vfs_vnops.c revision 259499
1139969Simp/*-
21556Srgrimes * Copyright (c) 1982, 1986, 1989, 1993
31556Srgrimes *	The Regents of the University of California.  All rights reserved.
41556Srgrimes * (c) UNIX System Laboratories, Inc.
51556Srgrimes * All or some portions of this file are derived from material licensed
61556Srgrimes * to the University of California by American Telephone and Telegraph
71556Srgrimes * Co. or Unix System Laboratories, Inc. and are reproduced herein with
81556Srgrimes * the permission of UNIX System Laboratories, Inc.
91556Srgrimes *
101556Srgrimes * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
111556Srgrimes * Copyright (c) 2013 The FreeBSD Foundation
121556Srgrimes *
131556Srgrimes * Portions of this software were developed by Konstantin Belousov
141556Srgrimes * under sponsorship from the FreeBSD Foundation.
151556Srgrimes *
161556Srgrimes * Redistribution and use in source and binary forms, with or without
171556Srgrimes * modification, are permitted provided that the following conditions
181556Srgrimes * are met:
191556Srgrimes * 1. Redistributions of source code must retain the above copyright
201556Srgrimes *    notice, this list of conditions and the following disclaimer.
211556Srgrimes * 2. Redistributions in binary form must reproduce the above copyright
221556Srgrimes *    notice, this list of conditions and the following disclaimer in the
231556Srgrimes *    documentation and/or other materials provided with the distribution.
241556Srgrimes * 4. Neither the name of the University nor the names of its contributors
251556Srgrimes *    may be used to endorse or promote products derived from this software
261556Srgrimes *    without specific prior written permission.
271556Srgrimes *
281556Srgrimes * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
291556Srgrimes * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
301556Srgrimes * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
311556Srgrimes * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
3220419Ssteve * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
3350471Speter * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
341556Srgrimes * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35307419Ssevan * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
361556Srgrimes * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
3779526Sru * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
381556Srgrimes * SUCH DAMAGE.
391556Srgrimes *
401556Srgrimes *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
411556Srgrimes */
4268935Sru
43115082Sru#include <sys/cdefs.h>
441556Srgrimes__FBSDID("$FreeBSD: stable/10/sys/kern/vfs_vnops.c 259499 2013-12-17 09:21:56Z kib $");
4594869Scharnier
4694869Scharnier#include <sys/param.h>
4794869Scharnier#include <sys/systm.h>
481556Srgrimes#include <sys/disk.h>
4951090Ssheldonh#include <sys/fcntl.h>
5051090Ssheldonh#include <sys/file.h>
5151090Ssheldonh#include <sys/kdb.h>
5251275Ssheldonh#include <sys/stat.h>
5351275Ssheldonh#include <sys/priv.h>
5451090Ssheldonh#include <sys/proc.h>
5551090Ssheldonh#include <sys/limits.h>
5690170Smike#include <sys/lock.h>
5790170Smike#include <sys/mount.h>
5890170Smike#include <sys/mutex.h>
5990170Smike#include <sys/namei.h>
6090170Smike#include <sys/vnode.h>
6190170Smike#include <sys/bio.h>
6290170Smike#include <sys/buf.h>
6390170Smike#include <sys/filio.h>
6490170Smike#include <sys/resourcevar.h>
6590170Smike#include <sys/rwlock.h>
6696857Stjr#include <sys/sx.h>
6790170Smike#include <sys/sysctl.h>
6890170Smike#include <sys/ttycom.h>
6990170Smike#include <sys/conf.h>
7090170Smike#include <sys/syslog.h>
7192332Sru#include <sys/unistd.h>
7290170Smike
7390170Smike#include <security/audit/audit.h>
7490170Smike#include <security/mac/mac_framework.h>
75140353Sru
7681687Sru#include <vm/vm.h>
771556Srgrimes#include <vm/vm_extern.h>
7851090Ssheldonh#include <vm/pmap.h>
791556Srgrimes#include <vm/vm_map.h>
801556Srgrimes#include <vm/vm_object.h>
8179366Sru#include <vm/vm_page.h>
8279366Sru
83140353Srustatic fo_rdwr_t	vn_read;
84140353Srustatic fo_rdwr_t	vn_write;
85140353Srustatic fo_rdwr_t	vn_io_fault;
86140353Srustatic fo_truncate_t	vn_truncate;
87140353Srustatic fo_ioctl_t	vn_ioctl;
88307419Ssevanstatic fo_poll_t	vn_poll;
89307419Ssevanstatic fo_kqfilter_t	vn_kqfilter;
90307419Ssevanstatic fo_stat_t	vn_statfile;
91307419Ssevanstatic fo_close_t	vn_closefile;
92307419Ssevan
931556Srgrimesstruct 	fileops vnops = {
941556Srgrimes	.fo_read = vn_io_fault,
95131505Sru	.fo_write = vn_io_fault,
961556Srgrimes	.fo_truncate = vn_truncate,
971556Srgrimes	.fo_ioctl = vn_ioctl,
9851275Ssheldonh	.fo_poll = vn_poll,
9951275Ssheldonh	.fo_kqfilter = vn_kqfilter,
1001556Srgrimes	.fo_stat = vn_statfile,
10151090Ssheldonh	.fo_close = vn_closefile,
10290170Smike	.fo_chmod = vn_chmod,
10390170Smike	.fo_chown = vn_chown,
10490170Smike	.fo_sendfile = vn_sendfile,
10590170Smike	.fo_seek = vn_seek,
10690170Smike	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
10790170Smike};
108
109int
110vn_open(ndp, flagp, cmode, fp)
111	struct nameidata *ndp;
112	int *flagp, cmode;
113	struct file *fp;
114{
115	struct thread *td = ndp->ni_cnd.cn_thread;
116
117	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
118}
119
120/*
121 * Common code for vnode open operations via a name lookup.
122 * Lookup the vnode and invoke VOP_CREATE if needed.
123 * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
124 *
125 * Note that this does NOT free nameidata for the successful case,
126 * due to the NDINIT being done elsewhere.
127 */
128int
129vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
130    struct ucred *cred, struct file *fp)
131{
132	struct vnode *vp;
133	struct mount *mp;
134	struct thread *td = ndp->ni_cnd.cn_thread;
135	struct vattr vat;
136	struct vattr *vap = &vat;
137	int fmode, error;
138
139restart:
140	fmode = *flagp;
141	if (fmode & O_CREAT) {
142		ndp->ni_cnd.cn_nameiop = CREATE;
143		ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF;
144		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
145			ndp->ni_cnd.cn_flags |= FOLLOW;
146		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
147			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
148		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
149			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
150		bwillwrite();
151		if ((error = namei(ndp)) != 0)
152			return (error);
153		if (ndp->ni_vp == NULL) {
154			VATTR_NULL(vap);
155			vap->va_type = VREG;
156			vap->va_mode = cmode;
157			if (fmode & O_EXCL)
158				vap->va_vaflags |= VA_EXCLUSIVE;
159			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
160				NDFREE(ndp, NDF_ONLY_PNBUF);
161				vput(ndp->ni_dvp);
162				if ((error = vn_start_write(NULL, &mp,
163				    V_XSLEEP | PCATCH)) != 0)
164					return (error);
165				goto restart;
166			}
167#ifdef MAC
168			error = mac_vnode_check_create(cred, ndp->ni_dvp,
169			    &ndp->ni_cnd, vap);
170			if (error == 0)
171#endif
172				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
173						   &ndp->ni_cnd, vap);
174			vput(ndp->ni_dvp);
175			vn_finished_write(mp);
176			if (error) {
177				NDFREE(ndp, NDF_ONLY_PNBUF);
178				return (error);
179			}
180			fmode &= ~O_TRUNC;
181			vp = ndp->ni_vp;
182		} else {
183			if (ndp->ni_dvp == ndp->ni_vp)
184				vrele(ndp->ni_dvp);
185			else
186				vput(ndp->ni_dvp);
187			ndp->ni_dvp = NULL;
188			vp = ndp->ni_vp;
189			if (fmode & O_EXCL) {
190				error = EEXIST;
191				goto bad;
192			}
193			fmode &= ~O_CREAT;
194		}
195	} else {
196		ndp->ni_cnd.cn_nameiop = LOOKUP;
197		ndp->ni_cnd.cn_flags = ISOPEN |
198		    ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
199		if (!(fmode & FWRITE))
200			ndp->ni_cnd.cn_flags |= LOCKSHARED;
201		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
202			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
203		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
204			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
205		if ((error = namei(ndp)) != 0)
206			return (error);
207		vp = ndp->ni_vp;
208	}
209	error = vn_open_vnode(vp, fmode, cred, td, fp);
210	if (error)
211		goto bad;
212	*flagp = fmode;
213	return (0);
214bad:
215	NDFREE(ndp, NDF_ONLY_PNBUF);
216	vput(vp);
217	*flagp = fmode;
218	ndp->ni_vp = NULL;
219	return (error);
220}
221
222/*
223 * Common code for vnode open operations once a vnode is located.
