tcp_syncache.c revision 309108
1/*-
2 * Copyright (c) 2001 McAfee, Inc.
3 * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG
4 * All rights reserved.
5 *
6 * This software was developed for the FreeBSD Project by Jonathan Lemon
7 * and McAfee Research, the Security Research Division of McAfee, Inc. under
8 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
9 * DARPA CHATS research program. [2001 McAfee, Inc.]
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: stable/10/sys/netinet/tcp_syncache.c 309108 2016-11-24 14:48:46Z jch $");
35
36#include "opt_inet.h"
37#include "opt_inet6.h"
38#include "opt_ipsec.h"
39#include "opt_pcbgroup.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/kernel.h>
44#include <sys/sysctl.h>
45#include <sys/limits.h>
46#include <sys/lock.h>
47#include <sys/mutex.h>
48#include <sys/malloc.h>
49#include <sys/mbuf.h>
50#include <sys/proc.h>		/* for proc0 declaration */
51#include <sys/random.h>
52#include <sys/socket.h>
53#include <sys/socketvar.h>
54#include <sys/syslog.h>
55#include <sys/ucred.h>
56
57#include <sys/md5.h>
58#include <crypto/siphash/siphash.h>
59
60#include <vm/uma.h>
61
62#include <net/if.h>
63#include <net/route.h>
64#include <net/vnet.h>
65
66#include <netinet/in.h>
67#include <netinet/in_systm.h>
68#include <netinet/ip.h>
69#include <netinet/in_var.h>
70#include <netinet/in_pcb.h>
71#include <netinet/ip_var.h>
72#include <netinet/ip_options.h>
73#ifdef INET6
74#include <netinet/ip6.h>
75#include <netinet/icmp6.h>
76#include <netinet6/nd6.h>
77#include <netinet6/ip6_var.h>
78#include <netinet6/in6_pcb.h>
79#endif
80#include <netinet/tcp.h>
81#ifdef TCP_RFC7413
82#include <netinet/tcp_fastopen.h>
83#endif
84#include <netinet/tcp_fsm.h>
85#include <netinet/tcp_seq.h>
86#include <netinet/tcp_timer.h>
87#include <netinet/tcp_var.h>
88#include <netinet/tcp_syncache.h>
89#ifdef INET6
90#include <netinet6/tcp6_var.h>
91#endif
92#ifdef TCP_OFFLOAD
93#include <netinet/toecore.h>
94#endif
95
96#ifdef IPSEC
97#include <netipsec/ipsec.h>
98#ifdef INET6
99#include <netipsec/ipsec6.h>
100#endif
101#include <netipsec/key.h>
102#endif /*IPSEC*/
103
104#include <machine/in_cksum.h>
105
106#include <security/mac/mac_framework.h>
107
108static VNET_DEFINE(int, tcp_syncookies) = 1;
109#define	V_tcp_syncookies		VNET(tcp_syncookies)
110SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
111    &VNET_NAME(tcp_syncookies), 0,
112    "Use TCP SYN cookies if the syncache overflows");
113
114static VNET_DEFINE(int, tcp_syncookiesonly) = 0;
115#define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
116SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_RW,
117    &VNET_NAME(tcp_syncookiesonly), 0,
118    "Use only TCP SYN cookies");
119
120#ifdef TCP_OFFLOAD
121#define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
122#endif
123
124static void	 syncache_drop(struct syncache *, struct syncache_head *);
125static void	 syncache_free(struct syncache *);
126static void	 syncache_insert(struct syncache *, struct syncache_head *);
127static int	 syncache_respond(struct syncache *, const struct mbuf *);
128static struct	 socket *syncache_socket(struct syncache *, struct socket *,
129		    struct mbuf *m);
130static int	 syncache_sysctl_count(SYSCTL_HANDLER_ARGS);
131static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
132		    int docallout);
133static void	 syncache_timer(void *);
134
135static uint32_t	 syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t,
136		    uint8_t *, uintptr_t);
137static tcp_seq	 syncookie_generate(struct syncache_head *, struct syncache *);
138static struct syncache
139		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
140		    struct syncache *, struct tcphdr *, struct tcpopt *,
141		    struct socket *);
142static void	 syncookie_reseed(void *);
143#ifdef INVARIANTS
144static int	 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
145		    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
146		    struct socket *lso);
147#endif
148
149/*
150 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
151 * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
152 * the odds are that the user has given up attempting to connect by then.
153 */
154#define SYNCACHE_MAXREXMTS		3
155
156/* Arbitrary values */
157#define TCP_SYNCACHE_HASHSIZE		512
158#define TCP_SYNCACHE_BUCKETLIMIT	30
159
160static VNET_DEFINE(struct tcp_syncache, tcp_syncache);
161#define	V_tcp_syncache			VNET(tcp_syncache)
162
163static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0,
164    "TCP SYN cache");
165
166SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RDTUN,
167    &VNET_NAME(tcp_syncache.bucket_limit), 0,
168    "Per-bucket hash limit for syncache");
169
170SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RDTUN,
171    &VNET_NAME(tcp_syncache.cache_limit), 0,
172    "Overall entry limit for syncache");
173
174SYSCTL_VNET_PROC(_net_inet_tcp_syncache, OID_AUTO, count, (CTLTYPE_UINT|CTLFLAG_RD),
175    NULL, 0, &syncache_sysctl_count, "IU",
176    "Current number of entries in syncache");
177
178SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RDTUN,
179    &VNET_NAME(tcp_syncache.hashsize), 0,
180    "Size of TCP syncache hashtable");
181
182SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
183    &VNET_NAME(tcp_syncache.rexmt_limit), 0,
184    "Limit on SYN/ACK retransmissions");
185
186VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
187SYSCTL_VNET_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
188    CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
189    "Send reset on socket allocation failure");
190
191static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
192
193#define SYNCACHE_HASH(inc, mask)					\
194	((V_tcp_syncache.hash_secret ^					\
195	  (inc)->inc_faddr.s_addr ^					\
196	  ((inc)->inc_faddr.s_addr >> 16) ^				\
197	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
198
199#define SYNCACHE_HASH6(inc, mask)					\
200	((V_tcp_syncache.hash_secret ^					\
201	  (inc)->inc6_faddr.s6_addr32[0] ^				\
202	  (inc)->inc6_faddr.s6_addr32[3] ^				\
203	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
204
205#define ENDPTS_EQ(a, b) (						\
206	(a)->ie_fport == (b)->ie_fport &&				\
207	(a)->ie_lport == (b)->ie_lport &&				\
208	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
209	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
210)
211
212#define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
213
214#define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
215#define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
216#define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
217
218/*
219 * Requires the syncache entry to be already removed from the bucket list.
220 */
221static void
222syncache_free(struct syncache *sc)
223{
224
225	if (sc->sc_ipopts)
226		(void) m_free(sc->sc_ipopts);
227	if (sc->sc_cred)
228		crfree(sc->sc_cred);
229#ifdef MAC
230	mac_syncache_destroy(&sc->sc_label);
231#endif
232
233	uma_zfree(V_tcp_syncache.zone, sc);
234}
235
236void
237syncache_init(void)
238{
239	int i;
240
241	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
242	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
243	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
244	V_tcp_syncache.hash_secret = arc4random();
245
246	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
247	    &V_tcp_syncache.hashsize);
248	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
249	    &V_tcp_syncache.bucket_limit);
250	if (!powerof2(V_tcp_syncache.hashsize) ||
251	    V_tcp_syncache.hashsize == 0) {
252		printf("WARNING: syncache hash size is not a power of 2.\n");
253		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
254	}
255	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
256
257	/* Set limits. */
258	V_tcp_syncache.cache_limit =
259	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
260	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
261	    &V_tcp_syncache.cache_limit);
262
263	/* Allocate the hash table. */
264	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
265	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
266
267#ifdef VIMAGE
268	V_tcp_syncache.vnet = curvnet;
269#endif
270
271	/* Initialize the hash buckets. */
272	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
273		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
274		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
275			 NULL, MTX_DEF);
276		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
277			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
278		V_tcp_syncache.hashbase[i].sch_length = 0;
279		V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache;
280	}
281
282	/* Create the syncache entry zone. */
283	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
284	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
285	V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
286	    V_tcp_syncache.cache_limit);
287
288	/* Start the SYN cookie reseeder callout. */
289	callout_init(&V_tcp_syncache.secret.reseed, 1);
290	arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0);
291	arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0);
292	callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz,
293	    syncookie_reseed, &V_tcp_syncache);
294}
295
296#ifdef VIMAGE
297void
298syncache_destroy(void)
299{
300	struct syncache_head *sch;
301	struct syncache *sc, *nsc;
302	int i;
303
304	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
305	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
306
307		sch = &V_tcp_syncache.hashbase[i];
308		callout_drain(&sch->sch_timer);
309
310		SCH_LOCK(sch);
311		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
312			syncache_drop(sc, sch);
313		SCH_UNLOCK(sch);
314		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
315		    ("%s: sch->sch_bucket not empty", __func__));
316		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
317		    __func__, sch->sch_length));
318		mtx_destroy(&sch->sch_mtx);
319	}
320
321	KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
322	    ("%s: cache_count not 0", __func__));
323
324	/* Free the allocated global resources. */
325	uma_zdestroy(V_tcp_syncache.zone);
326	free(V_tcp_syncache.hashbase, M_SYNCACHE);
327
328	callout_drain(&V_tcp_syncache.secret.reseed);
329}
330#endif
331
332static int
333syncache_sysctl_count(SYSCTL_HANDLER_ARGS)
334{
335	int count;
336
337	count = uma_zone_get_cur(V_tcp_syncache.zone);
338	return (sysctl_handle_int(oidp, &count, 0, req));
339}
340
341/*
342 * Inserts a syncache entry into the specified bucket row.
