1/*-
2 * Copyright (c) 2007-2009
3 * 	Swinburne University of Technology, Melbourne, Australia.
4 * Copyright (c) 2009-2010, The FreeBSD Foundation
5 * All rights reserved.
6 *
7 * Portions of this software were developed at the Centre for Advanced
8 * Internet Architectures, Swinburne University of Technology, Melbourne,
9 * Australia by Lawrence Stewart under sponsorship from the FreeBSD Foundation.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33/******************************************************
34 * Statistical Information For TCP Research (SIFTR)
35 *
36 * A FreeBSD kernel module that adds very basic intrumentation to the
37 * TCP stack, allowing internal stats to be recorded to a log file
38 * for experimental, debugging and performance analysis purposes.
39 *
40 * SIFTR was first released in 2007 by James Healy and Lawrence Stewart whilst
41 * working on the NewTCP research project at Swinburne University of
42 * Technology's Centre for Advanced Internet Architectures, Melbourne,
43 * Australia, which was made possible in part by a grant from the Cisco
44 * University Research Program Fund at Community Foundation Silicon Valley.
45 * More details are available at:
46 *   http://caia.swin.edu.au/urp/newtcp/
47 *
48 * Work on SIFTR v1.2.x was sponsored by the FreeBSD Foundation as part of
49 * the "Enhancing the FreeBSD TCP Implementation" project 2008-2009.
50 * More details are available at:
51 *   http://www.freebsdfoundation.org/
52 *   http://caia.swin.edu.au/freebsd/etcp09/
53 *
54 * Lawrence Stewart is the current maintainer, and all contact regarding
55 * SIFTR should be directed to him via email: lastewart@swin.edu.au
56 *
57 * Initial release date: June 2007
58 * Most recent update: September 2010
59 ******************************************************/
60
61#include <sys/cdefs.h>
62__FBSDID("$FreeBSD$");
63
64#include <sys/param.h>
65#include <sys/alq.h>
66#include <sys/errno.h>
67#include <sys/hash.h>
68#include <sys/kernel.h>
69#include <sys/kthread.h>
70#include <sys/lock.h>
71#include <sys/mbuf.h>
72#include <sys/module.h>
73#include <sys/mutex.h>
74#include <sys/pcpu.h>
75#include <sys/proc.h>
76#include <sys/sbuf.h>
77#include <sys/smp.h>
78#include <sys/socket.h>
79#include <sys/socketvar.h>
80#include <sys/sysctl.h>
81#include <sys/unistd.h>
82
83#include <net/if.h>
84#include <net/pfil.h>
85
86#include <netinet/in.h>
87#include <netinet/in_pcb.h>
88#include <netinet/in_systm.h>
89#include <netinet/in_var.h>
90#include <netinet/ip.h>
91#include <netinet/tcp_var.h>
92
93#ifdef SIFTR_IPV6
94#include <netinet/ip6.h>
95#include <netinet6/in6_pcb.h>
96#endif /* SIFTR_IPV6 */
97
98#include <machine/in_cksum.h>
99
100/*
101 * Three digit version number refers to X.Y.Z where:
102 * X is the major version number
103 * Y is bumped to mark backwards incompatible changes
104 * Z is bumped to mark backwards compatible changes
105 */
106#define V_MAJOR		1
107#define V_BACKBREAK	2
108#define V_BACKCOMPAT	4
109#define MODVERSION	__CONCAT(V_MAJOR, __CONCAT(V_BACKBREAK, V_BACKCOMPAT))
110#define MODVERSION_STR	__XSTRING(V_MAJOR) "." __XSTRING(V_BACKBREAK) "." \
111    __XSTRING(V_BACKCOMPAT)
112
113#define HOOK 0
114#define UNHOOK 1
115#define SIFTR_EXPECTED_MAX_TCP_FLOWS 65536
116#define SYS_NAME "FreeBSD"
117#define PACKET_TAG_SIFTR 100
118#define PACKET_COOKIE_SIFTR 21749576
119#define SIFTR_LOG_FILE_MODE 0644
120#define SIFTR_DISABLE 0
121#define SIFTR_ENABLE 1
122
123/*
124 * Hard upper limit on the length of log messages. Bump this up if you add new
125 * data fields such that the line length could exceed the below value.
126 */
127#define MAX_LOG_MSG_LEN 200
128/* XXX: Make this a sysctl tunable. */
129#define SIFTR_ALQ_BUFLEN (1000*MAX_LOG_MSG_LEN)
130
131/*
132 * 1 byte for IP version
133 * IPv4: src/dst IP (4+4) + src/dst port (2+2) = 12 bytes
134 * IPv6: src/dst IP (16+16) + src/dst port (2+2) = 36 bytes
135 */
136#ifdef SIFTR_IPV6
137#define FLOW_KEY_LEN 37
138#else
139#define FLOW_KEY_LEN 13
140#endif
141
142#ifdef SIFTR_IPV6
143#define SIFTR_IPMODE 6
144#else
145#define SIFTR_IPMODE 4
146#endif
147
148/* useful macros */
149#define CAST_PTR_INT(X) (*((int*)(X)))
150
151#define UPPER_SHORT(X)	(((X) & 0xFFFF0000) >> 16)
152#define LOWER_SHORT(X)	((X) & 0x0000FFFF)
153
154#define FIRST_OCTET(X)	(((X) & 0xFF000000) >> 24)
155#define SECOND_OCTET(X)	(((X) & 0x00FF0000) >> 16)
156#define THIRD_OCTET(X)	(((X) & 0x0000FF00) >> 8)
157#define FOURTH_OCTET(X)	((X) & 0x000000FF)
158
159static MALLOC_DEFINE(M_SIFTR, "siftr", "dynamic memory used by SIFTR");
160static MALLOC_DEFINE(M_SIFTR_PKTNODE, "siftr_pktnode",
161    "SIFTR pkt_node struct");
162static MALLOC_DEFINE(M_SIFTR_HASHNODE, "siftr_hashnode",
163    "SIFTR flow_hash_node struct");
164
165/* Used as links in the pkt manager queue. */
166struct pkt_node {
167	/* Timestamp of pkt as noted in the pfil hook. */
168	struct timeval		tval;
169	/* Direction pkt is travelling; either PFIL_IN or PFIL_OUT. */
170	uint8_t			direction;
171	/* IP version pkt_node relates to; either INP_IPV4 or INP_IPV6. */
172	uint8_t			ipver;
173	/* Hash of the pkt which triggered the log message. */
174	uint32_t		hash;
175	/* Local/foreign IP address. */
176#ifdef SIFTR_IPV6
177	uint32_t		ip_laddr[4];
178	uint32_t		ip_faddr[4];
179#else
180	uint8_t			ip_laddr[4];
181	uint8_t			ip_faddr[4];
182#endif
183	/* Local TCP port. */
184	uint16_t		tcp_localport;
185	/* Foreign TCP port. */
186	uint16_t		tcp_foreignport;
187	/* Congestion Window (bytes). */
188	u_long			snd_cwnd;
189	/* Sending Window (bytes). */
190	u_long			snd_wnd;
191	/* Receive Window (bytes). */
192	u_long			rcv_wnd;
193	/* Unused (was: Bandwidth Controlled Window (bytes)). */
194	u_long			snd_bwnd;
195	/* Slow Start Threshold (bytes). */
196	u_long			snd_ssthresh;
197	/* Current state of the TCP FSM. */
198	int			conn_state;
199	/* Max Segment Size (bytes). */
200	u_int			max_seg_size;
201	/*
202	 * Smoothed RTT stored as found in the TCP control block
203	 * in units of (TCP_RTT_SCALE*hz).
