1/*-
2 * Copyright (c) 1989 Stephen Deering
3 * Copyright (c) 1992, 1993
4 *      The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Stephen Deering of Stanford University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
34 */
35
36/*
37 * IP multicast forwarding procedures
38 *
39 * Written by David Waitzman, BBN Labs, August 1988.
40 * Modified by Steve Deering, Stanford, February 1989.
41 * Modified by Mark J. Steiglitz, Stanford, May, 1991
42 * Modified by Van Jacobson, LBL, January 1993
43 * Modified by Ajit Thyagarajan, PARC, August 1993
44 * Modified by Bill Fenner, PARC, April 1995
45 * Modified by Ahmed Helmy, SGI, June 1996
46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
48 * Modified by Hitoshi Asaeda, WIDE, August 2000
49 * Modified by Pavlin Radoslavov, ICSI, October 2002
50 *
51 * MROUTING Revision: 3.5
52 * and PIM-SMv2 and PIM-DM support, advanced API support,
53 * bandwidth metering and signaling
54 */
55
56/*
57 * TODO: Prefix functions with ipmf_.
58 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol
59 * domain attachment (if_afdata) so we can track consumers of that service.
60 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT,
61 * move it to socket options.
62 * TODO: Cleanup LSRR removal further.
63 * TODO: Push RSVP stubs into raw_ip.c.
64 * TODO: Use bitstring.h for vif set.
65 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded.
66 * TODO: Sync ip6_mroute.c with this file.
67 */
68
69#include <sys/cdefs.h>
70__FBSDID("$FreeBSD: stable/10/sys/netinet/ip_mroute.c 314667 2017-03-04 13:03:31Z avg $");
71
72#include "opt_inet.h"
73#include "opt_mrouting.h"
74
75#define _PIM_VT 1
76
77#include <sys/param.h>
78#include <sys/kernel.h>
79#include <sys/stddef.h>
80#include <sys/lock.h>
81#include <sys/ktr.h>
82#include <sys/malloc.h>
83#include <sys/mbuf.h>
84#include <sys/module.h>
85#include <sys/priv.h>
86#include <sys/protosw.h>
87#include <sys/signalvar.h>
88#include <sys/socket.h>
89#include <sys/socketvar.h>
90#include <sys/sockio.h>
91#include <sys/sx.h>
92#include <sys/sysctl.h>
93#include <sys/syslog.h>
94#include <sys/systm.h>
95#include <sys/time.h>
96#include <sys/counter.h>
97
98#include <net/if.h>
99#include <net/netisr.h>
100#include <net/route.h>
101#include <net/vnet.h>
102
103#include <netinet/in.h>
104#include <netinet/igmp.h>
105#include <netinet/in_systm.h>
106#include <netinet/in_var.h>
107#include <netinet/ip.h>
108#include <netinet/ip_encap.h>
109#include <netinet/ip_mroute.h>
110#include <netinet/ip_var.h>
111#include <netinet/ip_options.h>
112#include <netinet/pim.h>
113#include <netinet/pim_var.h>
114#include <netinet/udp.h>
115
116#include <machine/in_cksum.h>
117
118#ifndef KTR_IPMF
119#define KTR_IPMF KTR_INET
120#endif
121
122#define		VIFI_INVALID	((vifi_t) -1)
123#define		M_HASCL(m)	((m)->m_flags & M_EXT)
124
125static VNET_DEFINE(uint32_t, last_tv_sec); /* last time we processed this */
126#define	V_last_tv_sec	VNET(last_tv_sec)
127
128static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache");
129
130/*
131 * Locking.  We use two locks: one for the virtual interface table and
132 * one for the forwarding table.  These locks may be nested in which case
133 * the VIF lock must always be taken first.  Note that each lock is used
134 * to cover not only the specific data structure but also related data
135 * structures.
136 */
137
138static struct mtx mrouter_mtx;
139#define	MROUTER_LOCK()		mtx_lock(&mrouter_mtx)
140#define	MROUTER_UNLOCK()	mtx_unlock(&mrouter_mtx)
141#define	MROUTER_LOCK_ASSERT()	mtx_assert(&mrouter_mtx, MA_OWNED)
142#define	MROUTER_LOCK_INIT()						\
143	mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF)
144#define	MROUTER_LOCK_DESTROY()	mtx_destroy(&mrouter_mtx)
145
146static int ip_mrouter_cnt;	/* # of vnets with active mrouters */
147static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */
148
149static VNET_PCPUSTAT_DEFINE(struct mrtstat, mrtstat);
150VNET_PCPUSTAT_SYSINIT(mrtstat);
151VNET_PCPUSTAT_SYSUNINIT(mrtstat);
152SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat,
153    mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, "
154    "netinet/ip_mroute.h)");
155
156static VNET_DEFINE(u_long, mfchash);
157#define	V_mfchash		VNET(mfchash)
158#define	MFCHASH(a, g)							\
159	((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
160	  ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash)
161#define	MFCHASHSIZE	256
162
163static u_long mfchashsize;			/* Hash size */
164static VNET_DEFINE(u_char *, nexpire);		/* 0..mfchashsize-1 */
165#define	V_nexpire		VNET(nexpire)
166static VNET_DEFINE(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl);
167#define	V_mfchashtbl		VNET(mfchashtbl)
168
169static struct mtx mfc_mtx;
170#define	MFC_LOCK()		mtx_lock(&mfc_mtx)
171#define	MFC_UNLOCK()		mtx_unlock(&mfc_mtx)
172#define	MFC_LOCK_ASSERT()	mtx_assert(&mfc_mtx, MA_OWNED)
173#define	MFC_LOCK_INIT()							\
174	mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF)
175#define	MFC_LOCK_DESTROY()	mtx_destroy(&mfc_mtx)
176
177static VNET_DEFINE(vifi_t, numvifs);
178#define	V_numvifs		VNET(numvifs)
179static VNET_DEFINE(struct vif, viftable[MAXVIFS]);
180#define	V_viftable		VNET(viftable)
181SYSCTL_VNET_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
182    &VNET_NAME(viftable), sizeof(V_viftable), "S,vif[MAXVIFS]",
183    "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
184
185static struct mtx vif_mtx;
186#define	VIF_LOCK()		mtx_lock(&vif_mtx)
187#define	VIF_UNLOCK()		mtx_unlock(&vif_mtx)
188#define	VIF_LOCK_ASSERT()	mtx_assert(&vif_mtx, MA_OWNED)
189#define	VIF_LOCK_INIT()							\
190	mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF)
191#define	VIF_LOCK_DESTROY()	mtx_destroy(&vif_mtx)
192
193static eventhandler_tag if_detach_event_tag = NULL;
194
195static VNET_DEFINE(struct callout, expire_upcalls_ch);
196#define	V_expire_upcalls_ch	VNET(expire_upcalls_ch)
197
198#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
199#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
200
201/*
202 * Bandwidth meter variables and constants
203 */
204static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
205/*
206 * Pending timeouts are stored in a hash table, the key being the
207 * expiration time. Periodically, the entries are analysed and processed.
208 */
209#define	BW_METER_BUCKETS	1024
210static VNET_DEFINE(struct bw_meter*, bw_meter_timers[BW_METER_BUCKETS]);
211#define	V_bw_meter_timers	VNET(bw_meter_timers)
212static VNET_DEFINE(struct callout, bw_meter_ch);
213#define	V_bw_meter_ch		VNET(bw_meter_ch)
214#define	BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
215
216/*
217 * Pending upcalls are stored in a vector which is flushed when
218 * full, or periodically
219 */
220static VNET_DEFINE(struct bw_upcall, bw_upcalls[BW_UPCALLS_MAX]);
221#define	V_bw_upcalls		VNET(bw_upcalls)
222static VNET_DEFINE(u_int, bw_upcalls_n); /* # of pending upcalls */
223#define	V_bw_upcalls_n    	VNET(bw_upcalls_n)
224static VNET_DEFINE(struct callout, bw_upcalls_ch);
225#define	V_bw_upcalls_ch		VNET(bw_upcalls_ch)
226
227#define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
228
229static VNET_PCPUSTAT_DEFINE(struct pimstat, pimstat);
230VNET_PCPUSTAT_SYSINIT(pimstat);
231VNET_PCPUSTAT_SYSUNINIT(pimstat);
232
233SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM");
234SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat,
235    pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)");
236
237static u_long	pim_squelch_wholepkt = 0;
238SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
239    &pim_squelch_wholepkt, 0,
240    "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
241
242extern  struct domain inetdomain;
243static const struct protosw in_pim_protosw = {
244	.pr_type =		SOCK_RAW,
245	.pr_domain =		&inetdomain,
246	.pr_protocol =		IPPROTO_PIM,
247	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_LASTHDR,
248	.pr_input =		pim_input,
249	.pr_output =		(pr_output_t*)rip_output,
250	.pr_ctloutput =		rip_ctloutput,
251	.pr_usrreqs =		&rip_usrreqs
252};
253static const struct encaptab *pim_encap_cookie;
254
255static int pim_encapcheck(const struct mbuf *, int, int, void *);
256
257/*
258 * Note: the PIM Register encapsulation adds the following in front of a
259 * data packet:
260 *
261 * struct pim_encap_hdr {
262 *    struct ip ip;
263 *    struct pim_encap_pimhdr  pim;
264 * }
265 *
266 */
267
268struct pim_encap_pimhdr {
269	struct pim pim;
270	uint32_t   flags;
271};
272#define		PIM_ENCAP_TTL	64
273
274static struct ip pim_encap_iphdr = {
275#if BYTE_ORDER == LITTLE_ENDIAN
276	sizeof(struct ip) >> 2,
277	IPVERSION,
278#else
279	IPVERSION,
280	sizeof(struct ip) >> 2,
281#endif
282	0,			/* tos */
283	sizeof(struct ip),	/* total length */
284	0,			/* id */
285	0,			/* frag offset */
286	PIM_ENCAP_TTL,
287	IPPROTO_PIM,
288	0,			/* checksum */
289};
290
291static struct pim_encap_pimhdr pim_encap_pimhdr = {
292    {
293	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
294	0,			/* reserved */
295	0,			/* checksum */
296    },
297    0				/* flags */
298};
299
300static VNET_DEFINE(vifi_t, reg_vif_num) = VIFI_INVALID;
301#define	V_reg_vif_num		VNET(reg_vif_num)
302static VNET_DEFINE(struct ifnet, multicast_register_if);
303#define	V_multicast_register_if	VNET(multicast_register_if)
304
305/*
306 * Private variables.
