vfs_vnops.c revision 269171
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
11 * Copyright (c) 2013, 2014 The FreeBSD Foundation
12 *
13 * Portions of this software were developed by Konstantin Belousov
14 * under sponsorship from the FreeBSD Foundation.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 *    notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 *    notice, this list of conditions and the following disclaimer in the
23 *    documentation and/or other materials provided with the distribution.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
41 */
42
43#include <sys/cdefs.h>
44__FBSDID("$FreeBSD: stable/10/sys/kern/vfs_vnops.c 269171 2014-07-28 01:11:29Z kib $");
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/disk.h>
49#include <sys/fcntl.h>
50#include <sys/file.h>
51#include <sys/kdb.h>
52#include <sys/stat.h>
53#include <sys/priv.h>
54#include <sys/proc.h>
55#include <sys/limits.h>
56#include <sys/lock.h>
57#include <sys/mount.h>
58#include <sys/mutex.h>
59#include <sys/namei.h>
60#include <sys/vnode.h>
61#include <sys/bio.h>
62#include <sys/buf.h>
63#include <sys/filio.h>
64#include <sys/resourcevar.h>
65#include <sys/rwlock.h>
66#include <sys/sx.h>
67#include <sys/sysctl.h>
68#include <sys/ttycom.h>
69#include <sys/conf.h>
70#include <sys/syslog.h>
71#include <sys/unistd.h>
72
73#include <security/audit/audit.h>
74#include <security/mac/mac_framework.h>
75
76#include <vm/vm.h>
77#include <vm/vm_extern.h>
78#include <vm/pmap.h>
79#include <vm/vm_map.h>
80#include <vm/vm_object.h>
81#include <vm/vm_page.h>
82
83static fo_rdwr_t	vn_read;
84static fo_rdwr_t	vn_write;
85static fo_rdwr_t	vn_io_fault;
86static fo_truncate_t	vn_truncate;
87static fo_ioctl_t	vn_ioctl;
88static fo_poll_t	vn_poll;
89static fo_kqfilter_t	vn_kqfilter;
90static fo_stat_t	vn_statfile;
91static fo_close_t	vn_closefile;
92
93struct 	fileops vnops = {
94	.fo_read = vn_io_fault,
95	.fo_write = vn_io_fault,
96	.fo_truncate = vn_truncate,
97	.fo_ioctl = vn_ioctl,
98	.fo_poll = vn_poll,
99	.fo_kqfilter = vn_kqfilter,
100	.fo_stat = vn_statfile,
101	.fo_close = vn_closefile,
102	.fo_chmod = vn_chmod,
103	.fo_chown = vn_chown,
104	.fo_sendfile = vn_sendfile,
105	.fo_seek = vn_seek,
106	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
107};
108
109static const int io_hold_cnt = 16;
110static int vn_io_fault_enable = 1;
111SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
112    &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
113static u_long vn_io_faults_cnt;
114SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
115    &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
116
117/*
118 * Returns true if vn_io_fault mode of handling the i/o request should
119 * be used.
120 */
121static bool
122do_vn_io_fault(struct vnode *vp, struct uio *uio)
123{
124	struct mount *mp;
125
126	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
127	    (mp = vp->v_mount) != NULL &&
128	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
129}
130
131/*
132 * Structure used to pass arguments to vn_io_fault1(), to do either
133 * file- or vnode-based I/O calls.
134 */
135struct vn_io_fault_args {
136	enum {
137		VN_IO_FAULT_FOP,
138		VN_IO_FAULT_VOP
139	} kind;
140	struct ucred *cred;
141	int flags;
142	union {
143		struct fop_args_tag {
144			struct file *fp;
145			fo_rdwr_t *doio;
146		} fop_args;
147		struct vop_args_tag {
148			struct vnode *vp;
149		} vop_args;
150	} args;
151};
152
153static int vn_io_fault1(struct vnode *vp, struct uio *uio,
154    struct vn_io_fault_args *args, struct thread *td);
155
156int
157vn_open(ndp, flagp, cmode, fp)
158	struct nameidata *ndp;
159	int *flagp, cmode;
160	struct file *fp;
161{
162	struct thread *td = ndp->ni_cnd.cn_thread;
163
164	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
165}
166
167/*
168 * Common code for vnode open operations via a name lookup.
169 * Lookup the vnode and invoke VOP_CREATE if needed.
170 * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
171 *
172 * Note that this does NOT free nameidata for the successful case,
173 * due to the NDINIT being done elsewhere.
174 */
175int
176vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
177    struct ucred *cred, struct file *fp)
178{
179	struct vnode *vp;
180	struct mount *mp;
181	struct thread *td = ndp->ni_cnd.cn_thread;
182	struct vattr vat;
183	struct vattr *vap = &vat;
184	int fmode, error;
185
186restart:
187	fmode = *flagp;
188	if (fmode & O_CREAT) {
189		ndp->ni_cnd.cn_nameiop = CREATE;
190		ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF;
191		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
192			ndp->ni_cnd.cn_flags |= FOLLOW;
193		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
194			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
195		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
196			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
197		bwillwrite();
198		if ((error = namei(ndp)) != 0)
199			return (error);
200		if (ndp->ni_vp == NULL) {
201			VATTR_NULL(vap);
202			vap->va_type = VREG;
203			vap->va_mode = cmode;
204			if (fmode & O_EXCL)
205				vap->va_vaflags |= VA_EXCLUSIVE;
206			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
207				NDFREE(ndp, NDF_ONLY_PNBUF);
208				vput(ndp->ni_dvp);
209				if ((error = vn_start_write(NULL, &mp,
210				    V_XSLEEP | PCATCH)) != 0)
211					return (error);
212				goto restart;
213			}
214#ifdef MAC
215			error = mac_vnode_check_create(cred, ndp->ni_dvp,
216			    &ndp->ni_cnd, vap);
217			if (error == 0)
218#endif
219				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
220						   &ndp->ni_cnd, vap);
221			vput(ndp->ni_dvp);
222			vn_finished_write(mp);
223			if (error) {
224				NDFREE(ndp, NDF_ONLY_PNBUF);
225				return (error);
226			}
227			fmode &= ~O_TRUNC;
228			vp = ndp->ni_vp;
229		} else {
230			if (ndp->ni_dvp == ndp->ni_vp)
231				vrele(ndp->ni_dvp);
232			else
233				vput(ndp->ni_dvp);
234			ndp->ni_dvp = NULL;
235			vp = ndp->ni_vp;
236			if (fmode & O_EXCL) {
237				error = EEXIST;
238				goto bad;
239			}
240			fmode &= ~O_CREAT;
241		}
242	} else {
243		ndp->ni_cnd.cn_nameiop = LOOKUP;
244		ndp->ni_cnd.cn_flags = ISOPEN |
245		    ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
246		if (!(fmode & FWRITE))
247			ndp->ni_cnd.cn_flags |= LOCKSHARED;
248		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
249			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
250		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
251			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
252		if ((error = namei(ndp)) != 0)
253			return (error);
254		vp = ndp->ni_vp;
255	}
256	error = vn_open_vnode(vp, fmode, cred, td, fp);
257	if (error)
258		goto bad;
259	*flagp = fmode;
260	return (0);
261bad:
262	NDFREE(ndp, NDF_ONLY_PNBUF);
263	vput(vp);
264	*flagp = fmode;
265	ndp->ni_vp = NULL;
266	return (error);
267}
268
269/*
270 * Common code for vnode open operations once a vnode is located.
271 * Check permissions, and call the VOP_OPEN routine.
