1/*-
2 * Copyright (c) 1988, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)radix.c	8.5 (Berkeley) 5/19/95
30 * $FreeBSD$
31 */
32
33/*
34 * Routines to build and maintain radix trees for routing lookups.
35 */
36#include <sys/param.h>
37#ifdef	_KERNEL
38#include <sys/lock.h>
39#include <sys/mutex.h>
40#include <sys/rwlock.h>
41#include <sys/systm.h>
42#include <sys/malloc.h>
43#include <sys/syslog.h>
44#include <net/radix.h>
45#include "opt_mpath.h"
46#ifdef RADIX_MPATH
47#include <net/radix_mpath.h>
48#endif
49#else /* !_KERNEL */
50#include <stdio.h>
51#include <strings.h>
52#include <stdlib.h>
53#define log(x, arg...)	fprintf(stderr, ## arg)
54#define panic(x)	fprintf(stderr, "PANIC: %s", x), exit(1)
55#define min(a, b) ((a) < (b) ? (a) : (b) )
56#include <net/radix.h>
57#endif /* !_KERNEL */
58
59static int	rn_walktree_from(struct radix_node_head *h, void *a, void *m,
60		    walktree_f_t *f, void *w);
61static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
62static struct radix_node
63	 *rn_insert(void *, struct radix_node_head *, int *,
64	     struct radix_node [2]),
65	 *rn_newpair(void *, int, struct radix_node[2]),
66	 *rn_search(void *, struct radix_node *),
67	 *rn_search_m(void *, struct radix_node *, void *);
68
69static void rn_detachhead_internal(void **head);
70static int rn_inithead_internal(void **head, int off);
71
72#define	RADIX_MAX_KEY_LEN	32
73
74static char rn_zeros[RADIX_MAX_KEY_LEN];
75static char rn_ones[RADIX_MAX_KEY_LEN] = {
76	-1, -1, -1, -1, -1, -1, -1, -1,
77	-1, -1, -1, -1, -1, -1, -1, -1,
78	-1, -1, -1, -1, -1, -1, -1, -1,
79	-1, -1, -1, -1, -1, -1, -1, -1,
80};
81
82/*
83 * XXX: Compat stuff for old rn_addmask() users
84 */
85static struct radix_node_head *mask_rnhead_compat;
86#ifdef	_KERNEL
87static struct mtx mask_mtx;
88#endif
89
90
91static int	rn_lexobetter(void *m_arg, void *n_arg);
92static struct radix_mask *
93		rn_new_radix_mask(struct radix_node *tt,
94		    struct radix_mask *next);
95static int	rn_satisfies_leaf(char *trial, struct radix_node *leaf,
96		    int skip);
97
98/*
99 * The data structure for the keys is a radix tree with one way
100 * branching removed.  The index rn_bit at an internal node n represents a bit
101 * position to be tested.  The tree is arranged so that all descendants
102 * of a node n have keys whose bits all agree up to position rn_bit - 1.
103 * (We say the index of n is rn_bit.)
104 *
105 * There is at least one descendant which has a one bit at position rn_bit,
106 * and at least one with a zero there.
107 *
108 * A route is determined by a pair of key and mask.  We require that the
109 * bit-wise logical and of the key and mask to be the key.
110 * We define the index of a route to associated with the mask to be
111 * the first bit number in the mask where 0 occurs (with bit number 0
112 * representing the highest order bit).
113 *
114 * We say a mask is normal if every bit is 0, past the index of the mask.
115 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
116 * and m is a normal mask, then the route applies to every descendant of n.
117 * If the index(m) < rn_bit, this implies the trailing last few bits of k
118 * before bit b are all 0, (and hence consequently true of every descendant
119 * of n), so the route applies to all descendants of the node as well.
120 *
121 * Similar logic shows that a non-normal mask m such that
122 * index(m) <= index(n) could potentially apply to many children of n.
123 * Thus, for each non-host route, we attach its mask to a list at an internal
124 * node as high in the tree as we can go.
125 *
126 * The present version of the code makes use of normal routes in short-
127 * circuiting an explict mask and compare operation when testing whether
128 * a key satisfies a normal route, and also in remembering the unique leaf
129 * that governs a subtree.
130 */
131
132/*
133 * Most of the functions in this code assume that the key/mask arguments
134 * are sockaddr-like structures, where the first byte is an u_char
135 * indicating the size of the entire structure.
136 *
137 * To make the assumption more explicit, we use the LEN() macro to access
138 * this field. It is safe to pass an expression with side effects
139 * to LEN() as the argument is evaluated only once.
140 * We cast the result to int as this is the dominant usage.
141 */
142#define LEN(x) ( (int) (*(const u_char *)(x)) )
143
144/*
145 * XXX THIS NEEDS TO BE FIXED
146 * In the code, pointers to keys and masks are passed as either
147 * 'void *' (because callers use to pass pointers of various kinds), or
148 * 'caddr_t' (which is fine for pointer arithmetics, but not very
149 * clean when you dereference it to access data). Furthermore, caddr_t
150 * is really 'char *', while the natural type to operate on keys and
151 * masks would be 'u_char'. This mismatch require a lot of casts and
152 * intermediate variables to adapt types that clutter the code.
