1/*-
2 * Copyright (c) 1982, 1986, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
11 * Copyright (c) 2013, 2014 The FreeBSD Foundation
12 *
13 * Portions of this software were developed by Konstantin Belousov
14 * under sponsorship from the FreeBSD Foundation.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 *    notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 *    notice, this list of conditions and the following disclaimer in the
23 *    documentation and/or other materials provided with the distribution.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
41 */
42
43#include <sys/cdefs.h>
44__FBSDID("$FreeBSD: stable/10/sys/kern/vfs_vnops.c 338605 2018-09-12 05:03:30Z gordon $");
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/disk.h>
49#include <sys/fcntl.h>
50#include <sys/file.h>
51#include <sys/kdb.h>
52#include <sys/stat.h>
53#include <sys/priv.h>
54#include <sys/proc.h>
55#include <sys/limits.h>
56#include <sys/lock.h>
57#include <sys/mount.h>
58#include <sys/mutex.h>
59#include <sys/namei.h>
60#include <sys/vnode.h>
61#include <sys/bio.h>
62#include <sys/buf.h>
63#include <sys/filio.h>
64#include <sys/resourcevar.h>
65#include <sys/rwlock.h>
66#include <sys/sx.h>
67#include <sys/sysctl.h>
68#include <sys/ttycom.h>
69#include <sys/conf.h>
70#include <sys/syslog.h>
71#include <sys/unistd.h>
72
73#include <security/audit/audit.h>
74#include <security/mac/mac_framework.h>
75
76#include <vm/vm.h>
77#include <vm/vm_extern.h>
78#include <vm/pmap.h>
79#include <vm/vm_map.h>
80#include <vm/vm_object.h>
81#include <vm/vm_page.h>
82
83static fo_rdwr_t	vn_read;
84static fo_rdwr_t	vn_write;
85static fo_rdwr_t	vn_io_fault;
86static fo_truncate_t	vn_truncate;
87static fo_ioctl_t	vn_ioctl;
88static fo_poll_t	vn_poll;
89static fo_kqfilter_t	vn_kqfilter;
90static fo_stat_t	vn_statfile;
91static fo_close_t	vn_closefile;
92
93struct 	fileops vnops = {
94	.fo_read = vn_io_fault,
95	.fo_write = vn_io_fault,
96	.fo_truncate = vn_truncate,
97	.fo_ioctl = vn_ioctl,
98	.fo_poll = vn_poll,
99	.fo_kqfilter = vn_kqfilter,
100	.fo_stat = vn_statfile,
101	.fo_close = vn_closefile,
102	.fo_chmod = vn_chmod,
103	.fo_chown = vn_chown,
104	.fo_sendfile = vn_sendfile,
105	.fo_seek = vn_seek,
106	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
107};
108
109static const int io_hold_cnt = 16;
110static int vn_io_fault_enable = 1;
111SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
112    &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
113static int vn_io_fault_prefault = 0;
114SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RW,
115    &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
116static u_long vn_io_faults_cnt;
117SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
118    &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
119
120/*
121 * Returns true if vn_io_fault mode of handling the i/o request should
122 * be used.
123 */
124static bool
125do_vn_io_fault(struct vnode *vp, struct uio *uio)
126{
127	struct mount *mp;
128
129	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
130	    (mp = vp->v_mount) != NULL &&
131	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
132}
133
134/*
135 * Structure used to pass arguments to vn_io_fault1(), to do either
136 * file- or vnode-based I/O calls.
137 */
138struct vn_io_fault_args {
139	enum {
140		VN_IO_FAULT_FOP,
141		VN_IO_FAULT_VOP
142	} kind;
143	struct ucred *cred;
144	int flags;
145	union {
146		struct fop_args_tag {
147			struct file *fp;
148			fo_rdwr_t *doio;
149		} fop_args;
150		struct vop_args_tag {
151			struct vnode *vp;
152		} vop_args;
153	} args;
154};
155
156static int vn_io_fault1(struct vnode *vp, struct uio *uio,
157    struct vn_io_fault_args *args, struct thread *td);
158
159int
160vn_open(ndp, flagp, cmode, fp)
161	struct nameidata *ndp;
162	int *flagp, cmode;
163	struct file *fp;
164{
165	struct thread *td = ndp->ni_cnd.cn_thread;
166
167	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
168}
169
170/*
171 * Common code for vnode open operations via a name lookup.
172 * Lookup the vnode and invoke VOP_CREATE if needed.
173 * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
174 *
175 * Note that this does NOT free nameidata for the successful case,
176 * due to the NDINIT being done elsewhere.
177 */
178int
179vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
180    struct ucred *cred, struct file *fp)
181{
182	struct vnode *vp;
183	struct mount *mp;
184	struct thread *td = ndp->ni_cnd.cn_thread;
185	struct vattr vat;
186	struct vattr *vap = &vat;
187	int fmode, error;
188
189restart:
190	fmode = *flagp;
191	if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
192	    O_EXCL | O_DIRECTORY))
193		return (EINVAL);
194	else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
195		ndp->ni_cnd.cn_nameiop = CREATE;
196		/*
197		 * Set NOCACHE to avoid flushing the cache when
198		 * rolling in many files at once.
199		*/
200		ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF | NOCACHE;
201		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
202			ndp->ni_cnd.cn_flags |= FOLLOW;
203		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
204			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
205		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
206			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
207		bwillwrite();
208		if ((error = namei(ndp)) != 0)
209			return (error);
210		if (ndp->ni_vp == NULL) {
211			VATTR_NULL(vap);
212			vap->va_type = VREG;
213			vap->va_mode = cmode;
214			if (fmode & O_EXCL)
215				vap->va_vaflags |= VA_EXCLUSIVE;
216			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
217				NDFREE(ndp, NDF_ONLY_PNBUF);
218				vput(ndp->ni_dvp);
219				if ((error = vn_start_write(NULL, &mp,
220				    V_XSLEEP | PCATCH)) != 0)
221					return (error);
222				goto restart;
223			}
224			if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
225				ndp->ni_cnd.cn_flags |= MAKEENTRY;
226#ifdef MAC
227			error = mac_vnode_check_create(cred, ndp->ni_dvp,
228			    &ndp->ni_cnd, vap);
229			if (error == 0)
230#endif
231				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
232						   &ndp->ni_cnd, vap);
233			vput(ndp->ni_dvp);
234			vn_finished_write(mp);
235			if (error) {
236				NDFREE(ndp, NDF_ONLY_PNBUF);
237				return (error);
238			}
239			fmode &= ~O_TRUNC;
240			vp = ndp->ni_vp;
241		} else {
242			if (ndp->ni_dvp == ndp->ni_vp)
243				vrele(ndp->ni_dvp);
244			else
245				vput(ndp->ni_dvp);
246			ndp->ni_dvp = NULL;
247			vp = ndp->ni_vp;
248			if (fmode & O_EXCL) {
249				error = EEXIST;
250				goto bad;
251			}
252			fmode &= ~O_CREAT;
253		}
254	} else {
255		ndp->ni_cnd.cn_nameiop = LOOKUP;
256		ndp->ni_cnd.cn_flags = ISOPEN |
257		    ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
258		if (!(fmode & FWRITE))
259			ndp->ni_cnd.cn_flags |= LOCKSHARED;
260		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
261			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
262		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
263			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
264		if ((error = namei(ndp)) != 0)
265			return (error);
266		vp = ndp->ni_vp;
267	}
268	error = vn_open_vnode(vp, fmode, cred, td, fp);
269	if (error)
270		goto bad;
271	*flagp = fmode;
272	return (0);
273bad:
274	NDFREE(ndp, NDF_ONLY_PNBUF);
275	vput(vp);
276	*flagp = fmode;
277	ndp->ni_vp = NULL;
278	return (error);
279}
280
281/*
282 * Common code for vnode open operations once a vnode is located.
283 * Check permissions, and call the VOP_OPEN routine.