272 */
273int
274vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
275    struct thread *td, struct file *fp)
276{
277	struct mount *mp;
278	accmode_t accmode;
279	struct flock lf;
280	int error, have_flock, lock_flags, type;
281
282	if (vp->v_type == VLNK)
283		return (EMLINK);
284	if (vp->v_type == VSOCK)
285		return (EOPNOTSUPP);
286	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
287		return (ENOTDIR);
288	accmode = 0;
289	if (fmode & (FWRITE | O_TRUNC)) {
290		if (vp->v_type == VDIR)
291			return (EISDIR);
292		accmode |= VWRITE;
293	}
294	if (fmode & FREAD)
295		accmode |= VREAD;
296	if (fmode & FEXEC)
297		accmode |= VEXEC;
298	if ((fmode & O_APPEND) && (fmode & FWRITE))
299		accmode |= VAPPEND;
300#ifdef MAC
301	error = mac_vnode_check_open(cred, vp, accmode);
302	if (error)
303		return (error);
304#endif
305	if ((fmode & O_CREAT) == 0) {
306		if (accmode & VWRITE) {
307			error = vn_writechk(vp);
308			if (error)
309				return (error);
310		}
311		if (accmode) {
312		        error = VOP_ACCESS(vp, accmode, cred, td);
313			if (error)
314				return (error);
315		}
316	}
317	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
318		vn_lock(vp, LK_UPGRADE | LK_RETRY);
319	if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
320		return (error);
321
322	if (fmode & (O_EXLOCK | O_SHLOCK)) {
323		KASSERT(fp != NULL, ("open with flock requires fp"));
324		lock_flags = VOP_ISLOCKED(vp);
325		VOP_UNLOCK(vp, 0);
326		lf.l_whence = SEEK_SET;
327		lf.l_start = 0;
328		lf.l_len = 0;
329		if (fmode & O_EXLOCK)
330			lf.l_type = F_WRLCK;
331		else
332			lf.l_type = F_RDLCK;
333		type = F_FLOCK;
334		if ((fmode & FNONBLOCK) == 0)
335			type |= F_WAIT;
336		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
337		have_flock = (error == 0);
338		vn_lock(vp, lock_flags | LK_RETRY);
339		if (error == 0 && vp->v_iflag & VI_DOOMED)
340			error = ENOENT;
341		/*
342		 * Another thread might have used this vnode as an
343		 * executable while the vnode lock was dropped.
344		 * Ensure the vnode is still able to be opened for
345		 * writing after the lock has been obtained.
346		 */
347		if (error == 0 && accmode & VWRITE)
348			error = vn_writechk(vp);
349		if (error) {
350			VOP_UNLOCK(vp, 0);
351			if (have_flock) {
352				lf.l_whence = SEEK_SET;
353				lf.l_start = 0;
354				lf.l_len = 0;
355				lf.l_type = F_UNLCK;
356				(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf,
357				    F_FLOCK);
358			}
359			vn_start_write(vp, &mp, V_WAIT);
360			vn_lock(vp, lock_flags | LK_RETRY);
361			(void)VOP_CLOSE(vp, fmode, cred, td);
362			vn_finished_write(mp);
363			/* Prevent second close from fdrop()->vn_close(). */
364			if (fp != NULL)
365				fp->f_ops= &badfileops;
366			return (error);
367		}
368		fp->f_flag |= FHASLOCK;
369	}
370	if (fmode & FWRITE) {
371		VOP_ADD_WRITECOUNT(vp, 1);
372		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
373		    __func__, vp, vp->v_writecount);
374	}
375	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
376	return (0);
377}
378
379/*
380 * Check for write permissions on the specified vnode.
381 * Prototype text segments cannot be written.
382 */
383int
384vn_writechk(vp)
385	register struct vnode *vp;
386{
387
388	ASSERT_VOP_LOCKED(vp, "vn_writechk");
389	/*
390	 * If there's shared text associated with
391	 * the vnode, try to free it up once.  If
392	 * we fail, we can't allow writing.
393	 */
394	if (VOP_IS_TEXT(vp))
395		return (ETXTBSY);
396
397	return (0);
398}
399
400/*
401 * Vnode close call
402 */
403int
404vn_close(vp, flags, file_cred, td)
405	register struct vnode *vp;
406	int flags;
407	struct ucred *file_cred;
408	struct thread *td;
409{
410	struct mount *mp;
411	int error, lock_flags;
412
413	if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
414	    MNT_EXTENDED_SHARED(vp->v_mount))
415		lock_flags = LK_SHARED;
416	else
417		lock_flags = LK_EXCLUSIVE;
418
419	vn_start_write(vp, &mp, V_WAIT);
420	vn_lock(vp, lock_flags | LK_RETRY);
421	if (flags & FWRITE) {
422		VNASSERT(vp->v_writecount > 0, vp,
423		    ("vn_close: negative writecount"));
424		VOP_ADD_WRITECOUNT(vp, -1);
425		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
426		    __func__, vp, vp->v_writecount);
427	}
428	error = VOP_CLOSE(vp, flags, file_cred, td);
429	vput(vp);
430	vn_finished_write(mp);
431	return (error);
432}
433
434/*
435 * Heuristic to detect sequential operation.
436 */
437static int
438sequential_heuristic(struct uio *uio, struct file *fp)
439{
440
441	if (atomic_load_acq_int(&(fp->f_flag)) & FRDAHEAD)
442		return (fp->f_seqcount << IO_SEQSHIFT);
443
444	/*
445	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
446	 * that the first I/O is normally considered to be slightly
447	 * sequential.  Seeking to offset 0 doesn't change sequentiality
448	 * unless previous seeks have reduced f_seqcount to 0, in which
449	 * case offset 0 is not special.
450	 */
451	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
452	    uio->uio_offset == fp->f_nextoff) {
453		/*
454		 * f_seqcount is in units of fixed-size blocks so that it
455		 * depends mainly on the amount of sequential I/O and not
456		 * much on the number of sequential I/O's.  The fixed size
457		 * of 16384 is hard-coded here since it is (not quite) just
458		 * a magic size that works well here.  This size is more
459		 * closely related to the best I/O size for real disks than
460		 * to any block size used by software.
461		 */
462		fp->f_seqcount += howmany(uio->uio_resid, 16384);
463		if (fp->f_seqcount > IO_SEQMAX)
464			fp->f_seqcount = IO_SEQMAX;
465		return (fp->f_seqcount << IO_SEQSHIFT);
466	}
467
468	/* Not sequential.  Quickly draw-down sequentiality. */
469	if (fp->f_seqcount > 1)
470		fp->f_seqcount = 1;
471	else
472		fp->f_seqcount = 0;
473	return (0);
474}
475
476/*
477 * Package up an I/O request on a vnode into a uio and do it.
478 */
479int
480vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
481    enum uio_seg segflg, int ioflg, struct ucred *active_cred,
482    struct ucred *file_cred, ssize_t *aresid, struct thread *td)
483{
484	struct uio auio;
485	struct iovec aiov;
486	struct mount *mp;
487	struct ucred *cred;
488	void *rl_cookie;
489	struct vn_io_fault_args args;
490	int error, lock_flags;
491
492	auio.uio_iov = &aiov;
493	auio.uio_iovcnt = 1;
494	aiov.iov_base = base;
495	aiov.iov_len = len;
496	auio.uio_resid = len;
497	auio.uio_offset = offset;
498	auio.uio_segflg = segflg;
499	auio.uio_rw = rw;
500	auio.uio_td = td;
501	error = 0;
502
503	if ((ioflg & IO_NODELOCKED) == 0) {
504		if (rw == UIO_READ) {
505			rl_cookie = vn_rangelock_rlock(vp, offset,
506			    offset + len);
507		} else {
508			rl_cookie = vn_rangelock_wlock(vp, offset,
509			    offset + len);
510		}
511		mp = NULL;
512		if (rw == UIO_WRITE) {
513			if (vp->v_type != VCHR &&
514			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
515			    != 0)
516				goto out;
517			if (MNT_SHARED_WRITES(mp) ||
518			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
519				lock_flags = LK_SHARED;
520			else
521				lock_flags = LK_EXCLUSIVE;
522		} else
523			lock_flags = LK_SHARED;
524		vn_lock(vp, lock_flags | LK_RETRY);
525	} else
526		rl_cookie = NULL;
527
528	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
529#ifdef MAC
530	if ((ioflg & IO_NOMACCHECK) == 0) {
531		if (rw == UIO_READ)
532			error = mac_vnode_check_read(active_cred, file_cred,
533			    vp);
534		else
535			error = mac_vnode_check_write(active_cred, file_cred,
536			    vp);
537	}
538#endif
539	if (error == 0) {
540		if (file_cred != NULL)
541			cred = file_cred;
542		else
543			cred = active_cred;
544		if (do_vn_io_fault(vp, &auio)) {
545			args.kind = VN_IO_FAULT_VOP;
546			args.cred = cred;
547			args.flags = ioflg;
548			args.args.vop_args.vp = vp;
549			error = vn_io_fault1(vp, &auio, &args, td);
550		} else if (rw == UIO_READ) {
551			error = VOP_READ(vp, &auio, ioflg, cred);
552		} else /* if (rw == UIO_WRITE) */ {
553			error = VOP_WRITE(vp, &auio, ioflg, cred);
554		}
555	}
556	if (aresid)
557		*aresid = auio.uio_resid;
558	else
559		if (auio.uio_resid && error == 0)
560			error = EIO;
561	if ((ioflg & IO_NODELOCKED) == 0) {
562		VOP_UNLOCK(vp, 0);
563		if (mp != NULL)
564			vn_finished_write(mp);
565	}
566 out:
567	if (rl_cookie != NULL)
568		vn_rangelock_unlock(vp, rl_cookie);
569	return (error);
570}
571
572/*
573 * Package up an I/O request on a vnode into a uio and do it.  The I/O
574 * request is split up into smaller chunks and we try to avoid saturating
575 * the buffer cache while potentially holding a vnode locked, so we
576 * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
577 * to give other processes a chance to lock the vnode (either other processes
578 * core'ing the same binary, or unrelated processes scanning the directory).