224 * Check permissions, and call the VOP_OPEN routine.
225 */
226int
227vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
228    struct thread *td, struct file *fp)
229{
230	struct mount *mp;
231	accmode_t accmode;
232	struct flock lf;
233	int error, have_flock, lock_flags, type;
234
235	if (vp->v_type == VLNK)
236		return (EMLINK);
237	if (vp->v_type == VSOCK)
238		return (EOPNOTSUPP);
239	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
240		return (ENOTDIR);
241	accmode = 0;
242	if (fmode & (FWRITE | O_TRUNC)) {
243		if (vp->v_type == VDIR)
244			return (EISDIR);
245		accmode |= VWRITE;
246	}
247	if (fmode & FREAD)
248		accmode |= VREAD;
249	if (fmode & FEXEC)
250		accmode |= VEXEC;
251	if ((fmode & O_APPEND) && (fmode & FWRITE))
252		accmode |= VAPPEND;
253#ifdef MAC
254	error = mac_vnode_check_open(cred, vp, accmode);
255	if (error)
256		return (error);
257#endif
258	if ((fmode & O_CREAT) == 0) {
259		if (accmode & VWRITE) {
260			error = vn_writechk(vp);
261			if (error)
262				return (error);
263		}
264		if (accmode) {
265		        error = VOP_ACCESS(vp, accmode, cred, td);
266			if (error)
267				return (error);
268		}
269	}
270	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
271		vn_lock(vp, LK_UPGRADE | LK_RETRY);
272	if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
273		return (error);
274
275	if (fmode & (O_EXLOCK | O_SHLOCK)) {
276		KASSERT(fp != NULL, ("open with flock requires fp"));
277		lock_flags = VOP_ISLOCKED(vp);
278		VOP_UNLOCK(vp, 0);
279		lf.l_whence = SEEK_SET;
280		lf.l_start = 0;
281		lf.l_len = 0;
282		if (fmode & O_EXLOCK)
283			lf.l_type = F_WRLCK;
284		else
285			lf.l_type = F_RDLCK;
286		type = F_FLOCK;
287		if ((fmode & FNONBLOCK) == 0)
288			type |= F_WAIT;
289		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
290		have_flock = (error == 0);
291		vn_lock(vp, lock_flags | LK_RETRY);
292		if (error == 0 && vp->v_iflag & VI_DOOMED)
293			error = ENOENT;
294		/*
295		 * Another thread might have used this vnode as an
296		 * executable while the vnode lock was dropped.
297		 * Ensure the vnode is still able to be opened for
298		 * writing after the lock has been obtained.
299		 */
300		if (error == 0 && accmode & VWRITE)
301			error = vn_writechk(vp);
302		if (error) {
303			VOP_UNLOCK(vp, 0);
304			if (have_flock) {
305				lf.l_whence = SEEK_SET;
306				lf.l_start = 0;
307				lf.l_len = 0;
308				lf.l_type = F_UNLCK;
309				(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf,
310				    F_FLOCK);
311			}
312			vn_start_write(vp, &mp, V_WAIT);
313			vn_lock(vp, lock_flags | LK_RETRY);
314			(void)VOP_CLOSE(vp, fmode, cred, td);
315			vn_finished_write(mp);
316			return (error);
317		}
318		fp->f_flag |= FHASLOCK;
319	}
320	if (fmode & FWRITE) {
321		VOP_ADD_WRITECOUNT(vp, 1);
322		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
323		    __func__, vp, vp->v_writecount);
324	}
325	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
326	return (0);
327}
328
329/*
330 * Check for write permissions on the specified vnode.
331 * Prototype text segments cannot be written.
332 */
333int
334vn_writechk(vp)
335	register struct vnode *vp;
336{
337
338	ASSERT_VOP_LOCKED(vp, "vn_writechk");
339	/*
340	 * If there's shared text associated with
341	 * the vnode, try to free it up once.  If
342	 * we fail, we can't allow writing.
343	 */
344	if (VOP_IS_TEXT(vp))
345		return (ETXTBSY);
346
347	return (0);
348}
349
350/*
351 * Vnode close call
352 */
353int
354vn_close(vp, flags, file_cred, td)
355	register struct vnode *vp;
356	int flags;
357	struct ucred *file_cred;
358	struct thread *td;
359{
360	struct mount *mp;
361	int error, lock_flags;
362
363	if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
364	    MNT_EXTENDED_SHARED(vp->v_mount))
365		lock_flags = LK_SHARED;
366	else
367		lock_flags = LK_EXCLUSIVE;
368
369	vn_start_write(vp, &mp, V_WAIT);
370	vn_lock(vp, lock_flags | LK_RETRY);
371	if (flags & FWRITE) {
372		VNASSERT(vp->v_writecount > 0, vp,
373		    ("vn_close: negative writecount"));
374		VOP_ADD_WRITECOUNT(vp, -1);
375		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
376		    __func__, vp, vp->v_writecount);
377	}
378	error = VOP_CLOSE(vp, flags, file_cred, td);
379	vput(vp);
380	vn_finished_write(mp);
381	return (error);
382}
383
384/*
385 * Heuristic to detect sequential operation.
386 */
387static int
388sequential_heuristic(struct uio *uio, struct file *fp)
389{
390
391	if (atomic_load_acq_int(&(fp->f_flag)) & FRDAHEAD)
392		return (fp->f_seqcount << IO_SEQSHIFT);
393
394	/*
395	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
396	 * that the first I/O is normally considered to be slightly
397	 * sequential.  Seeking to offset 0 doesn't change sequentiality
398	 * unless previous seeks have reduced f_seqcount to 0, in which
399	 * case offset 0 is not special.
400	 */
401	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
402	    uio->uio_offset == fp->f_nextoff) {
403		/*
404		 * f_seqcount is in units of fixed-size blocks so that it
405		 * depends mainly on the amount of sequential I/O and not
406		 * much on the number of sequential I/O's.  The fixed size
407		 * of 16384 is hard-coded here since it is (not quite) just
408		 * a magic size that works well here.  This size is more
409		 * closely related to the best I/O size for real disks than
410		 * to any block size used by software.
411		 */
412		fp->f_seqcount += howmany(uio->uio_resid, 16384);
413		if (fp->f_seqcount > IO_SEQMAX)
414			fp->f_seqcount = IO_SEQMAX;
415		return (fp->f_seqcount << IO_SEQSHIFT);
416	}
417
418	/* Not sequential.  Quickly draw-down sequentiality. */
419	if (fp->f_seqcount > 1)
420		fp->f_seqcount = 1;
421	else
422		fp->f_seqcount = 0;
423	return (0);
424}
425
426/*
427 * Package up an I/O request on a vnode into a uio and do it.