343 * Locks and unlocks the syncache_head autonomously.
344 */
345static void
346syncache_insert(struct syncache *sc, struct syncache_head *sch)
347{
348	struct syncache *sc2;
349
350	SCH_LOCK(sch);
351
352	/*
353	 * Make sure that we don't overflow the per-bucket limit.
354	 * If the bucket is full, toss the oldest element.
355	 */
356	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
357		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
358			("sch->sch_length incorrect"));
359		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
360		syncache_drop(sc2, sch);
361		TCPSTAT_INC(tcps_sc_bucketoverflow);
362	}
363
364	/* Put it into the bucket. */
365	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
366	sch->sch_length++;
367
368#ifdef TCP_OFFLOAD
369	if (ADDED_BY_TOE(sc)) {
370		struct toedev *tod = sc->sc_tod;
371
372		tod->tod_syncache_added(tod, sc->sc_todctx);
373	}
374#endif
375
376	/* Reinitialize the bucket row's timer. */
377	if (sch->sch_length == 1)
378		sch->sch_nextc = ticks + INT_MAX;
379	syncache_timeout(sc, sch, 1);
380
381	SCH_UNLOCK(sch);
382
383	TCPSTAT_INC(tcps_sc_added);
384}
385
386/*
387 * Remove and free entry from syncache bucket row.
388 * Expects locked syncache head.
389 */
390static void
391syncache_drop(struct syncache *sc, struct syncache_head *sch)
392{
393
394	SCH_LOCK_ASSERT(sch);
395
396	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
397	sch->sch_length--;
398
399#ifdef TCP_OFFLOAD
400	if (ADDED_BY_TOE(sc)) {
401		struct toedev *tod = sc->sc_tod;
402
403		tod->tod_syncache_removed(tod, sc->sc_todctx);
404	}
405#endif
406
407	syncache_free(sc);
408}
409
410/*
411 * Engage/reengage time on bucket row.
412 */
413static void
414syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
415{
416	sc->sc_rxttime = ticks +
417		TCPTV_RTOBASE * (tcp_syn_backoff[sc->sc_rxmits]);
418	sc->sc_rxmits++;
419	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
420		sch->sch_nextc = sc->sc_rxttime;
421		if (docallout)
422			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
423			    syncache_timer, (void *)sch);
424	}
425}
426
427/*
428 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
429 * If we have retransmitted an entry the maximum number of times, expire it.
430 * One separate timer for each bucket row.
431 */
432static void
433syncache_timer(void *xsch)
434{
435	struct syncache_head *sch = (struct syncache_head *)xsch;
436	struct syncache *sc, *nsc;
437	int tick = ticks;
438	char *s;
439
440	CURVNET_SET(sch->sch_sc->vnet);
441
442	/* NB: syncache_head has already been locked by the callout. */
443	SCH_LOCK_ASSERT(sch);
444
445	/*
446	 * In the following cycle we may remove some entries and/or
447	 * advance some timeouts, so re-initialize the bucket timer.
448	 */
449	sch->sch_nextc = tick + INT_MAX;
450
451	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
452		/*
453		 * We do not check if the listen socket still exists
454		 * and accept the case where the listen socket may be
455		 * gone by the time we resend the SYN/ACK.  We do
456		 * not expect this to happens often. If it does,
457		 * then the RST will be sent by the time the remote
458		 * host does the SYN/ACK->ACK.
459		 */
460		if (TSTMP_GT(sc->sc_rxttime, tick)) {
461			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
462				sch->sch_nextc = sc->sc_rxttime;
463			continue;
464		}
465		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
466			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
467				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
468				    "giving up and removing syncache entry\n",
469				    s, __func__);
470				free(s, M_TCPLOG);
471			}
472			syncache_drop(sc, sch);
473			TCPSTAT_INC(tcps_sc_stale);
474			continue;
475		}
476		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
477			log(LOG_DEBUG, "%s; %s: Response timeout, "
478			    "retransmitting (%u) SYN|ACK\n",
479			    s, __func__, sc->sc_rxmits);
480			free(s, M_TCPLOG);
481		}
482
483		(void) syncache_respond(sc, NULL);
484		TCPSTAT_INC(tcps_sc_retransmitted);
485		syncache_timeout(sc, sch, 0);
486	}
487	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
488		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
489			syncache_timer, (void *)(sch));
490	CURVNET_RESTORE();
491}
492
493/*
494 * Find an entry in the syncache.
495 * Returns always with locked syncache_head plus a matching entry or NULL.
496 */
497static struct syncache *
498syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
499{
500	struct syncache *sc;
501	struct syncache_head *sch;
502
503#ifdef INET6
504	if (inc->inc_flags & INC_ISIPV6) {
505		sch = &V_tcp_syncache.hashbase[
506		    SYNCACHE_HASH6(inc, V_tcp_syncache.hashmask)];
507		*schp = sch;
508
509		SCH_LOCK(sch);
510
511		/* Circle through bucket row to find matching entry. */
512		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
513			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
514				return (sc);
515		}
516	} else
517#endif
518	{
519		sch = &V_tcp_syncache.hashbase[
520		    SYNCACHE_HASH(inc, V_tcp_syncache.hashmask)];
521		*schp = sch;
522
523		SCH_LOCK(sch);
524
525		/* Circle through bucket row to find matching entry. */
526		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
527#ifdef INET6
528			if (sc->sc_inc.inc_flags & INC_ISIPV6)
529				continue;
530#endif
531			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
532				return (sc);
533		}
534	}
535	SCH_LOCK_ASSERT(*schp);
536	return (NULL);			/* always returns with locked sch */
537}
538
539/*
540 * This function is called when we get a RST for a
541 * non-existent connection, so that we can see if the
542 * connection is in the syn cache.  If it is, zap it.
543 */
544void
545syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
546{
547	struct syncache *sc;
548	struct syncache_head *sch;
549	char *s = NULL;
550
551	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
552	SCH_LOCK_ASSERT(sch);
553
554	/*
555	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
556	 * See RFC 793 page 65, section SEGMENT ARRIVES.
557	 */
558	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
559		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
560			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
561			    "FIN flag set, segment ignored\n", s, __func__);
562		TCPSTAT_INC(tcps_badrst);
563		goto done;
564	}
565
566	/*
567	 * No corresponding connection was found in syncache.
568	 * If syncookies are enabled and possibly exclusively
569	 * used, or we are under memory pressure, a valid RST
570	 * may not find a syncache entry.  In that case we're
571	 * done and no SYN|ACK retransmissions will happen.
572	 * Otherwise the RST was misdirected or spoofed.
573	 */
574	if (sc == NULL) {
575		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
576			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
577			    "syncache entry (possibly syncookie only), "
578			    "segment ignored\n", s, __func__);
579		TCPSTAT_INC(tcps_badrst);
580		goto done;
581	}
582
583	/*
584	 * If the RST bit is set, check the sequence number to see
585	 * if this is a valid reset segment.
586	 * RFC 793 page 37:
587	 *   In all states except SYN-SENT, all reset (RST) segments
588	 *   are validated by checking their SEQ-fields.  A reset is
589	 *   valid if its sequence number is in the window.
590	 *
591	 *   The sequence number in the reset segment is normally an
592	 *   echo of our outgoing acknowlegement numbers, but some hosts
593	 *   send a reset with the sequence number at the rightmost edge
594	 *   of our receive window, and we have to handle this case.
595	 */
596	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
597	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
598		syncache_drop(sc, sch);
599		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
600			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
601			    "connection attempt aborted by remote endpoint\n",
602			    s, __func__);
603		TCPSTAT_INC(tcps_sc_reset);
604	} else {
605		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
606			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
607			    "IRS %u (+WND %u), segment ignored\n",
608			    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
609		TCPSTAT_INC(tcps_badrst);
610	}
611
612done:
613	if (s != NULL)
614		free(s, M_TCPLOG);
615	SCH_UNLOCK(sch);
616}
617
618void
619syncache_badack(struct in_conninfo *inc)
620{
621	struct syncache *sc;
622	struct syncache_head *sch;
623
624	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
625	SCH_LOCK_ASSERT(sch);
626	if (sc != NULL) {
627		syncache_drop(sc, sch);
628		TCPSTAT_INC(tcps_sc_badack);
629	}
630	SCH_UNLOCK(sch);
631}
632
633void
634syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
635{
636	struct syncache *sc;
637	struct syncache_head *sch;
638
639	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
640	SCH_LOCK_ASSERT(sch);
641	if (sc == NULL)
642		goto done;
643
644	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
645	if (ntohl(th->th_seq) != sc->sc_iss)
646		goto done;
647
648	/*
649	 * If we've rertransmitted 3 times and this is our second error,
650	 * we remove the entry.  Otherwise, we allow it to continue on.
