1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35 */
36
37/*
38 * External virtual filesystem routines
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: stable/10/sys/kern/vfs_subr.c 328997 2018-02-07 22:50:10Z mckusick $");
43
44#include "opt_compat.h"
45#include "opt_ddb.h"
46#include "opt_watchdog.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/bio.h>
51#include <sys/buf.h>
52#include <sys/condvar.h>
53#include <sys/conf.h>
54#include <sys/dirent.h>
55#include <sys/event.h>
56#include <sys/eventhandler.h>
57#include <sys/extattr.h>
58#include <sys/file.h>
59#include <sys/fcntl.h>
60#include <sys/jail.h>
61#include <sys/kdb.h>
62#include <sys/kernel.h>
63#include <sys/kthread.h>
64#include <sys/lockf.h>
65#include <sys/malloc.h>
66#include <sys/mount.h>
67#include <sys/namei.h>
68#include <sys/pctrie.h>
69#include <sys/priv.h>
70#include <sys/reboot.h>
71#include <sys/rwlock.h>
72#include <sys/sched.h>
73#include <sys/sleepqueue.h>
74#include <sys/smp.h>
75#include <sys/stat.h>
76#include <sys/sysctl.h>
77#include <sys/syslog.h>
78#include <sys/vmmeter.h>
79#include <sys/vnode.h>
80#include <sys/watchdog.h>
81
82#include <machine/stdarg.h>
83
84#include <security/mac/mac_framework.h>
85
86#include <vm/vm.h>
87#include <vm/vm_object.h>
88#include <vm/vm_extern.h>
89#include <vm/pmap.h>
90#include <vm/vm_map.h>
91#include <vm/vm_page.h>
92#include <vm/vm_kern.h>
93#include <vm/uma.h>
94
95#ifdef DDB
96#include <ddb/ddb.h>
97#endif
98
99static void	delmntque(struct vnode *vp);
100static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
101		    int slpflag, int slptimeo);
102static void	syncer_shutdown(void *arg, int howto);
103static int	vtryrecycle(struct vnode *vp);
104static void	v_incr_usecount(struct vnode *);
105static void	v_decr_usecount(struct vnode *);
106static void	v_decr_useonly(struct vnode *);
107static void	v_upgrade_usecount(struct vnode *);
108static void	vnlru_free(int);
109static void	vgonel(struct vnode *);
110static void	vfs_knllock(void *arg);
111static void	vfs_knlunlock(void *arg);
112static void	vfs_knl_assert_locked(void *arg);
113static void	vfs_knl_assert_unlocked(void *arg);
114static void	destroy_vpollinfo(struct vpollinfo *vi);
115
116/*
117 * Number of vnodes in existence.  Increased whenever getnewvnode()
118 * allocates a new vnode, decreased in vdropl() for VI_DOOMED vnode.
119 */
120static unsigned long	numvnodes;
121
122SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
123    "Number of vnodes in existence");
124
125static u_long vnodes_created;
126SYSCTL_ULONG(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
127    0, "Number of vnodes created by getnewvnode");
128
129/*
130 * Conversion tables for conversion from vnode types to inode formats
131 * and back.
132 */
133enum vtype iftovt_tab[16] = {
134	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
135	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
136};
137int vttoif_tab[10] = {
138	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
139	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
140};
141
142/*
143 * List of vnodes that are ready for recycling.
144 */
145static TAILQ_HEAD(freelst, vnode) vnode_free_list;
146
147/*
148 * Free vnode target.  Free vnodes may simply be files which have been stat'd
149 * but not read.  This is somewhat common, and a small cache of such files
150 * should be kept to avoid recreation costs.
151 */
152static u_long wantfreevnodes;
153SYSCTL_ULONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
154/* Number of vnodes in the free list. */
155static u_long freevnodes;
156SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0,
157    "Number of vnodes in the free list");
158
159static int vlru_allow_cache_src;
160SYSCTL_INT(_vfs, OID_AUTO, vlru_allow_cache_src, CTLFLAG_RW,
161    &vlru_allow_cache_src, 0, "Allow vlru to reclaim source vnode");
162
163static u_long recycles_count;
164SYSCTL_ULONG(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count, 0,
165    "Number of vnodes recycled to avoid exceding kern.maxvnodes");
166
167/*
168 * Various variables used for debugging the new implementation of
169 * reassignbuf().
170 * XXX these are probably of (very) limited utility now.
171 */
172static int reassignbufcalls;
173SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0,
174    "Number of calls to reassignbuf");
175
176static u_long free_owe_inact;
177SYSCTL_ULONG(_vfs, OID_AUTO, free_owe_inact, CTLFLAG_RD, &free_owe_inact, 0,
178    "Number of times free vnodes kept on active list due to VFS "
179    "owing inactivation");
180
181/*
182 * Cache for the mount type id assigned to NFS.  This is used for
183 * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
184 */
185int	nfs_mount_type = -1;
186
187/* To keep more than one thread at a time from running vfs_getnewfsid */
188static struct mtx mntid_mtx;
189
190/*
191 * Lock for any access to the following:
192 *	vnode_free_list
193 *	numvnodes
194 *	freevnodes
195 */
196static struct mtx vnode_free_list_mtx;
197
198/* Publicly exported FS */
199struct nfs_public nfs_pub;
200
201static uma_zone_t buf_trie_zone;
202
203/* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
204static uma_zone_t vnode_zone;
205static uma_zone_t vnodepoll_zone;
206
207/*
208 * The workitem queue.
209 *
210 * It is useful to delay writes of file data and filesystem metadata
211 * for tens of seconds so that quickly created and deleted files need
212 * not waste disk bandwidth being created and removed. To realize this,
213 * we append vnodes to a "workitem" queue. When running with a soft
214 * updates implementation, most pending metadata dependencies should
215 * not wait for more than a few seconds. Thus, mounted on block devices
216 * are delayed only about a half the time that file data is delayed.
217 * Similarly, directory updates are more critical, so are only delayed
218 * about a third the time that file data is delayed. Thus, there are
219 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
220 * one each second (driven off the filesystem syncer process). The
221 * syncer_delayno variable indicates the next queue that is to be processed.
222 * Items that need to be processed soon are placed in this queue:
223 *
224 *	syncer_workitem_pending[syncer_delayno]
225 *
226 * A delay of fifteen seconds is done by placing the request fifteen
227 * entries later in the queue:
228 *
229 *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
230 *
231 */
232static int syncer_delayno;
233static long syncer_mask;
234LIST_HEAD(synclist, bufobj);
235static struct synclist *syncer_workitem_pending;
236/*
237 * The sync_mtx protects:
238 *	bo->bo_synclist
239 *	sync_vnode_count
240 *	syncer_delayno
241 *	syncer_state
242 *	syncer_workitem_pending
243 *	syncer_worklist_len
244 *	rushjob
245 */
246static struct mtx sync_mtx;
247static struct cv sync_wakeup;
248
249#define SYNCER_MAXDELAY		32
250static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
251static int syncdelay = 30;		/* max time to delay syncing data */
252static int filedelay = 30;		/* time to delay syncing files */
253SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
254    "Time to delay syncing files (in seconds)");
255static int dirdelay = 29;		/* time to delay syncing directories */
256SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
257    "Time to delay syncing directories (in seconds)");
258static int metadelay = 28;		/* time to delay syncing metadata */
259SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
260    "Time to delay syncing metadata (in seconds)");
261static int rushjob;		/* number of slots to run ASAP */
262static int stat_rush_requests;	/* number of times I/O speeded up */
263SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
264    "Number of times I/O speeded up (rush requests)");
265
266/*
267 * When shutting down the syncer, run it at four times normal speed.
268 */
269#define SYNCER_SHUTDOWN_SPEEDUP		4
270static int sync_vnode_count;
271static int syncer_worklist_len;
272static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
273    syncer_state;
274
275/*
276 * Number of vnodes we want to exist at any one time.  This is mostly used
277 * to size hash tables in vnode-related code.  It is normally not used in
278 * getnewvnode(), as wantfreevnodes is normally nonzero.)
279 *
280 * XXX desiredvnodes is historical cruft and should not exist.