284 */
285int
286vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
287    struct thread *td, struct file *fp)
288{
289	struct mount *mp;
290	accmode_t accmode;
291	struct flock lf;
292	int error, have_flock, lock_flags, type;
293
294	if (vp->v_type == VLNK)
295		return (EMLINK);
296	if (vp->v_type == VSOCK)
297		return (EOPNOTSUPP);
298	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
299		return (ENOTDIR);
300	accmode = 0;
301	if (fmode & (FWRITE | O_TRUNC)) {
302		if (vp->v_type == VDIR)
303			return (EISDIR);
304		accmode |= VWRITE;
305	}
306	if (fmode & FREAD)
307		accmode |= VREAD;
308	if (fmode & FEXEC)
309		accmode |= VEXEC;
310	if ((fmode & O_APPEND) && (fmode & FWRITE))
311		accmode |= VAPPEND;
312#ifdef MAC
313	error = mac_vnode_check_open(cred, vp, accmode);
314	if (error)
315		return (error);
316#endif
317	if ((fmode & O_CREAT) == 0) {
318		if (accmode & VWRITE) {
319			error = vn_writechk(vp);
320			if (error)
321				return (error);
322		}
323		if (accmode) {
324		        error = VOP_ACCESS(vp, accmode, cred, td);
325			if (error)
326				return (error);
327		}
328	}
329	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
330		vn_lock(vp, LK_UPGRADE | LK_RETRY);
331	if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
332		return (error);
333
334	if (fmode & (O_EXLOCK | O_SHLOCK)) {
335		KASSERT(fp != NULL, ("open with flock requires fp"));
336		lock_flags = VOP_ISLOCKED(vp);
337		VOP_UNLOCK(vp, 0);
338		lf.l_whence = SEEK_SET;
339		lf.l_start = 0;
340		lf.l_len = 0;
341		if (fmode & O_EXLOCK)
342			lf.l_type = F_WRLCK;
343		else
344			lf.l_type = F_RDLCK;
345		type = F_FLOCK;
346		if ((fmode & FNONBLOCK) == 0)
347			type |= F_WAIT;
348		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
349		have_flock = (error == 0);
350		vn_lock(vp, lock_flags | LK_RETRY);
351		if (error == 0 && vp->v_iflag & VI_DOOMED)
352			error = ENOENT;
353		/*
354		 * Another thread might have used this vnode as an
355		 * executable while the vnode lock was dropped.
356		 * Ensure the vnode is still able to be opened for
357		 * writing after the lock has been obtained.
358		 */
359		if (error == 0 && accmode & VWRITE)
360			error = vn_writechk(vp);
361		if (error) {
362			VOP_UNLOCK(vp, 0);
363			if (have_flock) {
364				lf.l_whence = SEEK_SET;
365				lf.l_start = 0;
366				lf.l_len = 0;
367				lf.l_type = F_UNLCK;
368				(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf,
369				    F_FLOCK);
370			}
371			vn_start_write(vp, &mp, V_WAIT);
372			vn_lock(vp, lock_flags | LK_RETRY);
373			(void)VOP_CLOSE(vp, fmode, cred, td);
374			vn_finished_write(mp);
375			/* Prevent second close from fdrop()->vn_close(). */
376			if (fp != NULL)
377				fp->f_ops= &badfileops;
378			return (error);
379		}
380		fp->f_flag |= FHASLOCK;
381	}
382	if (fmode & FWRITE) {
383		VOP_ADD_WRITECOUNT(vp, 1);
384		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
385		    __func__, vp, vp->v_writecount);
386	}
387	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
388	return (0);
389}
390
391/*
392 * Check for write permissions on the specified vnode.
393 * Prototype text segments cannot be written.
394 */
395int
396vn_writechk(vp)
397	register struct vnode *vp;
398{
399
400	ASSERT_VOP_LOCKED(vp, "vn_writechk");
401	/*
402	 * If there's shared text associated with
403	 * the vnode, try to free it up once.  If
404	 * we fail, we can't allow writing.
405	 */
406	if (VOP_IS_TEXT(vp))
407		return (ETXTBSY);
408
409	return (0);
410}
411
412/*
413 * Vnode close call
414 */
415static int
416vn_close1(struct vnode *vp, int flags, struct ucred *file_cred,
417    struct thread *td, bool keep_ref)
418{
419	struct mount *mp;
420	int error, lock_flags;
421
422	if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
423	    MNT_EXTENDED_SHARED(vp->v_mount))
424		lock_flags = LK_SHARED;
425	else
426		lock_flags = LK_EXCLUSIVE;
427
428	vn_start_write(vp, &mp, V_WAIT);
429	vn_lock(vp, lock_flags | LK_RETRY);
430	if (flags & FWRITE) {
431		VNASSERT(vp->v_writecount > 0, vp,
432		    ("vn_close: negative writecount"));
433		VOP_ADD_WRITECOUNT(vp, -1);
434		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
435		    __func__, vp, vp->v_writecount);
436	}
437	error = VOP_CLOSE(vp, flags, file_cred, td);
438	if (keep_ref)
439		VOP_UNLOCK(vp, 0);
440	else
441		vput(vp);
442	vn_finished_write(mp);
443	return (error);
444}
445
446int
447vn_close(struct vnode *vp, int flags, struct ucred *file_cred,
448    struct thread *td)
449{
450
451	return (vn_close1(vp, flags, file_cred, td, false));
452}
453
454/*
455 * Heuristic to detect sequential operation.
456 */
457static int
458sequential_heuristic(struct uio *uio, struct file *fp)
459{
460
461	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
462	if (fp->f_flag & FRDAHEAD)
463		return (fp->f_seqcount << IO_SEQSHIFT);
464
465	/*
466	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
467	 * that the first I/O is normally considered to be slightly
468	 * sequential.  Seeking to offset 0 doesn't change sequentiality
469	 * unless previous seeks have reduced f_seqcount to 0, in which
470	 * case offset 0 is not special.
471	 */
472	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
473	    uio->uio_offset == fp->f_nextoff) {
474		/*
475		 * f_seqcount is in units of fixed-size blocks so that it
476		 * depends mainly on the amount of sequential I/O and not
477		 * much on the number of sequential I/O's.  The fixed size
478		 * of 16384 is hard-coded here since it is (not quite) just
479		 * a magic size that works well here.  This size is more
480		 * closely related to the best I/O size for real disks than
481		 * to any block size used by software.
482		 */
483		fp->f_seqcount += howmany(uio->uio_resid, 16384);
484		if (fp->f_seqcount > IO_SEQMAX)
485			fp->f_seqcount = IO_SEQMAX;
486		return (fp->f_seqcount << IO_SEQSHIFT);
487	}
488
489	/* Not sequential.  Quickly draw-down sequentiality. */
490	if (fp->f_seqcount > 1)
491		fp->f_seqcount = 1;
492	else
493		fp->f_seqcount = 0;
494	return (0);
495}
496
497/*
498 * Package up an I/O request on a vnode into a uio and do it.
499 */
500int
501vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
502    enum uio_seg segflg, int ioflg, struct ucred *active_cred,
503    struct ucred *file_cred, ssize_t *aresid, struct thread *td)
504{
505	struct uio auio;
506	struct iovec aiov;
507	struct mount *mp;
508	struct ucred *cred;
509	void *rl_cookie;
510	struct vn_io_fault_args args;
511	int error, lock_flags;
512
513	if (offset < 0 && vp->v_type != VCHR)
514		return (EINVAL);
515	auio.uio_iov = &aiov;
516	auio.uio_iovcnt = 1;
517	aiov.iov_base = base;
518	aiov.iov_len = len;
519	auio.uio_resid = len;
520	auio.uio_offset = offset;
521	auio.uio_segflg = segflg;
522	auio.uio_rw = rw;
523	auio.uio_td = td;
524	error = 0;
525
526	if ((ioflg & IO_NODELOCKED) == 0) {
527		if ((ioflg & IO_RANGELOCKED) == 0) {
528			if (rw == UIO_READ) {
529				rl_cookie = vn_rangelock_rlock(vp, offset,
530				    offset + len);
531			} else {
532				rl_cookie = vn_rangelock_wlock(vp, offset,
533				    offset + len);
534			}
535		} else
536			rl_cookie = NULL;
537		mp = NULL;
538		if (rw == UIO_WRITE) {
539			if (vp->v_type != VCHR &&
540			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
541			    != 0)
542				goto out;
543			if (MNT_SHARED_WRITES(mp) ||
544			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
545				lock_flags = LK_SHARED;
546			else
547				lock_flags = LK_EXCLUSIVE;
548		} else
549			lock_flags = LK_SHARED;
550		vn_lock(vp, lock_flags | LK_RETRY);
551	} else
552		rl_cookie = NULL;
553
554	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
555#ifdef MAC
556	if ((ioflg & IO_NOMACCHECK) == 0) {
557		if (rw == UIO_READ)
558			error = mac_vnode_check_read(active_cred, file_cred,
559			    vp);
560		else
561			error = mac_vnode_check_write(active_cred, file_cred,
562			    vp);
563	}
564#endif
565	if (error == 0) {
566		if (file_cred != NULL)
567			cred = file_cred;
568		else
569			cred = active_cred;
570		if (do_vn_io_fault(vp, &auio)) {
571			args.kind = VN_IO_FAULT_VOP;
572			args.cred = cred;
573			args.flags = ioflg;
574			args.args.vop_args.vp = vp;
575			error = vn_io_fault1(vp, &auio, &args, td);
576		} else if (rw == UIO_READ) {
577			error = VOP_READ(vp, &auio, ioflg, cred);
578		} else /* if (rw == UIO_WRITE) */ {
579			error = VOP_WRITE(vp, &auio, ioflg, cred);
580		}
581	}
582	if (aresid)
583		*aresid = auio.uio_resid;
584	else
585		if (auio.uio_resid && error == 0)
586			error = EIO;
587	if ((ioflg & IO_NODELOCKED) == 0) {
588		VOP_UNLOCK(vp, 0);
589		if (mp != NULL)
590			vn_finished_write(mp);
591	}
592 out:
593	if (rl_cookie != NULL)
594		vn_rangelock_unlock(vp, rl_cookie);
595	return (error);
596}
597
598/*
599 * Package up an I/O request on a vnode into a uio and do it.  The I/O
600 * request is split up into smaller chunks and we try to avoid saturating
601 * the buffer cache while potentially holding a vnode locked, so we
602 * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
603 * to give other processes a chance to lock the vnode (either other processes
604 * core'ing the same binary, or unrelated processes scanning the directory).