651	 * This prevents us from incorrectly nuking an entry during a
652	 * spurious network outage.
653	 *
654	 * See tcp_notify().
655	 */
656	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
657		sc->sc_flags |= SCF_UNREACH;
658		goto done;
659	}
660	syncache_drop(sc, sch);
661	TCPSTAT_INC(tcps_sc_unreach);
662done:
663	SCH_UNLOCK(sch);
664}
665
666/*
667 * Build a new TCP socket structure from a syncache entry.
668 *
669 * On success return the newly created socket with its underlying inp locked.
670 */
671static struct socket *
672syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
673{
674	struct inpcb *inp = NULL;
675	struct socket *so;
676	struct tcpcb *tp;
677	int error;
678	char *s;
679
680	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
681
682	/*
683	 * Ok, create the full blown connection, and set things up
684	 * as they would have been set up if we had created the
685	 * connection when the SYN arrived.  If we can't create
686	 * the connection, abort it.
687	 */
688	so = sonewconn(lso, 0);
689	if (so == NULL) {
690		/*
691		 * Drop the connection; we will either send a RST or
692		 * have the peer retransmit its SYN again after its
693		 * RTO and try again.
694		 */
695		TCPSTAT_INC(tcps_listendrop);
696		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
697			log(LOG_DEBUG, "%s; %s: Socket create failed "
698			    "due to limits or memory shortage\n",
699			    s, __func__);
700			free(s, M_TCPLOG);
701		}
702		goto abort2;
703	}
704#ifdef MAC
705	mac_socketpeer_set_from_mbuf(m, so);
706#endif
707
708	inp = sotoinpcb(so);
709	inp->inp_inc.inc_fibnum = so->so_fibnum;
710	INP_WLOCK(inp);
711	/*
712	 * Exclusive pcbinfo lock is not required in syncache socket case even
713	 * if two inpcb locks can be acquired simultaneously:
714	 *  - the inpcb in LISTEN state,
715	 *  - the newly created inp.
716	 *
717	 * In this case, an inp cannot be at same time in LISTEN state and
718	 * just created by an accept() call.
719	 */
720	INP_HASH_WLOCK(&V_tcbinfo);
721
722	/* Insert new socket into PCB hash list. */
723	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
724#ifdef INET6
725	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
726		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
727	} else {
728		inp->inp_vflag &= ~INP_IPV6;
729		inp->inp_vflag |= INP_IPV4;
730#endif
731		inp->inp_laddr = sc->sc_inc.inc_laddr;
732#ifdef INET6
733	}
734#endif
735
736	/*
737	 * If there's an mbuf and it has a flowid, then let's initialise the
738	 * inp with that particular flowid.
739	 */
740	if (m != NULL && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
741		inp->inp_flowid = m->m_pkthdr.flowid;
742		inp->inp_flowtype = M_HASHTYPE_GET(m);
743	}
744
745	/*
746	 * Install in the reservation hash table for now, but don't yet
747	 * install a connection group since the full 4-tuple isn't yet
748	 * configured.
749	 */
750	inp->inp_lport = sc->sc_inc.inc_lport;
751	if ((error = in_pcbinshash_nopcbgroup(inp)) != 0) {
752		/*
753		 * Undo the assignments above if we failed to
754		 * put the PCB on the hash lists.
755		 */
756#ifdef INET6
757		if (sc->sc_inc.inc_flags & INC_ISIPV6)
758			inp->in6p_laddr = in6addr_any;
759		else
760#endif
761			inp->inp_laddr.s_addr = INADDR_ANY;
762		inp->inp_lport = 0;
763		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
764			log(LOG_DEBUG, "%s; %s: in_pcbinshash failed "
765			    "with error %i\n",
766			    s, __func__, error);
767			free(s, M_TCPLOG);
768		}
769		INP_HASH_WUNLOCK(&V_tcbinfo);
770		goto abort;
771	}
772#ifdef IPSEC
773	/* Copy old policy into new socket's. */
774	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
775		printf("syncache_socket: could not copy policy\n");
776#endif
777#ifdef INET6
778	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
779		struct inpcb *oinp = sotoinpcb(lso);
780		struct in6_addr laddr6;
781		struct sockaddr_in6 sin6;
782		/*
783		 * Inherit socket options from the listening socket.
784		 * Note that in6p_inputopts are not (and should not be)
785		 * copied, since it stores previously received options and is
786		 * used to detect if each new option is different than the
787		 * previous one and hence should be passed to a user.
788		 * If we copied in6p_inputopts, a user would not be able to
789		 * receive options just after calling the accept system call.
790		 */
791		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
792		if (oinp->in6p_outputopts)
793			inp->in6p_outputopts =
794			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
795
796		sin6.sin6_family = AF_INET6;
797		sin6.sin6_len = sizeof(sin6);
798		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
799		sin6.sin6_port = sc->sc_inc.inc_fport;
800		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
801		laddr6 = inp->in6p_laddr;
802		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
803			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
804		if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
805		    thread0.td_ucred, m)) != 0) {
806			inp->in6p_laddr = laddr6;
807			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
808				log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
809				    "with error %i\n",
810				    s, __func__, error);
811				free(s, M_TCPLOG);
812			}
813			INP_HASH_WUNLOCK(&V_tcbinfo);
814			goto abort;
815		}
816		/* Override flowlabel from in6_pcbconnect. */
817		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
818		inp->inp_flow |= sc->sc_flowlabel;
819	}
820#endif /* INET6 */
821#if defined(INET) && defined(INET6)
822	else
823#endif
824#ifdef INET
825	{
826		struct in_addr laddr;
827		struct sockaddr_in sin;
828
829		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
830
831		if (inp->inp_options == NULL) {
832			inp->inp_options = sc->sc_ipopts;
833			sc->sc_ipopts = NULL;
834		}
835
836		sin.sin_family = AF_INET;
837		sin.sin_len = sizeof(sin);
838		sin.sin_addr = sc->sc_inc.inc_faddr;
839		sin.sin_port = sc->sc_inc.inc_fport;
840		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
841		laddr = inp->inp_laddr;
842		if (inp->inp_laddr.s_addr == INADDR_ANY)
843			inp->inp_laddr = sc->sc_inc.inc_laddr;
844		if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin,
845		    thread0.td_ucred, m)) != 0) {
846			inp->inp_laddr = laddr;
847			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
848				log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
849				    "with error %i\n",
850				    s, __func__, error);
851				free(s, M_TCPLOG);
852			}
853			INP_HASH_WUNLOCK(&V_tcbinfo);
854			goto abort;
855		}
856	}
857#endif /* INET */
858	INP_HASH_WUNLOCK(&V_tcbinfo);
859	tp = intotcpcb(inp);
860	tcp_state_change(tp, TCPS_SYN_RECEIVED);
861	tp->iss = sc->sc_iss;
862	tp->irs = sc->sc_irs;
863	tcp_rcvseqinit(tp);
864	tcp_sendseqinit(tp);
865	tp->snd_wl1 = sc->sc_irs;
866	tp->snd_max = tp->iss + 1;
867	tp->snd_nxt = tp->iss + 1;
868	tp->rcv_up = sc->sc_irs + 1;
869	tp->rcv_wnd = sc->sc_wnd;
870	tp->rcv_adv += tp->rcv_wnd;
871	tp->last_ack_sent = tp->rcv_nxt;
872
873	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
874	if (sc->sc_flags & SCF_NOOPT)
875		tp->t_flags |= TF_NOOPT;
876	else {
877		if (sc->sc_flags & SCF_WINSCALE) {
878			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
879			tp->snd_scale = sc->sc_requested_s_scale;
880			tp->request_r_scale = sc->sc_requested_r_scale;
881		}
882		if (sc->sc_flags & SCF_TIMESTAMP) {
883			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
884			tp->ts_recent = sc->sc_tsreflect;
885			tp->ts_recent_age = tcp_ts_getticks();
886			tp->ts_offset = sc->sc_tsoff;
887		}
888#ifdef TCP_SIGNATURE
889		if (sc->sc_flags & SCF_SIGNATURE)
890			tp->t_flags |= TF_SIGNATURE;
891#endif
892		if (sc->sc_flags & SCF_SACK)
893			tp->t_flags |= TF_SACK_PERMIT;
894	}
895
896	if (sc->sc_flags & SCF_ECN)
897		tp->t_flags |= TF_ECN_PERMIT;
898
899	/*
900	 * Set up MSS and get cached values from tcp_hostcache.
901	 * This might overwrite some of the defaults we just set.
902	 */
903	tcp_mss(tp, sc->sc_peer_mss);
904
905	/*
906	 * If the SYN,ACK was retransmitted, indicate that CWND to be
907	 * limited to one segment in cc_conn_init().
