1/*-
2 * Copyright (c) 2001 McAfee, Inc.
3 * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG
4 * All rights reserved.
5 *
6 * This software was developed for the FreeBSD Project by Jonathan Lemon
7 * and McAfee Research, the Security Research Division of McAfee, Inc. under
8 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
9 * DARPA CHATS research program. [2001 McAfee, Inc.]
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: stable/10/sys/netinet/tcp_syncache.c 324520 2017-10-11 06:28:46Z sephe $");
35
36#include "opt_inet.h"
37#include "opt_inet6.h"
38#include "opt_ipsec.h"
39#include "opt_pcbgroup.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/kernel.h>
44#include <sys/sysctl.h>
45#include <sys/limits.h>
46#include <sys/lock.h>
47#include <sys/mutex.h>
48#include <sys/malloc.h>
49#include <sys/mbuf.h>
50#include <sys/proc.h>		/* for proc0 declaration */
51#include <sys/random.h>
52#include <sys/socket.h>
53#include <sys/socketvar.h>
54#include <sys/syslog.h>
55#include <sys/ucred.h>
56
57#include <sys/md5.h>
58#include <crypto/siphash/siphash.h>
59
60#include <vm/uma.h>
61
62#include <net/if.h>
63#include <net/route.h>
64#include <net/vnet.h>
65
66#include <netinet/in.h>
67#include <netinet/in_systm.h>
68#include <netinet/ip.h>
69#include <netinet/in_var.h>
70#include <netinet/in_pcb.h>
71#include <netinet/ip_var.h>
72#include <netinet/ip_options.h>
73#ifdef INET6
74#include <netinet/ip6.h>
75#include <netinet/icmp6.h>
76#include <netinet6/nd6.h>
77#include <netinet6/ip6_var.h>
78#include <netinet6/in6_pcb.h>
79#endif
80#include <netinet/tcp.h>
81#ifdef TCP_RFC7413
82#include <netinet/tcp_fastopen.h>
83#endif
84#include <netinet/tcp_fsm.h>
85#include <netinet/tcp_seq.h>
86#include <netinet/tcp_timer.h>
87#include <netinet/tcp_var.h>
88#include <netinet/tcp_syncache.h>
89#ifdef INET6
90#include <netinet6/tcp6_var.h>
91#endif
92#ifdef TCP_OFFLOAD
93#include <netinet/toecore.h>
94#endif
95
96#ifdef IPSEC
97#include <netipsec/ipsec.h>
98#ifdef INET6
99#include <netipsec/ipsec6.h>
100#endif
101#include <netipsec/key.h>
102#endif /*IPSEC*/
103
104#include <machine/in_cksum.h>
105
106#include <security/mac/mac_framework.h>
107
108static VNET_DEFINE(int, tcp_syncookies) = 1;
109#define	V_tcp_syncookies		VNET(tcp_syncookies)
110SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
111    &VNET_NAME(tcp_syncookies), 0,
112    "Use TCP SYN cookies if the syncache overflows");
113
114static VNET_DEFINE(int, tcp_syncookiesonly) = 0;
115#define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
116SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_RW,
117    &VNET_NAME(tcp_syncookiesonly), 0,
118    "Use only TCP SYN cookies");
119
120#ifdef TCP_OFFLOAD
121#define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
122#endif
123
124static void	 syncache_drop(struct syncache *, struct syncache_head *);
125static void	 syncache_free(struct syncache *);
126static void	 syncache_insert(struct syncache *, struct syncache_head *);
127static int	 syncache_respond(struct syncache *, const struct mbuf *);
128static struct	 socket *syncache_socket(struct syncache *, struct socket *,
129		    struct mbuf *m);
130static int	 syncache_sysctl_count(SYSCTL_HANDLER_ARGS);
131static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
132		    int docallout);
133static void	 syncache_timer(void *);
134
135static uint32_t	 syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t,
136		    uint8_t *, uintptr_t);
137static tcp_seq	 syncookie_generate(struct syncache_head *, struct syncache *);
138static struct syncache
139		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
140		    struct syncache *, struct tcphdr *, struct tcpopt *,
141		    struct socket *);
142static void	 syncookie_reseed(void *);
143#ifdef INVARIANTS
144static int	 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
145		    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
146		    struct socket *lso);
147#endif
148
149/*
150 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
151 * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
152 * the odds are that the user has given up attempting to connect by then.
153 */
154#define SYNCACHE_MAXREXMTS		3
155
156/* Arbitrary values */
157#define TCP_SYNCACHE_HASHSIZE		512
158#define TCP_SYNCACHE_BUCKETLIMIT	30
159
160static VNET_DEFINE(struct tcp_syncache, tcp_syncache);
161#define	V_tcp_syncache			VNET(tcp_syncache)
162
163static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0,
164    "TCP SYN cache");
165
166SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RDTUN,
167    &VNET_NAME(tcp_syncache.bucket_limit), 0,
168    "Per-bucket hash limit for syncache");
169
170SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RDTUN,
171    &VNET_NAME(tcp_syncache.cache_limit), 0,
172    "Overall entry limit for syncache");
173
174SYSCTL_VNET_PROC(_net_inet_tcp_syncache, OID_AUTO, count, (CTLTYPE_UINT|CTLFLAG_RD),
175    NULL, 0, &syncache_sysctl_count, "IU",
176    "Current number of entries in syncache");
177
178SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RDTUN,
179    &VNET_NAME(tcp_syncache.hashsize), 0,
180    "Size of TCP syncache hashtable");
181
182SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
183    &VNET_NAME(tcp_syncache.rexmt_limit), 0,
184    "Limit on SYN/ACK retransmissions");
185
186VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
187SYSCTL_VNET_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
188    CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
189    "Send reset on socket allocation failure");
190
191static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
192
193#define SYNCACHE_HASH(inc, mask)					\
194	((V_tcp_syncache.hash_secret ^					\
195	  (inc)->inc_faddr.s_addr ^					\
196	  ((inc)->inc_faddr.s_addr >> 16) ^				\
197	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
198
199#define SYNCACHE_HASH6(inc, mask)					\
200	((V_tcp_syncache.hash_secret ^					\
201	  (inc)->inc6_faddr.s6_addr32[0] ^				\
202	  (inc)->inc6_faddr.s6_addr32[3] ^				\
203	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
204
205#define ENDPTS_EQ(a, b) (						\
206	(a)->ie_fport == (b)->ie_fport &&				\
207	(a)->ie_lport == (b)->ie_lport &&				\
208	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
209	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
210)
211
212#define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
213
214#define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
215#define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
216#define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
217
218/*
219 * Requires the syncache entry to be already removed from the bucket list.
220 */
221static void
222syncache_free(struct syncache *sc)
223{
224
225	if (sc->sc_ipopts)
226		(void) m_free(sc->sc_ipopts);
227	if (sc->sc_cred)
228		crfree(sc->sc_cred);
229#ifdef MAC
230	mac_syncache_destroy(&sc->sc_label);
231#endif
232
233	uma_zfree(V_tcp_syncache.zone, sc);
234}
235
236void
237syncache_init(void)
238{
239	int i;
240
241	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
242	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
243	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
244	V_tcp_syncache.hash_secret = arc4random();
245
246	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
247	    &V_tcp_syncache.hashsize);
248	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
249	    &V_tcp_syncache.bucket_limit);
250	if (!powerof2(V_tcp_syncache.hashsize) ||
251	    V_tcp_syncache.hashsize == 0) {
252		printf("WARNING: syncache hash size is not a power of 2.\n");
253		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
254	}
255	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
256
257	/* Set limits. */
258	V_tcp_syncache.cache_limit =
259	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
260	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
261	    &V_tcp_syncache.cache_limit);
262
263	/* Allocate the hash table. */
264	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
265	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
266
267#ifdef VIMAGE
268	V_tcp_syncache.vnet = curvnet;
269#endif
270
271	/* Initialize the hash buckets. */
272	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
273		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
274		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
275			 NULL, MTX_DEF);
276		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
277			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
278		V_tcp_syncache.hashbase[i].sch_length = 0;
279		V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache;
280		V_tcp_syncache.hashbase[i].sch_last_overflow =
281		    -(SYNCOOKIE_LIFETIME + 1);
282	}
283
284	/* Create the syncache entry zone. */
285	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
286	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
287	V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
288	    V_tcp_syncache.cache_limit);
289
290	/* Start the SYN cookie reseeder callout. */
291	callout_init(&V_tcp_syncache.secret.reseed, 1);
292	arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0);
293	arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0);
294	callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz,
295	    syncookie_reseed, &V_tcp_syncache);
296}
297
298#ifdef VIMAGE
299void
300syncache_destroy(void)
301{
302	struct syncache_head *sch;
303	struct syncache *sc, *nsc;
304	int i;
305
306	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
307	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
308
309		sch = &V_tcp_syncache.hashbase[i];
310		callout_drain(&sch->sch_timer);
311
312		SCH_LOCK(sch);
313		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
314			syncache_drop(sc, sch);
315		SCH_UNLOCK(sch);
316		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
317		    ("%s: sch->sch_bucket not empty", __func__));
318		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
319		    __func__, sch->sch_length));
320		mtx_destroy(&sch->sch_mtx);
321	}
322
323	KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
324	    ("%s: cache_count not 0", __func__));
325
326	/* Free the allocated global resources. */
327	uma_zdestroy(V_tcp_syncache.zone);
328	free(V_tcp_syncache.hashbase, M_SYNCACHE);
329
330	callout_drain(&V_tcp_syncache.secret.reseed);
331}
332#endif
333
334static int
335syncache_sysctl_count(SYSCTL_HANDLER_ARGS)
336{
337	int count;
338
339	count = uma_zone_get_cur(V_tcp_syncache.zone);
340	return (sysctl_handle_int(oidp, &count, 0, req));
341}
342
343/*
344 * Inserts a syncache entry into the specified bucket row.