281 */
282int desiredvnodes;
283
284static int
285sysctl_update_desiredvnodes(SYSCTL_HANDLER_ARGS)
286{
287	int error, old_desiredvnodes;
288
289	old_desiredvnodes = desiredvnodes;
290	if ((error = sysctl_handle_int(oidp, arg1, arg2, req)) != 0)
291		return (error);
292	if (old_desiredvnodes != desiredvnodes) {
293		vfs_hash_changesize(desiredvnodes);
294		cache_changesize(desiredvnodes);
295	}
296	return (0);
297}
298
299SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
300    CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, &desiredvnodes, 0,
301    sysctl_update_desiredvnodes, "I", "Maximum number of vnodes");
302SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
303    &wantfreevnodes, 0, "Minimum number of vnodes (legacy)");
304static int vnlru_nowhere;
305SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
306    &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
307
308/* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
309static int vnsz2log;
310
311/*
312 * Support for the bufobj clean & dirty pctrie.
313 */
314static void *
315buf_trie_alloc(struct pctrie *ptree)
316{
317
318	return uma_zalloc(buf_trie_zone, M_NOWAIT);
319}
320
321static void
322buf_trie_free(struct pctrie *ptree, void *node)
323{
324
325	uma_zfree(buf_trie_zone, node);
326}
327PCTRIE_DEFINE(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free);
328
329/*
330 * Initialize the vnode management data structures.
331 *
332 * Reevaluate the following cap on the number of vnodes after the physical
333 * memory size exceeds 512GB.  In the limit, as the physical memory size
334 * grows, the ratio of physical pages to vnodes approaches sixteen to one.
335 */
336#ifndef	MAXVNODES_MAX
337#define	MAXVNODES_MAX	(512 * (1024 * 1024 * 1024 / (int)PAGE_SIZE / 16))
338#endif
339
340/*
341 * Initialize a vnode as it first enters the zone.
342 */
343static int
344vnode_init(void *mem, int size, int flags)
345{
346	struct vnode *vp;
347	struct bufobj *bo;
348
349	vp = mem;
350	bzero(vp, size);
351	/*
352	 * Setup locks.
353	 */
354	vp->v_vnlock = &vp->v_lock;
355	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
356	/*
357	 * By default, don't allow shared locks unless filesystems opt-in.
358	 */
359	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
360	    LK_NOSHARE | LK_IS_VNODE);
361	/*
362	 * Initialize bufobj.
363	 */
364	bo = &vp->v_bufobj;
365	bo->__bo_vnode = vp;
366	rw_init(BO_LOCKPTR(bo), "bufobj interlock");
367	bo->bo_private = vp;
368	TAILQ_INIT(&bo->bo_clean.bv_hd);
369	TAILQ_INIT(&bo->bo_dirty.bv_hd);
370	/*
371	 * Initialize namecache.
372	 */
373	LIST_INIT(&vp->v_cache_src);
374	TAILQ_INIT(&vp->v_cache_dst);
375	/*
376	 * Initialize rangelocks.
377	 */
378	rangelock_init(&vp->v_rl);
379	return (0);
380}
381
382/*
383 * Free a vnode when it is cleared from the zone.
384 */
385static void
386vnode_fini(void *mem, int size)
387{
388	struct vnode *vp;
389	struct bufobj *bo;
390
391	vp = mem;
392	rangelock_destroy(&vp->v_rl);
393	lockdestroy(vp->v_vnlock);
394	mtx_destroy(&vp->v_interlock);
395	bo = &vp->v_bufobj;
396	rw_destroy(BO_LOCKPTR(bo));
397}
398
399static void
400vntblinit(void *dummy __unused)
401{
402	u_int i;
403	int physvnodes, virtvnodes;
404
405	/*
406	 * Desiredvnodes is a function of the physical memory size and the
407	 * kernel's heap size.  Generally speaking, it scales with the
408	 * physical memory size.  The ratio of desiredvnodes to physical pages
409	 * is one to four until desiredvnodes exceeds 98,304.  Thereafter, the
410	 * marginal ratio of desiredvnodes to physical pages is one to
411	 * sixteen.  However, desiredvnodes is limited by the kernel's heap
412	 * size.  The memory required by desiredvnodes vnodes and vm objects
413	 * may not exceed one seventh of the kernel's heap size.
414	 */
415	physvnodes = maxproc + cnt.v_page_count / 16 + 3 * min(98304 * 4,
416	    cnt.v_page_count) / 16;
417	virtvnodes = vm_kmem_size / (7 * (sizeof(struct vm_object) +
418	    sizeof(struct vnode)));
419	desiredvnodes = min(physvnodes, virtvnodes);
420	if (desiredvnodes > MAXVNODES_MAX) {
421		if (bootverbose)
422			printf("Reducing kern.maxvnodes %d -> %d\n",
423			    desiredvnodes, MAXVNODES_MAX);
424		desiredvnodes = MAXVNODES_MAX;
425	}
426	wantfreevnodes = desiredvnodes / 4;
427	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
428	TAILQ_INIT(&vnode_free_list);
429	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
430	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
431	    vnode_init, vnode_fini, UMA_ALIGN_PTR, 0);
432	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
433	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
434	/*
435	 * Preallocate enough nodes to support one-per buf so that
436	 * we can not fail an insert.  reassignbuf() callers can not
437	 * tolerate the insertion failure.
438	 */
439	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
440	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
441	    UMA_ZONE_NOFREE | UMA_ZONE_VM);
442	uma_prealloc(buf_trie_zone, nbuf);
443	/*
444	 * Initialize the filesystem syncer.
445	 */
446	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
447	    &syncer_mask);
448	syncer_maxdelay = syncer_mask + 1;
449	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
450	cv_init(&sync_wakeup, "syncer");
451	for (i = 1; i <= sizeof(struct vnode); i <<= 1)
452		vnsz2log++;
453	vnsz2log--;
454}
455SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
456
457
458/*
459 * Mark a mount point as busy. Used to synchronize access and to delay
460 * unmounting. Eventually, mountlist_mtx is not released on failure.
461 *
462 * vfs_busy() is a custom lock, it can block the caller.
463 * vfs_busy() only sleeps if the unmount is active on the mount point.
464 * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
465 * vnode belonging to mp.
466 *
467 * Lookup uses vfs_busy() to traverse mount points.
468 * root fs			var fs
469 * / vnode lock		A	/ vnode lock (/var)		D
470 * /var vnode lock	B	/log vnode lock(/var/log)	E
471 * vfs_busy lock	C	vfs_busy lock			F
472 *
473 * Within each file system, the lock order is C->A->B and F->D->E.
474 *
475 * When traversing across mounts, the system follows that lock order:
476 *
477 *        C->A->B
478 *              |
479 *              +->F->D->E
480 *
481 * The lookup() process for namei("/var") illustrates the process:
482 *  VOP_LOOKUP() obtains B while A is held
483 *  vfs_busy() obtains a shared lock on F while A and B are held
484 *  vput() releases lock on B
485 *  vput() releases lock on A
486 *  VFS_ROOT() obtains lock on D while shared lock on F is held
487 *  vfs_unbusy() releases shared lock on F
488 *  vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
489 *    Attempt to lock A (instead of vp_crossmp) while D is held would
490 *    violate the global order, causing deadlocks.
491 *
492 * dounmount() locks B while F is drained.
493 */
494int
495vfs_busy(struct mount *mp, int flags)
496{
497
498	MPASS((flags & ~MBF_MASK) == 0);
499	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
500
501	MNT_ILOCK(mp);
502	MNT_REF(mp);
503	/*
504	 * If mount point is currently being unmounted, sleep until the
505	 * mount point fate is decided.  If thread doing the unmounting fails,
506	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
507	 * that this mount point has survived the unmount attempt and vfs_busy
508	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
509	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
510	 * about to be really destroyed.  vfs_busy needs to release its
511	 * reference on the mount point in this case and return with ENOENT,
512	 * telling the caller that mount mount it tried to busy is no longer
513	 * valid.