307 */
308
309static u_long	X_ip_mcast_src(int);
310static int	X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *,
311		    struct ip_moptions *);
312static int	X_ip_mrouter_done(void);
313static int	X_ip_mrouter_get(struct socket *, struct sockopt *);
314static int	X_ip_mrouter_set(struct socket *, struct sockopt *);
315static int	X_legal_vif_num(int);
316static int	X_mrt_ioctl(u_long, caddr_t, int);
317
318static int	add_bw_upcall(struct bw_upcall *);
319static int	add_mfc(struct mfcctl2 *);
320static int	add_vif(struct vifctl *);
321static void	bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
322static void	bw_meter_process(void);
323static void	bw_meter_receive_packet(struct bw_meter *, int,
324		    struct timeval *);
325static void	bw_upcalls_send(void);
326static int	del_bw_upcall(struct bw_upcall *);
327static int	del_mfc(struct mfcctl2 *);
328static int	del_vif(vifi_t);
329static int	del_vif_locked(vifi_t);
330static void	expire_bw_meter_process(void *);
331static void	expire_bw_upcalls_send(void *);
332static void	expire_mfc(struct mfc *);
333static void	expire_upcalls(void *);
334static void	free_bw_list(struct bw_meter *);
335static int	get_sg_cnt(struct sioc_sg_req *);
336static int	get_vif_cnt(struct sioc_vif_req *);
337static void	if_detached_event(void *, struct ifnet *);
338static int	ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
339static int	ip_mrouter_init(struct socket *, int);
340static __inline struct mfc *
341		mfc_find(struct in_addr *, struct in_addr *);
342static void	phyint_send(struct ip *, struct vif *, struct mbuf *);
343static struct mbuf *
344		pim_register_prepare(struct ip *, struct mbuf *);
345static int	pim_register_send(struct ip *, struct vif *,
346		    struct mbuf *, struct mfc *);
347static int	pim_register_send_rp(struct ip *, struct vif *,
348		    struct mbuf *, struct mfc *);
349static int	pim_register_send_upcall(struct ip *, struct vif *,
350		    struct mbuf *, struct mfc *);
351static void	schedule_bw_meter(struct bw_meter *, struct timeval *);
352static void	send_packet(struct vif *, struct mbuf *);
353static int	set_api_config(uint32_t *);
354static int	set_assert(int);
355static int	socket_send(struct socket *, struct mbuf *,
356		    struct sockaddr_in *);
357static void	unschedule_bw_meter(struct bw_meter *);
358
359/*
360 * Kernel multicast forwarding API capabilities and setup.
361 * If more API capabilities are added to the kernel, they should be
362 * recorded in `mrt_api_support'.
363 */
364#define MRT_API_VERSION		0x0305
365
366static const int mrt_api_version = MRT_API_VERSION;
367static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
368					 MRT_MFC_FLAGS_BORDER_VIF |
369					 MRT_MFC_RP |
370					 MRT_MFC_BW_UPCALL);
371static VNET_DEFINE(uint32_t, mrt_api_config);
372#define	V_mrt_api_config	VNET(mrt_api_config)
373static VNET_DEFINE(int, pim_assert_enabled);
374#define	V_pim_assert_enabled	VNET(pim_assert_enabled)
375static struct timeval pim_assert_interval = { 3, 0 };	/* Rate limit */
376
377/*
378 * Find a route for a given origin IP address and multicast group address.
379 * Statistics must be updated by the caller.
380 */
381static __inline struct mfc *
382mfc_find(struct in_addr *o, struct in_addr *g)
383{
384	struct mfc *rt;
385
386	MFC_LOCK_ASSERT();
387
388	LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
389		if (in_hosteq(rt->mfc_origin, *o) &&
390		    in_hosteq(rt->mfc_mcastgrp, *g) &&
391		    TAILQ_EMPTY(&rt->mfc_stall))
392			break;
393	}
394
395	return (rt);
396}
397
398/*
399 * Handle MRT setsockopt commands to modify the multicast forwarding tables.
400 */
401static int
402X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
403{
404    int	error, optval;
405    vifi_t	vifi;
406    struct	vifctl vifc;
407    struct	mfcctl2 mfc;
408    struct	bw_upcall bw_upcall;
409    uint32_t	i;
410
411    if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT)
412	return EPERM;
413
414    error = 0;
415    switch (sopt->sopt_name) {
416    case MRT_INIT:
417	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
418	if (error)
419	    break;
420	error = ip_mrouter_init(so, optval);
421	break;
422
423    case MRT_DONE:
424	error = ip_mrouter_done();
425	break;
426
427    case MRT_ADD_VIF:
428	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
429	if (error)
430	    break;
431	error = add_vif(&vifc);
432	break;
433
434    case MRT_DEL_VIF:
435	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
436	if (error)
437	    break;
438	error = del_vif(vifi);
439	break;
440
441    case MRT_ADD_MFC:
442    case MRT_DEL_MFC:
443	/*
444	 * select data size depending on API version.
445	 */
446	if (sopt->sopt_name == MRT_ADD_MFC &&
447		V_mrt_api_config & MRT_API_FLAGS_ALL) {
448	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
449				sizeof(struct mfcctl2));
450	} else {
451	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
452				sizeof(struct mfcctl));
453	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
454			sizeof(mfc) - sizeof(struct mfcctl));
455	}
456	if (error)
457	    break;
458	if (sopt->sopt_name == MRT_ADD_MFC)
459	    error = add_mfc(&mfc);
460	else
461	    error = del_mfc(&mfc);
462	break;
463
464    case MRT_ASSERT:
465	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
466	if (error)
467	    break;
468	set_assert(optval);
469	break;
470
471    case MRT_API_CONFIG:
472	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
473	if (!error)
474	    error = set_api_config(&i);
475	if (!error)
476	    error = sooptcopyout(sopt, &i, sizeof i);
477	break;
478
479    case MRT_ADD_BW_UPCALL:
480    case MRT_DEL_BW_UPCALL:
481	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
482				sizeof bw_upcall);
483	if (error)
484	    break;
485	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
486	    error = add_bw_upcall(&bw_upcall);
487	else
488	    error = del_bw_upcall(&bw_upcall);
489	break;
490
491    default:
492	error = EOPNOTSUPP;
493	break;
494    }
495    return error;
496}
497
498/*
499 * Handle MRT getsockopt commands
500 */
501static int
502X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
503{
504    int error;
505
506    switch (sopt->sopt_name) {
507    case MRT_VERSION:
508	error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version);
509	break;
510
511    case MRT_ASSERT:
512	error = sooptcopyout(sopt, &V_pim_assert_enabled,
513	    sizeof V_pim_assert_enabled);
514	break;
515
516    case MRT_API_SUPPORT:
517	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
518	break;
519
520    case MRT_API_CONFIG:
521	error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config);
522	break;
523
524    default:
525	error = EOPNOTSUPP;
526	break;
527    }
528    return error;
529}
530
531/*
532 * Handle ioctl commands to obtain information from the cache
533 */
534static int
535X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused)
536{
537    int error = 0;
538
539    /*
540     * Currently the only function calling this ioctl routine is rtioctl().
541     * Typically, only root can create the raw socket in order to execute
542     * this ioctl method, however the request might be coming from a prison
543     */
544    error = priv_check(curthread, PRIV_NETINET_MROUTE);
545    if (error)
546	return (error);
547    switch (cmd) {
548    case (SIOCGETVIFCNT):
549	error = get_vif_cnt((struct sioc_vif_req *)data);
550	break;
551
552    case (SIOCGETSGCNT):
553	error = get_sg_cnt((struct sioc_sg_req *)data);
554	break;
555
556    default:
557	error = EINVAL;
558	break;
559    }
560    return error;
561}
562
563/*
564 * returns the packet, byte, rpf-failure count for the source group provided
565 */
566static int
567get_sg_cnt(struct sioc_sg_req *req)
568{
569    struct mfc *rt;
570
571    MFC_LOCK();
572    rt = mfc_find(&req->src, &req->grp);
573    if (rt == NULL) {
574	MFC_UNLOCK();
575	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
576	return EADDRNOTAVAIL;
577    }
578    req->pktcnt = rt->mfc_pkt_cnt;
579    req->bytecnt = rt->mfc_byte_cnt;
580    req->wrong_if = rt->mfc_wrong_if;
581    MFC_UNLOCK();
582    return 0;
583}
584
585/*
586 * returns the input and output packet and byte counts on the vif provided
587 */
588static int
589get_vif_cnt(struct sioc_vif_req *req)
590{
591    vifi_t vifi = req->vifi;
592
593    VIF_LOCK();
594    if (vifi >= V_numvifs) {
595	VIF_UNLOCK();
596	return EINVAL;
597    }
598
599    req->icount = V_viftable[vifi].v_pkt_in;
600    req->ocount = V_viftable[vifi].v_pkt_out;
601    req->ibytes = V_viftable[vifi].v_bytes_in;
602    req->obytes = V_viftable[vifi].v_bytes_out;
603    VIF_UNLOCK();
604
605    return 0;
606}
607
608static void
609if_detached_event(void *arg __unused, struct ifnet *ifp)
610{
611    vifi_t vifi;
612    u_long i;
613
614    MROUTER_LOCK();
615
616    if (V_ip_mrouter == NULL) {
617	MROUTER_UNLOCK();
618	return;
619    }
620
621    VIF_LOCK();
622    MFC_LOCK();
623
624    /*
625     * Tear down multicast forwarder state associated with this ifnet.
626     * 1. Walk the vif list, matching vifs against this ifnet.
627     * 2. Walk the multicast forwarding cache (mfc) looking for
628     *    inner matches with this vif's index.
629     * 3. Expire any matching multicast forwarding cache entries.
630     * 4. Free vif state. This should disable ALLMULTI on the interface.
631     */
632    for (vifi = 0; vifi < V_numvifs; vifi++) {
633	if (V_viftable[vifi].v_ifp != ifp)
634		continue;
635	for (i = 0; i < mfchashsize; i++) {
636		struct mfc *rt, *nrt;
637
638		LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
639			if (rt->mfc_parent == vifi) {
640				expire_mfc(rt);
641			}
642		}
643	}
644	del_vif_locked(vifi);
645    }
646
647    MFC_UNLOCK();
648    VIF_UNLOCK();
649
650    MROUTER_UNLOCK();
651}
652
653/*
654 * Enable multicast forwarding.
655 */
656static int
657ip_mrouter_init(struct socket *so, int version)
658{
659
660    CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__,
661        so->so_type, so->so_proto->pr_protocol);
662
663    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
664	return EOPNOTSUPP;
665
666    if (version != 1)
667	return ENOPROTOOPT;
668
669    MROUTER_LOCK();
670
671    if (ip_mrouter_unloading) {
672	MROUTER_UNLOCK();
673	return ENOPROTOOPT;
674    }
675
676    if (V_ip_mrouter != NULL) {
677	MROUTER_UNLOCK();
678	return EADDRINUSE;
679    }
680
681    V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash,
682	HASH_NOWAIT);
683
684    callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
685	curvnet);
686    callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
687	curvnet);
688    callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process,
689	curvnet);
690
691    V_ip_mrouter = so;
692    ip_mrouter_cnt++;
693
694    MROUTER_UNLOCK();
695
696    CTR1(KTR_IPMF, "%s: done", __func__);
697
698    return 0;
699}
700
701/*
702 * Disable multicast forwarding.
703 */
704static int
705X_ip_mrouter_done(void)
706{
707    struct ifnet *ifp;
708    u_long i;
709    vifi_t vifi;
710
711    MROUTER_LOCK();
712
713    if (V_ip_mrouter == NULL) {
714	MROUTER_UNLOCK();
715	return EINVAL;
716    }
717
718    /*
719     * Detach/disable hooks to the reset of the system.
720     */
721    V_ip_mrouter = NULL;
722    ip_mrouter_cnt--;
723    V_mrt_api_config = 0;
724
725    VIF_LOCK();
726
727    /*
728     * For each phyint in use, disable promiscuous reception of all IP
729     * multicasts.
