670			if (sbap == &ip->i_din1->di_db[0] && i < ssize)
671				softdep_setup_allocdirect(ip, start_lbn + i,
672				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
673				    buflist->bs_children[i]);
674			else
675				softdep_setup_allocindir_page(ip, start_lbn + i,
676				    i < ssize ? sbp : ebp, soff + i, blkno,
677				    *bap, buflist->bs_children[i]);
678		}
679		*bap++ = blkno;
680	}
681	/*
682	 * Next we must write out the modified inode and indirect blocks.
683	 * For strict correctness, the writes should be synchronous since
684	 * the old block values may have been written to disk. In practise
685	 * they are almost never written, but if we are concerned about
686	 * strict correctness, the `doasyncfree' flag should be set to zero.
687	 *
688	 * The test on `doasyncfree' should be changed to test a flag
689	 * that shows whether the associated buffers and inodes have
690	 * been written. The flag should be set when the cluster is
691	 * started and cleared whenever the buffer or inode is flushed.
692	 * We can then check below to see if it is set, and do the
693	 * synchronous write only when it has been cleared.
694	 */
695	if (sbap != &ip->i_din1->di_db[0]) {
696		if (doasyncfree)
697			bdwrite(sbp);
698		else
699			bwrite(sbp);
700	} else {
701		ip->i_flag |= IN_CHANGE | IN_UPDATE;
702		if (!doasyncfree)
703			ffs_update(vp, 1);
704	}
705	if (ssize < len) {
706		if (doasyncfree)
707			bdwrite(ebp);
708		else
709			bwrite(ebp);
710	}
711	/*
712	 * Last, free the old blocks and assign the new blocks to the buffers.
713	 */
714#ifdef DEBUG
715	if (prtrealloc)
716		printf("\n\tnew:");
717#endif
718	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
719		if (!DOINGSOFTDEP(vp))
720			ffs_blkfree(ump, fs, ip->i_devvp,
721			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
722			    fs->fs_bsize, ip->i_number, vp->v_type, NULL);
723		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
724#ifdef INVARIANTS
725		if (!ffs_checkblk(ip,
726		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
727			panic("ffs_reallocblks: unallocated block 3");
728#endif
729#ifdef DEBUG
730		if (prtrealloc)
731			printf(" %d,", blkno);
732#endif
733	}
734#ifdef DEBUG
735	if (prtrealloc) {
736		prtrealloc--;
737		printf("\n");
738	}
739#endif
740	return (0);
741
742fail:
743	if (ssize < len)
744		brelse(ebp);
745	if (sbap != &ip->i_din1->di_db[0])
746		brelse(sbp);
747	return (ENOSPC);
748}
749
750static int
751ffs_reallocblks_ufs2(ap)
752	struct vop_reallocblks_args /* {
753		struct vnode *a_vp;
754		struct cluster_save *a_buflist;
755	} */ *ap;
756{
757	struct fs *fs;
758	struct inode *ip;
759	struct vnode *vp;
760	struct buf *sbp, *ebp;
761	ufs2_daddr_t *bap, *sbap, *ebap;
762	struct cluster_save *buflist;
763	struct ufsmount *ump;
764	ufs_lbn_t start_lbn, end_lbn;
765	ufs2_daddr_t soff, newblk, blkno, pref;
766	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
767	int i, cg, len, start_lvl, end_lvl, ssize;
768
769	vp = ap->a_vp;
770	ip = VTOI(vp);
771	fs = ip->i_fs;
772	ump = ip->i_ump;
773	/*
774	 * If we are not tracking block clusters or if we have less than 4%
775	 * free blocks left, then do not attempt to cluster. Running with
776	 * less than 5% free block reserve is not recommended and those that
777	 * choose to do so do not expect to have good file layout.
778	 */
779	if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0)
780		return (ENOSPC);
781	buflist = ap->a_buflist;
782	len = buflist->bs_nchildren;
783	start_lbn = buflist->bs_children[0]->b_lblkno;
784	end_lbn = start_lbn + len - 1;
785#ifdef INVARIANTS
786	for (i = 0; i < len; i++)
787		if (!ffs_checkblk(ip,
788		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
789			panic("ffs_reallocblks: unallocated block 1");
790	for (i = 1; i < len; i++)
791		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
792			panic("ffs_reallocblks: non-logical cluster");
793	blkno = buflist->bs_children[0]->b_blkno;
794	ssize = fsbtodb(fs, fs->fs_frag);
795	for (i = 1; i < len - 1; i++)
796		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
797			panic("ffs_reallocblks: non-physical cluster %d", i);
798#endif
799	/*
800	 * If the cluster crosses the boundary for the first indirect
801	 * block, do not move anything in it. Indirect blocks are
802	 * usually initially laid out in a position between the data
803	 * blocks. Block reallocation would usually destroy locality by
804	 * moving the indirect block out of the way to make room for
805	 * data blocks if we didn't compensate here. We should also do
806	 * this for other indirect block boundaries, but it is only
807	 * important for the first one.
808	 */
809	if (start_lbn < NDADDR && end_lbn >= NDADDR)
810		return (ENOSPC);
811	/*
812	 * If the latest allocation is in a new cylinder group, assume that
813	 * the filesystem has decided to move and do not force it back to
814	 * the previous cylinder group.
815	 */
816	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
817	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
818		return (ENOSPC);
819	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
820	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
821		return (ENOSPC);
822	/*
823	 * Get the starting offset and block map for the first block.
824	 */
825	if (start_lvl == 0) {
826		sbap = &ip->i_din2->di_db[0];
827		soff = start_lbn;
828	} else {
829		idp = &start_ap[start_lvl - 1];
830		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
831			brelse(sbp);
832			return (ENOSPC);
833		}
834		sbap = (ufs2_daddr_t *)sbp->b_data;
835		soff = idp->in_off;
836	}
837	/*
838	 * If the block range spans two block maps, get the second map.
839	 */
840	ebap = NULL;
841	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
842		ssize = len;
843	} else {
844#ifdef INVARIANTS
845		if (start_lvl > 0 &&
846		    start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
847			panic("ffs_reallocblk: start == end");
848#endif
849		ssize = len - (idp->in_off + 1);
850		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
851			goto fail;
852		ebap = (ufs2_daddr_t *)ebp->b_data;
853	}
854	/*
855	 * Find the preferred location for the cluster. If we have not
856	 * previously failed at this endeavor, then follow our standard
857	 * preference calculation. If we have failed at it, then pick up
858	 * where we last ended our search.
859	 */
860	UFS_LOCK(ump);
861	if (ip->i_nextclustercg == -1)
862		pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap);
863	else
864		pref = cgdata(fs, ip->i_nextclustercg);
865	/*
866	 * Search the block map looking for an allocation of the desired size.
867	 * To avoid wasting too much time, we limit the number of cylinder
868	 * groups that we will search.
869	 */
870	cg = dtog(fs, pref);
871	for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) {
872		if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0)
873			break;
874		cg += 1;
875		if (cg >= fs->fs_ncg)
876			cg = 0;
877	}
878	/*
879	 * If we have failed in our search, record where we gave up for
880	 * next time. Otherwise, fall back to our usual search citerion.
881	 */
882	if (newblk == 0) {
883		ip->i_nextclustercg = cg;
884		UFS_UNLOCK(ump);
885		goto fail;
886	}
887	ip->i_nextclustercg = -1;
888	/*
889	 * We have found a new contiguous block.
890	 *
891	 * First we have to replace the old block pointers with the new
892	 * block pointers in the inode and indirect blocks associated
893	 * with the file.
894	 */
895#ifdef DEBUG
896	if (prtrealloc)
897		printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number,
898		    (intmax_t)start_lbn, (intmax_t)end_lbn);
899#endif
900	blkno = newblk;
901	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
902		if (i == ssize) {
903			bap = ebap;
904			soff = -i;
905		}
906#ifdef INVARIANTS
907		if (!ffs_checkblk(ip,
908		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
909			panic("ffs_reallocblks: unallocated block 2");
910		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
911			panic("ffs_reallocblks: alloc mismatch");
912#endif
913#ifdef DEBUG
914		if (prtrealloc)
915			printf(" %jd,", (intmax_t)*bap);
916#endif
917		if (DOINGSOFTDEP(vp)) {
918			if (sbap == &ip->i_din2->di_db[0] && i < ssize)
919				softdep_setup_allocdirect(ip, start_lbn + i,
920				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
921				    buflist->bs_children[i]);
922			else
923				softdep_setup_allocindir_page(ip, start_lbn + i,
924				    i < ssize ? sbp : ebp, soff + i, blkno,
925				    *bap, buflist->bs_children[i]);
926		}
927		*bap++ = blkno;
928	}
929	/*
930	 * Next we must write out the modified inode and indirect blocks.
931	 * For strict correctness, the writes should be synchronous since
932	 * the old block values may have been written to disk. In practise
933	 * they are almost never written, but if we are concerned about
934	 * strict correctness, the `doasyncfree' flag should be set to zero.
935	 *
936	 * The test on `doasyncfree' should be changed to test a flag
937	 * that shows whether the associated buffers and inodes have
938	 * been written. The flag should be set when the cluster is
939	 * started and cleared whenever the buffer or inode is flushed.
940	 * We can then check below to see if it is set, and do the
941	 * synchronous write only when it has been cleared.
942	 */
943	if (sbap != &ip->i_din2->di_db[0]) {
944		if (doasyncfree)
945			bdwrite(sbp);
946		else
947			bwrite(sbp);
948	} else {
949		ip->i_flag |= IN_CHANGE | IN_UPDATE;
950		if (!doasyncfree)
951			ffs_update(vp, 1);
952	}
953	if (ssize < len) {
954		if (doasyncfree)
955			bdwrite(ebp);
956		else
957			bwrite(ebp);
958	}
959	/*
960	 * Last, free the old blocks and assign the new blocks to the buffers.
961	 */
962#ifdef DEBUG
963	if (prtrealloc)
964		printf("\n\tnew:");
965#endif
966	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
967		if (!DOINGSOFTDEP(vp))
968			ffs_blkfree(ump, fs, ip->i_devvp,
969			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
970			    fs->fs_bsize, ip->i_number, vp->v_type, NULL);
971		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
972#ifdef INVARIANTS
973		if (!ffs_checkblk(ip,
974		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
975			panic("ffs_reallocblks: unallocated block 3");
976#endif
977#ifdef DEBUG
978		if (prtrealloc)
979			printf(" %jd,", (intmax_t)blkno);
980#endif
981	}
982#ifdef DEBUG
983	if (prtrealloc) {
984		prtrealloc--;
985		printf("\n");
986	}
987#endif
988	return (0);
989
990fail:
991	if (ssize < len)
992		brelse(ebp);
993	if (sbap != &ip->i_din2->di_db[0])
994		brelse(sbp);
995	return (ENOSPC);
996}
997
998/*
999 * Allocate an inode in the filesystem.
1000 *
1001 * If allocating a directory, use ffs_dirpref to select the inode.
1002 * If allocating in a directory, the following hierarchy is followed:
1003 *   1) allocate the preferred inode.
1004 *   2) allocate an inode in the same cylinder group.
1005 *   3) quadradically rehash into other cylinder groups, until an
1006 *      available inode is located.
1007 * If no inode preference is given the following hierarchy is used
1008 * to allocate an inode:
1009 *   1) allocate an inode in cylinder group 0.
1010 *   2) quadradically rehash into other cylinder groups, until an
1011 *      available inode is located.