428 */
429int
430vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
431    enum uio_seg segflg, int ioflg, struct ucred *active_cred,
432    struct ucred *file_cred, ssize_t *aresid, struct thread *td)
433{
434	struct uio auio;
435	struct iovec aiov;
436	struct mount *mp;
437	struct ucred *cred;
438	void *rl_cookie;
439	int error, lock_flags;
440
441	auio.uio_iov = &aiov;
442	auio.uio_iovcnt = 1;
443	aiov.iov_base = base;
444	aiov.iov_len = len;
445	auio.uio_resid = len;
446	auio.uio_offset = offset;
447	auio.uio_segflg = segflg;
448	auio.uio_rw = rw;
449	auio.uio_td = td;
450	error = 0;
451
452	if ((ioflg & IO_NODELOCKED) == 0) {
453		if (rw == UIO_READ) {
454			rl_cookie = vn_rangelock_rlock(vp, offset,
455			    offset + len);
456		} else {
457			rl_cookie = vn_rangelock_wlock(vp, offset,
458			    offset + len);
459		}
460		mp = NULL;
461		if (rw == UIO_WRITE) {
462			if (vp->v_type != VCHR &&
463			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
464			    != 0)
465				goto out;
466			if (MNT_SHARED_WRITES(mp) ||
467			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
468				lock_flags = LK_SHARED;
469			else
470				lock_flags = LK_EXCLUSIVE;
471		} else
472			lock_flags = LK_SHARED;
473		vn_lock(vp, lock_flags | LK_RETRY);
474	} else
475		rl_cookie = NULL;
476
477	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
478#ifdef MAC
479	if ((ioflg & IO_NOMACCHECK) == 0) {
480		if (rw == UIO_READ)
481			error = mac_vnode_check_read(active_cred, file_cred,
482			    vp);
483		else
484			error = mac_vnode_check_write(active_cred, file_cred,
485			    vp);
486	}
487#endif
488	if (error == 0) {
489		if (file_cred != NULL)
490			cred = file_cred;
491		else
492			cred = active_cred;
493		if (rw == UIO_READ)
494			error = VOP_READ(vp, &auio, ioflg, cred);
495		else
496			error = VOP_WRITE(vp, &auio, ioflg, cred);
497	}
498	if (aresid)
499		*aresid = auio.uio_resid;
500	else
501		if (auio.uio_resid && error == 0)
502			error = EIO;
503	if ((ioflg & IO_NODELOCKED) == 0) {
504		VOP_UNLOCK(vp, 0);
505		if (mp != NULL)
506			vn_finished_write(mp);
507	}
508 out:
509	if (rl_cookie != NULL)
510		vn_rangelock_unlock(vp, rl_cookie);
511	return (error);
512}
513
514/*
515 * Package up an I/O request on a vnode into a uio and do it.  The I/O
516 * request is split up into smaller chunks and we try to avoid saturating
517 * the buffer cache while potentially holding a vnode locked, so we
518 * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
519 * to give other processes a chance to lock the vnode (either other processes
520 * core'ing the same binary, or unrelated processes scanning the directory).
521 */
522int
523vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred,
524    file_cred, aresid, td)
525	enum uio_rw rw;
526	struct vnode *vp;
527	void *base;
528	size_t len;
529	off_t offset;
530	enum uio_seg segflg;
531	int ioflg;
532	struct ucred *active_cred;
533	struct ucred *file_cred;
534	size_t *aresid;
535	struct thread *td;
536{
537	int error = 0;
538	ssize_t iaresid;
539
540	do {
541		int chunk;
542
543		/*
544		 * Force `offset' to a multiple of MAXBSIZE except possibly
545		 * for the first chunk, so that filesystems only need to
546		 * write full blocks except possibly for the first and last
547		 * chunks.
548		 */
549		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
550
551		if (chunk > len)
552			chunk = len;
553		if (rw != UIO_READ && vp->v_type == VREG)
554			bwillwrite();
555		iaresid = 0;
556		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
557		    ioflg, active_cred, file_cred, &iaresid, td);
558		len -= chunk;	/* aresid calc already includes length */
559		if (error)
560			break;
561		offset += chunk;
562		base = (char *)base + chunk;
563		kern_yield(PRI_USER);
564	} while (len);
565	if (aresid)
566		*aresid = len + iaresid;
567	return (error);
568}
569
570off_t
571foffset_lock(struct file *fp, int flags)
572{
573	struct mtx *mtxp;
574	off_t res;
575
576	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
577
578#if OFF_MAX <= LONG_MAX
579	/*
580	 * Caller only wants the current f_offset value.  Assume that
581	 * the long and shorter integer types reads are atomic.
582	 */
583	if ((flags & FOF_NOLOCK) != 0)
584		return (fp->f_offset);
585#endif
586
587	/*
588	 * According to McKusick the vn lock was protecting f_offset here.
589	 * It is now protected by the FOFFSET_LOCKED flag.
590	 */
591	mtxp = mtx_pool_find(mtxpool_sleep, fp);
592	mtx_lock(mtxp);
593	if ((flags & FOF_NOLOCK) == 0) {
594		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
595			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
596			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
597			    "vofflock", 0);
598		}
599		fp->f_vnread_flags |= FOFFSET_LOCKED;
600	}
601	res = fp->f_offset;
602	mtx_unlock(mtxp);
603	return (res);
604}
605
606void
607foffset_unlock(struct file *fp, off_t val, int flags)
608{
609	struct mtx *mtxp;
610
611	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
612
613#if OFF_MAX <= LONG_MAX
614	if ((flags & FOF_NOLOCK) != 0) {
615		if ((flags & FOF_NOUPDATE) == 0)
616			fp->f_offset = val;
617		if ((flags & FOF_NEXTOFF) != 0)
618			fp->f_nextoff = val;
619		return;
620	}
621#endif
622
623	mtxp = mtx_pool_find(mtxpool_sleep, fp);
624	mtx_lock(mtxp);
625	if ((flags & FOF_NOUPDATE) == 0)
626		fp->f_offset = val;
627	if ((flags & FOF_NEXTOFF) != 0)
628		fp->f_nextoff = val;
629	if ((flags & FOF_NOLOCK) == 0) {
630		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
631		    ("Lost FOFFSET_LOCKED"));
632		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
633			wakeup(&fp->f_vnread_flags);
634		fp->f_vnread_flags = 0;
635	}
636	mtx_unlock(mtxp);
637}
638
639void
640foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
641{
642
643	if ((flags & FOF_OFFSET) == 0)
644		uio->uio_offset = foffset_lock(fp, flags);
645}
646
647void
648foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
649{
650
651	if ((flags & FOF_OFFSET) == 0)
652		foffset_unlock(fp, uio->uio_offset, flags);
653}
654
655static int
656get_advice(struct file *fp, struct uio *uio)
657{
658	struct mtx *mtxp;
659	int ret;
660
661	ret = POSIX_FADV_NORMAL;
662	if (fp->f_advice == NULL)
663		return (ret);
664
665	mtxp = mtx_pool_find(mtxpool_sleep, fp);
666	mtx_lock(mtxp);
667	if (uio->uio_offset >= fp->f_advice->fa_start &&
668	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
669		ret = fp->f_advice->fa_advice;
670	mtx_unlock(mtxp);
671	return (ret);
672}
673
674/*
675 * File table vnode read routine.
676 */
677static int
678vn_read(fp, uio, active_cred, flags, td)
679	struct file *fp;
680	struct uio *uio;
681	struct ucred *active_cred;
682	int flags;
683	struct thread *td;
684{
685	struct vnode *vp;
686	struct mtx *mtxp;
687	int error, ioflag;
688	int advice;
689	off_t offset, start, end;
690
691	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
692	    uio->uio_td, td));
693	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
694	vp = fp->f_vnode;
695	ioflag = 0;
696	if (fp->f_flag & FNONBLOCK)
697		ioflag |= IO_NDELAY;
698	if (fp->f_flag & O_DIRECT)
699		ioflag |= IO_DIRECT;
700	advice = get_advice(fp, uio);
701	vn_lock(vp, LK_SHARED | LK_RETRY);
702
703	switch (advice) {
704	case POSIX_FADV_NORMAL:
705	case POSIX_FADV_SEQUENTIAL:
706	case POSIX_FADV_NOREUSE:
707		ioflag |= sequential_heuristic(uio, fp);
708		break;
709	case POSIX_FADV_RANDOM:
710		/* Disable read-ahead for random I/O. */
711		break;
712	}
713	offset = uio->uio_offset;
714
715#ifdef MAC
716	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
717	if (error == 0)
718#endif
719		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
720	fp->f_nextoff = uio->uio_offset;
721	VOP_UNLOCK(vp, 0);
722	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
723	    offset != uio->uio_offset) {
724		/*
725		 * Use POSIX_FADV_DONTNEED to flush clean pages and
726		 * buffers for the backing file after a
727		 * POSIX_FADV_NOREUSE read(2).  To optimize the common
728		 * case of using POSIX_FADV_NOREUSE with sequential
729		 * access, track the previous implicit DONTNEED
730		 * request and grow this request to include the
731		 * current read(2) in addition to the previous
732		 * DONTNEED.  With purely sequential access this will
733		 * cause the DONTNEED requests to continously grow to
734		 * cover all of the previously read regions of the
735		 * file.  This allows filesystem blocks that are
736		 * accessed by multiple calls to read(2) to be flushed
737		 * once the last read(2) finishes.