730     */
731    for (vifi = 0; vifi < V_numvifs; vifi++) {
732	if (!in_nullhost(V_viftable[vifi].v_lcl_addr) &&
733		!(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
734	    ifp = V_viftable[vifi].v_ifp;
735	    if_allmulti(ifp, 0);
736	}
737    }
738    bzero((caddr_t)V_viftable, sizeof(V_viftable));
739    V_numvifs = 0;
740    V_pim_assert_enabled = 0;
741
742    VIF_UNLOCK();
743
744    callout_stop(&V_expire_upcalls_ch);
745    callout_stop(&V_bw_upcalls_ch);
746    callout_stop(&V_bw_meter_ch);
747
748    MFC_LOCK();
749
750    /*
751     * Free all multicast forwarding cache entries.
752     * Do not use hashdestroy(), as we must perform other cleanup.
753     */
754    for (i = 0; i < mfchashsize; i++) {
755	struct mfc *rt, *nrt;
756
757	LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
758		expire_mfc(rt);
759	}
760    }
761    free(V_mfchashtbl, M_MRTABLE);
762    V_mfchashtbl = NULL;
763
764    bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize);
765
766    V_bw_upcalls_n = 0;
767    bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers));
768
769    MFC_UNLOCK();
770
771    V_reg_vif_num = VIFI_INVALID;
772
773    MROUTER_UNLOCK();
774
775    CTR1(KTR_IPMF, "%s: done", __func__);
776
777    return 0;
778}
779
780/*
781 * Set PIM assert processing global
782 */
783static int
784set_assert(int i)
785{
786    if ((i != 1) && (i != 0))
787	return EINVAL;
788
789    V_pim_assert_enabled = i;
790
791    return 0;
792}
793
794/*
795 * Configure API capabilities
796 */
797int
798set_api_config(uint32_t *apival)
799{
800    u_long i;
801
802    /*
803     * We can set the API capabilities only if it is the first operation
804     * after MRT_INIT. I.e.:
805     *  - there are no vifs installed
806     *  - pim_assert is not enabled
807     *  - the MFC table is empty
808     */
809    if (V_numvifs > 0) {
810	*apival = 0;
811	return EPERM;
812    }
813    if (V_pim_assert_enabled) {
814	*apival = 0;
815	return EPERM;
816    }
817
818    MFC_LOCK();
819
820    for (i = 0; i < mfchashsize; i++) {
821	if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) {
822	    MFC_UNLOCK();
823	    *apival = 0;
824	    return EPERM;
825	}
826    }
827
828    MFC_UNLOCK();
829
830    V_mrt_api_config = *apival & mrt_api_support;
831    *apival = V_mrt_api_config;
832
833    return 0;
834}
835
836/*
837 * Add a vif to the vif table
838 */
839static int
840add_vif(struct vifctl *vifcp)
841{
842    struct vif *vifp = V_viftable + vifcp->vifc_vifi;
843    struct sockaddr_in sin = {sizeof sin, AF_INET};
844    struct ifaddr *ifa;
845    struct ifnet *ifp;
846    int error;
847
848    VIF_LOCK();
849    if (vifcp->vifc_vifi >= MAXVIFS) {
850	VIF_UNLOCK();
851	return EINVAL;
852    }
853    /* rate limiting is no longer supported by this code */
854    if (vifcp->vifc_rate_limit != 0) {
855	log(LOG_ERR, "rate limiting is no longer supported\n");
856	VIF_UNLOCK();
857	return EINVAL;
858    }
859    if (!in_nullhost(vifp->v_lcl_addr)) {
860	VIF_UNLOCK();
861	return EADDRINUSE;
862    }
863    if (in_nullhost(vifcp->vifc_lcl_addr)) {
864	VIF_UNLOCK();
865	return EADDRNOTAVAIL;
866    }
867
868    /* Find the interface with an address in AF_INET family */
869    if (vifcp->vifc_flags & VIFF_REGISTER) {
870	/*
871	 * XXX: Because VIFF_REGISTER does not really need a valid
872	 * local interface (e.g. it could be 127.0.0.2), we don't
873	 * check its address.
874	 */
875	ifp = NULL;
876    } else {
877	sin.sin_addr = vifcp->vifc_lcl_addr;
878	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
879	if (ifa == NULL) {
880	    VIF_UNLOCK();
881	    return EADDRNOTAVAIL;
882	}
883	ifp = ifa->ifa_ifp;
884	ifa_free(ifa);
885    }
886
887    if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
888	CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__);
889	VIF_UNLOCK();
890	return EOPNOTSUPP;
891    } else if (vifcp->vifc_flags & VIFF_REGISTER) {
892	ifp = &V_multicast_register_if;
893	CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp);
894	if (V_reg_vif_num == VIFI_INVALID) {
895	    if_initname(&V_multicast_register_if, "register_vif", 0);
896	    V_multicast_register_if.if_flags = IFF_LOOPBACK;
897	    V_reg_vif_num = vifcp->vifc_vifi;
898	}
899    } else {		/* Make sure the interface supports multicast */
900	if ((ifp->if_flags & IFF_MULTICAST) == 0) {
901	    VIF_UNLOCK();
902	    return EOPNOTSUPP;
903	}
904
905	/* Enable promiscuous reception of all IP multicasts from the if */
906	error = if_allmulti(ifp, 1);
907	if (error) {
908	    VIF_UNLOCK();
909	    return error;
910	}
911    }
912
913    vifp->v_flags     = vifcp->vifc_flags;
914    vifp->v_threshold = vifcp->vifc_threshold;
915    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
916    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
917    vifp->v_ifp       = ifp;
918    /* initialize per vif pkt counters */
919    vifp->v_pkt_in    = 0;
920    vifp->v_pkt_out   = 0;
921    vifp->v_bytes_in  = 0;
922    vifp->v_bytes_out = 0;
923
924    /* Adjust numvifs up if the vifi is higher than numvifs */
925    if (V_numvifs <= vifcp->vifc_vifi)
926	V_numvifs = vifcp->vifc_vifi + 1;
927
928    VIF_UNLOCK();
929
930    CTR4(KTR_IPMF, "%s: add vif %d laddr %s thresh %x", __func__,
931	(int)vifcp->vifc_vifi, inet_ntoa(vifcp->vifc_lcl_addr),
932	(int)vifcp->vifc_threshold);
933
934    return 0;
935}
936
937/*
938 * Delete a vif from the vif table
939 */
940static int
941del_vif_locked(vifi_t vifi)
942{
943    struct vif *vifp;
944
945    VIF_LOCK_ASSERT();
946
947    if (vifi >= V_numvifs) {
948	return EINVAL;
949    }
950    vifp = &V_viftable[vifi];
951    if (in_nullhost(vifp->v_lcl_addr)) {
952	return EADDRNOTAVAIL;
953    }
954
955    if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
956	if_allmulti(vifp->v_ifp, 0);
957
958    if (vifp->v_flags & VIFF_REGISTER)
959	V_reg_vif_num = VIFI_INVALID;
960
961    bzero((caddr_t)vifp, sizeof (*vifp));
962
963    CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi);
964
965    /* Adjust numvifs down */
966    for (vifi = V_numvifs; vifi > 0; vifi--)
967	if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr))
968	    break;
969    V_numvifs = vifi;
970
971    return 0;
972}
973
974static int
975del_vif(vifi_t vifi)
976{
977    int cc;
978
979    VIF_LOCK();
980    cc = del_vif_locked(vifi);
981    VIF_UNLOCK();
982
983    return cc;
984}
985
986/*
987 * update an mfc entry without resetting counters and S,G addresses.
988 */
989static void
990update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
991{
992    int i;
993
994    rt->mfc_parent = mfccp->mfcc_parent;
995    for (i = 0; i < V_numvifs; i++) {
996	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
997	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config &
998	    MRT_MFC_FLAGS_ALL;
999    }
1000    /* set the RP address */
1001    if (V_mrt_api_config & MRT_MFC_RP)
1002	rt->mfc_rp = mfccp->mfcc_rp;
1003    else
1004	rt->mfc_rp.s_addr = INADDR_ANY;
1005}
1006
1007/*
1008 * fully initialize an mfc entry from the parameter.
1009 */
1010static void
1011init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1012{
1013    rt->mfc_origin     = mfccp->mfcc_origin;
1014    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1015
1016    update_mfc_params(rt, mfccp);
1017
1018    /* initialize pkt counters per src-grp */
1019    rt->mfc_pkt_cnt    = 0;
1020    rt->mfc_byte_cnt   = 0;
1021    rt->mfc_wrong_if   = 0;
1022    timevalclear(&rt->mfc_last_assert);
1023}
1024
1025static void
1026expire_mfc(struct mfc *rt)
1027{
1028	struct rtdetq *rte, *nrte;
1029
1030	MFC_LOCK_ASSERT();
1031
1032	free_bw_list(rt->mfc_bw_meter);
1033
1034	TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
1035		m_freem(rte->m);
1036		TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
1037		free(rte, M_MRTABLE);
1038	}
1039
1040	LIST_REMOVE(rt, mfc_hash);
1041	free(rt, M_MRTABLE);
1042}
1043
1044/*
1045 * Add an mfc entry
1046 */
1047static int
1048add_mfc(struct mfcctl2 *mfccp)
1049{
1050    struct mfc *rt;
1051    struct rtdetq *rte, *nrte;
1052    u_long hash = 0;
1053    u_short nstl;
1054
1055    VIF_LOCK();
1056    MFC_LOCK();
1057
1058    rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1059
1060    /* If an entry already exists, just update the fields */
1061    if (rt) {
1062	CTR4(KTR_IPMF, "%s: update mfc orig %s group %lx parent %x",
1063	    __func__, inet_ntoa(mfccp->mfcc_origin),
1064	    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1065	    mfccp->mfcc_parent);
1066	update_mfc_params(rt, mfccp);
1067	MFC_UNLOCK();
1068	VIF_UNLOCK();
1069	return (0);
1070    }
1071
1072    /*
1073     * Find the entry for which the upcall was made and update
1074     */
1075    nstl = 0;
1076    hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1077    LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1078	if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1079	    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1080	    !TAILQ_EMPTY(&rt->mfc_stall)) {
1081		CTR5(KTR_IPMF,
1082		    "%s: add mfc orig %s group %lx parent %x qh %p",
1083		    __func__, inet_ntoa(mfccp->mfcc_origin),
1084		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1085		    mfccp->mfcc_parent,
1086		    TAILQ_FIRST(&rt->mfc_stall));
1087		if (nstl++)
1088			CTR1(KTR_IPMF, "%s: multiple matches", __func__);
1089
1090		init_mfc_params(rt, mfccp);
1091		rt->mfc_expire = 0;	/* Don't clean this guy up */
1092		V_nexpire[hash]--;
1093
1094		/* Free queued packets, but attempt to forward them first. */
1095		TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
1096			if (rte->ifp != NULL)
1097				ip_mdq(rte->m, rte->ifp, rt, -1);
1098			m_freem(rte->m);
1099			TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
1100			rt->mfc_nstall--;
1101			free(rte, M_MRTABLE);
1102		}
1103	}
1104    }
1105
1106    /*
1107     * It is possible that an entry is being inserted without an upcall
1108     */
1109    if (nstl == 0) {
1110	CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__);
1111	LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1112		if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1113		    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1114			init_mfc_params(rt, mfccp);
1115			if (rt->mfc_expire)
1116			    V_nexpire[hash]--;
1117			rt->mfc_expire = 0;
1118			break; /* XXX */
1119		}
1120	}
1121
1122	if (rt == NULL) {		/* no upcall, so make a new entry */
1123	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1124	    if (rt == NULL) {
1125		MFC_UNLOCK();
1126		VIF_UNLOCK();
1127		return (ENOBUFS);
1128	    }
1129
1130	    init_mfc_params(rt, mfccp);
1131	    TAILQ_INIT(&rt->mfc_stall);
1132	    rt->mfc_nstall = 0;
1133
1134	    rt->mfc_expire     = 0;
1135	    rt->mfc_bw_meter = NULL;
1136
1137	    /* insert new entry at head of hash chain */
1138	    LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1139	}
1140    }
1141
1142    MFC_UNLOCK();
1143    VIF_UNLOCK();
1144
1145    return (0);
1146}
1147
1148/*
1149 * Delete an mfc entry
1150 */
1151static int
1152del_mfc(struct mfcctl2 *mfccp)
1153{
1154    struct in_addr	origin;
1155    struct in_addr	mcastgrp;
1156    struct mfc		*rt;
1157
1158    origin = mfccp->mfcc_origin;
1159    mcastgrp = mfccp->mfcc_mcastgrp;
1160
1161    CTR3(KTR_IPMF, "%s: delete mfc orig %s group %lx", __func__,
1162	inet_ntoa(origin), (u_long)ntohl(mcastgrp.s_addr));
1163
1164    MFC_LOCK();
1165
1166    rt = mfc_find(&origin, &mcastgrp);
1167    if (rt == NULL) {
1168	MFC_UNLOCK();
1169	return EADDRNOTAVAIL;
1170    }
1171
1172    /*
1173     * free the bw_meter entries
1174     */
1175    free_bw_list(rt->mfc_bw_meter);
1176    rt->mfc_bw_meter = NULL;
1177
1178    LIST_REMOVE(rt, mfc_hash);
1179    free(rt, M_MRTABLE);
1180
1181    MFC_UNLOCK();
1182
1183    return (0);
1184}
1185
1186/*
1187 * Send a message to the routing daemon on the multicast routing socket.