1012 */
1013int
1014ffs_valloc(pvp, mode, cred, vpp)
1015	struct vnode *pvp;
1016	int mode;
1017	struct ucred *cred;
1018	struct vnode **vpp;
1019{
1020	struct inode *pip;
1021	struct fs *fs;
1022	struct inode *ip;
1023	struct timespec ts;
1024	struct ufsmount *ump;
1025	ino_t ino, ipref;
1026	u_int cg;
1027	int error, error1, reclaimed;
1028	static struct timeval lastfail;
1029	static int curfail;
1030
1031	*vpp = NULL;
1032	pip = VTOI(pvp);
1033	fs = pip->i_fs;
1034	ump = pip->i_ump;
1035
1036	UFS_LOCK(ump);
1037	reclaimed = 0;
1038retry:
1039	if (fs->fs_cstotal.cs_nifree == 0)
1040		goto noinodes;
1041
1042	if ((mode & IFMT) == IFDIR)
1043		ipref = ffs_dirpref(pip);
1044	else
1045		ipref = pip->i_number;
1046	if (ipref >= fs->fs_ncg * fs->fs_ipg)
1047		ipref = 0;
1048	cg = ino_to_cg(fs, ipref);
1049	/*
1050	 * Track number of dirs created one after another
1051	 * in a same cg without intervening by files.
1052	 */
1053	if ((mode & IFMT) == IFDIR) {
1054		if (fs->fs_contigdirs[cg] < 255)
1055			fs->fs_contigdirs[cg]++;
1056	} else {
1057		if (fs->fs_contigdirs[cg] > 0)
1058			fs->fs_contigdirs[cg]--;
1059	}
1060	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0,
1061					(allocfcn_t *)ffs_nodealloccg);
1062	if (ino == 0)
1063		goto noinodes;
1064	error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp);
1065	if (error) {
1066		error1 = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp,
1067		    FFSV_FORCEINSMQ);
1068		ffs_vfree(pvp, ino, mode);
1069		if (error1 == 0) {
1070			ip = VTOI(*vpp);
1071			if (ip->i_mode)
1072				goto dup_alloc;
1073			ip->i_flag |= IN_MODIFIED;
1074			vput(*vpp);
1075		}
1076		return (error);
1077	}
1078	ip = VTOI(*vpp);
1079	if (ip->i_mode) {
1080dup_alloc:
1081		printf("mode = 0%o, inum = %lu, fs = %s\n",
1082		    ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt);
1083		panic("ffs_valloc: dup alloc");
1084	}
1085	if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) {  /* XXX */
1086		printf("free inode %s/%lu had %ld blocks\n",
1087		    fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks));
1088		DIP_SET(ip, i_blocks, 0);
1089	}
1090	ip->i_flags = 0;
1091	DIP_SET(ip, i_flags, 0);
1092	/*
1093	 * Set up a new generation number for this inode.
1094	 */
1095	if (ip->i_gen == 0 || ++ip->i_gen == 0)
1096		ip->i_gen = arc4random() / 2 + 1;
1097	DIP_SET(ip, i_gen, ip->i_gen);
1098	if (fs->fs_magic == FS_UFS2_MAGIC) {
1099		vfs_timestamp(&ts);
1100		ip->i_din2->di_birthtime = ts.tv_sec;
1101		ip->i_din2->di_birthnsec = ts.tv_nsec;
1102	}
1103	ufs_prepare_reclaim(*vpp);
1104	ip->i_flag = 0;
1105	(*vpp)->v_vflag = 0;
1106	(*vpp)->v_type = VNON;
1107	if (fs->fs_magic == FS_UFS2_MAGIC)
1108		(*vpp)->v_op = &ffs_vnodeops2;
1109	else
1110		(*vpp)->v_op = &ffs_vnodeops1;
1111	return (0);
1112noinodes:
1113	if (reclaimed == 0) {
1114		reclaimed = 1;
1115		softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT);
1116		goto retry;
1117	}
1118	UFS_UNLOCK(ump);
1119	if (ppsratecheck(&lastfail, &curfail, 1)) {
1120		ffs_fserr(fs, pip->i_number, "out of inodes");
1121		uprintf("\n%s: create/symlink failed, no inodes free\n",
1122		    fs->fs_fsmnt);
1123	}
1124	return (ENOSPC);
1125}
1126
1127/*
1128 * Find a cylinder group to place a directory.
1129 *
1130 * The policy implemented by this algorithm is to allocate a
1131 * directory inode in the same cylinder group as its parent
1132 * directory, but also to reserve space for its files inodes
1133 * and data. Restrict the number of directories which may be
1134 * allocated one after another in the same cylinder group
1135 * without intervening allocation of files.
1136 *
1137 * If we allocate a first level directory then force allocation
1138 * in another cylinder group.
1139 */
1140static ino_t
1141ffs_dirpref(pip)
1142	struct inode *pip;
1143{
1144	struct fs *fs;
1145	int cg, prefcg, dirsize, cgsize;
1146	u_int avgifree, avgbfree, avgndir, curdirsize;
1147	u_int minifree, minbfree, maxndir;
1148	u_int mincg, minndir;
1149	u_int maxcontigdirs;
1150
1151	mtx_assert(UFS_MTX(pip->i_ump), MA_OWNED);
1152	fs = pip->i_fs;
1153
1154	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
1155	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1156	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
1157
1158	/*
1159	 * Force allocation in another cg if creating a first level dir.
1160	 */
1161	ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref");
1162	if (ITOV(pip)->v_vflag & VV_ROOT) {
1163		prefcg = arc4random() % fs->fs_ncg;
1164		mincg = prefcg;
1165		minndir = fs->fs_ipg;
1166		for (cg = prefcg; cg < fs->fs_ncg; cg++)
1167			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
1168			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
1169			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1170				mincg = cg;
1171				minndir = fs->fs_cs(fs, cg).cs_ndir;
1172			}
1173		for (cg = 0; cg < prefcg; cg++)
1174			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
1175			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
1176			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1177				mincg = cg;
1178				minndir = fs->fs_cs(fs, cg).cs_ndir;
1179			}
1180		return ((ino_t)(fs->fs_ipg * mincg));
1181	}
1182
1183	/*
1184	 * Count various limits which used for
1185	 * optimal allocation of a directory inode.
1186	 */
1187	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
1188	minifree = avgifree - avgifree / 4;
1189	if (minifree < 1)
1190		minifree = 1;
1191	minbfree = avgbfree - avgbfree / 4;
1192	if (minbfree < 1)
1193		minbfree = 1;
1194	cgsize = fs->fs_fsize * fs->fs_fpg;
1195	dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
1196	curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
1197	if (dirsize < curdirsize)
1198		dirsize = curdirsize;
1199	if (dirsize <= 0)
1200		maxcontigdirs = 0;		/* dirsize overflowed */
1201	else
1202		maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
1203	if (fs->fs_avgfpdir > 0)
1204		maxcontigdirs = min(maxcontigdirs,
1205				    fs->fs_ipg / fs->fs_avgfpdir);
1206	if (maxcontigdirs == 0)
1207		maxcontigdirs = 1;
1208
1209	/*
1210	 * Limit number of dirs in one cg and reserve space for
1211	 * regular files, but only if we have no deficit in
1212	 * inodes or space.
1213	 *
1214	 * We are trying to find a suitable cylinder group nearby
1215	 * our preferred cylinder group to place a new directory.
1216	 * We scan from our preferred cylinder group forward looking
1217	 * for a cylinder group that meets our criterion. If we get
1218	 * to the final cylinder group and do not find anything,
1219	 * we start scanning backwards from our preferred cylinder
1220	 * group. The ideal would be to alternate looking forward
1221	 * and backward, but that is just too complex to code for
1222	 * the gain it would get. The most likely place where the
1223	 * backward scan would take effect is when we start near
1224	 * the end of the filesystem and do not find anything from
1225	 * where we are to the end. In that case, scanning backward
1226	 * will likely find us a suitable cylinder group much closer
1227	 * to our desired location than if we were to start scanning
1228	 * forward from the beginning of the filesystem.
1229	 */
1230	prefcg = ino_to_cg(fs, pip->i_number);
1231	for (cg = prefcg; cg < fs->fs_ncg; cg++)
1232		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1233		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1234		    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1235			if (fs->fs_contigdirs[cg] < maxcontigdirs)
1236				return ((ino_t)(fs->fs_ipg * cg));
1237		}
1238	for (cg = 0; cg < prefcg; cg++)
1239		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1240		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1241		    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1242			if (fs->fs_contigdirs[cg] < maxcontigdirs)
1243				return ((ino_t)(fs->fs_ipg * cg));
1244		}
1245	/*
1246	 * This is a backstop when we have deficit in space.
1247	 */
1248	for (cg = prefcg; cg < fs->fs_ncg; cg++)
1249		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1250			return ((ino_t)(fs->fs_ipg * cg));
1251	for (cg = 0; cg < prefcg; cg++)
1252		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1253			break;
1254	return ((ino_t)(fs->fs_ipg * cg));
1255}
1256
1257/*
1258 * Select the desired position for the next block in a file.  The file is
1259 * logically divided into sections. The first section is composed of the
1260 * direct blocks and the next fs_maxbpg blocks. Each additional section
1261 * contains fs_maxbpg blocks.
1262 *
1263 * If no blocks have been allocated in the first section, the policy is to
1264 * request a block in the same cylinder group as the inode that describes
1265 * the file. The first indirect is allocated immediately following the last
1266 * direct block and the data blocks for the first indirect immediately
1267 * follow it.
1268 *
1269 * If no blocks have been allocated in any other section, the indirect
1270 * block(s) are allocated in the same cylinder group as its inode in an
1271 * area reserved immediately following the inode blocks. The policy for
1272 * the data blocks is to place them in a cylinder group with a greater than
1273 * average number of free blocks. An appropriate cylinder group is found
1274 * by using a rotor that sweeps the cylinder groups. When a new group of
1275 * blocks is needed, the sweep begins in the cylinder group following the
1276 * cylinder group from which the previous allocation was made. The sweep
1277 * continues until a cylinder group with greater than the average number
1278 * of free blocks is found. If the allocation is for the first block in an
1279 * indirect block or the previous block is a hole, then the information on
1280 * the previous allocation is unavailable; here a best guess is made based
1281 * on the logical block number being allocated.
1282 *
1283 * If a section is already partially allocated, the policy is to
1284 * allocate blocks contiguously within the section if possible.
1285 */
1286ufs2_daddr_t
1287ffs_blkpref_ufs1(ip, lbn, indx, bap)
1288	struct inode *ip;
1289	ufs_lbn_t lbn;
1290	int indx;
1291	ufs1_daddr_t *bap;
1292{
1293	struct fs *fs;
1294	u_int cg, inocg;
1295	u_int avgbfree, startcg;
1296	ufs2_daddr_t pref;
1297
1298	KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
1299	mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED);
1300	fs = ip->i_fs;
1301	/*
1302	 * Allocation of indirect blocks is indicated by passing negative
1303	 * values in indx: -1 for single indirect, -2 for double indirect,
1304	 * -3 for triple indirect. As noted below, we attempt to allocate
1305	 * the first indirect inline with the file data. For all later
1306	 * indirect blocks, the data is often allocated in other cylinder
1307	 * groups. However to speed random file access and to speed up
1308	 * fsck, the filesystem reserves the first fs_metaspace blocks
1309	 * (typically half of fs_minfree) of the data area of each cylinder
1310	 * group to hold these later indirect blocks.
1311	 */
1312	inocg = ino_to_cg(fs, ip->i_number);
1313	if (indx < 0) {
1314		/*
1315		 * Our preference for indirect blocks is the zone at the
1316		 * beginning of the inode's cylinder group data area that
1317		 * we try to reserve for indirect blocks.
