vfs_vnops.c revision 267816
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
11 * Copyright (c) 2013 The FreeBSD Foundation
12 *
13 * Portions of this software were developed by Konstantin Belousov
14 * under sponsorship from the FreeBSD Foundation.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 *    notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 *    notice, this list of conditions and the following disclaimer in the
23 *    documentation and/or other materials provided with the distribution.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
41 */
42
43#include <sys/cdefs.h>
44__FBSDID("$FreeBSD: stable/10/sys/kern/vfs_vnops.c 267816 2014-06-24 08:21:43Z kib $");
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/disk.h>
49#include <sys/fcntl.h>
50#include <sys/file.h>
51#include <sys/kdb.h>
52#include <sys/stat.h>
53#include <sys/priv.h>
54#include <sys/proc.h>
55#include <sys/limits.h>
56#include <sys/lock.h>
57#include <sys/mount.h>
58#include <sys/mutex.h>
59#include <sys/namei.h>
60#include <sys/vnode.h>
61#include <sys/bio.h>
62#include <sys/buf.h>
63#include <sys/filio.h>
64#include <sys/resourcevar.h>
65#include <sys/rwlock.h>
66#include <sys/sx.h>
67#include <sys/sysctl.h>
68#include <sys/ttycom.h>
69#include <sys/conf.h>
70#include <sys/syslog.h>
71#include <sys/unistd.h>
72
73#include <security/audit/audit.h>
74#include <security/mac/mac_framework.h>
75
76#include <vm/vm.h>
77#include <vm/vm_extern.h>
78#include <vm/pmap.h>
79#include <vm/vm_map.h>
80#include <vm/vm_object.h>
81#include <vm/vm_page.h>
82
83static fo_rdwr_t	vn_read;
84static fo_rdwr_t	vn_write;
85static fo_rdwr_t	vn_io_fault;
86static fo_truncate_t	vn_truncate;
87static fo_ioctl_t	vn_ioctl;
88static fo_poll_t	vn_poll;
89static fo_kqfilter_t	vn_kqfilter;
90static fo_stat_t	vn_statfile;
91static fo_close_t	vn_closefile;
92
93struct 	fileops vnops = {
94	.fo_read = vn_io_fault,
95	.fo_write = vn_io_fault,
96	.fo_truncate = vn_truncate,
97	.fo_ioctl = vn_ioctl,
98	.fo_poll = vn_poll,
99	.fo_kqfilter = vn_kqfilter,
100	.fo_stat = vn_statfile,
101	.fo_close = vn_closefile,
102	.fo_chmod = vn_chmod,
103	.fo_chown = vn_chown,
104	.fo_sendfile = vn_sendfile,
105	.fo_seek = vn_seek,
106	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
107};
108
109int
110vn_open(ndp, flagp, cmode, fp)
111	struct nameidata *ndp;
112	int *flagp, cmode;
113	struct file *fp;
114{
115	struct thread *td = ndp->ni_cnd.cn_thread;
116
117	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
118}
119
120/*
121 * Common code for vnode open operations via a name lookup.
122 * Lookup the vnode and invoke VOP_CREATE if needed.
123 * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
124 *
125 * Note that this does NOT free nameidata for the successful case,
126 * due to the NDINIT being done elsewhere.
127 */
128int
129vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
130    struct ucred *cred, struct file *fp)
131{
132	struct vnode *vp;
133	struct mount *mp;
134	struct thread *td = ndp->ni_cnd.cn_thread;
135	struct vattr vat;
136	struct vattr *vap = &vat;
137	int fmode, error;
138
139restart:
140	fmode = *flagp;
141	if (fmode & O_CREAT) {
142		ndp->ni_cnd.cn_nameiop = CREATE;
143		ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF;
144		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
145			ndp->ni_cnd.cn_flags |= FOLLOW;
146		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
147			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
148		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
149			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
150		bwillwrite();
151		if ((error = namei(ndp)) != 0)
152			return (error);
153		if (ndp->ni_vp == NULL) {
154			VATTR_NULL(vap);
155			vap->va_type = VREG;
156			vap->va_mode = cmode;
157			if (fmode & O_EXCL)
158				vap->va_vaflags |= VA_EXCLUSIVE;
159			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
160				NDFREE(ndp, NDF_ONLY_PNBUF);
161				vput(ndp->ni_dvp);
162				if ((error = vn_start_write(NULL, &mp,
163				    V_XSLEEP | PCATCH)) != 0)
164					return (error);
165				goto restart;
166			}
167#ifdef MAC
168			error = mac_vnode_check_create(cred, ndp->ni_dvp,
169			    &ndp->ni_cnd, vap);
170			if (error == 0)
171#endif
172				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
173						   &ndp->ni_cnd, vap);
174			vput(ndp->ni_dvp);
175			vn_finished_write(mp);
176			if (error) {
177				NDFREE(ndp, NDF_ONLY_PNBUF);
178				return (error);
179			}
180			fmode &= ~O_TRUNC;
181			vp = ndp->ni_vp;
182		} else {
183			if (ndp->ni_dvp == ndp->ni_vp)
184				vrele(ndp->ni_dvp);
185			else
186				vput(ndp->ni_dvp);
187			ndp->ni_dvp = NULL;
188			vp = ndp->ni_vp;
189			if (fmode & O_EXCL) {
190				error = EEXIST;
191				goto bad;
192			}
193			fmode &= ~O_CREAT;
194		}
195	} else {
196		ndp->ni_cnd.cn_nameiop = LOOKUP;
197		ndp->ni_cnd.cn_flags = ISOPEN |
198		    ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
199		if (!(fmode & FWRITE))
200			ndp->ni_cnd.cn_flags |= LOCKSHARED;
201		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
202			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
203		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
204			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
205		if ((error = namei(ndp)) != 0)
206			return (error);
207		vp = ndp->ni_vp;
208	}
209	error = vn_open_vnode(vp, fmode, cred, td, fp);
210	if (error)
211		goto bad;
212	*flagp = fmode;
213	return (0);
214bad:
215	NDFREE(ndp, NDF_ONLY_PNBUF);
216	vput(vp);
217	*flagp = fmode;
218	ndp->ni_vp = NULL;
219	return (error);
220}
221
222/*
223 * Common code for vnode open operations once a vnode is located.
224 * Check permissions, and call the VOP_OPEN routine.
225 */
226int
227vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
228    struct thread *td, struct file *fp)
229{
230	struct mount *mp;
231	accmode_t accmode;
232	struct flock lf;
233	int error, have_flock, lock_flags, type;
234
235	if (vp->v_type == VLNK)
236		return (EMLINK);
237	if (vp->v_type == VSOCK)
238		return (EOPNOTSUPP);
239	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
240		return (ENOTDIR);
241	accmode = 0;
242	if (fmode & (FWRITE | O_TRUNC)) {
243		if (vp->v_type == VDIR)
244			return (EISDIR);
245		accmode |= VWRITE;
246	}
247	if (fmode & FREAD)
248		accmode |= VREAD;
249	if (fmode & FEXEC)
250		accmode |= VEXEC;
251	if ((fmode & O_APPEND) && (fmode & FWRITE))
252		accmode |= VAPPEND;
253#ifdef MAC
254	error = mac_vnode_check_open(cred, vp, accmode);
255	if (error)
256		return (error);
257#endif
258	if ((fmode & O_CREAT) == 0) {
259		if (accmode & VWRITE) {
260			error = vn_writechk(vp);
261			if (error)
262				return (error);
263		}
264		if (accmode) {
265		        error = VOP_ACCESS(vp, accmode, cred, td);
266			if (error)
267				return (error);
268		}
269	}
270	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
271		vn_lock(vp, LK_UPGRADE | LK_RETRY);
272	if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
273		return (error);
274
275	if (fmode & (O_EXLOCK | O_SHLOCK)) {
276		KASSERT(fp != NULL, ("open with flock requires fp"));
277		lock_flags = VOP_ISLOCKED(vp);
278		VOP_UNLOCK(vp, 0);
279		lf.l_whence = SEEK_SET;
280		lf.l_start = 0;
281		lf.l_len = 0;
282		if (fmode & O_EXLOCK)
283			lf.l_type = F_WRLCK;
284		else
285			lf.l_type = F_RDLCK;
286		type = F_FLOCK;
287		if ((fmode & FNONBLOCK) == 0)
288			type |= F_WAIT;
289		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
290		have_flock = (error == 0);
291		vn_lock(vp, lock_flags | LK_RETRY);
292		if (error == 0 && vp->v_iflag & VI_DOOMED)
293			error = ENOENT;
294		/*
295		 * Another thread might have used this vnode as an
296		 * executable while the vnode lock was dropped.