153 */
154
155/*
156 * Search a node in the tree matching the key.
157 */
158static struct radix_node *
159rn_search(void *v_arg, struct radix_node *head)
160{
161	struct radix_node *x;
162	caddr_t v;
163
164	for (x = head, v = v_arg; x->rn_bit >= 0;) {
165		if (x->rn_bmask & v[x->rn_offset])
166			x = x->rn_right;
167		else
168			x = x->rn_left;
169	}
170	return (x);
171}
172
173/*
174 * Same as above, but with an additional mask.
175 * XXX note this function is used only once.
176 */
177static struct radix_node *
178rn_search_m(void *v_arg, struct radix_node *head, void *m_arg)
179{
180	struct radix_node *x;
181	caddr_t v = v_arg, m = m_arg;
182
183	for (x = head; x->rn_bit >= 0;) {
184		if ((x->rn_bmask & m[x->rn_offset]) &&
185		    (x->rn_bmask & v[x->rn_offset]))
186			x = x->rn_right;
187		else
188			x = x->rn_left;
189	}
190	return (x);
191}
192
193int
194rn_refines(void *m_arg, void *n_arg)
195{
196	caddr_t m = m_arg, n = n_arg;
197	caddr_t lim, lim2 = lim = n + LEN(n);
198	int longer = LEN(n++) - LEN(m++);
199	int masks_are_equal = 1;
200
201	if (longer > 0)
202		lim -= longer;
203	while (n < lim) {
204		if (*n & ~(*m))
205			return (0);
206		if (*n++ != *m++)
207			masks_are_equal = 0;
208	}
209	while (n < lim2)
210		if (*n++)
211			return (0);
212	if (masks_are_equal && (longer < 0))
213		for (lim2 = m - longer; m < lim2; )
214			if (*m++)
215				return (1);
216	return (!masks_are_equal);
217}
218
219/*
220 * Search for exact match in given @head.
221 * Assume host bits are cleared in @v_arg if @m_arg is not NULL
222 * Note that prefixes with /32 or /128 masks are treated differently
223 * from host routes.
224 */
225struct radix_node *
226rn_lookup(void *v_arg, void *m_arg, struct radix_node_head *head)
227{
228	struct radix_node *x;
229	caddr_t netmask;
230
231	if (m_arg != NULL) {
232		/*
233		 * Most common case: search exact prefix/mask
234		 */
235		x = rn_addmask_r(m_arg, head->rnh_masks, 1,
236		    head->rnh_treetop->rn_offset);
237		if (x == NULL)
238			return (NULL);
239		netmask = x->rn_key;
240
241		x = rn_match(v_arg, head);
242
243		while (x != NULL && x->rn_mask != netmask)
244			x = x->rn_dupedkey;
245
246		return (x);
247	}
248
249	/*
250	 * Search for host address.
251	 */
252	if ((x = rn_match(v_arg, head)) == NULL)
253		return (NULL);
254
255	/* Check if found key is the same */
256	if (LEN(x->rn_key) != LEN(v_arg) || bcmp(x->rn_key, v_arg, LEN(v_arg)))
257		return (NULL);
258
259	/* Check if this is not host route */
260	if (x->rn_mask != NULL)
261		return (NULL);
262
263	return (x);
264}
265
266static int
267rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip)
268{
269	char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
270	char *cplim;
271	int length = min(LEN(cp), LEN(cp2));
272
273	if (cp3 == NULL)
274		cp3 = rn_ones;
275	else
276		length = min(length, LEN(cp3));
277	cplim = cp + length; cp3 += skip; cp2 += skip;
278	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
279		if ((*cp ^ *cp2) & *cp3)
280			return (0);
281	return (1);
282}
283
284/*
285 * Search for longest-prefix match in given @head
286 */
287struct radix_node *
288rn_match(void *v_arg, struct radix_node_head *head)
289{
290	caddr_t v = v_arg;
291	struct radix_node *t = head->rnh_treetop, *x;
292	caddr_t cp = v, cp2;
293	caddr_t cplim;
294	struct radix_node *saved_t, *top = t;
295	int off = t->rn_offset, vlen = LEN(cp), matched_off;
296	int test, b, rn_bit;
297
298	/*
299	 * Open code rn_search(v, top) to avoid overhead of extra
300	 * subroutine call.
301	 */
302	for (; t->rn_bit >= 0; ) {
303		if (t->rn_bmask & cp[t->rn_offset])
304			t = t->rn_right;
305		else
306			t = t->rn_left;
307	}
308	/*
309	 * See if we match exactly as a host destination
310	 * or at least learn how many bits match, for normal mask finesse.
311	 *
312	 * It doesn't hurt us to limit how many bytes to check
313	 * to the length of the mask, since if it matches we had a genuine
314	 * match and the leaf we have is the most specific one anyway;
315	 * if it didn't match with a shorter length it would fail
316	 * with a long one.  This wins big for class B&C netmasks which
317	 * are probably the most common case...
318	 */
319	if (t->rn_mask)
320		vlen = *(u_char *)t->rn_mask;
321	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
322	for (; cp < cplim; cp++, cp2++)
323		if (*cp != *cp2)
324			goto on1;
325	/*
326	 * This extra grot is in case we are explicitly asked
327	 * to look up the default.  Ugh!