345 * Locks and unlocks the syncache_head autonomously.
346 */
347static void
348syncache_insert(struct syncache *sc, struct syncache_head *sch)
349{
350	struct syncache *sc2;
351
352	SCH_LOCK(sch);
353
354	/*
355	 * Make sure that we don't overflow the per-bucket limit.
356	 * If the bucket is full, toss the oldest element.
357	 */
358	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
359		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
360			("sch->sch_length incorrect"));
361		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
362		sch->sch_last_overflow = time_uptime;
363		syncache_drop(sc2, sch);
364		TCPSTAT_INC(tcps_sc_bucketoverflow);
365	}
366
367	/* Put it into the bucket. */
368	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
369	sch->sch_length++;
370
371#ifdef TCP_OFFLOAD
372	if (ADDED_BY_TOE(sc)) {
373		struct toedev *tod = sc->sc_tod;
374
375		tod->tod_syncache_added(tod, sc->sc_todctx);
376	}
377#endif
378
379	/* Reinitialize the bucket row's timer. */
380	if (sch->sch_length == 1)
381		sch->sch_nextc = ticks + INT_MAX;
382	syncache_timeout(sc, sch, 1);
383
384	SCH_UNLOCK(sch);
385
386	TCPSTAT_INC(tcps_sc_added);
387}
388
389/*
390 * Remove and free entry from syncache bucket row.
391 * Expects locked syncache head.
392 */
393static void
394syncache_drop(struct syncache *sc, struct syncache_head *sch)
395{
396
397	SCH_LOCK_ASSERT(sch);
398
399	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
400	sch->sch_length--;
401
402#ifdef TCP_OFFLOAD
403	if (ADDED_BY_TOE(sc)) {
404		struct toedev *tod = sc->sc_tod;
405
406		tod->tod_syncache_removed(tod, sc->sc_todctx);
407	}
408#endif
409
410	syncache_free(sc);
411}
412
413/*
414 * Engage/reengage time on bucket row.
415 */
416static void
417syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
418{
419	sc->sc_rxttime = ticks +
420		TCPTV_RTOBASE * (tcp_syn_backoff[sc->sc_rxmits]);
421	sc->sc_rxmits++;
422	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
423		sch->sch_nextc = sc->sc_rxttime;
424		if (docallout)
425			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
426			    syncache_timer, (void *)sch);
427	}
428}
429
430/*
431 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
432 * If we have retransmitted an entry the maximum number of times, expire it.
433 * One separate timer for each bucket row.
434 */
435static void
436syncache_timer(void *xsch)
437{
438	struct syncache_head *sch = (struct syncache_head *)xsch;
439	struct syncache *sc, *nsc;
440	int tick = ticks;
441	char *s;
442
443	CURVNET_SET(sch->sch_sc->vnet);
444
445	/* NB: syncache_head has already been locked by the callout. */
446	SCH_LOCK_ASSERT(sch);
447
448	/*
449	 * In the following cycle we may remove some entries and/or
450	 * advance some timeouts, so re-initialize the bucket timer.
451	 */
452	sch->sch_nextc = tick + INT_MAX;
453
454	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
455		/*
456		 * We do not check if the listen socket still exists
457		 * and accept the case where the listen socket may be
458		 * gone by the time we resend the SYN/ACK.  We do
459		 * not expect this to happens often. If it does,
460		 * then the RST will be sent by the time the remote
461		 * host does the SYN/ACK->ACK.
462		 */
463		if (TSTMP_GT(sc->sc_rxttime, tick)) {
464			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
465				sch->sch_nextc = sc->sc_rxttime;
466			continue;
467		}
468		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
469			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
470				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
471				    "giving up and removing syncache entry\n",
472				    s, __func__);
473				free(s, M_TCPLOG);
474			}
475			syncache_drop(sc, sch);
476			TCPSTAT_INC(tcps_sc_stale);
477			continue;
478		}
479		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
480			log(LOG_DEBUG, "%s; %s: Response timeout, "
481			    "retransmitting (%u) SYN|ACK\n",
482			    s, __func__, sc->sc_rxmits);
483			free(s, M_TCPLOG);
484		}
485
486		(void) syncache_respond(sc, NULL);
487		TCPSTAT_INC(tcps_sc_retransmitted);
488		syncache_timeout(sc, sch, 0);
489	}
490	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
491		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
492			syncache_timer, (void *)(sch));
493	CURVNET_RESTORE();
494}
495
496/*
497 * Find an entry in the syncache.
498 * Returns always with locked syncache_head plus a matching entry or NULL.
499 */
500static struct syncache *
501syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
502{
503	struct syncache *sc;
504	struct syncache_head *sch;
505
506#ifdef INET6
507	if (inc->inc_flags & INC_ISIPV6) {
508		sch = &V_tcp_syncache.hashbase[
509		    SYNCACHE_HASH6(inc, V_tcp_syncache.hashmask)];
510		*schp = sch;
511
512		SCH_LOCK(sch);
513
514		/* Circle through bucket row to find matching entry. */
515		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
516			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
517				return (sc);
518		}
519	} else
520#endif
521	{
522		sch = &V_tcp_syncache.hashbase[
523		    SYNCACHE_HASH(inc, V_tcp_syncache.hashmask)];
524		*schp = sch;
525
526		SCH_LOCK(sch);
527
528		/* Circle through bucket row to find matching entry. */
529		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
530#ifdef INET6
531			if (sc->sc_inc.inc_flags & INC_ISIPV6)
532				continue;
533#endif
534			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
535				return (sc);
536		}
537	}
538	SCH_LOCK_ASSERT(*schp);
539	return (NULL);			/* always returns with locked sch */
540}
541
542/*
543 * This function is called when we get a RST for a
544 * non-existent connection, so that we can see if the
545 * connection is in the syn cache.  If it is, zap it.
546 */
547void
548syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
549{
550	struct syncache *sc;
551	struct syncache_head *sch;
552	char *s = NULL;
553
554	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
555	SCH_LOCK_ASSERT(sch);
556
557	/*
558	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
559	 * See RFC 793 page 65, section SEGMENT ARRIVES.
560	 */
561	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
562		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
563			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
564			    "FIN flag set, segment ignored\n", s, __func__);
565		TCPSTAT_INC(tcps_badrst);
566		goto done;
567	}
568
569	/*
570	 * No corresponding connection was found in syncache.
571	 * If syncookies are enabled and possibly exclusively
572	 * used, or we are under memory pressure, a valid RST
573	 * may not find a syncache entry.  In that case we're
574	 * done and no SYN|ACK retransmissions will happen.
575	 * Otherwise the RST was misdirected or spoofed.
576	 */
577	if (sc == NULL) {
578		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
579			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
580			    "syncache entry (possibly syncookie only), "
581			    "segment ignored\n", s, __func__);
582		TCPSTAT_INC(tcps_badrst);
583		goto done;
584	}
585
586	/*
587	 * If the RST bit is set, check the sequence number to see
588	 * if this is a valid reset segment.
589	 * RFC 793 page 37:
590	 *   In all states except SYN-SENT, all reset (RST) segments
591	 *   are validated by checking their SEQ-fields.  A reset is
592	 *   valid if its sequence number is in the window.
593	 *
594	 *   The sequence number in the reset segment is normally an
595	 *   echo of our outgoing acknowlegement numbers, but some hosts
596	 *   send a reset with the sequence number at the rightmost edge
597	 *   of our receive window, and we have to handle this case.
598	 */
599	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
600	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
601		syncache_drop(sc, sch);
602		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
603			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
604			    "connection attempt aborted by remote endpoint\n",
605			    s, __func__);
606		TCPSTAT_INC(tcps_sc_reset);
607	} else {
608		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
609			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
610			    "IRS %u (+WND %u), segment ignored\n",
611			    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
612		TCPSTAT_INC(tcps_badrst);
613	}
614
615done:
616	if (s != NULL)
617		free(s, M_TCPLOG);
618	SCH_UNLOCK(sch);
619}
620
621void
622syncache_badack(struct in_conninfo *inc)
623{
624	struct syncache *sc;
625	struct syncache_head *sch;
626
627	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
628	SCH_LOCK_ASSERT(sch);
629	if (sc != NULL) {
630		syncache_drop(sc, sch);
631		TCPSTAT_INC(tcps_sc_badack);
632	}
633	SCH_UNLOCK(sch);
634}
635
636void
637syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
638{
639	struct syncache *sc;
640	struct syncache_head *sch;
641
642	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
643	SCH_LOCK_ASSERT(sch);
644	if (sc == NULL)
645		goto done;
646
647	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
648	if (ntohl(th->th_seq) != sc->sc_iss)
649		goto done;
650
651	/*
652	 * If we've rertransmitted 3 times and this is our second error,
653	 * we remove the entry.  Otherwise, we allow it to continue on.