579 */
580int
581vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred,
582    file_cred, aresid, td)
583	enum uio_rw rw;
584	struct vnode *vp;
585	void *base;
586	size_t len;
587	off_t offset;
588	enum uio_seg segflg;
589	int ioflg;
590	struct ucred *active_cred;
591	struct ucred *file_cred;
592	size_t *aresid;
593	struct thread *td;
594{
595	int error = 0;
596	ssize_t iaresid;
597
598	do {
599		int chunk;
600
601		/*
602		 * Force `offset' to a multiple of MAXBSIZE except possibly
603		 * for the first chunk, so that filesystems only need to
604		 * write full blocks except possibly for the first and last
605		 * chunks.
606		 */
607		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
608
609		if (chunk > len)
610			chunk = len;
611		if (rw != UIO_READ && vp->v_type == VREG)
612			bwillwrite();
613		iaresid = 0;
614		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
615		    ioflg, active_cred, file_cred, &iaresid, td);
616		len -= chunk;	/* aresid calc already includes length */
617		if (error)
618			break;
619		offset += chunk;
620		base = (char *)base + chunk;
621		kern_yield(PRI_USER);
622	} while (len);
623	if (aresid)
624		*aresid = len + iaresid;
625	return (error);
626}
627
628off_t
629foffset_lock(struct file *fp, int flags)
630{
631	struct mtx *mtxp;
632	off_t res;
633
634	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
635
636#if OFF_MAX <= LONG_MAX
637	/*
638	 * Caller only wants the current f_offset value.  Assume that
639	 * the long and shorter integer types reads are atomic.
640	 */
641	if ((flags & FOF_NOLOCK) != 0)
642		return (fp->f_offset);
643#endif
644
645	/*
646	 * According to McKusick the vn lock was protecting f_offset here.
647	 * It is now protected by the FOFFSET_LOCKED flag.
648	 */
649	mtxp = mtx_pool_find(mtxpool_sleep, fp);
650	mtx_lock(mtxp);
651	if ((flags & FOF_NOLOCK) == 0) {
652		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
653			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
654			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
655			    "vofflock", 0);
656		}
657		fp->f_vnread_flags |= FOFFSET_LOCKED;
658	}
659	res = fp->f_offset;
660	mtx_unlock(mtxp);
661	return (res);
662}
663
664void
665foffset_unlock(struct file *fp, off_t val, int flags)
666{
667	struct mtx *mtxp;
668
669	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
670
671#if OFF_MAX <= LONG_MAX
672	if ((flags & FOF_NOLOCK) != 0) {
673		if ((flags & FOF_NOUPDATE) == 0)
674			fp->f_offset = val;
675		if ((flags & FOF_NEXTOFF) != 0)
676			fp->f_nextoff = val;
677		return;
678	}
679#endif
680
681	mtxp = mtx_pool_find(mtxpool_sleep, fp);
682	mtx_lock(mtxp);
683	if ((flags & FOF_NOUPDATE) == 0)
684		fp->f_offset = val;
685	if ((flags & FOF_NEXTOFF) != 0)
686		fp->f_nextoff = val;
687	if ((flags & FOF_NOLOCK) == 0) {
688		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
689		    ("Lost FOFFSET_LOCKED"));
690		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
691			wakeup(&fp->f_vnread_flags);
692		fp->f_vnread_flags = 0;
693	}
694	mtx_unlock(mtxp);
695}
696
697void
698foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
699{
700
701	if ((flags & FOF_OFFSET) == 0)
702		uio->uio_offset = foffset_lock(fp, flags);
703}
704
705void
706foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
707{
708
709	if ((flags & FOF_OFFSET) == 0)
710		foffset_unlock(fp, uio->uio_offset, flags);
711}
712
713static int
714get_advice(struct file *fp, struct uio *uio)
715{
716	struct mtx *mtxp;
717	int ret;
718
719	ret = POSIX_FADV_NORMAL;
720	if (fp->f_advice == NULL)
721		return (ret);
722
723	mtxp = mtx_pool_find(mtxpool_sleep, fp);
724	mtx_lock(mtxp);
725	if (uio->uio_offset >= fp->f_advice->fa_start &&
726	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
727		ret = fp->f_advice->fa_advice;
728	mtx_unlock(mtxp);
729	return (ret);
730}
731
732/*
733 * File table vnode read routine.
734 */
735static int
736vn_read(fp, uio, active_cred, flags, td)
737	struct file *fp;
738	struct uio *uio;
739	struct ucred *active_cred;
740	int flags;
741	struct thread *td;
742{
743	struct vnode *vp;
744	struct mtx *mtxp;
745	int error, ioflag;
746	int advice;
747	off_t offset, start, end;
748
749	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
750	    uio->uio_td, td));
751	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
752	vp = fp->f_vnode;
753	ioflag = 0;
754	if (fp->f_flag & FNONBLOCK)
755		ioflag |= IO_NDELAY;
756	if (fp->f_flag & O_DIRECT)
757		ioflag |= IO_DIRECT;
758	advice = get_advice(fp, uio);
759	vn_lock(vp, LK_SHARED | LK_RETRY);
760
761	switch (advice) {
762	case POSIX_FADV_NORMAL:
763	case POSIX_FADV_SEQUENTIAL:
764	case POSIX_FADV_NOREUSE:
765		ioflag |= sequential_heuristic(uio, fp);
766		break;
767	case POSIX_FADV_RANDOM:
768		/* Disable read-ahead for random I/O. */
769		break;
770	}
771	offset = uio->uio_offset;
772
773#ifdef MAC
774	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
775	if (error == 0)
776#endif
777		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
778	fp->f_nextoff = uio->uio_offset;
779	VOP_UNLOCK(vp, 0);
780	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
781	    offset != uio->uio_offset) {
782		/*
783		 * Use POSIX_FADV_DONTNEED to flush clean pages and
784		 * buffers for the backing file after a
785		 * POSIX_FADV_NOREUSE read(2).  To optimize the common
786		 * case of using POSIX_FADV_NOREUSE with sequential
787		 * access, track the previous implicit DONTNEED
788		 * request and grow this request to include the
789		 * current read(2) in addition to the previous
790		 * DONTNEED.  With purely sequential access this will
791		 * cause the DONTNEED requests to continously grow to
792		 * cover all of the previously read regions of the
793		 * file.  This allows filesystem blocks that are
794		 * accessed by multiple calls to read(2) to be flushed
795		 * once the last read(2) finishes.
796		 */
797		start = offset;
798		end = uio->uio_offset - 1;
799		mtxp = mtx_pool_find(mtxpool_sleep, fp);
800		mtx_lock(mtxp);
801		if (fp->f_advice != NULL &&
802		    fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
803			if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
804				start = fp->f_advice->fa_prevstart;
805			else if (fp->f_advice->fa_prevstart != 0 &&
806			    fp->f_advice->fa_prevstart == end + 1)
807				end = fp->f_advice->fa_prevend;
808			fp->f_advice->fa_prevstart = start;
809			fp->f_advice->fa_prevend = end;
810		}
811		mtx_unlock(mtxp);
812		error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
813	}
814	return (error);
815}
816
817/*
818 * File table vnode write routine.