908	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
909	 */
910	if (sc->sc_rxmits > 1)
911		tp->snd_cwnd = 1;
912
913#ifdef TCP_OFFLOAD
914	/*
915	 * Allow a TOE driver to install its hooks.  Note that we hold the
916	 * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
917	 * new connection before the TOE driver has done its thing.
918	 */
919	if (ADDED_BY_TOE(sc)) {
920		struct toedev *tod = sc->sc_tod;
921
922		tod->tod_offload_socket(tod, sc->sc_todctx, so);
923	}
924#endif
925	/*
926	 * Copy and activate timers.
927	 */
928	tp->t_keepinit = sototcpcb(lso)->t_keepinit;
929	tp->t_keepidle = sototcpcb(lso)->t_keepidle;
930	tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
931	tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
932	tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
933
934	TCPSTAT_INC(tcps_accepts);
935	return (so);
936
937abort:
938	INP_WUNLOCK(inp);
939abort2:
940	if (so != NULL)
941		soabort(so);
942	return (NULL);
943}
944
945/*
946 * This function gets called when we receive an ACK for a
947 * socket in the LISTEN state.  We look up the connection
948 * in the syncache, and if its there, we pull it out of
949 * the cache and turn it into a full-blown connection in
950 * the SYN-RECEIVED state.
951 *
952 * On syncache_socket() success the newly created socket
953 * has its underlying inp locked.
954 */
955int
956syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
957    struct socket **lsop, struct mbuf *m)
958{
959	struct syncache *sc;
960	struct syncache_head *sch;
961	struct syncache scs;
962	char *s;
963
964	/*
965	 * Global TCP locks are held because we manipulate the PCB lists
966	 * and create a new socket.
967	 */
968	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
969	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
970	    ("%s: can handle only ACK", __func__));
971
972	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
973	SCH_LOCK_ASSERT(sch);
974
975#ifdef INVARIANTS
976	/*
977	 * Test code for syncookies comparing the syncache stored
978	 * values with the reconstructed values from the cookie.
979	 */
980	if (sc != NULL)
981		syncookie_cmp(inc, sch, sc, th, to, *lsop);
982#endif
983
984	if (sc == NULL) {
985		/*
986		 * There is no syncache entry, so see if this ACK is
987		 * a returning syncookie.  To do this, first:
988		 *  A. See if this socket has had a syncache entry dropped in
989		 *     the past.  We don't want to accept a bogus syncookie
990		 *     if we've never received a SYN.
991		 *  B. check that the syncookie is valid.  If it is, then
992		 *     cobble up a fake syncache entry, and return.
993		 */
994		if (!V_tcp_syncookies) {
995			SCH_UNLOCK(sch);
996			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
997				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
998				    "segment rejected (syncookies disabled)\n",
999				    s, __func__);
1000			goto failed;
1001		}
1002		bzero(&scs, sizeof(scs));
1003		sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop);
1004		SCH_UNLOCK(sch);
1005		if (sc == NULL) {
1006			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1007				log(LOG_DEBUG, "%s; %s: Segment failed "
1008				    "SYNCOOKIE authentication, segment rejected "
1009				    "(probably spoofed)\n", s, __func__);
1010			goto failed;
1011		}
1012	} else {
1013		/* Pull out the entry to unlock the bucket row. */
1014		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
1015		sch->sch_length--;
1016#ifdef TCP_OFFLOAD
1017		if (ADDED_BY_TOE(sc)) {
1018			struct toedev *tod = sc->sc_tod;
1019
1020			tod->tod_syncache_removed(tod, sc->sc_todctx);
1021		}
1022#endif
1023		SCH_UNLOCK(sch);
1024	}
1025
1026	/*
1027	 * Segment validation:
1028	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
1029	 */
1030	if (th->th_ack != sc->sc_iss + 1) {
1031		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1032			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
1033			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
1034		goto failed;
1035	}
1036
1037	/*
1038	 * The SEQ must fall in the window starting at the received
1039	 * initial receive sequence number + 1 (the SYN).
1040	 */
1041	if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
1042	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
1043		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1044			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
1045			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
1046		goto failed;
1047	}
1048
1049	/*
1050	 * If timestamps were not negotiated during SYN/ACK they
1051	 * must not appear on any segment during this session.
1052	 */
1053	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
1054		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1055			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1056			    "segment rejected\n", s, __func__);
1057		goto failed;
1058	}
1059
1060	/*
1061	 * If timestamps were negotiated during SYN/ACK they should
1062	 * appear on every segment during this session.
1063	 * XXXAO: This is only informal as there have been unverified
1064	 * reports of non-compliants stacks.
1065	 */
1066	if ((sc->sc_flags & SCF_TIMESTAMP) && !(to->to_flags & TOF_TS)) {
1067		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1068			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1069			    "no action\n", s, __func__);
1070			free(s, M_TCPLOG);
1071			s = NULL;
1072		}
1073	}
1074
1075	/*
1076	 * If timestamps were negotiated the reflected timestamp
1077	 * must be equal to what we actually sent in the SYN|ACK.
1078	 */
1079	if ((to->to_flags & TOF_TS) && to->to_tsecr != sc->sc_ts) {
1080		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1081			log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
1082			    "segment rejected\n",
1083			    s, __func__, to->to_tsecr, sc->sc_ts);
1084		goto failed;
1085	}
1086
1087	*lsop = syncache_socket(sc, *lsop, m);
1088
1089	if (*lsop == NULL)
1090		TCPSTAT_INC(tcps_sc_aborted);
1091	else
1092		TCPSTAT_INC(tcps_sc_completed);
1093
1094/* how do we find the inp for the new socket? */
1095	if (sc != &scs)
1096		syncache_free(sc);
1097	return (1);
1098failed:
1099	if (sc != NULL && sc != &scs)
1100		syncache_free(sc);
1101	if (s != NULL)
1102		free(s, M_TCPLOG);
1103	*lsop = NULL;
1104	return (0);
1105}
1106
1107#ifdef TCP_RFC7413
1108static void
1109syncache_tfo_expand(struct syncache *sc, struct socket **lsop, struct mbuf *m,
1110    uint64_t response_cookie)
1111{
1112	struct inpcb *inp;
1113	struct tcpcb *tp;
1114	unsigned int *pending_counter;
1115
1116	/*
1117	 * Global TCP locks are held because we manipulate the PCB lists
1118	 * and create a new socket.
1119	 */
1120	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1121
1122	pending_counter = intotcpcb(sotoinpcb(*lsop))->t_tfo_pending;
1123	*lsop = syncache_socket(sc, *lsop, m);
1124	if (*lsop == NULL) {
1125		TCPSTAT_INC(tcps_sc_aborted);
1126		atomic_subtract_int(pending_counter, 1);
1127	} else {
1128		inp = sotoinpcb(*lsop);
1129		tp = intotcpcb(inp);
1130		tp->t_flags |= TF_FASTOPEN;
1131		tp->t_tfo_cookie = response_cookie;
1132		tp->snd_max = tp->iss;
1133		tp->snd_nxt = tp->iss;
1134		tp->t_tfo_pending = pending_counter;
1135		TCPSTAT_INC(tcps_sc_completed);
1136	}
1137}
1138#endif /* TCP_RFC7413 */
1139
1140/*
1141 * Given a LISTEN socket and an inbound SYN request, add
1142 * this to the syn cache, and send back a segment:
1143 *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1144 * to the source.
1145 *
1146 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1147 * Doing so would require that we hold onto the data and deliver it
1148 * to the application.  However, if we are the target of a SYN-flood
1149 * DoS attack, an attacker could send data which would eventually
1150 * consume all available buffer space if it were ACKed.  By not ACKing
1151 * the data, we avoid this DoS scenario.
1152 *
1153 * The exception to the above is when a SYN with a valid TCP Fast Open (TFO)
1154 * cookie is processed, V_tcp_fastopen_enabled set to true, and the
1155 * TCP_FASTOPEN socket option is set.  In this case, a new socket is created
1156 * and returned via lsop, the mbuf is not freed so that tcp_input() can
1157 * queue its data to the socket, and 1 is returned to indicate the
1158 * TFO-socket-creation path was taken.
1159 */
1160int
1161syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1162    struct inpcb *inp, struct socket **lsop, struct mbuf *m, void *tod,
1163    void *todctx)
1164{
1165	struct tcpcb *tp;
1166	struct socket *so;
1167	struct syncache *sc = NULL;
1168	struct syncache_head *sch;
1169	struct mbuf *ipopts = NULL;
1170	u_int ltflags;
1171	int win, sb_hiwat, ip_ttl, ip_tos;
1172	char *s;
1173	int rv = 0;
1174#ifdef INET6
1175	int autoflowlabel = 0;
1176#endif
1177#ifdef MAC
1178	struct label *maclabel;
1179#endif
1180	struct syncache scs;
1181	struct ucred *cred;
1182#ifdef TCP_RFC7413
1183	uint64_t tfo_response_cookie;
1184	int tfo_cookie_valid = 0;
1185	int tfo_response_cookie_valid = 0;
1186#endif
1187
1188	INP_WLOCK_ASSERT(inp);			/* listen socket */
1189	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1190	    ("%s: unexpected tcp flags", __func__));
1191
1192	/*
1193	 * Combine all so/tp operations very early to drop the INP lock as
1194	 * soon as possible.