297		 * Ensure the vnode is still able to be opened for
298		 * writing after the lock has been obtained.
299		 */
300		if (error == 0 && accmode & VWRITE)
301			error = vn_writechk(vp);
302		if (error) {
303			VOP_UNLOCK(vp, 0);
304			if (have_flock) {
305				lf.l_whence = SEEK_SET;
306				lf.l_start = 0;
307				lf.l_len = 0;
308				lf.l_type = F_UNLCK;
309				(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf,
310				    F_FLOCK);
311			}
312			vn_start_write(vp, &mp, V_WAIT);
313			vn_lock(vp, lock_flags | LK_RETRY);
314			(void)VOP_CLOSE(vp, fmode, cred, td);
315			vn_finished_write(mp);
316			/* Prevent second close from fdrop()->vn_close(). */
317			if (fp != NULL)
318				fp->f_ops= &badfileops;
319			return (error);
320		}
321		fp->f_flag |= FHASLOCK;
322	}
323	if (fmode & FWRITE) {
324		VOP_ADD_WRITECOUNT(vp, 1);
325		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
326		    __func__, vp, vp->v_writecount);
327	}
328	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
329	return (0);
330}
331
332/*
333 * Check for write permissions on the specified vnode.
334 * Prototype text segments cannot be written.
335 */
336int
337vn_writechk(vp)
338	register struct vnode *vp;
339{
340
341	ASSERT_VOP_LOCKED(vp, "vn_writechk");
342	/*
343	 * If there's shared text associated with
344	 * the vnode, try to free it up once.  If
345	 * we fail, we can't allow writing.
346	 */
347	if (VOP_IS_TEXT(vp))
348		return (ETXTBSY);
349
350	return (0);
351}
352
353/*
354 * Vnode close call
355 */
356int
357vn_close(vp, flags, file_cred, td)
358	register struct vnode *vp;
359	int flags;
360	struct ucred *file_cred;
361	struct thread *td;
362{
363	struct mount *mp;
364	int error, lock_flags;
365
366	if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
367	    MNT_EXTENDED_SHARED(vp->v_mount))
368		lock_flags = LK_SHARED;
369	else
370		lock_flags = LK_EXCLUSIVE;
371
372	vn_start_write(vp, &mp, V_WAIT);
373	vn_lock(vp, lock_flags | LK_RETRY);
374	if (flags & FWRITE) {
375		VNASSERT(vp->v_writecount > 0, vp,
376		    ("vn_close: negative writecount"));
377		VOP_ADD_WRITECOUNT(vp, -1);
378		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
379		    __func__, vp, vp->v_writecount);
380	}
381	error = VOP_CLOSE(vp, flags, file_cred, td);
382	vput(vp);
383	vn_finished_write(mp);
384	return (error);
385}
386
387/*
388 * Heuristic to detect sequential operation.
389 */
390static int
391sequential_heuristic(struct uio *uio, struct file *fp)
392{
393
394	if (atomic_load_acq_int(&(fp->f_flag)) & FRDAHEAD)
395		return (fp->f_seqcount << IO_SEQSHIFT);
396
397	/*
398	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
399	 * that the first I/O is normally considered to be slightly
400	 * sequential.  Seeking to offset 0 doesn't change sequentiality
401	 * unless previous seeks have reduced f_seqcount to 0, in which
402	 * case offset 0 is not special.
403	 */
404	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
405	    uio->uio_offset == fp->f_nextoff) {
406		/*
407		 * f_seqcount is in units of fixed-size blocks so that it
408		 * depends mainly on the amount of sequential I/O and not
409		 * much on the number of sequential I/O's.  The fixed size
410		 * of 16384 is hard-coded here since it is (not quite) just
411		 * a magic size that works well here.  This size is more
412		 * closely related to the best I/O size for real disks than
413		 * to any block size used by software.
414		 */
415		fp->f_seqcount += howmany(uio->uio_resid, 16384);
416		if (fp->f_seqcount > IO_SEQMAX)
417			fp->f_seqcount = IO_SEQMAX;
418		return (fp->f_seqcount << IO_SEQSHIFT);
419	}
420
421	/* Not sequential.  Quickly draw-down sequentiality. */
422	if (fp->f_seqcount > 1)
423		fp->f_seqcount = 1;
424	else
425		fp->f_seqcount = 0;
426	return (0);
427}
428
429/*
430 * Package up an I/O request on a vnode into a uio and do it.
431 */
432int
433vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
434    enum uio_seg segflg, int ioflg, struct ucred *active_cred,
435    struct ucred *file_cred, ssize_t *aresid, struct thread *td)
436{
437	struct uio auio;
438	struct iovec aiov;
439	struct mount *mp;
440	struct ucred *cred;
441	void *rl_cookie;
442	int error, lock_flags;
443
444	auio.uio_iov = &aiov;
445	auio.uio_iovcnt = 1;
446	aiov.iov_base = base;
447	aiov.iov_len = len;
448	auio.uio_resid = len;
449	auio.uio_offset = offset;
450	auio.uio_segflg = segflg;
451	auio.uio_rw = rw;
452	auio.uio_td = td;
453	error = 0;
454
455	if ((ioflg & IO_NODELOCKED) == 0) {
456		if (rw == UIO_READ) {
457			rl_cookie = vn_rangelock_rlock(vp, offset,
458			    offset + len);
459		} else {
460			rl_cookie = vn_rangelock_wlock(vp, offset,
461			    offset + len);
462		}
463		mp = NULL;
464		if (rw == UIO_WRITE) {
465			if (vp->v_type != VCHR &&
466			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
467			    != 0)
468				goto out;
469			if (MNT_SHARED_WRITES(mp) ||
470			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
471				lock_flags = LK_SHARED;
472			else
473				lock_flags = LK_EXCLUSIVE;
474		} else
475			lock_flags = LK_SHARED;
476		vn_lock(vp, lock_flags | LK_RETRY);
477	} else
478		rl_cookie = NULL;
479
480	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
481#ifdef MAC
482	if ((ioflg & IO_NOMACCHECK) == 0) {
483		if (rw == UIO_READ)
484			error = mac_vnode_check_read(active_cred, file_cred,
485			    vp);
486		else
487			error = mac_vnode_check_write(active_cred, file_cred,
488			    vp);
489	}
490#endif
491	if (error == 0) {
492		if (file_cred != NULL)
493			cred = file_cred;
494		else
495			cred = active_cred;
496		if (rw == UIO_READ)
497			error = VOP_READ(vp, &auio, ioflg, cred);
498		else
499			error = VOP_WRITE(vp, &auio, ioflg, cred);
500	}
501	if (aresid)
502		*aresid = auio.uio_resid;
503	else
504		if (auio.uio_resid && error == 0)
505			error = EIO;
506	if ((ioflg & IO_NODELOCKED) == 0) {
507		VOP_UNLOCK(vp, 0);
508		if (mp != NULL)
509			vn_finished_write(mp);
510	}
511 out:
512	if (rl_cookie != NULL)
513		vn_rangelock_unlock(vp, rl_cookie);
514	return (error);
515}
516
517/*
518 * Package up an I/O request on a vnode into a uio and do it.  The I/O
519 * request is split up into smaller chunks and we try to avoid saturating
520 * the buffer cache while potentially holding a vnode locked, so we
521 * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
522 * to give other processes a chance to lock the vnode (either other processes
523 * core'ing the same binary, or unrelated processes scanning the directory).