654	 * This prevents us from incorrectly nuking an entry during a
655	 * spurious network outage.
656	 *
657	 * See tcp_notify().
658	 */
659	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
660		sc->sc_flags |= SCF_UNREACH;
661		goto done;
662	}
663	syncache_drop(sc, sch);
664	TCPSTAT_INC(tcps_sc_unreach);
665done:
666	SCH_UNLOCK(sch);
667}
668
669/*
670 * Build a new TCP socket structure from a syncache entry.
671 *
672 * On success return the newly created socket with its underlying inp locked.
673 */
674static struct socket *
675syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
676{
677	struct inpcb *inp = NULL;
678	struct socket *so;
679	struct tcpcb *tp;
680	int error;
681	char *s;
682
683	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
684
685	/*
686	 * Ok, create the full blown connection, and set things up
687	 * as they would have been set up if we had created the
688	 * connection when the SYN arrived.  If we can't create
689	 * the connection, abort it.
690	 */
691	so = sonewconn(lso, 0);
692	if (so == NULL) {
693		/*
694		 * Drop the connection; we will either send a RST or
695		 * have the peer retransmit its SYN again after its
696		 * RTO and try again.
697		 */
698		TCPSTAT_INC(tcps_listendrop);
699		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
700			log(LOG_DEBUG, "%s; %s: Socket create failed "
701			    "due to limits or memory shortage\n",
702			    s, __func__);
703			free(s, M_TCPLOG);
704		}
705		goto abort2;
706	}
707#ifdef MAC
708	mac_socketpeer_set_from_mbuf(m, so);
709#endif
710
711	inp = sotoinpcb(so);
712	inp->inp_inc.inc_fibnum = so->so_fibnum;
713	INP_WLOCK(inp);
714	/*
715	 * Exclusive pcbinfo lock is not required in syncache socket case even
716	 * if two inpcb locks can be acquired simultaneously:
717	 *  - the inpcb in LISTEN state,
718	 *  - the newly created inp.
719	 *
720	 * In this case, an inp cannot be at same time in LISTEN state and
721	 * just created by an accept() call.
722	 */
723	INP_HASH_WLOCK(&V_tcbinfo);
724
725	/* Insert new socket into PCB hash list. */
726	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
727#ifdef INET6
728	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
729		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
730	} else {
731		inp->inp_vflag &= ~INP_IPV6;
732		inp->inp_vflag |= INP_IPV4;
733#endif
734		inp->inp_laddr = sc->sc_inc.inc_laddr;
735#ifdef INET6
736	}
737#endif
738
739	/*
740	 * If there's an mbuf and it has a flowid, then let's initialise the
741	 * inp with that particular flowid.
742	 */
743	if (m != NULL && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
744		inp->inp_flowid = m->m_pkthdr.flowid;
745		inp->inp_flowtype = M_HASHTYPE_GET(m);
746	}
747
748	/*
749	 * Install in the reservation hash table for now, but don't yet
750	 * install a connection group since the full 4-tuple isn't yet
751	 * configured.
752	 */
753	inp->inp_lport = sc->sc_inc.inc_lport;
754	if ((error = in_pcbinshash_nopcbgroup(inp)) != 0) {
755		/*
756		 * Undo the assignments above if we failed to
757		 * put the PCB on the hash lists.
758		 */
759#ifdef INET6
760		if (sc->sc_inc.inc_flags & INC_ISIPV6)
761			inp->in6p_laddr = in6addr_any;
762		else
763#endif
764			inp->inp_laddr.s_addr = INADDR_ANY;
765		inp->inp_lport = 0;
766		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
767			log(LOG_DEBUG, "%s; %s: in_pcbinshash failed "
768			    "with error %i\n",
769			    s, __func__, error);
770			free(s, M_TCPLOG);
771		}
772		INP_HASH_WUNLOCK(&V_tcbinfo);
773		goto abort;
774	}
775#ifdef IPSEC
776	/* Copy old policy into new socket's. */
777	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
778		printf("syncache_socket: could not copy policy\n");
779#endif
780#ifdef INET6
781	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
782		struct inpcb *oinp = sotoinpcb(lso);
783		struct in6_addr laddr6;
784		struct sockaddr_in6 sin6;
785		/*
786		 * Inherit socket options from the listening socket.
787		 * Note that in6p_inputopts are not (and should not be)
788		 * copied, since it stores previously received options and is
789		 * used to detect if each new option is different than the
790		 * previous one and hence should be passed to a user.
791		 * If we copied in6p_inputopts, a user would not be able to
792		 * receive options just after calling the accept system call.
793		 */
794		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
795		if (oinp->in6p_outputopts)
796			inp->in6p_outputopts =
797			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
798
799		sin6.sin6_family = AF_INET6;
800		sin6.sin6_len = sizeof(sin6);
801		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
802		sin6.sin6_port = sc->sc_inc.inc_fport;
803		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
804		laddr6 = inp->in6p_laddr;
805		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
806			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
807		if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
808		    thread0.td_ucred, m)) != 0) {
809			inp->in6p_laddr = laddr6;
810			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
811				log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
812				    "with error %i\n",
813				    s, __func__, error);
814				free(s, M_TCPLOG);
815			}
816			INP_HASH_WUNLOCK(&V_tcbinfo);
817			goto abort;
818		}
819		/* Override flowlabel from in6_pcbconnect. */
820		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
821		inp->inp_flow |= sc->sc_flowlabel;
822	}
823#endif /* INET6 */
824#if defined(INET) && defined(INET6)
825	else
826#endif
827#ifdef INET
828	{
829		struct in_addr laddr;
830		struct sockaddr_in sin;
831
832		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
833
834		if (inp->inp_options == NULL) {
835			inp->inp_options = sc->sc_ipopts;
836			sc->sc_ipopts = NULL;
837		}
838
839		sin.sin_family = AF_INET;
840		sin.sin_len = sizeof(sin);
841		sin.sin_addr = sc->sc_inc.inc_faddr;
842		sin.sin_port = sc->sc_inc.inc_fport;
843		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
844		laddr = inp->inp_laddr;
845		if (inp->inp_laddr.s_addr == INADDR_ANY)
846			inp->inp_laddr = sc->sc_inc.inc_laddr;
847		if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin,
848		    thread0.td_ucred, m)) != 0) {
849			inp->inp_laddr = laddr;
850			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
851				log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
852				    "with error %i\n",
853				    s, __func__, error);
854				free(s, M_TCPLOG);
855			}
856			INP_HASH_WUNLOCK(&V_tcbinfo);
857			goto abort;
858		}
859	}
860#endif /* INET */
861	INP_HASH_WUNLOCK(&V_tcbinfo);
862	tp = intotcpcb(inp);
863	tcp_state_change(tp, TCPS_SYN_RECEIVED);
864	tp->iss = sc->sc_iss;
865	tp->irs = sc->sc_irs;
866	tcp_rcvseqinit(tp);
867	tcp_sendseqinit(tp);
868	tp->snd_wl1 = sc->sc_irs;
869	tp->snd_max = tp->iss + 1;
870	tp->snd_nxt = tp->iss + 1;
871	tp->rcv_up = sc->sc_irs + 1;
872	tp->rcv_wnd = sc->sc_wnd;
873	tp->rcv_adv += tp->rcv_wnd;
874	tp->last_ack_sent = tp->rcv_nxt;
875
876	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
877	if (sc->sc_flags & SCF_NOOPT)
878		tp->t_flags |= TF_NOOPT;
879	else {
880		if (sc->sc_flags & SCF_WINSCALE) {
881			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
882			tp->snd_scale = sc->sc_requested_s_scale;
883			tp->request_r_scale = sc->sc_requested_r_scale;
884		}
885		if (sc->sc_flags & SCF_TIMESTAMP) {
886			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
887			tp->ts_recent = sc->sc_tsreflect;
888			tp->ts_recent_age = tcp_ts_getticks();
889			tp->ts_offset = sc->sc_tsoff;
890		}
891#ifdef TCP_SIGNATURE
892		if (sc->sc_flags & SCF_SIGNATURE)
893			tp->t_flags |= TF_SIGNATURE;
894#endif
895		if (sc->sc_flags & SCF_SACK)
896			tp->t_flags |= TF_SACK_PERMIT;
897	}
898
899	if (sc->sc_flags & SCF_ECN)
900		tp->t_flags |= TF_ECN_PERMIT;
901
902	/*
903	 * Set up MSS and get cached values from tcp_hostcache.
904	 * This might overwrite some of the defaults we just set.
905	 */
906	tcp_mss(tp, sc->sc_peer_mss);
907
908	/*
909	 * If the SYN,ACK was retransmitted, indicate that CWND to be
910	 * limited to one segment in cc_conn_init().