1195	 */
1196	so = *lsop;
1197	tp = sototcpcb(so);
1198	cred = crhold(so->so_cred);
1199
1200#ifdef INET6
1201	if ((inc->inc_flags & INC_ISIPV6) &&
1202	    (inp->inp_flags & IN6P_AUTOFLOWLABEL))
1203		autoflowlabel = 1;
1204#endif
1205	ip_ttl = inp->inp_ip_ttl;
1206	ip_tos = inp->inp_ip_tos;
1207	win = sbspace(&so->so_rcv);
1208	sb_hiwat = so->so_rcv.sb_hiwat;
1209	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1210
1211#ifdef TCP_RFC7413
1212	if (V_tcp_fastopen_enabled && (tp->t_flags & TF_FASTOPEN) &&
1213	    (tp->t_tfo_pending != NULL) && (to->to_flags & TOF_FASTOPEN)) {
1214		/*
1215		 * Limit the number of pending TFO connections to
1216		 * approximately half of the queue limit.  This prevents TFO
1217		 * SYN floods from starving the service by filling the
1218		 * listen queue with bogus TFO connections.
1219		 */
1220		if (atomic_fetchadd_int(tp->t_tfo_pending, 1) <=
1221		    (so->so_qlimit / 2)) {
1222			int result;
1223
1224			result = tcp_fastopen_check_cookie(inc,
1225			    to->to_tfo_cookie, to->to_tfo_len,
1226			    &tfo_response_cookie);
1227			tfo_cookie_valid = (result > 0);
1228			tfo_response_cookie_valid = (result >= 0);
1229		} else
1230			atomic_subtract_int(tp->t_tfo_pending, 1);
1231	}
1232#endif
1233
1234	/* By the time we drop the lock these should no longer be used. */
1235	so = NULL;
1236	tp = NULL;
1237
1238#ifdef MAC
1239	if (mac_syncache_init(&maclabel) != 0) {
1240		INP_WUNLOCK(inp);
1241		goto done;
1242	} else
1243		mac_syncache_create(maclabel, inp);
1244#endif
1245#ifdef TCP_RFC7413
1246	if (!tfo_cookie_valid)
1247#endif
1248		INP_WUNLOCK(inp);
1249
1250	/*
1251	 * Remember the IP options, if any.
1252	 */
1253#ifdef INET6
1254	if (!(inc->inc_flags & INC_ISIPV6))
1255#endif
1256#ifdef INET
1257		ipopts = (m) ? ip_srcroute(m) : NULL;
1258#else
1259		ipopts = NULL;
1260#endif
1261
1262	/*
1263	 * See if we already have an entry for this connection.
1264	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1265	 *
1266	 * XXX: should the syncache be re-initialized with the contents
1267	 * of the new SYN here (which may have different options?)
1268	 *
1269	 * XXX: We do not check the sequence number to see if this is a
1270	 * real retransmit or a new connection attempt.  The question is
1271	 * how to handle such a case; either ignore it as spoofed, or
1272	 * drop the current entry and create a new one?
1273	 */
1274	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1275	SCH_LOCK_ASSERT(sch);
1276	if (sc != NULL) {
1277#ifdef TCP_RFC7413
1278		if (tfo_cookie_valid)
1279			INP_WUNLOCK(inp);
1280#endif
1281		TCPSTAT_INC(tcps_sc_dupsyn);
1282		if (ipopts) {
1283			/*
1284			 * If we were remembering a previous source route,
1285			 * forget it and use the new one we've been given.
1286			 */
1287			if (sc->sc_ipopts)
1288				(void) m_free(sc->sc_ipopts);
1289			sc->sc_ipopts = ipopts;
1290		}
1291		/*
1292		 * Update timestamp if present.
1293		 */
1294		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1295			sc->sc_tsreflect = to->to_tsval;
1296		else
1297			sc->sc_flags &= ~SCF_TIMESTAMP;
1298#ifdef MAC
1299		/*
1300		 * Since we have already unconditionally allocated label
1301		 * storage, free it up.  The syncache entry will already
1302		 * have an initialized label we can use.
1303		 */
1304		mac_syncache_destroy(&maclabel);
1305#endif
1306		/* Retransmit SYN|ACK and reset retransmit count. */
1307		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1308			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1309			    "resetting timer and retransmitting SYN|ACK\n",
1310			    s, __func__);
1311			free(s, M_TCPLOG);
1312		}
1313		if (syncache_respond(sc, m) == 0) {
1314			sc->sc_rxmits = 0;
1315			syncache_timeout(sc, sch, 1);
1316			TCPSTAT_INC(tcps_sndacks);
1317			TCPSTAT_INC(tcps_sndtotal);
1318		}
1319		SCH_UNLOCK(sch);
1320		goto done;
1321	}
1322
1323#ifdef TCP_RFC7413
1324	if (tfo_cookie_valid) {
1325		bzero(&scs, sizeof(scs));
1326		sc = &scs;
1327		goto skip_alloc;
1328	}
1329#endif
1330
1331	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1332	if (sc == NULL) {
1333		/*
1334		 * The zone allocator couldn't provide more entries.
1335		 * Treat this as if the cache was full; drop the oldest
1336		 * entry and insert the new one.
1337		 */
1338		TCPSTAT_INC(tcps_sc_zonefail);
1339		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL)
1340			syncache_drop(sc, sch);
1341		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1342		if (sc == NULL) {
1343			if (V_tcp_syncookies) {
1344				bzero(&scs, sizeof(scs));
1345				sc = &scs;
1346			} else {
1347				SCH_UNLOCK(sch);
1348				if (ipopts)
1349					(void) m_free(ipopts);
1350				goto done;
1351			}
1352		}
1353	}
1354
1355#ifdef TCP_RFC7413
1356skip_alloc:
1357	if (!tfo_cookie_valid && tfo_response_cookie_valid)
1358		sc->sc_tfo_cookie = &tfo_response_cookie;
1359#endif
1360
1361	/*
1362	 * Fill in the syncache values.
1363	 */
1364#ifdef MAC
1365	sc->sc_label = maclabel;
1366#endif
1367	sc->sc_cred = cred;
1368	cred = NULL;
1369	sc->sc_ipopts = ipopts;
1370	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1371#ifdef INET6
1372	if (!(inc->inc_flags & INC_ISIPV6))
1373#endif
1374	{
1375		sc->sc_ip_tos = ip_tos;
1376		sc->sc_ip_ttl = ip_ttl;
1377	}
1378#ifdef TCP_OFFLOAD
1379	sc->sc_tod = tod;
1380	sc->sc_todctx = todctx;
1381#endif
1382	sc->sc_irs = th->th_seq;
1383	sc->sc_iss = arc4random();
1384	sc->sc_flags = 0;
1385	sc->sc_flowlabel = 0;
1386
1387	/*
1388	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1389	 * win was derived from socket earlier in the function.
1390	 */
1391	win = imax(win, 0);
1392	win = imin(win, TCP_MAXWIN);
1393	sc->sc_wnd = win;
1394
1395	if (V_tcp_do_rfc1323) {
1396		/*
1397		 * A timestamp received in a SYN makes
1398		 * it ok to send timestamp requests and replies.
1399		 */
1400		if (to->to_flags & TOF_TS) {
1401			sc->sc_tsreflect = to->to_tsval;
1402			sc->sc_ts = tcp_ts_getticks();
1403			sc->sc_flags |= SCF_TIMESTAMP;
1404		}
1405		if (to->to_flags & TOF_SCALE) {
1406			int wscale = 0;
1407
1408			/*
1409			 * Pick the smallest possible scaling factor that
1410			 * will still allow us to scale up to sb_max, aka
1411			 * kern.ipc.maxsockbuf.
1412			 *
1413			 * We do this because there are broken firewalls that
1414			 * will corrupt the window scale option, leading to
1415			 * the other endpoint believing that our advertised
1416			 * window is unscaled.  At scale factors larger than
1417			 * 5 the unscaled window will drop below 1500 bytes,
1418			 * leading to serious problems when traversing these
1419			 * broken firewalls.
1420			 *
1421			 * With the default maxsockbuf of 256K, a scale factor
1422			 * of 3 will be chosen by this algorithm.  Those who
1423			 * choose a larger maxsockbuf should watch out
1424			 * for the compatiblity problems mentioned above.
1425			 *
1426			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1427			 * or <SYN,ACK>) segment itself is never scaled.
1428			 */
1429			while (wscale < TCP_MAX_WINSHIFT &&
1430			    (TCP_MAXWIN << wscale) < sb_max)
1431				wscale++;
1432			sc->sc_requested_r_scale = wscale;
1433			sc->sc_requested_s_scale = to->to_wscale;
1434			sc->sc_flags |= SCF_WINSCALE;
1435		}
1436	}
1437#ifdef TCP_SIGNATURE
1438	/*
1439	 * If listening socket requested TCP digests, and received SYN
1440	 * contains the option, flag this in the syncache so that
1441	 * syncache_respond() will do the right thing with the SYN+ACK.