204	 */
205	int			smoothed_rtt;
206	/* Is SACK enabled? */
207	u_char			sack_enabled;
208	/* Window scaling for snd window. */
209	u_char			snd_scale;
210	/* Window scaling for recv window. */
211	u_char			rcv_scale;
212	/* TCP control block flags. */
213	u_int			flags;
214	/* Retransmit timeout length. */
215	int			rxt_length;
216	/* Size of the TCP send buffer in bytes. */
217	u_int			snd_buf_hiwater;
218	/* Current num bytes in the send socket buffer. */
219	u_int			snd_buf_cc;
220	/* Size of the TCP receive buffer in bytes. */
221	u_int			rcv_buf_hiwater;
222	/* Current num bytes in the receive socket buffer. */
223	u_int			rcv_buf_cc;
224	/* Number of bytes inflight that we are waiting on ACKs for. */
225	u_int			sent_inflight_bytes;
226	/* Number of segments currently in the reassembly queue. */
227	int			t_segqlen;
228	/* Flowid for the connection. */
229	u_int			flowid;
230	/* Flow type for the connection. */
231	u_int			flowtype;
232	/* Link to next pkt_node in the list. */
233	STAILQ_ENTRY(pkt_node)	nodes;
234};
235
236struct flow_hash_node
237{
238	uint16_t counter;
239	uint8_t key[FLOW_KEY_LEN];
240	LIST_ENTRY(flow_hash_node) nodes;
241};
242
243struct siftr_stats
244{
245	/* # TCP pkts seen by the SIFTR PFIL hooks, including any skipped. */
246	uint64_t n_in;
247	uint64_t n_out;
248	/* # pkts skipped due to failed malloc calls. */
249	uint32_t nskip_in_malloc;
250	uint32_t nskip_out_malloc;
251	/* # pkts skipped due to failed mtx acquisition. */
252	uint32_t nskip_in_mtx;
253	uint32_t nskip_out_mtx;
254	/* # pkts skipped due to failed inpcb lookups. */
255	uint32_t nskip_in_inpcb;
256	uint32_t nskip_out_inpcb;
257	/* # pkts skipped due to failed tcpcb lookups. */
258	uint32_t nskip_in_tcpcb;
259	uint32_t nskip_out_tcpcb;
260	/* # pkts skipped due to stack reinjection. */
261	uint32_t nskip_in_dejavu;
262	uint32_t nskip_out_dejavu;
263};
264
265static DPCPU_DEFINE(struct siftr_stats, ss);
266
267static volatile unsigned int siftr_exit_pkt_manager_thread = 0;
268static unsigned int siftr_enabled = 0;
269static unsigned int siftr_pkts_per_log = 1;
270static unsigned int siftr_generate_hashes = 0;
271/* static unsigned int siftr_binary_log = 0; */
272static char siftr_logfile[PATH_MAX] = "/var/log/siftr.log";
273static char siftr_logfile_shadow[PATH_MAX] = "/var/log/siftr.log";
274static u_long siftr_hashmask;
275STAILQ_HEAD(pkthead, pkt_node) pkt_queue = STAILQ_HEAD_INITIALIZER(pkt_queue);
276LIST_HEAD(listhead, flow_hash_node) *counter_hash;
277static int wait_for_pkt;
278static struct alq *siftr_alq = NULL;
279static struct mtx siftr_pkt_queue_mtx;
280static struct mtx siftr_pkt_mgr_mtx;
281static struct thread *siftr_pkt_manager_thr = NULL;
282/*
283 * pfil.h defines PFIL_IN as 1 and PFIL_OUT as 2,
284 * which we use as an index into this array.
285 */
286static char direction[3] = {'\0', 'i','o'};
287
288/* Required function prototypes. */
289static int siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS);
290static int siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS);
291
292
293/* Declare the net.inet.siftr sysctl tree and populate it. */
294
295SYSCTL_DECL(_net_inet_siftr);
296
297SYSCTL_NODE(_net_inet, OID_AUTO, siftr, CTLFLAG_RW, NULL,
298    "siftr related settings");
299
300SYSCTL_PROC(_net_inet_siftr, OID_AUTO, enabled, CTLTYPE_UINT|CTLFLAG_RW,
301    &siftr_enabled, 0, &siftr_sysctl_enabled_handler, "IU",
302    "switch siftr module operations on/off");
303
304SYSCTL_PROC(_net_inet_siftr, OID_AUTO, logfile, CTLTYPE_STRING|CTLFLAG_RW,
305    &siftr_logfile_shadow, sizeof(siftr_logfile_shadow), &siftr_sysctl_logfile_name_handler,
306    "A", "file to save siftr log messages to");
307
308SYSCTL_UINT(_net_inet_siftr, OID_AUTO, ppl, CTLFLAG_RW,
309    &siftr_pkts_per_log, 1,
310    "number of packets between generating a log message");
311
312SYSCTL_UINT(_net_inet_siftr, OID_AUTO, genhashes, CTLFLAG_RW,
313    &siftr_generate_hashes, 0,
314    "enable packet hash generation");
315
316/* XXX: TODO
317SYSCTL_UINT(_net_inet_siftr, OID_AUTO, binary, CTLFLAG_RW,
318    &siftr_binary_log, 0,
319    "write log files in binary instead of ascii");
320*/
321
322
323/* Begin functions. */
324
325static void
326siftr_process_pkt(struct pkt_node * pkt_node)
327{
328	struct flow_hash_node *hash_node;
329	struct listhead *counter_list;
330	struct siftr_stats *ss;
331	struct ale *log_buf;
332	uint8_t key[FLOW_KEY_LEN];
333	uint8_t found_match, key_offset;
334
335	hash_node = NULL;
336	ss = DPCPU_PTR(ss);
337	found_match = 0;
338	key_offset = 1;
339
340	/*
341	 * Create the key that will be used to create a hash index
342	 * into our hash table. Our key consists of:
343	 * ipversion, localip, localport, foreignip, foreignport
344	 */
345	key[0] = pkt_node->ipver;
346	memcpy(key + key_offset, &pkt_node->ip_laddr,
347	    sizeof(pkt_node->ip_laddr));
348	key_offset += sizeof(pkt_node->ip_laddr);
349	memcpy(key + key_offset, &pkt_node->tcp_localport,
350	    sizeof(pkt_node->tcp_localport));
351	key_offset += sizeof(pkt_node->tcp_localport);
352	memcpy(key + key_offset, &pkt_node->ip_faddr,
353	    sizeof(pkt_node->ip_faddr));
354	key_offset += sizeof(pkt_node->ip_faddr);
355	memcpy(key + key_offset, &pkt_node->tcp_foreignport,
356	    sizeof(pkt_node->tcp_foreignport));
357
358	counter_list = counter_hash +
359	    (hash32_buf(key, sizeof(key), 0) & siftr_hashmask);
360
361	/*
362	 * If the list is not empty i.e. the hash index has
363	 * been used by another flow previously.
364	 */
365	if (LIST_FIRST(counter_list) != NULL) {
366		/*
367		 * Loop through the hash nodes in the list.
368		 * There should normally only be 1 hash node in the list,
369		 * except if there have been collisions at the hash index
370		 * computed by hash32_buf().
371		 */
372		LIST_FOREACH(hash_node, counter_list, nodes) {
373			/*
374			 * Check if the key for the pkt we are currently
375			 * processing is the same as the key stored in the
376			 * hash node we are currently processing.
377			 * If they are the same, then we've found the
378			 * hash node that stores the counter for the flow
379			 * the pkt belongs to.
380			 */
381			if (memcmp(hash_node->key, key, sizeof(key)) == 0) {
382				found_match = 1;
383				break;
384			}
385		}
386	}
387
388	/* If this flow hash hasn't been seen before or we have a collision. */
389	if (hash_node == NULL || !found_match) {
390		/* Create a new hash node to store the flow's counter. */
391		hash_node = malloc(sizeof(struct flow_hash_node),
392		    M_SIFTR_HASHNODE, M_WAITOK);
393
394		if (hash_node != NULL) {
395			/* Initialise our new hash node list entry. */
396			hash_node->counter = 0;
397			memcpy(hash_node->key, key, sizeof(key));
398			LIST_INSERT_HEAD(counter_list, hash_node, nodes);
399		} else {
400			/* Malloc failed. */
401			if (pkt_node->direction == PFIL_IN)
402				ss->nskip_in_malloc++;
403			else
404				ss->nskip_out_malloc++;
405
406			return;
407		}
408	} else if (siftr_pkts_per_log > 1) {
409		/*
410		 * Taking the remainder of the counter divided
411		 * by the current value of siftr_pkts_per_log
412		 * and storing that in counter provides a neat
413		 * way to modulate the frequency of log
414		 * messages being written to the log file.