738		 */
739		start = offset;
740		end = uio->uio_offset - 1;
741		mtxp = mtx_pool_find(mtxpool_sleep, fp);
742		mtx_lock(mtxp);
743		if (fp->f_advice != NULL &&
744		    fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
745			if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
746				start = fp->f_advice->fa_prevstart;
747			else if (fp->f_advice->fa_prevstart != 0 &&
748			    fp->f_advice->fa_prevstart == end + 1)
749				end = fp->f_advice->fa_prevend;
750			fp->f_advice->fa_prevstart = start;
751			fp->f_advice->fa_prevend = end;
752		}
753		mtx_unlock(mtxp);
754		error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
755	}
756	return (error);
757}
758
759/*
760 * File table vnode write routine.
761 */
762static int
763vn_write(fp, uio, active_cred, flags, td)
764	struct file *fp;
765	struct uio *uio;
766	struct ucred *active_cred;
767	int flags;
768	struct thread *td;
769{
770	struct vnode *vp;
771	struct mount *mp;
772	struct mtx *mtxp;
773	int error, ioflag, lock_flags;
774	int advice;
775	off_t offset, start, end;
776
777	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
778	    uio->uio_td, td));
779	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
780	vp = fp->f_vnode;
781	if (vp->v_type == VREG)
782		bwillwrite();
783	ioflag = IO_UNIT;
784	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
785		ioflag |= IO_APPEND;
786	if (fp->f_flag & FNONBLOCK)
787		ioflag |= IO_NDELAY;
788	if (fp->f_flag & O_DIRECT)
789		ioflag |= IO_DIRECT;
790	if ((fp->f_flag & O_FSYNC) ||
791	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
792		ioflag |= IO_SYNC;
793	mp = NULL;
794	if (vp->v_type != VCHR &&
795	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
796		goto unlock;
797
798	advice = get_advice(fp, uio);
799
800	if (MNT_SHARED_WRITES(mp) ||
801	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
802		lock_flags = LK_SHARED;
803	} else {
804		lock_flags = LK_EXCLUSIVE;
805	}
806
807	vn_lock(vp, lock_flags | LK_RETRY);
808	switch (advice) {
809	case POSIX_FADV_NORMAL:
810	case POSIX_FADV_SEQUENTIAL:
811	case POSIX_FADV_NOREUSE:
812		ioflag |= sequential_heuristic(uio, fp);
813		break;
814	case POSIX_FADV_RANDOM:
815		/* XXX: Is this correct? */
816		break;
817	}
818	offset = uio->uio_offset;
819
820#ifdef MAC
821	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
822	if (error == 0)
823#endif
824		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
825	fp->f_nextoff = uio->uio_offset;
826	VOP_UNLOCK(vp, 0);
827	if (vp->v_type != VCHR)
828		vn_finished_write(mp);
829	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
830	    offset != uio->uio_offset) {
831		/*
832		 * Use POSIX_FADV_DONTNEED to flush clean pages and
833		 * buffers for the backing file after a
834		 * POSIX_FADV_NOREUSE write(2).  To optimize the
835		 * common case of using POSIX_FADV_NOREUSE with
836		 * sequential access, track the previous implicit
837		 * DONTNEED request and grow this request to include
838		 * the current write(2) in addition to the previous
839		 * DONTNEED.  With purely sequential access this will
840		 * cause the DONTNEED requests to continously grow to
841		 * cover all of the previously written regions of the
842		 * file.
843		 *
844		 * Note that the blocks just written are almost
845		 * certainly still dirty, so this only works when
846		 * VOP_ADVISE() calls from subsequent writes push out
847		 * the data written by this write(2) once the backing
848		 * buffers are clean.  However, as compared to forcing
849		 * IO_DIRECT, this gives much saner behavior.  Write
850		 * clustering is still allowed, and clean pages are
851		 * merely moved to the cache page queue rather than
852		 * outright thrown away.  This means a subsequent
853		 * read(2) can still avoid hitting the disk if the
854		 * pages have not been reclaimed.
855		 *
856		 * This does make POSIX_FADV_NOREUSE largely useless
857		 * with non-sequential access.  However, sequential
858		 * access is the more common use case and the flag is
859		 * merely advisory.
860		 */
861		start = offset;
862		end = uio->uio_offset - 1;
863		mtxp = mtx_pool_find(mtxpool_sleep, fp);
864		mtx_lock(mtxp);
865		if (fp->f_advice != NULL &&
866		    fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
867			if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
868				start = fp->f_advice->fa_prevstart;
869			else if (fp->f_advice->fa_prevstart != 0 &&
870			    fp->f_advice->fa_prevstart == end + 1)
871				end = fp->f_advice->fa_prevend;
872			fp->f_advice->fa_prevstart = start;
873			fp->f_advice->fa_prevend = end;
874		}
875		mtx_unlock(mtxp);
876		error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
877	}
878
879unlock:
880	return (error);
881}
882
883static const int io_hold_cnt = 16;
884static int vn_io_fault_enable = 1;
885SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
886    &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
887static u_long vn_io_faults_cnt;
888SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
889    &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
890
891/*
892 * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
893 * prevent the following deadlock:
894 *
895 * Assume that the thread A reads from the vnode vp1 into userspace
896 * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
897 * currently not resident, then system ends up with the call chain
898 *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
899 *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
900 * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
901 * If, at the same time, thread B reads from vnode vp2 into buffer buf2
902 * backed by the pages of vnode vp1, and some page in buf2 is not
903 * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
904 *
905 * To prevent the lock order reversal and deadlock, vn_io_fault() does
906 * not allow page faults to happen during VOP_READ() or VOP_WRITE().
907 * Instead, it first tries to do the whole range i/o with pagefaults
908 * disabled. If all pages in the i/o buffer are resident and mapped,
909 * VOP will succeed (ignoring the genuine filesystem errors).
910 * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
911 * i/o in chunks, with all pages in the chunk prefaulted and held
912 * using vm_fault_quick_hold_pages().
913 *
914 * Filesystems using this deadlock avoidance scheme should use the
915 * array of the held pages from uio, saved in the curthread->td_ma,
916 * instead of doing uiomove().  A helper function
917 * vn_io_fault_uiomove() converts uiomove request into
918 * uiomove_fromphys() over td_ma array.
919 *
920 * Since vnode locks do not cover the whole i/o anymore, rangelocks
921 * make the current i/o request atomic with respect to other i/os and
922 * truncations.
923 */
924static int
925vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
926    int flags, struct thread *td)
927{
928	vm_page_t ma[io_hold_cnt + 2];
929	struct uio *uio_clone, short_uio;
930	struct iovec short_iovec[1];
931	fo_rdwr_t *doio;
932	struct vnode *vp;
933	void *rl_cookie;
934	struct mount *mp;
935	vm_page_t *prev_td_ma;
936	int error, cnt, save, saveheld, prev_td_ma_cnt;
937	vm_offset_t addr, end;
938	vm_prot_t prot;
939	size_t len, resid;
940	ssize_t adv;
941
942	if (uio->uio_rw == UIO_READ)
943		doio = vn_read;
944	else
945		doio = vn_write;
946	vp = fp->f_vnode;
947	foffset_lock_uio(fp, uio, flags);
948
949	if (uio->uio_segflg != UIO_USERSPACE || vp->v_type != VREG ||
950	    ((mp = vp->v_mount) != NULL &&
951	    (mp->mnt_kern_flag & MNTK_NO_IOPF) == 0) ||
952	    !vn_io_fault_enable) {
953		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
954		goto out_last;
955	}
956
957	/*
958	 * The UFS follows IO_UNIT directive and replays back both
959	 * uio_offset and uio_resid if an error is encountered during the
960	 * operation.  But, since the iovec may be already advanced,
961	 * uio is still in an inconsistent state.
962	 *
963	 * Cache a copy of the original uio, which is advanced to the redo
964	 * point using UIO_NOCOPY below.