819 */
820static int
821vn_write(fp, uio, active_cred, flags, td)
822	struct file *fp;
823	struct uio *uio;
824	struct ucred *active_cred;
825	int flags;
826	struct thread *td;
827{
828	struct vnode *vp;
829	struct mount *mp;
830	struct mtx *mtxp;
831	int error, ioflag, lock_flags;
832	int advice;
833	off_t offset, start, end;
834
835	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
836	    uio->uio_td, td));
837	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
838	vp = fp->f_vnode;
839	if (vp->v_type == VREG)
840		bwillwrite();
841	ioflag = IO_UNIT;
842	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
843		ioflag |= IO_APPEND;
844	if (fp->f_flag & FNONBLOCK)
845		ioflag |= IO_NDELAY;
846	if (fp->f_flag & O_DIRECT)
847		ioflag |= IO_DIRECT;
848	if ((fp->f_flag & O_FSYNC) ||
849	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
850		ioflag |= IO_SYNC;
851	mp = NULL;
852	if (vp->v_type != VCHR &&
853	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
854		goto unlock;
855
856	advice = get_advice(fp, uio);
857
858	if (MNT_SHARED_WRITES(mp) ||
859	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
860		lock_flags = LK_SHARED;
861	} else {
862		lock_flags = LK_EXCLUSIVE;
863	}
864
865	vn_lock(vp, lock_flags | LK_RETRY);
866	switch (advice) {
867	case POSIX_FADV_NORMAL:
868	case POSIX_FADV_SEQUENTIAL:
869	case POSIX_FADV_NOREUSE:
870		ioflag |= sequential_heuristic(uio, fp);
871		break;
872	case POSIX_FADV_RANDOM:
873		/* XXX: Is this correct? */
874		break;
875	}
876	offset = uio->uio_offset;
877
878#ifdef MAC
879	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
880	if (error == 0)
881#endif
882		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
883	fp->f_nextoff = uio->uio_offset;
884	VOP_UNLOCK(vp, 0);
885	if (vp->v_type != VCHR)
886		vn_finished_write(mp);
887	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
888	    offset != uio->uio_offset) {
889		/*
890		 * Use POSIX_FADV_DONTNEED to flush clean pages and
891		 * buffers for the backing file after a
892		 * POSIX_FADV_NOREUSE write(2).  To optimize the
893		 * common case of using POSIX_FADV_NOREUSE with
894		 * sequential access, track the previous implicit
895		 * DONTNEED request and grow this request to include
896		 * the current write(2) in addition to the previous
897		 * DONTNEED.  With purely sequential access this will
898		 * cause the DONTNEED requests to continously grow to
899		 * cover all of the previously written regions of the
900		 * file.
901		 *
902		 * Note that the blocks just written are almost
903		 * certainly still dirty, so this only works when
904		 * VOP_ADVISE() calls from subsequent writes push out
905		 * the data written by this write(2) once the backing
906		 * buffers are clean.  However, as compared to forcing
907		 * IO_DIRECT, this gives much saner behavior.  Write
908		 * clustering is still allowed, and clean pages are
909		 * merely moved to the cache page queue rather than
910		 * outright thrown away.  This means a subsequent
911		 * read(2) can still avoid hitting the disk if the
912		 * pages have not been reclaimed.
913		 *
914		 * This does make POSIX_FADV_NOREUSE largely useless
915		 * with non-sequential access.  However, sequential
916		 * access is the more common use case and the flag is
917		 * merely advisory.
918		 */
919		start = offset;
920		end = uio->uio_offset - 1;
921		mtxp = mtx_pool_find(mtxpool_sleep, fp);
922		mtx_lock(mtxp);
923		if (fp->f_advice != NULL &&
924		    fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
925			if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
926				start = fp->f_advice->fa_prevstart;
927			else if (fp->f_advice->fa_prevstart != 0 &&
928			    fp->f_advice->fa_prevstart == end + 1)
929				end = fp->f_advice->fa_prevend;
930			fp->f_advice->fa_prevstart = start;
931			fp->f_advice->fa_prevend = end;
932		}
933		mtx_unlock(mtxp);
934		error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
935	}
936
937unlock:
938	return (error);
939}
940
941/*
942 * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
943 * prevent the following deadlock:
944 *
945 * Assume that the thread A reads from the vnode vp1 into userspace
946 * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
947 * currently not resident, then system ends up with the call chain
948 *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
949 *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
950 * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
951 * If, at the same time, thread B reads from vnode vp2 into buffer buf2
952 * backed by the pages of vnode vp1, and some page in buf2 is not
953 * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
954 *
955 * To prevent the lock order reversal and deadlock, vn_io_fault() does
956 * not allow page faults to happen during VOP_READ() or VOP_WRITE().
957 * Instead, it first tries to do the whole range i/o with pagefaults
958 * disabled. If all pages in the i/o buffer are resident and mapped,
959 * VOP will succeed (ignoring the genuine filesystem errors).
960 * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
961 * i/o in chunks, with all pages in the chunk prefaulted and held
962 * using vm_fault_quick_hold_pages().
963 *
964 * Filesystems using this deadlock avoidance scheme should use the
965 * array of the held pages from uio, saved in the curthread->td_ma,
966 * instead of doing uiomove().  A helper function
967 * vn_io_fault_uiomove() converts uiomove request into
968 * uiomove_fromphys() over td_ma array.
969 *
970 * Since vnode locks do not cover the whole i/o anymore, rangelocks
971 * make the current i/o request atomic with respect to other i/os and
972 * truncations.
973 */
974
975/*
976 * Decode vn_io_fault_args and perform the corresponding i/o.
977 */
978static int
979vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
980    struct thread *td)
981{
982
983	switch (args->kind) {
984	case VN_IO_FAULT_FOP:
985		return ((args->args.fop_args.doio)(args->args.fop_args.fp,
986		    uio, args->cred, args->flags, td));
987	case VN_IO_FAULT_VOP:
988		if (uio->uio_rw == UIO_READ) {
989			return (VOP_READ(args->args.vop_args.vp, uio,
990			    args->flags, args->cred));
991		} else if (uio->uio_rw == UIO_WRITE) {
992			return (VOP_WRITE(args->args.vop_args.vp, uio,
993			    args->flags, args->cred));
994		}
995		break;
996	}
997	panic("vn_io_fault_doio: unknown kind of io %d %d", args->kind,
998	    uio->uio_rw);
999}
1000
1001/*
1002 * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1003 * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1004 * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1005 * into args and call vn_io_fault1() to handle faults during the user
1006 * mode buffer accesses.
1007 */
1008static int
1009vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1010    struct thread *td)
1011{
1012	vm_page_t ma[io_hold_cnt + 2];
1013	struct uio *uio_clone, short_uio;
1014	struct iovec short_iovec[1];
1015	vm_page_t *prev_td_ma;
1016	vm_prot_t prot;
1017	vm_offset_t addr, end;
1018	size_t len, resid;
1019	ssize_t adv;
1020	int error, cnt, save, saveheld, prev_td_ma_cnt;
1021
1022	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1023
1024	/*
1025	 * The UFS follows IO_UNIT directive and replays back both
1026	 * uio_offset and uio_resid if an error is encountered during the
1027	 * operation.  But, since the iovec may be already advanced,
1028	 * uio is still in an inconsistent state.
1029	 *
1030	 * Cache a copy of the original uio, which is advanced to the redo
1031	 * point using UIO_NOCOPY below.
1032	 */
1033	uio_clone = cloneuio(uio);
1034	resid = uio->uio_resid;
1035
1036	short_uio.uio_segflg = UIO_USERSPACE;
1037	short_uio.uio_rw = uio->uio_rw;
1038	short_uio.uio_td = uio->uio_td;
1039
1040	save = vm_fault_disable_pagefaults();
1041	error = vn_io_fault_doio(args, uio, td);
1042	if (error != EFAULT)
1043		goto out;
1044
1045	atomic_add_long(&vn_io_faults_cnt, 1);
1046	uio_clone->uio_segflg = UIO_NOCOPY;
1047	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1048	uio_clone->uio_segflg = uio->uio_segflg;
1049
1050	saveheld = curthread_pflags_set(TDP_UIOHELD);
1051	prev_td_ma = td->td_ma;
1052	prev_td_ma_cnt = td->td_ma_cnt;
1053
1054	while (uio_clone->uio_resid != 0) {
1055		len = uio_clone->uio_iov->iov_len;
1056		if (len == 0) {
1057			KASSERT(uio_clone->uio_iovcnt >= 1,
1058			    ("iovcnt underflow"));
1059			uio_clone->uio_iov++;
1060			uio_clone->uio_iovcnt--;
1061			continue;
1062		}
1063		if (len > io_hold_cnt * PAGE_SIZE)
1064			len = io_hold_cnt * PAGE_SIZE;
1065		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1066		end = round_page(addr + len);
1067		if (end < addr) {
1068			error = EFAULT;
1069			break;
1070		}
1071		cnt = atop(end - trunc_page(addr));
1072		/*
1073		 * A perfectly misaligned address and length could cause
1074		 * both the start and the end of the chunk to use partial
1075		 * page.  +2 accounts for such a situation.