415		 */
416		hash_node->counter = (hash_node->counter + 1) %
417		    siftr_pkts_per_log;
418
419		/*
420		 * If we have not seen enough packets since the last time
421		 * we wrote a log message for this connection, return.
422		 */
423		if (hash_node->counter > 0)
424			return;
425	}
426
427	log_buf = alq_getn(siftr_alq, MAX_LOG_MSG_LEN, ALQ_WAITOK);
428
429	if (log_buf == NULL)
430		return; /* Should only happen if the ALQ is shutting down. */
431
432#ifdef SIFTR_IPV6
433	pkt_node->ip_laddr[3] = ntohl(pkt_node->ip_laddr[3]);
434	pkt_node->ip_faddr[3] = ntohl(pkt_node->ip_faddr[3]);
435
436	if (pkt_node->ipver == INP_IPV6) { /* IPv6 packet */
437		pkt_node->ip_laddr[0] = ntohl(pkt_node->ip_laddr[0]);
438		pkt_node->ip_laddr[1] = ntohl(pkt_node->ip_laddr[1]);
439		pkt_node->ip_laddr[2] = ntohl(pkt_node->ip_laddr[2]);
440		pkt_node->ip_faddr[0] = ntohl(pkt_node->ip_faddr[0]);
441		pkt_node->ip_faddr[1] = ntohl(pkt_node->ip_faddr[1]);
442		pkt_node->ip_faddr[2] = ntohl(pkt_node->ip_faddr[2]);
443
444		/* Construct an IPv6 log message. */
445		log_buf->ae_bytesused = snprintf(log_buf->ae_data,
446		    MAX_LOG_MSG_LEN,
447		    "%c,0x%08x,%zd.%06ld,%x:%x:%x:%x:%x:%x:%x:%x,%u,%x:%x:%x:"
448		    "%x:%x:%x:%x:%x,%u,%ld,%ld,%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,"
449		    "%u,%d,%u,%u,%u,%u,%u,%u,%u,%u\n",
450		    direction[pkt_node->direction],
451		    pkt_node->hash,
452		    pkt_node->tval.tv_sec,
453		    pkt_node->tval.tv_usec,
454		    UPPER_SHORT(pkt_node->ip_laddr[0]),
455		    LOWER_SHORT(pkt_node->ip_laddr[0]),
456		    UPPER_SHORT(pkt_node->ip_laddr[1]),
457		    LOWER_SHORT(pkt_node->ip_laddr[1]),
458		    UPPER_SHORT(pkt_node->ip_laddr[2]),
459		    LOWER_SHORT(pkt_node->ip_laddr[2]),
460		    UPPER_SHORT(pkt_node->ip_laddr[3]),
461		    LOWER_SHORT(pkt_node->ip_laddr[3]),
462		    ntohs(pkt_node->tcp_localport),
463		    UPPER_SHORT(pkt_node->ip_faddr[0]),
464		    LOWER_SHORT(pkt_node->ip_faddr[0]),
465		    UPPER_SHORT(pkt_node->ip_faddr[1]),
466		    LOWER_SHORT(pkt_node->ip_faddr[1]),
467		    UPPER_SHORT(pkt_node->ip_faddr[2]),
468		    LOWER_SHORT(pkt_node->ip_faddr[2]),
469		    UPPER_SHORT(pkt_node->ip_faddr[3]),
470		    LOWER_SHORT(pkt_node->ip_faddr[3]),
471		    ntohs(pkt_node->tcp_foreignport),
472		    pkt_node->snd_ssthresh,
473		    pkt_node->snd_cwnd,
474		    pkt_node->snd_bwnd,
475		    pkt_node->snd_wnd,
476		    pkt_node->rcv_wnd,
477		    pkt_node->snd_scale,
478		    pkt_node->rcv_scale,
479		    pkt_node->conn_state,
480		    pkt_node->max_seg_size,
481		    pkt_node->smoothed_rtt,
482		    pkt_node->sack_enabled,
483		    pkt_node->flags,
484		    pkt_node->rxt_length,
485		    pkt_node->snd_buf_hiwater,
486		    pkt_node->snd_buf_cc,
487		    pkt_node->rcv_buf_hiwater,
488		    pkt_node->rcv_buf_cc,
489		    pkt_node->sent_inflight_bytes,
490		    pkt_node->t_segqlen,
491		    pkt_node->flowid,
492		    pkt_node->flowtype);
493	} else { /* IPv4 packet */
494		pkt_node->ip_laddr[0] = FIRST_OCTET(pkt_node->ip_laddr[3]);
495		pkt_node->ip_laddr[1] = SECOND_OCTET(pkt_node->ip_laddr[3]);
496		pkt_node->ip_laddr[2] = THIRD_OCTET(pkt_node->ip_laddr[3]);
497		pkt_node->ip_laddr[3] = FOURTH_OCTET(pkt_node->ip_laddr[3]);
498		pkt_node->ip_faddr[0] = FIRST_OCTET(pkt_node->ip_faddr[3]);
499		pkt_node->ip_faddr[1] = SECOND_OCTET(pkt_node->ip_faddr[3]);
500		pkt_node->ip_faddr[2] = THIRD_OCTET(pkt_node->ip_faddr[3]);
501		pkt_node->ip_faddr[3] = FOURTH_OCTET(pkt_node->ip_faddr[3]);
502#endif /* SIFTR_IPV6 */
503
504		/* Construct an IPv4 log message. */
505		log_buf->ae_bytesused = snprintf(log_buf->ae_data,
506		    MAX_LOG_MSG_LEN,
507		    "%c,0x%08x,%jd.%06ld,%u.%u.%u.%u,%u,%u.%u.%u.%u,%u,%ld,%ld,"
508		    "%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,%u,%d,%u,%u,%u,%u,%u,%u,%u,%u\n",
509		    direction[pkt_node->direction],
510		    pkt_node->hash,
511		    (intmax_t)pkt_node->tval.tv_sec,
512		    pkt_node->tval.tv_usec,
513		    pkt_node->ip_laddr[0],
514		    pkt_node->ip_laddr[1],
515		    pkt_node->ip_laddr[2],
516		    pkt_node->ip_laddr[3],
517		    ntohs(pkt_node->tcp_localport),
518		    pkt_node->ip_faddr[0],
519		    pkt_node->ip_faddr[1],
520		    pkt_node->ip_faddr[2],
521		    pkt_node->ip_faddr[3],
522		    ntohs(pkt_node->tcp_foreignport),
523		    pkt_node->snd_ssthresh,
524		    pkt_node->snd_cwnd,
525		    pkt_node->snd_bwnd,
526		    pkt_node->snd_wnd,
527		    pkt_node->rcv_wnd,
528		    pkt_node->snd_scale,
529		    pkt_node->rcv_scale,
530		    pkt_node->conn_state,
531		    pkt_node->max_seg_size,
532		    pkt_node->smoothed_rtt,
533		    pkt_node->sack_enabled,
534		    pkt_node->flags,
535		    pkt_node->rxt_length,
536		    pkt_node->snd_buf_hiwater,
537		    pkt_node->snd_buf_cc,
538		    pkt_node->rcv_buf_hiwater,
539		    pkt_node->rcv_buf_cc,
540		    pkt_node->sent_inflight_bytes,
541		    pkt_node->t_segqlen,
542		    pkt_node->flowid,
543		    pkt_node->flowtype);
544#ifdef SIFTR_IPV6
545	}
546#endif
547
548	alq_post_flags(siftr_alq, log_buf, 0);
549}
550
551
552static void
553siftr_pkt_manager_thread(void *arg)
554{
555	STAILQ_HEAD(pkthead, pkt_node) tmp_pkt_queue =
556	    STAILQ_HEAD_INITIALIZER(tmp_pkt_queue);
557	struct pkt_node *pkt_node, *pkt_node_temp;
558	uint8_t draining;
559
560	draining = 2;
561
562	mtx_lock(&siftr_pkt_mgr_mtx);
563
564	/* draining == 0 when queue has been flushed and it's safe to exit. */
565	while (draining) {
566		/*
567		 * Sleep until we are signalled to wake because thread has
568		 * been told to exit or until 1 tick has passed.