328	 *
329	 * Never return the root node itself, it seems to cause a
330	 * lot of confusion.
331	 */
332	if (t->rn_flags & RNF_ROOT)
333		t = t->rn_dupedkey;
334	return (t);
335on1:
336	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
337	for (b = 7; (test >>= 1) > 0;)
338		b--;
339	matched_off = cp - v;
340	b += matched_off << 3;
341	rn_bit = -1 - b;
342	/*
343	 * If there is a host route in a duped-key chain, it will be first.
344	 */
345	if ((saved_t = t)->rn_mask == 0)
346		t = t->rn_dupedkey;
347	for (; t; t = t->rn_dupedkey)
348		/*
349		 * Even if we don't match exactly as a host,
350		 * we may match if the leaf we wound up at is
351		 * a route to a net.
352		 */
353		if (t->rn_flags & RNF_NORMAL) {
354			if (rn_bit <= t->rn_bit)
355				return (t);
356		} else if (rn_satisfies_leaf(v, t, matched_off))
357				return (t);
358	t = saved_t;
359	/* start searching up the tree */
360	do {
361		struct radix_mask *m;
362		t = t->rn_parent;
363		m = t->rn_mklist;
364		/*
365		 * If non-contiguous masks ever become important
366		 * we can restore the masking and open coding of
367		 * the search and satisfaction test and put the
368		 * calculation of "off" back before the "do".
369		 */
370		while (m) {
371			if (m->rm_flags & RNF_NORMAL) {
372				if (rn_bit <= m->rm_bit)
373					return (m->rm_leaf);
374			} else {
375				off = min(t->rn_offset, matched_off);
376				x = rn_search_m(v, t, m->rm_mask);
377				while (x && x->rn_mask != m->rm_mask)
378					x = x->rn_dupedkey;
379				if (x && rn_satisfies_leaf(v, x, off))
380					return (x);
381			}
382			m = m->rm_mklist;
383		}
384	} while (t != top);
385	return (0);
386}
387
388#ifdef RN_DEBUG
389int	rn_nodenum;
390struct	radix_node *rn_clist;
391int	rn_saveinfo;
392int	rn_debug =  1;
393#endif
394
395/*
396 * Whenever we add a new leaf to the tree, we also add a parent node,
397 * so we allocate them as an array of two elements: the first one must be
398 * the leaf (see RNTORT() in route.c), the second one is the parent.
399 * This routine initializes the relevant fields of the nodes, so that
400 * the leaf is the left child of the parent node, and both nodes have
401 * (almost) all all fields filled as appropriate.
402 * (XXX some fields are left unset, see the '#if 0' section).
403 * The function returns a pointer to the parent node.
404 */
405
406static struct radix_node *
407rn_newpair(void *v, int b, struct radix_node nodes[2])
408{
409	struct radix_node *tt = nodes, *t = tt + 1;
410	t->rn_bit = b;
411	t->rn_bmask = 0x80 >> (b & 7);
412	t->rn_left = tt;
413	t->rn_offset = b >> 3;
414
415#if 0  /* XXX perhaps we should fill these fields as well. */
416	t->rn_parent = t->rn_right = NULL;
417
418	tt->rn_mask = NULL;
419	tt->rn_dupedkey = NULL;
420	tt->rn_bmask = 0;
421#endif
422	tt->rn_bit = -1;
423	tt->rn_key = (caddr_t)v;
424	tt->rn_parent = t;
425	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
426	tt->rn_mklist = t->rn_mklist = 0;
427#ifdef RN_DEBUG
428	tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
429	tt->rn_twin = t;
430	tt->rn_ybro = rn_clist;
431	rn_clist = tt;
432#endif
433	return (t);
434}
435
436static struct radix_node *
437rn_insert(void *v_arg, struct radix_node_head *head, int *dupentry,
438    struct radix_node nodes[2])
439{
440	caddr_t v = v_arg;
441	struct radix_node *top = head->rnh_treetop;
442	int head_off = top->rn_offset, vlen = LEN(v);
443	struct radix_node *t = rn_search(v_arg, top);
444	caddr_t cp = v + head_off;
445	int b;
446	struct radix_node *p, *tt, *x;
447    	/*
448	 * Find first bit at which v and t->rn_key differ
449	 */
450	caddr_t cp2 = t->rn_key + head_off;
451	int cmp_res;
452	caddr_t cplim = v + vlen;
453
454	while (cp < cplim)
455		if (*cp2++ != *cp++)
456			goto on1;
457	*dupentry = 1;
458	return (t);
459on1:
460	*dupentry = 0;
461	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
462	for (b = (cp - v) << 3; cmp_res; b--)
463		cmp_res >>= 1;
464
465	x = top;
466	cp = v;
467	do {
468		p = x;
469		if (cp[x->rn_offset] & x->rn_bmask)
470			x = x->rn_right;
471		else
472			x = x->rn_left;
473	} while (b > (unsigned) x->rn_bit);
474				/* x->rn_bit < b && x->rn_bit >= 0 */
475#ifdef RN_DEBUG
476	if (rn_debug)
477		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
478#endif
479	t = rn_newpair(v_arg, b, nodes);
480	tt = t->rn_left;
481	if ((cp[p->rn_offset] & p->rn_bmask) == 0)
482		p->rn_left = t;