514	 */
515	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
516		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
517			MNT_REL(mp);
518			MNT_IUNLOCK(mp);
519			CTR1(KTR_VFS, "%s: failed busying before sleeping",
520			    __func__);
521			return (ENOENT);
522		}
523		if (flags & MBF_MNTLSTLOCK)
524			mtx_unlock(&mountlist_mtx);
525		mp->mnt_kern_flag |= MNTK_MWAIT;
526		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
527		if (flags & MBF_MNTLSTLOCK)
528			mtx_lock(&mountlist_mtx);
529		MNT_ILOCK(mp);
530	}
531	if (flags & MBF_MNTLSTLOCK)
532		mtx_unlock(&mountlist_mtx);
533	mp->mnt_lockref++;
534	MNT_IUNLOCK(mp);
535	return (0);
536}
537
538/*
539 * Free a busy filesystem.
540 */
541void
542vfs_unbusy(struct mount *mp)
543{
544
545	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
546	MNT_ILOCK(mp);
547	MNT_REL(mp);
548	KASSERT(mp->mnt_lockref > 0, ("negative mnt_lockref"));
549	mp->mnt_lockref--;
550	if (mp->mnt_lockref == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
551		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
552		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
553		mp->mnt_kern_flag &= ~MNTK_DRAINING;
554		wakeup(&mp->mnt_lockref);
555	}
556	MNT_IUNLOCK(mp);
557}
558
559/*
560 * Lookup a mount point by filesystem identifier.
561 */
562struct mount *
563vfs_getvfs(fsid_t *fsid)
564{
565	struct mount *mp;
566
567	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
568	mtx_lock(&mountlist_mtx);
569	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
570		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
571		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
572			vfs_ref(mp);
573			mtx_unlock(&mountlist_mtx);
574			return (mp);
575		}
576	}
577	mtx_unlock(&mountlist_mtx);
578	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
579	return ((struct mount *) 0);
580}
581
582/*
583 * Lookup a mount point by filesystem identifier, busying it before
584 * returning.
585 *
586 * To avoid congestion on mountlist_mtx, implement simple direct-mapped
587 * cache for popular filesystem identifiers.  The cache is lockess, using
588 * the fact that struct mount's are never freed.  In worst case we may
589 * get pointer to unmounted or even different filesystem, so we have to
590 * check what we got, and go slow way if so.
591 */
592struct mount *
593vfs_busyfs(fsid_t *fsid)
594{
595#define	FSID_CACHE_SIZE	256
596	typedef struct mount * volatile vmp_t;
597	static vmp_t cache[FSID_CACHE_SIZE];
598	struct mount *mp;
599	int error;
600	uint32_t hash;
601
602	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
603	hash = fsid->val[0] ^ fsid->val[1];
604	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
605	mp = cache[hash];
606	if (mp == NULL ||
607	    mp->mnt_stat.f_fsid.val[0] != fsid->val[0] ||
608	    mp->mnt_stat.f_fsid.val[1] != fsid->val[1])
609		goto slow;
610	if (vfs_busy(mp, 0) != 0) {
611		cache[hash] = NULL;
612		goto slow;
613	}
614	if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
615	    mp->mnt_stat.f_fsid.val[1] == fsid->val[1])
616		return (mp);
617	else
618	    vfs_unbusy(mp);
619
620slow:
621	mtx_lock(&mountlist_mtx);
622	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
623		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
624		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
625			error = vfs_busy(mp, MBF_MNTLSTLOCK);
626			if (error) {
627				cache[hash] = NULL;
628				mtx_unlock(&mountlist_mtx);
629				return (NULL);
630			}
631			cache[hash] = mp;
632			return (mp);
633		}
634	}
635	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
636	mtx_unlock(&mountlist_mtx);
637	return ((struct mount *) 0);
638}
639
640/*
641 * Check if a user can access privileged mount options.
642 */
643int
644vfs_suser(struct mount *mp, struct thread *td)
645{
646	int error;
647
648	/*
649	 * If the thread is jailed, but this is not a jail-friendly file
650	 * system, deny immediately.
651	 */
652	if (!(mp->mnt_vfc->vfc_flags & VFCF_JAIL) && jailed(td->td_ucred))
653		return (EPERM);
654
655	/*
656	 * If the file system was mounted outside the jail of the calling
657	 * thread, deny immediately.
658	 */
659	if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
660		return (EPERM);
661
662	/*
663	 * If file system supports delegated administration, we don't check
664	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
665	 * by the file system itself.
666	 * If this is not the user that did original mount, we check for
667	 * the PRIV_VFS_MOUNT_OWNER privilege.
668	 */
669	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
670	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
671		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
672			return (error);
673	}
674	return (0);
675}
676
677/*
678 * Get a new unique fsid.  Try to make its val[0] unique, since this value
679 * will be used to create fake device numbers for stat().  Also try (but
680 * not so hard) make its val[0] unique mod 2^16, since some emulators only
681 * support 16-bit device numbers.  We end up with unique val[0]'s for the
682 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
683 *
684 * Keep in mind that several mounts may be running in parallel.  Starting
685 * the search one past where the previous search terminated is both a
686 * micro-optimization and a defense against returning the same fsid to
687 * different mounts.
688 */
689void
690vfs_getnewfsid(struct mount *mp)
691{
692	static uint16_t mntid_base;
693	struct mount *nmp;
694	fsid_t tfsid;
695	int mtype;
696
697	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
698	mtx_lock(&mntid_mtx);
699	mtype = mp->mnt_vfc->vfc_typenum;
700	tfsid.val[1] = mtype;
701	mtype = (mtype & 0xFF) << 24;
702	for (;;) {
703		tfsid.val[0] = makedev(255,
704		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
705		mntid_base++;
706		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
707			break;
708		vfs_rel(nmp);
709	}
710	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
711	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
712	mtx_unlock(&mntid_mtx);
713}
714
715/*
716 * Knob to control the precision of file timestamps:
717 *
718 *   0 = seconds only; nanoseconds zeroed.
719 *   1 = seconds and nanoseconds, accurate within 1/HZ.
720 *   2 = seconds and nanoseconds, truncated to microseconds.
721 * >=3 = seconds and nanoseconds, maximum precision.
722 */
723enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
724
725static int timestamp_precision = TSP_USEC;
726SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
727    &timestamp_precision, 0, "File timestamp precision (0: seconds, "
728    "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to ms, "
729    "3+: sec + ns (max. precision))");
730
731/*
732 * Get a current timestamp.
733 */
734void
735vfs_timestamp(struct timespec *tsp)
736{
737	struct timeval tv;
738
739	switch (timestamp_precision) {
740	case TSP_SEC:
741		tsp->tv_sec = time_second;
742		tsp->tv_nsec = 0;
743		break;
744	case TSP_HZ:
745		getnanotime(tsp);
746		break;
747	case TSP_USEC:
748		microtime(&tv);
749		TIMEVAL_TO_TIMESPEC(&tv, tsp);
750		break;
751	case TSP_NSEC:
752	default:
753		nanotime(tsp);
754		break;
755	}
756}
757
758/*
759 * Set vnode attributes to VNOVAL
760 */
761void
762vattr_null(struct vattr *vap)
763{
764
765	vap->va_type = VNON;
766	vap->va_size = VNOVAL;
767	vap->va_bytes = VNOVAL;
768	vap->va_mode = VNOVAL;
769	vap->va_nlink = VNOVAL;
770	vap->va_uid = VNOVAL;
771	vap->va_gid = VNOVAL;
772	vap->va_fsid = VNOVAL;
773	vap->va_fileid = VNOVAL;
774	vap->va_blocksize = VNOVAL;
775	vap->va_rdev = VNOVAL;
776	vap->va_atime.tv_sec = VNOVAL;
777	vap->va_atime.tv_nsec = VNOVAL;
778	vap->va_mtime.tv_sec = VNOVAL;
779	vap->va_mtime.tv_nsec = VNOVAL;
780	vap->va_ctime.tv_sec = VNOVAL;
781	vap->va_ctime.tv_nsec = VNOVAL;
782	vap->va_birthtime.tv_sec = VNOVAL;
783	vap->va_birthtime.tv_nsec = VNOVAL;
784	vap->va_flags = VNOVAL;
785	vap->va_gen = VNOVAL;
786	vap->va_vaflags = 0;
787}
788
789/*
790 * This routine is called when we have too many vnodes.  It attempts
791 * to free <count> vnodes and will potentially free vnodes that still
792 * have VM backing store (VM backing store is typically the cause
793 * of a vnode blowout so we want to do this).  Therefore, this operation
794 * is not considered cheap.