1188 */
1189static int
1190socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1191{
1192    if (s) {
1193	SOCKBUF_LOCK(&s->so_rcv);
1194	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1195	    NULL) != 0) {
1196	    sorwakeup_locked(s);
1197	    return 0;
1198	}
1199	SOCKBUF_UNLOCK(&s->so_rcv);
1200    }
1201    m_freem(mm);
1202    return -1;
1203}
1204
1205/*
1206 * IP multicast forwarding function. This function assumes that the packet
1207 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1208 * pointed to by "ifp", and the packet is to be relayed to other networks
1209 * that have members of the packet's destination IP multicast group.
1210 *
1211 * The packet is returned unscathed to the caller, unless it is
1212 * erroneous, in which case a non-zero return value tells the caller to
1213 * discard it.
1214 */
1215
1216#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1217
1218static int
1219X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1220    struct ip_moptions *imo)
1221{
1222    struct mfc *rt;
1223    int error;
1224    vifi_t vifi;
1225
1226    CTR3(KTR_IPMF, "ip_mforward: delete mfc orig %s group %lx ifp %p",
1227	inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr), ifp);
1228
1229    if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1230		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1231	/*
1232	 * Packet arrived via a physical interface or
1233	 * an encapsulated tunnel or a register_vif.
1234	 */
1235    } else {
1236	/*
1237	 * Packet arrived through a source-route tunnel.
1238	 * Source-route tunnels are no longer supported.
1239	 */
1240	return (1);
1241    }
1242
1243    VIF_LOCK();
1244    MFC_LOCK();
1245    if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) {
1246	if (ip->ip_ttl < MAXTTL)
1247	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1248	error = ip_mdq(m, ifp, NULL, vifi);
1249	MFC_UNLOCK();
1250	VIF_UNLOCK();
1251	return error;
1252    }
1253
1254    /*
1255     * Don't forward a packet with time-to-live of zero or one,
1256     * or a packet destined to a local-only group.
1257     */
1258    if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
1259	MFC_UNLOCK();
1260	VIF_UNLOCK();
1261	return 0;
1262    }
1263
1264    /*
1265     * Determine forwarding vifs from the forwarding cache table
1266     */
1267    MRTSTAT_INC(mrts_mfc_lookups);
1268    rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1269
1270    /* Entry exists, so forward if necessary */
1271    if (rt != NULL) {
1272	error = ip_mdq(m, ifp, rt, -1);
1273	MFC_UNLOCK();
1274	VIF_UNLOCK();
1275	return error;
1276    } else {
1277	/*
1278	 * If we don't have a route for packet's origin,
1279	 * Make a copy of the packet & send message to routing daemon
1280	 */
1281
1282	struct mbuf *mb0;
1283	struct rtdetq *rte;
1284	u_long hash;
1285	int hlen = ip->ip_hl << 2;
1286
1287	MRTSTAT_INC(mrts_mfc_misses);
1288	MRTSTAT_INC(mrts_no_route);
1289	CTR2(KTR_IPMF, "ip_mforward: no mfc for (%s,%lx)",
1290	    inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr));
1291
1292	/*
1293	 * Allocate mbufs early so that we don't do extra work if we are
1294	 * just going to fail anyway.  Make sure to pullup the header so
1295	 * that other people can't step on it.
1296	 */
1297	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE,
1298	    M_NOWAIT|M_ZERO);
1299	if (rte == NULL) {
1300	    MFC_UNLOCK();
1301	    VIF_UNLOCK();
1302	    return ENOBUFS;
1303	}
1304
1305	mb0 = m_copypacket(m, M_NOWAIT);
1306	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1307	    mb0 = m_pullup(mb0, hlen);
1308	if (mb0 == NULL) {
1309	    free(rte, M_MRTABLE);
1310	    MFC_UNLOCK();
1311	    VIF_UNLOCK();
1312	    return ENOBUFS;
1313	}
1314
1315	/* is there an upcall waiting for this flow ? */
1316	hash = MFCHASH(ip->ip_src, ip->ip_dst);
1317	LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1318		if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1319		    in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1320		    !TAILQ_EMPTY(&rt->mfc_stall))
1321			break;
1322	}
1323
1324	if (rt == NULL) {
1325	    int i;
1326	    struct igmpmsg *im;
1327	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1328	    struct mbuf *mm;
1329
1330	    /*
1331	     * Locate the vifi for the incoming interface for this packet.
1332	     * If none found, drop packet.
1333	     */
1334	    for (vifi = 0; vifi < V_numvifs &&
1335		    V_viftable[vifi].v_ifp != ifp; vifi++)
1336		;
1337	    if (vifi >= V_numvifs)	/* vif not found, drop packet */
1338		goto non_fatal;
1339
1340	    /* no upcall, so make a new entry */
1341	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1342	    if (rt == NULL)
1343		goto fail;
1344
1345	    /* Make a copy of the header to send to the user level process */
1346	    mm = m_copy(mb0, 0, hlen);
1347	    if (mm == NULL)
1348		goto fail1;
1349
1350	    /*
1351	     * Send message to routing daemon to install
1352	     * a route into the kernel table
1353	     */
1354
1355	    im = mtod(mm, struct igmpmsg *);
1356	    im->im_msgtype = IGMPMSG_NOCACHE;
1357	    im->im_mbz = 0;
1358	    im->im_vif = vifi;
1359
1360	    MRTSTAT_INC(mrts_upcalls);
1361
1362	    k_igmpsrc.sin_addr = ip->ip_src;
1363	    if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1364		CTR0(KTR_IPMF, "ip_mforward: socket queue full");
1365		MRTSTAT_INC(mrts_upq_sockfull);
1366fail1:
1367		free(rt, M_MRTABLE);
1368fail:
1369		free(rte, M_MRTABLE);
1370		m_freem(mb0);
1371		MFC_UNLOCK();
1372		VIF_UNLOCK();
1373		return ENOBUFS;
1374	    }
1375
1376	    /* insert new entry at head of hash chain */
1377	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1378	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1379	    rt->mfc_expire	      = UPCALL_EXPIRE;
1380	    V_nexpire[hash]++;
1381	    for (i = 0; i < V_numvifs; i++) {
1382		rt->mfc_ttls[i] = 0;
1383		rt->mfc_flags[i] = 0;
1384	    }
1385	    rt->mfc_parent = -1;
1386
1387	    /* clear the RP address */
1388	    rt->mfc_rp.s_addr = INADDR_ANY;
1389	    rt->mfc_bw_meter = NULL;
1390
1391	    /* initialize pkt counters per src-grp */
1392	    rt->mfc_pkt_cnt = 0;
1393	    rt->mfc_byte_cnt = 0;
1394	    rt->mfc_wrong_if = 0;
1395	    timevalclear(&rt->mfc_last_assert);
1396
1397	    TAILQ_INIT(&rt->mfc_stall);
1398	    rt->mfc_nstall = 0;
1399
1400	    /* link into table */
1401	    LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1402	    TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link);
1403	    rt->mfc_nstall++;
1404
1405	} else {
1406	    /* determine if queue has overflowed */
1407	    if (rt->mfc_nstall > MAX_UPQ) {
1408		MRTSTAT_INC(mrts_upq_ovflw);
1409non_fatal:
1410		free(rte, M_MRTABLE);
1411		m_freem(mb0);
1412		MFC_UNLOCK();
1413		VIF_UNLOCK();
1414		return (0);
1415	    }
1416	    TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link);
1417	    rt->mfc_nstall++;
1418	}
1419
1420	rte->m			= mb0;
1421	rte->ifp		= ifp;
1422
1423	MFC_UNLOCK();
1424	VIF_UNLOCK();
1425
1426	return 0;
1427    }
1428}
1429
1430/*
1431 * Clean up the cache entry if upcall is not serviced
1432 */
1433static void
1434expire_upcalls(void *arg)
1435{
1436    u_long i;
1437
1438    CURVNET_SET((struct vnet *) arg);
1439
1440    MFC_LOCK();
1441
1442    for (i = 0; i < mfchashsize; i++) {
1443	struct mfc *rt, *nrt;
1444
1445	if (V_nexpire[i] == 0)
1446	    continue;
1447
1448	LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
1449		if (TAILQ_EMPTY(&rt->mfc_stall))
1450			continue;
1451
1452		if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1453			continue;
1454
1455		/*
1456		 * free the bw_meter entries
1457		 */
1458		while (rt->mfc_bw_meter != NULL) {
1459		    struct bw_meter *x = rt->mfc_bw_meter;
1460
1461		    rt->mfc_bw_meter = x->bm_mfc_next;
1462		    free(x, M_BWMETER);
1463		}
1464
1465		MRTSTAT_INC(mrts_cache_cleanups);
1466		CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__,
1467		    (u_long)ntohl(rt->mfc_origin.s_addr),
1468		    (u_long)ntohl(rt->mfc_mcastgrp.s_addr));
1469
1470		expire_mfc(rt);
1471	    }
1472    }
1473
1474    MFC_UNLOCK();
1475
1476    callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
1477	curvnet);
1478
1479    CURVNET_RESTORE();
1480}
1481
1482/*
1483 * Packet forwarding routine once entry in the cache is made
1484 */
1485static int
1486ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1487{
1488    struct ip  *ip = mtod(m, struct ip *);
1489    vifi_t vifi;
1490    int plen = ntohs(ip->ip_len);
1491
1492    VIF_LOCK_ASSERT();
1493
1494    /*
1495     * If xmt_vif is not -1, send on only the requested vif.