483	else
484		p->rn_right = t;
485	x->rn_parent = t;
486	t->rn_parent = p; /* frees x, p as temp vars below */
487	if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
488		t->rn_right = x;
489	} else {
490		t->rn_right = tt;
491		t->rn_left = x;
492	}
493#ifdef RN_DEBUG
494	if (rn_debug)
495		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
496#endif
497	return (tt);
498}
499
500struct radix_node *
501rn_addmask_r(void *arg, struct radix_node_head *maskhead, int search, int skip)
502{
503	unsigned char *netmask = arg;
504	unsigned char *cp, *cplim;
505	struct radix_node *x;
506	int b = 0, mlen, j;
507	int maskduplicated, isnormal;
508	struct radix_node *saved_x;
509	unsigned char addmask_key[RADIX_MAX_KEY_LEN];
510
511	if ((mlen = LEN(netmask)) > RADIX_MAX_KEY_LEN)
512		mlen = RADIX_MAX_KEY_LEN;
513	if (skip == 0)
514		skip = 1;
515	if (mlen <= skip)
516		return (maskhead->rnh_nodes);
517
518	bzero(addmask_key, RADIX_MAX_KEY_LEN);
519	if (skip > 1)
520		bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
521	bcopy(netmask + skip, addmask_key + skip, mlen - skip);
522	/*
523	 * Trim trailing zeroes.
524	 */
525	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
526		cp--;
527	mlen = cp - addmask_key;
528	if (mlen <= skip)
529		return (maskhead->rnh_nodes);
530	*addmask_key = mlen;
531	x = rn_search(addmask_key, maskhead->rnh_treetop);
532	if (bcmp(addmask_key, x->rn_key, mlen) != 0)
533		x = 0;
534	if (x || search)
535		return (x);
536	R_Zalloc(x, struct radix_node *, RADIX_MAX_KEY_LEN + 2 * sizeof (*x));
537	if ((saved_x = x) == 0)
538		return (0);
539	netmask = cp = (caddr_t)(x + 2);
540	bcopy(addmask_key, cp, mlen);
541	x = rn_insert(cp, maskhead, &maskduplicated, x);
542	if (maskduplicated) {
543		log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
544		Free(saved_x);
545		return (x);
546	}
547	/*
548	 * Calculate index of mask, and check for normalcy.
549	 * First find the first byte with a 0 bit, then if there are
550	 * more bits left (remember we already trimmed the trailing 0's),
551	 * the bits should be contiguous, otherwise we have got
552	 * a non-contiguous mask.
553	 */
554#define	CONTIG(_c)	(((~(_c) + 1) & (_c)) == (unsigned char)(~(_c) + 1))
555	cplim = netmask + mlen;
556	isnormal = 1;
557	for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
558		cp++;
559	if (cp != cplim) {
560		for (j = 0x80; (j & *cp) != 0; j >>= 1)
561			b++;
562		if (!CONTIG(*cp) || cp != (cplim - 1))
563			isnormal = 0;
564	}
565	b += (cp - netmask) << 3;
566	x->rn_bit = -1 - b;
567	if (isnormal)
568		x->rn_flags |= RNF_NORMAL;
569	return (x);
570}
571
572struct radix_node *
573rn_addmask(void *n_arg, int search, int skip)
574{
575	struct radix_node *tt;
576
577#ifdef _KERNEL
578	mtx_lock(&mask_mtx);
579#endif
580	tt = rn_addmask_r(&mask_rnhead_compat, n_arg, search, skip);
581
582#ifdef _KERNEL
583	mtx_unlock(&mask_mtx);
584#endif
585
586	return (tt);
587}
588
589static int	/* XXX: arbitrary ordering for non-contiguous masks */
590rn_lexobetter(void *m_arg, void *n_arg)
591{
592	u_char *mp = m_arg, *np = n_arg, *lim;
593
594	if (LEN(mp) > LEN(np))
595		return (1);  /* not really, but need to check longer one first */
596	if (LEN(mp) == LEN(np))
597		for (lim = mp + LEN(mp); mp < lim;)
598			if (*mp++ > *np++)
599				return (1);
600	return (0);
601}
602
603static struct radix_mask *
604rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next)
605{
606	struct radix_mask *m;
607
608	R_Malloc(m, struct radix_mask *, sizeof (struct radix_mask));
609	if (m == NULL) {
610		log(LOG_ERR, "Failed to allocate route mask\n");
611		return (0);
612	}
613	bzero(m, sizeof(*m));
614	m->rm_bit = tt->rn_bit;
615	m->rm_flags = tt->rn_flags;
616	if (tt->rn_flags & RNF_NORMAL)
617		m->rm_leaf = tt;
618	else
619		m->rm_mask = tt->rn_mask;
620	m->rm_mklist = next;
621	tt->rn_mklist = m;
622	return (m);
623}
624
625struct radix_node *
626rn_addroute(void *v_arg, void *n_arg, struct radix_node_head *head,
627    struct radix_node treenodes[2])
628{
629	caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
630	struct radix_node *t, *x = 0, *tt;
631	struct radix_node *saved_tt, *top = head->rnh_treetop;
632	short b = 0, b_leaf = 0;
633	int keyduplicated;
634	caddr_t mmask;
635	struct radix_mask *m, **mp;
636
637	/*
638	 * In dealing with non-contiguous masks, there may be
639	 * many different routes which have the same mask.