795 *
796 * A number of conditions may prevent a vnode from being reclaimed.
797 * the buffer cache may have references on the vnode, a directory
798 * vnode may still have references due to the namei cache representing
799 * underlying files, or the vnode may be in active use.   It is not
800 * desirable to reuse such vnodes.  These conditions may cause the
801 * number of vnodes to reach some minimum value regardless of what
802 * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
803 */
804static int
805vlrureclaim(struct mount *mp)
806{
807	struct vnode *vp;
808	int done;
809	int trigger;
810	int usevnodes;
811	int count;
812
813	/*
814	 * Calculate the trigger point, don't allow user
815	 * screwups to blow us up.   This prevents us from
816	 * recycling vnodes with lots of resident pages.  We
817	 * aren't trying to free memory, we are trying to
818	 * free vnodes.
819	 */
820	usevnodes = desiredvnodes;
821	if (usevnodes <= 0)
822		usevnodes = 1;
823	trigger = cnt.v_page_count * 2 / usevnodes;
824	done = 0;
825	vn_start_write(NULL, &mp, V_WAIT);
826	MNT_ILOCK(mp);
827	count = mp->mnt_nvnodelistsize / 10 + 1;
828	while (count != 0) {
829		vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
830		while (vp != NULL && vp->v_type == VMARKER)
831			vp = TAILQ_NEXT(vp, v_nmntvnodes);
832		if (vp == NULL)
833			break;
834		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
835		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
836		--count;
837		if (!VI_TRYLOCK(vp))
838			goto next_iter;
839		/*
840		 * If it's been deconstructed already, it's still
841		 * referenced, or it exceeds the trigger, skip it.
842		 */
843		if (vp->v_usecount ||
844		    (!vlru_allow_cache_src &&
845			!LIST_EMPTY(&(vp)->v_cache_src)) ||
846		    (vp->v_iflag & VI_DOOMED) != 0 || (vp->v_object != NULL &&
847		    vp->v_object->resident_page_count > trigger)) {
848			VI_UNLOCK(vp);
849			goto next_iter;
850		}
851		MNT_IUNLOCK(mp);
852		vholdl(vp);
853		if (VOP_LOCK(vp, LK_INTERLOCK|LK_EXCLUSIVE|LK_NOWAIT)) {
854			vdrop(vp);
855			goto next_iter_mntunlocked;
856		}
857		VI_LOCK(vp);
858		/*
859		 * v_usecount may have been bumped after VOP_LOCK() dropped
860		 * the vnode interlock and before it was locked again.
861		 *
862		 * It is not necessary to recheck VI_DOOMED because it can
863		 * only be set by another thread that holds both the vnode
864		 * lock and vnode interlock.  If another thread has the
865		 * vnode lock before we get to VOP_LOCK() and obtains the
866		 * vnode interlock after VOP_LOCK() drops the vnode
867		 * interlock, the other thread will be unable to drop the
868		 * vnode lock before our VOP_LOCK() call fails.
869		 */
870		if (vp->v_usecount ||
871		    (!vlru_allow_cache_src &&
872			!LIST_EMPTY(&(vp)->v_cache_src)) ||
873		    (vp->v_object != NULL &&
874		    vp->v_object->resident_page_count > trigger)) {
875			VOP_UNLOCK(vp, LK_INTERLOCK);
876			vdrop(vp);
877			goto next_iter_mntunlocked;
878		}
879		KASSERT((vp->v_iflag & VI_DOOMED) == 0,
880		    ("VI_DOOMED unexpectedly detected in vlrureclaim()"));
881		atomic_add_long(&recycles_count, 1);
882		vgonel(vp);
883		VOP_UNLOCK(vp, 0);
884		vdropl(vp);
885		done++;
886next_iter_mntunlocked:
887		if (!should_yield())
888			goto relock_mnt;
889		goto yield;
890next_iter:
891		if (!should_yield())
892			continue;
893		MNT_IUNLOCK(mp);
894yield:
895		kern_yield(PRI_USER);
896relock_mnt:
897		MNT_ILOCK(mp);
898	}
899	MNT_IUNLOCK(mp);
900	vn_finished_write(mp);
901	return done;
902}
903
904/*
905 * Attempt to keep the free list at wantfreevnodes length.
906 */
907static void
908vnlru_free(int count)
909{
910	struct vnode *vp;
911
912	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
913	for (; count > 0; count--) {
914		vp = TAILQ_FIRST(&vnode_free_list);
915		/*
916		 * The list can be modified while the free_list_mtx
917		 * has been dropped and vp could be NULL here.
918		 */
919		if (!vp)
920			break;
921		VNASSERT(vp->v_op != NULL, vp,
922		    ("vnlru_free: vnode already reclaimed."));
923		KASSERT((vp->v_iflag & VI_FREE) != 0,
924		    ("Removing vnode not on freelist"));
925		KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
926		    ("Mangling active vnode"));
927		TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist);
928		/*
929		 * Don't recycle if we can't get the interlock.
930		 */
931		if (!VI_TRYLOCK(vp)) {
932			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_actfreelist);
933			continue;
934		}
935		VNASSERT((vp->v_iflag & VI_FREE) != 0 && vp->v_holdcnt == 0,
936		    vp, ("vp inconsistent on freelist"));
937
938		/*
939		 * The clear of VI_FREE prevents activation of the
940		 * vnode.  There is no sense in putting the vnode on
941		 * the mount point active list, only to remove it
942		 * later during recycling.  Inline the relevant part
943		 * of vholdl(), to avoid triggering assertions or
944		 * activating.
945		 */
946		freevnodes--;
947		vp->v_iflag &= ~VI_FREE;
948		vp->v_holdcnt++;
949
950		mtx_unlock(&vnode_free_list_mtx);
951		VI_UNLOCK(vp);
952		vtryrecycle(vp);
953		/*
954		 * If the recycled succeeded this vdrop will actually free
955		 * the vnode.  If not it will simply place it back on
956		 * the free list.
957		 */
958		vdrop(vp);
959		mtx_lock(&vnode_free_list_mtx);
960	}
961}
962/*
963 * Attempt to recycle vnodes in a context that is always safe to block.
964 * Calling vlrurecycle() from the bowels of filesystem code has some
965 * interesting deadlock problems.
966 */
967static struct proc *vnlruproc;
968static int vnlruproc_sig;
969
970static void
971vnlru_proc(void)
972{
973	struct mount *mp, *nmp;
974	int done;
975	struct proc *p = vnlruproc;
976
977	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p,
978	    SHUTDOWN_PRI_FIRST);
979
980	for (;;) {
981		kproc_suspend_check(p);
982		mtx_lock(&vnode_free_list_mtx);
983		if (freevnodes > wantfreevnodes)
984			vnlru_free(freevnodes - wantfreevnodes);
985		if (numvnodes <= desiredvnodes * 9 / 10) {
986			vnlruproc_sig = 0;
987			wakeup(&vnlruproc_sig);
988			msleep(vnlruproc, &vnode_free_list_mtx,
989			    PVFS|PDROP, "vlruwt", hz);
990			continue;
991		}
992		mtx_unlock(&vnode_free_list_mtx);
993		done = 0;
994		mtx_lock(&mountlist_mtx);
995		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
996			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) {
997				nmp = TAILQ_NEXT(mp, mnt_list);
998				continue;
999			}
1000			done += vlrureclaim(mp);
1001			mtx_lock(&mountlist_mtx);
1002			nmp = TAILQ_NEXT(mp, mnt_list);
1003			vfs_unbusy(mp);
1004		}
1005		mtx_unlock(&mountlist_mtx);
1006		if (done == 0) {
1007#if 0
1008			/* These messages are temporary debugging aids */
1009			if (vnlru_nowhere < 5)
1010				printf("vnlru process getting nowhere..\n");
1011			else if (vnlru_nowhere == 5)
1012				printf("vnlru process messages stopped.\n");
1013#endif
1014			vnlru_nowhere++;
1015			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1016		} else
1017			kern_yield(PRI_USER);
1018	}
1019}
1020
1021static struct kproc_desc vnlru_kp = {
1022	"vnlru",
1023	vnlru_proc,
1024	&vnlruproc
1025};
1026SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1027    &vnlru_kp);
1028
1029/*
1030 * Routines having to do with the management of the vnode table.