605 */
606int
607vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred,
608    file_cred, aresid, td)
609	enum uio_rw rw;
610	struct vnode *vp;
611	void *base;
612	size_t len;
613	off_t offset;
614	enum uio_seg segflg;
615	int ioflg;
616	struct ucred *active_cred;
617	struct ucred *file_cred;
618	size_t *aresid;
619	struct thread *td;
620{
621	int error = 0;
622	ssize_t iaresid;
623
624	do {
625		int chunk;
626
627		/*
628		 * Force `offset' to a multiple of MAXBSIZE except possibly
629		 * for the first chunk, so that filesystems only need to
630		 * write full blocks except possibly for the first and last
631		 * chunks.
632		 */
633		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
634
635		if (chunk > len)
636			chunk = len;
637		if (rw != UIO_READ && vp->v_type == VREG)
638			bwillwrite();
639		iaresid = 0;
640		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
641		    ioflg, active_cred, file_cred, &iaresid, td);
642		len -= chunk;	/* aresid calc already includes length */
643		if (error)
644			break;
645		offset += chunk;
646		base = (char *)base + chunk;
647		kern_yield(PRI_USER);
648	} while (len);
649	if (aresid)
650		*aresid = len + iaresid;
651	return (error);
652}
653
654off_t
655foffset_lock(struct file *fp, int flags)
656{
657	struct mtx *mtxp;
658	off_t res;
659
660	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
661
662#if OFF_MAX <= LONG_MAX
663	/*
664	 * Caller only wants the current f_offset value.  Assume that
665	 * the long and shorter integer types reads are atomic.
666	 */
667	if ((flags & FOF_NOLOCK) != 0)
668		return (fp->f_offset);
669#endif
670
671	/*
672	 * According to McKusick the vn lock was protecting f_offset here.
673	 * It is now protected by the FOFFSET_LOCKED flag.
674	 */
675	mtxp = mtx_pool_find(mtxpool_sleep, fp);
676	mtx_lock(mtxp);
677	if ((flags & FOF_NOLOCK) == 0) {
678		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
679			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
680			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
681			    "vofflock", 0);
682		}
683		fp->f_vnread_flags |= FOFFSET_LOCKED;
684	}
685	res = fp->f_offset;
686	mtx_unlock(mtxp);
687	return (res);
688}
689
690void
691foffset_unlock(struct file *fp, off_t val, int flags)
692{
693	struct mtx *mtxp;
694
695	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
696
697#if OFF_MAX <= LONG_MAX
698	if ((flags & FOF_NOLOCK) != 0) {
699		if ((flags & FOF_NOUPDATE) == 0)
700			fp->f_offset = val;
701		if ((flags & FOF_NEXTOFF) != 0)
702			fp->f_nextoff = val;
703		return;
704	}
705#endif
706
707	mtxp = mtx_pool_find(mtxpool_sleep, fp);
708	mtx_lock(mtxp);
709	if ((flags & FOF_NOUPDATE) == 0)
710		fp->f_offset = val;
711	if ((flags & FOF_NEXTOFF) != 0)
712		fp->f_nextoff = val;
713	if ((flags & FOF_NOLOCK) == 0) {
714		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
715		    ("Lost FOFFSET_LOCKED"));
716		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
717			wakeup(&fp->f_vnread_flags);
718		fp->f_vnread_flags = 0;
719	}
720	mtx_unlock(mtxp);
721}
722
723void
724foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
725{
726
727	if ((flags & FOF_OFFSET) == 0)
728		uio->uio_offset = foffset_lock(fp, flags);
729}
730
731void
732foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
733{
734
735	if ((flags & FOF_OFFSET) == 0)
736		foffset_unlock(fp, uio->uio_offset, flags);
737}
738
739static int
740get_advice(struct file *fp, struct uio *uio)
741{
742	struct mtx *mtxp;
743	int ret;
744
745	ret = POSIX_FADV_NORMAL;
746	if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
747		return (ret);
748
749	mtxp = mtx_pool_find(mtxpool_sleep, fp);
750	mtx_lock(mtxp);
751	if (fp->f_advice != NULL &&
752	    uio->uio_offset >= fp->f_advice->fa_start &&
753	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
754		ret = fp->f_advice->fa_advice;
755	mtx_unlock(mtxp);
756	return (ret);
757}
758
759/*
760 * File table vnode read routine.
761 */
762static int
763vn_read(fp, uio, active_cred, flags, td)
764	struct file *fp;
765	struct uio *uio;
766	struct ucred *active_cred;
767	int flags;
768	struct thread *td;
769{
770	struct vnode *vp;
771	struct mtx *mtxp;
772	int error, ioflag;
773	int advice;
774	off_t offset, start, end;
775
776	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
777	    uio->uio_td, td));
778	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
779	vp = fp->f_vnode;
780	ioflag = 0;
781	if (fp->f_flag & FNONBLOCK)
782		ioflag |= IO_NDELAY;
783	if (fp->f_flag & O_DIRECT)
784		ioflag |= IO_DIRECT;
785	advice = get_advice(fp, uio);
786	vn_lock(vp, LK_SHARED | LK_RETRY);
787
788	switch (advice) {
789	case POSIX_FADV_NORMAL:
790	case POSIX_FADV_SEQUENTIAL:
791	case POSIX_FADV_NOREUSE:
792		ioflag |= sequential_heuristic(uio, fp);
793		break;
794	case POSIX_FADV_RANDOM:
795		/* Disable read-ahead for random I/O. */
796		break;
797	}
798	offset = uio->uio_offset;
799
800#ifdef MAC
801	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
802	if (error == 0)
803#endif
804		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
805	fp->f_nextoff = uio->uio_offset;
806	VOP_UNLOCK(vp, 0);
807	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
808	    offset != uio->uio_offset) {
809		/*
810		 * Use POSIX_FADV_DONTNEED to flush clean pages and
811		 * buffers for the backing file after a
812		 * POSIX_FADV_NOREUSE read(2).  To optimize the common
813		 * case of using POSIX_FADV_NOREUSE with sequential
814		 * access, track the previous implicit DONTNEED
815		 * request and grow this request to include the
816		 * current read(2) in addition to the previous
817		 * DONTNEED.  With purely sequential access this will
818		 * cause the DONTNEED requests to continously grow to
819		 * cover all of the previously read regions of the
820		 * file.  This allows filesystem blocks that are
821		 * accessed by multiple calls to read(2) to be flushed
822		 * once the last read(2) finishes.
823		 */
824		start = offset;
825		end = uio->uio_offset - 1;
826		mtxp = mtx_pool_find(mtxpool_sleep, fp);
827		mtx_lock(mtxp);
828		if (fp->f_advice != NULL &&
829		    fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
830			if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
831				start = fp->f_advice->fa_prevstart;
832			else if (fp->f_advice->fa_prevstart != 0 &&
833			    fp->f_advice->fa_prevstart == end + 1)
834				end = fp->f_advice->fa_prevend;
835			fp->f_advice->fa_prevstart = start;
836			fp->f_advice->fa_prevend = end;
837		}
838		mtx_unlock(mtxp);
839		error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
840	}
841	return (error);
842}
843
844/*
845 * File table vnode write routine.