965	 */
966	uio_clone = cloneuio(uio);
967	resid = uio->uio_resid;
968
969	short_uio.uio_segflg = UIO_USERSPACE;
970	short_uio.uio_rw = uio->uio_rw;
971	short_uio.uio_td = uio->uio_td;
972
973	if (uio->uio_rw == UIO_READ) {
974		prot = VM_PROT_WRITE;
975		rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
976		    uio->uio_offset + uio->uio_resid);
977	} else {
978		prot = VM_PROT_READ;
979		if ((fp->f_flag & O_APPEND) != 0 || (flags & FOF_OFFSET) == 0)
980			/* For appenders, punt and lock the whole range. */
981			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
982		else
983			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
984			    uio->uio_offset + uio->uio_resid);
985	}
986
987	save = vm_fault_disable_pagefaults();
988	error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
989	if (error != EFAULT)
990		goto out;
991
992	atomic_add_long(&vn_io_faults_cnt, 1);
993	uio_clone->uio_segflg = UIO_NOCOPY;
994	uiomove(NULL, resid - uio->uio_resid, uio_clone);
995	uio_clone->uio_segflg = uio->uio_segflg;
996
997	saveheld = curthread_pflags_set(TDP_UIOHELD);
998	prev_td_ma = td->td_ma;
999	prev_td_ma_cnt = td->td_ma_cnt;
1000
1001	while (uio_clone->uio_resid != 0) {
1002		len = uio_clone->uio_iov->iov_len;
1003		if (len == 0) {
1004			KASSERT(uio_clone->uio_iovcnt >= 1,
1005			    ("iovcnt underflow"));
1006			uio_clone->uio_iov++;
1007			uio_clone->uio_iovcnt--;
1008			continue;
1009		}
1010		if (len > io_hold_cnt * PAGE_SIZE)
1011			len = io_hold_cnt * PAGE_SIZE;
1012		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1013		end = round_page(addr + len);
1014		if (end < addr) {
1015			error = EFAULT;
1016			break;
1017		}
1018		cnt = atop(end - trunc_page(addr));
1019		/*
1020		 * A perfectly misaligned address and length could cause
1021		 * both the start and the end of the chunk to use partial
1022		 * page.  +2 accounts for such a situation.
1023		 */
1024		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1025		    addr, len, prot, ma, io_hold_cnt + 2);
1026		if (cnt == -1) {
1027			error = EFAULT;
1028			break;
1029		}
1030		short_uio.uio_iov = &short_iovec[0];
1031		short_iovec[0].iov_base = (void *)addr;
1032		short_uio.uio_iovcnt = 1;
1033		short_uio.uio_resid = short_iovec[0].iov_len = len;
1034		short_uio.uio_offset = uio_clone->uio_offset;
1035		td->td_ma = ma;
1036		td->td_ma_cnt = cnt;
1037
1038		error = doio(fp, &short_uio, active_cred, flags | FOF_OFFSET,
1039		    td);
1040		vm_page_unhold_pages(ma, cnt);
1041		adv = len - short_uio.uio_resid;
1042
1043		uio_clone->uio_iov->iov_base =
1044		    (char *)uio_clone->uio_iov->iov_base + adv;
1045		uio_clone->uio_iov->iov_len -= adv;
1046		uio_clone->uio_resid -= adv;
1047		uio_clone->uio_offset += adv;
1048
1049		uio->uio_resid -= adv;
1050		uio->uio_offset += adv;
1051
1052		if (error != 0 || adv == 0)
1053			break;
1054	}
1055	td->td_ma = prev_td_ma;
1056	td->td_ma_cnt = prev_td_ma_cnt;
1057	curthread_pflags_restore(saveheld);
1058out:
1059	vm_fault_enable_pagefaults(save);
1060	vn_rangelock_unlock(vp, rl_cookie);
1061	free(uio_clone, M_IOV);
1062out_last:
1063	foffset_unlock_uio(fp, uio, flags);
1064	return (error);
1065}
1066
1067/*
1068 * Helper function to perform the requested uiomove operation using
1069 * the held pages for io->uio_iov[0].iov_base buffer instead of
1070 * copyin/copyout.  Access to the pages with uiomove_fromphys()
1071 * instead of iov_base prevents page faults that could occur due to
1072 * pmap_collect() invalidating the mapping created by
1073 * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1074 * object cleanup revoking the write access from page mappings.
1075 *
1076 * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1077 * instead of plain uiomove().
1078 */
1079int
1080vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1081{
1082	struct uio transp_uio;
1083	struct iovec transp_iov[1];
1084	struct thread *td;
1085	size_t adv;
1086	int error, pgadv;
1087
1088	td = curthread;
1089	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1090	    uio->uio_segflg != UIO_USERSPACE)
1091		return (uiomove(data, xfersize, uio));
1092
1093	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1094	transp_iov[0].iov_base = data;
1095	transp_uio.uio_iov = &transp_iov[0];
1096	transp_uio.uio_iovcnt = 1;
1097	if (xfersize > uio->uio_resid)
1098		xfersize = uio->uio_resid;
1099	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1100	transp_uio.uio_offset = 0;
1101	transp_uio.uio_segflg = UIO_SYSSPACE;
1102	/*
1103	 * Since transp_iov points to data, and td_ma page array
1104	 * corresponds to original uio->uio_iov, we need to invert the
1105	 * direction of the i/o operation as passed to
1106	 * uiomove_fromphys().
1107	 */
1108	switch (uio->uio_rw) {
1109	case UIO_WRITE:
1110		transp_uio.uio_rw = UIO_READ;
1111		break;
1112	case UIO_READ:
1113		transp_uio.uio_rw = UIO_WRITE;
1114		break;
1115	}
1116	transp_uio.uio_td = uio->uio_td;
1117	error = uiomove_fromphys(td->td_ma,
1118	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1119	    xfersize, &transp_uio);
1120	adv = xfersize - transp_uio.uio_resid;
1121	pgadv =
1122	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1123	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1124	td->td_ma += pgadv;
1125	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1126	    pgadv));
1127	td->td_ma_cnt -= pgadv;
1128	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1129	uio->uio_iov->iov_len -= adv;
1130	uio->uio_resid -= adv;
1131	uio->uio_offset += adv;
1132	return (error);
1133}
1134
1135int
1136vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1137    struct uio *uio)
1138{
1139	struct thread *td;
1140	vm_offset_t iov_base;
1141	int cnt, pgadv;
1142
1143	td = curthread;
1144	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1145	    uio->uio_segflg != UIO_USERSPACE)
1146		return (uiomove_fromphys(ma, offset, xfersize, uio));
1147
1148	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1149	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1150	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1151	switch (uio->uio_rw) {
1152	case UIO_WRITE:
1153		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1154		    offset, cnt);
1155		break;
1156	case UIO_READ:
1157		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1158		    cnt);
1159		break;
1160	}
1161	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1162	td->td_ma += pgadv;
1163	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1164	    pgadv));
1165	td->td_ma_cnt -= pgadv;
1166	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1167	uio->uio_iov->iov_len -= cnt;
1168	uio->uio_resid -= cnt;
1169	uio->uio_offset += cnt;
1170	return (0);
1171}
1172
1173
1174/*
1175 * File table truncate routine.
1176 */
1177static int
1178vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1179    struct thread *td)
1180{
1181	struct vattr vattr;
1182	struct mount *mp;
1183	struct vnode *vp;
1184	void *rl_cookie;
1185	int error;
1186
1187	vp = fp->f_vnode;
1188
1189	/*
1190	 * Lock the whole range for truncation.  Otherwise split i/o
1191	 * might happen partly before and partly after the truncation.
1192	 */
1193	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1194	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1195	if (error)
1196		goto out1;
1197	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1198	if (vp->v_type == VDIR) {
1199		error = EISDIR;
1200		goto out;
1201	}
1202#ifdef MAC
1203	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1204	if (error)
1205		goto out;
1206#endif
1207	error = vn_writechk(vp);
1208	if (error == 0) {
1209		VATTR_NULL(&vattr);
1210		vattr.va_size = length;
1211		error = VOP_SETATTR(vp, &vattr, fp->f_cred);
1212	}
1213out:
1214	VOP_UNLOCK(vp, 0);
1215	vn_finished_write(mp);
1216out1:
1217	vn_rangelock_unlock(vp, rl_cookie);
1218	return (error);
1219}
1220
1221/*
1222 * File table vnode stat routine.