911	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
912	 */
913	if (sc->sc_rxmits > 1)
914		tp->snd_cwnd = 1;
915
916#ifdef TCP_OFFLOAD
917	/*
918	 * Allow a TOE driver to install its hooks.  Note that we hold the
919	 * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
920	 * new connection before the TOE driver has done its thing.
921	 */
922	if (ADDED_BY_TOE(sc)) {
923		struct toedev *tod = sc->sc_tod;
924
925		tod->tod_offload_socket(tod, sc->sc_todctx, so);
926	}
927#endif
928	/*
929	 * Copy and activate timers.
930	 */
931	tp->t_keepinit = sototcpcb(lso)->t_keepinit;
932	tp->t_keepidle = sototcpcb(lso)->t_keepidle;
933	tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
934	tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
935	tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
936
937	TCPSTAT_INC(tcps_accepts);
938	return (so);
939
940abort:
941	INP_WUNLOCK(inp);
942abort2:
943	if (so != NULL)
944		soabort(so);
945	return (NULL);
946}
947
948/*
949 * This function gets called when we receive an ACK for a
950 * socket in the LISTEN state.  We look up the connection
951 * in the syncache, and if its there, we pull it out of
952 * the cache and turn it into a full-blown connection in
953 * the SYN-RECEIVED state.
954 *
955 * On syncache_socket() success the newly created socket
956 * has its underlying inp locked.
957 */
958int
959syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
960    struct socket **lsop, struct mbuf *m)
961{
962	struct syncache *sc;
963	struct syncache_head *sch;
964	struct syncache scs;
965	char *s;
966
967	/*
968	 * Global TCP locks are held because we manipulate the PCB lists
969	 * and create a new socket.
970	 */
971	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
972	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
973	    ("%s: can handle only ACK", __func__));
974
975	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
976	SCH_LOCK_ASSERT(sch);
977
978#ifdef INVARIANTS
979	/*
980	 * Test code for syncookies comparing the syncache stored
981	 * values with the reconstructed values from the cookie.
982	 */
983	if (sc != NULL)
984		syncookie_cmp(inc, sch, sc, th, to, *lsop);
985#endif
986
987	if (sc == NULL) {
988		/*
989		 * There is no syncache entry, so see if this ACK is
990		 * a returning syncookie.  To do this, first:
991		 *  A. Check if syncookies are used in case of syncache
992		 *     overflows
993		 *  B. See if this socket has had a syncache entry dropped in
994		 *     the recent past. We don't want to accept a bogus
995		 *     syncookie if we've never received a SYN or accept it
996		 *     twice.
997		 *  C. check that the syncookie is valid.  If it is, then
998		 *     cobble up a fake syncache entry, and return.
999		 */
1000		if (!V_tcp_syncookies) {
1001			SCH_UNLOCK(sch);
1002			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1003				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1004				    "segment rejected (syncookies disabled)\n",
1005				    s, __func__);
1006			goto failed;
1007		}
1008		if (!V_tcp_syncookiesonly &&
1009		    sch->sch_last_overflow < time_uptime - SYNCOOKIE_LIFETIME) {
1010			SCH_UNLOCK(sch);
1011			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1012				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1013				    "segment rejected (no syncache entry)\n",
1014				    s, __func__);
1015			goto failed;
1016		}
1017		bzero(&scs, sizeof(scs));
1018		sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop);
1019		SCH_UNLOCK(sch);
1020		if (sc == NULL) {
1021			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1022				log(LOG_DEBUG, "%s; %s: Segment failed "
1023				    "SYNCOOKIE authentication, segment rejected "
1024				    "(probably spoofed)\n", s, __func__);
1025			goto failed;
1026		}
1027	} else {
1028		/* Pull out the entry to unlock the bucket row. */
1029		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
1030		sch->sch_length--;
1031#ifdef TCP_OFFLOAD
1032		if (ADDED_BY_TOE(sc)) {
1033			struct toedev *tod = sc->sc_tod;
1034
1035			tod->tod_syncache_removed(tod, sc->sc_todctx);
1036		}
1037#endif
1038		SCH_UNLOCK(sch);
1039	}
1040
1041	/*
1042	 * Segment validation:
1043	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
1044	 */
1045	if (th->th_ack != sc->sc_iss + 1) {
1046		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1047			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
1048			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
1049		goto failed;
1050	}
1051
1052	/*
1053	 * The SEQ must fall in the window starting at the received
1054	 * initial receive sequence number + 1 (the SYN).
1055	 */
1056	if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
1057	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
1058		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1059			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
1060			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
1061		goto failed;
1062	}
1063
1064	/*
1065	 * If timestamps were not negotiated during SYN/ACK they
1066	 * must not appear on any segment during this session.
1067	 */
1068	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
1069		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1070			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1071			    "segment rejected\n", s, __func__);
1072		goto failed;
1073	}
1074
1075	/*
1076	 * If timestamps were negotiated during SYN/ACK they should
1077	 * appear on every segment during this session.
1078	 * XXXAO: This is only informal as there have been unverified
1079	 * reports of non-compliants stacks.
1080	 */
1081	if ((sc->sc_flags & SCF_TIMESTAMP) && !(to->to_flags & TOF_TS)) {
1082		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1083			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1084			    "no action\n", s, __func__);
1085			free(s, M_TCPLOG);
1086			s = NULL;
1087		}
1088	}
1089
1090	/*
1091	 * If timestamps were negotiated the reflected timestamp
1092	 * must be equal to what we actually sent in the SYN|ACK.
1093	 */
1094	if ((to->to_flags & TOF_TS) && to->to_tsecr != sc->sc_ts) {
1095		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1096			log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
1097			    "segment rejected\n",
1098			    s, __func__, to->to_tsecr, sc->sc_ts);
1099		goto failed;
1100	}
1101
1102	*lsop = syncache_socket(sc, *lsop, m);
1103
1104	if (*lsop == NULL)
1105		TCPSTAT_INC(tcps_sc_aborted);
1106	else
1107		TCPSTAT_INC(tcps_sc_completed);
1108
1109/* how do we find the inp for the new socket? */
1110	if (sc != &scs)
1111		syncache_free(sc);
1112	return (1);
1113failed:
1114	if (sc != NULL && sc != &scs)
1115		syncache_free(sc);
1116	if (s != NULL)
1117		free(s, M_TCPLOG);
1118	*lsop = NULL;
1119	return (0);
1120}
1121
1122#ifdef TCP_RFC7413
1123static void
1124syncache_tfo_expand(struct syncache *sc, struct socket **lsop, struct mbuf *m,
1125    uint64_t response_cookie)
1126{
1127	struct inpcb *inp;
1128	struct tcpcb *tp;
1129	unsigned int *pending_counter;
1130
1131	/*
1132	 * Global TCP locks are held because we manipulate the PCB lists
1133	 * and create a new socket.
1134	 */
1135	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1136
1137	pending_counter = intotcpcb(sotoinpcb(*lsop))->t_tfo_pending;
1138	*lsop = syncache_socket(sc, *lsop, m);
1139	if (*lsop == NULL) {
1140		TCPSTAT_INC(tcps_sc_aborted);
1141		atomic_subtract_int(pending_counter, 1);
1142	} else {
1143		inp = sotoinpcb(*lsop);
1144		tp = intotcpcb(inp);
1145		tp->t_flags |= TF_FASTOPEN;
1146		tp->t_tfo_cookie = response_cookie;
1147		tp->snd_max = tp->iss;
1148		tp->snd_nxt = tp->iss;
1149		tp->t_tfo_pending = pending_counter;
1150		TCPSTAT_INC(tcps_sc_completed);
1151	}
1152}
1153#endif /* TCP_RFC7413 */
1154
1155/*
1156 * Given a LISTEN socket and an inbound SYN request, add
1157 * this to the syn cache, and send back a segment:
1158 *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1159 * to the source.
1160 *
1161 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1162 * Doing so would require that we hold onto the data and deliver it
1163 * to the application.  However, if we are the target of a SYN-flood
1164 * DoS attack, an attacker could send data which would eventually
1165 * consume all available buffer space if it were ACKed.  By not ACKing
1166 * the data, we avoid this DoS scenario.
1167 *
1168 * The exception to the above is when a SYN with a valid TCP Fast Open (TFO)
1169 * cookie is processed, V_tcp_fastopen_enabled set to true, and the
1170 * TCP_FASTOPEN socket option is set.  In this case, a new socket is created
1171 * and returned via lsop, the mbuf is not freed so that tcp_input() can
1172 * queue its data to the socket, and 1 is returned to indicate the
1173 * TFO-socket-creation path was taken.
1174 */
1175int
1176syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1177    struct inpcb *inp, struct socket **lsop, struct mbuf *m, void *tod,
1178    void *todctx)
1179{
1180	struct tcpcb *tp;
1181	struct socket *so;
1182	struct syncache *sc = NULL;
1183	struct syncache_head *sch;
1184	struct mbuf *ipopts = NULL;
1185	u_int ltflags;
1186	int win, sb_hiwat, ip_ttl, ip_tos;
1187	char *s;
1188	int rv = 0;
1189#ifdef INET6
1190	int autoflowlabel = 0;
1191#endif
1192#ifdef MAC
1193	struct label *maclabel;
1194#endif
1195	struct syncache scs;
1196	struct ucred *cred;
1197#ifdef TCP_RFC7413
1198	uint64_t tfo_response_cookie;
1199	int tfo_cookie_valid = 0;
1200	int tfo_response_cookie_valid = 0;
1201#endif
1202
1203	INP_WLOCK_ASSERT(inp);			/* listen socket */
1204	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1205	    ("%s: unexpected tcp flags", __func__));
1206
1207	/*
1208	 * Combine all so/tp operations very early to drop the INP lock as
1209	 * soon as possible.