1318		 */
1319		pref = cgmeta(fs, inocg);
1320		/*
1321		 * If we are allocating the first indirect block, try to
1322		 * place it immediately following the last direct block.
1323		 */
1324		if (indx == -1 && lbn < NDADDR + NINDIR(fs) &&
1325		    ip->i_din1->di_db[NDADDR - 1] != 0)
1326			pref = ip->i_din1->di_db[NDADDR - 1] + fs->fs_frag;
1327		return (pref);
1328	}
1329	/*
1330	 * If we are allocating the first data block in the first indirect
1331	 * block and the indirect has been allocated in the data block area,
1332	 * try to place it immediately following the indirect block.
1333	 */
1334	if (lbn == NDADDR) {
1335		pref = ip->i_din1->di_ib[0];
1336		if (pref != 0 && pref >= cgdata(fs, inocg) &&
1337		    pref < cgbase(fs, inocg + 1))
1338			return (pref + fs->fs_frag);
1339	}
1340	/*
1341	 * If we are at the beginning of a file, or we have already allocated
1342	 * the maximum number of blocks per cylinder group, or we do not
1343	 * have a block allocated immediately preceeding us, then we need
1344	 * to decide where to start allocating new blocks.
1345	 */
1346	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1347		/*
1348		 * If we are allocating a directory data block, we want
1349		 * to place it in the metadata area.
1350		 */
1351		if ((ip->i_mode & IFMT) == IFDIR)
1352			return (cgmeta(fs, inocg));
1353		/*
1354		 * Until we fill all the direct and all the first indirect's
1355		 * blocks, we try to allocate in the data area of the inode's
1356		 * cylinder group.
1357		 */
1358		if (lbn < NDADDR + NINDIR(fs))
1359			return (cgdata(fs, inocg));
1360		/*
1361		 * Find a cylinder with greater than average number of
1362		 * unused data blocks.
1363		 */
1364		if (indx == 0 || bap[indx - 1] == 0)
1365			startcg = inocg + lbn / fs->fs_maxbpg;
1366		else
1367			startcg = dtog(fs, bap[indx - 1]) + 1;
1368		startcg %= fs->fs_ncg;
1369		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1370		for (cg = startcg; cg < fs->fs_ncg; cg++)
1371			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1372				fs->fs_cgrotor = cg;
1373				return (cgdata(fs, cg));
1374			}
1375		for (cg = 0; cg <= startcg; cg++)
1376			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1377				fs->fs_cgrotor = cg;
1378				return (cgdata(fs, cg));
1379			}
1380		return (0);
1381	}
1382	/*
1383	 * Otherwise, we just always try to lay things out contiguously.
1384	 */
1385	return (bap[indx - 1] + fs->fs_frag);
1386}
1387
1388/*
1389 * Same as above, but for UFS2
1390 */
1391ufs2_daddr_t
1392ffs_blkpref_ufs2(ip, lbn, indx, bap)
1393	struct inode *ip;
1394	ufs_lbn_t lbn;
1395	int indx;
1396	ufs2_daddr_t *bap;
1397{
1398	struct fs *fs;
1399	u_int cg, inocg;
1400	u_int avgbfree, startcg;
1401	ufs2_daddr_t pref;
1402
1403	KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
1404	mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED);
1405	fs = ip->i_fs;
1406	/*
1407	 * Allocation of indirect blocks is indicated by passing negative
1408	 * values in indx: -1 for single indirect, -2 for double indirect,
1409	 * -3 for triple indirect. As noted below, we attempt to allocate
1410	 * the first indirect inline with the file data. For all later
1411	 * indirect blocks, the data is often allocated in other cylinder
1412	 * groups. However to speed random file access and to speed up
1413	 * fsck, the filesystem reserves the first fs_metaspace blocks
1414	 * (typically half of fs_minfree) of the data area of each cylinder
1415	 * group to hold these later indirect blocks.
1416	 */
1417	inocg = ino_to_cg(fs, ip->i_number);
1418	if (indx < 0) {
1419		/*
1420		 * Our preference for indirect blocks is the zone at the
1421		 * beginning of the inode's cylinder group data area that
1422		 * we try to reserve for indirect blocks.
1423		 */
1424		pref = cgmeta(fs, inocg);
1425		/*
1426		 * If we are allocating the first indirect block, try to
1427		 * place it immediately following the last direct block.
1428		 */
1429		if (indx == -1 && lbn < NDADDR + NINDIR(fs) &&
1430		    ip->i_din2->di_db[NDADDR - 1] != 0)
1431			pref = ip->i_din2->di_db[NDADDR - 1] + fs->fs_frag;
1432		return (pref);
1433	}
1434	/*
1435	 * If we are allocating the first data block in the first indirect
1436	 * block and the indirect has been allocated in the data block area,
1437	 * try to place it immediately following the indirect block.
1438	 */
1439	if (lbn == NDADDR) {
1440		pref = ip->i_din2->di_ib[0];
1441		if (pref != 0 && pref >= cgdata(fs, inocg) &&
1442		    pref < cgbase(fs, inocg + 1))
1443			return (pref + fs->fs_frag);
1444	}
1445	/*
1446	 * If we are at the beginning of a file, or we have already allocated
1447	 * the maximum number of blocks per cylinder group, or we do not
1448	 * have a block allocated immediately preceeding us, then we need
1449	 * to decide where to start allocating new blocks.
1450	 */
1451	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1452		/*
1453		 * If we are allocating a directory data block, we want
1454		 * to place it in the metadata area.
1455		 */
1456		if ((ip->i_mode & IFMT) == IFDIR)
1457			return (cgmeta(fs, inocg));
1458		/*
1459		 * Until we fill all the direct and all the first indirect's
1460		 * blocks, we try to allocate in the data area of the inode's
1461		 * cylinder group.
1462		 */
1463		if (lbn < NDADDR + NINDIR(fs))
1464			return (cgdata(fs, inocg));
1465		/*
1466		 * Find a cylinder with greater than average number of
1467		 * unused data blocks.
1468		 */
1469		if (indx == 0 || bap[indx - 1] == 0)
1470			startcg = inocg + lbn / fs->fs_maxbpg;
1471		else
1472			startcg = dtog(fs, bap[indx - 1]) + 1;
1473		startcg %= fs->fs_ncg;
1474		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1475		for (cg = startcg; cg < fs->fs_ncg; cg++)
1476			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1477				fs->fs_cgrotor = cg;
1478				return (cgdata(fs, cg));
1479			}
1480		for (cg = 0; cg <= startcg; cg++)
1481			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1482				fs->fs_cgrotor = cg;
1483				return (cgdata(fs, cg));
1484			}
1485		return (0);
1486	}
1487	/*
1488	 * Otherwise, we just always try to lay things out contiguously.
1489	 */
1490	return (bap[indx - 1] + fs->fs_frag);
1491}
1492
1493/*
1494 * Implement the cylinder overflow algorithm.
1495 *
1496 * The policy implemented by this algorithm is:
1497 *   1) allocate the block in its requested cylinder group.
1498 *   2) quadradically rehash on the cylinder group number.
1499 *   3) brute force search for a free block.
1500 *
1501 * Must be called with the UFS lock held.  Will release the lock on success
1502 * and return with it held on failure.
1503 */
1504/*VARARGS5*/
1505static ufs2_daddr_t
1506ffs_hashalloc(ip, cg, pref, size, rsize, allocator)
1507	struct inode *ip;
1508	u_int cg;
1509	ufs2_daddr_t pref;
1510	int size;	/* Search size for data blocks, mode for inodes */
1511	int rsize;	/* Real allocated size. */
1512	allocfcn_t *allocator;
1513{
1514	struct fs *fs;
1515	ufs2_daddr_t result;
1516	u_int i, icg = cg;
1517
1518	mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED);
1519#ifdef INVARIANTS
1520	if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
1521		panic("ffs_hashalloc: allocation on suspended filesystem");
1522#endif
1523	fs = ip->i_fs;
1524	/*
1525	 * 1: preferred cylinder group
1526	 */
1527	result = (*allocator)(ip, cg, pref, size, rsize);
1528	if (result)
1529		return (result);
1530	/*
1531	 * 2: quadratic rehash
1532	 */
1533	for (i = 1; i < fs->fs_ncg; i *= 2) {
1534		cg += i;
1535		if (cg >= fs->fs_ncg)
1536			cg -= fs->fs_ncg;
1537		result = (*allocator)(ip, cg, 0, size, rsize);
1538		if (result)
1539			return (result);
1540	}
1541	/*
1542	 * 3: brute force search
1543	 * Note that we start at i == 2, since 0 was checked initially,
1544	 * and 1 is always checked in the quadratic rehash.
1545	 */
1546	cg = (icg + 2) % fs->fs_ncg;
1547	for (i = 2; i < fs->fs_ncg; i++) {
1548		result = (*allocator)(ip, cg, 0, size, rsize);
1549		if (result)
1550			return (result);
1551		cg++;
1552		if (cg == fs->fs_ncg)
1553			cg = 0;
1554	}
1555	return (0);
1556}
1557
1558/*
1559 * Determine whether a fragment can be extended.
1560 *
1561 * Check to see if the necessary fragments are available, and
1562 * if they are, allocate them.
1563 */
1564static ufs2_daddr_t
1565ffs_fragextend(ip, cg, bprev, osize, nsize)
1566	struct inode *ip;
1567	u_int cg;
1568	ufs2_daddr_t bprev;
1569	int osize, nsize;
1570{
1571	struct fs *fs;
1572	struct cg *cgp;
1573	struct buf *bp;
1574	struct ufsmount *ump;
1575	int nffree;
1576	long bno;
1577	int frags, bbase;
1578	int i, error;
1579	u_int8_t *blksfree;
1580
1581	ump = ip->i_ump;
1582	fs = ip->i_fs;
1583	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1584		return (0);
1585	frags = numfrags(fs, nsize);
1586	bbase = fragnum(fs, bprev);
1587	if (bbase > fragnum(fs, (bprev + frags - 1))) {
1588		/* cannot extend across a block boundary */
1589		return (0);
1590	}
1591	UFS_UNLOCK(ump);
1592	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1593		(int)fs->fs_cgsize, NOCRED, &bp);
1594	if (error)
1595		goto fail;
1596	cgp = (struct cg *)bp->b_data;
1597	if (!cg_chkmagic(cgp))
1598		goto fail;
1599	bp->b_xflags |= BX_BKGRDWRITE;
1600	cgp->cg_old_time = cgp->cg_time = time_second;
1601	bno = dtogd(fs, bprev);
1602	blksfree = cg_blksfree(cgp);
1603	for (i = numfrags(fs, osize); i < frags; i++)
1604		if (isclr(blksfree, bno + i))
1605			goto fail;
1606	/*
1607	 * the current fragment can be extended
1608	 * deduct the count on fragment being extended into
1609	 * increase the count on the remaining fragment (if any)
1610	 * allocate the extended piece
1611	 */
1612	for (i = frags; i < fs->fs_frag - bbase; i++)
1613		if (isclr(blksfree, bno + i))
1614			break;
1615	cgp->cg_frsum[i - numfrags(fs, osize)]--;
1616	if (i != frags)
1617		cgp->cg_frsum[i - frags]++;
1618	for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) {
1619		clrbit(blksfree, bno + i);
1620		cgp->cg_cs.cs_nffree--;
1621		nffree++;
1622	}
1623	UFS_LOCK(ump);
1624	fs->fs_cstotal.cs_nffree -= nffree;
1625	fs->fs_cs(fs, cg).cs_nffree -= nffree;
1626	fs->fs_fmod = 1;
1627	ACTIVECLEAR(fs, cg);
1628	UFS_UNLOCK(ump);
1629	if (DOINGSOFTDEP(ITOV(ip)))
1630		softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev,
1631		    frags, numfrags(fs, osize));
1632	bdwrite(bp);
1633	return (bprev);
1634
1635fail:
1636	brelse(bp);
1637	UFS_LOCK(ump);
1638	return (0);
1639
1640}
1641
1642/*
1643 * Determine whether a block can be allocated.