1223 */
1224static int
1225vn_statfile(fp, sb, active_cred, td)
1226	struct file *fp;
1227	struct stat *sb;
1228	struct ucred *active_cred;
1229	struct thread *td;
1230{
1231	struct vnode *vp = fp->f_vnode;
1232	int error;
1233
1234	vn_lock(vp, LK_SHARED | LK_RETRY);
1235	error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
1236	VOP_UNLOCK(vp, 0);
1237
1238	return (error);
1239}
1240
1241/*
1242 * Stat a vnode; implementation for the stat syscall
1243 */
1244int
1245vn_stat(vp, sb, active_cred, file_cred, td)
1246	struct vnode *vp;
1247	register struct stat *sb;
1248	struct ucred *active_cred;
1249	struct ucred *file_cred;
1250	struct thread *td;
1251{
1252	struct vattr vattr;
1253	register struct vattr *vap;
1254	int error;
1255	u_short mode;
1256
1257#ifdef MAC
1258	error = mac_vnode_check_stat(active_cred, file_cred, vp);
1259	if (error)
1260		return (error);
1261#endif
1262
1263	vap = &vattr;
1264
1265	/*
1266	 * Initialize defaults for new and unusual fields, so that file
1267	 * systems which don't support these fields don't need to know
1268	 * about them.
1269	 */
1270	vap->va_birthtime.tv_sec = -1;
1271	vap->va_birthtime.tv_nsec = 0;
1272	vap->va_fsid = VNOVAL;
1273	vap->va_rdev = NODEV;
1274
1275	error = VOP_GETATTR(vp, vap, active_cred);
1276	if (error)
1277		return (error);
1278
1279	/*
1280	 * Zero the spare stat fields
1281	 */
1282	bzero(sb, sizeof *sb);
1283
1284	/*
1285	 * Copy from vattr table
1286	 */
1287	if (vap->va_fsid != VNOVAL)
1288		sb->st_dev = vap->va_fsid;
1289	else
1290		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1291	sb->st_ino = vap->va_fileid;
1292	mode = vap->va_mode;
1293	switch (vap->va_type) {
1294	case VREG:
1295		mode |= S_IFREG;
1296		break;
1297	case VDIR:
1298		mode |= S_IFDIR;
1299		break;
1300	case VBLK:
1301		mode |= S_IFBLK;
1302		break;
1303	case VCHR:
1304		mode |= S_IFCHR;
1305		break;
1306	case VLNK:
1307		mode |= S_IFLNK;
1308		break;
1309	case VSOCK:
1310		mode |= S_IFSOCK;
1311		break;
1312	case VFIFO:
1313		mode |= S_IFIFO;
1314		break;
1315	default:
1316		return (EBADF);
1317	};
1318	sb->st_mode = mode;
1319	sb->st_nlink = vap->va_nlink;
1320	sb->st_uid = vap->va_uid;
1321	sb->st_gid = vap->va_gid;
1322	sb->st_rdev = vap->va_rdev;
1323	if (vap->va_size > OFF_MAX)
1324		return (EOVERFLOW);
1325	sb->st_size = vap->va_size;
1326	sb->st_atim = vap->va_atime;
1327	sb->st_mtim = vap->va_mtime;
1328	sb->st_ctim = vap->va_ctime;
1329	sb->st_birthtim = vap->va_birthtime;
1330
1331        /*
1332	 * According to www.opengroup.org, the meaning of st_blksize is
1333	 *   "a filesystem-specific preferred I/O block size for this
1334	 *    object.  In some filesystem types, this may vary from file
1335	 *    to file"
1336	 * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
1337	 */
1338
1339	sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
1340
1341	sb->st_flags = vap->va_flags;
1342	if (priv_check(td, PRIV_VFS_GENERATION))
1343		sb->st_gen = 0;
1344	else
1345		sb->st_gen = vap->va_gen;
1346
1347	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1348	return (0);
1349}
1350
1351/*
1352 * File table vnode ioctl routine.
1353 */
1354static int
1355vn_ioctl(fp, com, data, active_cred, td)
1356	struct file *fp;
1357	u_long com;
1358	void *data;
1359	struct ucred *active_cred;
1360	struct thread *td;
1361{
1362	struct vattr vattr;
1363	struct vnode *vp;
1364	int error;
1365
1366	vp = fp->f_vnode;
1367	switch (vp->v_type) {
1368	case VDIR:
1369	case VREG:
1370		switch (com) {
1371		case FIONREAD:
1372			vn_lock(vp, LK_SHARED | LK_RETRY);
1373			error = VOP_GETATTR(vp, &vattr, active_cred);
1374			VOP_UNLOCK(vp, 0);
1375			if (error == 0)
1376				*(int *)data = vattr.va_size - fp->f_offset;
1377			return (error);
1378		case FIONBIO:
1379		case FIOASYNC:
1380			return (0);
1381		default:
1382			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1383			    active_cred, td));
1384		}
1385	default:
1386		return (ENOTTY);
1387	}
1388}
1389
1390/*
1391 * File table vnode poll routine.
1392 */
1393static int
1394vn_poll(fp, events, active_cred, td)
1395	struct file *fp;
1396	int events;
1397	struct ucred *active_cred;
1398	struct thread *td;
1399{
1400	struct vnode *vp;
1401	int error;
1402
1403	vp = fp->f_vnode;
1404#ifdef MAC
1405	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1406	error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1407	VOP_UNLOCK(vp, 0);
1408	if (!error)
1409#endif
1410
1411	error = VOP_POLL(vp, events, fp->f_cred, td);
1412	return (error);
1413}
1414
1415/*
1416 * Acquire the requested lock and then check for validity.  LK_RETRY
1417 * permits vn_lock to return doomed vnodes.
1418 */
1419int
1420_vn_lock(struct vnode *vp, int flags, char *file, int line)
1421{
1422	int error;
1423
1424	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1425	    ("vn_lock called with no locktype."));
1426	do {
1427#ifdef DEBUG_VFS_LOCKS
1428		KASSERT(vp->v_holdcnt != 0,
1429		    ("vn_lock %p: zero hold count", vp));
1430#endif
1431		error = VOP_LOCK1(vp, flags, file, line);
1432		flags &= ~LK_INTERLOCK;	/* Interlock is always dropped. */
1433		KASSERT((flags & LK_RETRY) == 0 || error == 0,
1434		    ("LK_RETRY set with incompatible flags (0x%x) or an error occured (%d)",
1435		    flags, error));
1436		/*
1437		 * Callers specify LK_RETRY if they wish to get dead vnodes.
1438		 * If RETRY is not set, we return ENOENT instead.
1439		 */
1440		if (error == 0 && vp->v_iflag & VI_DOOMED &&
1441		    (flags & LK_RETRY) == 0) {
1442			VOP_UNLOCK(vp, 0);
1443			error = ENOENT;
1444			break;
1445		}
1446	} while (flags & LK_RETRY && error != 0);
1447	return (error);
1448}
1449
1450/*
1451 * File table vnode close routine.
1452 */
1453static int
1454vn_closefile(fp, td)
1455	struct file *fp;
1456	struct thread *td;
1457{
1458	struct vnode *vp;
1459	struct flock lf;
1460	int error;
1461
1462	vp = fp->f_vnode;
1463	fp->f_ops = &badfileops;
1464
1465	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK)
1466		vref(vp);
1467
1468	error = vn_close(vp, fp->f_flag, fp->f_cred, td);
1469
1470	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) {
1471		lf.l_whence = SEEK_SET;
1472		lf.l_start = 0;
1473		lf.l_len = 0;
1474		lf.l_type = F_UNLCK;
1475		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1476		vrele(vp);
1477	}
1478	return (error);
1479}
1480
1481/*
1482 * Preparing to start a filesystem write operation. If the operation is
1483 * permitted, then we bump the count of operations in progress and
1484 * proceed. If a suspend request is in progress, we wait until the
1485 * suspension is over, and then proceed.
1486 */
1487static int
1488vn_start_write_locked(struct mount *mp, int flags)
1489{
1490	int error;
1491
1492	mtx_assert(MNT_MTX(mp), MA_OWNED);
1493	error = 0;
1494
1495	/*
1496	 * Check on status of suspension.
1497	 */
1498	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1499	    mp->mnt_susp_owner != curthread) {
1500		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1501			if (flags & V_NOWAIT) {
1502				error = EWOULDBLOCK;
1503				goto unlock;
1504			}
1505			error = msleep(&mp->mnt_flag, MNT_MTX(mp),
1506			    (PUSER - 1) | (flags & PCATCH), "suspfs", 0);
1507			if (error)
1508				goto unlock;
1509		}
1510	}
1511	if (flags & V_XSLEEP)
1512		goto unlock;
1513	mp->mnt_writeopcount++;
1514unlock:
1515	if (error != 0 || (flags & V_XSLEEP) != 0)
1516		MNT_REL(mp);
1517	MNT_IUNLOCK(mp);
1518	return (error);
1519}
1520
1521int
1522vn_start_write(vp, mpp, flags)
1523	struct vnode *vp;
1524	struct mount **mpp;
1525	int flags;
1526{
1527	struct mount *mp;
1528	int error;
1529
1530	error = 0;
1531	/*
1532	 * If a vnode is provided, get and return the mount point that
1533	 * to which it will write.