569		 */
570		mtx_sleep(&wait_for_pkt, &siftr_pkt_mgr_mtx, PWAIT, "pktwait",
571		    1);
572
573		/* Gain exclusive access to the pkt_node queue. */
574		mtx_lock(&siftr_pkt_queue_mtx);
575
576		/*
577		 * Move pkt_queue to tmp_pkt_queue, which leaves
578		 * pkt_queue empty and ready to receive more pkt_nodes.
579		 */
580		STAILQ_CONCAT(&tmp_pkt_queue, &pkt_queue);
581
582		/*
583		 * We've finished making changes to the list. Unlock it
584		 * so the pfil hooks can continue queuing pkt_nodes.
585		 */
586		mtx_unlock(&siftr_pkt_queue_mtx);
587
588		/*
589		 * We can't hold a mutex whilst calling siftr_process_pkt
590		 * because ALQ might sleep waiting for buffer space.
591		 */
592		mtx_unlock(&siftr_pkt_mgr_mtx);
593
594		/* Flush all pkt_nodes to the log file. */
595		STAILQ_FOREACH_SAFE(pkt_node, &tmp_pkt_queue, nodes,
596		    pkt_node_temp) {
597			siftr_process_pkt(pkt_node);
598			STAILQ_REMOVE_HEAD(&tmp_pkt_queue, nodes);
599			free(pkt_node, M_SIFTR_PKTNODE);
600		}
601
602		KASSERT(STAILQ_EMPTY(&tmp_pkt_queue),
603		    ("SIFTR tmp_pkt_queue not empty after flush"));
604
605		mtx_lock(&siftr_pkt_mgr_mtx);
606
607		/*
608		 * If siftr_exit_pkt_manager_thread gets set during the window
609		 * where we are draining the tmp_pkt_queue above, there might
610		 * still be pkts in pkt_queue that need to be drained.
611		 * Allow one further iteration to occur after
612		 * siftr_exit_pkt_manager_thread has been set to ensure
613		 * pkt_queue is completely empty before we kill the thread.
614		 *
615		 * siftr_exit_pkt_manager_thread is set only after the pfil
616		 * hooks have been removed, so only 1 extra iteration
617		 * is needed to drain the queue.
618		 */
619		if (siftr_exit_pkt_manager_thread)
620			draining--;
621	}
622
623	mtx_unlock(&siftr_pkt_mgr_mtx);
624
625	/* Calls wakeup on this thread's struct thread ptr. */
626	kthread_exit();
627}
628
629
630static uint32_t
631hash_pkt(struct mbuf *m, uint32_t offset)
632{
633	uint32_t hash;
634
635	hash = 0;
636
637	while (m != NULL && offset > m->m_len) {
638		/*
639		 * The IP packet payload does not start in this mbuf, so
640		 * need to figure out which mbuf it starts in and what offset
641		 * into the mbuf's data region the payload starts at.
642		 */
643		offset -= m->m_len;
644		m = m->m_next;
645	}
646
647	while (m != NULL) {
648		/* Ensure there is data in the mbuf */
649		if ((m->m_len - offset) > 0)
650			hash = hash32_buf(m->m_data + offset,
651			    m->m_len - offset, hash);
652
653		m = m->m_next;
654		offset = 0;
655        }
656
657	return (hash);
658}
659
660
661/*
662 * Check if a given mbuf has the SIFTR mbuf tag. If it does, log the fact that
663 * it's a reinjected packet and return. If it doesn't, tag the mbuf and return.
664 * Return value >0 means the caller should skip processing this mbuf.
665 */
666static inline int
667siftr_chkreinject(struct mbuf *m, int dir, struct siftr_stats *ss)
668{
669	if (m_tag_locate(m, PACKET_COOKIE_SIFTR, PACKET_TAG_SIFTR, NULL)
670	    != NULL) {
671		if (dir == PFIL_IN)
672			ss->nskip_in_dejavu++;
673		else
674			ss->nskip_out_dejavu++;
675
676		return (1);
677	} else {
678		struct m_tag *tag = m_tag_alloc(PACKET_COOKIE_SIFTR,
679		    PACKET_TAG_SIFTR, 0, M_NOWAIT);
680		if (tag == NULL) {
681			if (dir == PFIL_IN)
682				ss->nskip_in_malloc++;
683			else
684				ss->nskip_out_malloc++;
685
686			return (1);
687		}
688
689		m_tag_prepend(m, tag);
690	}
691
692	return (0);
693}
694
695
696/*
697 * Look up an inpcb for a packet. Return the inpcb pointer if found, or NULL
698 * otherwise.
699 */
700static inline struct inpcb *
701siftr_findinpcb(int ipver, struct ip *ip, struct mbuf *m, uint16_t sport,
702    uint16_t dport, int dir, struct siftr_stats *ss)
703{
704	struct inpcb *inp;
705
706	/* We need the tcbinfo lock. */
707	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
708
709	if (dir == PFIL_IN)
710		inp = (ipver == INP_IPV4 ?
711		    in_pcblookup(&V_tcbinfo, ip->ip_src, sport, ip->ip_dst,
712		    dport, INPLOOKUP_RLOCKPCB, m->m_pkthdr.rcvif)
713		    :
714#ifdef SIFTR_IPV6
715		    in6_pcblookup(&V_tcbinfo,
716		    &((struct ip6_hdr *)ip)->ip6_src, sport,
717		    &((struct ip6_hdr *)ip)->ip6_dst, dport, INPLOOKUP_RLOCKPCB,
718		    m->m_pkthdr.rcvif)
719#else
720		    NULL
721#endif
722		    );
723
724	else
725		inp = (ipver == INP_IPV4 ?