524 */
525int
526vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred,
527    file_cred, aresid, td)
528	enum uio_rw rw;
529	struct vnode *vp;
530	void *base;
531	size_t len;
532	off_t offset;
533	enum uio_seg segflg;
534	int ioflg;
535	struct ucred *active_cred;
536	struct ucred *file_cred;
537	size_t *aresid;
538	struct thread *td;
539{
540	int error = 0;
541	ssize_t iaresid;
542
543	do {
544		int chunk;
545
546		/*
547		 * Force `offset' to a multiple of MAXBSIZE except possibly
548		 * for the first chunk, so that filesystems only need to
549		 * write full blocks except possibly for the first and last
550		 * chunks.
551		 */
552		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
553
554		if (chunk > len)
555			chunk = len;
556		if (rw != UIO_READ && vp->v_type == VREG)
557			bwillwrite();
558		iaresid = 0;
559		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
560		    ioflg, active_cred, file_cred, &iaresid, td);
561		len -= chunk;	/* aresid calc already includes length */
562		if (error)
563			break;
564		offset += chunk;
565		base = (char *)base + chunk;
566		kern_yield(PRI_USER);
567	} while (len);
568	if (aresid)
569		*aresid = len + iaresid;
570	return (error);
571}
572
573off_t
574foffset_lock(struct file *fp, int flags)
575{
576	struct mtx *mtxp;
577	off_t res;
578
579	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
580
581#if OFF_MAX <= LONG_MAX
582	/*
583	 * Caller only wants the current f_offset value.  Assume that
584	 * the long and shorter integer types reads are atomic.
585	 */
586	if ((flags & FOF_NOLOCK) != 0)
587		return (fp->f_offset);
588#endif
589
590	/*
591	 * According to McKusick the vn lock was protecting f_offset here.
592	 * It is now protected by the FOFFSET_LOCKED flag.
593	 */
594	mtxp = mtx_pool_find(mtxpool_sleep, fp);
595	mtx_lock(mtxp);
596	if ((flags & FOF_NOLOCK) == 0) {
597		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
598			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
599			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
600			    "vofflock", 0);
601		}
602		fp->f_vnread_flags |= FOFFSET_LOCKED;
603	}
604	res = fp->f_offset;
605	mtx_unlock(mtxp);
606	return (res);
607}
608
609void
610foffset_unlock(struct file *fp, off_t val, int flags)
611{
612	struct mtx *mtxp;
613
614	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
615
616#if OFF_MAX <= LONG_MAX
617	if ((flags & FOF_NOLOCK) != 0) {
618		if ((flags & FOF_NOUPDATE) == 0)
619			fp->f_offset = val;
620		if ((flags & FOF_NEXTOFF) != 0)
621			fp->f_nextoff = val;
622		return;
623	}
624#endif
625
626	mtxp = mtx_pool_find(mtxpool_sleep, fp);
627	mtx_lock(mtxp);
628	if ((flags & FOF_NOUPDATE) == 0)
629		fp->f_offset = val;
630	if ((flags & FOF_NEXTOFF) != 0)
631		fp->f_nextoff = val;
632	if ((flags & FOF_NOLOCK) == 0) {
633		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
634		    ("Lost FOFFSET_LOCKED"));
635		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
636			wakeup(&fp->f_vnread_flags);
637		fp->f_vnread_flags = 0;
638	}
639	mtx_unlock(mtxp);
640}
641
642void
643foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
644{
645
646	if ((flags & FOF_OFFSET) == 0)
647		uio->uio_offset = foffset_lock(fp, flags);
648}
649
650void
651foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
652{
653
654	if ((flags & FOF_OFFSET) == 0)
655		foffset_unlock(fp, uio->uio_offset, flags);
656}
657
658static int
659get_advice(struct file *fp, struct uio *uio)
660{
661	struct mtx *mtxp;
662	int ret;
663
664	ret = POSIX_FADV_NORMAL;
665	if (fp->f_advice == NULL)
666		return (ret);
667
668	mtxp = mtx_pool_find(mtxpool_sleep, fp);
669	mtx_lock(mtxp);
670	if (uio->uio_offset >= fp->f_advice->fa_start &&
671	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
672		ret = fp->f_advice->fa_advice;
673	mtx_unlock(mtxp);
674	return (ret);
675}
676
677/*
678 * File table vnode read routine.
679 */
680static int
681vn_read(fp, uio, active_cred, flags, td)
682	struct file *fp;
683	struct uio *uio;
684	struct ucred *active_cred;
685	int flags;
686	struct thread *td;
687{
688	struct vnode *vp;
689	struct mtx *mtxp;
690	int error, ioflag;
691	int advice;
692	off_t offset, start, end;
693
694	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
695	    uio->uio_td, td));
696	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
697	vp = fp->f_vnode;
698	ioflag = 0;
699	if (fp->f_flag & FNONBLOCK)
700		ioflag |= IO_NDELAY;
701	if (fp->f_flag & O_DIRECT)
702		ioflag |= IO_DIRECT;
703	advice = get_advice(fp, uio);
704	vn_lock(vp, LK_SHARED | LK_RETRY);
705
706	switch (advice) {
707	case POSIX_FADV_NORMAL:
708	case POSIX_FADV_SEQUENTIAL:
709	case POSIX_FADV_NOREUSE:
710		ioflag |= sequential_heuristic(uio, fp);
711		break;
712	case POSIX_FADV_RANDOM:
713		/* Disable read-ahead for random I/O. */
714		break;
715	}
716	offset = uio->uio_offset;
717
718#ifdef MAC
719	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
720	if (error == 0)
721#endif
722		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
723	fp->f_nextoff = uio->uio_offset;
724	VOP_UNLOCK(vp, 0);
725	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
726	    offset != uio->uio_offset) {
727		/*
728		 * Use POSIX_FADV_DONTNEED to flush clean pages and
729		 * buffers for the backing file after a
730		 * POSIX_FADV_NOREUSE read(2).  To optimize the common
731		 * case of using POSIX_FADV_NOREUSE with sequential
732		 * access, track the previous implicit DONTNEED
733		 * request and grow this request to include the
734		 * current read(2) in addition to the previous
735		 * DONTNEED.  With purely sequential access this will
736		 * cause the DONTNEED requests to continously grow to
737		 * cover all of the previously read regions of the
738		 * file.  This allows filesystem blocks that are
739		 * accessed by multiple calls to read(2) to be flushed
740		 * once the last read(2) finishes.
741		 */
742		start = offset;
743		end = uio->uio_offset - 1;
744		mtxp = mtx_pool_find(mtxpool_sleep, fp);
745		mtx_lock(mtxp);
746		if (fp->f_advice != NULL &&
747		    fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
748			if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
749				start = fp->f_advice->fa_prevstart;
750			else if (fp->f_advice->fa_prevstart != 0 &&
751			    fp->f_advice->fa_prevstart == end + 1)
752				end = fp->f_advice->fa_prevend;
753			fp->f_advice->fa_prevstart = start;
754			fp->f_advice->fa_prevend = end;
755		}
756		mtx_unlock(mtxp);
757		error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
758	}
759	return (error);
760}
761
762/*
763 * File table vnode write routine.