1644 *
1645 * Check to see if a block of the appropriate size is available,
1646 * and if it is, allocate it.
1647 */
1648static ufs2_daddr_t
1649ffs_alloccg(ip, cg, bpref, size, rsize)
1650	struct inode *ip;
1651	u_int cg;
1652	ufs2_daddr_t bpref;
1653	int size;
1654	int rsize;
1655{
1656	struct fs *fs;
1657	struct cg *cgp;
1658	struct buf *bp;
1659	struct ufsmount *ump;
1660	ufs1_daddr_t bno;
1661	ufs2_daddr_t blkno;
1662	int i, allocsiz, error, frags;
1663	u_int8_t *blksfree;
1664
1665	ump = ip->i_ump;
1666	fs = ip->i_fs;
1667	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1668		return (0);
1669	UFS_UNLOCK(ump);
1670	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1671		(int)fs->fs_cgsize, NOCRED, &bp);
1672	if (error)
1673		goto fail;
1674	cgp = (struct cg *)bp->b_data;
1675	if (!cg_chkmagic(cgp) ||
1676	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1677		goto fail;
1678	bp->b_xflags |= BX_BKGRDWRITE;
1679	cgp->cg_old_time = cgp->cg_time = time_second;
1680	if (size == fs->fs_bsize) {
1681		UFS_LOCK(ump);
1682		blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
1683		ACTIVECLEAR(fs, cg);
1684		UFS_UNLOCK(ump);
1685		bdwrite(bp);
1686		return (blkno);
1687	}
1688	/*
1689	 * check to see if any fragments are already available
1690	 * allocsiz is the size which will be allocated, hacking
1691	 * it down to a smaller size if necessary
1692	 */
1693	blksfree = cg_blksfree(cgp);
1694	frags = numfrags(fs, size);
1695	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1696		if (cgp->cg_frsum[allocsiz] != 0)
1697			break;
1698	if (allocsiz == fs->fs_frag) {
1699		/*
1700		 * no fragments were available, so a block will be
1701		 * allocated, and hacked up
1702		 */
1703		if (cgp->cg_cs.cs_nbfree == 0)
1704			goto fail;
1705		UFS_LOCK(ump);
1706		blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
1707		ACTIVECLEAR(fs, cg);
1708		UFS_UNLOCK(ump);
1709		bdwrite(bp);
1710		return (blkno);
1711	}
1712	KASSERT(size == rsize,
1713	    ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize));
1714	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1715	if (bno < 0)
1716		goto fail;
1717	for (i = 0; i < frags; i++)
1718		clrbit(blksfree, bno + i);
1719	cgp->cg_cs.cs_nffree -= frags;
1720	cgp->cg_frsum[allocsiz]--;
1721	if (frags != allocsiz)
1722		cgp->cg_frsum[allocsiz - frags]++;
1723	UFS_LOCK(ump);
1724	fs->fs_cstotal.cs_nffree -= frags;
1725	fs->fs_cs(fs, cg).cs_nffree -= frags;
1726	fs->fs_fmod = 1;
1727	blkno = cgbase(fs, cg) + bno;
1728	ACTIVECLEAR(fs, cg);
1729	UFS_UNLOCK(ump);
1730	if (DOINGSOFTDEP(ITOV(ip)))
1731		softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0);
1732	bdwrite(bp);
1733	return (blkno);
1734
1735fail:
1736	brelse(bp);
1737	UFS_LOCK(ump);
1738	return (0);
1739}
1740
1741/*
1742 * Allocate a block in a cylinder group.
1743 *
1744 * This algorithm implements the following policy:
1745 *   1) allocate the requested block.
1746 *   2) allocate a rotationally optimal block in the same cylinder.
1747 *   3) allocate the next available block on the block rotor for the
1748 *      specified cylinder group.
1749 * Note that this routine only allocates fs_bsize blocks; these
1750 * blocks may be fragmented by the routine that allocates them.
1751 */
1752static ufs2_daddr_t
1753ffs_alloccgblk(ip, bp, bpref, size)
1754	struct inode *ip;
1755	struct buf *bp;
1756	ufs2_daddr_t bpref;
1757	int size;
1758{
1759	struct fs *fs;
1760	struct cg *cgp;
1761	struct ufsmount *ump;
1762	ufs1_daddr_t bno;
1763	ufs2_daddr_t blkno;
1764	u_int8_t *blksfree;
1765	int i, cgbpref;
1766
1767	fs = ip->i_fs;
1768	ump = ip->i_ump;
1769	mtx_assert(UFS_MTX(ump), MA_OWNED);
1770	cgp = (struct cg *)bp->b_data;
1771	blksfree = cg_blksfree(cgp);
1772	if (bpref == 0) {
1773		bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag;
1774	} else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) {
1775		/* map bpref to correct zone in this cg */
1776		if (bpref < cgdata(fs, cgbpref))
1777			bpref = cgmeta(fs, cgp->cg_cgx);
1778		else
1779			bpref = cgdata(fs, cgp->cg_cgx);
1780	}
1781	/*
1782	 * if the requested block is available, use it
1783	 */
1784	bno = dtogd(fs, blknum(fs, bpref));
1785	if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1786		goto gotit;
1787	/*
1788	 * Take the next available block in this cylinder group.
1789	 */
1790	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1791	if (bno < 0)
1792		return (0);
1793	/* Update cg_rotor only if allocated from the data zone */
1794	if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx)))
1795		cgp->cg_rotor = bno;
1796gotit:
1797	blkno = fragstoblks(fs, bno);
1798	ffs_clrblock(fs, blksfree, (long)blkno);
1799	ffs_clusteracct(fs, cgp, blkno, -1);
1800	cgp->cg_cs.cs_nbfree--;
1801	fs->fs_cstotal.cs_nbfree--;
1802	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1803	fs->fs_fmod = 1;
1804	blkno = cgbase(fs, cgp->cg_cgx) + bno;
1805	/*
1806	 * If the caller didn't want the whole block free the frags here.
1807	 */
1808	size = numfrags(fs, size);
1809	if (size != fs->fs_frag) {
1810		bno = dtogd(fs, blkno);
1811		for (i = size; i < fs->fs_frag; i++)
1812			setbit(blksfree, bno + i);
1813		i = fs->fs_frag - size;
1814		cgp->cg_cs.cs_nffree += i;
1815		fs->fs_cstotal.cs_nffree += i;
1816		fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i;
1817		fs->fs_fmod = 1;
1818		cgp->cg_frsum[i]++;
1819	}
1820	/* XXX Fixme. */
1821	UFS_UNLOCK(ump);
1822	if (DOINGSOFTDEP(ITOV(ip)))
1823		softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno,
1824		    size, 0);
1825	UFS_LOCK(ump);
1826	return (blkno);
1827}
1828
1829/*
1830 * Determine whether a cluster can be allocated.
1831 *
1832 * We do not currently check for optimal rotational layout if there
1833 * are multiple choices in the same cylinder group. Instead we just
1834 * take the first one that we find following bpref.
1835 */
1836static ufs2_daddr_t
1837ffs_clusteralloc(ip, cg, bpref, len)
1838	struct inode *ip;
1839	u_int cg;
1840	ufs2_daddr_t bpref;
1841	int len;
1842{
1843	struct fs *fs;
1844	struct cg *cgp;
1845	struct buf *bp;
1846	struct ufsmount *ump;
1847	int i, run, bit, map, got;
1848	ufs2_daddr_t bno;
1849	u_char *mapp;
1850	int32_t *lp;
1851	u_int8_t *blksfree;
1852
1853	fs = ip->i_fs;
1854	ump = ip->i_ump;
1855	if (fs->fs_maxcluster[cg] < len)
1856		return (0);
1857	UFS_UNLOCK(ump);
1858	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1859	    NOCRED, &bp))
1860		goto fail_lock;
1861	cgp = (struct cg *)bp->b_data;
1862	if (!cg_chkmagic(cgp))
1863		goto fail_lock;
1864	bp->b_xflags |= BX_BKGRDWRITE;
1865	/*
1866	 * Check to see if a cluster of the needed size (or bigger) is
1867	 * available in this cylinder group.
1868	 */
1869	lp = &cg_clustersum(cgp)[len];
1870	for (i = len; i <= fs->fs_contigsumsize; i++)
1871		if (*lp++ > 0)
1872			break;
1873	if (i > fs->fs_contigsumsize) {
1874		/*
1875		 * This is the first time looking for a cluster in this
1876		 * cylinder group. Update the cluster summary information
1877		 * to reflect the true maximum sized cluster so that
1878		 * future cluster allocation requests can avoid reading
1879		 * the cylinder group map only to find no clusters.
1880		 */
1881		lp = &cg_clustersum(cgp)[len - 1];
1882		for (i = len - 1; i > 0; i--)
1883			if (*lp-- > 0)
1884				break;
1885		UFS_LOCK(ump);
1886		fs->fs_maxcluster[cg] = i;
1887		goto fail;
1888	}
1889	/*
1890	 * Search the cluster map to find a big enough cluster.
1891	 * We take the first one that we find, even if it is larger
1892	 * than we need as we prefer to get one close to the previous
1893	 * block allocation. We do not search before the current
1894	 * preference point as we do not want to allocate a block
1895	 * that is allocated before the previous one (as we will
1896	 * then have to wait for another pass of the elevator
1897	 * algorithm before it will be read). We prefer to fail and
1898	 * be recalled to try an allocation in the next cylinder group.
1899	 */
1900	if (dtog(fs, bpref) != cg)
1901		bpref = cgdata(fs, cg);
1902	else
1903		bpref = blknum(fs, bpref);
1904	bpref = fragstoblks(fs, dtogd(fs, bpref));
1905	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1906	map = *mapp++;
1907	bit = 1 << (bpref % NBBY);
1908	for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1909		if ((map & bit) == 0) {
1910			run = 0;
1911		} else {
1912			run++;
1913			if (run == len)
1914				break;
1915		}
1916		if ((got & (NBBY - 1)) != (NBBY - 1)) {
1917			bit <<= 1;
1918		} else {
1919			map = *mapp++;
1920			bit = 1;
1921		}
1922	}
1923	if (got >= cgp->cg_nclusterblks)
1924		goto fail_lock;
1925	/*
1926	 * Allocate the cluster that we have found.
1927	 */
1928	blksfree = cg_blksfree(cgp);
1929	for (i = 1; i <= len; i++)
1930		if (!ffs_isblock(fs, blksfree, got - run + i))
1931			panic("ffs_clusteralloc: map mismatch");
1932	bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1);
1933	if (dtog(fs, bno) != cg)
1934		panic("ffs_clusteralloc: allocated out of group");
1935	len = blkstofrags(fs, len);
1936	UFS_LOCK(ump);
1937	for (i = 0; i < len; i += fs->fs_frag)
1938		if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i)
1939			panic("ffs_clusteralloc: lost block");
1940	ACTIVECLEAR(fs, cg);
1941	UFS_UNLOCK(ump);
1942	bdwrite(bp);
1943	return (bno);
1944
1945fail_lock:
1946	UFS_LOCK(ump);
1947fail:
1948	brelse(bp);
1949	return (0);
1950}
1951
1952static inline struct buf *
1953getinobuf(struct inode *ip, u_int cg, u_int32_t cginoblk, int gbflags)
1954{
1955	struct fs *fs;
1956
1957	fs = ip->i_fs;
1958	return (getblk(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs,
1959	    cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0,
1960	    gbflags));
1961}
1962
1963/*
1964 * Determine whether an inode can be allocated.