726		    in_pcblookup(&V_tcbinfo, ip->ip_dst, dport, ip->ip_src,
727		    sport, INPLOOKUP_RLOCKPCB, m->m_pkthdr.rcvif)
728		    :
729#ifdef SIFTR_IPV6
730		    in6_pcblookup(&V_tcbinfo,
731		    &((struct ip6_hdr *)ip)->ip6_dst, dport,
732		    &((struct ip6_hdr *)ip)->ip6_src, sport, INPLOOKUP_RLOCKPCB,
733		    m->m_pkthdr.rcvif)
734#else
735		    NULL
736#endif
737		    );
738
739	/* If we can't find the inpcb, bail. */
740	if (inp == NULL) {
741		if (dir == PFIL_IN)
742			ss->nskip_in_inpcb++;
743		else
744			ss->nskip_out_inpcb++;
745	}
746
747	return (inp);
748}
749
750
751static inline void
752siftr_siftdata(struct pkt_node *pn, struct inpcb *inp, struct tcpcb *tp,
753    int ipver, int dir, int inp_locally_locked)
754{
755#ifdef SIFTR_IPV6
756	if (ipver == INP_IPV4) {
757		pn->ip_laddr[3] = inp->inp_laddr.s_addr;
758		pn->ip_faddr[3] = inp->inp_faddr.s_addr;
759#else
760		*((uint32_t *)pn->ip_laddr) = inp->inp_laddr.s_addr;
761		*((uint32_t *)pn->ip_faddr) = inp->inp_faddr.s_addr;
762#endif
763#ifdef SIFTR_IPV6
764	} else {
765		pn->ip_laddr[0] = inp->in6p_laddr.s6_addr32[0];
766		pn->ip_laddr[1] = inp->in6p_laddr.s6_addr32[1];
767		pn->ip_laddr[2] = inp->in6p_laddr.s6_addr32[2];
768		pn->ip_laddr[3] = inp->in6p_laddr.s6_addr32[3];
769		pn->ip_faddr[0] = inp->in6p_faddr.s6_addr32[0];
770		pn->ip_faddr[1] = inp->in6p_faddr.s6_addr32[1];
771		pn->ip_faddr[2] = inp->in6p_faddr.s6_addr32[2];
772		pn->ip_faddr[3] = inp->in6p_faddr.s6_addr32[3];
773	}
774#endif
775	pn->tcp_localport = inp->inp_lport;
776	pn->tcp_foreignport = inp->inp_fport;
777	pn->snd_cwnd = tp->snd_cwnd;
778	pn->snd_wnd = tp->snd_wnd;
779	pn->rcv_wnd = tp->rcv_wnd;
780	pn->snd_bwnd = 0;		/* Unused, kept for compat. */
781	pn->snd_ssthresh = tp->snd_ssthresh;
782	pn->snd_scale = tp->snd_scale;
783	pn->rcv_scale = tp->rcv_scale;
784	pn->conn_state = tp->t_state;
785	pn->max_seg_size = tp->t_maxseg;
786	pn->smoothed_rtt = tp->t_srtt;
787	pn->sack_enabled = (tp->t_flags & TF_SACK_PERMIT) != 0;
788	pn->flags = tp->t_flags;
789	pn->rxt_length = tp->t_rxtcur;
790	pn->snd_buf_hiwater = inp->inp_socket->so_snd.sb_hiwat;
791	pn->snd_buf_cc = inp->inp_socket->so_snd.sb_cc;
792	pn->rcv_buf_hiwater = inp->inp_socket->so_rcv.sb_hiwat;
793	pn->rcv_buf_cc = inp->inp_socket->so_rcv.sb_cc;
794	pn->sent_inflight_bytes = tp->snd_max - tp->snd_una;
795	pn->t_segqlen = tp->t_segqlen;
796	pn->flowid = inp->inp_flowid;
797	pn->flowtype = inp->inp_flowtype;
798
799	/* We've finished accessing the tcb so release the lock. */
800	if (inp_locally_locked)
801		INP_RUNLOCK(inp);
802
803	pn->ipver = ipver;
804	pn->direction = dir;
805
806	/*
807	 * Significantly more accurate than using getmicrotime(), but slower!
808	 * Gives true microsecond resolution at the expense of a hit to
809	 * maximum pps throughput processing when SIFTR is loaded and enabled.
810	 */
811	microtime(&pn->tval);
812}
813
814
815/*
816 * pfil hook that is called for each IPv4 packet making its way through the
817 * stack in either direction.
818 * The pfil subsystem holds a non-sleepable mutex somewhere when
819 * calling our hook function, so we can't sleep at all.
820 * It's very important to use the M_NOWAIT flag with all function calls
821 * that support it so that they won't sleep, otherwise you get a panic.
822 */
823static int
824siftr_chkpkt(void *arg, struct mbuf **m, struct ifnet *ifp, int dir,
825    struct inpcb *inp)
826{
827	struct pkt_node *pn;
828	struct ip *ip;
829	struct tcphdr *th;
830	struct tcpcb *tp;
831	struct siftr_stats *ss;
832	unsigned int ip_hl;
833	int inp_locally_locked;
834
835	inp_locally_locked = 0;
836	ss = DPCPU_PTR(ss);
837
838	/*
839	 * m_pullup is not required here because ip_{input|output}
840	 * already do the heavy lifting for us.
841	 */
842
843	ip = mtod(*m, struct ip *);
844
845	/* Only continue processing if the packet is TCP. */
846	if (ip->ip_p != IPPROTO_TCP)
847		goto ret;
848
849	/*
850	 * If a kernel subsystem reinjects packets into the stack, our pfil
851	 * hook will be called multiple times for the same packet.
852	 * Make sure we only process unique packets.
853	 */
854	if (siftr_chkreinject(*m, dir, ss))
855		goto ret;
856
857	if (dir == PFIL_IN)
858		ss->n_in++;
859	else
860		ss->n_out++;
861
862	/*
863	 * Create a tcphdr struct starting at the correct offset
864	 * in the IP packet. ip->ip_hl gives the ip header length
865	 * in 4-byte words, so multiply it to get the size in bytes.
866	 */
867	ip_hl = (ip->ip_hl << 2);
868	th = (struct tcphdr *)((caddr_t)ip + ip_hl);
869
870	/*
871	 * If the pfil hooks don't provide a pointer to the
872	 * inpcb, we need to find it ourselves and lock it.
873	 */
874	if (!inp) {
875		/* Find the corresponding inpcb for this pkt. */
876		inp = siftr_findinpcb(INP_IPV4, ip, *m, th->th_sport,
877		    th->th_dport, dir, ss);
878
879		if (inp == NULL)
880			goto ret;
881		else
882			inp_locally_locked = 1;
883	}
884
885	INP_LOCK_ASSERT(inp);
886
887	/* Find the TCP control block that corresponds with this packet */
888	tp = intotcpcb(inp);
889
890	/*
891	 * If we can't find the TCP control block (happens occasionaly for a
892	 * packet sent during the shutdown phase of a TCP connection),
893	 * or we're in the timewait state, bail
894	 */
895	if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
896		if (dir == PFIL_IN)
897			ss->nskip_in_tcpcb++;
898		else
899			ss->nskip_out_tcpcb++;
900
901		goto inp_unlock;
902	}
903
904	pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
905
906	if (pn == NULL) {
907		if (dir == PFIL_IN)
908			ss->nskip_in_malloc++;
909		else
910			ss->nskip_out_malloc++;
911
912		goto inp_unlock;
913	}
914
915	siftr_siftdata(pn, inp, tp, INP_IPV4, dir, inp_locally_locked);
916
917	if (siftr_generate_hashes) {
918		if ((*m)->m_pkthdr.csum_flags & CSUM_TCP) {
919			/*
920			 * For outbound packets, the TCP checksum isn't
921			 * calculated yet. This is a problem for our packet
922			 * hashing as the receiver will calc a different hash
923			 * to ours if we don't include the correct TCP checksum
924			 * in the bytes being hashed. To work around this
925			 * problem, we manually calc the TCP checksum here in
926			 * software. We unset the CSUM_TCP flag so the lower
927			 * layers don't recalc it.
928			 */
929			(*m)->m_pkthdr.csum_flags &= ~CSUM_TCP;
930
931			/*
932			 * Calculate the TCP checksum in software and assign
933			 * to correct TCP header field, which will follow the
934			 * packet mbuf down the stack. The trick here is that
935			 * tcp_output() sets th->th_sum to the checksum of the
936			 * pseudo header for us already. Because of the nature
937			 * of the checksumming algorithm, we can sum over the
938			 * entire IP payload (i.e. TCP header and data), which
939			 * will include the already calculated pseduo header
940			 * checksum, thus giving us the complete TCP checksum.
941			 *
942			 * To put it in simple terms, if checksum(1,2,3,4)=10,
943			 * then checksum(1,2,3,4,5) == checksum(10,5).
944			 * This property is what allows us to "cheat" and
945			 * checksum only the IP payload which has the TCP
946			 * th_sum field populated with the pseudo header's
947			 * checksum, and not need to futz around checksumming
948			 * pseudo header bytes and TCP header/data in one hit.
949			 * Refer to RFC 1071 for more info.
950			 *
951			 * NB: in_cksum_skip(struct mbuf *m, int len, int skip)
952			 * in_cksum_skip 2nd argument is NOT the number of
953			 * bytes to read from the mbuf at "skip" bytes offset
954			 * from the start of the mbuf (very counter intuitive!).