764 */
765static int
766vn_write(fp, uio, active_cred, flags, td)
767	struct file *fp;
768	struct uio *uio;
769	struct ucred *active_cred;
770	int flags;
771	struct thread *td;
772{
773	struct vnode *vp;
774	struct mount *mp;
775	struct mtx *mtxp;
776	int error, ioflag, lock_flags;
777	int advice;
778	off_t offset, start, end;
779
780	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
781	    uio->uio_td, td));
782	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
783	vp = fp->f_vnode;
784	if (vp->v_type == VREG)
785		bwillwrite();
786	ioflag = IO_UNIT;
787	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
788		ioflag |= IO_APPEND;
789	if (fp->f_flag & FNONBLOCK)
790		ioflag |= IO_NDELAY;
791	if (fp->f_flag & O_DIRECT)
792		ioflag |= IO_DIRECT;
793	if ((fp->f_flag & O_FSYNC) ||
794	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
795		ioflag |= IO_SYNC;
796	mp = NULL;
797	if (vp->v_type != VCHR &&
798	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
799		goto unlock;
800
801	advice = get_advice(fp, uio);
802
803	if (MNT_SHARED_WRITES(mp) ||
804	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
805		lock_flags = LK_SHARED;
806	} else {
807		lock_flags = LK_EXCLUSIVE;
808	}
809
810	vn_lock(vp, lock_flags | LK_RETRY);
811	switch (advice) {
812	case POSIX_FADV_NORMAL:
813	case POSIX_FADV_SEQUENTIAL:
814	case POSIX_FADV_NOREUSE:
815		ioflag |= sequential_heuristic(uio, fp);
816		break;
817	case POSIX_FADV_RANDOM:
818		/* XXX: Is this correct? */
819		break;
820	}
821	offset = uio->uio_offset;
822
823#ifdef MAC
824	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
825	if (error == 0)
826#endif
827		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
828	fp->f_nextoff = uio->uio_offset;
829	VOP_UNLOCK(vp, 0);
830	if (vp->v_type != VCHR)
831		vn_finished_write(mp);
832	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
833	    offset != uio->uio_offset) {
834		/*
835		 * Use POSIX_FADV_DONTNEED to flush clean pages and
836		 * buffers for the backing file after a
837		 * POSIX_FADV_NOREUSE write(2).  To optimize the
838		 * common case of using POSIX_FADV_NOREUSE with
839		 * sequential access, track the previous implicit
840		 * DONTNEED request and grow this request to include
841		 * the current write(2) in addition to the previous
842		 * DONTNEED.  With purely sequential access this will
843		 * cause the DONTNEED requests to continously grow to
844		 * cover all of the previously written regions of the
845		 * file.
846		 *
847		 * Note that the blocks just written are almost
848		 * certainly still dirty, so this only works when
849		 * VOP_ADVISE() calls from subsequent writes push out
850		 * the data written by this write(2) once the backing
851		 * buffers are clean.  However, as compared to forcing
852		 * IO_DIRECT, this gives much saner behavior.  Write
853		 * clustering is still allowed, and clean pages are
854		 * merely moved to the cache page queue rather than
855		 * outright thrown away.  This means a subsequent
856		 * read(2) can still avoid hitting the disk if the
857		 * pages have not been reclaimed.
858		 *
859		 * This does make POSIX_FADV_NOREUSE largely useless
860		 * with non-sequential access.  However, sequential
861		 * access is the more common use case and the flag is
862		 * merely advisory.
863		 */
864		start = offset;
865		end = uio->uio_offset - 1;
866		mtxp = mtx_pool_find(mtxpool_sleep, fp);
867		mtx_lock(mtxp);
868		if (fp->f_advice != NULL &&
869		    fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
870			if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
871				start = fp->f_advice->fa_prevstart;
872			else if (fp->f_advice->fa_prevstart != 0 &&
873			    fp->f_advice->fa_prevstart == end + 1)
874				end = fp->f_advice->fa_prevend;
875			fp->f_advice->fa_prevstart = start;
876			fp->f_advice->fa_prevend = end;
877		}
878		mtx_unlock(mtxp);
879		error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
880	}
881
882unlock:
883	return (error);
884}
885
886static const int io_hold_cnt = 16;
887static int vn_io_fault_enable = 1;
888SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
889    &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
890static u_long vn_io_faults_cnt;
891SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
892    &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
893
894/*
895 * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
896 * prevent the following deadlock:
897 *
898 * Assume that the thread A reads from the vnode vp1 into userspace
899 * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
900 * currently not resident, then system ends up with the call chain
901 *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
902 *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
903 * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
904 * If, at the same time, thread B reads from vnode vp2 into buffer buf2
905 * backed by the pages of vnode vp1, and some page in buf2 is not
906 * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
907 *
908 * To prevent the lock order reversal and deadlock, vn_io_fault() does
909 * not allow page faults to happen during VOP_READ() or VOP_WRITE().
910 * Instead, it first tries to do the whole range i/o with pagefaults
911 * disabled. If all pages in the i/o buffer are resident and mapped,
912 * VOP will succeed (ignoring the genuine filesystem errors).
913 * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
914 * i/o in chunks, with all pages in the chunk prefaulted and held
915 * using vm_fault_quick_hold_pages().
916 *
917 * Filesystems using this deadlock avoidance scheme should use the
918 * array of the held pages from uio, saved in the curthread->td_ma,
919 * instead of doing uiomove().  A helper function
920 * vn_io_fault_uiomove() converts uiomove request into
921 * uiomove_fromphys() over td_ma array.
922 *
923 * Since vnode locks do not cover the whole i/o anymore, rangelocks
924 * make the current i/o request atomic with respect to other i/os and
925 * truncations.
926 */
927static int
928vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
929    int flags, struct thread *td)
930{
931	vm_page_t ma[io_hold_cnt + 2];
932	struct uio *uio_clone, short_uio;
933	struct iovec short_iovec[1];
934	fo_rdwr_t *doio;
935	struct vnode *vp;
936	void *rl_cookie;
937	struct mount *mp;
938	vm_page_t *prev_td_ma;
939	int error, cnt, save, saveheld, prev_td_ma_cnt;
940	vm_offset_t addr, end;
941	vm_prot_t prot;
942	size_t len, resid;
943	ssize_t adv;
944
945	if (uio->uio_rw == UIO_READ)
946		doio = vn_read;
947	else
948		doio = vn_write;
949	vp = fp->f_vnode;
950	foffset_lock_uio(fp, uio, flags);
951
952	if (uio->uio_segflg != UIO_USERSPACE || vp->v_type != VREG ||
953	    ((mp = vp->v_mount) != NULL &&
954	    (mp->mnt_kern_flag & MNTK_NO_IOPF) == 0) ||
955	    !vn_io_fault_enable) {
956		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
957		goto out_last;
958	}
959
960	/*
961	 * The UFS follows IO_UNIT directive and replays back both
962	 * uio_offset and uio_resid if an error is encountered during the
963	 * operation.  But, since the iovec may be already advanced,
964	 * uio is still in an inconsistent state.
965	 *
966	 * Cache a copy of the original uio, which is advanced to the redo
967	 * point using UIO_NOCOPY below.
968	 */
969	uio_clone = cloneuio(uio);
970	resid = uio->uio_resid;
971
972	short_uio.uio_segflg = UIO_USERSPACE;
973	short_uio.uio_rw = uio->uio_rw;
974	short_uio.uio_td = uio->uio_td;
975
976	if (uio->uio_rw == UIO_READ) {
977		prot = VM_PROT_WRITE;
978		rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
979		    uio->uio_offset + uio->uio_resid);
980	} else {
981		prot = VM_PROT_READ;
982		if ((fp->f_flag & O_APPEND) != 0 || (flags & FOF_OFFSET) == 0)
983			/* For appenders, punt and lock the whole range. */
984			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
985		else
986			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
987			    uio->uio_offset + uio->uio_resid);
988	}
989
990	save = vm_fault_disable_pagefaults();
991	error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
992	if (error != EFAULT)
993		goto out;
994
995	atomic_add_long(&vn_io_faults_cnt, 1);
996	uio_clone->uio_segflg = UIO_NOCOPY;
997	uiomove(NULL, resid - uio->uio_resid, uio_clone);
998	uio_clone->uio_segflg = uio->uio_segflg;
999
1000	saveheld = curthread_pflags_set(TDP_UIOHELD);
1001	prev_td_ma = td->td_ma;
1002	prev_td_ma_cnt = td->td_ma_cnt;
1003
1004	while (uio_clone->uio_resid != 0) {
1005		len = uio_clone->uio_iov->iov_len;
1006		if (len == 0) {
1007			KASSERT(uio_clone->uio_iovcnt >= 1,
1008			    ("iovcnt underflow"));
1009			uio_clone->uio_iov++;
1010			uio_clone->uio_iovcnt--;
1011			continue;
1012		}
1013		if (len > io_hold_cnt * PAGE_SIZE)
1014			len = io_hold_cnt * PAGE_SIZE;
1015		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1016		end = round_page(addr + len);
1017		if (end < addr) {
1018			error = EFAULT;
1019			break;
1020		}
1021		cnt = atop(end - trunc_page(addr));
1022		/*
1023		 * A perfectly misaligned address and length could cause
1024		 * both the start and the end of the chunk to use partial
1025		 * page.  +2 accounts for such a situation.