1965 *
1966 * Check to see if an inode is available, and if it is,
1967 * allocate it using the following policy:
1968 *   1) allocate the requested inode.
1969 *   2) allocate the next available inode after the requested
1970 *      inode in the specified cylinder group.
1971 */
1972static ufs2_daddr_t
1973ffs_nodealloccg(ip, cg, ipref, mode, unused)
1974	struct inode *ip;
1975	u_int cg;
1976	ufs2_daddr_t ipref;
1977	int mode;
1978	int unused;
1979{
1980	struct fs *fs;
1981	struct cg *cgp;
1982	struct buf *bp, *ibp;
1983	struct ufsmount *ump;
1984	u_int8_t *inosused, *loc;
1985	struct ufs2_dinode *dp2;
1986	int error, start, len, i;
1987	u_int32_t old_initediblk;
1988
1989	fs = ip->i_fs;
1990	ump = ip->i_ump;
1991check_nifree:
1992	if (fs->fs_cs(fs, cg).cs_nifree == 0)
1993		return (0);
1994	UFS_UNLOCK(ump);
1995	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1996		(int)fs->fs_cgsize, NOCRED, &bp);
1997	if (error) {
1998		brelse(bp);
1999		UFS_LOCK(ump);
2000		return (0);
2001	}
2002	cgp = (struct cg *)bp->b_data;
2003restart:
2004	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
2005		brelse(bp);
2006		UFS_LOCK(ump);
2007		return (0);
2008	}
2009	bp->b_xflags |= BX_BKGRDWRITE;
2010	inosused = cg_inosused(cgp);
2011	if (ipref) {
2012		ipref %= fs->fs_ipg;
2013		if (isclr(inosused, ipref))
2014			goto gotit;
2015	}
2016	start = cgp->cg_irotor / NBBY;
2017	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
2018	loc = memcchr(&inosused[start], 0xff, len);
2019	if (loc == NULL) {
2020		len = start + 1;
2021		start = 0;
2022		loc = memcchr(&inosused[start], 0xff, len);
2023		if (loc == NULL) {
2024			printf("cg = %d, irotor = %ld, fs = %s\n",
2025			    cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
2026			panic("ffs_nodealloccg: map corrupted");
2027			/* NOTREACHED */
2028		}
2029	}
2030	ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1;
2031gotit:
2032	/*
2033	 * Check to see if we need to initialize more inodes.
2034	 */
2035	if (fs->fs_magic == FS_UFS2_MAGIC &&
2036	    ipref + INOPB(fs) > cgp->cg_initediblk &&
2037	    cgp->cg_initediblk < cgp->cg_niblk) {
2038		old_initediblk = cgp->cg_initediblk;
2039
2040		/*
2041		 * Free the cylinder group lock before writing the
2042		 * initialized inode block.  Entering the
2043		 * babarrierwrite() with the cylinder group lock
2044		 * causes lock order violation between the lock and
2045		 * snaplk.
2046		 *
2047		 * Another thread can decide to initialize the same
2048		 * inode block, but whichever thread first gets the
2049		 * cylinder group lock after writing the newly
2050		 * allocated inode block will update it and the other
2051		 * will realize that it has lost and leave the
2052		 * cylinder group unchanged.
2053		 */
2054		ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT);
2055		brelse(bp);
2056		if (ibp == NULL) {
2057			/*
2058			 * The inode block buffer is already owned by
2059			 * another thread, which must initialize it.
2060			 * Wait on the buffer to allow another thread
2061			 * to finish the updates, with dropped cg
2062			 * buffer lock, then retry.
2063			 */
2064			ibp = getinobuf(ip, cg, old_initediblk, 0);
2065			brelse(ibp);
2066			UFS_LOCK(ump);
2067			goto check_nifree;
2068		}
2069		bzero(ibp->b_data, (int)fs->fs_bsize);
2070		dp2 = (struct ufs2_dinode *)(ibp->b_data);
2071		for (i = 0; i < INOPB(fs); i++) {
2072			dp2->di_gen = arc4random() / 2 + 1;
2073			dp2++;
2074		}
2075		/*
2076		 * Rather than adding a soft updates dependency to ensure
2077		 * that the new inode block is written before it is claimed
2078		 * by the cylinder group map, we just do a barrier write
2079		 * here. The barrier write will ensure that the inode block
2080		 * gets written before the updated cylinder group map can be
2081		 * written. The barrier write should only slow down bulk
2082		 * loading of newly created filesystems.
2083		 */
2084		babarrierwrite(ibp);
2085
2086		/*
2087		 * After the inode block is written, try to update the
2088		 * cg initediblk pointer.  If another thread beat us
2089		 * to it, then leave it unchanged as the other thread
2090		 * has already set it correctly.
2091		 */
2092		error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
2093		    (int)fs->fs_cgsize, NOCRED, &bp);
2094		UFS_LOCK(ump);
2095		ACTIVECLEAR(fs, cg);
2096		UFS_UNLOCK(ump);
2097		if (error != 0) {
2098			brelse(bp);
2099			return (error);
2100		}
2101		cgp = (struct cg *)bp->b_data;
2102		if (cgp->cg_initediblk == old_initediblk)
2103			cgp->cg_initediblk += INOPB(fs);
2104		goto restart;
2105	}
2106	cgp->cg_old_time = cgp->cg_time = time_second;
2107	cgp->cg_irotor = ipref;
2108	UFS_LOCK(ump);
2109	ACTIVECLEAR(fs, cg);
2110	setbit(inosused, ipref);
2111	cgp->cg_cs.cs_nifree--;
2112	fs->fs_cstotal.cs_nifree--;
2113	fs->fs_cs(fs, cg).cs_nifree--;
2114	fs->fs_fmod = 1;
2115	if ((mode & IFMT) == IFDIR) {
2116		cgp->cg_cs.cs_ndir++;
2117		fs->fs_cstotal.cs_ndir++;
2118		fs->fs_cs(fs, cg).cs_ndir++;
2119	}
2120	UFS_UNLOCK(ump);
2121	if (DOINGSOFTDEP(ITOV(ip)))
2122		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode);
2123	bdwrite(bp);
2124	return ((ino_t)(cg * fs->fs_ipg + ipref));
2125}
2126
2127/*
2128 * Free a block or fragment.
2129 *
2130 * The specified block or fragment is placed back in the
2131 * free map. If a fragment is deallocated, a possible
2132 * block reassembly is checked.
2133 */
2134static void
2135ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd)
2136	struct ufsmount *ump;
2137	struct fs *fs;
2138	struct vnode *devvp;
2139	ufs2_daddr_t bno;
2140	long size;
2141	ino_t inum;
2142	struct workhead *dephd;
2143{
2144	struct mount *mp;
2145	struct cg *cgp;
2146	struct buf *bp;
2147	ufs1_daddr_t fragno, cgbno;
2148	ufs2_daddr_t cgblkno;
2149	int i, blk, frags, bbase;
2150	u_int cg;
2151	u_int8_t *blksfree;
2152	struct cdev *dev;
2153
2154	cg = dtog(fs, bno);
2155	if (devvp->v_type == VREG) {
2156		/* devvp is a snapshot */
2157		dev = VTOI(devvp)->i_devvp->v_rdev;
2158		cgblkno = fragstoblks(fs, cgtod(fs, cg));
2159	} else if (devvp->v_type == VCHR) {
2160		/* devvp is a normal disk device */
2161		dev = devvp->v_rdev;
2162		cgblkno = fsbtodb(fs, cgtod(fs, cg));
2163		ASSERT_VOP_LOCKED(devvp, "ffs_blkfree_cg");
2164	} else
2165		return;
2166#ifdef INVARIANTS
2167	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
2168	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
2169		printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n",
2170		    devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize,
2171		    size, fs->fs_fsmnt);
2172		panic("ffs_blkfree_cg: bad size");
2173	}
2174#endif
2175	if ((u_int)bno >= fs->fs_size) {
2176		printf("bad block %jd, ino %lu\n", (intmax_t)bno,
2177		    (u_long)inum);
2178		ffs_fserr(fs, inum, "bad block");
2179		return;
2180	}
2181	if (bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp)) {
2182		brelse(bp);
2183		return;
2184	}
2185	cgp = (struct cg *)bp->b_data;
2186	if (!cg_chkmagic(cgp)) {
2187		brelse(bp);
2188		return;
2189	}
2190	bp->b_xflags |= BX_BKGRDWRITE;
2191	cgp->cg_old_time = cgp->cg_time = time_second;
2192	cgbno = dtogd(fs, bno);
2193	blksfree = cg_blksfree(cgp);
2194	UFS_LOCK(ump);
2195	if (size == fs->fs_bsize) {
2196		fragno = fragstoblks(fs, cgbno);
2197		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
2198			if (devvp->v_type == VREG) {
2199				UFS_UNLOCK(ump);
2200				/* devvp is a snapshot */
2201				brelse(bp);
2202				return;
2203			}
2204			printf("dev = %s, block = %jd, fs = %s\n",
2205			    devtoname(dev), (intmax_t)bno, fs->fs_fsmnt);
2206			panic("ffs_blkfree_cg: freeing free block");
2207		}
2208		ffs_setblock(fs, blksfree, fragno);
2209		ffs_clusteracct(fs, cgp, fragno, 1);
2210		cgp->cg_cs.cs_nbfree++;
2211		fs->fs_cstotal.cs_nbfree++;
2212		fs->fs_cs(fs, cg).cs_nbfree++;
2213	} else {
2214		bbase = cgbno - fragnum(fs, cgbno);
2215		/*
2216		 * decrement the counts associated with the old frags
2217		 */
2218		blk = blkmap(fs, blksfree, bbase);
2219		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
2220		/*
2221		 * deallocate the fragment
2222		 */
2223		frags = numfrags(fs, size);
2224		for (i = 0; i < frags; i++) {
2225			if (isset(blksfree, cgbno + i)) {
2226				printf("dev = %s, block = %jd, fs = %s\n",
2227				    devtoname(dev), (intmax_t)(bno + i),
2228				    fs->fs_fsmnt);
2229				panic("ffs_blkfree_cg: freeing free frag");
2230			}
2231			setbit(blksfree, cgbno + i);
2232		}
2233		cgp->cg_cs.cs_nffree += i;
2234		fs->fs_cstotal.cs_nffree += i;
2235		fs->fs_cs(fs, cg).cs_nffree += i;
2236		/*
2237		 * add back in counts associated with the new frags
2238		 */
2239		blk = blkmap(fs, blksfree, bbase);
2240		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
2241		/*
2242		 * if a complete block has been reassembled, account for it
2243		 */
2244		fragno = fragstoblks(fs, bbase);
2245		if (ffs_isblock(fs, blksfree, fragno)) {
2246			cgp->cg_cs.cs_nffree -= fs->fs_frag;
2247			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
2248			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
2249			ffs_clusteracct(fs, cgp, fragno, 1);
2250			cgp->cg_cs.cs_nbfree++;
2251			fs->fs_cstotal.cs_nbfree++;
2252			fs->fs_cs(fs, cg).cs_nbfree++;
2253		}
2254	}
2255	fs->fs_fmod = 1;
2256	ACTIVECLEAR(fs, cg);
2257	UFS_UNLOCK(ump);
2258	mp = UFSTOVFS(ump);
2259	if (MOUNTEDSOFTDEP(mp) && devvp->v_type == VCHR)
2260		softdep_setup_blkfree(UFSTOVFS(ump), bp, bno,
2261		    numfrags(fs, size), dephd);
2262	bdwrite(bp);
2263}
2264
2265struct ffs_blkfree_trim_params {
2266	struct task task;
2267	struct ufsmount *ump;
2268	struct vnode *devvp;
2269	ufs2_daddr_t bno;
2270	long size;
2271	ino_t inum;
2272	struct workhead *pdephd;
2273	struct workhead dephd;
2274};
2275
2276static void
2277ffs_blkfree_trim_task(ctx, pending)
2278	void *ctx;
2279	int pending;
2280{
2281	struct ffs_blkfree_trim_params *tp;
2282
2283	tp = ctx;
2284	ffs_blkfree_cg(tp->ump, tp->ump->um_fs, tp->devvp, tp->bno, tp->size,
2285	    tp->inum, tp->pdephd);
2286	vn_finished_secondary_write(UFSTOVFS(tp->ump));
2287	atomic_add_int(&tp->ump->um_trim_inflight, -1);
2288	free(tp, M_TEMP);
2289}
2290
2291static void
2292ffs_blkfree_trim_completed(bip)
2293	struct bio *bip;
2294{
2295	struct ffs_blkfree_trim_params *tp;
2296
2297	tp = bip->bio_caller2;
2298	g_destroy_bio(bip);
2299	TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp);
2300	taskqueue_enqueue(tp->ump->um_trim_tq, &tp->task);
2301}
2302
2303void
2304ffs_blkfree(ump, fs, devvp, bno, size, inum, vtype, dephd)
2305	struct ufsmount *ump;
2306	struct fs *fs;
2307	struct vnode *devvp;
2308	ufs2_daddr_t bno;
2309	long size;
2310	ino_t inum;
2311	enum vtype vtype;
2312	struct workhead *dephd;
2313{
2314	struct mount *mp;
2315	struct bio *bip;
2316	struct ffs_blkfree_trim_params *tp;
2317
2318	/*
2319	 * Check to see if a snapshot wants to claim the block.