1031 */
1032
1033/*
1034 * Try to recycle a freed vnode.  We abort if anyone picks up a reference
1035 * before we actually vgone().  This function must be called with the vnode
1036 * held to prevent the vnode from being returned to the free list midway
1037 * through vgone().
1038 */
1039static int
1040vtryrecycle(struct vnode *vp)
1041{
1042	struct mount *vnmp;
1043
1044	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1045	VNASSERT(vp->v_holdcnt, vp,
1046	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
1047	/*
1048	 * This vnode may found and locked via some other list, if so we
1049	 * can't recycle it yet.
1050	 */
1051	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1052		CTR2(KTR_VFS,
1053		    "%s: impossible to recycle, vp %p lock is already held",
1054		    __func__, vp);
1055		return (EWOULDBLOCK);
1056	}
1057	/*
1058	 * Don't recycle if its filesystem is being suspended.
1059	 */
1060	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1061		VOP_UNLOCK(vp, 0);
1062		CTR2(KTR_VFS,
1063		    "%s: impossible to recycle, cannot start the write for %p",
1064		    __func__, vp);
1065		return (EBUSY);
1066	}
1067	/*
1068	 * If we got this far, we need to acquire the interlock and see if
1069	 * anyone picked up this vnode from another list.  If not, we will
1070	 * mark it with DOOMED via vgonel() so that anyone who does find it
1071	 * will skip over it.
1072	 */
1073	VI_LOCK(vp);
1074	if (vp->v_usecount) {
1075		VOP_UNLOCK(vp, LK_INTERLOCK);
1076		vn_finished_write(vnmp);
1077		CTR2(KTR_VFS,
1078		    "%s: impossible to recycle, %p is already referenced",
1079		    __func__, vp);
1080		return (EBUSY);
1081	}
1082	if ((vp->v_iflag & VI_DOOMED) == 0) {
1083		atomic_add_long(&recycles_count, 1);
1084		vgonel(vp);
1085	}
1086	VOP_UNLOCK(vp, LK_INTERLOCK);
1087	vn_finished_write(vnmp);
1088	return (0);
1089}
1090
1091/*
1092 * Wait for available vnodes.
1093 */
1094static int
1095getnewvnode_wait(int suspended)
1096{
1097
1098	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
1099	if (numvnodes > desiredvnodes) {
1100		if (suspended) {
1101			/*
1102			 * File system is beeing suspended, we cannot risk a
1103			 * deadlock here, so allocate new vnode anyway.
1104			 */
1105			if (freevnodes > wantfreevnodes)
1106				vnlru_free(freevnodes - wantfreevnodes);
1107			return (0);
1108		}
1109		if (vnlruproc_sig == 0) {
1110			vnlruproc_sig = 1;	/* avoid unnecessary wakeups */
1111			wakeup(vnlruproc);
1112		}
1113		msleep(&vnlruproc_sig, &vnode_free_list_mtx, PVFS,
1114		    "vlruwk", hz);
1115	}
1116	return (numvnodes > desiredvnodes ? ENFILE : 0);
1117}
1118
1119void
1120getnewvnode_reserve(u_int count)
1121{
1122	struct thread *td;
1123
1124	td = curthread;
1125	/* First try to be quick and racy. */
1126	if (atomic_fetchadd_long(&numvnodes, count) + count <= desiredvnodes) {
1127		td->td_vp_reserv += count;
1128		return;
1129	} else
1130		atomic_subtract_long(&numvnodes, count);
1131
1132	mtx_lock(&vnode_free_list_mtx);
1133	while (count > 0) {
1134		if (getnewvnode_wait(0) == 0) {
1135			count--;
1136			td->td_vp_reserv++;
1137			atomic_add_long(&numvnodes, 1);
1138		}
1139	}
1140	mtx_unlock(&vnode_free_list_mtx);
1141}
1142
1143void
1144getnewvnode_drop_reserve(void)
1145{
1146	struct thread *td;
1147
1148	td = curthread;
1149	atomic_subtract_long(&numvnodes, td->td_vp_reserv);
1150	td->td_vp_reserv = 0;
1151}
1152
1153/*
1154 * Return the next vnode from the free list.
1155 */
1156int
1157getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
1158    struct vnode **vpp)
1159{
1160	struct vnode *vp;
1161	struct thread *td;
1162	struct lock_object *lo;
1163	int error;
1164
1165	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
1166	vp = NULL;
1167	td = curthread;
1168	if (td->td_vp_reserv > 0) {
1169		td->td_vp_reserv -= 1;
1170		goto alloc;
1171	}
1172	mtx_lock(&vnode_free_list_mtx);
1173	/*
1174	 * Lend our context to reclaim vnodes if they've exceeded the max.
1175	 */
1176	if (freevnodes > wantfreevnodes)
1177		vnlru_free(1);
1178	error = getnewvnode_wait(mp != NULL && (mp->mnt_kern_flag &
1179	    MNTK_SUSPEND));
1180#if 0	/* XXX Not all VFS_VGET/ffs_vget callers check returns. */
1181	if (error != 0) {
1182		mtx_unlock(&vnode_free_list_mtx);
1183		return (error);
1184	}
1185#endif
1186	atomic_add_long(&numvnodes, 1);
1187	mtx_unlock(&vnode_free_list_mtx);
1188alloc:
1189	atomic_add_long(&vnodes_created, 1);
1190	vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK);
1191	/*
1192	 * Locks are given the generic name "vnode" when created.
1193	 * Follow the historic practice of using the filesystem
1194	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
1195	 *
1196	 * Locks live in a witness group keyed on their name. Thus,
1197	 * when a lock is renamed, it must also move from the witness
1198	 * group of its old name to the witness group of its new name.
1199	 *
1200	 * The change only needs to be made when the vnode moves
1201	 * from one filesystem type to another. We ensure that each
1202	 * filesystem use a single static name pointer for its tag so
1203	 * that we can compare pointers rather than doing a strcmp().
1204	 */
1205	lo = &vp->v_vnlock->lock_object;
1206	if (lo->lo_name != tag) {
1207		lo->lo_name = tag;
1208		WITNESS_DESTROY(lo);
1209		WITNESS_INIT(lo, tag);
1210	}
1211	/*
1212	 * By default, don't allow shared locks unless filesystems opt-in.
1213	 */
1214	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
1215	/*
1216	 * Finalize various vnode identity bits.
1217	 */
1218	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
1219	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
1220	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
1221	vp->v_type = VNON;
1222	vp->v_tag = tag;
1223	vp->v_op = vops;
1224	v_incr_usecount(vp);
1225	vp->v_bufobj.bo_ops = &buf_ops_bio;
1226#ifdef MAC
1227	mac_vnode_init(vp);
1228	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1229		mac_vnode_associate_singlelabel(mp, vp);
1230	else if (mp == NULL && vops != &dead_vnodeops)
1231		printf("NULL mp in getnewvnode()\n");
1232#endif
1233	if (mp != NULL) {
1234		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
1235		if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
1236			vp->v_vflag |= VV_NOKNOTE;
1237	}
1238
1239	/*
1240	 * For the filesystems which do not use vfs_hash_insert(),
1241	 * still initialize v_hash to have vfs_hash_index() useful.
1242	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
1243	 * its own hashing.
1244	 */
1245	vp->v_hash = (uintptr_t)vp >> vnsz2log;
1246
1247	*vpp = vp;
1248	return (0);
1249}
1250
1251/*
1252 * Delete from old mount point vnode list, if on one.