1026		 */
1027		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1028		    addr, len, prot, ma, io_hold_cnt + 2);
1029		if (cnt == -1) {
1030			error = EFAULT;
1031			break;
1032		}
1033		short_uio.uio_iov = &short_iovec[0];
1034		short_iovec[0].iov_base = (void *)addr;
1035		short_uio.uio_iovcnt = 1;
1036		short_uio.uio_resid = short_iovec[0].iov_len = len;
1037		short_uio.uio_offset = uio_clone->uio_offset;
1038		td->td_ma = ma;
1039		td->td_ma_cnt = cnt;
1040
1041		error = doio(fp, &short_uio, active_cred, flags | FOF_OFFSET,
1042		    td);
1043		vm_page_unhold_pages(ma, cnt);
1044		adv = len - short_uio.uio_resid;
1045
1046		uio_clone->uio_iov->iov_base =
1047		    (char *)uio_clone->uio_iov->iov_base + adv;
1048		uio_clone->uio_iov->iov_len -= adv;
1049		uio_clone->uio_resid -= adv;
1050		uio_clone->uio_offset += adv;
1051
1052		uio->uio_resid -= adv;
1053		uio->uio_offset += adv;
1054
1055		if (error != 0 || adv == 0)
1056			break;
1057	}
1058	td->td_ma = prev_td_ma;
1059	td->td_ma_cnt = prev_td_ma_cnt;
1060	curthread_pflags_restore(saveheld);
1061out:
1062	vm_fault_enable_pagefaults(save);
1063	vn_rangelock_unlock(vp, rl_cookie);
1064	free(uio_clone, M_IOV);
1065out_last:
1066	foffset_unlock_uio(fp, uio, flags);
1067	return (error);
1068}
1069
1070/*
1071 * Helper function to perform the requested uiomove operation using
1072 * the held pages for io->uio_iov[0].iov_base buffer instead of
1073 * copyin/copyout.  Access to the pages with uiomove_fromphys()
1074 * instead of iov_base prevents page faults that could occur due to
1075 * pmap_collect() invalidating the mapping created by
1076 * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1077 * object cleanup revoking the write access from page mappings.
1078 *
1079 * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1080 * instead of plain uiomove().
1081 */
1082int
1083vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1084{
1085	struct uio transp_uio;
1086	struct iovec transp_iov[1];
1087	struct thread *td;
1088	size_t adv;
1089	int error, pgadv;
1090
1091	td = curthread;
1092	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1093	    uio->uio_segflg != UIO_USERSPACE)
1094		return (uiomove(data, xfersize, uio));
1095
1096	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1097	transp_iov[0].iov_base = data;
1098	transp_uio.uio_iov = &transp_iov[0];
1099	transp_uio.uio_iovcnt = 1;
1100	if (xfersize > uio->uio_resid)
1101		xfersize = uio->uio_resid;
1102	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1103	transp_uio.uio_offset = 0;
1104	transp_uio.uio_segflg = UIO_SYSSPACE;
1105	/*
1106	 * Since transp_iov points to data, and td_ma page array
1107	 * corresponds to original uio->uio_iov, we need to invert the
1108	 * direction of the i/o operation as passed to
1109	 * uiomove_fromphys().
1110	 */
1111	switch (uio->uio_rw) {
1112	case UIO_WRITE:
1113		transp_uio.uio_rw = UIO_READ;
1114		break;
1115	case UIO_READ:
1116		transp_uio.uio_rw = UIO_WRITE;
1117		break;
1118	}
1119	transp_uio.uio_td = uio->uio_td;
1120	error = uiomove_fromphys(td->td_ma,
1121	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1122	    xfersize, &transp_uio);
1123	adv = xfersize - transp_uio.uio_resid;
1124	pgadv =
1125	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1126	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1127	td->td_ma += pgadv;
1128	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1129	    pgadv));
1130	td->td_ma_cnt -= pgadv;
1131	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1132	uio->uio_iov->iov_len -= adv;
1133	uio->uio_resid -= adv;
1134	uio->uio_offset += adv;
1135	return (error);
1136}
1137
1138int
1139vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1140    struct uio *uio)
1141{
1142	struct thread *td;
1143	vm_offset_t iov_base;
1144	int cnt, pgadv;
1145
1146	td = curthread;
1147	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1148	    uio->uio_segflg != UIO_USERSPACE)
1149		return (uiomove_fromphys(ma, offset, xfersize, uio));
1150
1151	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1152	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1153	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1154	switch (uio->uio_rw) {
1155	case UIO_WRITE:
1156		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1157		    offset, cnt);
1158		break;
1159	case UIO_READ:
1160		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1161		    cnt);
1162		break;
1163	}
1164	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1165	td->td_ma += pgadv;
1166	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1167	    pgadv));
1168	td->td_ma_cnt -= pgadv;
1169	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1170	uio->uio_iov->iov_len -= cnt;
1171	uio->uio_resid -= cnt;
1172	uio->uio_offset += cnt;
1173	return (0);
1174}
1175
1176
1177/*
1178 * File table truncate routine.
1179 */
1180static int
1181vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1182    struct thread *td)
1183{
1184	struct vattr vattr;
1185	struct mount *mp;
1186	struct vnode *vp;
1187	void *rl_cookie;
1188	int error;
1189
1190	vp = fp->f_vnode;
1191
1192	/*
1193	 * Lock the whole range for truncation.  Otherwise split i/o
1194	 * might happen partly before and partly after the truncation.
1195	 */
1196	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1197	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1198	if (error)
1199		goto out1;
1200	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1201	if (vp->v_type == VDIR) {
1202		error = EISDIR;
1203		goto out;
1204	}
1205#ifdef MAC
1206	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1207	if (error)
1208		goto out;
1209#endif
1210	error = vn_writechk(vp);
1211	if (error == 0) {
1212		VATTR_NULL(&vattr);
1213		vattr.va_size = length;
1214		error = VOP_SETATTR(vp, &vattr, fp->f_cred);
1215	}
1216out:
1217	VOP_UNLOCK(vp, 0);
1218	vn_finished_write(mp);
1219out1:
1220	vn_rangelock_unlock(vp, rl_cookie);
1221	return (error);
1222}
1223
1224/*
1225 * File table vnode stat routine.
1226 */
1227static int
1228vn_statfile(fp, sb, active_cred, td)
1229	struct file *fp;
1230	struct stat *sb;
1231	struct ucred *active_cred;
1232	struct thread *td;
1233{
1234	struct vnode *vp = fp->f_vnode;
1235	int error;
1236
1237	vn_lock(vp, LK_SHARED | LK_RETRY);
1238	error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
1239	VOP_UNLOCK(vp, 0);
1240
1241	return (error);
1242}
1243
1244/*
1245 * Stat a vnode; implementation for the stat syscall
1246 */
1247int
1248vn_stat(vp, sb, active_cred, file_cred, td)
1249	struct vnode *vp;
1250	register struct stat *sb;
1251	struct ucred *active_cred;
1252	struct ucred *file_cred;
1253	struct thread *td;
1254{
1255	struct vattr vattr;
1256	register struct vattr *vap;
1257	int error;
1258	u_short mode;
1259
1260#ifdef MAC
1261	error = mac_vnode_check_stat(active_cred, file_cred, vp);
1262	if (error)
1263		return (error);
1264#endif
1265
1266	vap = &vattr;
1267
1268	/*
1269	 * Initialize defaults for new and unusual fields, so that file
1270	 * systems which don't support these fields don't need to know
1271	 * about them.