2320	 * Check that devvp is a normal disk device, not a snapshot,
2321	 * it has a snapshot(s) associated with it, and one of the
2322	 * snapshots wants to claim the block.
2323	 */
2324	if (devvp->v_type == VCHR &&
2325	    (devvp->v_vflag & VV_COPYONWRITE) &&
2326	    ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) {
2327		return;
2328	}
2329	/*
2330	 * Nothing to delay if TRIM is disabled, or the operation is
2331	 * performed on the snapshot.
2332	 */
2333	if (!ump->um_candelete || devvp->v_type == VREG) {
2334		ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd);
2335		return;
2336	}
2337
2338	/*
2339	 * Postpone the set of the free bit in the cg bitmap until the
2340	 * BIO_DELETE is completed.  Otherwise, due to disk queue
2341	 * reordering, TRIM might be issued after we reuse the block
2342	 * and write some new data into it.
2343	 */
2344	atomic_add_int(&ump->um_trim_inflight, 1);
2345	tp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TEMP, M_WAITOK);
2346	tp->ump = ump;
2347	tp->devvp = devvp;
2348	tp->bno = bno;
2349	tp->size = size;
2350	tp->inum = inum;
2351	if (dephd != NULL) {
2352		LIST_INIT(&tp->dephd);
2353		LIST_SWAP(dephd, &tp->dephd, worklist, wk_list);
2354		tp->pdephd = &tp->dephd;
2355	} else
2356		tp->pdephd = NULL;
2357
2358	bip = g_alloc_bio();
2359	bip->bio_cmd = BIO_DELETE;
2360	bip->bio_offset = dbtob(fsbtodb(fs, bno));
2361	bip->bio_done = ffs_blkfree_trim_completed;
2362	bip->bio_length = size;
2363	bip->bio_caller2 = tp;
2364
2365	mp = UFSTOVFS(ump);
2366	vn_start_secondary_write(NULL, &mp, 0);
2367	g_io_request(bip, (struct g_consumer *)devvp->v_bufobj.bo_private);
2368}
2369
2370#ifdef INVARIANTS
2371/*
2372 * Verify allocation of a block or fragment. Returns true if block or
2373 * fragment is allocated, false if it is free.
2374 */
2375static int
2376ffs_checkblk(ip, bno, size)
2377	struct inode *ip;
2378	ufs2_daddr_t bno;
2379	long size;
2380{
2381	struct fs *fs;
2382	struct cg *cgp;
2383	struct buf *bp;
2384	ufs1_daddr_t cgbno;
2385	int i, error, frags, free;
2386	u_int8_t *blksfree;
2387
2388	fs = ip->i_fs;
2389	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
2390		printf("bsize = %ld, size = %ld, fs = %s\n",
2391		    (long)fs->fs_bsize, size, fs->fs_fsmnt);
2392		panic("ffs_checkblk: bad size");
2393	}
2394	if ((u_int)bno >= fs->fs_size)
2395		panic("ffs_checkblk: bad block %jd", (intmax_t)bno);
2396	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
2397		(int)fs->fs_cgsize, NOCRED, &bp);
2398	if (error)
2399		panic("ffs_checkblk: cg bread failed");
2400	cgp = (struct cg *)bp->b_data;
2401	if (!cg_chkmagic(cgp))
2402		panic("ffs_checkblk: cg magic mismatch");
2403	bp->b_xflags |= BX_BKGRDWRITE;
2404	blksfree = cg_blksfree(cgp);
2405	cgbno = dtogd(fs, bno);
2406	if (size == fs->fs_bsize) {
2407		free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno));
2408	} else {
2409		frags = numfrags(fs, size);
2410		for (free = 0, i = 0; i < frags; i++)
2411			if (isset(blksfree, cgbno + i))
2412				free++;
2413		if (free != 0 && free != frags)
2414			panic("ffs_checkblk: partially free fragment");
2415	}
2416	brelse(bp);
2417	return (!free);
2418}
2419#endif /* INVARIANTS */
2420
2421/*
2422 * Free an inode.
2423 */
2424int
2425ffs_vfree(pvp, ino, mode)
2426	struct vnode *pvp;
2427	ino_t ino;
2428	int mode;
2429{
2430	struct inode *ip;
2431
2432	if (DOINGSOFTDEP(pvp)) {
2433		softdep_freefile(pvp, ino, mode);
2434		return (0);
2435	}
2436	ip = VTOI(pvp);
2437	return (ffs_freefile(ip->i_ump, ip->i_fs, ip->i_devvp, ino, mode,
2438	    NULL));
2439}
2440
2441/*
2442 * Do the actual free operation.
2443 * The specified inode is placed back in the free map.
2444 */
2445int
2446ffs_freefile(ump, fs, devvp, ino, mode, wkhd)
2447	struct ufsmount *ump;
2448	struct fs *fs;
2449	struct vnode *devvp;
2450	ino_t ino;
2451	int mode;
2452	struct workhead *wkhd;
2453{
2454	struct cg *cgp;
2455	struct buf *bp;
2456	ufs2_daddr_t cgbno;
2457	int error;
2458	u_int cg;
2459	u_int8_t *inosused;
2460	struct cdev *dev;
2461
2462	cg = ino_to_cg(fs, ino);
2463	if (devvp->v_type == VREG) {
2464		/* devvp is a snapshot */
2465		dev = VTOI(devvp)->i_devvp->v_rdev;
2466		cgbno = fragstoblks(fs, cgtod(fs, cg));
2467	} else if (devvp->v_type == VCHR) {
2468		/* devvp is a normal disk device */
2469		dev = devvp->v_rdev;
2470		cgbno = fsbtodb(fs, cgtod(fs, cg));
2471	} else {
2472		bp = NULL;
2473		return (0);
2474	}
2475	if (ino >= fs->fs_ipg * fs->fs_ncg)
2476		panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s",
2477		    devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt);
2478	if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) {
2479		brelse(bp);
2480		return (error);
2481	}
2482	cgp = (struct cg *)bp->b_data;
2483	if (!cg_chkmagic(cgp)) {
2484		brelse(bp);
2485		return (0);
2486	}
2487	bp->b_xflags |= BX_BKGRDWRITE;
2488	cgp->cg_old_time = cgp->cg_time = time_second;
2489	inosused = cg_inosused(cgp);
2490	ino %= fs->fs_ipg;
2491	if (isclr(inosused, ino)) {
2492		printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev),
2493		    (uintmax_t)(ino + cg * fs->fs_ipg), fs->fs_fsmnt);
2494		if (fs->fs_ronly == 0)
2495			panic("ffs_freefile: freeing free inode");
2496	}
2497	clrbit(inosused, ino);
2498	if (ino < cgp->cg_irotor)
2499		cgp->cg_irotor = ino;
2500	cgp->cg_cs.cs_nifree++;
2501	UFS_LOCK(ump);
2502	fs->fs_cstotal.cs_nifree++;
2503	fs->fs_cs(fs, cg).cs_nifree++;
2504	if ((mode & IFMT) == IFDIR) {
2505		cgp->cg_cs.cs_ndir--;
2506		fs->fs_cstotal.cs_ndir--;
2507		fs->fs_cs(fs, cg).cs_ndir--;
2508	}
2509	fs->fs_fmod = 1;
2510	ACTIVECLEAR(fs, cg);
2511	UFS_UNLOCK(ump);
2512	if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type == VCHR)
2513		softdep_setup_inofree(UFSTOVFS(ump), bp,
2514		    ino + cg * fs->fs_ipg, wkhd);
2515	bdwrite(bp);
2516	return (0);
2517}
2518
2519/*
2520 * Check to see if a file is free.
2521 */
2522int
2523ffs_checkfreefile(fs, devvp, ino)
2524	struct fs *fs;
2525	struct vnode *devvp;
2526	ino_t ino;
2527{
2528	struct cg *cgp;
2529	struct buf *bp;
2530	ufs2_daddr_t cgbno;
2531	int ret;
2532	u_int cg;
2533	u_int8_t *inosused;
2534
2535	cg = ino_to_cg(fs, ino);
2536	if (devvp->v_type == VREG) {
2537		/* devvp is a snapshot */
2538		cgbno = fragstoblks(fs, cgtod(fs, cg));
2539	} else if (devvp->v_type == VCHR) {
2540		/* devvp is a normal disk device */
2541		cgbno = fsbtodb(fs, cgtod(fs, cg));
2542	} else {
2543		return (1);
2544	}
2545	if (ino >= fs->fs_ipg * fs->fs_ncg)
2546		return (1);
2547	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) {
2548		brelse(bp);
2549		return (1);
2550	}
2551	cgp = (struct cg *)bp->b_data;
2552	if (!cg_chkmagic(cgp)) {
2553		brelse(bp);
2554		return (1);
2555	}
2556	inosused = cg_inosused(cgp);
2557	ino %= fs->fs_ipg;
2558	ret = isclr(inosused, ino);
2559	brelse(bp);
2560	return (ret);
2561}
2562
2563/*
2564 * Find a block of the specified size in the specified cylinder group.
2565 *
2566 * It is a panic if a request is made to find a block if none are
2567 * available.