1442	 * XXX: Currently we always record the option by default and will
1443	 * attempt to use it in syncache_respond().
1444	 */
1445	if (to->to_flags & TOF_SIGNATURE || ltflags & TF_SIGNATURE)
1446		sc->sc_flags |= SCF_SIGNATURE;
1447#endif
1448	if (to->to_flags & TOF_SACKPERM)
1449		sc->sc_flags |= SCF_SACK;
1450	if (to->to_flags & TOF_MSS)
1451		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1452	if (ltflags & TF_NOOPT)
1453		sc->sc_flags |= SCF_NOOPT;
1454	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1455		sc->sc_flags |= SCF_ECN;
1456
1457	if (V_tcp_syncookies)
1458		sc->sc_iss = syncookie_generate(sch, sc);
1459#ifdef INET6
1460	if (autoflowlabel) {
1461		if (V_tcp_syncookies)
1462			sc->sc_flowlabel = sc->sc_iss;
1463		else
1464			sc->sc_flowlabel = ip6_randomflowlabel();
1465		sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK;
1466	}
1467#endif
1468	SCH_UNLOCK(sch);
1469
1470#ifdef TCP_RFC7413
1471	if (tfo_cookie_valid) {
1472		syncache_tfo_expand(sc, lsop, m, tfo_response_cookie);
1473		/* INP_WUNLOCK(inp) will be performed by the called */
1474		rv = 1;
1475		goto tfo_done;
1476	}
1477#endif
1478
1479	/*
1480	 * Do a standard 3-way handshake.
1481	 */
1482	if (syncache_respond(sc, m) == 0) {
1483		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1484			syncache_free(sc);
1485		else if (sc != &scs)
1486			syncache_insert(sc, sch);   /* locks and unlocks sch */
1487		TCPSTAT_INC(tcps_sndacks);
1488		TCPSTAT_INC(tcps_sndtotal);
1489	} else {
1490		if (sc != &scs)
1491			syncache_free(sc);
1492		TCPSTAT_INC(tcps_sc_dropped);
1493	}
1494
1495done:
1496	if (m) {
1497		*lsop = NULL;
1498		m_freem(m);
1499	}
1500#ifdef TCP_RFC7413
1501tfo_done:
1502#endif
1503	if (cred != NULL)
1504		crfree(cred);
1505#ifdef MAC
1506	if (sc == &scs)
1507		mac_syncache_destroy(&maclabel);
1508#endif
1509	return (rv);
1510}
1511
1512/*
1513 * Send SYN|ACK to the peer.  Either in response to the peer's SYN,
1514 * i.e. m0 != NULL, or upon 3WHS ACK timeout, i.e. m0 == NULL.
1515 */
1516static int
1517syncache_respond(struct syncache *sc, const struct mbuf *m0)
1518{
1519	struct ip *ip = NULL;
1520	struct mbuf *m;
1521	struct tcphdr *th = NULL;
1522	int optlen, error = 0;	/* Make compiler happy */
1523	u_int16_t hlen, tlen, mssopt;
1524	struct tcpopt to;
1525#ifdef INET6
1526	struct ip6_hdr *ip6 = NULL;
1527#endif
1528
1529	hlen =
1530#ifdef INET6
1531	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1532#endif
1533		sizeof(struct ip);
1534	tlen = hlen + sizeof(struct tcphdr);
1535
1536	/* Determine MSS we advertize to other end of connection. */
1537	mssopt = tcp_mssopt(&sc->sc_inc);
1538	if (sc->sc_peer_mss)
1539		mssopt = max( min(sc->sc_peer_mss, mssopt), V_tcp_minmss);
1540
1541	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1542	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1543	    ("syncache: mbuf too small"));
1544
1545	/* Create the IP+TCP header from scratch. */
1546	m = m_gethdr(M_NOWAIT, MT_DATA);
1547	if (m == NULL)
1548		return (ENOBUFS);
1549#ifdef MAC
1550	mac_syncache_create_mbuf(sc->sc_label, m);
1551#endif
1552	m->m_data += max_linkhdr;
1553	m->m_len = tlen;
1554	m->m_pkthdr.len = tlen;
1555	m->m_pkthdr.rcvif = NULL;
1556
1557#ifdef INET6
1558	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1559		ip6 = mtod(m, struct ip6_hdr *);
1560		ip6->ip6_vfc = IPV6_VERSION;
1561		ip6->ip6_nxt = IPPROTO_TCP;
1562		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1563		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1564		ip6->ip6_plen = htons(tlen - hlen);
1565		/* ip6_hlim is set after checksum */
1566		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1567		ip6->ip6_flow |= sc->sc_flowlabel;
1568
1569		th = (struct tcphdr *)(ip6 + 1);
1570	}
1571#endif
1572#if defined(INET6) && defined(INET)
1573	else
1574#endif
1575#ifdef INET
1576	{
1577		ip = mtod(m, struct ip *);
1578		ip->ip_v = IPVERSION;
1579		ip->ip_hl = sizeof(struct ip) >> 2;
1580		ip->ip_len = htons(tlen);
1581		ip->ip_id = 0;
1582		ip->ip_off = 0;
1583		ip->ip_sum = 0;
1584		ip->ip_p = IPPROTO_TCP;
1585		ip->ip_src = sc->sc_inc.inc_laddr;
1586		ip->ip_dst = sc->sc_inc.inc_faddr;
1587		ip->ip_ttl = sc->sc_ip_ttl;
1588		ip->ip_tos = sc->sc_ip_tos;
1589
1590		/*
1591		 * See if we should do MTU discovery.  Route lookups are
1592		 * expensive, so we will only unset the DF bit if:
1593		 *
1594		 *	1) path_mtu_discovery is disabled
1595		 *	2) the SCF_UNREACH flag has been set
1596		 */
1597		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1598		       ip->ip_off |= htons(IP_DF);
1599
1600		th = (struct tcphdr *)(ip + 1);
1601	}
1602#endif /* INET */
1603	th->th_sport = sc->sc_inc.inc_lport;
1604	th->th_dport = sc->sc_inc.inc_fport;
1605
1606	th->th_seq = htonl(sc->sc_iss);
1607	th->th_ack = htonl(sc->sc_irs + 1);
1608	th->th_off = sizeof(struct tcphdr) >> 2;
1609	th->th_x2 = 0;
1610	th->th_flags = TH_SYN|TH_ACK;
1611	th->th_win = htons(sc->sc_wnd);
1612	th->th_urp = 0;
1613
1614	if (sc->sc_flags & SCF_ECN) {
1615		th->th_flags |= TH_ECE;
1616		TCPSTAT_INC(tcps_ecn_shs);
1617	}
1618
1619	/* Tack on the TCP options. */
1620	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1621		to.to_flags = 0;
1622
1623		to.to_mss = mssopt;
1624		to.to_flags = TOF_MSS;
1625		if (sc->sc_flags & SCF_WINSCALE) {
1626			to.to_wscale = sc->sc_requested_r_scale;
1627			to.to_flags |= TOF_SCALE;
1628		}
1629		if (sc->sc_flags & SCF_TIMESTAMP) {
1630			/* Virgin timestamp or TCP cookie enhanced one. */
1631			to.to_tsval = sc->sc_ts;
1632			to.to_tsecr = sc->sc_tsreflect;
1633			to.to_flags |= TOF_TS;
1634		}
1635		if (sc->sc_flags & SCF_SACK)
1636			to.to_flags |= TOF_SACKPERM;
1637#ifdef TCP_SIGNATURE
1638		if (sc->sc_flags & SCF_SIGNATURE)
1639			to.to_flags |= TOF_SIGNATURE;
1640#endif
1641
1642#ifdef TCP_RFC7413
1643		if (sc->sc_tfo_cookie) {
1644			to.to_flags |= TOF_FASTOPEN;
1645			to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
1646			to.to_tfo_cookie = sc->sc_tfo_cookie;
1647			/* don't send cookie again when retransmitting response */
1648			sc->sc_tfo_cookie = NULL;
1649		}
1650#endif
1651		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1652
1653		/* Adjust headers by option size. */
1654		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1655		m->m_len += optlen;
1656		m->m_pkthdr.len += optlen;
1657
1658#ifdef TCP_SIGNATURE
1659		if (sc->sc_flags & SCF_SIGNATURE)
1660			tcp_signature_compute(m, 0, 0, optlen,
1661			    to.to_signature, IPSEC_DIR_OUTBOUND);
1662#endif
1663#ifdef INET6
1664		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1665			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1666		else
1667#endif
1668			ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1669	} else
1670		optlen = 0;
1671
1672	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1673	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1674	/*
1675	 * If we have peer's SYN and it has a flowid, then let's assign it to
1676	 * our SYN|ACK.  ip6_output() and ip_output() will not assign flowid
1677	 * to SYN|ACK due to lack of inp here.