1076		 */
1077		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1078		    addr, len, prot, ma, io_hold_cnt + 2);
1079		if (cnt == -1) {
1080			error = EFAULT;
1081			break;
1082		}
1083		short_uio.uio_iov = &short_iovec[0];
1084		short_iovec[0].iov_base = (void *)addr;
1085		short_uio.uio_iovcnt = 1;
1086		short_uio.uio_resid = short_iovec[0].iov_len = len;
1087		short_uio.uio_offset = uio_clone->uio_offset;
1088		td->td_ma = ma;
1089		td->td_ma_cnt = cnt;
1090
1091		error = vn_io_fault_doio(args, &short_uio, td);
1092		vm_page_unhold_pages(ma, cnt);
1093		adv = len - short_uio.uio_resid;
1094
1095		uio_clone->uio_iov->iov_base =
1096		    (char *)uio_clone->uio_iov->iov_base + adv;
1097		uio_clone->uio_iov->iov_len -= adv;
1098		uio_clone->uio_resid -= adv;
1099		uio_clone->uio_offset += adv;
1100
1101		uio->uio_resid -= adv;
1102		uio->uio_offset += adv;
1103
1104		if (error != 0 || adv == 0)
1105			break;
1106	}
1107	td->td_ma = prev_td_ma;
1108	td->td_ma_cnt = prev_td_ma_cnt;
1109	curthread_pflags_restore(saveheld);
1110out:
1111	vm_fault_enable_pagefaults(save);
1112	free(uio_clone, M_IOV);
1113	return (error);
1114}
1115
1116static int
1117vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1118    int flags, struct thread *td)
1119{
1120	fo_rdwr_t *doio;
1121	struct vnode *vp;
1122	void *rl_cookie;
1123	struct vn_io_fault_args args;
1124	int error;
1125
1126	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1127	vp = fp->f_vnode;
1128	foffset_lock_uio(fp, uio, flags);
1129	if (do_vn_io_fault(vp, uio)) {
1130		args.kind = VN_IO_FAULT_FOP;
1131		args.args.fop_args.fp = fp;
1132		args.args.fop_args.doio = doio;
1133		args.cred = active_cred;
1134		args.flags = flags | FOF_OFFSET;
1135		if (uio->uio_rw == UIO_READ) {
1136			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1137			    uio->uio_offset + uio->uio_resid);
1138		} else if ((fp->f_flag & O_APPEND) != 0 ||
1139		    (flags & FOF_OFFSET) == 0) {
1140			/* For appenders, punt and lock the whole range. */
1141			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1142		} else {
1143			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1144			    uio->uio_offset + uio->uio_resid);
1145		}
1146		error = vn_io_fault1(vp, uio, &args, td);
1147		vn_rangelock_unlock(vp, rl_cookie);
1148	} else {
1149		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1150	}
1151	foffset_unlock_uio(fp, uio, flags);
1152	return (error);
1153}
1154
1155/*
1156 * Helper function to perform the requested uiomove operation using
1157 * the held pages for io->uio_iov[0].iov_base buffer instead of
1158 * copyin/copyout.  Access to the pages with uiomove_fromphys()
1159 * instead of iov_base prevents page faults that could occur due to
1160 * pmap_collect() invalidating the mapping created by
1161 * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1162 * object cleanup revoking the write access from page mappings.
1163 *
1164 * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1165 * instead of plain uiomove().
1166 */
1167int
1168vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1169{
1170	struct uio transp_uio;
1171	struct iovec transp_iov[1];
1172	struct thread *td;
1173	size_t adv;
1174	int error, pgadv;
1175
1176	td = curthread;
1177	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1178	    uio->uio_segflg != UIO_USERSPACE)
1179		return (uiomove(data, xfersize, uio));
1180
1181	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1182	transp_iov[0].iov_base = data;
1183	transp_uio.uio_iov = &transp_iov[0];
1184	transp_uio.uio_iovcnt = 1;
1185	if (xfersize > uio->uio_resid)
1186		xfersize = uio->uio_resid;
1187	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1188	transp_uio.uio_offset = 0;
1189	transp_uio.uio_segflg = UIO_SYSSPACE;
1190	/*
1191	 * Since transp_iov points to data, and td_ma page array
1192	 * corresponds to original uio->uio_iov, we need to invert the
1193	 * direction of the i/o operation as passed to
1194	 * uiomove_fromphys().
1195	 */
1196	switch (uio->uio_rw) {
1197	case UIO_WRITE:
1198		transp_uio.uio_rw = UIO_READ;
1199		break;
1200	case UIO_READ:
1201		transp_uio.uio_rw = UIO_WRITE;
1202		break;
1203	}
1204	transp_uio.uio_td = uio->uio_td;
1205	error = uiomove_fromphys(td->td_ma,
1206	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1207	    xfersize, &transp_uio);
1208	adv = xfersize - transp_uio.uio_resid;
1209	pgadv =
1210	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1211	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1212	td->td_ma += pgadv;
1213	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1214	    pgadv));
1215	td->td_ma_cnt -= pgadv;
1216	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1217	uio->uio_iov->iov_len -= adv;
1218	uio->uio_resid -= adv;
1219	uio->uio_offset += adv;
1220	return (error);
1221}
1222
1223int
1224vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1225    struct uio *uio)
1226{
1227	struct thread *td;
1228	vm_offset_t iov_base;
1229	int cnt, pgadv;
1230
1231	td = curthread;
1232	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1233	    uio->uio_segflg != UIO_USERSPACE)
1234		return (uiomove_fromphys(ma, offset, xfersize, uio));
1235
1236	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1237	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1238	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1239	switch (uio->uio_rw) {
1240	case UIO_WRITE:
1241		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1242		    offset, cnt);
1243		break;
1244	case UIO_READ:
1245		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1246		    cnt);
1247		break;
1248	}
1249	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1250	td->td_ma += pgadv;
1251	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1252	    pgadv));
1253	td->td_ma_cnt -= pgadv;
1254	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1255	uio->uio_iov->iov_len -= cnt;
1256	uio->uio_resid -= cnt;
1257	uio->uio_offset += cnt;
1258	return (0);
1259}
1260
1261
1262/*
1263 * File table truncate routine.
1264 */
1265static int
1266vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1267    struct thread *td)
1268{
1269	struct vattr vattr;
1270	struct mount *mp;
1271	struct vnode *vp;
1272	void *rl_cookie;
1273	int error;
1274
1275	vp = fp->f_vnode;
1276
1277	/*
1278	 * Lock the whole range for truncation.  Otherwise split i/o
1279	 * might happen partly before and partly after the truncation.
1280	 */
1281	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1282	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1283	if (error)
1284		goto out1;
1285	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1286	if (vp->v_type == VDIR) {
1287		error = EISDIR;
1288		goto out;
1289	}
1290#ifdef MAC
1291	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1292	if (error)
1293		goto out;
1294#endif
1295	error = vn_writechk(vp);
1296	if (error == 0) {
1297		VATTR_NULL(&vattr);
1298		vattr.va_size = length;
1299		error = VOP_SETATTR(vp, &vattr, fp->f_cred);
1300	}
1301out:
1302	VOP_UNLOCK(vp, 0);
1303	vn_finished_write(mp);
1304out1:
1305	vn_rangelock_unlock(vp, rl_cookie);
1306	return (error);
1307}
1308
1309/*
1310 * File table vnode stat routine.
1311 */
1312static int
1313vn_statfile(fp, sb, active_cred, td)
1314	struct file *fp;
1315	struct stat *sb;
1316	struct ucred *active_cred;
1317	struct thread *td;
1318{
1319	struct vnode *vp = fp->f_vnode;
1320	int error;
1321
1322	vn_lock(vp, LK_SHARED | LK_RETRY);
1323	error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
1324	VOP_UNLOCK(vp, 0);
1325
1326	return (error);
1327}
1328
1329/*
1330 * Stat a vnode; implementation for the stat syscall
1331 */
1332int
1333vn_stat(vp, sb, active_cred, file_cred, td)
1334	struct vnode *vp;
1335	register struct stat *sb;
1336	struct ucred *active_cred;
1337	struct ucred *file_cred;
1338	struct thread *td;
1339{
1340	struct vattr vattr;
1341	register struct vattr *vap;
1342	int error;
1343	u_short mode;
1344
1345#ifdef MAC
1346	error = mac_vnode_check_stat(active_cred, file_cred, vp);
1347	if (error)
1348		return (error);
1349#endif
1350
1351	vap = &vattr;
1352
1353	/*
1354	 * Initialize defaults for new and unusual fields, so that file
1355	 * systems which don't support these fields don't need to know
1356	 * about them.