2568 */
2569static ufs1_daddr_t
2570ffs_mapsearch(fs, cgp, bpref, allocsiz)
2571	struct fs *fs;
2572	struct cg *cgp;
2573	ufs2_daddr_t bpref;
2574	int allocsiz;
2575{
2576	ufs1_daddr_t bno;
2577	int start, len, loc, i;
2578	int blk, field, subfield, pos;
2579	u_int8_t *blksfree;
2580
2581	/*
2582	 * find the fragment by searching through the free block
2583	 * map for an appropriate bit pattern
2584	 */
2585	if (bpref)
2586		start = dtogd(fs, bpref) / NBBY;
2587	else
2588		start = cgp->cg_frotor / NBBY;
2589	blksfree = cg_blksfree(cgp);
2590	len = howmany(fs->fs_fpg, NBBY) - start;
2591	loc = scanc((u_int)len, (u_char *)&blksfree[start],
2592		fragtbl[fs->fs_frag],
2593		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2594	if (loc == 0) {
2595		len = start + 1;
2596		start = 0;
2597		loc = scanc((u_int)len, (u_char *)&blksfree[0],
2598			fragtbl[fs->fs_frag],
2599			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2600		if (loc == 0) {
2601			printf("start = %d, len = %d, fs = %s\n",
2602			    start, len, fs->fs_fsmnt);
2603			panic("ffs_alloccg: map corrupted");
2604			/* NOTREACHED */
2605		}
2606	}
2607	bno = (start + len - loc) * NBBY;
2608	cgp->cg_frotor = bno;
2609	/*
2610	 * found the byte in the map
2611	 * sift through the bits to find the selected frag
2612	 */
2613	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
2614		blk = blkmap(fs, blksfree, bno);
2615		blk <<= 1;
2616		field = around[allocsiz];
2617		subfield = inside[allocsiz];
2618		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
2619			if ((blk & field) == subfield)
2620				return (bno + pos);
2621			field <<= 1;
2622			subfield <<= 1;
2623		}
2624	}
2625	printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
2626	panic("ffs_alloccg: block not in map");
2627	return (-1);
2628}
2629
2630/*
2631 * Fserr prints the name of a filesystem with an error diagnostic.
2632 *
2633 * The form of the error message is:
2634 *	fs: error message
2635 */
2636void
2637ffs_fserr(fs, inum, cp)
2638	struct fs *fs;
2639	ino_t inum;
2640	char *cp;
2641{
2642	struct thread *td = curthread;	/* XXX */
2643	struct proc *p = td->td_proc;
2644
2645	log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n",
2646	    p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum,
2647	    fs->fs_fsmnt, cp);
2648}
2649
2650/*
2651 * This function provides the capability for the fsck program to
2652 * update an active filesystem. Fourteen operations are provided:
2653 *
2654 * adjrefcnt(inode, amt) - adjusts the reference count on the
2655 *	specified inode by the specified amount. Under normal
2656 *	operation the count should always go down. Decrementing
2657 *	the count to zero will cause the inode to be freed.
2658 * adjblkcnt(inode, amt) - adjust the number of blocks used by the
2659 *	inode by the specified amount.
2660 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) -
2661 *	adjust the superblock summary.
2662 * freedirs(inode, count) - directory inodes [inode..inode + count - 1]
2663 *	are marked as free. Inodes should never have to be marked
2664 *	as in use.
2665 * freefiles(inode, count) - file inodes [inode..inode + count - 1]
2666 *	are marked as free. Inodes should never have to be marked
2667 *	as in use.
2668 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1]
2669 *	are marked as free. Blocks should never have to be marked
2670 *	as in use.
2671 * setflags(flags, set/clear) - the fs_flags field has the specified
2672 *	flags set (second parameter +1) or cleared (second parameter -1).
2673 * setcwd(dirinode) - set the current directory to dirinode in the
2674 *	filesystem associated with the snapshot.
2675 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".."
2676 *	in the current directory is oldvalue then change it to newvalue.
2677 * unlink(nameptr, oldvalue) - Verify that the inode number associated
2678 *	with nameptr in the current directory is oldvalue then unlink it.
2679 *
2680 * The following functions may only be used on a quiescent filesystem
2681 * by the soft updates journal. They are not safe to be run on an active
2682 * filesystem.
2683 *
2684 * setinode(inode, dip) - the specified disk inode is replaced with the
2685 *	contents pointed to by dip.
2686 * setbufoutput(fd, flags) - output associated with the specified file
2687 *	descriptor (which must reference the character device supporting
2688 *	the filesystem) switches from using physio to running through the
2689 *	buffer cache when flags is set to 1. The descriptor reverts to
2690 *	physio for output when flags is set to zero.
2691 */
2692
2693static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS);
2694
2695SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT,
2696	0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count");
2697
2698static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR,
2699	sysctl_ffs_fsck, "Adjust Inode Used Blocks Count");
2700
2701static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR,
2702	sysctl_ffs_fsck, "Adjust number of directories");
2703
2704static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR,
2705	sysctl_ffs_fsck, "Adjust number of free blocks");
2706
2707static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR,
2708	sysctl_ffs_fsck, "Adjust number of free inodes");
2709
2710static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR,
2711	sysctl_ffs_fsck, "Adjust number of free frags");
2712
2713static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR,
2714	sysctl_ffs_fsck, "Adjust number of free clusters");
2715
2716static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR,
2717	sysctl_ffs_fsck, "Free Range of Directory Inodes");
2718
2719static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR,
2720	sysctl_ffs_fsck, "Free Range of File Inodes");
2721
2722static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR,
2723	sysctl_ffs_fsck, "Free Range of Blocks");
2724
2725static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR,
2726	sysctl_ffs_fsck, "Change Filesystem Flags");
2727
2728static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, CTLFLAG_WR,
2729	sysctl_ffs_fsck, "Set Current Working Directory");
2730
2731static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, CTLFLAG_WR,
2732	sysctl_ffs_fsck, "Change Value of .. Entry");
2733
2734static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, CTLFLAG_WR,
2735	sysctl_ffs_fsck, "Unlink a Duplicate Name");
2736
2737static SYSCTL_NODE(_vfs_ffs, FFS_SET_INODE, setinode, CTLFLAG_WR,
2738	sysctl_ffs_fsck, "Update an On-Disk Inode");
2739
2740static SYSCTL_NODE(_vfs_ffs, FFS_SET_BUFOUTPUT, setbufoutput, CTLFLAG_WR,
2741	sysctl_ffs_fsck, "Set Buffered Writing for Descriptor");
2742
2743#define DEBUG 1
2744#ifdef DEBUG
2745static int fsckcmds = 0;
2746SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, "");
2747#endif /* DEBUG */
2748
2749static int buffered_write(struct file *, struct uio *, struct ucred *,
2750	int, struct thread *);
2751
2752static int
2753sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)
2754{
2755	struct thread *td = curthread;
2756	struct fsck_cmd cmd;
2757	struct ufsmount *ump;
2758	struct vnode *vp, *vpold, *dvp, *fdvp;
2759	struct inode *ip, *dp;
2760	struct mount *mp;
2761	struct fs *fs;
2762	ufs2_daddr_t blkno;
2763	long blkcnt, blksize;
2764	struct filedesc *fdp;
2765	struct file *fp, *vfp;
2766	cap_rights_t rights;
2767	int filetype, error;
2768	static struct fileops *origops, bufferedops;
2769
2770	if (req->newlen > sizeof cmd)
2771		return (EBADRPC);
2772	if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0)
2773		return (error);
2774	if (cmd.version != FFS_CMD_VERSION)
2775		return (ERPCMISMATCH);
2776	if ((error = getvnode(td->td_proc->p_fd, cmd.handle,
2777	    cap_rights_init(&rights, CAP_FSCK), &fp)) != 0)
2778		return (error);
2779	vp = fp->f_data;
2780	if (vp->v_type != VREG && vp->v_type != VDIR) {
2781		fdrop(fp, td);
2782		return (EINVAL);
2783	}
2784	vn_start_write(vp, &mp, V_WAIT);
2785	if (mp == NULL ||
2786	    strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) {
2787		vn_finished_write(mp);
2788		fdrop(fp, td);
2789		return (EINVAL);
2790	}
2791	ump = VFSTOUFS(mp);
2792	if ((mp->mnt_flag & MNT_RDONLY) &&
2793	    ump->um_fsckpid != td->td_proc->p_pid) {
2794		vn_finished_write(mp);
2795		fdrop(fp, td);
2796		return (EROFS);
2797	}
2798	fs = ump->um_fs;
2799	filetype = IFREG;
2800
2801	switch (oidp->oid_number) {
2802
2803	case FFS_SET_FLAGS:
2804#ifdef DEBUG
2805		if (fsckcmds)
2806			printf("%s: %s flags\n", mp->mnt_stat.f_mntonname,
2807			    cmd.size > 0 ? "set" : "clear");
2808#endif /* DEBUG */
2809		if (cmd.size > 0)
2810			fs->fs_flags |= (long)cmd.value;
2811		else
2812			fs->fs_flags &= ~(long)cmd.value;
2813		break;
2814
2815	case FFS_ADJ_REFCNT:
2816#ifdef DEBUG
2817		if (fsckcmds) {
2818			printf("%s: adjust inode %jd link count by %jd\n",
2819			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
2820			    (intmax_t)cmd.size);
2821		}
2822#endif /* DEBUG */
2823		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
2824			break;
2825		ip = VTOI(vp);
2826		ip->i_nlink += cmd.size;
2827		DIP_SET(ip, i_nlink, ip->i_nlink);
2828		ip->i_effnlink += cmd.size;
2829		ip->i_flag |= IN_CHANGE | IN_MODIFIED;
2830		error = ffs_update(vp, 1);
2831		if (DOINGSOFTDEP(vp))
2832			softdep_change_linkcnt(ip);
2833		vput(vp);
2834		break;
2835
2836	case FFS_ADJ_BLKCNT:
2837#ifdef DEBUG
2838		if (fsckcmds) {
2839			printf("%s: adjust inode %jd block count by %jd\n",
2840			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
2841			    (intmax_t)cmd.size);
2842		}
2843#endif /* DEBUG */
2844		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
2845			break;
2846		ip = VTOI(vp);
2847		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size);
2848		ip->i_flag |= IN_CHANGE | IN_MODIFIED;
2849		error = ffs_update(vp, 1);
2850		vput(vp);
2851		break;
2852
2853	case FFS_DIR_FREE:
2854		filetype = IFDIR;
2855		/* fall through */
2856
2857	case FFS_FILE_FREE:
2858#ifdef DEBUG
2859		if (fsckcmds) {
2860			if (cmd.size == 1)
2861				printf("%s: free %s inode %ju\n",
2862				    mp->mnt_stat.f_mntonname,
2863				    filetype == IFDIR ? "directory" : "file",
2864				    (uintmax_t)cmd.value);
2865			else
2866				printf("%s: free %s inodes %ju-%ju\n",
2867				    mp->mnt_stat.f_mntonname,
2868				    filetype == IFDIR ? "directory" : "file",
2869				    (uintmax_t)cmd.value,
2870				    (uintmax_t)(cmd.value + cmd.size - 1));
2871		}
2872#endif /* DEBUG */
2873		while (cmd.size > 0) {
2874			if ((error = ffs_freefile(ump, fs, ump->um_devvp,
2875			    cmd.value, filetype, NULL)))
2876				break;
2877			cmd.size -= 1;
2878			cmd.value += 1;
2879		}
2880		break;
2881
2882	case FFS_BLK_FREE:
2883#ifdef DEBUG
2884		if (fsckcmds) {
2885			if (cmd.size == 1)
2886				printf("%s: free block %jd\n",
2887				    mp->mnt_stat.f_mntonname,
2888				    (intmax_t)cmd.value);
2889			else
2890				printf("%s: free blocks %jd-%jd\n",
2891				    mp->mnt_stat.f_mntonname,
2892				    (intmax_t)cmd.value,
2893				    (intmax_t)cmd.value + cmd.size - 1);
2894		}
2895#endif /* DEBUG */
2896		blkno = cmd.value;
2897		blkcnt = cmd.size;
2898		blksize = fs->fs_frag - (blkno % fs->fs_frag);
2899		while (blkcnt > 0) {
2900			if (blksize > blkcnt)
2901				blksize = blkcnt;
2902			ffs_blkfree(ump, fs, ump->um_devvp, blkno,
2903			    blksize * fs->fs_fsize, ROOTINO, VDIR, NULL);
2904			blkno += blksize;
2905			blkcnt -= blksize;
2906			blksize = fs->fs_frag;
2907		}
2908		break;
2909
2910	/*
2911	 * Adjust superblock summaries.  fsck(8) is expected to
2912	 * submit deltas when necessary.