1272	 */
1273	vap->va_birthtime.tv_sec = -1;
1274	vap->va_birthtime.tv_nsec = 0;
1275	vap->va_fsid = VNOVAL;
1276	vap->va_rdev = NODEV;
1277
1278	error = VOP_GETATTR(vp, vap, active_cred);
1279	if (error)
1280		return (error);
1281
1282	/*
1283	 * Zero the spare stat fields
1284	 */
1285	bzero(sb, sizeof *sb);
1286
1287	/*
1288	 * Copy from vattr table
1289	 */
1290	if (vap->va_fsid != VNOVAL)
1291		sb->st_dev = vap->va_fsid;
1292	else
1293		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1294	sb->st_ino = vap->va_fileid;
1295	mode = vap->va_mode;
1296	switch (vap->va_type) {
1297	case VREG:
1298		mode |= S_IFREG;
1299		break;
1300	case VDIR:
1301		mode |= S_IFDIR;
1302		break;
1303	case VBLK:
1304		mode |= S_IFBLK;
1305		break;
1306	case VCHR:
1307		mode |= S_IFCHR;
1308		break;
1309	case VLNK:
1310		mode |= S_IFLNK;
1311		break;
1312	case VSOCK:
1313		mode |= S_IFSOCK;
1314		break;
1315	case VFIFO:
1316		mode |= S_IFIFO;
1317		break;
1318	default:
1319		return (EBADF);
1320	};
1321	sb->st_mode = mode;
1322	sb->st_nlink = vap->va_nlink;
1323	sb->st_uid = vap->va_uid;
1324	sb->st_gid = vap->va_gid;
1325	sb->st_rdev = vap->va_rdev;
1326	if (vap->va_size > OFF_MAX)
1327		return (EOVERFLOW);
1328	sb->st_size = vap->va_size;
1329	sb->st_atim = vap->va_atime;
1330	sb->st_mtim = vap->va_mtime;
1331	sb->st_ctim = vap->va_ctime;
1332	sb->st_birthtim = vap->va_birthtime;
1333
1334        /*
1335	 * According to www.opengroup.org, the meaning of st_blksize is
1336	 *   "a filesystem-specific preferred I/O block size for this
1337	 *    object.  In some filesystem types, this may vary from file
1338	 *    to file"
1339	 * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
1340	 */
1341
1342	sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
1343
1344	sb->st_flags = vap->va_flags;
1345	if (priv_check(td, PRIV_VFS_GENERATION))
1346		sb->st_gen = 0;
1347	else
1348		sb->st_gen = vap->va_gen;
1349
1350	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1351	return (0);
1352}
1353
1354/*
1355 * File table vnode ioctl routine.
1356 */
1357static int
1358vn_ioctl(fp, com, data, active_cred, td)
1359	struct file *fp;
1360	u_long com;
1361	void *data;
1362	struct ucred *active_cred;
1363	struct thread *td;
1364{
1365	struct vattr vattr;
1366	struct vnode *vp;
1367	int error;
1368
1369	vp = fp->f_vnode;
1370	switch (vp->v_type) {
1371	case VDIR:
1372	case VREG:
1373		switch (com) {
1374		case FIONREAD:
1375			vn_lock(vp, LK_SHARED | LK_RETRY);
1376			error = VOP_GETATTR(vp, &vattr, active_cred);
1377			VOP_UNLOCK(vp, 0);
1378			if (error == 0)
1379				*(int *)data = vattr.va_size - fp->f_offset;
1380			return (error);
1381		case FIONBIO:
1382		case FIOASYNC:
1383			return (0);
1384		default:
1385			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1386			    active_cred, td));
1387		}
1388	default:
1389		return (ENOTTY);
1390	}
1391}
1392
1393/*
1394 * File table vnode poll routine.
1395 */
1396static int
1397vn_poll(fp, events, active_cred, td)
1398	struct file *fp;
1399	int events;
1400	struct ucred *active_cred;
1401	struct thread *td;
1402{
1403	struct vnode *vp;
1404	int error;
1405
1406	vp = fp->f_vnode;
1407#ifdef MAC
1408	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1409	error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1410	VOP_UNLOCK(vp, 0);
1411	if (!error)
1412#endif
1413
1414	error = VOP_POLL(vp, events, fp->f_cred, td);
1415	return (error);
1416}
1417
1418/*
1419 * Acquire the requested lock and then check for validity.  LK_RETRY
1420 * permits vn_lock to return doomed vnodes.
1421 */
1422int
1423_vn_lock(struct vnode *vp, int flags, char *file, int line)
1424{
1425	int error;
1426
1427	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1428	    ("vn_lock called with no locktype."));
1429	do {
1430#ifdef DEBUG_VFS_LOCKS
1431		KASSERT(vp->v_holdcnt != 0,
1432		    ("vn_lock %p: zero hold count", vp));
1433#endif
1434		error = VOP_LOCK1(vp, flags, file, line);
1435		flags &= ~LK_INTERLOCK;	/* Interlock is always dropped. */
1436		KASSERT((flags & LK_RETRY) == 0 || error == 0,
1437		    ("LK_RETRY set with incompatible flags (0x%x) or an error occured (%d)",
1438		    flags, error));
1439		/*
1440		 * Callers specify LK_RETRY if they wish to get dead vnodes.
1441		 * If RETRY is not set, we return ENOENT instead.
1442		 */
1443		if (error == 0 && vp->v_iflag & VI_DOOMED &&
1444		    (flags & LK_RETRY) == 0) {
1445			VOP_UNLOCK(vp, 0);
1446			error = ENOENT;
1447			break;
1448		}
1449	} while (flags & LK_RETRY && error != 0);
1450	return (error);
1451}
1452
1453/*
1454 * File table vnode close routine.
1455 */
1456static int
1457vn_closefile(fp, td)
1458	struct file *fp;
1459	struct thread *td;
1460{
1461	struct vnode *vp;
1462	struct flock lf;
1463	int error;
1464
1465	vp = fp->f_vnode;
1466	fp->f_ops = &badfileops;
1467
1468	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK)
1469		vref(vp);
1470
1471	error = vn_close(vp, fp->f_flag, fp->f_cred, td);
1472
1473	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) {
1474		lf.l_whence = SEEK_SET;
1475		lf.l_start = 0;
1476		lf.l_len = 0;
1477		lf.l_type = F_UNLCK;
1478		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1479		vrele(vp);
1480	}
1481	return (error);
1482}
1483
1484/*
1485 * Preparing to start a filesystem write operation. If the operation is
1486 * permitted, then we bump the count of operations in progress and
1487 * proceed. If a suspend request is in progress, we wait until the
1488 * suspension is over, and then proceed.
1489 */
1490static int
1491vn_start_write_locked(struct mount *mp, int flags)
1492{
1493	int error;
1494
1495	mtx_assert(MNT_MTX(mp), MA_OWNED);
1496	error = 0;
1497
1498	/*
1499	 * Check on status of suspension.
1500	 */
1501	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1502	    mp->mnt_susp_owner != curthread) {
1503		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1504			if (flags & V_NOWAIT) {
1505				error = EWOULDBLOCK;
1506				goto unlock;
1507			}
1508			error = msleep(&mp->mnt_flag, MNT_MTX(mp),
1509			    (PUSER - 1) | (flags & PCATCH), "suspfs", 0);
1510			if (error)
1511				goto unlock;
1512		}
1513	}
1514	if (flags & V_XSLEEP)
1515		goto unlock;
1516	mp->mnt_writeopcount++;
1517unlock:
1518	if (error != 0 || (flags & V_XSLEEP) != 0)
1519		MNT_REL(mp);
1520	MNT_IUNLOCK(mp);
1521	return (error);
1522}
1523
1524int
1525vn_start_write(vp, mpp, flags)
1526	struct vnode *vp;
1527	struct mount **mpp;
1528	int flags;
1529{
1530	struct mount *mp;
1531	int error;
1532
1533	error = 0;
1534	/*
1535	 * If a vnode is provided, get and return the mount point that
1536	 * to which it will write.
1537	 */
1538	if (vp != NULL) {
1539		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1540			*mpp = NULL;
1541			if (error != EOPNOTSUPP)
1542				return (error);
1543			return (0);
1544		}
1545	}
1546	if ((mp = *mpp) == NULL)
1547		return (0);
1548
1549	/*
1550	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1551	 * a vfs_ref().
1552	 * As long as a vnode is not provided we need to acquire a
1553	 * refcount for the provided mountpoint too, in order to
1554	 * emulate a vfs_ref().
1555	 */
1556	MNT_ILOCK(mp);
1557	if (vp == NULL)
1558		MNT_REF(mp);
1559
1560	return (vn_start_write_locked(mp, flags));
1561}
1562
1563/*
1564 * Secondary suspension. Used by operations such as vop_inactive
1565 * routines that are needed by the higher level functions. These
1566 * are allowed to proceed until all the higher level functions have
1567 * completed (indicated by mnt_writeopcount dropping to zero). At that
1568 * time, these operations are halted until the suspension is over.