846 */
847static int
848vn_write(fp, uio, active_cred, flags, td)
849	struct file *fp;
850	struct uio *uio;
851	struct ucred *active_cred;
852	int flags;
853	struct thread *td;
854{
855	struct vnode *vp;
856	struct mount *mp;
857	struct mtx *mtxp;
858	int error, ioflag, lock_flags;
859	int advice;
860	off_t offset, start, end;
861
862	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
863	    uio->uio_td, td));
864	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
865	vp = fp->f_vnode;
866	if (vp->v_type == VREG)
867		bwillwrite();
868	ioflag = IO_UNIT;
869	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
870		ioflag |= IO_APPEND;
871	if (fp->f_flag & FNONBLOCK)
872		ioflag |= IO_NDELAY;
873	if (fp->f_flag & O_DIRECT)
874		ioflag |= IO_DIRECT;
875	if ((fp->f_flag & O_FSYNC) ||
876	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
877		ioflag |= IO_SYNC;
878	mp = NULL;
879	if (vp->v_type != VCHR &&
880	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
881		goto unlock;
882
883	advice = get_advice(fp, uio);
884
885	if (MNT_SHARED_WRITES(mp) ||
886	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
887		lock_flags = LK_SHARED;
888	} else {
889		lock_flags = LK_EXCLUSIVE;
890	}
891
892	vn_lock(vp, lock_flags | LK_RETRY);
893	switch (advice) {
894	case POSIX_FADV_NORMAL:
895	case POSIX_FADV_SEQUENTIAL:
896	case POSIX_FADV_NOREUSE:
897		ioflag |= sequential_heuristic(uio, fp);
898		break;
899	case POSIX_FADV_RANDOM:
900		/* XXX: Is this correct? */
901		break;
902	}
903	offset = uio->uio_offset;
904
905#ifdef MAC
906	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
907	if (error == 0)
908#endif
909		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
910	fp->f_nextoff = uio->uio_offset;
911	VOP_UNLOCK(vp, 0);
912	if (vp->v_type != VCHR)
913		vn_finished_write(mp);
914	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
915	    offset != uio->uio_offset) {
916		/*
917		 * Use POSIX_FADV_DONTNEED to flush clean pages and
918		 * buffers for the backing file after a
919		 * POSIX_FADV_NOREUSE write(2).  To optimize the
920		 * common case of using POSIX_FADV_NOREUSE with
921		 * sequential access, track the previous implicit
922		 * DONTNEED request and grow this request to include
923		 * the current write(2) in addition to the previous
924		 * DONTNEED.  With purely sequential access this will
925		 * cause the DONTNEED requests to continously grow to
926		 * cover all of the previously written regions of the
927		 * file.
928		 *
929		 * Note that the blocks just written are almost
930		 * certainly still dirty, so this only works when
931		 * VOP_ADVISE() calls from subsequent writes push out
932		 * the data written by this write(2) once the backing
933		 * buffers are clean.  However, as compared to forcing
934		 * IO_DIRECT, this gives much saner behavior.  Write
935		 * clustering is still allowed, and clean pages are
936		 * merely moved to the cache page queue rather than
937		 * outright thrown away.  This means a subsequent
938		 * read(2) can still avoid hitting the disk if the
939		 * pages have not been reclaimed.
940		 *
941		 * This does make POSIX_FADV_NOREUSE largely useless
942		 * with non-sequential access.  However, sequential
943		 * access is the more common use case and the flag is
944		 * merely advisory.
945		 */
946		start = offset;
947		end = uio->uio_offset - 1;
948		mtxp = mtx_pool_find(mtxpool_sleep, fp);
949		mtx_lock(mtxp);
950		if (fp->f_advice != NULL &&
951		    fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
952			if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
953				start = fp->f_advice->fa_prevstart;
954			else if (fp->f_advice->fa_prevstart != 0 &&
955			    fp->f_advice->fa_prevstart == end + 1)
956				end = fp->f_advice->fa_prevend;
957			fp->f_advice->fa_prevstart = start;
958			fp->f_advice->fa_prevend = end;
959		}
960		mtx_unlock(mtxp);
961		error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
962	}
963
964unlock:
965	return (error);
966}
967
968/*
969 * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
970 * prevent the following deadlock:
971 *
972 * Assume that the thread A reads from the vnode vp1 into userspace
973 * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
974 * currently not resident, then system ends up with the call chain
975 *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
976 *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
977 * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
978 * If, at the same time, thread B reads from vnode vp2 into buffer buf2
979 * backed by the pages of vnode vp1, and some page in buf2 is not
980 * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
981 *
982 * To prevent the lock order reversal and deadlock, vn_io_fault() does
983 * not allow page faults to happen during VOP_READ() or VOP_WRITE().
984 * Instead, it first tries to do the whole range i/o with pagefaults
985 * disabled. If all pages in the i/o buffer are resident and mapped,
986 * VOP will succeed (ignoring the genuine filesystem errors).
987 * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
988 * i/o in chunks, with all pages in the chunk prefaulted and held
989 * using vm_fault_quick_hold_pages().
990 *
991 * Filesystems using this deadlock avoidance scheme should use the
992 * array of the held pages from uio, saved in the curthread->td_ma,
993 * instead of doing uiomove().  A helper function
994 * vn_io_fault_uiomove() converts uiomove request into
995 * uiomove_fromphys() over td_ma array.
996 *
997 * Since vnode locks do not cover the whole i/o anymore, rangelocks
998 * make the current i/o request atomic with respect to other i/os and
999 * truncations.
1000 */
1001
1002/*
1003 * Decode vn_io_fault_args and perform the corresponding i/o.
1004 */
1005static int
1006vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
1007    struct thread *td)
1008{
1009
1010	switch (args->kind) {
1011	case VN_IO_FAULT_FOP:
1012		return ((args->args.fop_args.doio)(args->args.fop_args.fp,
1013		    uio, args->cred, args->flags, td));
1014	case VN_IO_FAULT_VOP:
1015		if (uio->uio_rw == UIO_READ) {
1016			return (VOP_READ(args->args.vop_args.vp, uio,
1017			    args->flags, args->cred));
1018		} else if (uio->uio_rw == UIO_WRITE) {
1019			return (VOP_WRITE(args->args.vop_args.vp, uio,
1020			    args->flags, args->cred));
1021		}
1022		break;
1023	}
1024	panic("vn_io_fault_doio: unknown kind of io %d %d", args->kind,
1025	    uio->uio_rw);
1026}
1027
1028static int
1029vn_io_fault_touch(char *base, const struct uio *uio)
1030{
1031	int r;
1032
1033	r = fubyte(base);
1034	if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
1035		return (EFAULT);
1036	return (0);
1037}
1038
1039static int
1040vn_io_fault_prefault_user(const struct uio *uio)
1041{
1042	char *base;
1043	const struct iovec *iov;
1044	size_t len;
1045	ssize_t resid;
1046	int error, i;
1047
1048	KASSERT(uio->uio_segflg == UIO_USERSPACE,
1049	    ("vn_io_fault_prefault userspace"));
1050
1051	error = i = 0;
1052	iov = uio->uio_iov;
1053	resid = uio->uio_resid;
1054	base = iov->iov_base;
1055	len = iov->iov_len;
1056	while (resid > 0) {
1057		error = vn_io_fault_touch(base, uio);
1058		if (error != 0)
1059			break;
1060		if (len < PAGE_SIZE) {
1061			if (len != 0) {
1062				error = vn_io_fault_touch(base + len - 1, uio);
1063				if (error != 0)
1064					break;
1065				resid -= len;
1066			}
1067			if (++i >= uio->uio_iovcnt)
1068				break;
1069			iov = uio->uio_iov + i;
1070			base = iov->iov_base;
1071			len = iov->iov_len;
1072		} else {
1073			len -= PAGE_SIZE;
1074			base += PAGE_SIZE;
1075			resid -= PAGE_SIZE;
1076		}
1077	}
1078	return (error);
1079}
1080
1081/*
1082 * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1083 * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1084 * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1085 * into args and call vn_io_fault1() to handle faults during the user
1086 * mode buffer accesses.
1087 */
1088static int
1089vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1090    struct thread *td)
1091{
1092	vm_page_t ma[io_hold_cnt + 2];
1093	struct uio *uio_clone, short_uio;
1094	struct iovec short_iovec[1];
1095	vm_page_t *prev_td_ma;
1096	vm_prot_t prot;
1097	vm_offset_t addr, end;
1098	size_t len, resid;
1099	ssize_t adv;
1100	int error, cnt, save, saveheld, prev_td_ma_cnt;
1101
1102	if (vn_io_fault_prefault) {
1103		error = vn_io_fault_prefault_user(uio);
1104		if (error != 0)
1105			return (error); /* Or ignore ? */
1106	}
1107
1108	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1109
1110	/*
1111	 * The UFS follows IO_UNIT directive and replays back both
1112	 * uio_offset and uio_resid if an error is encountered during the
1113	 * operation.  But, since the iovec may be already advanced,
1114	 * uio is still in an inconsistent state.
1115	 *
1116	 * Cache a copy of the original uio, which is advanced to the redo
1117	 * point using UIO_NOCOPY below.
1118	 */
1119	uio_clone = cloneuio(uio);
1120	resid = uio->uio_resid;
1121
1122	short_uio.uio_segflg = UIO_USERSPACE;
1123	short_uio.uio_rw = uio->uio_rw;
1124	short_uio.uio_td = uio->uio_td;
1125
1126	save = vm_fault_disable_pagefaults();
1127	error = vn_io_fault_doio(args, uio, td);
1128	if (error != EFAULT)
1129		goto out;
1130
1131	atomic_add_long(&vn_io_faults_cnt, 1);
1132	uio_clone->uio_segflg = UIO_NOCOPY;
1133	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1134	uio_clone->uio_segflg = uio->uio_segflg;
1135
1136	saveheld = curthread_pflags_set(TDP_UIOHELD);
1137	prev_td_ma = td->td_ma;
1138	prev_td_ma_cnt = td->td_ma_cnt;
1139
1140	while (uio_clone->uio_resid != 0) {
1141		len = uio_clone->uio_iov->iov_len;
1142		if (len == 0) {
1143			KASSERT(uio_clone->uio_iovcnt >= 1,
1144			    ("iovcnt underflow"));
1145			uio_clone->uio_iov++;
1146			uio_clone->uio_iovcnt--;
1147			continue;
1148		}
1149		if (len > io_hold_cnt * PAGE_SIZE)
1150			len = io_hold_cnt * PAGE_SIZE;
1151		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1152		end = round_page(addr + len);
1153		if (end < addr) {
1154			error = EFAULT;
1155			break;
1156		}
1157		cnt = atop(end - trunc_page(addr));
1158		/*
1159		 * A perfectly misaligned address and length could cause
1160		 * both the start and the end of the chunk to use partial
1161		 * page.  +2 accounts for such a situation.