2913	 */
2914	case FFS_ADJ_NDIR:
2915#ifdef DEBUG
2916		if (fsckcmds) {
2917			printf("%s: adjust number of directories by %jd\n",
2918			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2919		}
2920#endif /* DEBUG */
2921		fs->fs_cstotal.cs_ndir += cmd.value;
2922		break;
2923
2924	case FFS_ADJ_NBFREE:
2925#ifdef DEBUG
2926		if (fsckcmds) {
2927			printf("%s: adjust number of free blocks by %+jd\n",
2928			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2929		}
2930#endif /* DEBUG */
2931		fs->fs_cstotal.cs_nbfree += cmd.value;
2932		break;
2933
2934	case FFS_ADJ_NIFREE:
2935#ifdef DEBUG
2936		if (fsckcmds) {
2937			printf("%s: adjust number of free inodes by %+jd\n",
2938			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2939		}
2940#endif /* DEBUG */
2941		fs->fs_cstotal.cs_nifree += cmd.value;
2942		break;
2943
2944	case FFS_ADJ_NFFREE:
2945#ifdef DEBUG
2946		if (fsckcmds) {
2947			printf("%s: adjust number of free frags by %+jd\n",
2948			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2949		}
2950#endif /* DEBUG */
2951		fs->fs_cstotal.cs_nffree += cmd.value;
2952		break;
2953
2954	case FFS_ADJ_NUMCLUSTERS:
2955#ifdef DEBUG
2956		if (fsckcmds) {
2957			printf("%s: adjust number of free clusters by %+jd\n",
2958			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2959		}
2960#endif /* DEBUG */
2961		fs->fs_cstotal.cs_numclusters += cmd.value;
2962		break;
2963
2964	case FFS_SET_CWD:
2965#ifdef DEBUG
2966		if (fsckcmds) {
2967			printf("%s: set current directory to inode %jd\n",
2968			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2969		}
2970#endif /* DEBUG */
2971		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp)))
2972			break;
2973		AUDIT_ARG_VNODE1(vp);
2974		if ((error = change_dir(vp, td)) != 0) {
2975			vput(vp);
2976			break;
2977		}
2978		VOP_UNLOCK(vp, 0);
2979		fdp = td->td_proc->p_fd;
2980		FILEDESC_XLOCK(fdp);
2981		vpold = fdp->fd_cdir;
2982		fdp->fd_cdir = vp;
2983		FILEDESC_XUNLOCK(fdp);
2984		vrele(vpold);
2985		break;
2986
2987	case FFS_SET_DOTDOT:
2988#ifdef DEBUG
2989		if (fsckcmds) {
2990			printf("%s: change .. in cwd from %jd to %jd\n",
2991			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
2992			    (intmax_t)cmd.size);
2993		}
2994#endif /* DEBUG */
2995		/*
2996		 * First we have to get and lock the parent directory
2997		 * to which ".." points.
2998		 */
2999		error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp);
3000		if (error)
3001			break;
3002		/*
3003		 * Now we get and lock the child directory containing "..".
3004		 */
3005		FILEDESC_SLOCK(td->td_proc->p_fd);
3006		dvp = td->td_proc->p_fd->fd_cdir;
3007		FILEDESC_SUNLOCK(td->td_proc->p_fd);
3008		if ((error = vget(dvp, LK_EXCLUSIVE, td)) != 0) {
3009			vput(fdvp);
3010			break;
3011		}
3012		dp = VTOI(dvp);
3013		dp->i_offset = 12;	/* XXX mastertemplate.dot_reclen */
3014		error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size,
3015		    DT_DIR, 0);
3016		cache_purge(fdvp);
3017		cache_purge(dvp);
3018		vput(dvp);
3019		vput(fdvp);
3020		break;
3021
3022	case FFS_UNLINK:
3023#ifdef DEBUG
3024		if (fsckcmds) {
3025			char buf[32];
3026
3027			if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL))
3028				strncpy(buf, "Name_too_long", 32);
3029			printf("%s: unlink %s (inode %jd)\n",
3030			    mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size);
3031		}
3032#endif /* DEBUG */
3033		/*
3034		 * kern_unlinkat will do its own start/finish writes and
3035		 * they do not nest, so drop ours here. Setting mp == NULL
3036		 * indicates that vn_finished_write is not needed down below.
3037		 */
3038		vn_finished_write(mp);
3039		mp = NULL;
3040		error = kern_unlinkat(td, AT_FDCWD, (char *)(intptr_t)cmd.value,
3041		    UIO_USERSPACE, (ino_t)cmd.size);
3042		break;
3043
3044	case FFS_SET_INODE:
3045		if (ump->um_fsckpid != td->td_proc->p_pid) {
3046			error = EPERM;
3047			break;
3048		}
3049#ifdef DEBUG
3050		if (fsckcmds) {
3051			printf("%s: update inode %jd\n",
3052			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3053		}
3054#endif /* DEBUG */
3055		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3056			break;
3057		AUDIT_ARG_VNODE1(vp);
3058		ip = VTOI(vp);
3059		if (ip->i_ump->um_fstype == UFS1)
3060			error = copyin((void *)(intptr_t)cmd.size, ip->i_din1,
3061			    sizeof(struct ufs1_dinode));
3062		else
3063			error = copyin((void *)(intptr_t)cmd.size, ip->i_din2,
3064			    sizeof(struct ufs2_dinode));
3065		if (error) {
3066			vput(vp);
3067			break;
3068		}
3069		ip->i_flag |= IN_CHANGE | IN_MODIFIED;
3070		error = ffs_update(vp, 1);
3071		vput(vp);
3072		break;
3073
3074	case FFS_SET_BUFOUTPUT:
3075		if (ump->um_fsckpid != td->td_proc->p_pid) {
3076			error = EPERM;
3077			break;
3078		}
3079		if (VTOI(vp)->i_ump != ump) {
3080			error = EINVAL;
3081			break;
3082		}
3083#ifdef DEBUG
3084		if (fsckcmds) {
3085			printf("%s: %s buffered output for descriptor %jd\n",
3086			    mp->mnt_stat.f_mntonname,
3087			    cmd.size == 1 ? "enable" : "disable",
3088			    (intmax_t)cmd.value);
3089		}
3090#endif /* DEBUG */
3091		if ((error = getvnode(td->td_proc->p_fd, cmd.value,
3092		    cap_rights_init(&rights, CAP_FSCK), &vfp)) != 0)
3093			break;
3094		if (vfp->f_vnode->v_type != VCHR) {
3095			fdrop(vfp, td);
3096			error = EINVAL;
3097			break;
3098		}
3099		if (origops == NULL) {
3100			origops = vfp->f_ops;
3101			bcopy((void *)origops, (void *)&bufferedops,
3102			    sizeof(bufferedops));
3103			bufferedops.fo_write = buffered_write;
3104		}
3105		if (cmd.size == 1)
3106			atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops,
3107			    (uintptr_t)&bufferedops);
3108		else
3109			atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops,
3110			    (uintptr_t)origops);
3111		fdrop(vfp, td);
3112		break;
3113
3114	default:
3115#ifdef DEBUG
3116		if (fsckcmds) {
3117			printf("Invalid request %d from fsck\n",
3118			    oidp->oid_number);
3119		}
3120#endif /* DEBUG */
3121		error = EINVAL;
3122		break;
3123
3124	}
3125	fdrop(fp, td);
3126	vn_finished_write(mp);
3127	return (error);
3128}
3129
3130/*
3131 * Function to switch a descriptor to use the buffer cache to stage
3132 * its I/O. This is needed so that writes to the filesystem device
3133 * will give snapshots a chance to copy modified blocks for which it
3134 * needs to retain copies.
3135 */
3136static int
3137buffered_write(fp, uio, active_cred, flags, td)
3138	struct file *fp;
3139	struct uio *uio;
3140	struct ucred *active_cred;
3141	int flags;
3142	struct thread *td;
3143{
3144	struct vnode *devvp, *vp;
3145	struct inode *ip;
3146	struct buf *bp;
3147	struct fs *fs;
3148	struct filedesc *fdp;
3149	int error;
3150	daddr_t lbn;
3151
3152	/*
3153	 * The devvp is associated with the /dev filesystem. To discover
3154	 * the filesystem with which the device is associated, we depend
3155	 * on the application setting the current directory to a location
3156	 * within the filesystem being written. Yes, this is an ugly hack.
3157	 */
3158	devvp = fp->f_vnode;
3159	if (!vn_isdisk(devvp, NULL))
3160		return (EINVAL);
3161	fdp = td->td_proc->p_fd;
3162	FILEDESC_SLOCK(fdp);
3163	vp = fdp->fd_cdir;
3164	vref(vp);
3165	FILEDESC_SUNLOCK(fdp);
3166	vn_lock(vp, LK_SHARED | LK_RETRY);
3167	/*
3168	 * Check that the current directory vnode indeed belongs to
3169	 * UFS before trying to dereference UFS-specific v_data fields.
3170	 */
3171	if (vp->v_op != &ffs_vnodeops1 && vp->v_op != &ffs_vnodeops2) {
3172		vput(vp);
3173		return (EINVAL);
3174	}
3175	ip = VTOI(vp);
3176	if (ip->i_devvp != devvp) {
3177		vput(vp);
3178		return (EINVAL);
3179	}
3180	fs = ip->i_fs;
3181	vput(vp);
3182	foffset_lock_uio(fp, uio, flags);
3183	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
3184#ifdef DEBUG
3185	if (fsckcmds) {
3186		printf("%s: buffered write for block %jd\n",
3187		    fs->fs_fsmnt, (intmax_t)btodb(uio->uio_offset));
3188	}
3189#endif /* DEBUG */
3190	/*
3191	 * All I/O must be contained within a filesystem block, start on
3192	 * a fragment boundary, and be a multiple of fragments in length.
3193	 */
3194	if (uio->uio_resid > fs->fs_bsize - (uio->uio_offset % fs->fs_bsize) ||
3195	    fragoff(fs, uio->uio_offset) != 0 ||
3196	    fragoff(fs, uio->uio_resid) != 0) {
3197		error = EINVAL;
3198		goto out;
3199	}
3200	lbn = numfrags(fs, uio->uio_offset);
3201	bp = getblk(devvp, lbn, uio->uio_resid, 0, 0, 0);
3202	bp->b_flags |= B_RELBUF;
3203	if ((error = uiomove((char *)bp->b_data, uio->uio_resid, uio)) != 0) {
3204		brelse(bp);
3205		goto out;
3206	}
3207	error = bwrite(bp);
3208out:
3209	VOP_UNLOCK(devvp, 0);
3210	foffset_unlock_uio(fp, uio, flags | FOF_NEXTOFF);
3211	return (error);
3212}
3213