1253 */
1254static void
1255delmntque(struct vnode *vp)
1256{
1257	struct mount *mp;
1258	int active;
1259
1260	mp = vp->v_mount;
1261	if (mp == NULL)
1262		return;
1263	MNT_ILOCK(mp);
1264	VI_LOCK(vp);
1265	KASSERT(mp->mnt_activevnodelistsize <= mp->mnt_nvnodelistsize,
1266	    ("Active vnode list size %d > Vnode list size %d",
1267	     mp->mnt_activevnodelistsize, mp->mnt_nvnodelistsize));
1268	active = vp->v_iflag & VI_ACTIVE;
1269	vp->v_iflag &= ~VI_ACTIVE;
1270	if (active) {
1271		mtx_lock(&vnode_free_list_mtx);
1272		TAILQ_REMOVE(&mp->mnt_activevnodelist, vp, v_actfreelist);
1273		mp->mnt_activevnodelistsize--;
1274		mtx_unlock(&vnode_free_list_mtx);
1275	}
1276	vp->v_mount = NULL;
1277	VI_UNLOCK(vp);
1278	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1279		("bad mount point vnode list size"));
1280	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1281	mp->mnt_nvnodelistsize--;
1282	MNT_REL(mp);
1283	MNT_IUNLOCK(mp);
1284}
1285
1286static void
1287insmntque_stddtr(struct vnode *vp, void *dtr_arg)
1288{
1289
1290	vp->v_data = NULL;
1291	vp->v_op = &dead_vnodeops;
1292	vgone(vp);
1293	vput(vp);
1294}
1295
1296/*
1297 * Insert into list of vnodes for the new mount point, if available.
1298 */
1299int
1300insmntque1(struct vnode *vp, struct mount *mp,
1301	void (*dtr)(struct vnode *, void *), void *dtr_arg)
1302{
1303
1304	KASSERT(vp->v_mount == NULL,
1305		("insmntque: vnode already on per mount vnode list"));
1306	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1307	ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
1308
1309	/*
1310	 * We acquire the vnode interlock early to ensure that the
1311	 * vnode cannot be recycled by another process releasing a
1312	 * holdcnt on it before we get it on both the vnode list
1313	 * and the active vnode list. The mount mutex protects only
1314	 * manipulation of the vnode list and the vnode freelist
1315	 * mutex protects only manipulation of the active vnode list.
1316	 * Hence the need to hold the vnode interlock throughout.
1317	 */
1318	MNT_ILOCK(mp);
1319	VI_LOCK(vp);
1320	if (((mp->mnt_kern_flag & MNTK_NOINSMNTQ) != 0 &&
1321	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
1322	    mp->mnt_nvnodelistsize == 0)) &&
1323	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
1324		VI_UNLOCK(vp);
1325		MNT_IUNLOCK(mp);
1326		if (dtr != NULL)
1327			dtr(vp, dtr_arg);
1328		return (EBUSY);
1329	}
1330	vp->v_mount = mp;
1331	MNT_REF(mp);
1332	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1333	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
1334		("neg mount point vnode list size"));
1335	mp->mnt_nvnodelistsize++;
1336	KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
1337	    ("Activating already active vnode"));
1338	vp->v_iflag |= VI_ACTIVE;
1339	mtx_lock(&vnode_free_list_mtx);
1340	TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist);
1341	mp->mnt_activevnodelistsize++;
1342	mtx_unlock(&vnode_free_list_mtx);
1343	VI_UNLOCK(vp);
1344	MNT_IUNLOCK(mp);
1345	return (0);
1346}
1347
1348int
1349insmntque(struct vnode *vp, struct mount *mp)
1350{
1351
1352	return (insmntque1(vp, mp, insmntque_stddtr, NULL));
1353}
1354
1355/*
1356 * Flush out and invalidate all buffers associated with a bufobj
1357 * Called with the underlying object locked.
1358 */
1359int
1360bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
1361{
1362	int error;
1363
1364	BO_LOCK(bo);
1365	if (flags & V_SAVE) {
1366		error = bufobj_wwait(bo, slpflag, slptimeo);
1367		if (error) {
1368			BO_UNLOCK(bo);
1369			return (error);
1370		}
1371		if (bo->bo_dirty.bv_cnt > 0) {
1372			BO_UNLOCK(bo);
1373			if ((error = BO_SYNC(bo, MNT_WAIT)) != 0)
1374				return (error);
1375			/*
1376			 * XXX We could save a lock/unlock if this was only
1377			 * enabled under INVARIANTS
1378			 */
1379			BO_LOCK(bo);
1380			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
1381				panic("vinvalbuf: dirty bufs");
1382		}
1383	}
1384	/*
1385	 * If you alter this loop please notice that interlock is dropped and
1386	 * reacquired in flushbuflist.  Special care is needed to ensure that
1387	 * no race conditions occur from this.
1388	 */
1389	do {
1390		error = flushbuflist(&bo->bo_clean,
1391		    flags, bo, slpflag, slptimeo);
1392		if (error == 0 && !(flags & V_CLEANONLY))
1393			error = flushbuflist(&bo->bo_dirty,
1394			    flags, bo, slpflag, slptimeo);
1395		if (error != 0 && error != EAGAIN) {
1396			BO_UNLOCK(bo);
1397			return (error);
1398		}
1399	} while (error != 0);
1400
1401	/*
1402	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
1403	 * have write I/O in-progress but if there is a VM object then the
1404	 * VM object can also have read-I/O in-progress.
1405	 */
1406	do {
1407		bufobj_wwait(bo, 0, 0);
1408		BO_UNLOCK(bo);
1409		if (bo->bo_object != NULL) {
1410			VM_OBJECT_WLOCK(bo->bo_object);
1411			vm_object_pip_wait(bo->bo_object, "bovlbx");
1412			VM_OBJECT_WUNLOCK(bo->bo_object);
1413		}
1414		BO_LOCK(bo);
1415	} while (bo->bo_numoutput > 0);
1416	BO_UNLOCK(bo);
1417
1418	/*
1419	 * Destroy the copy in the VM cache, too.
1420	 */
1421	if (bo->bo_object != NULL &&
1422	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY)) == 0) {
1423		VM_OBJECT_WLOCK(bo->bo_object);
1424		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
1425		    OBJPR_CLEANONLY : 0);
1426		VM_OBJECT_WUNLOCK(bo->bo_object);
1427	}
1428
1429#ifdef INVARIANTS
1430	BO_LOCK(bo);
1431	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY)) == 0 &&
1432	    (bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0))
1433		panic("vinvalbuf: flush failed");
1434	BO_UNLOCK(bo);
1435#endif
1436	return (0);
1437}
1438
1439/*
1440 * Flush out and invalidate all buffers associated with a vnode.
1441 * Called with the underlying object locked.
1442 */
1443int
1444vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
1445{
1446
1447	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
1448	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
1449	if (vp->v_object != NULL && vp->v_object->handle != vp)
1450		return (0);
1451	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
1452}
1453
1454/*
1455 * Flush out buffers on the specified list.
1456 *
1457 */
1458static int
1459flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
1460    int slptimeo)
1461{
1462	struct buf *bp, *nbp;
1463	int retval, error;
1464	daddr_t lblkno;
1465	b_xflags_t xflags;
1466
1467	ASSERT_BO_WLOCKED(bo);
1468
1469	retval = 0;
1470	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
1471		if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) ||
1472		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) {
1473			continue;
1474		}
1475		lblkno = 0;
1476		xflags = 0;
1477		if (nbp != NULL) {
1478			lblkno = nbp->b_lblkno;
1479			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
1480		}
1481		retval = EAGAIN;
1482		error = BUF_TIMELOCK(bp,
1483		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
1484		    "flushbuf", slpflag, slptimeo);
1485		if (error) {
1486			BO_LOCK(bo);
1487			return (error != ENOLCK ? error : EAGAIN);
1488		}
1489		KASSERT(bp->b_bufobj == bo,
1490		    ("bp %p wrong b_bufobj %p should be %p",
1491		    bp, bp->b_bufobj, bo));
1492		if (bp->b_bufobj != bo) {	/* XXX: necessary ? */
1493			BUF_UNLOCK(bp);
1494			BO_LOCK(bo);
1495			return (EAGAIN);
1496		}
1497		/*
1498		 * XXX Since there are no node locks for NFS, I
1499		 * believe there is a slight chance that a delayed
1500		 * write will occur while sleeping just above, so
1501		 * check for it.