955			 * The number of bytes to read is calculated internally
956			 * by the function as len-skip i.e. to sum over the IP
957			 * payload (TCP header + data) bytes, it is INCORRECT
958			 * to call the function like this:
959			 * in_cksum_skip(at, ip->ip_len - offset, offset)
960			 * Rather, it should be called like this:
961			 * in_cksum_skip(at, ip->ip_len, offset)
962			 * which means read "ip->ip_len - offset" bytes from
963			 * the mbuf cluster "at" at offset "offset" bytes from
964			 * the beginning of the "at" mbuf's data pointer.
965			 */
966			th->th_sum = in_cksum_skip(*m, ntohs(ip->ip_len),
967			    ip_hl);
968		}
969
970		/*
971		 * XXX: Having to calculate the checksum in software and then
972		 * hash over all bytes is really inefficient. Would be nice to
973		 * find a way to create the hash and checksum in the same pass
974		 * over the bytes.
975		 */
976		pn->hash = hash_pkt(*m, ip_hl);
977	}
978
979	mtx_lock(&siftr_pkt_queue_mtx);
980	STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
981	mtx_unlock(&siftr_pkt_queue_mtx);
982	goto ret;
983
984inp_unlock:
985	if (inp_locally_locked)
986		INP_RUNLOCK(inp);
987
988ret:
989	/* Returning 0 ensures pfil will not discard the pkt */
990	return (0);
991}
992
993
994#ifdef SIFTR_IPV6
995static int
996siftr_chkpkt6(void *arg, struct mbuf **m, struct ifnet *ifp, int dir,
997    struct inpcb *inp)
998{
999	struct pkt_node *pn;
1000	struct ip6_hdr *ip6;
1001	struct tcphdr *th;
1002	struct tcpcb *tp;
1003	struct siftr_stats *ss;
1004	unsigned int ip6_hl;
1005	int inp_locally_locked;
1006
1007	inp_locally_locked = 0;
1008	ss = DPCPU_PTR(ss);
1009
1010	/*
1011	 * m_pullup is not required here because ip6_{input|output}
1012	 * already do the heavy lifting for us.
1013	 */
1014
1015	ip6 = mtod(*m, struct ip6_hdr *);
1016
1017	/*
1018	 * Only continue processing if the packet is TCP
1019	 * XXX: We should follow the next header fields
1020	 * as shown on Pg 6 RFC 2460, but right now we'll
1021	 * only check pkts that have no extension headers.
1022	 */
1023	if (ip6->ip6_nxt != IPPROTO_TCP)
1024		goto ret6;
1025
1026	/*
1027	 * If a kernel subsystem reinjects packets into the stack, our pfil
1028	 * hook will be called multiple times for the same packet.
1029	 * Make sure we only process unique packets.
1030	 */
1031	if (siftr_chkreinject(*m, dir, ss))
1032		goto ret6;
1033
1034	if (dir == PFIL_IN)
1035		ss->n_in++;
1036	else
1037		ss->n_out++;
1038
1039	ip6_hl = sizeof(struct ip6_hdr);
1040
1041	/*
1042	 * Create a tcphdr struct starting at the correct offset
1043	 * in the ipv6 packet. ip->ip_hl gives the ip header length
1044	 * in 4-byte words, so multiply it to get the size in bytes.
1045	 */
1046	th = (struct tcphdr *)((caddr_t)ip6 + ip6_hl);
1047
1048	/*
1049	 * For inbound packets, the pfil hooks don't provide a pointer to the
1050	 * inpcb, so we need to find it ourselves and lock it.
1051	 */
1052	if (!inp) {
1053		/* Find the corresponding inpcb for this pkt. */
1054		inp = siftr_findinpcb(INP_IPV6, (struct ip *)ip6, *m,
1055		    th->th_sport, th->th_dport, dir, ss);
1056
1057		if (inp == NULL)
1058			goto ret6;
1059		else
1060			inp_locally_locked = 1;
1061	}
1062
1063	/* Find the TCP control block that corresponds with this packet. */
1064	tp = intotcpcb(inp);
1065
1066	/*
1067	 * If we can't find the TCP control block (happens occasionaly for a
1068	 * packet sent during the shutdown phase of a TCP connection),
1069	 * or we're in the timewait state, bail.
1070	 */
1071	if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
1072		if (dir == PFIL_IN)
1073			ss->nskip_in_tcpcb++;
1074		else
1075			ss->nskip_out_tcpcb++;
1076
1077		goto inp_unlock6;
1078	}
1079
1080	pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
1081
1082	if (pn == NULL) {
1083		if (dir == PFIL_IN)
1084			ss->nskip_in_malloc++;
1085		else
1086			ss->nskip_out_malloc++;
1087
1088		goto inp_unlock6;
1089	}
1090
1091	siftr_siftdata(pn, inp, tp, INP_IPV6, dir, inp_locally_locked);
1092
1093	/* XXX: Figure out how to generate hashes for IPv6 packets. */
1094
1095	mtx_lock(&siftr_pkt_queue_mtx);
1096	STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
1097	mtx_unlock(&siftr_pkt_queue_mtx);
1098	goto ret6;
1099
1100inp_unlock6:
1101	if (inp_locally_locked)
1102		INP_RUNLOCK(inp);
1103
1104ret6:
1105	/* Returning 0 ensures pfil will not discard the pkt. */
1106	return (0);
1107}
1108#endif /* #ifdef SIFTR_IPV6 */
1109
1110
1111static int
1112siftr_pfil(int action)
1113{
1114	struct pfil_head *pfh_inet;
1115#ifdef SIFTR_IPV6
1116	struct pfil_head *pfh_inet6;
1117#endif
1118	VNET_ITERATOR_DECL(vnet_iter);
1119
1120	VNET_LIST_RLOCK();
1121	VNET_FOREACH(vnet_iter) {
1122		CURVNET_SET(vnet_iter);
1123		pfh_inet = pfil_head_get(PFIL_TYPE_AF, AF_INET);
1124#ifdef SIFTR_IPV6
1125		pfh_inet6 = pfil_head_get(PFIL_TYPE_AF, AF_INET6);
1126#endif
1127
1128		if (action == HOOK) {
1129			pfil_add_hook(siftr_chkpkt, NULL,
1130			    PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet);
1131#ifdef SIFTR_IPV6
1132			pfil_add_hook(siftr_chkpkt6, NULL,
1133			    PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet6);
1134#endif
1135		} else if (action == UNHOOK) {
1136			pfil_remove_hook(siftr_chkpkt, NULL,
1137			    PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet);
1138#ifdef SIFTR_IPV6
1139			pfil_remove_hook(siftr_chkpkt6, NULL,
1140			    PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet6);
1141#endif
1142		}
1143		CURVNET_RESTORE();
1144	}
1145	VNET_LIST_RUNLOCK();
1146
1147	return (0);
1148}
1149
1150
1151static int
1152siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS)
1153{
1154	struct alq *new_alq;
1155	int error;
1156
1157	error = sysctl_handle_string(oidp, arg1, arg2, req);
1158
1159	/* Check for error or same filename */
1160	if (error != 0 || req->newptr == NULL ||
1161	    strncmp(siftr_logfile, arg1, arg2) == 0)
1162		goto done;
1163
1164	/* Filname changed */
1165	error = alq_open(&new_alq, arg1, curthread->td_ucred,
1166	    SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
1167	if (error != 0)
1168		goto done;
1169
1170	/*
1171	 * If disabled, siftr_alq == NULL so we simply close
1172	 * the alq as we've proved it can be opened.
1173	 * If enabled, close the existing alq and switch the old
1174	 * for the new.