640	 * We will find it useful to have a unique pointer to
641	 * the mask to speed avoiding duplicate references at
642	 * nodes and possibly save time in calculating indices.
643	 */
644	if (netmask)  {
645		x = rn_addmask_r(netmask, head->rnh_masks, 0, top->rn_offset);
646		if (x == NULL)
647			return (0);
648		b_leaf = x->rn_bit;
649		b = -1 - x->rn_bit;
650		netmask = x->rn_key;
651	}
652	/*
653	 * Deal with duplicated keys: attach node to previous instance
654	 */
655	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
656	if (keyduplicated) {
657		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
658#ifdef RADIX_MPATH
659			/* permit multipath, if enabled for the family */
660			if (rn_mpath_capable(head) && netmask == tt->rn_mask) {
661				/*
662				 * go down to the end of multipaths, so that
663				 * new entry goes into the end of rn_dupedkey
664				 * chain.
665				 */
666				do {
667					t = tt;
668					tt = tt->rn_dupedkey;
669				} while (tt && t->rn_mask == tt->rn_mask);
670				break;
671			}
672#endif
673			if (tt->rn_mask == netmask)
674				return (0);
675			if (netmask == 0 ||
676			    (tt->rn_mask &&
677			     ((b_leaf < tt->rn_bit) /* index(netmask) > node */
678			      || rn_refines(netmask, tt->rn_mask)
679			      || rn_lexobetter(netmask, tt->rn_mask))))
680				break;
681		}
682		/*
683		 * If the mask is not duplicated, we wouldn't
684		 * find it among possible duplicate key entries
685		 * anyway, so the above test doesn't hurt.
686		 *
687		 * We sort the masks for a duplicated key the same way as
688		 * in a masklist -- most specific to least specific.
689		 * This may require the unfortunate nuisance of relocating
690		 * the head of the list.
691		 *
692		 * We also reverse, or doubly link the list through the
693		 * parent pointer.
694		 */
695		if (tt == saved_tt) {
696			struct	radix_node *xx = x;
697			/* link in at head of list */
698			(tt = treenodes)->rn_dupedkey = t;
699			tt->rn_flags = t->rn_flags;
700			tt->rn_parent = x = t->rn_parent;
701			t->rn_parent = tt;	 		/* parent */
702			if (x->rn_left == t)
703				x->rn_left = tt;
704			else
705				x->rn_right = tt;
706			saved_tt = tt; x = xx;
707		} else {
708			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
709			t->rn_dupedkey = tt;
710			tt->rn_parent = t;			/* parent */
711			if (tt->rn_dupedkey)			/* parent */
712				tt->rn_dupedkey->rn_parent = tt; /* parent */
713		}
714#ifdef RN_DEBUG
715		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
716		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
717#endif
718		tt->rn_key = (caddr_t) v;
719		tt->rn_bit = -1;
720		tt->rn_flags = RNF_ACTIVE;
721	}
722	/*
723	 * Put mask in tree.
724	 */
725	if (netmask) {
726		tt->rn_mask = netmask;
727		tt->rn_bit = x->rn_bit;
728		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
729	}
730	t = saved_tt->rn_parent;
731	if (keyduplicated)
732		goto on2;
733	b_leaf = -1 - t->rn_bit;
734	if (t->rn_right == saved_tt)
735		x = t->rn_left;
736	else
737		x = t->rn_right;
738	/* Promote general routes from below */
739	if (x->rn_bit < 0) {
740	    for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
741		if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
742			*mp = m = rn_new_radix_mask(x, 0);
743			if (m)
744				mp = &m->rm_mklist;
745		}
746	} else if (x->rn_mklist) {
747		/*
748		 * Skip over masks whose index is > that of new node
749		 */
750		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
751			if (m->rm_bit >= b_leaf)
752				break;
753		t->rn_mklist = m; *mp = 0;
754	}
755on2:
756	/* Add new route to highest possible ancestor's list */
757	if ((netmask == 0) || (b > t->rn_bit ))
758		return (tt); /* can't lift at all */
759	b_leaf = tt->rn_bit;
760	do {
761		x = t;
762		t = t->rn_parent;
763	} while (b <= t->rn_bit && x != top);
764	/*
765	 * Search through routes associated with node to
766	 * insert new route according to index.
767	 * Need same criteria as when sorting dupedkeys to avoid
768	 * double loop on deletion.