1502		 */
1503		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
1504		    (flags & V_SAVE)) {
1505			bremfree(bp);
1506			bp->b_flags |= B_ASYNC;
1507			bwrite(bp);
1508			BO_LOCK(bo);
1509			return (EAGAIN);	/* XXX: why not loop ? */
1510		}
1511		bremfree(bp);
1512		bp->b_flags |= (B_INVAL | B_RELBUF);
1513		bp->b_flags &= ~B_ASYNC;
1514		brelse(bp);
1515		BO_LOCK(bo);
1516		if (nbp != NULL &&
1517		    (nbp->b_bufobj != bo ||
1518		     nbp->b_lblkno != lblkno ||
1519		     (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) != xflags))
1520			break;			/* nbp invalid */
1521	}
1522	return (retval);
1523}
1524
1525/*
1526 * Truncate a file's buffer and pages to a specified length.  This
1527 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1528 * sync activity.
1529 */
1530int
1531vtruncbuf(struct vnode *vp, struct ucred *cred, off_t length, int blksize)
1532{
1533	struct buf *bp, *nbp;
1534	int anyfreed;
1535	int trunclbn;
1536	struct bufobj *bo;
1537
1538	CTR5(KTR_VFS, "%s: vp %p with cred %p and block %d:%ju", __func__,
1539	    vp, cred, blksize, (uintmax_t)length);
1540
1541	/*
1542	 * Round up to the *next* lbn.
1543	 */
1544	trunclbn = (length + blksize - 1) / blksize;
1545
1546	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
1547restart:
1548	bo = &vp->v_bufobj;
1549	BO_LOCK(bo);
1550	anyfreed = 1;
1551	for (;anyfreed;) {
1552		anyfreed = 0;
1553		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
1554			if (bp->b_lblkno < trunclbn)
1555				continue;
1556			if (BUF_LOCK(bp,
1557			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1558			    BO_LOCKPTR(bo)) == ENOLCK)
1559				goto restart;
1560
1561			bremfree(bp);
1562			bp->b_flags |= (B_INVAL | B_RELBUF);
1563			bp->b_flags &= ~B_ASYNC;
1564			brelse(bp);
1565			anyfreed = 1;
1566
1567			BO_LOCK(bo);
1568			if (nbp != NULL &&
1569			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1570			    (nbp->b_vp != vp) ||
1571			    (nbp->b_flags & B_DELWRI))) {
1572				BO_UNLOCK(bo);
1573				goto restart;
1574			}
1575		}
1576
1577		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1578			if (bp->b_lblkno < trunclbn)
1579				continue;
1580			if (BUF_LOCK(bp,
1581			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1582			    BO_LOCKPTR(bo)) == ENOLCK)
1583				goto restart;
1584			bremfree(bp);
1585			bp->b_flags |= (B_INVAL | B_RELBUF);
1586			bp->b_flags &= ~B_ASYNC;
1587			brelse(bp);
1588			anyfreed = 1;
1589
1590			BO_LOCK(bo);
1591			if (nbp != NULL &&
1592			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1593			    (nbp->b_vp != vp) ||
1594			    (nbp->b_flags & B_DELWRI) == 0)) {
1595				BO_UNLOCK(bo);
1596				goto restart;
1597			}
1598		}
1599	}
1600
1601	if (length > 0) {
1602restartsync:
1603		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1604			if (bp->b_lblkno > 0)
1605				continue;
1606			/*
1607			 * Since we hold the vnode lock this should only
1608			 * fail if we're racing with the buf daemon.
1609			 */
1610			if (BUF_LOCK(bp,
1611			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1612			    BO_LOCKPTR(bo)) == ENOLCK) {
1613				goto restart;
1614			}
1615			VNASSERT((bp->b_flags & B_DELWRI), vp,
1616			    ("buf(%p) on dirty queue without DELWRI", bp));
1617
1618			bremfree(bp);
1619			bawrite(bp);
1620			BO_LOCK(bo);
1621			goto restartsync;
1622		}
1623	}
1624
1625	bufobj_wwait(bo, 0, 0);
1626	BO_UNLOCK(bo);
1627	vnode_pager_setsize(vp, length);
1628
1629	return (0);
1630}
1631
1632static void
1633buf_vlist_remove(struct buf *bp)
1634{
1635	struct bufv *bv;
1636
1637	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1638	ASSERT_BO_WLOCKED(bp->b_bufobj);
1639	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) !=
1640	    (BX_VNDIRTY|BX_VNCLEAN),
1641	    ("buf_vlist_remove: Buf %p is on two lists", bp));
1642	if (bp->b_xflags & BX_VNDIRTY)
1643		bv = &bp->b_bufobj->bo_dirty;
1644	else
1645		bv = &bp->b_bufobj->bo_clean;
1646	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
1647	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
1648	bv->bv_cnt--;
1649	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1650}
1651
1652/*
1653 * Add the buffer to the sorted clean or dirty block list.
1654 *
1655 * NOTE: xflags is passed as a constant, optimizing this inline function!
1656 */
1657static void
1658buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
1659{
1660	struct bufv *bv;
1661	struct buf *n;
1662	int error;
1663
1664	ASSERT_BO_WLOCKED(bo);
1665	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
1666	    ("dead bo %p", bo));
1667	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
1668	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
1669	bp->b_xflags |= xflags;
1670	if (xflags & BX_VNDIRTY)
1671		bv = &bo->bo_dirty;
1672	else
1673		bv = &bo->bo_clean;
1674
1675	/*
1676	 * Keep the list ordered.  Optimize empty list insertion.  Assume
1677	 * we tend to grow at the tail so lookup_le should usually be cheaper
1678	 * than _ge.
1679	 */
1680	if (bv->bv_cnt == 0 ||
1681	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
1682		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
1683	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
1684		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
1685	else
1686		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
1687	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
1688	if (error)
1689		panic("buf_vlist_add:  Preallocated nodes insufficient.");
1690	bv->bv_cnt++;
1691}
1692
1693/*
1694 * Lookup a buffer using the splay tree.  Note that we specifically avoid
1695 * shadow buffers used in background bitmap writes.
1696 *
1697 * This code isn't quite efficient as it could be because we are maintaining
1698 * two sorted lists and do not know which list the block resides in.
1699 *
1700 * During a "make buildworld" the desired buffer is found at one of
1701 * the roots more than 60% of the time.  Thus, checking both roots
1702 * before performing either splay eliminates unnecessary splays on the
1703 * first tree splayed.
1704 */
1705struct buf *
1706gbincore(struct bufobj *bo, daddr_t lblkno)
1707{
1708	struct buf *bp;
1709
1710	ASSERT_BO_LOCKED(bo);
1711	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
1712	if (bp != NULL)
1713		return (bp);
1714	return BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno);
1715}
1716
1717/*
1718 * Associate a buffer with a vnode.
1719 */
1720void
1721bgetvp(struct vnode *vp, struct buf *bp)
1722{
1723	struct bufobj *bo;
1724
1725	bo = &vp->v_bufobj;
1726	ASSERT_BO_WLOCKED(bo);
1727	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
1728
1729	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
1730	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
1731	    ("bgetvp: bp already attached! %p", bp));
1732
1733	vhold(vp);
1734	bp->b_vp = vp;
1735	bp->b_bufobj = bo;
1736	/*
1737	 * Insert onto list for new vnode.
1738	 */
1739	buf_vlist_add(bp, bo, BX_VNCLEAN);
1740}
1741
1742/*
1743 * Disassociate a buffer from a vnode.
1744 */
1745void
1746brelvp(struct buf *bp)
1747{
1748	struct bufobj *bo;
1749	struct vnode *vp;
1750
1751	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1752	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1753
1754	/*
1755	 * Delete from old vnode list, if on one.
1756	 */
1757	vp = bp->b_vp;		/* XXX */
1758	bo = bp->b_bufobj;
1759	BO_LOCK(bo);
1760	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1761		buf_vlist_remove(bp);
1762	else
1763		panic("brelvp: Buffer %p not on queue.", bp);
1764	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1765		bo->bo_flag &= ~BO_ONWORKLST;
1766		mtx_lock(&sync_mtx);
1767		LIST_REMOVE(bo, bo_synclist);
1768		syncer_worklist_len--;
1769		mtx_unlock(&sync_mtx);
1770	}
1771	bp->b_vp = NULL;
1772	bp->b_bufobj = NULL;
1773	BO_UNLOCK(bo);
1774	vdrop(vp);
1775}
1776
1777/*
1778 * Add an item to the syncer work queue.