1210	 */
1211	so = *lsop;
1212	tp = sototcpcb(so);
1213	cred = crhold(so->so_cred);
1214
1215#ifdef INET6
1216	if ((inc->inc_flags & INC_ISIPV6) &&
1217	    (inp->inp_flags & IN6P_AUTOFLOWLABEL))
1218		autoflowlabel = 1;
1219#endif
1220	ip_ttl = inp->inp_ip_ttl;
1221	ip_tos = inp->inp_ip_tos;
1222	win = sbspace(&so->so_rcv);
1223	sb_hiwat = so->so_rcv.sb_hiwat;
1224	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1225
1226#ifdef TCP_RFC7413
1227	if (V_tcp_fastopen_enabled && (tp->t_flags & TF_FASTOPEN) &&
1228	    (tp->t_tfo_pending != NULL) && (to->to_flags & TOF_FASTOPEN)) {
1229		/*
1230		 * Limit the number of pending TFO connections to
1231		 * approximately half of the queue limit.  This prevents TFO
1232		 * SYN floods from starving the service by filling the
1233		 * listen queue with bogus TFO connections.
1234		 */
1235		if (atomic_fetchadd_int(tp->t_tfo_pending, 1) <=
1236		    (so->so_qlimit / 2)) {
1237			int result;
1238
1239			result = tcp_fastopen_check_cookie(inc,
1240			    to->to_tfo_cookie, to->to_tfo_len,
1241			    &tfo_response_cookie);
1242			tfo_cookie_valid = (result > 0);
1243			tfo_response_cookie_valid = (result >= 0);
1244		} else
1245			atomic_subtract_int(tp->t_tfo_pending, 1);
1246	}
1247#endif
1248
1249	/* By the time we drop the lock these should no longer be used. */
1250	so = NULL;
1251	tp = NULL;
1252
1253#ifdef MAC
1254	if (mac_syncache_init(&maclabel) != 0) {
1255		INP_WUNLOCK(inp);
1256		goto done;
1257	} else
1258		mac_syncache_create(maclabel, inp);
1259#endif
1260#ifdef TCP_RFC7413
1261	if (!tfo_cookie_valid)
1262#endif
1263		INP_WUNLOCK(inp);
1264
1265	/*
1266	 * Remember the IP options, if any.
1267	 */
1268#ifdef INET6
1269	if (!(inc->inc_flags & INC_ISIPV6))
1270#endif
1271#ifdef INET
1272		ipopts = (m) ? ip_srcroute(m) : NULL;
1273#else
1274		ipopts = NULL;
1275#endif
1276
1277	/*
1278	 * See if we already have an entry for this connection.
1279	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1280	 *
1281	 * XXX: should the syncache be re-initialized with the contents
1282	 * of the new SYN here (which may have different options?)
1283	 *
1284	 * XXX: We do not check the sequence number to see if this is a
1285	 * real retransmit or a new connection attempt.  The question is
1286	 * how to handle such a case; either ignore it as spoofed, or
1287	 * drop the current entry and create a new one?
1288	 */
1289	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1290	SCH_LOCK_ASSERT(sch);
1291	if (sc != NULL) {
1292#ifdef TCP_RFC7413
1293		if (tfo_cookie_valid)
1294			INP_WUNLOCK(inp);
1295#endif
1296		TCPSTAT_INC(tcps_sc_dupsyn);
1297		if (ipopts) {
1298			/*
1299			 * If we were remembering a previous source route,
1300			 * forget it and use the new one we've been given.
1301			 */
1302			if (sc->sc_ipopts)
1303				(void) m_free(sc->sc_ipopts);
1304			sc->sc_ipopts = ipopts;
1305		}
1306		/*
1307		 * Update timestamp if present.
1308		 */
1309		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1310			sc->sc_tsreflect = to->to_tsval;
1311		else
1312			sc->sc_flags &= ~SCF_TIMESTAMP;
1313#ifdef MAC
1314		/*
1315		 * Since we have already unconditionally allocated label
1316		 * storage, free it up.  The syncache entry will already
1317		 * have an initialized label we can use.
1318		 */
1319		mac_syncache_destroy(&maclabel);
1320#endif
1321		/* Retransmit SYN|ACK and reset retransmit count. */
1322		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1323			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1324			    "resetting timer and retransmitting SYN|ACK\n",
1325			    s, __func__);
1326			free(s, M_TCPLOG);
1327		}
1328		if (syncache_respond(sc, m) == 0) {
1329			sc->sc_rxmits = 0;
1330			syncache_timeout(sc, sch, 1);
1331			TCPSTAT_INC(tcps_sndacks);
1332			TCPSTAT_INC(tcps_sndtotal);
1333		}
1334		SCH_UNLOCK(sch);
1335		goto done;
1336	}
1337
1338#ifdef TCP_RFC7413
1339	if (tfo_cookie_valid) {
1340		bzero(&scs, sizeof(scs));
1341		sc = &scs;
1342		goto skip_alloc;
1343	}
1344#endif
1345
1346	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1347	if (sc == NULL) {
1348		/*
1349		 * The zone allocator couldn't provide more entries.
1350		 * Treat this as if the cache was full; drop the oldest
1351		 * entry and insert the new one.
1352		 */
1353		TCPSTAT_INC(tcps_sc_zonefail);
1354		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL) {
1355			sch->sch_last_overflow = time_uptime;
1356			syncache_drop(sc, sch);
1357		}
1358		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1359		if (sc == NULL) {
1360			if (V_tcp_syncookies) {
1361				bzero(&scs, sizeof(scs));
1362				sc = &scs;
1363			} else {
1364				SCH_UNLOCK(sch);
1365				if (ipopts)
1366					(void) m_free(ipopts);
1367				goto done;
1368			}
1369		}
1370	}
1371
1372#ifdef TCP_RFC7413
1373skip_alloc:
1374	if (!tfo_cookie_valid && tfo_response_cookie_valid)
1375		sc->sc_tfo_cookie = &tfo_response_cookie;
1376#endif
1377
1378	/*
1379	 * Fill in the syncache values.
1380	 */
1381#ifdef MAC
1382	sc->sc_label = maclabel;
1383#endif
1384	sc->sc_cred = cred;
1385	cred = NULL;
1386	sc->sc_ipopts = ipopts;
1387	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1388#ifdef INET6
1389	if (!(inc->inc_flags & INC_ISIPV6))
1390#endif
1391	{
1392		sc->sc_ip_tos = ip_tos;
1393		sc->sc_ip_ttl = ip_ttl;
1394	}
1395#ifdef TCP_OFFLOAD
1396	sc->sc_tod = tod;
1397	sc->sc_todctx = todctx;
1398#endif
1399	sc->sc_irs = th->th_seq;
1400	sc->sc_iss = arc4random();
1401	sc->sc_flags = 0;
1402	sc->sc_flowlabel = 0;
1403
1404	/*
1405	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1406	 * win was derived from socket earlier in the function.
1407	 */
1408	win = imax(win, 0);
1409	win = imin(win, TCP_MAXWIN);
1410	sc->sc_wnd = win;
1411
1412	if (V_tcp_do_rfc1323) {
1413		/*
1414		 * A timestamp received in a SYN makes
1415		 * it ok to send timestamp requests and replies.
1416		 */
1417		if (to->to_flags & TOF_TS) {
1418			sc->sc_tsreflect = to->to_tsval;
1419			sc->sc_ts = tcp_ts_getticks();
1420			sc->sc_flags |= SCF_TIMESTAMP;
1421		}
1422		if (to->to_flags & TOF_SCALE) {
1423			int wscale = 0;
1424
1425			/*
1426			 * Pick the smallest possible scaling factor that
1427			 * will still allow us to scale up to sb_max, aka
1428			 * kern.ipc.maxsockbuf.
1429			 *
1430			 * We do this because there are broken firewalls that
1431			 * will corrupt the window scale option, leading to
1432			 * the other endpoint believing that our advertised
1433			 * window is unscaled.  At scale factors larger than
1434			 * 5 the unscaled window will drop below 1500 bytes,
1435			 * leading to serious problems when traversing these
1436			 * broken firewalls.
1437			 *
1438			 * With the default maxsockbuf of 256K, a scale factor
1439			 * of 3 will be chosen by this algorithm.  Those who
1440			 * choose a larger maxsockbuf should watch out
1441			 * for the compatiblity problems mentioned above.
1442			 *
1443			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1444			 * or <SYN,ACK>) segment itself is never scaled.