769	 */
770	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
771		if (m->rm_bit < b_leaf)
772			continue;
773		if (m->rm_bit > b_leaf)
774			break;
775		if (m->rm_flags & RNF_NORMAL) {
776			mmask = m->rm_leaf->rn_mask;
777			if (tt->rn_flags & RNF_NORMAL) {
778#if !defined(RADIX_MPATH)
779			    log(LOG_ERR,
780			        "Non-unique normal route, mask not entered\n");
781#endif
782				return (tt);
783			}
784		} else
785			mmask = m->rm_mask;
786		if (mmask == netmask) {
787			m->rm_refs++;
788			tt->rn_mklist = m;
789			return (tt);
790		}
791		if (rn_refines(netmask, mmask)
792		    || rn_lexobetter(netmask, mmask))
793			break;
794	}
795	*mp = rn_new_radix_mask(tt, *mp);
796	return (tt);
797}
798
799struct radix_node *
800rn_delete(void *v_arg, void *netmask_arg, struct radix_node_head *head)
801{
802	struct radix_node *t, *p, *x, *tt;
803	struct radix_mask *m, *saved_m, **mp;
804	struct radix_node *dupedkey, *saved_tt, *top;
805	caddr_t v, netmask;
806	int b, head_off, vlen;
807
808	v = v_arg;
809	netmask = netmask_arg;
810	x = head->rnh_treetop;
811	tt = rn_search(v, x);
812	head_off = x->rn_offset;
813	vlen =  LEN(v);
814	saved_tt = tt;
815	top = x;
816	if (tt == 0 ||
817	    bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
818		return (0);
819	/*
820	 * Delete our route from mask lists.
821	 */
822	if (netmask) {
823		x = rn_addmask_r(netmask, head->rnh_masks, 1, head_off);
824		if (x == NULL)
825			return (0);
826		netmask = x->rn_key;
827		while (tt->rn_mask != netmask)
828			if ((tt = tt->rn_dupedkey) == 0)
829				return (0);
830	}
831	if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
832		goto on1;
833	if (tt->rn_flags & RNF_NORMAL) {
834		if (m->rm_leaf != tt || m->rm_refs > 0) {
835			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
836			return (0);  /* dangling ref could cause disaster */
837		}
838	} else {
839		if (m->rm_mask != tt->rn_mask) {
840			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
841			goto on1;
842		}
843		if (--m->rm_refs >= 0)
844			goto on1;
845	}
846	b = -1 - tt->rn_bit;
847	t = saved_tt->rn_parent;
848	if (b > t->rn_bit)
849		goto on1; /* Wasn't lifted at all */
850	do {
851		x = t;
852		t = t->rn_parent;
853	} while (b <= t->rn_bit && x != top);
854	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
855		if (m == saved_m) {
856			*mp = m->rm_mklist;
857			Free(m);
858			break;
859		}
860	if (m == 0) {
861		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
862		if (tt->rn_flags & RNF_NORMAL)
863			return (0); /* Dangling ref to us */
864	}
865on1:
866	/*
867	 * Eliminate us from tree
868	 */
869	if (tt->rn_flags & RNF_ROOT)
870		return (0);
871#ifdef RN_DEBUG
872	/* Get us out of the creation list */
873	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
874	if (t) t->rn_ybro = tt->rn_ybro;
875#endif
876	t = tt->rn_parent;
877	dupedkey = saved_tt->rn_dupedkey;
878	if (dupedkey) {
879		/*
880		 * Here, tt is the deletion target and
881		 * saved_tt is the head of the dupekey chain.
882		 */
883		if (tt == saved_tt) {
884			/* remove from head of chain */
885			x = dupedkey; x->rn_parent = t;
886			if (t->rn_left == tt)
887				t->rn_left = x;
888			else
889				t->rn_right = x;
890		} else {
891			/* find node in front of tt on the chain */
892			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
893				p = p->rn_dupedkey;
894			if (p) {
895				p->rn_dupedkey = tt->rn_dupedkey;
896				if (tt->rn_dupedkey)		/* parent */
897					tt->rn_dupedkey->rn_parent = p;
898								/* parent */
899			} else log(LOG_ERR, "rn_delete: couldn't find us\n");
900		}
901		t = tt + 1;
902		if  (t->rn_flags & RNF_ACTIVE) {
903#ifndef RN_DEBUG
904			*++x = *t;
905			p = t->rn_parent;
906#else
907			b = t->rn_info;
908			*++x = *t;
909			t->rn_info = b;
910			p = t->rn_parent;
911#endif
912			if (p->rn_left == t)
913				p->rn_left = x;
914			else
915				p->rn_right = x;
916			x->rn_left->rn_parent = x;
917			x->rn_right->rn_parent = x;
918		}
919		goto out;
920	}
921	if (t->rn_left == tt)
922		x = t->rn_right;
923	else
924		x = t->rn_left;
925	p = t->rn_parent;
926	if (p->rn_right == t)
927		p->rn_right = x;
928	else
929		p->rn_left = x;
930	x->rn_parent = p;
931	/*
932	 * Demote routes attached to us.