1357	 */
1358	vap->va_birthtime.tv_sec = -1;
1359	vap->va_birthtime.tv_nsec = 0;
1360	vap->va_fsid = VNOVAL;
1361	vap->va_rdev = NODEV;
1362
1363	error = VOP_GETATTR(vp, vap, active_cred);
1364	if (error)
1365		return (error);
1366
1367	/*
1368	 * Zero the spare stat fields
1369	 */
1370	bzero(sb, sizeof *sb);
1371
1372	/*
1373	 * Copy from vattr table
1374	 */
1375	if (vap->va_fsid != VNOVAL)
1376		sb->st_dev = vap->va_fsid;
1377	else
1378		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1379	sb->st_ino = vap->va_fileid;
1380	mode = vap->va_mode;
1381	switch (vap->va_type) {
1382	case VREG:
1383		mode |= S_IFREG;
1384		break;
1385	case VDIR:
1386		mode |= S_IFDIR;
1387		break;
1388	case VBLK:
1389		mode |= S_IFBLK;
1390		break;
1391	case VCHR:
1392		mode |= S_IFCHR;
1393		break;
1394	case VLNK:
1395		mode |= S_IFLNK;
1396		break;
1397	case VSOCK:
1398		mode |= S_IFSOCK;
1399		break;
1400	case VFIFO:
1401		mode |= S_IFIFO;
1402		break;
1403	default:
1404		return (EBADF);
1405	};
1406	sb->st_mode = mode;
1407	sb->st_nlink = vap->va_nlink;
1408	sb->st_uid = vap->va_uid;
1409	sb->st_gid = vap->va_gid;
1410	sb->st_rdev = vap->va_rdev;
1411	if (vap->va_size > OFF_MAX)
1412		return (EOVERFLOW);
1413	sb->st_size = vap->va_size;
1414	sb->st_atim = vap->va_atime;
1415	sb->st_mtim = vap->va_mtime;
1416	sb->st_ctim = vap->va_ctime;
1417	sb->st_birthtim = vap->va_birthtime;
1418
1419        /*
1420	 * According to www.opengroup.org, the meaning of st_blksize is
1421	 *   "a filesystem-specific preferred I/O block size for this
1422	 *    object.  In some filesystem types, this may vary from file
1423	 *    to file"
1424	 * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
1425	 */
1426
1427	sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
1428
1429	sb->st_flags = vap->va_flags;
1430	if (priv_check(td, PRIV_VFS_GENERATION))
1431		sb->st_gen = 0;
1432	else
1433		sb->st_gen = vap->va_gen;
1434
1435	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1436	return (0);
1437}
1438
1439/*
1440 * File table vnode ioctl routine.
1441 */
1442static int
1443vn_ioctl(fp, com, data, active_cred, td)
1444	struct file *fp;
1445	u_long com;
1446	void *data;
1447	struct ucred *active_cred;
1448	struct thread *td;
1449{
1450	struct vattr vattr;
1451	struct vnode *vp;
1452	int error;
1453
1454	vp = fp->f_vnode;
1455	switch (vp->v_type) {
1456	case VDIR:
1457	case VREG:
1458		switch (com) {
1459		case FIONREAD:
1460			vn_lock(vp, LK_SHARED | LK_RETRY);
1461			error = VOP_GETATTR(vp, &vattr, active_cred);
1462			VOP_UNLOCK(vp, 0);
1463			if (error == 0)
1464				*(int *)data = vattr.va_size - fp->f_offset;
1465			return (error);
1466		case FIONBIO:
1467		case FIOASYNC:
1468			return (0);
1469		default:
1470			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1471			    active_cred, td));
1472		}
1473	default:
1474		return (ENOTTY);
1475	}
1476}
1477
1478/*
1479 * File table vnode poll routine.
1480 */
1481static int
1482vn_poll(fp, events, active_cred, td)
1483	struct file *fp;
1484	int events;
1485	struct ucred *active_cred;
1486	struct thread *td;
1487{
1488	struct vnode *vp;
1489	int error;
1490
1491	vp = fp->f_vnode;
1492#ifdef MAC
1493	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1494	error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1495	VOP_UNLOCK(vp, 0);
1496	if (!error)
1497#endif
1498
1499	error = VOP_POLL(vp, events, fp->f_cred, td);
1500	return (error);
1501}
1502
1503/*
1504 * Acquire the requested lock and then check for validity.  LK_RETRY
1505 * permits vn_lock to return doomed vnodes.
1506 */
1507int
1508_vn_lock(struct vnode *vp, int flags, char *file, int line)
1509{
1510	int error;
1511
1512	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1513	    ("vn_lock called with no locktype."));
1514	do {
1515#ifdef DEBUG_VFS_LOCKS
1516		KASSERT(vp->v_holdcnt != 0,
1517		    ("vn_lock %p: zero hold count", vp));
1518#endif
1519		error = VOP_LOCK1(vp, flags, file, line);
1520		flags &= ~LK_INTERLOCK;	/* Interlock is always dropped. */
1521		KASSERT((flags & LK_RETRY) == 0 || error == 0,
1522		    ("LK_RETRY set with incompatible flags (0x%x) or an error occured (%d)",
1523		    flags, error));
1524		/*
1525		 * Callers specify LK_RETRY if they wish to get dead vnodes.
1526		 * If RETRY is not set, we return ENOENT instead.
1527		 */
1528		if (error == 0 && vp->v_iflag & VI_DOOMED &&
1529		    (flags & LK_RETRY) == 0) {
1530			VOP_UNLOCK(vp, 0);
1531			error = ENOENT;
1532			break;
1533		}
1534	} while (flags & LK_RETRY && error != 0);
1535	return (error);
1536}
1537
1538/*
1539 * File table vnode close routine.
1540 */
1541static int
1542vn_closefile(fp, td)
1543	struct file *fp;
1544	struct thread *td;
1545{
1546	struct vnode *vp;
1547	struct flock lf;
1548	int error;
1549
1550	vp = fp->f_vnode;
1551	fp->f_ops = &badfileops;
1552
1553	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK)
1554		vref(vp);
1555
1556	error = vn_close(vp, fp->f_flag, fp->f_cred, td);
1557
1558	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) {
1559		lf.l_whence = SEEK_SET;
1560		lf.l_start = 0;
1561		lf.l_len = 0;
1562		lf.l_type = F_UNLCK;
1563		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1564		vrele(vp);
1565	}
1566	return (error);
1567}
1568
1569/*
1570 * Preparing to start a filesystem write operation. If the operation is
1571 * permitted, then we bump the count of operations in progress and
1572 * proceed. If a suspend request is in progress, we wait until the
1573 * suspension is over, and then proceed.
1574 */
1575static int
1576vn_start_write_locked(struct mount *mp, int flags)
1577{
1578	int error;
1579
1580	mtx_assert(MNT_MTX(mp), MA_OWNED);
1581	error = 0;
1582
1583	/*
1584	 * Check on status of suspension.
1585	 */
1586	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1587	    mp->mnt_susp_owner != curthread) {
1588		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1589			if (flags & V_NOWAIT) {
1590				error = EWOULDBLOCK;
1591				goto unlock;
1592			}
1593			error = msleep(&mp->mnt_flag, MNT_MTX(mp),
1594			    (PUSER - 1) | (flags & PCATCH), "suspfs", 0);
1595			if (error)
1596				goto unlock;
1597		}
1598	}
1599	if (flags & V_XSLEEP)
1600		goto unlock;
1601	mp->mnt_writeopcount++;
1602unlock:
1603	if (error != 0 || (flags & V_XSLEEP) != 0)
1604		MNT_REL(mp);
1605	MNT_IUNLOCK(mp);
1606	return (error);
1607}
1608
1609int
1610vn_start_write(vp, mpp, flags)
1611	struct vnode *vp;
1612	struct mount **mpp;
1613	int flags;
1614{
1615	struct mount *mp;
1616	int error;
1617
1618	error = 0;
1619	/*
1620	 * If a vnode is provided, get and return the mount point that
1621	 * to which it will write.
1622	 */
1623	if (vp != NULL) {
1624		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1625			*mpp = NULL;
1626			if (error != EOPNOTSUPP)
1627				return (error);
1628			return (0);
1629		}
1630	}
1631	if ((mp = *mpp) == NULL)
1632		return (0);
1633
1634	/*
1635	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1636	 * a vfs_ref().
1637	 * As long as a vnode is not provided we need to acquire a
1638	 * refcount for the provided mountpoint too, in order to
1639	 * emulate a vfs_ref().
1640	 */
1641	MNT_ILOCK(mp);
1642	if (vp == NULL)
1643		MNT_REF(mp);
1644
1645	return (vn_start_write_locked(mp, flags));
1646}
1647
1648/*
1649 * Secondary suspension. Used by operations such as vop_inactive
1650 * routines that are needed by the higher level functions. These
1651 * are allowed to proceed until all the higher level functions have
1652 * completed (indicated by mnt_writeopcount dropping to zero). At that
1653 * time, these operations are halted until the suspension is over.