1445			 */
1446			while (wscale < TCP_MAX_WINSHIFT &&
1447			    (TCP_MAXWIN << wscale) < sb_max)
1448				wscale++;
1449			sc->sc_requested_r_scale = wscale;
1450			sc->sc_requested_s_scale = to->to_wscale;
1451			sc->sc_flags |= SCF_WINSCALE;
1452		}
1453	}
1454#ifdef TCP_SIGNATURE
1455	/*
1456	 * If listening socket requested TCP digests, and received SYN
1457	 * contains the option, flag this in the syncache so that
1458	 * syncache_respond() will do the right thing with the SYN+ACK.
1459	 * XXX: Currently we always record the option by default and will
1460	 * attempt to use it in syncache_respond().
1461	 */
1462	if (to->to_flags & TOF_SIGNATURE || ltflags & TF_SIGNATURE)
1463		sc->sc_flags |= SCF_SIGNATURE;
1464#endif
1465	if (to->to_flags & TOF_SACKPERM)
1466		sc->sc_flags |= SCF_SACK;
1467	if (to->to_flags & TOF_MSS)
1468		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1469	if (ltflags & TF_NOOPT)
1470		sc->sc_flags |= SCF_NOOPT;
1471	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1472		sc->sc_flags |= SCF_ECN;
1473
1474	if (V_tcp_syncookies)
1475		sc->sc_iss = syncookie_generate(sch, sc);
1476#ifdef INET6
1477	if (autoflowlabel) {
1478		if (V_tcp_syncookies)
1479			sc->sc_flowlabel = sc->sc_iss;
1480		else
1481			sc->sc_flowlabel = ip6_randomflowlabel();
1482		sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK;
1483	}
1484#endif
1485	SCH_UNLOCK(sch);
1486
1487#ifdef TCP_RFC7413
1488	if (tfo_cookie_valid) {
1489		syncache_tfo_expand(sc, lsop, m, tfo_response_cookie);
1490		/* INP_WUNLOCK(inp) will be performed by the called */
1491		rv = 1;
1492		goto tfo_done;
1493	}
1494#endif
1495
1496	/*
1497	 * Do a standard 3-way handshake.
1498	 */
1499	if (syncache_respond(sc, m) == 0) {
1500		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1501			syncache_free(sc);
1502		else if (sc != &scs)
1503			syncache_insert(sc, sch);   /* locks and unlocks sch */
1504		TCPSTAT_INC(tcps_sndacks);
1505		TCPSTAT_INC(tcps_sndtotal);
1506	} else {
1507		if (sc != &scs)
1508			syncache_free(sc);
1509		TCPSTAT_INC(tcps_sc_dropped);
1510	}
1511
1512done:
1513	if (m) {
1514		*lsop = NULL;
1515		m_freem(m);
1516	}
1517#ifdef TCP_RFC7413
1518tfo_done:
1519#endif
1520	if (cred != NULL)
1521		crfree(cred);
1522#ifdef MAC
1523	if (sc == &scs)
1524		mac_syncache_destroy(&maclabel);
1525#endif
1526	return (rv);
1527}
1528
1529/*
1530 * Send SYN|ACK to the peer.  Either in response to the peer's SYN,
1531 * i.e. m0 != NULL, or upon 3WHS ACK timeout, i.e. m0 == NULL.
1532 */
1533static int
1534syncache_respond(struct syncache *sc, const struct mbuf *m0)
1535{
1536	struct ip *ip = NULL;
1537	struct mbuf *m;
1538	struct tcphdr *th = NULL;
1539	int optlen, error = 0;	/* Make compiler happy */
1540	u_int16_t hlen, tlen, mssopt;
1541	struct tcpopt to;
1542#ifdef INET6
1543	struct ip6_hdr *ip6 = NULL;
1544#endif
1545
1546	hlen =
1547#ifdef INET6
1548	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1549#endif
1550		sizeof(struct ip);
1551	tlen = hlen + sizeof(struct tcphdr);
1552
1553	/* Determine MSS we advertize to other end of connection. */
1554	mssopt = max(tcp_mssopt(&sc->sc_inc), V_tcp_minmss);
1555
1556	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1557	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1558	    ("syncache: mbuf too small"));
1559
1560	/* Create the IP+TCP header from scratch. */
1561	m = m_gethdr(M_NOWAIT, MT_DATA);
1562	if (m == NULL)
1563		return (ENOBUFS);
1564#ifdef MAC
1565	mac_syncache_create_mbuf(sc->sc_label, m);
1566#endif
1567	m->m_data += max_linkhdr;
1568	m->m_len = tlen;
1569	m->m_pkthdr.len = tlen;
1570	m->m_pkthdr.rcvif = NULL;
1571
1572#ifdef INET6
1573	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1574		ip6 = mtod(m, struct ip6_hdr *);
1575		ip6->ip6_vfc = IPV6_VERSION;
1576		ip6->ip6_nxt = IPPROTO_TCP;
1577		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1578		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1579		ip6->ip6_plen = htons(tlen - hlen);
1580		/* ip6_hlim is set after checksum */
1581		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1582		ip6->ip6_flow |= sc->sc_flowlabel;
1583
1584		th = (struct tcphdr *)(ip6 + 1);
1585	}
1586#endif
1587#if defined(INET6) && defined(INET)
1588	else
1589#endif
1590#ifdef INET
1591	{
1592		ip = mtod(m, struct ip *);
1593		ip->ip_v = IPVERSION;
1594		ip->ip_hl = sizeof(struct ip) >> 2;
1595		ip->ip_len = htons(tlen);
1596		ip->ip_id = 0;
1597		ip->ip_off = 0;
1598		ip->ip_sum = 0;
1599		ip->ip_p = IPPROTO_TCP;
1600		ip->ip_src = sc->sc_inc.inc_laddr;
1601		ip->ip_dst = sc->sc_inc.inc_faddr;
1602		ip->ip_ttl = sc->sc_ip_ttl;
1603		ip->ip_tos = sc->sc_ip_tos;
1604
1605		/*
1606		 * See if we should do MTU discovery.  Route lookups are
1607		 * expensive, so we will only unset the DF bit if:
1608		 *
1609		 *	1) path_mtu_discovery is disabled
1610		 *	2) the SCF_UNREACH flag has been set
1611		 */
1612		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1613		       ip->ip_off |= htons(IP_DF);
1614
1615		th = (struct tcphdr *)(ip + 1);
1616	}
1617#endif /* INET */
1618	th->th_sport = sc->sc_inc.inc_lport;
1619	th->th_dport = sc->sc_inc.inc_fport;
1620
1621	th->th_seq = htonl(sc->sc_iss);
1622	th->th_ack = htonl(sc->sc_irs + 1);
1623	th->th_off = sizeof(struct tcphdr) >> 2;
1624	th->th_x2 = 0;
1625	th->th_flags = TH_SYN|TH_ACK;
1626	th->th_win = htons(sc->sc_wnd);
1627	th->th_urp = 0;
1628
1629	if (sc->sc_flags & SCF_ECN) {
1630		th->th_flags |= TH_ECE;
1631		TCPSTAT_INC(tcps_ecn_shs);
1632	}
1633
1634	/* Tack on the TCP options. */
1635	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1636		to.to_flags = 0;
1637
1638		to.to_mss = mssopt;
1639		to.to_flags = TOF_MSS;
1640		if (sc->sc_flags & SCF_WINSCALE) {
1641			to.to_wscale = sc->sc_requested_r_scale;
1642			to.to_flags |= TOF_SCALE;
1643		}
1644		if (sc->sc_flags & SCF_TIMESTAMP) {
1645			/* Virgin timestamp or TCP cookie enhanced one. */
1646			to.to_tsval = sc->sc_ts;
1647			to.to_tsecr = sc->sc_tsreflect;
1648			to.to_flags |= TOF_TS;
1649		}
1650		if (sc->sc_flags & SCF_SACK)
1651			to.to_flags |= TOF_SACKPERM;
1652#ifdef TCP_SIGNATURE
1653		if (sc->sc_flags & SCF_SIGNATURE)
1654			to.to_flags |= TOF_SIGNATURE;
1655#endif
1656
1657#ifdef TCP_RFC7413
1658		if (sc->sc_tfo_cookie) {
1659			to.to_flags |= TOF_FASTOPEN;
1660			to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
1661			to.to_tfo_cookie = sc->sc_tfo_cookie;
1662			/* don't send cookie again when retransmitting response */
1663			sc->sc_tfo_cookie = NULL;
1664		}
1665#endif
1666		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1667
1668		/* Adjust headers by option size. */
1669		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1670		m->m_len += optlen;
1671		m->m_pkthdr.len += optlen;
1672
1673#ifdef TCP_SIGNATURE
1674		if (sc->sc_flags & SCF_SIGNATURE)
1675			tcp_signature_compute(m, 0, 0, optlen,
1676			    to.to_signature, IPSEC_DIR_OUTBOUND);
1677#endif
1678#ifdef INET6
1679		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1680			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1681		else
1682#endif
1683			ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1684	} else
1685		optlen = 0;
1686
1687	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1688	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1689	/*
1690	 * If we have peer's SYN and it has a flowid, then let's assign it to
1691	 * our SYN|ACK.  ip6_output() and ip_output() will not assign flowid
1692	 * to SYN|ACK due to lack of inp here.