1162		 */
1163		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1164		    addr, len, prot, ma, io_hold_cnt + 2);
1165		if (cnt == -1) {
1166			error = EFAULT;
1167			break;
1168		}
1169		short_uio.uio_iov = &short_iovec[0];
1170		short_iovec[0].iov_base = (void *)addr;
1171		short_uio.uio_iovcnt = 1;
1172		short_uio.uio_resid = short_iovec[0].iov_len = len;
1173		short_uio.uio_offset = uio_clone->uio_offset;
1174		td->td_ma = ma;
1175		td->td_ma_cnt = cnt;
1176
1177		error = vn_io_fault_doio(args, &short_uio, td);
1178		vm_page_unhold_pages(ma, cnt);
1179		adv = len - short_uio.uio_resid;
1180
1181		uio_clone->uio_iov->iov_base =
1182		    (char *)uio_clone->uio_iov->iov_base + adv;
1183		uio_clone->uio_iov->iov_len -= adv;
1184		uio_clone->uio_resid -= adv;
1185		uio_clone->uio_offset += adv;
1186
1187		uio->uio_resid -= adv;
1188		uio->uio_offset += adv;
1189
1190		if (error != 0 || adv == 0)
1191			break;
1192	}
1193	td->td_ma = prev_td_ma;
1194	td->td_ma_cnt = prev_td_ma_cnt;
1195	curthread_pflags_restore(saveheld);
1196out:
1197	vm_fault_enable_pagefaults(save);
1198	free(uio_clone, M_IOV);
1199	return (error);
1200}
1201
1202static int
1203vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1204    int flags, struct thread *td)
1205{
1206	fo_rdwr_t *doio;
1207	struct vnode *vp;
1208	void *rl_cookie;
1209	struct vn_io_fault_args args;
1210	int error;
1211
1212	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1213	vp = fp->f_vnode;
1214	foffset_lock_uio(fp, uio, flags);
1215	if (do_vn_io_fault(vp, uio)) {
1216		args.kind = VN_IO_FAULT_FOP;
1217		args.args.fop_args.fp = fp;
1218		args.args.fop_args.doio = doio;
1219		args.cred = active_cred;
1220		args.flags = flags | FOF_OFFSET;
1221		if (uio->uio_rw == UIO_READ) {
1222			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1223			    uio->uio_offset + uio->uio_resid);
1224		} else if ((fp->f_flag & O_APPEND) != 0 ||
1225		    (flags & FOF_OFFSET) == 0) {
1226			/* For appenders, punt and lock the whole range. */
1227			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1228		} else {
1229			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1230			    uio->uio_offset + uio->uio_resid);
1231		}
1232		error = vn_io_fault1(vp, uio, &args, td);
1233		vn_rangelock_unlock(vp, rl_cookie);
1234	} else {
1235		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1236	}
1237	foffset_unlock_uio(fp, uio, flags);
1238	return (error);
1239}
1240
1241/*
1242 * Helper function to perform the requested uiomove operation using
1243 * the held pages for io->uio_iov[0].iov_base buffer instead of
1244 * copyin/copyout.  Access to the pages with uiomove_fromphys()
1245 * instead of iov_base prevents page faults that could occur due to
1246 * pmap_collect() invalidating the mapping created by
1247 * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1248 * object cleanup revoking the write access from page mappings.
1249 *
1250 * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1251 * instead of plain uiomove().
1252 */
1253int
1254vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1255{
1256	struct uio transp_uio;
1257	struct iovec transp_iov[1];
1258	struct thread *td;
1259	size_t adv;
1260	int error, pgadv;
1261
1262	td = curthread;
1263	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1264	    uio->uio_segflg != UIO_USERSPACE)
1265		return (uiomove(data, xfersize, uio));
1266
1267	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1268	transp_iov[0].iov_base = data;
1269	transp_uio.uio_iov = &transp_iov[0];
1270	transp_uio.uio_iovcnt = 1;
1271	if (xfersize > uio->uio_resid)
1272		xfersize = uio->uio_resid;
1273	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1274	transp_uio.uio_offset = 0;
1275	transp_uio.uio_segflg = UIO_SYSSPACE;
1276	/*
1277	 * Since transp_iov points to data, and td_ma page array
1278	 * corresponds to original uio->uio_iov, we need to invert the
1279	 * direction of the i/o operation as passed to
1280	 * uiomove_fromphys().
1281	 */
1282	switch (uio->uio_rw) {
1283	case UIO_WRITE:
1284		transp_uio.uio_rw = UIO_READ;
1285		break;
1286	case UIO_READ:
1287		transp_uio.uio_rw = UIO_WRITE;
1288		break;
1289	}
1290	transp_uio.uio_td = uio->uio_td;
1291	error = uiomove_fromphys(td->td_ma,
1292	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1293	    xfersize, &transp_uio);
1294	adv = xfersize - transp_uio.uio_resid;
1295	pgadv =
1296	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1297	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1298	td->td_ma += pgadv;
1299	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1300	    pgadv));
1301	td->td_ma_cnt -= pgadv;
1302	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1303	uio->uio_iov->iov_len -= adv;
1304	uio->uio_resid -= adv;
1305	uio->uio_offset += adv;
1306	return (error);
1307}
1308
1309int
1310vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1311    struct uio *uio)
1312{
1313	struct thread *td;
1314	vm_offset_t iov_base;
1315	int cnt, pgadv;
1316
1317	td = curthread;
1318	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1319	    uio->uio_segflg != UIO_USERSPACE)
1320		return (uiomove_fromphys(ma, offset, xfersize, uio));
1321
1322	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1323	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1324	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1325	switch (uio->uio_rw) {
1326	case UIO_WRITE:
1327		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1328		    offset, cnt);
1329		break;
1330	case UIO_READ:
1331		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1332		    cnt);
1333		break;
1334	}
1335	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1336	td->td_ma += pgadv;
1337	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1338	    pgadv));
1339	td->td_ma_cnt -= pgadv;
1340	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1341	uio->uio_iov->iov_len -= cnt;
1342	uio->uio_resid -= cnt;
1343	uio->uio_offset += cnt;
1344	return (0);
1345}
1346
1347
1348/*
1349 * File table truncate routine.
1350 */
1351static int
1352vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1353    struct thread *td)
1354{
1355	struct vattr vattr;
1356	struct mount *mp;
1357	struct vnode *vp;
1358	void *rl_cookie;
1359	int error;
1360
1361	vp = fp->f_vnode;
1362
1363	/*
1364	 * Lock the whole range for truncation.  Otherwise split i/o
1365	 * might happen partly before and partly after the truncation.
1366	 */
1367	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1368	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1369	if (error)
1370		goto out1;
1371	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1372	if (vp->v_type == VDIR) {
1373		error = EISDIR;
1374		goto out;
1375	}
1376#ifdef MAC
1377	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1378	if (error)
1379		goto out;
1380#endif
1381	error = vn_writechk(vp);
1382	if (error == 0) {
1383		VATTR_NULL(&vattr);
1384		vattr.va_size = length;
1385		if ((fp->f_flag & O_FSYNC) != 0)
1386			vattr.va_vaflags |= VA_SYNC;
1387		error = VOP_SETATTR(vp, &vattr, fp->f_cred);
1388	}
1389out:
1390	VOP_UNLOCK(vp, 0);
1391	vn_finished_write(mp);
1392out1:
1393	vn_rangelock_unlock(vp, rl_cookie);
1394	return (error);
1395}
1396
1397/*
1398 * File table vnode stat routine.
1399 */
1400static int
1401vn_statfile(fp, sb, active_cred, td)
1402	struct file *fp;
1403	struct stat *sb;
1404	struct ucred *active_cred;
1405	struct thread *td;
1406{
1407	struct vnode *vp = fp->f_vnode;
1408	int error;
1409
1410	vn_lock(vp, LK_SHARED | LK_RETRY);
1411	error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
1412	VOP_UNLOCK(vp, 0);
1413
1414	return (error);
1415}
1416
1417/*
1418 * Stat a vnode; implementation for the stat syscall
1419 */
1420int
1421vn_stat(vp, sb, active_cred, file_cred, td)
1422	struct vnode *vp;
1423	register struct stat *sb;
1424	struct ucred *active_cred;
1425	struct ucred *file_cred;
1426	struct thread *td;
1427{
1428	struct vattr vattr;
1429	register struct vattr *vap;
1430	int error;
1431	u_short mode;
1432
1433#ifdef MAC
1434	error = mac_vnode_check_stat(active_cred, file_cred, vp);
1435	if (error)
1436		return (error);
1437#endif
1438
1439	vap = &vattr;
1440
1441	/*
1442	 * Initialize defaults for new and unusual fields, so that file
1443	 * systems which don't support these fields don't need to know
1444	 * about them.