1496     *
1497     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1498     */
1499    if (xmt_vif < V_numvifs) {
1500	if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER)
1501		pim_register_send(ip, V_viftable + xmt_vif, m, rt);
1502	else
1503		phyint_send(ip, V_viftable + xmt_vif, m);
1504	return 1;
1505    }
1506
1507    /*
1508     * Don't forward if it didn't arrive from the parent vif for its origin.
1509     */
1510    vifi = rt->mfc_parent;
1511    if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) {
1512	CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)",
1513	    __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp);
1514	MRTSTAT_INC(mrts_wrong_if);
1515	++rt->mfc_wrong_if;
1516	/*
1517	 * If we are doing PIM assert processing, send a message
1518	 * to the routing daemon.
1519	 *
1520	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1521	 * can complete the SPT switch, regardless of the type
1522	 * of the iif (broadcast media, GRE tunnel, etc).
1523	 */
1524	if (V_pim_assert_enabled && (vifi < V_numvifs) &&
1525	    V_viftable[vifi].v_ifp) {
1526
1527	    if (ifp == &V_multicast_register_if)
1528		PIMSTAT_INC(pims_rcv_registers_wrongiif);
1529
1530	    /* Get vifi for the incoming packet */
1531	    for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp;
1532		vifi++)
1533		;
1534	    if (vifi >= V_numvifs)
1535		return 0;	/* The iif is not found: ignore the packet. */
1536
1537	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1538		return 0;	/* WRONGVIF disabled: ignore the packet */
1539
1540	    if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) {
1541		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1542		struct igmpmsg *im;
1543		int hlen = ip->ip_hl << 2;
1544		struct mbuf *mm = m_copy(m, 0, hlen);
1545
1546		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1547		    mm = m_pullup(mm, hlen);
1548		if (mm == NULL)
1549		    return ENOBUFS;
1550
1551		im = mtod(mm, struct igmpmsg *);
1552		im->im_msgtype	= IGMPMSG_WRONGVIF;
1553		im->im_mbz		= 0;
1554		im->im_vif		= vifi;
1555
1556		MRTSTAT_INC(mrts_upcalls);
1557
1558		k_igmpsrc.sin_addr = im->im_src;
1559		if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1560		    CTR1(KTR_IPMF, "%s: socket queue full", __func__);
1561		    MRTSTAT_INC(mrts_upq_sockfull);
1562		    return ENOBUFS;
1563		}
1564	    }
1565	}
1566	return 0;
1567    }
1568
1569
1570    /* If I sourced this packet, it counts as output, else it was input. */
1571    if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) {
1572	V_viftable[vifi].v_pkt_out++;
1573	V_viftable[vifi].v_bytes_out += plen;
1574    } else {
1575	V_viftable[vifi].v_pkt_in++;
1576	V_viftable[vifi].v_bytes_in += plen;
1577    }
1578    rt->mfc_pkt_cnt++;
1579    rt->mfc_byte_cnt += plen;
1580
1581    /*
1582     * For each vif, decide if a copy of the packet should be forwarded.
1583     * Forward if:
1584     *		- the ttl exceeds the vif's threshold
1585     *		- there are group members downstream on interface
1586     */
1587    for (vifi = 0; vifi < V_numvifs; vifi++)
1588	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1589	    V_viftable[vifi].v_pkt_out++;
1590	    V_viftable[vifi].v_bytes_out += plen;
1591	    if (V_viftable[vifi].v_flags & VIFF_REGISTER)
1592		pim_register_send(ip, V_viftable + vifi, m, rt);
1593	    else
1594		phyint_send(ip, V_viftable + vifi, m);
1595	}
1596
1597    /*
1598     * Perform upcall-related bw measuring.
1599     */
1600    if (rt->mfc_bw_meter != NULL) {
1601	struct bw_meter *x;
1602	struct timeval now;
1603
1604	microtime(&now);
1605	MFC_LOCK_ASSERT();
1606	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1607	    bw_meter_receive_packet(x, plen, &now);
1608    }
1609
1610    return 0;
1611}
1612
1613/*
1614 * Check if a vif number is legal/ok. This is used by in_mcast.c.
1615 */
1616static int
1617X_legal_vif_num(int vif)
1618{
1619	int ret;
1620
1621	ret = 0;
1622	if (vif < 0)
1623		return (ret);
1624
1625	VIF_LOCK();
1626	if (vif < V_numvifs)
1627		ret = 1;
1628	VIF_UNLOCK();
1629
1630	return (ret);
1631}
1632
1633/*
1634 * Return the local address used by this vif
1635 */
1636static u_long
1637X_ip_mcast_src(int vifi)
1638{
1639	in_addr_t addr;
1640
1641	addr = INADDR_ANY;
1642	if (vifi < 0)
1643		return (addr);
1644
1645	VIF_LOCK();
1646	if (vifi < V_numvifs)
1647		addr = V_viftable[vifi].v_lcl_addr.s_addr;
1648	VIF_UNLOCK();
1649
1650	return (addr);
1651}
1652
1653static void
1654phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1655{
1656    struct mbuf *mb_copy;
1657    int hlen = ip->ip_hl << 2;
1658
1659    VIF_LOCK_ASSERT();
1660
1661    /*
1662     * Make a new reference to the packet; make sure that
1663     * the IP header is actually copied, not just referenced,
1664     * so that ip_output() only scribbles on the copy.
1665     */
1666    mb_copy = m_copypacket(m, M_NOWAIT);
1667    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1668	mb_copy = m_pullup(mb_copy, hlen);
1669    if (mb_copy == NULL)
1670	return;
1671
1672    send_packet(vifp, mb_copy);
1673}
1674
1675static void
1676send_packet(struct vif *vifp, struct mbuf *m)
1677{
1678	struct ip_moptions imo;
1679	struct in_multi *imm[2];
1680	int error;
1681
1682	VIF_LOCK_ASSERT();
1683
1684	imo.imo_multicast_ifp  = vifp->v_ifp;
1685	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1686	imo.imo_multicast_loop = 1;
1687	imo.imo_multicast_vif  = -1;
1688	imo.imo_num_memberships = 0;
1689	imo.imo_max_memberships = 2;
1690	imo.imo_membership  = &imm[0];
1691
1692	/*
1693	 * Re-entrancy should not be a problem here, because
1694	 * the packets that we send out and are looped back at us
1695	 * should get rejected because they appear to come from
1696	 * the loopback interface, thus preventing looping.
1697	 */
1698	error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL);
1699	CTR3(KTR_IPMF, "%s: vif %td err %d", __func__,
1700	    (ptrdiff_t)(vifp - V_viftable), error);
1701}
1702
1703/*
1704 * Stubs for old RSVP socket shim implementation.
1705 */
1706
1707static int
1708X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused)
1709{
1710
1711	return (EOPNOTSUPP);
1712}
1713
1714static void
1715X_ip_rsvp_force_done(struct socket *so __unused)
1716{
1717
1718}
1719
1720static void
1721X_rsvp_input(struct mbuf *m, int off __unused)
1722{
1723
1724	if (!V_rsvp_on)
1725		m_freem(m);
1726}
1727
1728/*
1729 * Code for bandwidth monitors
1730 */
1731
1732/*
1733 * Define common interface for timeval-related methods
1734 */
1735#define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1736#define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1737#define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1738
1739static uint32_t
1740compute_bw_meter_flags(struct bw_upcall *req)
1741{
1742    uint32_t flags = 0;
1743
1744    if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1745	flags |= BW_METER_UNIT_PACKETS;
1746    if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1747	flags |= BW_METER_UNIT_BYTES;
1748    if (req->bu_flags & BW_UPCALL_GEQ)
1749	flags |= BW_METER_GEQ;
1750    if (req->bu_flags & BW_UPCALL_LEQ)
1751	flags |= BW_METER_LEQ;
1752
1753    return flags;
1754}
1755
1756/*
1757 * Add a bw_meter entry
1758 */
1759static int
1760add_bw_upcall(struct bw_upcall *req)
1761{
1762    struct mfc *mfc;
1763    struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
1764		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
1765    struct timeval now;
1766    struct bw_meter *x;
1767    uint32_t flags;
1768
1769    if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
1770	return EOPNOTSUPP;
1771
1772    /* Test if the flags are valid */
1773    if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
1774	return EINVAL;
1775    if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
1776	return EINVAL;
1777    if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1778	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1779	return EINVAL;
1780
1781    /* Test if the threshold time interval is valid */
1782    if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
1783	return EINVAL;
1784
1785    flags = compute_bw_meter_flags(req);
1786
1787    /*
1788     * Find if we have already same bw_meter entry
1789     */
1790    MFC_LOCK();
1791    mfc = mfc_find(&req->bu_src, &req->bu_dst);
1792    if (mfc == NULL) {
1793	MFC_UNLOCK();
1794	return EADDRNOTAVAIL;
1795    }
1796    for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
1797	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1798			   &req->bu_threshold.b_time, ==)) &&
1799	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
1800	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
1801	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
1802	    MFC_UNLOCK();
1803	    return 0;		/* XXX Already installed */
1804	}
1805    }
1806
1807    /* Allocate the new bw_meter entry */
1808    x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
1809    if (x == NULL) {
1810	MFC_UNLOCK();
1811	return ENOBUFS;
1812    }
1813
1814    /* Set the new bw_meter entry */
1815    x->bm_threshold.b_time = req->bu_threshold.b_time;
1816    microtime(&now);
1817    x->bm_start_time = now;
1818    x->bm_threshold.b_packets = req->bu_threshold.b_packets;
1819    x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
1820    x->bm_measured.b_packets = 0;
1821    x->bm_measured.b_bytes = 0;
1822    x->bm_flags = flags;
1823    x->bm_time_next = NULL;
1824    x->bm_time_hash = BW_METER_BUCKETS;
1825
1826    /* Add the new bw_meter entry to the front of entries for this MFC */
1827    x->bm_mfc = mfc;
1828    x->bm_mfc_next = mfc->mfc_bw_meter;
1829    mfc->mfc_bw_meter = x;
1830    schedule_bw_meter(x, &now);
1831    MFC_UNLOCK();
1832
1833    return 0;
1834}
1835
1836static void
1837free_bw_list(struct bw_meter *list)
1838{
1839    while (list != NULL) {
1840	struct bw_meter *x = list;
1841
1842	list = list->bm_mfc_next;
1843	unschedule_bw_meter(x);
1844	free(x, M_BWMETER);
1845    }
1846}
1847
1848/*
1849 * Delete one or multiple bw_meter entries
1850 */
1851static int
1852del_bw_upcall(struct bw_upcall *req)
1853{
1854    struct mfc *mfc;
1855    struct bw_meter *x;
1856
1857    if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
1858	return EOPNOTSUPP;
1859
1860    MFC_LOCK();
1861
1862    /* Find the corresponding MFC entry */
1863    mfc = mfc_find(&req->bu_src, &req->bu_dst);
1864    if (mfc == NULL) {
1865	MFC_UNLOCK();
1866	return EADDRNOTAVAIL;
1867    } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
1868	/*
1869	 * Delete all bw_meter entries for this mfc
1870	 */
1871	struct bw_meter *list;
1872
1873	list = mfc->mfc_bw_meter;
1874	mfc->mfc_bw_meter = NULL;
1875	free_bw_list(list);
1876	MFC_UNLOCK();
1877	return 0;
1878    } else {			/* Delete a single bw_meter entry */
1879	struct bw_meter *prev;
1880	uint32_t flags = 0;
1881
1882	flags = compute_bw_meter_flags(req);
1883
1884	/* Find the bw_meter entry to delete */
1885	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
1886	     prev = x, x = x->bm_mfc_next) {
1887	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1888			       &req->bu_threshold.b_time, ==)) &&
1889		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
1890		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
1891		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
1892		break;
1893	}
1894	if (x != NULL) { /* Delete entry from the list for this MFC */
1895	    if (prev != NULL)
1896		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
1897	    else
1898		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
1899
1900	    unschedule_bw_meter(x);
1901	    MFC_UNLOCK();
1902	    /* Free the bw_meter entry */
1903	    free(x, M_BWMETER);
1904	    return 0;
1905	} else {
1906	    MFC_UNLOCK();
1907	    return EINVAL;
1908	}
1909    }
1910    /* NOTREACHED */
1911}
1912
1913/*
1914 * Perform bandwidth measurement processing that may result in an upcall
1915 */
1916static void
1917bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
1918{
1919    struct timeval delta;
1920
1921    MFC_LOCK_ASSERT();
1922
1923    delta = *nowp;
1924    BW_TIMEVALDECR(&delta, &x->bm_start_time);
1925
1926    if (x->bm_flags & BW_METER_GEQ) {
1927	/*
1928	 * Processing for ">=" type of bw_meter entry
1929	 */
1930	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
1931	    /* Reset the bw_meter entry */
1932	    x->bm_start_time = *nowp;
1933	    x->bm_measured.b_packets = 0;
1934	    x->bm_measured.b_bytes = 0;
1935	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
1936	}
1937
1938	/* Record that a packet is received */
1939	x->bm_measured.b_packets++;
1940	x->bm_measured.b_bytes += plen;
1941
1942	/*
1943	 * Test if we should deliver an upcall
1944	 */
1945	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
1946	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1947		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
1948		((x->bm_flags & BW_METER_UNIT_BYTES) &&
1949		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
1950		/* Prepare an upcall for delivery */
1951		bw_meter_prepare_upcall(x, nowp);
1952		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
1953	    }
1954	}
1955    } else if (x->bm_flags & BW_METER_LEQ) {
1956	/*
1957	 * Processing for "<=" type of bw_meter entry
1958	 */
1959	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
1960	    /*
1961	     * We are behind time with the multicast forwarding table
1962	     * scanning for "<=" type of bw_meter entries, so test now
1963	     * if we should deliver an upcall.