1693	 */
1694	if (m0 != NULL && M_HASHTYPE_GET(m0) != M_HASHTYPE_NONE) {
1695		m->m_pkthdr.flowid = m0->m_pkthdr.flowid;
1696		M_HASHTYPE_SET(m, M_HASHTYPE_GET(m0));
1697	}
1698#ifdef INET6
1699	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1700		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
1701		th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
1702		    IPPROTO_TCP, 0);
1703		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1704#ifdef TCP_OFFLOAD
1705		if (ADDED_BY_TOE(sc)) {
1706			struct toedev *tod = sc->sc_tod;
1707
1708			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1709
1710			return (error);
1711		}
1712#endif
1713		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1714	}
1715#endif
1716#if defined(INET6) && defined(INET)
1717	else
1718#endif
1719#ifdef INET
1720	{
1721		m->m_pkthdr.csum_flags = CSUM_TCP;
1722		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1723		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1724#ifdef TCP_OFFLOAD
1725		if (ADDED_BY_TOE(sc)) {
1726			struct toedev *tod = sc->sc_tod;
1727
1728			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1729
1730			return (error);
1731		}
1732#endif
1733		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1734	}
1735#endif
1736	return (error);
1737}
1738
1739/*
1740 * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks
1741 * that exceed the capacity of the syncache by avoiding the storage of any
1742 * of the SYNs we receive.  Syncookies defend against blind SYN flooding
1743 * attacks where the attacker does not have access to our responses.
1744 *
1745 * Syncookies encode and include all necessary information about the
1746 * connection setup within the SYN|ACK that we send back.  That way we
1747 * can avoid keeping any local state until the ACK to our SYN|ACK returns
1748 * (if ever).  Normally the syncache and syncookies are running in parallel
1749 * with the latter taking over when the former is exhausted.  When matching
1750 * syncache entry is found the syncookie is ignored.
1751 *
1752 * The only reliable information persisting the 3WHS is our inital sequence
1753 * number ISS of 32 bits.  Syncookies embed a cryptographically sufficient
1754 * strong hash (MAC) value and a few bits of TCP SYN options in the ISS
1755 * of our SYN|ACK.  The MAC can be recomputed when the ACK to our SYN|ACK
1756 * returns and signifies a legitimate connection if it matches the ACK.
1757 *
1758 * The available space of 32 bits to store the hash and to encode the SYN
1759 * option information is very tight and we should have at least 24 bits for
1760 * the MAC to keep the number of guesses by blind spoofing reasonably high.
1761 *
1762 * SYN option information we have to encode to fully restore a connection:
1763 * MSS: is imporant to chose an optimal segment size to avoid IP level
1764 *   fragmentation along the path.  The common MSS values can be encoded
1765 *   in a 3-bit table.  Uncommon values are captured by the next lower value
1766 *   in the table leading to a slight increase in packetization overhead.
1767 * WSCALE: is necessary to allow large windows to be used for high delay-
1768 *   bandwidth product links.  Not scaling the window when it was initially
1769 *   negotiated is bad for performance as lack of scaling further decreases
1770 *   the apparent available send window.  We only need to encode the WSCALE
1771 *   we received from the remote end.  Our end can be recalculated at any
1772 *   time.  The common WSCALE values can be encoded in a 3-bit table.
1773 *   Uncommon values are captured by the next lower value in the table
1774 *   making us under-estimate the available window size halving our
1775 *   theoretically possible maximum throughput for that connection.
1776 * SACK: Greatly assists in packet loss recovery and requires 1 bit.
1777 * TIMESTAMP and SIGNATURE is not encoded because they are permanent options
1778 *   that are included in all segments on a connection.  We enable them when
1779 *   the ACK has them.
1780 *
1781 * Security of syncookies and attack vectors:
1782 *
1783 * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod)
1784 * together with the gloabl secret to make it unique per connection attempt.
1785 * Thus any change of any of those parameters results in a different MAC output
1786 * in an unpredictable way unless a collision is encountered.  24 bits of the
1787 * MAC are embedded into the ISS.
1788 *
1789 * To prevent replay attacks two rotating global secrets are updated with a
1790 * new random value every 15 seconds.  The life-time of a syncookie is thus
1791 * 15-30 seconds.
1792 *
1793 * Vector 1: Attacking the secret.  This requires finding a weakness in the
1794 * MAC itself or the way it is used here.  The attacker can do a chosen plain
1795 * text attack by varying and testing the all parameters under his control.
1796 * The strength depends on the size and randomness of the secret, and the
1797 * cryptographic security of the MAC function.  Due to the constant updating
1798 * of the secret the attacker has at most 29.999 seconds to find the secret
1799 * and launch spoofed connections.  After that he has to start all over again.
1800 *
1801 * Vector 2: Collision attack on the MAC of a single ACK.  With a 24 bit MAC
1802 * size an average of 4,823 attempts are required for a 50% chance of success
1803 * to spoof a single syncookie (birthday collision paradox).  However the
1804 * attacker is blind and doesn't know if one of his attempts succeeded unless
1805 * he has a side channel to interfere success from.  A single connection setup
1806 * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets.
1807 * This many attempts are required for each one blind spoofed connection.  For
1808 * every additional spoofed connection he has to launch another N attempts.
1809 * Thus for a sustained rate 100 spoofed connections per second approximately
1810 * 1,800,000 packets per second would have to be sent.
1811 *
1812 * NB: The MAC function should be fast so that it doesn't become a CPU
1813 * exhaustion attack vector itself.
1814 *
1815 * References:
1816 *  RFC4987 TCP SYN Flooding Attacks and Common Mitigations
1817 *  SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996
1818 *   http://cr.yp.to/syncookies.html    (overview)
1819 *   http://cr.yp.to/syncookies/archive (details)
1820 *
1821 *
1822 * Schematic construction of a syncookie enabled Initial Sequence Number:
1823 *  0        1         2         3
1824 *  12345678901234567890123456789012
1825 * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP|
1826 *
1827 *  x 24 MAC (truncated)
1828 *  W  3 Send Window Scale index
1829 *  M  3 MSS index
1830 *  S  1 SACK permitted
1831 *  P  1 Odd/even secret
1832 */
1833
1834/*
1835 * Distribution and probability of certain MSS values.  Those in between are
1836 * rounded down to the next lower one.
1837 * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011]
1838 *                            .2%  .3%   5%    7%    7%    20%   15%   45%
1839 */
1840static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 };
1841
1842/*
1843 * Distribution and probability of certain WSCALE values.  We have to map the
1844 * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3
1845 * bits based on prevalence of certain values.  Where we don't have an exact
1846 * match for are rounded down to the next lower one letting us under-estimate
1847 * the true available window.  At the moment this would happen only for the
1848 * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer
1849 * and window size).  The absence of the WSCALE option (no scaling in either
1850 * direction) is encoded with index zero.
1851 * [WSCALE values histograms, Allman, 2012]
1852 *                            X 10 10 35  5  6 14 10%   by host
1853 *                            X 11  4  5  5 18 49  3%   by connections
1854 */
1855static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 };
1856
1857/*
1858 * Compute the MAC for the SYN cookie.  SIPHASH-2-4 is chosen for its speed
1859 * and good cryptographic properties.
1860 */
1861static uint32_t
1862syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags,
1863    uint8_t *secbits, uintptr_t secmod)
1864{
1865	SIPHASH_CTX ctx;
1866	uint32_t siphash[2];
1867
1868	SipHash24_Init(&ctx);
1869	SipHash_SetKey(&ctx, secbits);
1870	switch (inc->inc_flags & INC_ISIPV6) {
1871#ifdef INET
1872	case 0:
1873		SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr));
1874		SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr));
1875		break;
1876#endif
1877#ifdef INET6
1878	case INC_ISIPV6:
1879		SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr));
1880		SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr));
1881		break;
1882#endif
1883	}
1884	SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport));
1885	SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport));
1886	SipHash_Update(&ctx, &irs, sizeof(irs));
1887	SipHash_Update(&ctx, &flags, sizeof(flags));
1888	SipHash_Update(&ctx, &secmod, sizeof(secmod));
1889	SipHash_Final((u_int8_t *)&siphash, &ctx);
1890
1891	return (siphash[0] ^ siphash[1]);
1892}
1893
1894static tcp_seq
1895syncookie_generate(struct syncache_head *sch, struct syncache *sc)
1896{
1897	u_int i, secbit, wscale;
1898	uint32_t iss, hash;
1899	uint8_t *secbits;
1900	union syncookie cookie;
1901
1902	SCH_LOCK_ASSERT(sch);
1903
1904	cookie.cookie = 0;
1905
1906	/* Map our computed MSS into the 3-bit index. */
1907	for (i = sizeof(tcp_sc_msstab) / sizeof(*tcp_sc_msstab) - 1;
1908	     tcp_sc_msstab[i] > sc->sc_peer_mss && i > 0;
1909	     i--)
1910		;
1911	cookie.flags.mss_idx = i;
1912
1913	/*
1914	 * Map the send window scale into the 3-bit index but only if
1915	 * the wscale option was received.