1678	 */
1679	if (m0 != NULL && M_HASHTYPE_GET(m0) != M_HASHTYPE_NONE) {
1680		m->m_pkthdr.flowid = m0->m_pkthdr.flowid;
1681		M_HASHTYPE_SET(m, M_HASHTYPE_GET(m0));
1682	}
1683#ifdef INET6
1684	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1685		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
1686		th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
1687		    IPPROTO_TCP, 0);
1688		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1689#ifdef TCP_OFFLOAD
1690		if (ADDED_BY_TOE(sc)) {
1691			struct toedev *tod = sc->sc_tod;
1692
1693			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1694
1695			return (error);
1696		}
1697#endif
1698		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1699	}
1700#endif
1701#if defined(INET6) && defined(INET)
1702	else
1703#endif
1704#ifdef INET
1705	{
1706		m->m_pkthdr.csum_flags = CSUM_TCP;
1707		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1708		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1709#ifdef TCP_OFFLOAD
1710		if (ADDED_BY_TOE(sc)) {
1711			struct toedev *tod = sc->sc_tod;
1712
1713			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1714
1715			return (error);
1716		}
1717#endif
1718		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1719	}
1720#endif
1721	return (error);
1722}
1723
1724/*
1725 * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks
1726 * that exceed the capacity of the syncache by avoiding the storage of any
1727 * of the SYNs we receive.  Syncookies defend against blind SYN flooding
1728 * attacks where the attacker does not have access to our responses.
1729 *
1730 * Syncookies encode and include all necessary information about the
1731 * connection setup within the SYN|ACK that we send back.  That way we
1732 * can avoid keeping any local state until the ACK to our SYN|ACK returns
1733 * (if ever).  Normally the syncache and syncookies are running in parallel
1734 * with the latter taking over when the former is exhausted.  When matching
1735 * syncache entry is found the syncookie is ignored.
1736 *
1737 * The only reliable information persisting the 3WHS is our inital sequence
1738 * number ISS of 32 bits.  Syncookies embed a cryptographically sufficient
1739 * strong hash (MAC) value and a few bits of TCP SYN options in the ISS
1740 * of our SYN|ACK.  The MAC can be recomputed when the ACK to our SYN|ACK
1741 * returns and signifies a legitimate connection if it matches the ACK.
1742 *
1743 * The available space of 32 bits to store the hash and to encode the SYN
1744 * option information is very tight and we should have at least 24 bits for
1745 * the MAC to keep the number of guesses by blind spoofing reasonably high.
1746 *
1747 * SYN option information we have to encode to fully restore a connection:
1748 * MSS: is imporant to chose an optimal segment size to avoid IP level
1749 *   fragmentation along the path.  The common MSS values can be encoded
1750 *   in a 3-bit table.  Uncommon values are captured by the next lower value
1751 *   in the table leading to a slight increase in packetization overhead.
1752 * WSCALE: is necessary to allow large windows to be used for high delay-
1753 *   bandwidth product links.  Not scaling the window when it was initially
1754 *   negotiated is bad for performance as lack of scaling further decreases
1755 *   the apparent available send window.  We only need to encode the WSCALE
1756 *   we received from the remote end.  Our end can be recalculated at any
1757 *   time.  The common WSCALE values can be encoded in a 3-bit table.
1758 *   Uncommon values are captured by the next lower value in the table
1759 *   making us under-estimate the available window size halving our
1760 *   theoretically possible maximum throughput for that connection.
1761 * SACK: Greatly assists in packet loss recovery and requires 1 bit.
1762 * TIMESTAMP and SIGNATURE is not encoded because they are permanent options
1763 *   that are included in all segments on a connection.  We enable them when
1764 *   the ACK has them.
1765 *
1766 * Security of syncookies and attack vectors:
1767 *
1768 * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod)
1769 * together with the gloabl secret to make it unique per connection attempt.
1770 * Thus any change of any of those parameters results in a different MAC output
1771 * in an unpredictable way unless a collision is encountered.  24 bits of the
1772 * MAC are embedded into the ISS.
1773 *
1774 * To prevent replay attacks two rotating global secrets are updated with a
1775 * new random value every 15 seconds.  The life-time of a syncookie is thus
1776 * 15-30 seconds.
1777 *
1778 * Vector 1: Attacking the secret.  This requires finding a weakness in the
1779 * MAC itself or the way it is used here.  The attacker can do a chosen plain
1780 * text attack by varying and testing the all parameters under his control.
1781 * The strength depends on the size and randomness of the secret, and the
1782 * cryptographic security of the MAC function.  Due to the constant updating
1783 * of the secret the attacker has at most 29.999 seconds to find the secret
1784 * and launch spoofed connections.  After that he has to start all over again.
1785 *
1786 * Vector 2: Collision attack on the MAC of a single ACK.  With a 24 bit MAC
1787 * size an average of 4,823 attempts are required for a 50% chance of success
1788 * to spoof a single syncookie (birthday collision paradox).  However the
1789 * attacker is blind and doesn't know if one of his attempts succeeded unless
1790 * he has a side channel to interfere success from.  A single connection setup
1791 * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets.
1792 * This many attempts are required for each one blind spoofed connection.  For
1793 * every additional spoofed connection he has to launch another N attempts.
1794 * Thus for a sustained rate 100 spoofed connections per second approximately
1795 * 1,800,000 packets per second would have to be sent.
1796 *
1797 * NB: The MAC function should be fast so that it doesn't become a CPU
1798 * exhaustion attack vector itself.
1799 *
1800 * References:
1801 *  RFC4987 TCP SYN Flooding Attacks and Common Mitigations
1802 *  SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996
1803 *   http://cr.yp.to/syncookies.html    (overview)
1804 *   http://cr.yp.to/syncookies/archive (details)
1805 *
1806 *
1807 * Schematic construction of a syncookie enabled Initial Sequence Number:
1808 *  0        1         2         3
1809 *  12345678901234567890123456789012
1810 * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP|
1811 *
1812 *  x 24 MAC (truncated)
1813 *  W  3 Send Window Scale index
1814 *  M  3 MSS index
1815 *  S  1 SACK permitted
1816 *  P  1 Odd/even secret
1817 */
1818
1819/*
1820 * Distribution and probability of certain MSS values.  Those in between are
1821 * rounded down to the next lower one.
1822 * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011]
1823 *                            .2%  .3%   5%    7%    7%    20%   15%   45%
1824 */
1825static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 };
1826
1827/*
1828 * Distribution and probability of certain WSCALE values.  We have to map the
1829 * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3
1830 * bits based on prevalence of certain values.  Where we don't have an exact
1831 * match for are rounded down to the next lower one letting us under-estimate
1832 * the true available window.  At the moment this would happen only for the
1833 * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer
1834 * and window size).  The absence of the WSCALE option (no scaling in either
1835 * direction) is encoded with index zero.
1836 * [WSCALE values histograms, Allman, 2012]
1837 *                            X 10 10 35  5  6 14 10%   by host
1838 *                            X 11  4  5  5 18 49  3%   by connections
1839 */
1840static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 };
1841
1842/*
1843 * Compute the MAC for the SYN cookie.  SIPHASH-2-4 is chosen for its speed
1844 * and good cryptographic properties.
1845 */
1846static uint32_t
1847syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags,
1848    uint8_t *secbits, uintptr_t secmod)
1849{
1850	SIPHASH_CTX ctx;
1851	uint32_t siphash[2];
1852
1853	SipHash24_Init(&ctx);
1854	SipHash_SetKey(&ctx, secbits);
1855	switch (inc->inc_flags & INC_ISIPV6) {
1856#ifdef INET
1857	case 0:
1858		SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr));
1859		SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr));
1860		break;
1861#endif
1862#ifdef INET6
1863	case INC_ISIPV6:
1864		SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr));
1865		SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr));
1866		break;
1867#endif
1868	}
1869	SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport));
1870	SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport));
1871	SipHash_Update(&ctx, &irs, sizeof(irs));
1872	SipHash_Update(&ctx, &flags, sizeof(flags));
1873	SipHash_Update(&ctx, &secmod, sizeof(secmod));
1874	SipHash_Final((u_int8_t *)&siphash, &ctx);
1875
1876	return (siphash[0] ^ siphash[1]);
1877}
1878
1879static tcp_seq
1880syncookie_generate(struct syncache_head *sch, struct syncache *sc)
1881{
1882	u_int i, mss, secbit, wscale;
1883	uint32_t iss, hash;
1884	uint8_t *secbits;
1885	union syncookie cookie;
1886
1887	SCH_LOCK_ASSERT(sch);
1888
1889	cookie.cookie = 0;
1890
1891	/* Map our computed MSS into the 3-bit index. */
1892	mss = min(tcp_mssopt(&sc->sc_inc), max(sc->sc_peer_mss, V_tcp_minmss));
1893	for (i = sizeof(tcp_sc_msstab) / sizeof(*tcp_sc_msstab) - 1;
1894	     tcp_sc_msstab[i] > mss && i > 0;
1895	     i--)
1896		;
1897	cookie.flags.mss_idx = i;
1898
1899	/*
1900	 * Map the send window scale into the 3-bit index but only if
1901	 * the wscale option was received.