1654 */
1655int
1656vn_start_secondary_write(vp, mpp, flags)
1657	struct vnode *vp;
1658	struct mount **mpp;
1659	int flags;
1660{
1661	struct mount *mp;
1662	int error;
1663
1664 retry:
1665	if (vp != NULL) {
1666		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1667			*mpp = NULL;
1668			if (error != EOPNOTSUPP)
1669				return (error);
1670			return (0);
1671		}
1672	}
1673	/*
1674	 * If we are not suspended or have not yet reached suspended
1675	 * mode, then let the operation proceed.
1676	 */
1677	if ((mp = *mpp) == NULL)
1678		return (0);
1679
1680	/*
1681	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1682	 * a vfs_ref().
1683	 * As long as a vnode is not provided we need to acquire a
1684	 * refcount for the provided mountpoint too, in order to
1685	 * emulate a vfs_ref().
1686	 */
1687	MNT_ILOCK(mp);
1688	if (vp == NULL)
1689		MNT_REF(mp);
1690	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1691		mp->mnt_secondary_writes++;
1692		mp->mnt_secondary_accwrites++;
1693		MNT_IUNLOCK(mp);
1694		return (0);
1695	}
1696	if (flags & V_NOWAIT) {
1697		MNT_REL(mp);
1698		MNT_IUNLOCK(mp);
1699		return (EWOULDBLOCK);
1700	}
1701	/*
1702	 * Wait for the suspension to finish.
1703	 */
1704	error = msleep(&mp->mnt_flag, MNT_MTX(mp),
1705		       (PUSER - 1) | (flags & PCATCH) | PDROP, "suspfs", 0);
1706	vfs_rel(mp);
1707	if (error == 0)
1708		goto retry;
1709	return (error);
1710}
1711
1712/*
1713 * Filesystem write operation has completed. If we are suspending and this
1714 * operation is the last one, notify the suspender that the suspension is
1715 * now in effect.
1716 */
1717void
1718vn_finished_write(mp)
1719	struct mount *mp;
1720{
1721	if (mp == NULL)
1722		return;
1723	MNT_ILOCK(mp);
1724	MNT_REL(mp);
1725	mp->mnt_writeopcount--;
1726	if (mp->mnt_writeopcount < 0)
1727		panic("vn_finished_write: neg cnt");
1728	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1729	    mp->mnt_writeopcount <= 0)
1730		wakeup(&mp->mnt_writeopcount);
1731	MNT_IUNLOCK(mp);
1732}
1733
1734
1735/*
1736 * Filesystem secondary write operation has completed. If we are
1737 * suspending and this operation is the last one, notify the suspender
1738 * that the suspension is now in effect.
1739 */
1740void
1741vn_finished_secondary_write(mp)
1742	struct mount *mp;
1743{
1744	if (mp == NULL)
1745		return;
1746	MNT_ILOCK(mp);
1747	MNT_REL(mp);
1748	mp->mnt_secondary_writes--;
1749	if (mp->mnt_secondary_writes < 0)
1750		panic("vn_finished_secondary_write: neg cnt");
1751	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1752	    mp->mnt_secondary_writes <= 0)
1753		wakeup(&mp->mnt_secondary_writes);
1754	MNT_IUNLOCK(mp);
1755}
1756
1757
1758
1759/*
1760 * Request a filesystem to suspend write operations.
1761 */
1762int
1763vfs_write_suspend(struct mount *mp, int flags)
1764{
1765	int error;
1766
1767	MNT_ILOCK(mp);
1768	if (mp->mnt_susp_owner == curthread) {
1769		MNT_IUNLOCK(mp);
1770		return (EALREADY);
1771	}
1772	while (mp->mnt_kern_flag & MNTK_SUSPEND)
1773		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
1774
1775	/*
1776	 * Unmount holds a write reference on the mount point.  If we
1777	 * own busy reference and drain for writers, we deadlock with
1778	 * the reference draining in the unmount path.  Callers of
1779	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
1780	 * vfs_busy() reference is owned and caller is not in the
1781	 * unmount context.
1782	 */
1783	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
1784	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1785		MNT_IUNLOCK(mp);
1786		return (EBUSY);
1787	}
1788
1789	mp->mnt_kern_flag |= MNTK_SUSPEND;
1790	mp->mnt_susp_owner = curthread;
1791	if (mp->mnt_writeopcount > 0)
1792		(void) msleep(&mp->mnt_writeopcount,
1793		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
1794	else
1795		MNT_IUNLOCK(mp);
1796	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
1797		vfs_write_resume(mp, 0);
1798	return (error);
1799}
1800
1801/*
1802 * Request a filesystem to resume write operations.
1803 */
1804void
1805vfs_write_resume(struct mount *mp, int flags)
1806{
1807
1808	MNT_ILOCK(mp);
1809	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1810		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
1811		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
1812				       MNTK_SUSPENDED);
1813		mp->mnt_susp_owner = NULL;
1814		wakeup(&mp->mnt_writeopcount);
1815		wakeup(&mp->mnt_flag);
1816		curthread->td_pflags &= ~TDP_IGNSUSP;
1817		if ((flags & VR_START_WRITE) != 0) {
1818			MNT_REF(mp);
1819			mp->mnt_writeopcount++;
1820		}
1821		MNT_IUNLOCK(mp);
1822		if ((flags & VR_NO_SUSPCLR) == 0)
1823			VFS_SUSP_CLEAN(mp);
1824	} else if ((flags & VR_START_WRITE) != 0) {
1825		MNT_REF(mp);
1826		vn_start_write_locked(mp, 0);
1827	} else {
1828		MNT_IUNLOCK(mp);
1829	}
1830}
1831
1832/*
1833 * Helper loop around vfs_write_suspend() for filesystem unmount VFS
1834 * methods.
1835 */
1836int
1837vfs_write_suspend_umnt(struct mount *mp)
1838{
1839	int error;
1840
1841	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
1842	    ("vfs_write_suspend_umnt: recursed"));
1843
1844	/* dounmount() already called vn_start_write(). */
1845	for (;;) {
1846		vn_finished_write(mp);
1847		error = vfs_write_suspend(mp, 0);
1848		if (error != 0)
1849			return (error);
1850		MNT_ILOCK(mp);
1851		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
1852			break;
1853		MNT_IUNLOCK(mp);
1854		vn_start_write(NULL, &mp, V_WAIT);
1855	}
1856	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
1857	wakeup(&mp->mnt_flag);
1858	MNT_IUNLOCK(mp);
1859	curthread->td_pflags |= TDP_IGNSUSP;
1860	return (0);
1861}
1862
1863/*
1864 * Implement kqueues for files by translating it to vnode operation.
1865 */
1866static int
1867vn_kqfilter(struct file *fp, struct knote *kn)
1868{
1869
1870	return (VOP_KQFILTER(fp->f_vnode, kn));
1871}
1872
1873/*
1874 * Simplified in-kernel wrapper calls for extended attribute access.
1875 * Both calls pass in a NULL credential, authorizing as "kernel" access.
1876 * Set IO_NODELOCKED in ioflg if the vnode is already locked.
1877 */
1878int
1879vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
1880    const char *attrname, int *buflen, char *buf, struct thread *td)
1881{
1882	struct uio	auio;
1883	struct iovec	iov;
1884	int	error;
1885
1886	iov.iov_len = *buflen;
1887	iov.iov_base = buf;
1888
1889	auio.uio_iov = &iov;
1890	auio.uio_iovcnt = 1;
1891	auio.uio_rw = UIO_READ;
1892	auio.uio_segflg = UIO_SYSSPACE;
1893	auio.uio_td = td;
1894	auio.uio_offset = 0;
1895	auio.uio_resid = *buflen;
1896
1897	if ((ioflg & IO_NODELOCKED) == 0)
1898		vn_lock(vp, LK_SHARED | LK_RETRY);
1899
1900	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1901
1902	/* authorize attribute retrieval as kernel */
1903	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
1904	    td);
1905
1906	if ((ioflg & IO_NODELOCKED) == 0)
1907		VOP_UNLOCK(vp, 0);
1908
1909	if (error == 0) {
1910		*buflen = *buflen - auio.uio_resid;
1911	}
1912
1913	return (error);
1914}
1915
1916/*
1917 * XXX failure mode if partially written?