933	 */
934	if (t->rn_mklist) {
935		if (x->rn_bit >= 0) {
936			for (mp = &x->rn_mklist; (m = *mp);)
937				mp = &m->rm_mklist;
938			*mp = t->rn_mklist;
939		} else {
940			/* If there are any key,mask pairs in a sibling
941			   duped-key chain, some subset will appear sorted
942			   in the same order attached to our mklist */
943			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
944				if (m == x->rn_mklist) {
945					struct radix_mask *mm = m->rm_mklist;
946					x->rn_mklist = 0;
947					if (--(m->rm_refs) < 0)
948						Free(m);
949					m = mm;
950				}
951			if (m)
952				log(LOG_ERR,
953				    "rn_delete: Orphaned Mask %p at %p\n",
954				    m, x);
955		}
956	}
957	/*
958	 * We may be holding an active internal node in the tree.
959	 */
960	x = tt + 1;
961	if (t != x) {
962#ifndef RN_DEBUG
963		*t = *x;
964#else
965		b = t->rn_info;
966		*t = *x;
967		t->rn_info = b;
968#endif
969		t->rn_left->rn_parent = t;
970		t->rn_right->rn_parent = t;
971		p = x->rn_parent;
972		if (p->rn_left == x)
973			p->rn_left = t;
974		else
975			p->rn_right = t;
976	}
977out:
978	tt->rn_flags &= ~RNF_ACTIVE;
979	tt[1].rn_flags &= ~RNF_ACTIVE;
980	return (tt);
981}
982
983/*
984 * This is the same as rn_walktree() except for the parameters and the
985 * exit.
986 */
987static int
988rn_walktree_from(struct radix_node_head *h, void *a, void *m,
989    walktree_f_t *f, void *w)
990{
991	int error;
992	struct radix_node *base, *next;
993	u_char *xa = (u_char *)a;
994	u_char *xm = (u_char *)m;
995	struct radix_node *rn, *last = NULL; /* shut up gcc */
996	int stopping = 0;
997	int lastb;
998
999	/*
1000	 * rn_search_m is sort-of-open-coded here. We cannot use the
1001	 * function because we need to keep track of the last node seen.
1002	 */
1003	/* printf("about to search\n"); */
1004	for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
1005		last = rn;
1006		/* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
1007		       rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
1008		if (!(rn->rn_bmask & xm[rn->rn_offset])) {
1009			break;
1010		}
1011		if (rn->rn_bmask & xa[rn->rn_offset]) {
1012			rn = rn->rn_right;
1013		} else {
1014			rn = rn->rn_left;
1015		}
1016	}
1017	/* printf("done searching\n"); */
1018
1019	/*
1020	 * Two cases: either we stepped off the end of our mask,
1021	 * in which case last == rn, or we reached a leaf, in which
1022	 * case we want to start from the last node we looked at.
1023	 * Either way, last is the node we want to start from.
1024	 */
1025	rn = last;
1026	lastb = rn->rn_bit;
1027
1028	/* printf("rn %p, lastb %d\n", rn, lastb);*/
1029
1030	/*
1031	 * This gets complicated because we may delete the node
1032	 * while applying the function f to it, so we need to calculate
1033	 * the successor node in advance.
1034	 */
1035	while (rn->rn_bit >= 0)
1036		rn = rn->rn_left;
1037
1038	while (!stopping) {
1039		/* printf("node %p (%d)\n", rn, rn->rn_bit); */
1040		base = rn;
1041		/* If at right child go back up, otherwise, go right */
1042		while (rn->rn_parent->rn_right == rn
1043		       && !(rn->rn_flags & RNF_ROOT)) {
1044			rn = rn->rn_parent;
1045
1046			/* if went up beyond last, stop */
1047			if (rn->rn_bit <= lastb) {
1048				stopping = 1;
1049				/* printf("up too far\n"); */
1050				/*
1051				 * XXX we should jump to the 'Process leaves'
1052				 * part, because the values of 'rn' and 'next'
1053				 * we compute will not be used. Not a big deal
1054				 * because this loop will terminate, but it is
1055				 * inefficient and hard to understand!
1056				 */
1057			}
1058		}
1059
1060		/*
1061		 * At the top of the tree, no need to traverse the right
1062		 * half, prevent the traversal of the entire tree in the
1063		 * case of default route.
1064		 */
1065		if (rn->rn_parent->rn_flags & RNF_ROOT)
1066			stopping = 1;
1067
1068		/* Find the next *leaf* since next node might vanish, too */
1069		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1070			rn = rn->rn_left;
1071		next = rn;
1072		/* Process leaves */
1073		while ((rn = base) != 0) {
1074			base = rn->rn_dupedkey;
1075			/* printf("leaf %p\n", rn); */
1076			if (!(rn->rn_flags & RNF_ROOT)
1077			    && (error = (*f)(rn, w)))
1078				return (error);
1079		}
1080		rn = next;
1081
1082		if (rn->rn_flags & RNF_ROOT) {
1083			/* printf("root, stopping"); */
1084			stopping = 1;
1085		}
1086
1087	}
1088	return (0);
1089}
1090
1091static int
1092rn_walktree(struct radix_node_head *h, walktree_f_t *f, void *w)
1093{
1094	int error;
1095	struct radix_node *base, *next;
1096	struct radix_node *rn = h->rnh_treetop;
1097	/*
1098	 * This gets complicated because we may delete the node
1099	 * while applying the function f to it, so we need to calculate
1100	 * the successor node in advance.