1964	     */
1965	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1966		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
1967		((x->bm_flags & BW_METER_UNIT_BYTES) &&
1968		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
1969		/* Prepare an upcall for delivery */
1970		bw_meter_prepare_upcall(x, nowp);
1971	    }
1972	    /* Reschedule the bw_meter entry */
1973	    unschedule_bw_meter(x);
1974	    schedule_bw_meter(x, nowp);
1975	}
1976
1977	/* Record that a packet is received */
1978	x->bm_measured.b_packets++;
1979	x->bm_measured.b_bytes += plen;
1980
1981	/*
1982	 * Test if we should restart the measuring interval
1983	 */
1984	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
1985	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
1986	    (x->bm_flags & BW_METER_UNIT_BYTES &&
1987	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
1988	    /* Don't restart the measuring interval */
1989	} else {
1990	    /* Do restart the measuring interval */
1991	    /*
1992	     * XXX: note that we don't unschedule and schedule, because this
1993	     * might be too much overhead per packet. Instead, when we process
1994	     * all entries for a given timer hash bin, we check whether it is
1995	     * really a timeout. If not, we reschedule at that time.
1996	     */
1997	    x->bm_start_time = *nowp;
1998	    x->bm_measured.b_packets = 0;
1999	    x->bm_measured.b_bytes = 0;
2000	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2001	}
2002    }
2003}
2004
2005/*
2006 * Prepare a bandwidth-related upcall
2007 */
2008static void
2009bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2010{
2011    struct timeval delta;
2012    struct bw_upcall *u;
2013
2014    MFC_LOCK_ASSERT();
2015
2016    /*
2017     * Compute the measured time interval
2018     */
2019    delta = *nowp;
2020    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2021
2022    /*
2023     * If there are too many pending upcalls, deliver them now
2024     */
2025    if (V_bw_upcalls_n >= BW_UPCALLS_MAX)
2026	bw_upcalls_send();
2027
2028    /*
2029     * Set the bw_upcall entry
2030     */
2031    u = &V_bw_upcalls[V_bw_upcalls_n++];
2032    u->bu_src = x->bm_mfc->mfc_origin;
2033    u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2034    u->bu_threshold.b_time = x->bm_threshold.b_time;
2035    u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2036    u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2037    u->bu_measured.b_time = delta;
2038    u->bu_measured.b_packets = x->bm_measured.b_packets;
2039    u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2040    u->bu_flags = 0;
2041    if (x->bm_flags & BW_METER_UNIT_PACKETS)
2042	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2043    if (x->bm_flags & BW_METER_UNIT_BYTES)
2044	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2045    if (x->bm_flags & BW_METER_GEQ)
2046	u->bu_flags |= BW_UPCALL_GEQ;
2047    if (x->bm_flags & BW_METER_LEQ)
2048	u->bu_flags |= BW_UPCALL_LEQ;
2049}
2050
2051/*
2052 * Send the pending bandwidth-related upcalls
2053 */
2054static void
2055bw_upcalls_send(void)
2056{
2057    struct mbuf *m;
2058    int len = V_bw_upcalls_n * sizeof(V_bw_upcalls[0]);
2059    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2060    static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2061				      0,		/* unused2 */
2062				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2063				      0,		/* im_mbz  */
2064				      0,		/* im_vif  */
2065				      0,		/* unused3 */
2066				      { 0 },		/* im_src  */
2067				      { 0 } };		/* im_dst  */
2068
2069    MFC_LOCK_ASSERT();
2070
2071    if (V_bw_upcalls_n == 0)
2072	return;			/* No pending upcalls */
2073
2074    V_bw_upcalls_n = 0;
2075
2076    /*
2077     * Allocate a new mbuf, initialize it with the header and
2078     * the payload for the pending calls.
2079     */
2080    m = m_gethdr(M_NOWAIT, MT_DATA);
2081    if (m == NULL) {
2082	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2083	return;
2084    }
2085
2086    m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2087    m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&V_bw_upcalls[0]);
2088
2089    /*
2090     * Send the upcalls
2091     * XXX do we need to set the address in k_igmpsrc ?
2092     */
2093    MRTSTAT_INC(mrts_upcalls);
2094    if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) {
2095	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2096	MRTSTAT_INC(mrts_upq_sockfull);
2097    }
2098}
2099
2100/*
2101 * Compute the timeout hash value for the bw_meter entries
2102 */
2103#define	BW_METER_TIMEHASH(bw_meter, hash)				\
2104    do {								\
2105	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2106									\
2107	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2108	(hash) = next_timeval.tv_sec;					\
2109	if (next_timeval.tv_usec)					\
2110	    (hash)++; /* XXX: make sure we don't timeout early */	\
2111	(hash) %= BW_METER_BUCKETS;					\
2112    } while (0)
2113
2114/*
2115 * Schedule a timer to process periodically bw_meter entry of type "<="
2116 * by linking the entry in the proper hash bucket.
2117 */
2118static void
2119schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2120{
2121    int time_hash;
2122
2123    MFC_LOCK_ASSERT();
2124
2125    if (!(x->bm_flags & BW_METER_LEQ))
2126	return;		/* XXX: we schedule timers only for "<=" entries */
2127
2128    /*
2129     * Reset the bw_meter entry
2130     */
2131    x->bm_start_time = *nowp;
2132    x->bm_measured.b_packets = 0;
2133    x->bm_measured.b_bytes = 0;
2134    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2135
2136    /*
2137     * Compute the timeout hash value and insert the entry
2138     */
2139    BW_METER_TIMEHASH(x, time_hash);
2140    x->bm_time_next = V_bw_meter_timers[time_hash];
2141    V_bw_meter_timers[time_hash] = x;
2142    x->bm_time_hash = time_hash;
2143}
2144
2145/*
2146 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2147 * by removing the entry from the proper hash bucket.
2148 */
2149static void
2150unschedule_bw_meter(struct bw_meter *x)
2151{
2152    int time_hash;
2153    struct bw_meter *prev, *tmp;
2154
2155    MFC_LOCK_ASSERT();
2156
2157    if (!(x->bm_flags & BW_METER_LEQ))
2158	return;		/* XXX: we schedule timers only for "<=" entries */
2159
2160    /*
2161     * Compute the timeout hash value and delete the entry
2162     */
2163    time_hash = x->bm_time_hash;
2164    if (time_hash >= BW_METER_BUCKETS)
2165	return;		/* Entry was not scheduled */
2166
2167    for (prev = NULL, tmp = V_bw_meter_timers[time_hash];
2168	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2169	if (tmp == x)
2170	    break;
2171
2172    if (tmp == NULL)
2173	panic("unschedule_bw_meter: bw_meter entry not found");
2174
2175    if (prev != NULL)
2176	prev->bm_time_next = x->bm_time_next;
2177    else
2178	V_bw_meter_timers[time_hash] = x->bm_time_next;
2179
2180    x->bm_time_next = NULL;
2181    x->bm_time_hash = BW_METER_BUCKETS;
2182}
2183
2184
2185/*
2186 * Process all "<=" type of bw_meter that should be processed now,
2187 * and for each entry prepare an upcall if necessary. Each processed
2188 * entry is rescheduled again for the (periodic) processing.
2189 *
2190 * This is run periodically (once per second normally). On each round,
2191 * all the potentially matching entries are in the hash slot that we are
2192 * looking at.
2193 */
2194static void
2195bw_meter_process()
2196{
2197    uint32_t loops;
2198    int i;
2199    struct timeval now, process_endtime;
2200
2201    microtime(&now);
2202    if (V_last_tv_sec == now.tv_sec)
2203	return;		/* nothing to do */
2204
2205    loops = now.tv_sec - V_last_tv_sec;
2206    V_last_tv_sec = now.tv_sec;
2207    if (loops > BW_METER_BUCKETS)
2208	loops = BW_METER_BUCKETS;
2209
2210    MFC_LOCK();
2211    /*
2212     * Process all bins of bw_meter entries from the one after the last
2213     * processed to the current one. On entry, i points to the last bucket
2214     * visited, so we need to increment i at the beginning of the loop.
2215     */
2216    for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2217	struct bw_meter *x, *tmp_list;
2218
2219	if (++i >= BW_METER_BUCKETS)
2220	    i = 0;
2221
2222	/* Disconnect the list of bw_meter entries from the bin */
2223	tmp_list = V_bw_meter_timers[i];
2224	V_bw_meter_timers[i] = NULL;
2225
2226	/* Process the list of bw_meter entries */
2227	while (tmp_list != NULL) {
2228	    x = tmp_list;
2229	    tmp_list = tmp_list->bm_time_next;
2230
2231	    /* Test if the time interval is over */
2232	    process_endtime = x->bm_start_time;
2233	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2234	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2235		/* Not yet: reschedule, but don't reset */
2236		int time_hash;
2237
2238		BW_METER_TIMEHASH(x, time_hash);
2239		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2240		    /*
2241		     * XXX: somehow the bin processing is a bit ahead of time.
2242		     * Put the entry in the next bin.