1918 */
1919int
1920vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
1921    const char *attrname, int buflen, char *buf, struct thread *td)
1922{
1923	struct uio	auio;
1924	struct iovec	iov;
1925	struct mount	*mp;
1926	int	error;
1927
1928	iov.iov_len = buflen;
1929	iov.iov_base = buf;
1930
1931	auio.uio_iov = &iov;
1932	auio.uio_iovcnt = 1;
1933	auio.uio_rw = UIO_WRITE;
1934	auio.uio_segflg = UIO_SYSSPACE;
1935	auio.uio_td = td;
1936	auio.uio_offset = 0;
1937	auio.uio_resid = buflen;
1938
1939	if ((ioflg & IO_NODELOCKED) == 0) {
1940		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1941			return (error);
1942		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1943	}
1944
1945	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1946
1947	/* authorize attribute setting as kernel */
1948	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
1949
1950	if ((ioflg & IO_NODELOCKED) == 0) {
1951		vn_finished_write(mp);
1952		VOP_UNLOCK(vp, 0);
1953	}
1954
1955	return (error);
1956}
1957
1958int
1959vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
1960    const char *attrname, struct thread *td)
1961{
1962	struct mount	*mp;
1963	int	error;
1964
1965	if ((ioflg & IO_NODELOCKED) == 0) {
1966		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1967			return (error);
1968		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1969	}
1970
1971	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1972
1973	/* authorize attribute removal as kernel */
1974	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
1975	if (error == EOPNOTSUPP)
1976		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
1977		    NULL, td);
1978
1979	if ((ioflg & IO_NODELOCKED) == 0) {
1980		vn_finished_write(mp);
1981		VOP_UNLOCK(vp, 0);
1982	}
1983
1984	return (error);
1985}
1986
1987static int
1988vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
1989    struct vnode **rvp)
1990{
1991
1992	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
1993}
1994
1995int
1996vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
1997{
1998
1999	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2000	    lkflags, rvp));
2001}
2002
2003int
2004vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2005    int lkflags, struct vnode **rvp)
2006{
2007	struct mount *mp;
2008	int ltype, error;
2009
2010	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2011	mp = vp->v_mount;
2012	ltype = VOP_ISLOCKED(vp);
2013	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2014	    ("vn_vget_ino: vp not locked"));
2015	error = vfs_busy(mp, MBF_NOWAIT);
2016	if (error != 0) {
2017		vfs_ref(mp);
2018		VOP_UNLOCK(vp, 0);
2019		error = vfs_busy(mp, 0);
2020		vn_lock(vp, ltype | LK_RETRY);
2021		vfs_rel(mp);
2022		if (error != 0)
2023			return (ENOENT);
2024		if (vp->v_iflag & VI_DOOMED) {
2025			vfs_unbusy(mp);
2026			return (ENOENT);
2027		}
2028	}
2029	VOP_UNLOCK(vp, 0);
2030	error = alloc(mp, alloc_arg, lkflags, rvp);
2031	vfs_unbusy(mp);
2032	if (*rvp != vp)
2033		vn_lock(vp, ltype | LK_RETRY);
2034	if (vp->v_iflag & VI_DOOMED) {
2035		if (error == 0) {
2036			if (*rvp == vp)
2037				vunref(vp);
2038			else
2039				vput(*rvp);
2040		}
2041		error = ENOENT;
2042	}
2043	return (error);
2044}
2045
2046int
2047vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2048    const struct thread *td)
2049{
2050
2051	if (vp->v_type != VREG || td == NULL)
2052		return (0);
2053	PROC_LOCK(td->td_proc);
2054	if ((uoff_t)uio->uio_offset + uio->uio_resid >
2055	    lim_cur(td->td_proc, RLIMIT_FSIZE)) {
2056		kern_psignal(td->td_proc, SIGXFSZ);
2057		PROC_UNLOCK(td->td_proc);
2058		return (EFBIG);
2059	}
2060	PROC_UNLOCK(td->td_proc);
2061	return (0);
2062}
2063
2064int
2065vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2066    struct thread *td)
2067{
2068	struct vnode *vp;
2069
2070	vp = fp->f_vnode;
2071#ifdef AUDIT
2072	vn_lock(vp, LK_SHARED | LK_RETRY);
2073	AUDIT_ARG_VNODE1(vp);
2074	VOP_UNLOCK(vp, 0);
2075#endif
2076	return (setfmode(td, active_cred, vp, mode));
2077}
2078
2079int
2080vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2081    struct thread *td)
2082{
2083	struct vnode *vp;
2084
2085	vp = fp->f_vnode;
2086#ifdef AUDIT
2087	vn_lock(vp, LK_SHARED | LK_RETRY);
2088	AUDIT_ARG_VNODE1(vp);
2089	VOP_UNLOCK(vp, 0);
2090#endif
2091	return (setfown(td, active_cred, vp, uid, gid));
2092}
2093
2094void
2095vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2096{
2097	vm_object_t object;
2098
2099	if ((object = vp->v_object) == NULL)
2100		return;
2101	VM_OBJECT_WLOCK(object);
2102	vm_object_page_remove(object, start, end, 0);
2103	VM_OBJECT_WUNLOCK(object);
2104}
2105
2106int
2107vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2108{
2109	struct vattr va;
2110	daddr_t bn, bnp;
2111	uint64_t bsize;
2112	off_t noff;
2113	int error;
2114
2115	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2116	    ("Wrong command %lu", cmd));
2117
2118	if (vn_lock(vp, LK_SHARED) != 0)
2119		return (EBADF);
2120	if (vp->v_type != VREG) {
2121		error = ENOTTY;
2122		goto unlock;
2123	}
2124	error = VOP_GETATTR(vp, &va, cred);
2125	if (error != 0)
2126		goto unlock;
2127	noff = *off;
2128	if (noff >= va.va_size) {
2129		error = ENXIO;
2130		goto unlock;
2131	}
2132	bsize = vp->v_mount->mnt_stat.f_iosize;
2133	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) {
2134		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2135		if (error == EOPNOTSUPP) {
2136			error = ENOTTY;
2137			goto unlock;
2138		}
2139		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2140		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2141			noff = bn * bsize;
2142			if (noff < *off)
2143				noff = *off;
2144			goto unlock;
2145		}
2146	}
2147	if (noff > va.va_size)
2148		noff = va.va_size;
2149	/* noff == va.va_size. There is an implicit hole at the end of file. */
2150	if (cmd == FIOSEEKDATA)
2151		error = ENXIO;
2152unlock:
2153	VOP_UNLOCK(vp, 0);
2154	if (error == 0)
2155		*off = noff;
2156	return (error);
2157}
2158
2159int
2160vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2161{
2162	struct ucred *cred;
2163	struct vnode *vp;
2164	struct vattr vattr;
2165	off_t foffset, size;
2166	int error, noneg;
2167
2168	cred = td->td_ucred;
2169	vp = fp->f_vnode;
2170	foffset = foffset_lock(fp, 0);
2171	noneg = (vp->v_type != VCHR);
2172	error = 0;
2173	switch (whence) {
2174	case L_INCR:
2175		if (noneg &&
2176		    (foffset < 0 ||
2177		    (offset > 0 && foffset > OFF_MAX - offset))) {
2178			error = EOVERFLOW;
2179			break;
2180		}
2181		offset += foffset;
2182		break;
2183	case L_XTND:
2184		vn_lock(vp, LK_SHARED | LK_RETRY);
2185		error = VOP_GETATTR(vp, &vattr, cred);
2186		VOP_UNLOCK(vp, 0);
2187		if (error)
2188			break;
2189
2190		/*
2191		 * If the file references a disk device, then fetch
2192		 * the media size and use that to determine the ending
2193		 * offset.
2194		 */
2195		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2196		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2197			vattr.va_size = size;
2198		if (noneg &&
2199		    (vattr.va_size > OFF_MAX ||
2200		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2201			error = EOVERFLOW;
2202			break;
2203		}
2204		offset += vattr.va_size;
2205		break;
2206	case L_SET:
2207		break;
2208	case SEEK_DATA:
2209		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2210		break;
2211	case SEEK_HOLE:
2212		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2213		break;
2214	default:
2215		error = EINVAL;
2216	}
2217	if (error == 0 && noneg && offset < 0)
2218		error = EINVAL;
2219	if (error != 0)
2220		goto drop;
2221	VFS_KNOTE_UNLOCKED(vp, 0);
2222	*(off_t *)(td->td_retval) = offset;
2223drop:
2224	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2225	return (error);
2226}
2227
2228int
2229vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2230    struct thread *td)
2231{
2232	int error;
2233
2234	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2235
2236	/*
2237	 * From utimes(2):
2238	 * Grant permission if the caller is the owner of the file or
2239	 * the super-user.  If the time pointer is null, then write
2240	 * permission on the file is also sufficient.
2241	 *
2242	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2243	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2244	 * will be allowed to set the times [..] to the current
2245	 * server time.
2246	 */
2247	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2248		error = VOP_ACCESS(vp, VWRITE, cred, td);
2249	return (error);
2250}
2251