1534	 */
1535	if (vp != NULL) {
1536		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1537			*mpp = NULL;
1538			if (error != EOPNOTSUPP)
1539				return (error);
1540			return (0);
1541		}
1542	}
1543	if ((mp = *mpp) == NULL)
1544		return (0);
1545
1546	/*
1547	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1548	 * a vfs_ref().
1549	 * As long as a vnode is not provided we need to acquire a
1550	 * refcount for the provided mountpoint too, in order to
1551	 * emulate a vfs_ref().
1552	 */
1553	MNT_ILOCK(mp);
1554	if (vp == NULL)
1555		MNT_REF(mp);
1556
1557	return (vn_start_write_locked(mp, flags));
1558}
1559
1560/*
1561 * Secondary suspension. Used by operations such as vop_inactive
1562 * routines that are needed by the higher level functions. These
1563 * are allowed to proceed until all the higher level functions have
1564 * completed (indicated by mnt_writeopcount dropping to zero). At that
1565 * time, these operations are halted until the suspension is over.
1566 */
1567int
1568vn_start_secondary_write(vp, mpp, flags)
1569	struct vnode *vp;
1570	struct mount **mpp;
1571	int flags;
1572{
1573	struct mount *mp;
1574	int error;
1575
1576 retry:
1577	if (vp != NULL) {
1578		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1579			*mpp = NULL;
1580			if (error != EOPNOTSUPP)
1581				return (error);
1582			return (0);
1583		}
1584	}
1585	/*
1586	 * If we are not suspended or have not yet reached suspended
1587	 * mode, then let the operation proceed.
1588	 */
1589	if ((mp = *mpp) == NULL)
1590		return (0);
1591
1592	/*
1593	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1594	 * a vfs_ref().
1595	 * As long as a vnode is not provided we need to acquire a
1596	 * refcount for the provided mountpoint too, in order to
1597	 * emulate a vfs_ref().
1598	 */
1599	MNT_ILOCK(mp);
1600	if (vp == NULL)
1601		MNT_REF(mp);
1602	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1603		mp->mnt_secondary_writes++;
1604		mp->mnt_secondary_accwrites++;
1605		MNT_IUNLOCK(mp);
1606		return (0);
1607	}
1608	if (flags & V_NOWAIT) {
1609		MNT_REL(mp);
1610		MNT_IUNLOCK(mp);
1611		return (EWOULDBLOCK);
1612	}
1613	/*
1614	 * Wait for the suspension to finish.
1615	 */
1616	error = msleep(&mp->mnt_flag, MNT_MTX(mp),
1617		       (PUSER - 1) | (flags & PCATCH) | PDROP, "suspfs", 0);
1618	vfs_rel(mp);
1619	if (error == 0)
1620		goto retry;
1621	return (error);
1622}
1623
1624/*
1625 * Filesystem write operation has completed. If we are suspending and this
1626 * operation is the last one, notify the suspender that the suspension is
1627 * now in effect.
1628 */
1629void
1630vn_finished_write(mp)
1631	struct mount *mp;
1632{
1633	if (mp == NULL)
1634		return;
1635	MNT_ILOCK(mp);
1636	MNT_REL(mp);
1637	mp->mnt_writeopcount--;
1638	if (mp->mnt_writeopcount < 0)
1639		panic("vn_finished_write: neg cnt");
1640	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1641	    mp->mnt_writeopcount <= 0)
1642		wakeup(&mp->mnt_writeopcount);
1643	MNT_IUNLOCK(mp);
1644}
1645
1646
1647/*
1648 * Filesystem secondary write operation has completed. If we are
1649 * suspending and this operation is the last one, notify the suspender
1650 * that the suspension is now in effect.
1651 */
1652void
1653vn_finished_secondary_write(mp)
1654	struct mount *mp;
1655{
1656	if (mp == NULL)
1657		return;
1658	MNT_ILOCK(mp);
1659	MNT_REL(mp);
1660	mp->mnt_secondary_writes--;
1661	if (mp->mnt_secondary_writes < 0)
1662		panic("vn_finished_secondary_write: neg cnt");
1663	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1664	    mp->mnt_secondary_writes <= 0)
1665		wakeup(&mp->mnt_secondary_writes);
1666	MNT_IUNLOCK(mp);
1667}
1668
1669
1670
1671/*
1672 * Request a filesystem to suspend write operations.
1673 */
1674int
1675vfs_write_suspend(struct mount *mp, int flags)
1676{
1677	int error;
1678
1679	MNT_ILOCK(mp);
1680	if (mp->mnt_susp_owner == curthread) {
1681		MNT_IUNLOCK(mp);
1682		return (EALREADY);
1683	}
1684	while (mp->mnt_kern_flag & MNTK_SUSPEND)
1685		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
1686
1687	/*
1688	 * Unmount holds a write reference on the mount point.  If we
1689	 * own busy reference and drain for writers, we deadlock with
1690	 * the reference draining in the unmount path.  Callers of
1691	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
1692	 * vfs_busy() reference is owned and caller is not in the
1693	 * unmount context.
1694	 */
1695	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
1696	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1697		MNT_IUNLOCK(mp);
1698		return (EBUSY);
1699	}
1700
1701	mp->mnt_kern_flag |= MNTK_SUSPEND;
1702	mp->mnt_susp_owner = curthread;
1703	if (mp->mnt_writeopcount > 0)
1704		(void) msleep(&mp->mnt_writeopcount,
1705		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
1706	else
1707		MNT_IUNLOCK(mp);
1708	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
1709		vfs_write_resume(mp, 0);
1710	return (error);
1711}
1712
1713/*
1714 * Request a filesystem to resume write operations.
1715 */
1716void
1717vfs_write_resume(struct mount *mp, int flags)
1718{
1719
1720	MNT_ILOCK(mp);
1721	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1722		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
1723		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
1724				       MNTK_SUSPENDED);
1725		mp->mnt_susp_owner = NULL;
1726		wakeup(&mp->mnt_writeopcount);
1727		wakeup(&mp->mnt_flag);
1728		curthread->td_pflags &= ~TDP_IGNSUSP;
1729		if ((flags & VR_START_WRITE) != 0) {
1730			MNT_REF(mp);
1731			mp->mnt_writeopcount++;
1732		}
1733		MNT_IUNLOCK(mp);
1734		if ((flags & VR_NO_SUSPCLR) == 0)
1735			VFS_SUSP_CLEAN(mp);
1736	} else if ((flags & VR_START_WRITE) != 0) {
1737		MNT_REF(mp);
1738		vn_start_write_locked(mp, 0);
1739	} else {
1740		MNT_IUNLOCK(mp);
1741	}
1742}
1743
1744/*
1745 * Implement kqueues for files by translating it to vnode operation.
1746 */
1747static int
1748vn_kqfilter(struct file *fp, struct knote *kn)
1749{
1750
1751	return (VOP_KQFILTER(fp->f_vnode, kn));
1752}
1753
1754/*
1755 * Simplified in-kernel wrapper calls for extended attribute access.
1756 * Both calls pass in a NULL credential, authorizing as "kernel" access.
1757 * Set IO_NODELOCKED in ioflg if the vnode is already locked.
1758 */
1759int
1760vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
1761    const char *attrname, int *buflen, char *buf, struct thread *td)
1762{
1763	struct uio	auio;
1764	struct iovec	iov;
1765	int	error;
1766
1767	iov.iov_len = *buflen;
1768	iov.iov_base = buf;
1769
1770	auio.uio_iov = &iov;
1771	auio.uio_iovcnt = 1;
1772	auio.uio_rw = UIO_READ;
1773	auio.uio_segflg = UIO_SYSSPACE;
1774	auio.uio_td = td;
1775	auio.uio_offset = 0;
1776	auio.uio_resid = *buflen;
1777
1778	if ((ioflg & IO_NODELOCKED) == 0)
1779		vn_lock(vp, LK_SHARED | LK_RETRY);
1780
1781	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1782
1783	/* authorize attribute retrieval as kernel */
1784	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
1785	    td);
1786
1787	if ((ioflg & IO_NODELOCKED) == 0)
1788		VOP_UNLOCK(vp, 0);
1789
1790	if (error == 0) {
1791		*buflen = *buflen - auio.uio_resid;
1792	}
1793
1794	return (error);
1795}
1796
1797/*
1798 * XXX failure mode if partially written?