1445	 */
1446	vap->va_birthtime.tv_sec = -1;
1447	vap->va_birthtime.tv_nsec = 0;
1448	vap->va_fsid = VNOVAL;
1449	vap->va_rdev = NODEV;
1450
1451	error = VOP_GETATTR(vp, vap, active_cred);
1452	if (error)
1453		return (error);
1454
1455	/*
1456	 * Zero the spare stat fields
1457	 */
1458	bzero(sb, sizeof *sb);
1459
1460	/*
1461	 * Copy from vattr table
1462	 */
1463	if (vap->va_fsid != VNOVAL)
1464		sb->st_dev = vap->va_fsid;
1465	else
1466		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1467	sb->st_ino = vap->va_fileid;
1468	mode = vap->va_mode;
1469	switch (vap->va_type) {
1470	case VREG:
1471		mode |= S_IFREG;
1472		break;
1473	case VDIR:
1474		mode |= S_IFDIR;
1475		break;
1476	case VBLK:
1477		mode |= S_IFBLK;
1478		break;
1479	case VCHR:
1480		mode |= S_IFCHR;
1481		break;
1482	case VLNK:
1483		mode |= S_IFLNK;
1484		break;
1485	case VSOCK:
1486		mode |= S_IFSOCK;
1487		break;
1488	case VFIFO:
1489		mode |= S_IFIFO;
1490		break;
1491	default:
1492		return (EBADF);
1493	};
1494	sb->st_mode = mode;
1495	sb->st_nlink = vap->va_nlink;
1496	sb->st_uid = vap->va_uid;
1497	sb->st_gid = vap->va_gid;
1498	sb->st_rdev = vap->va_rdev;
1499	if (vap->va_size > OFF_MAX)
1500		return (EOVERFLOW);
1501	sb->st_size = vap->va_size;
1502	sb->st_atim = vap->va_atime;
1503	sb->st_mtim = vap->va_mtime;
1504	sb->st_ctim = vap->va_ctime;
1505	sb->st_birthtim = vap->va_birthtime;
1506
1507        /*
1508	 * According to www.opengroup.org, the meaning of st_blksize is
1509	 *   "a filesystem-specific preferred I/O block size for this
1510	 *    object.  In some filesystem types, this may vary from file
1511	 *    to file"
1512	 * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
1513	 */
1514
1515	sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
1516
1517	sb->st_flags = vap->va_flags;
1518	if (priv_check(td, PRIV_VFS_GENERATION))
1519		sb->st_gen = 0;
1520	else
1521		sb->st_gen = vap->va_gen;
1522
1523	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1524	return (0);
1525}
1526
1527/*
1528 * File table vnode ioctl routine.
1529 */
1530static int
1531vn_ioctl(fp, com, data, active_cred, td)
1532	struct file *fp;
1533	u_long com;
1534	void *data;
1535	struct ucred *active_cred;
1536	struct thread *td;
1537{
1538	struct vattr vattr;
1539	struct vnode *vp;
1540	int error;
1541
1542	vp = fp->f_vnode;
1543	switch (vp->v_type) {
1544	case VDIR:
1545	case VREG:
1546		switch (com) {
1547		case FIONREAD:
1548			vn_lock(vp, LK_SHARED | LK_RETRY);
1549			error = VOP_GETATTR(vp, &vattr, active_cred);
1550			VOP_UNLOCK(vp, 0);
1551			if (error == 0)
1552				*(int *)data = vattr.va_size - fp->f_offset;
1553			return (error);
1554		case FIONBIO:
1555		case FIOASYNC:
1556			return (0);
1557		default:
1558			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1559			    active_cred, td));
1560		}
1561	default:
1562		return (ENOTTY);
1563	}
1564}
1565
1566/*
1567 * File table vnode poll routine.
1568 */
1569static int
1570vn_poll(fp, events, active_cred, td)
1571	struct file *fp;
1572	int events;
1573	struct ucred *active_cred;
1574	struct thread *td;
1575{
1576	struct vnode *vp;
1577	int error;
1578
1579	vp = fp->f_vnode;
1580#ifdef MAC
1581	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1582	error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1583	VOP_UNLOCK(vp, 0);
1584	if (!error)
1585#endif
1586
1587	error = VOP_POLL(vp, events, fp->f_cred, td);
1588	return (error);
1589}
1590
1591/*
1592 * Acquire the requested lock and then check for validity.  LK_RETRY
1593 * permits vn_lock to return doomed vnodes.
1594 */
1595int
1596_vn_lock(struct vnode *vp, int flags, char *file, int line)
1597{
1598	int error;
1599
1600	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1601	    ("vn_lock called with no locktype."));
1602	do {
1603#ifdef DEBUG_VFS_LOCKS
1604		KASSERT(vp->v_holdcnt != 0,
1605		    ("vn_lock %p: zero hold count", vp));
1606#endif
1607		error = VOP_LOCK1(vp, flags, file, line);
1608		flags &= ~LK_INTERLOCK;	/* Interlock is always dropped. */
1609		KASSERT((flags & LK_RETRY) == 0 || error == 0,
1610		    ("LK_RETRY set with incompatible flags (0x%x) or an error occurred (%d)",
1611		    flags, error));
1612		/*
1613		 * Callers specify LK_RETRY if they wish to get dead vnodes.
1614		 * If RETRY is not set, we return ENOENT instead.
1615		 */
1616		if (error == 0 && vp->v_iflag & VI_DOOMED &&
1617		    (flags & LK_RETRY) == 0) {
1618			VOP_UNLOCK(vp, 0);
1619			error = ENOENT;
1620			break;
1621		}
1622	} while (flags & LK_RETRY && error != 0);
1623	return (error);
1624}
1625
1626/*
1627 * File table vnode close routine.
1628 */
1629static int
1630vn_closefile(fp, td)
1631	struct file *fp;
1632	struct thread *td;
1633{
1634	struct vnode *vp;
1635	struct flock lf;
1636	int error;
1637	bool ref;
1638
1639	vp = fp->f_vnode;
1640	fp->f_ops = &badfileops;
1641	ref= (fp->f_flag & FHASLOCK) != 0 && fp->f_type == DTYPE_VNODE;
1642
1643	error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref);
1644
1645	if (__predict_false(ref)) {
1646		lf.l_whence = SEEK_SET;
1647		lf.l_start = 0;
1648		lf.l_len = 0;
1649		lf.l_type = F_UNLCK;
1650		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1651		vrele(vp);
1652	}
1653	return (error);
1654}
1655
1656/*
1657 * Preparing to start a filesystem write operation. If the operation is
1658 * permitted, then we bump the count of operations in progress and
1659 * proceed. If a suspend request is in progress, we wait until the
1660 * suspension is over, and then proceed.
1661 */
1662static int
1663vn_start_write_locked(struct mount *mp, int flags)
1664{
1665	int error, mflags;
1666
1667	mtx_assert(MNT_MTX(mp), MA_OWNED);
1668	error = 0;
1669
1670	/*
1671	 * Check on status of suspension.
1672	 */
1673	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1674	    mp->mnt_susp_owner != curthread) {
1675		mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ?
1676		    (flags & PCATCH) : 0) | (PUSER - 1);
1677		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1678			if (flags & V_NOWAIT) {
1679				error = EWOULDBLOCK;
1680				goto unlock;
1681			}
1682			error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1683			    "suspfs", 0);
1684			if (error)
1685				goto unlock;
1686		}
1687	}
1688	if (flags & V_XSLEEP)
1689		goto unlock;
1690	mp->mnt_writeopcount++;
1691unlock:
1692	if (error != 0 || (flags & V_XSLEEP) != 0)
1693		MNT_REL(mp);
1694	MNT_IUNLOCK(mp);
1695	return (error);
1696}
1697
1698int
1699vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
1700{
1701	struct mount *mp;
1702	int error;
1703
1704	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1705	    ("V_MNTREF requires mp"));
1706
1707	error = 0;
1708	/*
1709	 * If a vnode is provided, get and return the mount point that
1710	 * to which it will write.
1711	 */
1712	if (vp != NULL) {
1713		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1714			*mpp = NULL;
1715			if (error != EOPNOTSUPP)
1716				return (error);
1717			return (0);
1718		}
1719	}
1720	if ((mp = *mpp) == NULL)
1721		return (0);
1722
1723	/*
1724	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1725	 * a vfs_ref().