1175	 */
1176	if (siftr_alq == NULL) {
1177		alq_close(new_alq);
1178	} else {
1179		alq_close(siftr_alq);
1180		siftr_alq = new_alq;
1181	}
1182
1183	/* Update filename upon success */
1184	strlcpy(siftr_logfile, arg1, arg2);
1185done:
1186	return (error);
1187}
1188
1189static int
1190siftr_manage_ops(uint8_t action)
1191{
1192	struct siftr_stats totalss;
1193	struct timeval tval;
1194	struct flow_hash_node *counter, *tmp_counter;
1195	struct sbuf *s;
1196	int i, key_index, ret, error;
1197	uint32_t bytes_to_write, total_skipped_pkts;
1198	uint16_t lport, fport;
1199	uint8_t *key, ipver;
1200
1201#ifdef SIFTR_IPV6
1202	uint32_t laddr[4];
1203	uint32_t faddr[4];
1204#else
1205	uint8_t laddr[4];
1206	uint8_t faddr[4];
1207#endif
1208
1209	error = 0;
1210	total_skipped_pkts = 0;
1211
1212	/* Init an autosizing sbuf that initially holds 200 chars. */
1213	if ((s = sbuf_new(NULL, NULL, 200, SBUF_AUTOEXTEND)) == NULL)
1214		return (-1);
1215
1216	if (action == SIFTR_ENABLE) {
1217		/*
1218		 * Create our alq
1219		 * XXX: We should abort if alq_open fails!
1220		 */
1221		alq_open(&siftr_alq, siftr_logfile, curthread->td_ucred,
1222		    SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
1223
1224		STAILQ_INIT(&pkt_queue);
1225
1226		DPCPU_ZERO(ss);
1227
1228		siftr_exit_pkt_manager_thread = 0;
1229
1230		ret = kthread_add(&siftr_pkt_manager_thread, NULL, NULL,
1231		    &siftr_pkt_manager_thr, RFNOWAIT, 0,
1232		    "siftr_pkt_manager_thr");
1233
1234		siftr_pfil(HOOK);
1235
1236		microtime(&tval);
1237
1238		sbuf_printf(s,
1239		    "enable_time_secs=%jd\tenable_time_usecs=%06ld\t"
1240		    "siftrver=%s\thz=%u\ttcp_rtt_scale=%u\tsysname=%s\t"
1241		    "sysver=%u\tipmode=%u\n",
1242		    (intmax_t)tval.tv_sec, tval.tv_usec, MODVERSION_STR, hz,
1243		    TCP_RTT_SCALE, SYS_NAME, __FreeBSD_version, SIFTR_IPMODE);
1244
1245		sbuf_finish(s);
1246		alq_writen(siftr_alq, sbuf_data(s), sbuf_len(s), ALQ_WAITOK);
1247
1248	} else if (action == SIFTR_DISABLE && siftr_pkt_manager_thr != NULL) {
1249		/*
1250		 * Remove the pfil hook functions. All threads currently in
1251		 * the hook functions are allowed to exit before siftr_pfil()
1252		 * returns.
1253		 */
1254		siftr_pfil(UNHOOK);
1255
1256		/* This will block until the pkt manager thread unlocks it. */
1257		mtx_lock(&siftr_pkt_mgr_mtx);
1258
1259		/* Tell the pkt manager thread that it should exit now. */
1260		siftr_exit_pkt_manager_thread = 1;
1261
1262		/*
1263		 * Wake the pkt_manager thread so it realises that
1264		 * siftr_exit_pkt_manager_thread == 1 and exits gracefully.
1265		 * The wakeup won't be delivered until we unlock
1266		 * siftr_pkt_mgr_mtx so this isn't racy.
1267		 */
1268		wakeup(&wait_for_pkt);
1269
1270		/* Wait for the pkt_manager thread to exit. */
1271		mtx_sleep(siftr_pkt_manager_thr, &siftr_pkt_mgr_mtx, PWAIT,
1272		    "thrwait", 0);
1273
1274		siftr_pkt_manager_thr = NULL;
1275		mtx_unlock(&siftr_pkt_mgr_mtx);
1276
1277		totalss.n_in = DPCPU_VARSUM(ss, n_in);
1278		totalss.n_out = DPCPU_VARSUM(ss, n_out);
1279		totalss.nskip_in_malloc = DPCPU_VARSUM(ss, nskip_in_malloc);
1280		totalss.nskip_out_malloc = DPCPU_VARSUM(ss, nskip_out_malloc);
1281		totalss.nskip_in_mtx = DPCPU_VARSUM(ss, nskip_in_mtx);
1282		totalss.nskip_out_mtx = DPCPU_VARSUM(ss, nskip_out_mtx);
1283		totalss.nskip_in_tcpcb = DPCPU_VARSUM(ss, nskip_in_tcpcb);
1284		totalss.nskip_out_tcpcb = DPCPU_VARSUM(ss, nskip_out_tcpcb);
1285		totalss.nskip_in_inpcb = DPCPU_VARSUM(ss, nskip_in_inpcb);
1286		totalss.nskip_out_inpcb = DPCPU_VARSUM(ss, nskip_out_inpcb);
1287
1288		total_skipped_pkts = totalss.nskip_in_malloc +
1289		    totalss.nskip_out_malloc + totalss.nskip_in_mtx +
1290		    totalss.nskip_out_mtx + totalss.nskip_in_tcpcb +
1291		    totalss.nskip_out_tcpcb + totalss.nskip_in_inpcb +
1292		    totalss.nskip_out_inpcb;
1293
1294		microtime(&tval);
1295
1296		sbuf_printf(s,
1297		    "disable_time_secs=%jd\tdisable_time_usecs=%06ld\t"
1298		    "num_inbound_tcp_pkts=%ju\tnum_outbound_tcp_pkts=%ju\t"
1299		    "total_tcp_pkts=%ju\tnum_inbound_skipped_pkts_malloc=%u\t"
1300		    "num_outbound_skipped_pkts_malloc=%u\t"
1301		    "num_inbound_skipped_pkts_mtx=%u\t"
1302		    "num_outbound_skipped_pkts_mtx=%u\t"
1303		    "num_inbound_skipped_pkts_tcpcb=%u\t"
1304		    "num_outbound_skipped_pkts_tcpcb=%u\t"
1305		    "num_inbound_skipped_pkts_inpcb=%u\t"
1306		    "num_outbound_skipped_pkts_inpcb=%u\t"
1307		    "total_skipped_tcp_pkts=%u\tflow_list=",
1308		    (intmax_t)tval.tv_sec,
1309		    tval.tv_usec,
1310		    (uintmax_t)totalss.n_in,
1311		    (uintmax_t)totalss.n_out,
1312		    (uintmax_t)(totalss.n_in + totalss.n_out),
1313		    totalss.nskip_in_malloc,
1314		    totalss.nskip_out_malloc,
1315		    totalss.nskip_in_mtx,
1316		    totalss.nskip_out_mtx,
1317		    totalss.nskip_in_tcpcb,
1318		    totalss.nskip_out_tcpcb,
1319		    totalss.nskip_in_inpcb,
1320		    totalss.nskip_out_inpcb,
1321		    total_skipped_pkts);
1322
1323		/*
1324		 * Iterate over the flow hash, printing a summary of each
1325		 * flow seen and freeing any malloc'd memory.
1326		 * The hash consists of an array of LISTs (man 3 queue).