1569 */
1570int
1571vn_start_secondary_write(vp, mpp, flags)
1572	struct vnode *vp;
1573	struct mount **mpp;
1574	int flags;
1575{
1576	struct mount *mp;
1577	int error;
1578
1579 retry:
1580	if (vp != NULL) {
1581		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1582			*mpp = NULL;
1583			if (error != EOPNOTSUPP)
1584				return (error);
1585			return (0);
1586		}
1587	}
1588	/*
1589	 * If we are not suspended or have not yet reached suspended
1590	 * mode, then let the operation proceed.
1591	 */
1592	if ((mp = *mpp) == NULL)
1593		return (0);
1594
1595	/*
1596	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1597	 * a vfs_ref().
1598	 * As long as a vnode is not provided we need to acquire a
1599	 * refcount for the provided mountpoint too, in order to
1600	 * emulate a vfs_ref().
1601	 */
1602	MNT_ILOCK(mp);
1603	if (vp == NULL)
1604		MNT_REF(mp);
1605	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1606		mp->mnt_secondary_writes++;
1607		mp->mnt_secondary_accwrites++;
1608		MNT_IUNLOCK(mp);
1609		return (0);
1610	}
1611	if (flags & V_NOWAIT) {
1612		MNT_REL(mp);
1613		MNT_IUNLOCK(mp);
1614		return (EWOULDBLOCK);
1615	}
1616	/*
1617	 * Wait for the suspension to finish.
1618	 */
1619	error = msleep(&mp->mnt_flag, MNT_MTX(mp),
1620		       (PUSER - 1) | (flags & PCATCH) | PDROP, "suspfs", 0);
1621	vfs_rel(mp);
1622	if (error == 0)
1623		goto retry;
1624	return (error);
1625}
1626
1627/*
1628 * Filesystem write operation has completed. If we are suspending and this
1629 * operation is the last one, notify the suspender that the suspension is
1630 * now in effect.
1631 */
1632void
1633vn_finished_write(mp)
1634	struct mount *mp;
1635{
1636	if (mp == NULL)
1637		return;
1638	MNT_ILOCK(mp);
1639	MNT_REL(mp);
1640	mp->mnt_writeopcount--;
1641	if (mp->mnt_writeopcount < 0)
1642		panic("vn_finished_write: neg cnt");
1643	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1644	    mp->mnt_writeopcount <= 0)
1645		wakeup(&mp->mnt_writeopcount);
1646	MNT_IUNLOCK(mp);
1647}
1648
1649
1650/*
1651 * Filesystem secondary write operation has completed. If we are
1652 * suspending and this operation is the last one, notify the suspender
1653 * that the suspension is now in effect.
1654 */
1655void
1656vn_finished_secondary_write(mp)
1657	struct mount *mp;
1658{
1659	if (mp == NULL)
1660		return;
1661	MNT_ILOCK(mp);
1662	MNT_REL(mp);
1663	mp->mnt_secondary_writes--;
1664	if (mp->mnt_secondary_writes < 0)
1665		panic("vn_finished_secondary_write: neg cnt");
1666	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1667	    mp->mnt_secondary_writes <= 0)
1668		wakeup(&mp->mnt_secondary_writes);
1669	MNT_IUNLOCK(mp);
1670}
1671
1672
1673
1674/*
1675 * Request a filesystem to suspend write operations.
1676 */
1677int
1678vfs_write_suspend(struct mount *mp, int flags)
1679{
1680	int error;
1681
1682	MNT_ILOCK(mp);
1683	if (mp->mnt_susp_owner == curthread) {
1684		MNT_IUNLOCK(mp);
1685		return (EALREADY);
1686	}
1687	while (mp->mnt_kern_flag & MNTK_SUSPEND)
1688		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
1689
1690	/*
1691	 * Unmount holds a write reference on the mount point.  If we
1692	 * own busy reference and drain for writers, we deadlock with
1693	 * the reference draining in the unmount path.  Callers of
1694	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
1695	 * vfs_busy() reference is owned and caller is not in the
1696	 * unmount context.
1697	 */
1698	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
1699	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1700		MNT_IUNLOCK(mp);
1701		return (EBUSY);
1702	}
1703
1704	mp->mnt_kern_flag |= MNTK_SUSPEND;
1705	mp->mnt_susp_owner = curthread;
1706	if (mp->mnt_writeopcount > 0)
1707		(void) msleep(&mp->mnt_writeopcount,
1708		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
1709	else
1710		MNT_IUNLOCK(mp);
1711	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
1712		vfs_write_resume(mp, 0);
1713	return (error);
1714}
1715
1716/*
1717 * Request a filesystem to resume write operations.
1718 */
1719void
1720vfs_write_resume(struct mount *mp, int flags)
1721{
1722
1723	MNT_ILOCK(mp);
1724	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1725		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
1726		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
1727				       MNTK_SUSPENDED);
1728		mp->mnt_susp_owner = NULL;
1729		wakeup(&mp->mnt_writeopcount);
1730		wakeup(&mp->mnt_flag);
1731		curthread->td_pflags &= ~TDP_IGNSUSP;
1732		if ((flags & VR_START_WRITE) != 0) {
1733			MNT_REF(mp);
1734			mp->mnt_writeopcount++;
1735		}
1736		MNT_IUNLOCK(mp);
1737		if ((flags & VR_NO_SUSPCLR) == 0)
1738			VFS_SUSP_CLEAN(mp);
1739	} else if ((flags & VR_START_WRITE) != 0) {
1740		MNT_REF(mp);
1741		vn_start_write_locked(mp, 0);
1742	} else {
1743		MNT_IUNLOCK(mp);
1744	}
1745}
1746
1747/*
1748 * Implement kqueues for files by translating it to vnode operation.
1749 */
1750static int
1751vn_kqfilter(struct file *fp, struct knote *kn)
1752{
1753
1754	return (VOP_KQFILTER(fp->f_vnode, kn));
1755}
1756
1757/*
1758 * Simplified in-kernel wrapper calls for extended attribute access.
1759 * Both calls pass in a NULL credential, authorizing as "kernel" access.
1760 * Set IO_NODELOCKED in ioflg if the vnode is already locked.
1761 */
1762int
1763vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
1764    const char *attrname, int *buflen, char *buf, struct thread *td)
1765{
1766	struct uio	auio;
1767	struct iovec	iov;
1768	int	error;
1769
1770	iov.iov_len = *buflen;
1771	iov.iov_base = buf;
1772
1773	auio.uio_iov = &iov;
1774	auio.uio_iovcnt = 1;
1775	auio.uio_rw = UIO_READ;
1776	auio.uio_segflg = UIO_SYSSPACE;
1777	auio.uio_td = td;
1778	auio.uio_offset = 0;
1779	auio.uio_resid = *buflen;
1780
1781	if ((ioflg & IO_NODELOCKED) == 0)
1782		vn_lock(vp, LK_SHARED | LK_RETRY);
1783
1784	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1785
1786	/* authorize attribute retrieval as kernel */
1787	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
1788	    td);
1789
1790	if ((ioflg & IO_NODELOCKED) == 0)
1791		VOP_UNLOCK(vp, 0);
1792
1793	if (error == 0) {
1794		*buflen = *buflen - auio.uio_resid;
1795	}
1796
1797	return (error);
1798}
1799
1800/*
1801 * XXX failure mode if partially written?