2243		     */
2244		    if (++time_hash >= BW_METER_BUCKETS)
2245			time_hash = 0;
2246		}
2247		x->bm_time_next = V_bw_meter_timers[time_hash];
2248		V_bw_meter_timers[time_hash] = x;
2249		x->bm_time_hash = time_hash;
2250
2251		continue;
2252	    }
2253
2254	    /*
2255	     * Test if we should deliver an upcall
2256	     */
2257	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2258		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2259		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2260		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2261		/* Prepare an upcall for delivery */
2262		bw_meter_prepare_upcall(x, &now);
2263	    }
2264
2265	    /*
2266	     * Reschedule for next processing
2267	     */
2268	    schedule_bw_meter(x, &now);
2269	}
2270    }
2271
2272    /* Send all upcalls that are pending delivery */
2273    bw_upcalls_send();
2274
2275    MFC_UNLOCK();
2276}
2277
2278/*
2279 * A periodic function for sending all upcalls that are pending delivery
2280 */
2281static void
2282expire_bw_upcalls_send(void *arg)
2283{
2284    CURVNET_SET((struct vnet *) arg);
2285
2286    MFC_LOCK();
2287    bw_upcalls_send();
2288    MFC_UNLOCK();
2289
2290    callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
2291	curvnet);
2292    CURVNET_RESTORE();
2293}
2294
2295/*
2296 * A periodic function for periodic scanning of the multicast forwarding
2297 * table for processing all "<=" bw_meter entries.
2298 */
2299static void
2300expire_bw_meter_process(void *arg)
2301{
2302    CURVNET_SET((struct vnet *) arg);
2303
2304    if (V_mrt_api_config & MRT_MFC_BW_UPCALL)
2305	bw_meter_process();
2306
2307    callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process,
2308	curvnet);
2309    CURVNET_RESTORE();
2310}
2311
2312/*
2313 * End of bandwidth monitoring code
2314 */
2315
2316/*
2317 * Send the packet up to the user daemon, or eventually do kernel encapsulation
2318 *
2319 */
2320static int
2321pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
2322    struct mfc *rt)
2323{
2324    struct mbuf *mb_copy, *mm;
2325
2326    /*
2327     * Do not send IGMP_WHOLEPKT notifications to userland, if the
2328     * rendezvous point was unspecified, and we were told not to.
2329     */
2330    if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) &&
2331	in_nullhost(rt->mfc_rp))
2332	return 0;
2333
2334    mb_copy = pim_register_prepare(ip, m);
2335    if (mb_copy == NULL)
2336	return ENOBUFS;
2337
2338    /*
2339     * Send all the fragments. Note that the mbuf for each fragment
2340     * is freed by the sending machinery.
2341     */
2342    for (mm = mb_copy; mm; mm = mb_copy) {
2343	mb_copy = mm->m_nextpkt;
2344	mm->m_nextpkt = 0;
2345	mm = m_pullup(mm, sizeof(struct ip));
2346	if (mm != NULL) {
2347	    ip = mtod(mm, struct ip *);
2348	    if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) {
2349		pim_register_send_rp(ip, vifp, mm, rt);
2350	    } else {
2351		pim_register_send_upcall(ip, vifp, mm, rt);
2352	    }
2353	}
2354    }
2355
2356    return 0;
2357}
2358
2359/*
2360 * Return a copy of the data packet that is ready for PIM Register
2361 * encapsulation.
2362 * XXX: Note that in the returned copy the IP header is a valid one.
2363 */
2364static struct mbuf *
2365pim_register_prepare(struct ip *ip, struct mbuf *m)
2366{
2367    struct mbuf *mb_copy = NULL;
2368    int mtu;
2369
2370    /* Take care of delayed checksums */
2371    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2372	in_delayed_cksum(m);
2373	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2374    }
2375
2376    /*
2377     * Copy the old packet & pullup its IP header into the
2378     * new mbuf so we can modify it.
2379     */
2380    mb_copy = m_copypacket(m, M_NOWAIT);
2381    if (mb_copy == NULL)
2382	return NULL;
2383    mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2384    if (mb_copy == NULL)
2385	return NULL;
2386
2387    /* take care of the TTL */
2388    ip = mtod(mb_copy, struct ip *);
2389    --ip->ip_ttl;
2390
2391    /* Compute the MTU after the PIM Register encapsulation */
2392    mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2393
2394    if (ntohs(ip->ip_len) <= mtu) {
2395	/* Turn the IP header into a valid one */
2396	ip->ip_sum = 0;
2397	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2398    } else {
2399	/* Fragment the packet */
2400	mb_copy->m_pkthdr.csum_flags |= CSUM_IP;
2401	if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) {
2402	    m_freem(mb_copy);
2403	    return NULL;
2404	}
2405    }
2406    return mb_copy;
2407}
2408
2409/*
2410 * Send an upcall with the data packet to the user-level process.
2411 */
2412static int
2413pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2414    struct mbuf *mb_copy, struct mfc *rt)
2415{
2416    struct mbuf *mb_first;
2417    int len = ntohs(ip->ip_len);
2418    struct igmpmsg *im;
2419    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2420
2421    VIF_LOCK_ASSERT();
2422
2423    /*
2424     * Add a new mbuf with an upcall header
2425     */
2426    mb_first = m_gethdr(M_NOWAIT, MT_DATA);
2427    if (mb_first == NULL) {
2428	m_freem(mb_copy);
2429	return ENOBUFS;
2430    }
2431    mb_first->m_data += max_linkhdr;
2432    mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2433    mb_first->m_len = sizeof(struct igmpmsg);
2434    mb_first->m_next = mb_copy;
2435
2436    /* Send message to routing daemon */
2437    im = mtod(mb_first, struct igmpmsg *);
2438    im->im_msgtype	= IGMPMSG_WHOLEPKT;
2439    im->im_mbz		= 0;
2440    im->im_vif		= vifp - V_viftable;
2441    im->im_src		= ip->ip_src;
2442    im->im_dst		= ip->ip_dst;
2443
2444    k_igmpsrc.sin_addr	= ip->ip_src;
2445
2446    MRTSTAT_INC(mrts_upcalls);
2447
2448    if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2449	CTR1(KTR_IPMF, "%s: socket queue full", __func__);
2450	MRTSTAT_INC(mrts_upq_sockfull);
2451	return ENOBUFS;
2452    }
2453
2454    /* Keep statistics */
2455    PIMSTAT_INC(pims_snd_registers_msgs);
2456    PIMSTAT_ADD(pims_snd_registers_bytes, len);
2457
2458    return 0;
2459}
2460
2461/*
2462 * Encapsulate the data packet in PIM Register message and send it to the RP.
2463 */
2464static int
2465pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
2466    struct mfc *rt)
2467{
2468    struct mbuf *mb_first;
2469    struct ip *ip_outer;
2470    struct pim_encap_pimhdr *pimhdr;
2471    int len = ntohs(ip->ip_len);
2472    vifi_t vifi = rt->mfc_parent;
2473
2474    VIF_LOCK_ASSERT();
2475
2476    if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) {
2477	m_freem(mb_copy);
2478	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2479    }
2480
2481    /*
2482     * Add a new mbuf with the encapsulating header
2483     */
2484    mb_first = m_gethdr(M_NOWAIT, MT_DATA);
2485    if (mb_first == NULL) {
2486	m_freem(mb_copy);
2487	return ENOBUFS;
2488    }
2489    mb_first->m_data += max_linkhdr;
2490    mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2491    mb_first->m_next = mb_copy;
2492
2493    mb_first->m_pkthdr.len = len + mb_first->m_len;
2494
2495    /*
2496     * Fill in the encapsulating IP and PIM header
2497     */
2498    ip_outer = mtod(mb_first, struct ip *);
2499    *ip_outer = pim_encap_iphdr;
2500    ip_outer->ip_id = ip_newid();
2501    ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
2502	sizeof(pim_encap_pimhdr));
2503    ip_outer->ip_src = V_viftable[vifi].v_lcl_addr;
2504    ip_outer->ip_dst = rt->mfc_rp;
2505    /*
2506     * Copy the inner header TOS to the outer header, and take care of the
2507     * IP_DF bit.
2508     */
2509    ip_outer->ip_tos = ip->ip_tos;
2510    if (ip->ip_off & htons(IP_DF))
2511	ip_outer->ip_off |= htons(IP_DF);
2512    pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2513					 + sizeof(pim_encap_iphdr));
2514    *pimhdr = pim_encap_pimhdr;
2515    /* If the iif crosses a border, set the Border-bit */
2516    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config)
2517	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2518
2519    mb_first->m_data += sizeof(pim_encap_iphdr);
2520    pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2521    mb_first->m_data -= sizeof(pim_encap_iphdr);
2522
2523    send_packet(vifp, mb_first);
2524
2525    /* Keep statistics */
2526    PIMSTAT_INC(pims_snd_registers_msgs);
2527    PIMSTAT_ADD(pims_snd_registers_bytes, len);
2528
2529    return 0;
2530}
2531
2532/*
2533 * pim_encapcheck() is called by the encap4_input() path at runtime to
2534 * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2535 * into the kernel.
2536 */
2537static int
2538pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
2539{
2540
2541#ifdef DIAGNOSTIC
2542    KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2543#endif
2544    if (proto != IPPROTO_PIM)
2545	return 0;	/* not for us; reject the datagram. */
2546
2547    return 64;		/* claim the datagram. */
2548}
2549
2550/*
2551 * PIM-SMv2 and PIM-DM messages processing.
2552 * Receives and verifies the PIM control messages, and passes them
2553 * up to the listening socket, using rip_input().
2554 * The only message with special processing is the PIM_REGISTER message
2555 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2556 * is passed to if_simloop().
2557 */
2558void
2559pim_input(struct mbuf *m, int iphlen)
2560{
2561    struct ip *ip = mtod(m, struct ip *);
2562    struct pim *pim;
2563    int minlen;
2564    int datalen = ntohs(ip->ip_len) - iphlen;
2565    int ip_tos;
2566
2567    /* Keep statistics */
2568    PIMSTAT_INC(pims_rcv_total_msgs);
2569    PIMSTAT_ADD(pims_rcv_total_bytes, datalen);
2570
2571    /*
2572     * Validate lengths
2573     */
2574    if (datalen < PIM_MINLEN) {
2575	PIMSTAT_INC(pims_rcv_tooshort);
2576	CTR3(KTR_IPMF, "%s: short packet (%d) from %s",
2577	    __func__, datalen, inet_ntoa(ip->ip_src));
2578	m_freem(m);
2579	return;
2580    }
2581
2582    /*
2583     * If the packet is at least as big as a REGISTER, go agead
2584     * and grab the PIM REGISTER header size, to avoid another
2585     * possible m_pullup() later.
2586     *
2587     * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2588     * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2589     */
2590    minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2591    /*
2592     * Get the IP and PIM headers in contiguous memory, and
2593     * possibly the PIM REGISTER header.
2594     */
2595    if (m->m_len < minlen && (m = m_pullup(m, minlen)) == 0) {
2596	CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__);
2597	return;
2598    }
2599
2600    /* m_pullup() may have given us a new mbuf so reset ip. */
2601    ip = mtod(m, struct ip *);
2602    ip_tos = ip->ip_tos;
2603
2604    /* adjust mbuf to point to the PIM header */
2605    m->m_data += iphlen;
2606    m->m_len  -= iphlen;
2607    pim = mtod(m, struct pim *);
2608
2609    /*
2610     * Validate checksum. If PIM REGISTER, exclude the data packet.
2611     *
2612     * XXX: some older PIMv2 implementations don't make this distinction,
2613     * so for compatibility reason perform the checksum over part of the
2614     * message, and if error, then over the whole message.