1327		 */
1328		for (i = 0; i <= siftr_hashmask; i++) {
1329			LIST_FOREACH_SAFE(counter, counter_hash + i, nodes,
1330			    tmp_counter) {
1331				key = counter->key;
1332				key_index = 1;
1333
1334				ipver = key[0];
1335
1336				memcpy(laddr, key + key_index, sizeof(laddr));
1337				key_index += sizeof(laddr);
1338				memcpy(&lport, key + key_index, sizeof(lport));
1339				key_index += sizeof(lport);
1340				memcpy(faddr, key + key_index, sizeof(faddr));
1341				key_index += sizeof(faddr);
1342				memcpy(&fport, key + key_index, sizeof(fport));
1343
1344#ifdef SIFTR_IPV6
1345				laddr[3] = ntohl(laddr[3]);
1346				faddr[3] = ntohl(faddr[3]);
1347
1348				if (ipver == INP_IPV6) {
1349					laddr[0] = ntohl(laddr[0]);
1350					laddr[1] = ntohl(laddr[1]);
1351					laddr[2] = ntohl(laddr[2]);
1352					faddr[0] = ntohl(faddr[0]);
1353					faddr[1] = ntohl(faddr[1]);
1354					faddr[2] = ntohl(faddr[2]);
1355
1356					sbuf_printf(s,
1357					    "%x:%x:%x:%x:%x:%x:%x:%x;%u-"
1358					    "%x:%x:%x:%x:%x:%x:%x:%x;%u,",
1359					    UPPER_SHORT(laddr[0]),
1360					    LOWER_SHORT(laddr[0]),
1361					    UPPER_SHORT(laddr[1]),
1362					    LOWER_SHORT(laddr[1]),
1363					    UPPER_SHORT(laddr[2]),
1364					    LOWER_SHORT(laddr[2]),
1365					    UPPER_SHORT(laddr[3]),
1366					    LOWER_SHORT(laddr[3]),
1367					    ntohs(lport),
1368					    UPPER_SHORT(faddr[0]),
1369					    LOWER_SHORT(faddr[0]),
1370					    UPPER_SHORT(faddr[1]),
1371					    LOWER_SHORT(faddr[1]),
1372					    UPPER_SHORT(faddr[2]),
1373					    LOWER_SHORT(faddr[2]),
1374					    UPPER_SHORT(faddr[3]),
1375					    LOWER_SHORT(faddr[3]),
1376					    ntohs(fport));
1377				} else {
1378					laddr[0] = FIRST_OCTET(laddr[3]);
1379					laddr[1] = SECOND_OCTET(laddr[3]);
1380					laddr[2] = THIRD_OCTET(laddr[3]);
1381					laddr[3] = FOURTH_OCTET(laddr[3]);
1382					faddr[0] = FIRST_OCTET(faddr[3]);
1383					faddr[1] = SECOND_OCTET(faddr[3]);
1384					faddr[2] = THIRD_OCTET(faddr[3]);
1385					faddr[3] = FOURTH_OCTET(faddr[3]);
1386#endif
1387					sbuf_printf(s,
1388					    "%u.%u.%u.%u;%u-%u.%u.%u.%u;%u,",
1389					    laddr[0],
1390					    laddr[1],
1391					    laddr[2],
1392					    laddr[3],
1393					    ntohs(lport),
1394					    faddr[0],
1395					    faddr[1],
1396					    faddr[2],
1397					    faddr[3],
1398					    ntohs(fport));
1399#ifdef SIFTR_IPV6
1400				}
1401#endif
1402
1403				free(counter, M_SIFTR_HASHNODE);
1404			}
1405
1406			LIST_INIT(counter_hash + i);
1407		}
1408
1409		sbuf_printf(s, "\n");
1410		sbuf_finish(s);
1411
1412		i = 0;
1413		do {
1414			bytes_to_write = min(SIFTR_ALQ_BUFLEN, sbuf_len(s)-i);
1415			alq_writen(siftr_alq, sbuf_data(s)+i, bytes_to_write, ALQ_WAITOK);
1416			i += bytes_to_write;
1417		} while (i < sbuf_len(s));
1418
1419		alq_close(siftr_alq);
1420		siftr_alq = NULL;
1421	}
1422
1423	sbuf_delete(s);
1424
1425	/*
1426	 * XXX: Should be using ret to check if any functions fail
1427	 * and set error appropriately
1428	 */
1429
1430	return (error);
1431}
1432
1433
1434static int
1435siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS)
1436{
1437	if (req->newptr == NULL)
1438		goto skip;
1439
1440	/* If the value passed in isn't 0 or 1, return an error. */
1441	if (CAST_PTR_INT(req->newptr) != 0 && CAST_PTR_INT(req->newptr) != 1)
1442		return (1);
1443
1444	/* If we are changing state (0 to 1 or 1 to 0). */
1445	if (CAST_PTR_INT(req->newptr) != siftr_enabled )
1446		if (siftr_manage_ops(CAST_PTR_INT(req->newptr))) {
1447			siftr_manage_ops(SIFTR_DISABLE);
1448			return (1);
1449		}
1450
1451skip:
1452	return (sysctl_handle_int(oidp, arg1, arg2, req));
1453}
1454
1455
1456static void
1457siftr_shutdown_handler(void *arg)
1458{
1459	siftr_manage_ops(SIFTR_DISABLE);
1460}
1461
1462
1463/*
1464 * Module is being unloaded or machine is shutting down. Take care of cleanup.
1465 */
1466static int
1467deinit_siftr(void)
1468{
1469	/* Cleanup. */
1470	siftr_manage_ops(SIFTR_DISABLE);
1471	hashdestroy(counter_hash, M_SIFTR, siftr_hashmask);
1472	mtx_destroy(&siftr_pkt_queue_mtx);
1473	mtx_destroy(&siftr_pkt_mgr_mtx);
1474
1475	return (0);
1476}
1477
1478
1479/*
1480 * Module has just been loaded into the kernel.
1481 */
1482static int
1483init_siftr(void)
1484{
1485	EVENTHANDLER_REGISTER(shutdown_pre_sync, siftr_shutdown_handler, NULL,
1486	    SHUTDOWN_PRI_FIRST);
1487
1488	/* Initialise our flow counter hash table. */
1489	counter_hash = hashinit(SIFTR_EXPECTED_MAX_TCP_FLOWS, M_SIFTR,
1490	    &siftr_hashmask);
1491
1492	mtx_init(&siftr_pkt_queue_mtx, "siftr_pkt_queue_mtx", NULL, MTX_DEF);
1493	mtx_init(&siftr_pkt_mgr_mtx, "siftr_pkt_mgr_mtx", NULL, MTX_DEF);
1494
1495	/* Print message to the user's current terminal. */
1496	uprintf("\nStatistical Information For TCP Research (SIFTR) %s\n"
1497	    "          http://caia.swin.edu.au/urp/newtcp\n\n",
1498	    MODVERSION_STR);
1499
1500	return (0);
1501}
1502
1503
1504/*
1505 * This is the function that is called to load and unload the module.
1506 * When the module is loaded, this function is called once with
1507 * "what" == MOD_LOAD
1508 * When the module is unloaded, this function is called twice with
1509 * "what" = MOD_QUIESCE first, followed by "what" = MOD_UNLOAD second
1510 * When the system is shut down e.g. CTRL-ALT-DEL or using the shutdown command,
1511 * this function is called once with "what" = MOD_SHUTDOWN
1512 * When the system is shut down, the handler isn't called until the very end
1513 * of the shutdown sequence i.e. after the disks have been synced.
1514 */
1515static int
1516siftr_load_handler(module_t mod, int what, void *arg)
1517{
1518	int ret;
1519
1520	switch (what) {
1521	case MOD_LOAD:
1522		ret = init_siftr();
1523		break;
1524
1525	case MOD_QUIESCE:
1526	case MOD_SHUTDOWN:
1527		ret = deinit_siftr();
1528		break;
1529
1530	case MOD_UNLOAD:
1531		ret = 0;
1532		break;
1533
1534	default:
1535		ret = EINVAL;
1536		break;
1537	}
1538
1539	return (ret);
1540}
1541
1542
1543static moduledata_t siftr_mod = {
1544	.name = "siftr",
1545	.evhand = siftr_load_handler,
1546};
1547
1548/*
1549 * Param 1: name of the kernel module
1550 * Param 2: moduledata_t struct containing info about the kernel module
1551 *          and the execution entry point for the module
1552 * Param 3: From sysinit_sub_id enumeration in /usr/include/sys/kernel.h
1553 *          Defines the module initialisation order
1554 * Param 4: From sysinit_elem_order enumeration in /usr/include/sys/kernel.h
1555 *          Defines the initialisation order of this kld relative to others
1556 *          within the same subsystem as defined by param 3
1557 */
1558DECLARE_MODULE(siftr, siftr_mod, SI_SUB_SMP, SI_ORDER_ANY);
1559MODULE_DEPEND(siftr, alq, 1, 1, 1);
1560MODULE_VERSION(siftr, MODVERSION);
1561