1916	 */
1917	if (sc->sc_flags & SCF_WINSCALE) {
1918		wscale = sc->sc_requested_s_scale;
1919		for (i = sizeof(tcp_sc_wstab) / sizeof(*tcp_sc_wstab) - 1;
1920		     tcp_sc_wstab[i] > wscale && i > 0;
1921		     i--)
1922			;
1923		cookie.flags.wscale_idx = i;
1924	}
1925
1926	/* Can we do SACK? */
1927	if (sc->sc_flags & SCF_SACK)
1928		cookie.flags.sack_ok = 1;
1929
1930	/* Which of the two secrets to use. */
1931	secbit = sch->sch_sc->secret.oddeven & 0x1;
1932	cookie.flags.odd_even = secbit;
1933
1934	secbits = sch->sch_sc->secret.key[secbit];
1935	hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits,
1936	    (uintptr_t)sch);
1937
1938	/*
1939	 * Put the flags into the hash and XOR them to get better ISS number
1940	 * variance.  This doesn't enhance the cryptographic strength and is
1941	 * done to prevent the 8 cookie bits from showing up directly on the
1942	 * wire.
1943	 */
1944	iss = hash & ~0xff;
1945	iss |= cookie.cookie ^ (hash >> 24);
1946
1947	/* Randomize the timestamp. */
1948	if (sc->sc_flags & SCF_TIMESTAMP) {
1949		sc->sc_ts = arc4random();
1950		sc->sc_tsoff = sc->sc_ts - tcp_ts_getticks();
1951	}
1952
1953	TCPSTAT_INC(tcps_sc_sendcookie);
1954	return (iss);
1955}
1956
1957static struct syncache *
1958syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
1959    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
1960    struct socket *lso)
1961{
1962	uint32_t hash;
1963	uint8_t *secbits;
1964	tcp_seq ack, seq;
1965	int wnd, wscale = 0;
1966	union syncookie cookie;
1967
1968	SCH_LOCK_ASSERT(sch);
1969
1970	/*
1971	 * Pull information out of SYN-ACK/ACK and revert sequence number
1972	 * advances.
1973	 */
1974	ack = th->th_ack - 1;
1975	seq = th->th_seq - 1;
1976
1977	/*
1978	 * Unpack the flags containing enough information to restore the
1979	 * connection.
1980	 */
1981	cookie.cookie = (ack & 0xff) ^ (ack >> 24);
1982
1983	/* Which of the two secrets to use. */
1984	secbits = sch->sch_sc->secret.key[cookie.flags.odd_even];
1985
1986	hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch);
1987
1988	/* The recomputed hash matches the ACK if this was a genuine cookie. */
1989	if ((ack & ~0xff) != (hash & ~0xff))
1990		return (NULL);
1991
1992	/* Fill in the syncache values. */
1993	sc->sc_flags = 0;
1994	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1995	sc->sc_ipopts = NULL;
1996
1997	sc->sc_irs = seq;
1998	sc->sc_iss = ack;
1999
2000	switch (inc->inc_flags & INC_ISIPV6) {
2001#ifdef INET
2002	case 0:
2003		sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl;
2004		sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos;
2005		break;
2006#endif
2007#ifdef INET6
2008	case INC_ISIPV6:
2009		if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL)
2010			sc->sc_flowlabel = sc->sc_iss & IPV6_FLOWLABEL_MASK;
2011		break;
2012#endif
2013	}
2014
2015	sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx];
2016
2017	/* We can simply recompute receive window scale we sent earlier. */
2018	while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max)
2019		wscale++;
2020
2021	/* Only use wscale if it was enabled in the orignal SYN. */
2022	if (cookie.flags.wscale_idx > 0) {
2023		sc->sc_requested_r_scale = wscale;
2024		sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx];
2025		sc->sc_flags |= SCF_WINSCALE;
2026	}
2027
2028	wnd = sbspace(&lso->so_rcv);
2029	wnd = imax(wnd, 0);
2030	wnd = imin(wnd, TCP_MAXWIN);
2031	sc->sc_wnd = wnd;
2032
2033	if (cookie.flags.sack_ok)
2034		sc->sc_flags |= SCF_SACK;
2035
2036	if (to->to_flags & TOF_TS) {
2037		sc->sc_flags |= SCF_TIMESTAMP;
2038		sc->sc_tsreflect = to->to_tsval;
2039		sc->sc_ts = to->to_tsecr;
2040		sc->sc_tsoff = to->to_tsecr - tcp_ts_getticks();
2041	}
2042
2043	if (to->to_flags & TOF_SIGNATURE)
2044		sc->sc_flags |= SCF_SIGNATURE;
2045
2046	sc->sc_rxmits = 0;
2047
2048	TCPSTAT_INC(tcps_sc_recvcookie);
2049	return (sc);
2050}
2051
2052#ifdef INVARIANTS
2053static int
2054syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
2055    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2056    struct socket *lso)
2057{
2058	struct syncache scs, *scx;
2059	char *s;
2060
2061	bzero(&scs, sizeof(scs));
2062	scx = syncookie_lookup(inc, sch, &scs, th, to, lso);
2063
2064	if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL)
2065		return (0);
2066
2067	if (scx != NULL) {
2068		if (sc->sc_peer_mss != scx->sc_peer_mss)
2069			log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n",
2070			    s, __func__, sc->sc_peer_mss, scx->sc_peer_mss);
2071
2072		if (sc->sc_requested_r_scale != scx->sc_requested_r_scale)
2073			log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n",
2074			    s, __func__, sc->sc_requested_r_scale,
2075			    scx->sc_requested_r_scale);
2076
2077		if (sc->sc_requested_s_scale != scx->sc_requested_s_scale)
2078			log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n",
2079			    s, __func__, sc->sc_requested_s_scale,
2080			    scx->sc_requested_s_scale);
2081
2082		if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK))
2083			log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__);
2084	}
2085
2086	if (s != NULL)
2087		free(s, M_TCPLOG);
2088	return (0);
2089}
2090#endif /* INVARIANTS */
2091
2092static void
2093syncookie_reseed(void *arg)
2094{
2095	struct tcp_syncache *sc = arg;
2096	uint8_t *secbits;
2097	int secbit;
2098
2099	/*
2100	 * Reseeding the secret doesn't have to be protected by a lock.
2101	 * It only must be ensured that the new random values are visible
2102	 * to all CPUs in a SMP environment.  The atomic with release
2103	 * semantics ensures that.
2104	 */
2105	secbit = (sc->secret.oddeven & 0x1) ? 0 : 1;
2106	secbits = sc->secret.key[secbit];
2107	arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0);
2108	atomic_add_rel_int(&sc->secret.oddeven, 1);
2109
2110	/* Reschedule ourself. */
2111	callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz);
2112}
2113
2114/*
2115 * Returns the current number of syncache entries.  This number
2116 * will probably change before you get around to calling
2117 * syncache_pcblist.
2118 */
2119int
2120syncache_pcbcount(void)
2121{
2122	struct syncache_head *sch;
2123	int count, i;
2124
2125	for (count = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
2126		/* No need to lock for a read. */
2127		sch = &V_tcp_syncache.hashbase[i];
2128		count += sch->sch_length;
2129	}
2130	return count;
2131}
2132
2133/*
2134 * Exports the syncache entries to userland so that netstat can display
2135 * them alongside the other sockets.  This function is intended to be
2136 * called only from tcp_pcblist.
2137 *
2138 * Due to concurrency on an active system, the number of pcbs exported
2139 * may have no relation to max_pcbs.  max_pcbs merely indicates the
2140 * amount of space the caller allocated for this function to use.
2141 */
2142int
2143syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
2144{
2145	struct xtcpcb xt;
2146	struct syncache *sc;
2147	struct syncache_head *sch;
2148	int count, error, i;
2149
2150	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
2151		sch = &V_tcp_syncache.hashbase[i];
2152		SCH_LOCK(sch);
2153		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
2154			if (count >= max_pcbs) {
2155				SCH_UNLOCK(sch);
2156				goto exit;
2157			}
2158			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
2159				continue;
2160			bzero(&xt, sizeof(xt));
2161			xt.xt_len = sizeof(xt);
2162			if (sc->sc_inc.inc_flags & INC_ISIPV6)
2163				xt.xt_inp.inp_vflag = INP_IPV6;
2164			else
2165				xt.xt_inp.inp_vflag = INP_IPV4;
2166			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc, sizeof (struct in_conninfo));
2167			xt.xt_tp.t_inpcb = &xt.xt_inp;
2168			xt.xt_tp.t_state = TCPS_SYN_RECEIVED;
2169			xt.xt_socket.xso_protocol = IPPROTO_TCP;
2170			xt.xt_socket.xso_len = sizeof (struct xsocket);
2171			xt.xt_socket.so_type = SOCK_STREAM;
2172			xt.xt_socket.so_state = SS_ISCONNECTING;
2173			error = SYSCTL_OUT(req, &xt, sizeof xt);
2174			if (error) {
2175				SCH_UNLOCK(sch);
2176				goto exit;
2177			}
2178			count++;
2179		}
2180		SCH_UNLOCK(sch);
2181	}
2182exit:
2183	*pcbs_exported = count;
2184	return error;
2185}
2186