2615     */
2616    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2617	/* do nothing, checksum okay */
2618    } else if (in_cksum(m, datalen)) {
2619	PIMSTAT_INC(pims_rcv_badsum);
2620	CTR1(KTR_IPMF, "%s: invalid checksum", __func__);
2621	m_freem(m);
2622	return;
2623    }
2624
2625    /* PIM version check */
2626    if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2627	PIMSTAT_INC(pims_rcv_badversion);
2628	CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__,
2629	    (int)PIM_VT_V(pim->pim_vt), PIM_VERSION);
2630	m_freem(m);
2631	return;
2632    }
2633
2634    /* restore mbuf back to the outer IP */
2635    m->m_data -= iphlen;
2636    m->m_len  += iphlen;
2637
2638    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2639	/*
2640	 * Since this is a REGISTER, we'll make a copy of the register
2641	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2642	 * routing daemon.
2643	 */
2644	struct sockaddr_in dst = { sizeof(dst), AF_INET };
2645	struct mbuf *mcp;
2646	struct ip *encap_ip;
2647	u_int32_t *reghdr;
2648	struct ifnet *vifp;
2649
2650	VIF_LOCK();
2651	if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) {
2652	    VIF_UNLOCK();
2653	    CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__,
2654		(int)V_reg_vif_num);
2655	    m_freem(m);
2656	    return;
2657	}
2658	/* XXX need refcnt? */
2659	vifp = V_viftable[V_reg_vif_num].v_ifp;
2660	VIF_UNLOCK();
2661
2662	/*
2663	 * Validate length
2664	 */
2665	if (datalen < PIM_REG_MINLEN) {
2666	    PIMSTAT_INC(pims_rcv_tooshort);
2667	    PIMSTAT_INC(pims_rcv_badregisters);
2668	    CTR1(KTR_IPMF, "%s: register packet size too small", __func__);
2669	    m_freem(m);
2670	    return;
2671	}
2672
2673	reghdr = (u_int32_t *)(pim + 1);
2674	encap_ip = (struct ip *)(reghdr + 1);
2675
2676	CTR3(KTR_IPMF, "%s: register: encap ip src %s len %d",
2677	    __func__, inet_ntoa(encap_ip->ip_src), ntohs(encap_ip->ip_len));
2678
2679	/* verify the version number of the inner packet */
2680	if (encap_ip->ip_v != IPVERSION) {
2681	    PIMSTAT_INC(pims_rcv_badregisters);
2682	    CTR1(KTR_IPMF, "%s: bad encap ip version", __func__);
2683	    m_freem(m);
2684	    return;
2685	}
2686
2687	/* verify the inner packet is destined to a mcast group */
2688	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2689	    PIMSTAT_INC(pims_rcv_badregisters);
2690	    CTR2(KTR_IPMF, "%s: bad encap ip dest %s", __func__,
2691		inet_ntoa(encap_ip->ip_dst));
2692	    m_freem(m);
2693	    return;
2694	}
2695
2696	/* If a NULL_REGISTER, pass it to the daemon */
2697	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2698	    goto pim_input_to_daemon;
2699
2700	/*
2701	 * Copy the TOS from the outer IP header to the inner IP header.
2702	 */
2703	if (encap_ip->ip_tos != ip_tos) {
2704	    /* Outer TOS -> inner TOS */
2705	    encap_ip->ip_tos = ip_tos;
2706	    /* Recompute the inner header checksum. Sigh... */
2707
2708	    /* adjust mbuf to point to the inner IP header */
2709	    m->m_data += (iphlen + PIM_MINLEN);
2710	    m->m_len  -= (iphlen + PIM_MINLEN);
2711
2712	    encap_ip->ip_sum = 0;
2713	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2714
2715	    /* restore mbuf to point back to the outer IP header */
2716	    m->m_data -= (iphlen + PIM_MINLEN);
2717	    m->m_len  += (iphlen + PIM_MINLEN);
2718	}
2719
2720	/*
2721	 * Decapsulate the inner IP packet and loopback to forward it
2722	 * as a normal multicast packet. Also, make a copy of the
2723	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
2724	 * to pass to the daemon later, so it can take the appropriate
2725	 * actions (e.g., send back PIM_REGISTER_STOP).
2726	 * XXX: here m->m_data points to the outer IP header.
2727	 */
2728	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
2729	if (mcp == NULL) {
2730	    CTR1(KTR_IPMF, "%s: m_copy() failed", __func__);
2731	    m_freem(m);
2732	    return;
2733	}
2734
2735	/* Keep statistics */
2736	/* XXX: registers_bytes include only the encap. mcast pkt */
2737	PIMSTAT_INC(pims_rcv_registers_msgs);
2738	PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len));
2739
2740	/*
2741	 * forward the inner ip packet; point m_data at the inner ip.
2742	 */
2743	m_adj(m, iphlen + PIM_MINLEN);
2744
2745	CTR4(KTR_IPMF,
2746	    "%s: forward decap'd REGISTER: src %lx dst %lx vif %d",
2747	    __func__,
2748	    (u_long)ntohl(encap_ip->ip_src.s_addr),
2749	    (u_long)ntohl(encap_ip->ip_dst.s_addr),
2750	    (int)V_reg_vif_num);
2751
2752	/* NB: vifp was collected above; can it change on us? */
2753	if_simloop(vifp, m, dst.sin_family, 0);
2754
2755	/* prepare the register head to send to the mrouting daemon */
2756	m = mcp;
2757    }
2758
2759pim_input_to_daemon:
2760    /*
2761     * Pass the PIM message up to the daemon; if it is a Register message,
2762     * pass the 'head' only up to the daemon. This includes the
2763     * outer IP header, PIM header, PIM-Register header and the
2764     * inner IP header.
2765     * XXX: the outer IP header pkt size of a Register is not adjust to
2766     * reflect the fact that the inner multicast data is truncated.
2767     */
2768    rip_input(m, iphlen);
2769
2770    return;
2771}
2772
2773static int
2774sysctl_mfctable(SYSCTL_HANDLER_ARGS)
2775{
2776	struct mfc	*rt;
2777	int		 error, i;
2778
2779	if (req->newptr)
2780		return (EPERM);
2781	if (V_mfchashtbl == NULL)	/* XXX unlocked */
2782		return (0);
2783	error = sysctl_wire_old_buffer(req, 0);
2784	if (error)
2785		return (error);
2786
2787	MFC_LOCK();
2788	for (i = 0; i < mfchashsize; i++) {
2789		LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) {
2790			error = SYSCTL_OUT(req, rt, sizeof(struct mfc));
2791			if (error)
2792				goto out_locked;
2793		}
2794	}
2795out_locked:
2796	MFC_UNLOCK();
2797	return (error);
2798}
2799
2800static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
2801    sysctl_mfctable, "IPv4 Multicast Forwarding Table "
2802    "(struct *mfc[mfchashsize], netinet/ip_mroute.h)");
2803
2804static void
2805vnet_mroute_init(const void *unused __unused)
2806{
2807
2808	MALLOC(V_nexpire, u_char *, mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO);
2809	bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers));
2810	callout_init(&V_expire_upcalls_ch, 1);
2811	callout_init(&V_bw_upcalls_ch, 1);
2812	callout_init(&V_bw_meter_ch, 1);
2813}
2814
2815VNET_SYSINIT(vnet_mroute_init, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mroute_init,
2816	NULL);
2817
2818static void
2819vnet_mroute_uninit(const void *unused __unused)
2820{
2821
2822	FREE(V_nexpire, M_MRTABLE);
2823	V_nexpire = NULL;
2824}
2825
2826VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PSEUDO, SI_ORDER_MIDDLE,
2827	vnet_mroute_uninit, NULL);
2828
2829static int
2830ip_mroute_modevent(module_t mod, int type, void *unused)
2831{
2832
2833    switch (type) {
2834    case MOD_LOAD:
2835	MROUTER_LOCK_INIT();
2836
2837	if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
2838	    if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
2839	if (if_detach_event_tag == NULL) {
2840		printf("ip_mroute: unable to register "
2841		    "ifnet_departure_event handler\n");
2842		MROUTER_LOCK_DESTROY();
2843		return (EINVAL);
2844	}
2845
2846	MFC_LOCK_INIT();
2847	VIF_LOCK_INIT();
2848
2849	mfchashsize = MFCHASHSIZE;
2850	if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) &&
2851	    !powerof2(mfchashsize)) {
2852		printf("WARNING: %s not a power of 2; using default\n",
2853		    "net.inet.ip.mfchashsize");
2854		mfchashsize = MFCHASHSIZE;
2855	}
2856
2857	pim_squelch_wholepkt = 0;
2858	TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
2859	    &pim_squelch_wholepkt);
2860
2861	pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM,
2862	    pim_encapcheck, &in_pim_protosw, NULL);
2863	if (pim_encap_cookie == NULL) {
2864		printf("ip_mroute: unable to attach pim encap\n");
2865		VIF_LOCK_DESTROY();
2866		MFC_LOCK_DESTROY();
2867		MROUTER_LOCK_DESTROY();
2868		return (EINVAL);
2869	}
2870
2871	ip_mcast_src = X_ip_mcast_src;
2872	ip_mforward = X_ip_mforward;
2873	ip_mrouter_done = X_ip_mrouter_done;
2874	ip_mrouter_get = X_ip_mrouter_get;
2875	ip_mrouter_set = X_ip_mrouter_set;
2876
2877	ip_rsvp_force_done = X_ip_rsvp_force_done;
2878	ip_rsvp_vif = X_ip_rsvp_vif;
2879
2880	legal_vif_num = X_legal_vif_num;
2881	mrt_ioctl = X_mrt_ioctl;
2882	rsvp_input_p = X_rsvp_input;
2883	break;
2884
2885    case MOD_UNLOAD:
2886	/*
2887	 * Typically module unload happens after the user-level
2888	 * process has shutdown the kernel services (the check
2889	 * below insures someone can't just yank the module out
2890	 * from under a running process).  But if the module is
2891	 * just loaded and then unloaded w/o starting up a user
2892	 * process we still need to cleanup.
2893	 */
2894	MROUTER_LOCK();
2895	if (ip_mrouter_cnt != 0) {
2896	    MROUTER_UNLOCK();
2897	    return (EINVAL);
2898	}
2899	ip_mrouter_unloading = 1;
2900	MROUTER_UNLOCK();
2901
2902	EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
2903
2904	if (pim_encap_cookie) {
2905	    encap_detach(pim_encap_cookie);
2906	    pim_encap_cookie = NULL;
2907	}
2908
2909	ip_mcast_src = NULL;
2910	ip_mforward = NULL;
2911	ip_mrouter_done = NULL;
2912	ip_mrouter_get = NULL;
2913	ip_mrouter_set = NULL;
2914
2915	ip_rsvp_force_done = NULL;
2916	ip_rsvp_vif = NULL;
2917
2918	legal_vif_num = NULL;
2919	mrt_ioctl = NULL;
2920	rsvp_input_p = NULL;
2921
2922	VIF_LOCK_DESTROY();
2923	MFC_LOCK_DESTROY();
2924	MROUTER_LOCK_DESTROY();
2925	break;
2926
2927    default:
2928	return EOPNOTSUPP;
2929    }
2930    return 0;
2931}
2932
2933static moduledata_t ip_mroutemod = {
2934    "ip_mroute",
2935    ip_mroute_modevent,
2936    0
2937};
2938
2939DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_MIDDLE);
2940