1902	 */
1903	if (sc->sc_flags & SCF_WINSCALE) {
1904		wscale = sc->sc_requested_s_scale;
1905		for (i = sizeof(tcp_sc_wstab) / sizeof(*tcp_sc_wstab) - 1;
1906		     tcp_sc_wstab[i] > wscale && i > 0;
1907		     i--)
1908			;
1909		cookie.flags.wscale_idx = i;
1910	}
1911
1912	/* Can we do SACK? */
1913	if (sc->sc_flags & SCF_SACK)
1914		cookie.flags.sack_ok = 1;
1915
1916	/* Which of the two secrets to use. */
1917	secbit = sch->sch_sc->secret.oddeven & 0x1;
1918	cookie.flags.odd_even = secbit;
1919
1920	secbits = sch->sch_sc->secret.key[secbit];
1921	hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits,
1922	    (uintptr_t)sch);
1923
1924	/*
1925	 * Put the flags into the hash and XOR them to get better ISS number
1926	 * variance.  This doesn't enhance the cryptographic strength and is
1927	 * done to prevent the 8 cookie bits from showing up directly on the
1928	 * wire.
1929	 */
1930	iss = hash & ~0xff;
1931	iss |= cookie.cookie ^ (hash >> 24);
1932
1933	/* Randomize the timestamp. */
1934	if (sc->sc_flags & SCF_TIMESTAMP) {
1935		sc->sc_ts = arc4random();
1936		sc->sc_tsoff = sc->sc_ts - tcp_ts_getticks();
1937	}
1938
1939	TCPSTAT_INC(tcps_sc_sendcookie);
1940	return (iss);
1941}
1942
1943static struct syncache *
1944syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
1945    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
1946    struct socket *lso)
1947{
1948	uint32_t hash;
1949	uint8_t *secbits;
1950	tcp_seq ack, seq;
1951	int wnd, wscale = 0;
1952	union syncookie cookie;
1953
1954	SCH_LOCK_ASSERT(sch);
1955
1956	/*
1957	 * Pull information out of SYN-ACK/ACK and revert sequence number
1958	 * advances.
1959	 */
1960	ack = th->th_ack - 1;
1961	seq = th->th_seq - 1;
1962
1963	/*
1964	 * Unpack the flags containing enough information to restore the
1965	 * connection.
1966	 */
1967	cookie.cookie = (ack & 0xff) ^ (ack >> 24);
1968
1969	/* Which of the two secrets to use. */
1970	secbits = sch->sch_sc->secret.key[cookie.flags.odd_even];
1971
1972	hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch);
1973
1974	/* The recomputed hash matches the ACK if this was a genuine cookie. */
1975	if ((ack & ~0xff) != (hash & ~0xff))
1976		return (NULL);
1977
1978	/* Fill in the syncache values. */
1979	sc->sc_flags = 0;
1980	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1981	sc->sc_ipopts = NULL;
1982
1983	sc->sc_irs = seq;
1984	sc->sc_iss = ack;
1985
1986	switch (inc->inc_flags & INC_ISIPV6) {
1987#ifdef INET
1988	case 0:
1989		sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl;
1990		sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos;
1991		break;
1992#endif
1993#ifdef INET6
1994	case INC_ISIPV6:
1995		if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL)
1996			sc->sc_flowlabel = sc->sc_iss & IPV6_FLOWLABEL_MASK;
1997		break;
1998#endif
1999	}
2000
2001	sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx];
2002
2003	/* We can simply recompute receive window scale we sent earlier. */
2004	while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max)
2005		wscale++;
2006
2007	/* Only use wscale if it was enabled in the orignal SYN. */
2008	if (cookie.flags.wscale_idx > 0) {
2009		sc->sc_requested_r_scale = wscale;
2010		sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx];
2011		sc->sc_flags |= SCF_WINSCALE;
2012	}
2013
2014	wnd = sbspace(&lso->so_rcv);
2015	wnd = imax(wnd, 0);
2016	wnd = imin(wnd, TCP_MAXWIN);
2017	sc->sc_wnd = wnd;
2018
2019	if (cookie.flags.sack_ok)
2020		sc->sc_flags |= SCF_SACK;
2021
2022	if (to->to_flags & TOF_TS) {
2023		sc->sc_flags |= SCF_TIMESTAMP;
2024		sc->sc_tsreflect = to->to_tsval;
2025		sc->sc_ts = to->to_tsecr;
2026		sc->sc_tsoff = to->to_tsecr - tcp_ts_getticks();
2027	}
2028
2029	if (to->to_flags & TOF_SIGNATURE)
2030		sc->sc_flags |= SCF_SIGNATURE;
2031
2032	sc->sc_rxmits = 0;
2033
2034	TCPSTAT_INC(tcps_sc_recvcookie);
2035	return (sc);
2036}
2037
2038#ifdef INVARIANTS
2039static int
2040syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
2041    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2042    struct socket *lso)
2043{
2044	struct syncache scs, *scx;
2045	char *s;
2046
2047	bzero(&scs, sizeof(scs));
2048	scx = syncookie_lookup(inc, sch, &scs, th, to, lso);
2049
2050	if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL)
2051		return (0);
2052
2053	if (scx != NULL) {
2054		if (sc->sc_peer_mss != scx->sc_peer_mss)
2055			log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n",
2056			    s, __func__, sc->sc_peer_mss, scx->sc_peer_mss);
2057
2058		if (sc->sc_requested_r_scale != scx->sc_requested_r_scale)
2059			log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n",
2060			    s, __func__, sc->sc_requested_r_scale,
2061			    scx->sc_requested_r_scale);
2062
2063		if (sc->sc_requested_s_scale != scx->sc_requested_s_scale)
2064			log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n",
2065			    s, __func__, sc->sc_requested_s_scale,
2066			    scx->sc_requested_s_scale);
2067
2068		if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK))
2069			log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__);
2070	}
2071
2072	if (s != NULL)
2073		free(s, M_TCPLOG);
2074	return (0);
2075}
2076#endif /* INVARIANTS */
2077
2078static void
2079syncookie_reseed(void *arg)
2080{
2081	struct tcp_syncache *sc = arg;
2082	uint8_t *secbits;
2083	int secbit;
2084
2085	/*
2086	 * Reseeding the secret doesn't have to be protected by a lock.
2087	 * It only must be ensured that the new random values are visible
2088	 * to all CPUs in a SMP environment.  The atomic with release
2089	 * semantics ensures that.
2090	 */
2091	secbit = (sc->secret.oddeven & 0x1) ? 0 : 1;
2092	secbits = sc->secret.key[secbit];
2093	arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0);
2094	atomic_add_rel_int(&sc->secret.oddeven, 1);
2095
2096	/* Reschedule ourself. */
2097	callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz);
2098}
2099
2100/*
2101 * Returns the current number of syncache entries.  This number
2102 * will probably change before you get around to calling
2103 * syncache_pcblist.
2104 */
2105int
2106syncache_pcbcount(void)
2107{
2108	struct syncache_head *sch;
2109	int count, i;
2110
2111	for (count = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
2112		/* No need to lock for a read. */
2113		sch = &V_tcp_syncache.hashbase[i];
2114		count += sch->sch_length;
2115	}
2116	return count;
2117}
2118
2119/*
2120 * Exports the syncache entries to userland so that netstat can display
2121 * them alongside the other sockets.  This function is intended to be
2122 * called only from tcp_pcblist.
2123 *
2124 * Due to concurrency on an active system, the number of pcbs exported
2125 * may have no relation to max_pcbs.  max_pcbs merely indicates the
2126 * amount of space the caller allocated for this function to use.
2127 */
2128int
2129syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
2130{
2131	struct xtcpcb xt;
2132	struct syncache *sc;
2133	struct syncache_head *sch;
2134	int count, error, i;
2135
2136	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
2137		sch = &V_tcp_syncache.hashbase[i];
2138		SCH_LOCK(sch);
2139		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
2140			if (count >= max_pcbs) {
2141				SCH_UNLOCK(sch);
2142				goto exit;
2143			}
2144			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
2145				continue;
2146			bzero(&xt, sizeof(xt));
2147			xt.xt_len = sizeof(xt);
2148			if (sc->sc_inc.inc_flags & INC_ISIPV6)
2149				xt.xt_inp.inp_vflag = INP_IPV6;
2150			else
2151				xt.xt_inp.inp_vflag = INP_IPV4;
2152			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc, sizeof (struct in_conninfo));
2153			xt.xt_tp.t_inpcb = &xt.xt_inp;
2154			xt.xt_tp.t_state = TCPS_SYN_RECEIVED;
2155			xt.xt_socket.xso_protocol = IPPROTO_TCP;
2156			xt.xt_socket.xso_len = sizeof (struct xsocket);
2157			xt.xt_socket.so_type = SOCK_STREAM;
2158			xt.xt_socket.so_state = SS_ISCONNECTING;
2159			error = SYSCTL_OUT(req, &xt, sizeof xt);
2160			if (error) {
2161				SCH_UNLOCK(sch);
2162				goto exit;
2163			}
2164			count++;
2165		}
2166		SCH_UNLOCK(sch);
2167	}
2168exit:
2169	*pcbs_exported = count;
2170	return error;
2171}
2172