1101	 */
1102
1103	/* First time through node, go left */
1104	while (rn->rn_bit >= 0)
1105		rn = rn->rn_left;
1106	for (;;) {
1107		base = rn;
1108		/* If at right child go back up, otherwise, go right */
1109		while (rn->rn_parent->rn_right == rn
1110		       && (rn->rn_flags & RNF_ROOT) == 0)
1111			rn = rn->rn_parent;
1112		/* Find the next *leaf* since next node might vanish, too */
1113		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1114			rn = rn->rn_left;
1115		next = rn;
1116		/* Process leaves */
1117		while ((rn = base)) {
1118			base = rn->rn_dupedkey;
1119			if (!(rn->rn_flags & RNF_ROOT)
1120			    && (error = (*f)(rn, w)))
1121				return (error);
1122		}
1123		rn = next;
1124		if (rn->rn_flags & RNF_ROOT)
1125			return (0);
1126	}
1127	/* NOTREACHED */
1128}
1129
1130/*
1131 * Allocate and initialize an empty tree. This has 3 nodes, which are
1132 * part of the radix_node_head (in the order <left,root,right>) and are
1133 * marked RNF_ROOT so they cannot be freed.
1134 * The leaves have all-zero and all-one keys, with significant
1135 * bits starting at 'off'.
1136 * Return 1 on success, 0 on error.
1137 */
1138static int
1139rn_inithead_internal(void **head, int off)
1140{
1141	struct radix_node_head *rnh;
1142	struct radix_node *t, *tt, *ttt;
1143	if (*head)
1144		return (1);
1145	R_Zalloc(rnh, struct radix_node_head *, sizeof (*rnh));
1146	if (rnh == 0)
1147		return (0);
1148#ifdef _KERNEL
1149	RADIX_NODE_HEAD_LOCK_INIT(rnh);
1150#endif
1151	*head = rnh;
1152	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1153	ttt = rnh->rnh_nodes + 2;
1154	t->rn_right = ttt;
1155	t->rn_parent = t;
1156	tt = t->rn_left;	/* ... which in turn is rnh->rnh_nodes */
1157	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1158	tt->rn_bit = -1 - off;
1159	*ttt = *tt;
1160	ttt->rn_key = rn_ones;
1161	rnh->rnh_addaddr = rn_addroute;
1162	rnh->rnh_deladdr = rn_delete;
1163	rnh->rnh_matchaddr = rn_match;
1164	rnh->rnh_lookup = rn_lookup;
1165	rnh->rnh_walktree = rn_walktree;
1166	rnh->rnh_walktree_from = rn_walktree_from;
1167	rnh->rnh_treetop = t;
1168	return (1);
1169}
1170
1171static void
1172rn_detachhead_internal(void **head)
1173{
1174	struct radix_node_head *rnh;
1175
1176	KASSERT((head != NULL && *head != NULL),
1177	    ("%s: head already freed", __func__));
1178	rnh = *head;
1179
1180	/* Free <left,root,right> nodes. */
1181	Free(rnh);
1182
1183	*head = NULL;
1184}
1185
1186int
1187rn_inithead(void **head, int off)
1188{
1189	struct radix_node_head *rnh;
1190
1191	if (*head != NULL)
1192		return (1);
1193
1194	if (rn_inithead_internal(head, off) == 0)
1195		return (0);
1196
1197	rnh = (struct radix_node_head *)(*head);
1198
1199	if (rn_inithead_internal((void **)&rnh->rnh_masks, 0) == 0) {
1200		rn_detachhead_internal(head);
1201		return (0);
1202	}
1203
1204	return (1);
1205}
1206
1207static int
1208rn_freeentry(struct radix_node *rn, void *arg)
1209{
1210	struct radix_node_head * const rnh = arg;
1211	struct radix_node *x;
1212
1213	x = (struct radix_node *)rn_delete(rn + 2, NULL, rnh);
1214	if (x != NULL)
1215		Free(x);
1216	return (0);
1217}
1218
1219int
1220rn_detachhead(void **head)
1221{
1222	struct radix_node_head *rnh;
1223
1224	KASSERT((head != NULL && *head != NULL),
1225	    ("%s: head already freed", __func__));
1226
1227	rnh = *head;
1228
1229	rn_walktree(rnh->rnh_masks, rn_freeentry, rnh->rnh_masks);
1230	rn_detachhead_internal((void **)&rnh->rnh_masks);
1231	rn_detachhead_internal(head);
1232	return (1);
1233}
1234
1235void
1236rn_init(int maxk)
1237{
1238	if ((maxk <= 0) || (maxk > RADIX_MAX_KEY_LEN)) {
1239		log(LOG_ERR,
1240		    "rn_init: max_keylen must be within 1..%d\n",
1241		    RADIX_MAX_KEY_LEN);
1242		return;
1243	}
1244
1245	/*
1246	 * XXX: Compat for old rn_addmask() users
1247	 */
1248	if (rn_inithead((void **)(void *)&mask_rnhead_compat, 0) == 0)
1249		panic("rn_init 2");
1250#ifdef _KERNEL
1251	mtx_init(&mask_mtx, "radix_mask", NULL, MTX_DEF);
1252#endif
1253}
1254