1799 */
1800int
1801vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
1802    const char *attrname, int buflen, char *buf, struct thread *td)
1803{
1804	struct uio	auio;
1805	struct iovec	iov;
1806	struct mount	*mp;
1807	int	error;
1808
1809	iov.iov_len = buflen;
1810	iov.iov_base = buf;
1811
1812	auio.uio_iov = &iov;
1813	auio.uio_iovcnt = 1;
1814	auio.uio_rw = UIO_WRITE;
1815	auio.uio_segflg = UIO_SYSSPACE;
1816	auio.uio_td = td;
1817	auio.uio_offset = 0;
1818	auio.uio_resid = buflen;
1819
1820	if ((ioflg & IO_NODELOCKED) == 0) {
1821		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1822			return (error);
1823		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1824	}
1825
1826	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1827
1828	/* authorize attribute setting as kernel */
1829	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
1830
1831	if ((ioflg & IO_NODELOCKED) == 0) {
1832		vn_finished_write(mp);
1833		VOP_UNLOCK(vp, 0);
1834	}
1835
1836	return (error);
1837}
1838
1839int
1840vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
1841    const char *attrname, struct thread *td)
1842{
1843	struct mount	*mp;
1844	int	error;
1845
1846	if ((ioflg & IO_NODELOCKED) == 0) {
1847		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1848			return (error);
1849		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1850	}
1851
1852	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1853
1854	/* authorize attribute removal as kernel */
1855	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
1856	if (error == EOPNOTSUPP)
1857		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
1858		    NULL, td);
1859
1860	if ((ioflg & IO_NODELOCKED) == 0) {
1861		vn_finished_write(mp);
1862		VOP_UNLOCK(vp, 0);
1863	}
1864
1865	return (error);
1866}
1867
1868int
1869vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
1870{
1871	struct mount *mp;
1872	int ltype, error;
1873
1874	mp = vp->v_mount;
1875	ltype = VOP_ISLOCKED(vp);
1876	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
1877	    ("vn_vget_ino: vp not locked"));
1878	error = vfs_busy(mp, MBF_NOWAIT);
1879	if (error != 0) {
1880		vfs_ref(mp);
1881		VOP_UNLOCK(vp, 0);
1882		error = vfs_busy(mp, 0);
1883		vn_lock(vp, ltype | LK_RETRY);
1884		vfs_rel(mp);
1885		if (error != 0)
1886			return (ENOENT);
1887		if (vp->v_iflag & VI_DOOMED) {
1888			vfs_unbusy(mp);
1889			return (ENOENT);
1890		}
1891	}
1892	VOP_UNLOCK(vp, 0);
1893	error = VFS_VGET(mp, ino, lkflags, rvp);
1894	vfs_unbusy(mp);
1895	vn_lock(vp, ltype | LK_RETRY);
1896	if (vp->v_iflag & VI_DOOMED) {
1897		if (error == 0)
1898			vput(*rvp);
1899		error = ENOENT;
1900	}
1901	return (error);
1902}
1903
1904int
1905vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
1906    const struct thread *td)
1907{
1908
1909	if (vp->v_type != VREG || td == NULL)
1910		return (0);
1911	PROC_LOCK(td->td_proc);
1912	if ((uoff_t)uio->uio_offset + uio->uio_resid >
1913	    lim_cur(td->td_proc, RLIMIT_FSIZE)) {
1914		kern_psignal(td->td_proc, SIGXFSZ);
1915		PROC_UNLOCK(td->td_proc);
1916		return (EFBIG);
1917	}
1918	PROC_UNLOCK(td->td_proc);
1919	return (0);
1920}
1921
1922int
1923vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
1924    struct thread *td)
1925{
1926	struct vnode *vp;
1927
1928	vp = fp->f_vnode;
1929#ifdef AUDIT
1930	vn_lock(vp, LK_SHARED | LK_RETRY);
1931	AUDIT_ARG_VNODE1(vp);
1932	VOP_UNLOCK(vp, 0);
1933#endif
1934	return (setfmode(td, active_cred, vp, mode));
1935}
1936
1937int
1938vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
1939    struct thread *td)
1940{
1941	struct vnode *vp;
1942
1943	vp = fp->f_vnode;
1944#ifdef AUDIT
1945	vn_lock(vp, LK_SHARED | LK_RETRY);
1946	AUDIT_ARG_VNODE1(vp);
1947	VOP_UNLOCK(vp, 0);
1948#endif
1949	return (setfown(td, active_cred, vp, uid, gid));
1950}
1951
1952void
1953vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
1954{
1955	vm_object_t object;
1956
1957	if ((object = vp->v_object) == NULL)
1958		return;
1959	VM_OBJECT_WLOCK(object);
1960	vm_object_page_remove(object, start, end, 0);
1961	VM_OBJECT_WUNLOCK(object);
1962}
1963
1964int
1965vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
1966{
1967	struct vattr va;
1968	daddr_t bn, bnp;
1969	uint64_t bsize;
1970	off_t noff;
1971	int error;
1972
1973	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
1974	    ("Wrong command %lu", cmd));
1975
1976	if (vn_lock(vp, LK_SHARED) != 0)
1977		return (EBADF);
1978	if (vp->v_type != VREG) {
1979		error = ENOTTY;
1980		goto unlock;
1981	}
1982	error = VOP_GETATTR(vp, &va, cred);
1983	if (error != 0)
1984		goto unlock;
1985	noff = *off;
1986	if (noff >= va.va_size) {
1987		error = ENXIO;
1988		goto unlock;
1989	}
1990	bsize = vp->v_mount->mnt_stat.f_iosize;
1991	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) {
1992		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
1993		if (error == EOPNOTSUPP) {
1994			error = ENOTTY;
1995			goto unlock;
1996		}
1997		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
1998		    (bnp != -1 && cmd == FIOSEEKDATA)) {
1999			noff = bn * bsize;
2000			if (noff < *off)
2001				noff = *off;
2002			goto unlock;
2003		}
2004	}
2005	if (noff > va.va_size)
2006		noff = va.va_size;
2007	/* noff == va.va_size. There is an implicit hole at the end of file. */
2008	if (cmd == FIOSEEKDATA)
2009		error = ENXIO;
2010unlock:
2011	VOP_UNLOCK(vp, 0);
2012	if (error == 0)
2013		*off = noff;
2014	return (error);
2015}
2016
2017int
2018vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2019{
2020	struct ucred *cred;
2021	struct vnode *vp;
2022	struct vattr vattr;
2023	off_t foffset, size;
2024	int error, noneg;
2025
2026	cred = td->td_ucred;
2027	vp = fp->f_vnode;
2028	foffset = foffset_lock(fp, 0);
2029	noneg = (vp->v_type != VCHR);
2030	error = 0;
2031	switch (whence) {
2032	case L_INCR:
2033		if (noneg &&
2034		    (foffset < 0 ||
2035		    (offset > 0 && foffset > OFF_MAX - offset))) {
2036			error = EOVERFLOW;
2037			break;
2038		}
2039		offset += foffset;
2040		break;
2041	case L_XTND:
2042		vn_lock(vp, LK_SHARED | LK_RETRY);
2043		error = VOP_GETATTR(vp, &vattr, cred);
2044		VOP_UNLOCK(vp, 0);
2045		if (error)
2046			break;
2047
2048		/*
2049		 * If the file references a disk device, then fetch
2050		 * the media size and use that to determine the ending
2051		 * offset.
2052		 */
2053		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2054		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2055			vattr.va_size = size;
2056		if (noneg &&
2057		    (vattr.va_size > OFF_MAX ||
2058		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2059			error = EOVERFLOW;
2060			break;
2061		}
2062		offset += vattr.va_size;
2063		break;
2064	case L_SET:
2065		break;
2066	case SEEK_DATA:
2067		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2068		break;
2069	case SEEK_HOLE:
2070		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2071		break;
2072	default:
2073		error = EINVAL;
2074	}
2075	if (error == 0 && noneg && offset < 0)
2076		error = EINVAL;
2077	if (error != 0)
2078		goto drop;
2079	VFS_KNOTE_UNLOCKED(vp, 0);
2080	*(off_t *)(td->td_retval) = offset;
2081drop:
2082	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2083	return (error);
2084}
2085