1726	 * As long as a vnode is not provided we need to acquire a
1727	 * refcount for the provided mountpoint too, in order to
1728	 * emulate a vfs_ref().
1729	 */
1730	MNT_ILOCK(mp);
1731	if (vp == NULL && (flags & V_MNTREF) == 0)
1732		MNT_REF(mp);
1733
1734	return (vn_start_write_locked(mp, flags));
1735}
1736
1737/*
1738 * Secondary suspension. Used by operations such as vop_inactive
1739 * routines that are needed by the higher level functions. These
1740 * are allowed to proceed until all the higher level functions have
1741 * completed (indicated by mnt_writeopcount dropping to zero). At that
1742 * time, these operations are halted until the suspension is over.
1743 */
1744int
1745vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
1746{
1747	struct mount *mp;
1748	int error;
1749
1750	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1751	    ("V_MNTREF requires mp"));
1752
1753 retry:
1754	if (vp != NULL) {
1755		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1756			*mpp = NULL;
1757			if (error != EOPNOTSUPP)
1758				return (error);
1759			return (0);
1760		}
1761	}
1762	/*
1763	 * If we are not suspended or have not yet reached suspended
1764	 * mode, then let the operation proceed.
1765	 */
1766	if ((mp = *mpp) == NULL)
1767		return (0);
1768
1769	/*
1770	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1771	 * a vfs_ref().
1772	 * As long as a vnode is not provided we need to acquire a
1773	 * refcount for the provided mountpoint too, in order to
1774	 * emulate a vfs_ref().
1775	 */
1776	MNT_ILOCK(mp);
1777	if (vp == NULL && (flags & V_MNTREF) == 0)
1778		MNT_REF(mp);
1779	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1780		mp->mnt_secondary_writes++;
1781		mp->mnt_secondary_accwrites++;
1782		MNT_IUNLOCK(mp);
1783		return (0);
1784	}
1785	if (flags & V_NOWAIT) {
1786		MNT_REL(mp);
1787		MNT_IUNLOCK(mp);
1788		return (EWOULDBLOCK);
1789	}
1790	/*
1791	 * Wait for the suspension to finish.
1792	 */
1793	error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP |
1794	    ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0),
1795	    "suspfs", 0);
1796	vfs_rel(mp);
1797	if (error == 0)
1798		goto retry;
1799	return (error);
1800}
1801
1802/*
1803 * Filesystem write operation has completed. If we are suspending and this
1804 * operation is the last one, notify the suspender that the suspension is
1805 * now in effect.
1806 */
1807void
1808vn_finished_write(mp)
1809	struct mount *mp;
1810{
1811	if (mp == NULL)
1812		return;
1813	MNT_ILOCK(mp);
1814	MNT_REL(mp);
1815	mp->mnt_writeopcount--;
1816	if (mp->mnt_writeopcount < 0)
1817		panic("vn_finished_write: neg cnt");
1818	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1819	    mp->mnt_writeopcount <= 0)
1820		wakeup(&mp->mnt_writeopcount);
1821	MNT_IUNLOCK(mp);
1822}
1823
1824
1825/*
1826 * Filesystem secondary write operation has completed. If we are
1827 * suspending and this operation is the last one, notify the suspender
1828 * that the suspension is now in effect.
1829 */
1830void
1831vn_finished_secondary_write(mp)
1832	struct mount *mp;
1833{
1834	if (mp == NULL)
1835		return;
1836	MNT_ILOCK(mp);
1837	MNT_REL(mp);
1838	mp->mnt_secondary_writes--;
1839	if (mp->mnt_secondary_writes < 0)
1840		panic("vn_finished_secondary_write: neg cnt");
1841	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1842	    mp->mnt_secondary_writes <= 0)
1843		wakeup(&mp->mnt_secondary_writes);
1844	MNT_IUNLOCK(mp);
1845}
1846
1847
1848
1849/*
1850 * Request a filesystem to suspend write operations.
1851 */
1852int
1853vfs_write_suspend(struct mount *mp, int flags)
1854{
1855	int error;
1856
1857	MNT_ILOCK(mp);
1858	if (mp->mnt_susp_owner == curthread) {
1859		MNT_IUNLOCK(mp);
1860		return (EALREADY);
1861	}
1862	while (mp->mnt_kern_flag & MNTK_SUSPEND)
1863		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
1864
1865	/*
1866	 * Unmount holds a write reference on the mount point.  If we
1867	 * own busy reference and drain for writers, we deadlock with
1868	 * the reference draining in the unmount path.  Callers of
1869	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
1870	 * vfs_busy() reference is owned and caller is not in the
1871	 * unmount context.
1872	 */
1873	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
1874	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1875		MNT_IUNLOCK(mp);
1876		return (EBUSY);
1877	}
1878
1879	mp->mnt_kern_flag |= MNTK_SUSPEND;
1880	mp->mnt_susp_owner = curthread;
1881	if (mp->mnt_writeopcount > 0)
1882		(void) msleep(&mp->mnt_writeopcount,
1883		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
1884	else
1885		MNT_IUNLOCK(mp);
1886	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
1887		vfs_write_resume(mp, 0);
1888	return (error);
1889}
1890
1891/*
1892 * Request a filesystem to resume write operations.
1893 */
1894void
1895vfs_write_resume(struct mount *mp, int flags)
1896{
1897
1898	MNT_ILOCK(mp);
1899	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1900		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
1901		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
1902				       MNTK_SUSPENDED);
1903		mp->mnt_susp_owner = NULL;
1904		wakeup(&mp->mnt_writeopcount);
1905		wakeup(&mp->mnt_flag);
1906		curthread->td_pflags &= ~TDP_IGNSUSP;
1907		if ((flags & VR_START_WRITE) != 0) {
1908			MNT_REF(mp);
1909			mp->mnt_writeopcount++;
1910		}
1911		MNT_IUNLOCK(mp);
1912		if ((flags & VR_NO_SUSPCLR) == 0)
1913			VFS_SUSP_CLEAN(mp);
1914	} else if ((flags & VR_START_WRITE) != 0) {
1915		MNT_REF(mp);
1916		vn_start_write_locked(mp, 0);
1917	} else {
1918		MNT_IUNLOCK(mp);
1919	}
1920}
1921
1922/*
1923 * Helper loop around vfs_write_suspend() for filesystem unmount VFS
1924 * methods.
1925 */
1926int
1927vfs_write_suspend_umnt(struct mount *mp)
1928{
1929	int error;
1930
1931	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
1932	    ("vfs_write_suspend_umnt: recursed"));
1933
1934	/* dounmount() already called vn_start_write(). */
1935	for (;;) {
1936		vn_finished_write(mp);
1937		error = vfs_write_suspend(mp, 0);
1938		if (error != 0) {
1939			vn_start_write(NULL, &mp, V_WAIT);
1940			return (error);
1941		}
1942		MNT_ILOCK(mp);
1943		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
1944			break;
1945		MNT_IUNLOCK(mp);
1946		vn_start_write(NULL, &mp, V_WAIT);
1947	}
1948	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
1949	wakeup(&mp->mnt_flag);
1950	MNT_IUNLOCK(mp);
1951	curthread->td_pflags |= TDP_IGNSUSP;
1952	return (0);
1953}
1954
1955/*
1956 * Implement kqueues for files by translating it to vnode operation.
1957 */
1958static int
1959vn_kqfilter(struct file *fp, struct knote *kn)
1960{
1961
1962	return (VOP_KQFILTER(fp->f_vnode, kn));
1963}
1964
1965/*
1966 * Simplified in-kernel wrapper calls for extended attribute access.
1967 * Both calls pass in a NULL credential, authorizing as "kernel" access.
1968 * Set IO_NODELOCKED in ioflg if the vnode is already locked.
1969 */
1970int
1971vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
1972    const char *attrname, int *buflen, char *buf, struct thread *td)
1973{
1974	struct uio	auio;
1975	struct iovec	iov;
1976	int	error;
1977
1978	iov.iov_len = *buflen;
1979	iov.iov_base = buf;
1980
1981	auio.uio_iov = &iov;
1982	auio.uio_iovcnt = 1;
1983	auio.uio_rw = UIO_READ;
1984	auio.uio_segflg = UIO_SYSSPACE;
1985	auio.uio_td = td;
1986	auio.uio_offset = 0;
1987	auio.uio_resid = *buflen;
1988
1989	if ((ioflg & IO_NODELOCKED) == 0)
1990		vn_lock(vp, LK_SHARED | LK_RETRY);
1991
1992	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1993
1994	/* authorize attribute retrieval as kernel */
1995	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
1996	    td);
1997
1998	if ((ioflg & IO_NODELOCKED) == 0)
1999		VOP_UNLOCK(vp, 0);
2000
2001	if (error == 0) {
2002		*buflen = *buflen - auio.uio_resid;
2003	}
2004
2005	return (error);
2006}
2007
2008/*
2009 * XXX failure mode if partially written?