1802 */
1803int
1804vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
1805    const char *attrname, int buflen, char *buf, struct thread *td)
1806{
1807	struct uio	auio;
1808	struct iovec	iov;
1809	struct mount	*mp;
1810	int	error;
1811
1812	iov.iov_len = buflen;
1813	iov.iov_base = buf;
1814
1815	auio.uio_iov = &iov;
1816	auio.uio_iovcnt = 1;
1817	auio.uio_rw = UIO_WRITE;
1818	auio.uio_segflg = UIO_SYSSPACE;
1819	auio.uio_td = td;
1820	auio.uio_offset = 0;
1821	auio.uio_resid = buflen;
1822
1823	if ((ioflg & IO_NODELOCKED) == 0) {
1824		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1825			return (error);
1826		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1827	}
1828
1829	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1830
1831	/* authorize attribute setting as kernel */
1832	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
1833
1834	if ((ioflg & IO_NODELOCKED) == 0) {
1835		vn_finished_write(mp);
1836		VOP_UNLOCK(vp, 0);
1837	}
1838
1839	return (error);
1840}
1841
1842int
1843vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
1844    const char *attrname, struct thread *td)
1845{
1846	struct mount	*mp;
1847	int	error;
1848
1849	if ((ioflg & IO_NODELOCKED) == 0) {
1850		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1851			return (error);
1852		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1853	}
1854
1855	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1856
1857	/* authorize attribute removal as kernel */
1858	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
1859	if (error == EOPNOTSUPP)
1860		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
1861		    NULL, td);
1862
1863	if ((ioflg & IO_NODELOCKED) == 0) {
1864		vn_finished_write(mp);
1865		VOP_UNLOCK(vp, 0);
1866	}
1867
1868	return (error);
1869}
1870
1871int
1872vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
1873{
1874	struct mount *mp;
1875	int ltype, error;
1876
1877	mp = vp->v_mount;
1878	ltype = VOP_ISLOCKED(vp);
1879	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
1880	    ("vn_vget_ino: vp not locked"));
1881	error = vfs_busy(mp, MBF_NOWAIT);
1882	if (error != 0) {
1883		vfs_ref(mp);
1884		VOP_UNLOCK(vp, 0);
1885		error = vfs_busy(mp, 0);
1886		vn_lock(vp, ltype | LK_RETRY);
1887		vfs_rel(mp);
1888		if (error != 0)
1889			return (ENOENT);
1890		if (vp->v_iflag & VI_DOOMED) {
1891			vfs_unbusy(mp);
1892			return (ENOENT);
1893		}
1894	}
1895	VOP_UNLOCK(vp, 0);
1896	error = VFS_VGET(mp, ino, lkflags, rvp);
1897	vfs_unbusy(mp);
1898	vn_lock(vp, ltype | LK_RETRY);
1899	if (vp->v_iflag & VI_DOOMED) {
1900		if (error == 0)
1901			vput(*rvp);
1902		error = ENOENT;
1903	}
1904	return (error);
1905}
1906
1907int
1908vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
1909    const struct thread *td)
1910{
1911
1912	if (vp->v_type != VREG || td == NULL)
1913		return (0);
1914	PROC_LOCK(td->td_proc);
1915	if ((uoff_t)uio->uio_offset + uio->uio_resid >
1916	    lim_cur(td->td_proc, RLIMIT_FSIZE)) {
1917		kern_psignal(td->td_proc, SIGXFSZ);
1918		PROC_UNLOCK(td->td_proc);
1919		return (EFBIG);
1920	}
1921	PROC_UNLOCK(td->td_proc);
1922	return (0);
1923}
1924
1925int
1926vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
1927    struct thread *td)
1928{
1929	struct vnode *vp;
1930
1931	vp = fp->f_vnode;
1932#ifdef AUDIT
1933	vn_lock(vp, LK_SHARED | LK_RETRY);
1934	AUDIT_ARG_VNODE1(vp);
1935	VOP_UNLOCK(vp, 0);
1936#endif
1937	return (setfmode(td, active_cred, vp, mode));
1938}
1939
1940int
1941vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
1942    struct thread *td)
1943{
1944	struct vnode *vp;
1945
1946	vp = fp->f_vnode;
1947#ifdef AUDIT
1948	vn_lock(vp, LK_SHARED | LK_RETRY);
1949	AUDIT_ARG_VNODE1(vp);
1950	VOP_UNLOCK(vp, 0);
1951#endif
1952	return (setfown(td, active_cred, vp, uid, gid));
1953}
1954
1955void
1956vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
1957{
1958	vm_object_t object;
1959
1960	if ((object = vp->v_object) == NULL)
1961		return;
1962	VM_OBJECT_WLOCK(object);
1963	vm_object_page_remove(object, start, end, 0);
1964	VM_OBJECT_WUNLOCK(object);
1965}
1966
1967int
1968vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
1969{
1970	struct vattr va;
1971	daddr_t bn, bnp;
1972	uint64_t bsize;
1973	off_t noff;
1974	int error;
1975
1976	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
1977	    ("Wrong command %lu", cmd));
1978
1979	if (vn_lock(vp, LK_SHARED) != 0)
1980		return (EBADF);
1981	if (vp->v_type != VREG) {
1982		error = ENOTTY;
1983		goto unlock;
1984	}
1985	error = VOP_GETATTR(vp, &va, cred);
1986	if (error != 0)
1987		goto unlock;
1988	noff = *off;
1989	if (noff >= va.va_size) {
1990		error = ENXIO;
1991		goto unlock;
1992	}
1993	bsize = vp->v_mount->mnt_stat.f_iosize;
1994	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) {
1995		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
1996		if (error == EOPNOTSUPP) {
1997			error = ENOTTY;
1998			goto unlock;
1999		}
2000		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2001		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2002			noff = bn * bsize;
2003			if (noff < *off)
2004				noff = *off;
2005			goto unlock;
2006		}
2007	}
2008	if (noff > va.va_size)
2009		noff = va.va_size;
2010	/* noff == va.va_size. There is an implicit hole at the end of file. */
2011	if (cmd == FIOSEEKDATA)
2012		error = ENXIO;
2013unlock:
2014	VOP_UNLOCK(vp, 0);
2015	if (error == 0)
2016		*off = noff;
2017	return (error);
2018}
2019
2020int
2021vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2022{
2023	struct ucred *cred;
2024	struct vnode *vp;
2025	struct vattr vattr;
2026	off_t foffset, size;
2027	int error, noneg;
2028
2029	cred = td->td_ucred;
2030	vp = fp->f_vnode;
2031	foffset = foffset_lock(fp, 0);
2032	noneg = (vp->v_type != VCHR);
2033	error = 0;
2034	switch (whence) {
2035	case L_INCR:
2036		if (noneg &&
2037		    (foffset < 0 ||
2038		    (offset > 0 && foffset > OFF_MAX - offset))) {
2039			error = EOVERFLOW;
2040			break;
2041		}
2042		offset += foffset;
2043		break;
2044	case L_XTND:
2045		vn_lock(vp, LK_SHARED | LK_RETRY);
2046		error = VOP_GETATTR(vp, &vattr, cred);
2047		VOP_UNLOCK(vp, 0);
2048		if (error)
2049			break;
2050
2051		/*
2052		 * If the file references a disk device, then fetch
2053		 * the media size and use that to determine the ending
2054		 * offset.
2055		 */
2056		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2057		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2058			vattr.va_size = size;
2059		if (noneg &&
2060		    (vattr.va_size > OFF_MAX ||
2061		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2062			error = EOVERFLOW;
2063			break;
2064		}
2065		offset += vattr.va_size;
2066		break;
2067	case L_SET:
2068		break;
2069	case SEEK_DATA:
2070		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2071		break;
2072	case SEEK_HOLE:
2073		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2074		break;
2075	default:
2076		error = EINVAL;
2077	}
2078	if (error == 0 && noneg && offset < 0)
2079		error = EINVAL;
2080	if (error != 0)
2081		goto drop;
2082	VFS_KNOTE_UNLOCKED(vp, 0);
2083	*(off_t *)(td->td_retval) = offset;
2084drop:
2085	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2086	return (error);
2087}
2088
2089int
2090vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2091    struct thread *td)
2092{
2093	int error;
2094
2095	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2096
2097	/*
2098	 * From utimes(2):
2099	 * Grant permission if the caller is the owner of the file or
2100	 * the super-user.  If the time pointer is null, then write
2101	 * permission on the file is also sufficient.
2102	 *
2103	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2104	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2105	 * will be allowed to set the times [..] to the current
2106	 * server time.
2107	 */
2108	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2109		error = VOP_ACCESS(vp, VWRITE, cred, td);
2110	return (error);
2111}
2112