2010 */
2011int
2012vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
2013    const char *attrname, int buflen, char *buf, struct thread *td)
2014{
2015	struct uio	auio;
2016	struct iovec	iov;
2017	struct mount	*mp;
2018	int	error;
2019
2020	iov.iov_len = buflen;
2021	iov.iov_base = buf;
2022
2023	auio.uio_iov = &iov;
2024	auio.uio_iovcnt = 1;
2025	auio.uio_rw = UIO_WRITE;
2026	auio.uio_segflg = UIO_SYSSPACE;
2027	auio.uio_td = td;
2028	auio.uio_offset = 0;
2029	auio.uio_resid = buflen;
2030
2031	if ((ioflg & IO_NODELOCKED) == 0) {
2032		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2033			return (error);
2034		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2035	}
2036
2037	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2038
2039	/* authorize attribute setting as kernel */
2040	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
2041
2042	if ((ioflg & IO_NODELOCKED) == 0) {
2043		vn_finished_write(mp);
2044		VOP_UNLOCK(vp, 0);
2045	}
2046
2047	return (error);
2048}
2049
2050int
2051vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
2052    const char *attrname, struct thread *td)
2053{
2054	struct mount	*mp;
2055	int	error;
2056
2057	if ((ioflg & IO_NODELOCKED) == 0) {
2058		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2059			return (error);
2060		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2061	}
2062
2063	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2064
2065	/* authorize attribute removal as kernel */
2066	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2067	if (error == EOPNOTSUPP)
2068		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2069		    NULL, td);
2070
2071	if ((ioflg & IO_NODELOCKED) == 0) {
2072		vn_finished_write(mp);
2073		VOP_UNLOCK(vp, 0);
2074	}
2075
2076	return (error);
2077}
2078
2079static int
2080vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2081    struct vnode **rvp)
2082{
2083
2084	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2085}
2086
2087int
2088vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2089{
2090
2091	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2092	    lkflags, rvp));
2093}
2094
2095int
2096vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2097    int lkflags, struct vnode **rvp)
2098{
2099	struct mount *mp;
2100	int ltype, error;
2101
2102	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2103	mp = vp->v_mount;
2104	ltype = VOP_ISLOCKED(vp);
2105	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2106	    ("vn_vget_ino: vp not locked"));
2107	error = vfs_busy(mp, MBF_NOWAIT);
2108	if (error != 0) {
2109		vfs_ref(mp);
2110		VOP_UNLOCK(vp, 0);
2111		error = vfs_busy(mp, 0);
2112		vn_lock(vp, ltype | LK_RETRY);
2113		vfs_rel(mp);
2114		if (error != 0)
2115			return (ENOENT);
2116		if (vp->v_iflag & VI_DOOMED) {
2117			vfs_unbusy(mp);
2118			return (ENOENT);
2119		}
2120	}
2121	VOP_UNLOCK(vp, 0);
2122	error = alloc(mp, alloc_arg, lkflags, rvp);
2123	vfs_unbusy(mp);
2124	if (*rvp != vp)
2125		vn_lock(vp, ltype | LK_RETRY);
2126	if (vp->v_iflag & VI_DOOMED) {
2127		if (error == 0) {
2128			if (*rvp == vp)
2129				vunref(vp);
2130			else
2131				vput(*rvp);
2132		}
2133		error = ENOENT;
2134	}
2135	return (error);
2136}
2137
2138int
2139vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2140    const struct thread *td)
2141{
2142
2143	if (vp->v_type != VREG || td == NULL)
2144		return (0);
2145	PROC_LOCK(td->td_proc);
2146	if ((uoff_t)uio->uio_offset + uio->uio_resid >
2147	    lim_cur(td->td_proc, RLIMIT_FSIZE)) {
2148		kern_psignal(td->td_proc, SIGXFSZ);
2149		PROC_UNLOCK(td->td_proc);
2150		return (EFBIG);
2151	}
2152	PROC_UNLOCK(td->td_proc);
2153	return (0);
2154}
2155
2156int
2157vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2158    struct thread *td)
2159{
2160	struct vnode *vp;
2161
2162	vp = fp->f_vnode;
2163#ifdef AUDIT
2164	vn_lock(vp, LK_SHARED | LK_RETRY);
2165	AUDIT_ARG_VNODE1(vp);
2166	VOP_UNLOCK(vp, 0);
2167#endif
2168	return (setfmode(td, active_cred, vp, mode));
2169}
2170
2171int
2172vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2173    struct thread *td)
2174{
2175	struct vnode *vp;
2176
2177	vp = fp->f_vnode;
2178#ifdef AUDIT
2179	vn_lock(vp, LK_SHARED | LK_RETRY);
2180	AUDIT_ARG_VNODE1(vp);
2181	VOP_UNLOCK(vp, 0);
2182#endif
2183	return (setfown(td, active_cred, vp, uid, gid));
2184}
2185
2186void
2187vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2188{
2189	vm_object_t object;
2190
2191	if ((object = vp->v_object) == NULL)
2192		return;
2193	VM_OBJECT_WLOCK(object);
2194	vm_object_page_remove(object, start, end, 0);
2195	VM_OBJECT_WUNLOCK(object);
2196}
2197
2198int
2199vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2200{
2201	struct vattr va;
2202	daddr_t bn, bnp;
2203	uint64_t bsize;
2204	off_t noff;
2205	int error;
2206
2207	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2208	    ("Wrong command %lu", cmd));
2209
2210	if (vn_lock(vp, LK_SHARED) != 0)
2211		return (EBADF);
2212	if (vp->v_type != VREG) {
2213		error = ENOTTY;
2214		goto unlock;
2215	}
2216	error = VOP_GETATTR(vp, &va, cred);
2217	if (error != 0)
2218		goto unlock;
2219	noff = *off;
2220	if (noff >= va.va_size) {
2221		error = ENXIO;
2222		goto unlock;
2223	}
2224	bsize = vp->v_mount->mnt_stat.f_iosize;
2225	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) {
2226		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2227		if (error == EOPNOTSUPP) {
2228			error = ENOTTY;
2229			goto unlock;
2230		}
2231		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2232		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2233			noff = bn * bsize;
2234			if (noff < *off)
2235				noff = *off;
2236			goto unlock;
2237		}
2238	}
2239	if (noff > va.va_size)
2240		noff = va.va_size;
2241	/* noff == va.va_size. There is an implicit hole at the end of file. */
2242	if (cmd == FIOSEEKDATA)
2243		error = ENXIO;
2244unlock:
2245	VOP_UNLOCK(vp, 0);
2246	if (error == 0)
2247		*off = noff;
2248	return (error);
2249}
2250
2251int
2252vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2253{
2254	struct ucred *cred;
2255	struct vnode *vp;
2256	struct vattr vattr;
2257	off_t foffset, size;
2258	int error, noneg;
2259
2260	cred = td->td_ucred;
2261	vp = fp->f_vnode;
2262	foffset = foffset_lock(fp, 0);
2263	noneg = (vp->v_type != VCHR);
2264	error = 0;
2265	switch (whence) {
2266	case L_INCR:
2267		if (noneg &&
2268		    (foffset < 0 ||
2269		    (offset > 0 && foffset > OFF_MAX - offset))) {
2270			error = EOVERFLOW;
2271			break;
2272		}
2273		offset += foffset;
2274		break;
2275	case L_XTND:
2276		vn_lock(vp, LK_SHARED | LK_RETRY);
2277		error = VOP_GETATTR(vp, &vattr, cred);
2278		VOP_UNLOCK(vp, 0);
2279		if (error)
2280			break;
2281
2282		/*
2283		 * If the file references a disk device, then fetch
2284		 * the media size and use that to determine the ending
2285		 * offset.
2286		 */
2287		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2288		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2289			vattr.va_size = size;
2290		if (noneg &&
2291		    (vattr.va_size > OFF_MAX ||
2292		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2293			error = EOVERFLOW;
2294			break;
2295		}
2296		offset += vattr.va_size;
2297		break;
2298	case L_SET:
2299		break;
2300	case SEEK_DATA:
2301		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2302		break;
2303	case SEEK_HOLE:
2304		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2305		break;
2306	default:
2307		error = EINVAL;
2308	}
2309	if (error == 0 && noneg && offset < 0)
2310		error = EINVAL;
2311	if (error != 0)
2312		goto drop;
2313	VFS_KNOTE_UNLOCKED(vp, 0);
2314	*(off_t *)(td->td_retval) = offset;
2315drop:
2316	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2317	return (error);
2318}
2319
2320int
2321vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2322    struct thread *td)
2323{
2324	int error;
2325
2326	/*
2327	 * Grant permission if the caller is the owner of the file, or
2328	 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2329	 * on the file.  If the time pointer is null, then write
2330	 * permission on the file is also sufficient.
2331	 *
2332	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2333	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2334	 * will be allowed to set the times [..] to the current
2335	 * server time.
2336	 */
2337	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2338	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2339		error = VOP_ACCESS(vp, VWRITE, cred, td);
2340	return (error);
2341}
2342