1779 */
1780static void
1781vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
1782{
1783	int slot;
1784
1785	ASSERT_BO_WLOCKED(bo);
1786
1787	mtx_lock(&sync_mtx);
1788	if (bo->bo_flag & BO_ONWORKLST)
1789		LIST_REMOVE(bo, bo_synclist);
1790	else {
1791		bo->bo_flag |= BO_ONWORKLST;
1792		syncer_worklist_len++;
1793	}
1794
1795	if (delay > syncer_maxdelay - 2)
1796		delay = syncer_maxdelay - 2;
1797	slot = (syncer_delayno + delay) & syncer_mask;
1798
1799	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
1800	mtx_unlock(&sync_mtx);
1801}
1802
1803static int
1804sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
1805{
1806	int error, len;
1807
1808	mtx_lock(&sync_mtx);
1809	len = syncer_worklist_len - sync_vnode_count;
1810	mtx_unlock(&sync_mtx);
1811	error = SYSCTL_OUT(req, &len, sizeof(len));
1812	return (error);
1813}
1814
1815SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
1816    sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
1817
1818static struct proc *updateproc;
1819static void sched_sync(void);
1820static struct kproc_desc up_kp = {
1821	"syncer",
1822	sched_sync,
1823	&updateproc
1824};
1825SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
1826
1827static int
1828sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
1829{
1830	struct vnode *vp;
1831	struct mount *mp;
1832
1833	*bo = LIST_FIRST(slp);
1834	if (*bo == NULL)
1835		return (0);
1836	vp = (*bo)->__bo_vnode;	/* XXX */
1837	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
1838		return (1);
1839	/*
1840	 * We use vhold in case the vnode does not
1841	 * successfully sync.  vhold prevents the vnode from
1842	 * going away when we unlock the sync_mtx so that
1843	 * we can acquire the vnode interlock.
1844	 */
1845	vholdl(vp);
1846	mtx_unlock(&sync_mtx);
1847	VI_UNLOCK(vp);
1848	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1849		vdrop(vp);
1850		mtx_lock(&sync_mtx);
1851		return (*bo == LIST_FIRST(slp));
1852	}
1853	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1854	(void) VOP_FSYNC(vp, MNT_LAZY, td);
1855	VOP_UNLOCK(vp, 0);
1856	vn_finished_write(mp);
1857	BO_LOCK(*bo);
1858	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
1859		/*
1860		 * Put us back on the worklist.  The worklist
1861		 * routine will remove us from our current
1862		 * position and then add us back in at a later
1863		 * position.
1864		 */
1865		vn_syncer_add_to_worklist(*bo, syncdelay);
1866	}
1867	BO_UNLOCK(*bo);
1868	vdrop(vp);
1869	mtx_lock(&sync_mtx);
1870	return (0);
1871}
1872
1873static int first_printf = 1;
1874
1875/*
1876 * System filesystem synchronizer daemon.
1877 */
1878static void
1879sched_sync(void)
1880{
1881	struct synclist *next, *slp;
1882	struct bufobj *bo;
1883	long starttime;
1884	struct thread *td = curthread;
1885	int last_work_seen;
1886	int net_worklist_len;
1887	int syncer_final_iter;
1888	int error;
1889
1890	last_work_seen = 0;
1891	syncer_final_iter = 0;
1892	syncer_state = SYNCER_RUNNING;
1893	starttime = time_uptime;
1894	td->td_pflags |= TDP_NORUNNINGBUF;
1895
1896	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
1897	    SHUTDOWN_PRI_LAST);
1898
1899	mtx_lock(&sync_mtx);
1900	for (;;) {
1901		if (syncer_state == SYNCER_FINAL_DELAY &&
1902		    syncer_final_iter == 0) {
1903			mtx_unlock(&sync_mtx);
1904			kproc_suspend_check(td->td_proc);
1905			mtx_lock(&sync_mtx);
1906		}
1907		net_worklist_len = syncer_worklist_len - sync_vnode_count;
1908		if (syncer_state != SYNCER_RUNNING &&
1909		    starttime != time_uptime) {
1910			if (first_printf) {
1911				printf("\nSyncing disks, vnodes remaining...");
1912				first_printf = 0;
1913			}
1914			printf("%d ", net_worklist_len);
1915		}
1916		starttime = time_uptime;
1917
1918		/*
1919		 * Push files whose dirty time has expired.  Be careful
1920		 * of interrupt race on slp queue.
1921		 *
1922		 * Skip over empty worklist slots when shutting down.
1923		 */
1924		do {
1925			slp = &syncer_workitem_pending[syncer_delayno];
1926			syncer_delayno += 1;
1927			if (syncer_delayno == syncer_maxdelay)
1928				syncer_delayno = 0;
1929			next = &syncer_workitem_pending[syncer_delayno];
1930			/*
1931			 * If the worklist has wrapped since the
1932			 * it was emptied of all but syncer vnodes,
1933			 * switch to the FINAL_DELAY state and run
1934			 * for one more second.
1935			 */
1936			if (syncer_state == SYNCER_SHUTTING_DOWN &&
1937			    net_worklist_len == 0 &&
1938			    last_work_seen == syncer_delayno) {
1939				syncer_state = SYNCER_FINAL_DELAY;
1940				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
1941			}
1942		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
1943		    syncer_worklist_len > 0);
1944
1945		/*
1946		 * Keep track of the last time there was anything
1947		 * on the worklist other than syncer vnodes.
1948		 * Return to the SHUTTING_DOWN state if any
1949		 * new work appears.
1950		 */
1951		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
1952			last_work_seen = syncer_delayno;
1953		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
1954			syncer_state = SYNCER_SHUTTING_DOWN;
1955		while (!LIST_EMPTY(slp)) {
1956			error = sync_vnode(slp, &bo, td);
1957			if (error == 1) {
1958				LIST_REMOVE(bo, bo_synclist);
1959				LIST_INSERT_HEAD(next, bo, bo_synclist);
1960				continue;
1961			}
1962
1963			if (first_printf == 0)
1964				wdog_kern_pat(WD_LASTVAL);
1965
1966		}
1967		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
1968			syncer_final_iter--;
1969		/*
1970		 * The variable rushjob allows the kernel to speed up the
1971		 * processing of the filesystem syncer process. A rushjob
1972		 * value of N tells the filesystem syncer to process the next
1973		 * N seconds worth of work on its queue ASAP. Currently rushjob
1974		 * is used by the soft update code to speed up the filesystem
1975		 * syncer process when the incore state is getting so far
1976		 * ahead of the disk that the kernel memory pool is being
1977		 * threatened with exhaustion.
1978		 */
1979		if (rushjob > 0) {
1980			rushjob -= 1;
1981			continue;
1982		}
1983		/*
1984		 * Just sleep for a short period of time between
1985		 * iterations when shutting down to allow some I/O
1986		 * to happen.
1987		 *
1988		 * If it has taken us less than a second to process the
1989		 * current work, then wait. Otherwise start right over
1990		 * again. We can still lose time if any single round
1991		 * takes more than two seconds, but it does not really
1992		 * matter as we are just trying to generally pace the
1993		 * filesystem activity.
1994		 */
1995		if (syncer_state != SYNCER_RUNNING ||
1996		    time_uptime == starttime) {
1997			thread_lock(td);
1998			sched_prio(td, PPAUSE);
1999			thread_unlock(td);
2000		}
2001		if (syncer_state != SYNCER_RUNNING)
2002			cv_timedwait(&sync_wakeup, &sync_mtx,
2003			    hz / SYNCER_SHUTDOWN_SPEEDUP);
2004		else if (time_uptime == starttime)
2005			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
2006	}
2007}
2008
2009/*
2010 * Request the syncer daemon to speed up its work.
2011 * We never push it to speed up more than half of its
2012 * normal turn time, otherwise it could take over the cpu.
2013 */
2014int
2015speedup_syncer(void)
2016{
2017	int ret = 0;
2018
2019	mtx_lock(&sync_mtx);
2020	if (rushjob < syncdelay / 2) {
2021		rushjob += 1;
2022		stat_rush_requests += 1;
2023		ret = 1;
2024	}
2025	mtx_unlock(&sync_mtx);
2026	cv_broadcast(&sync_wakeup);
2027	return (ret);
2028}
2029
2030/*
2031 * Tell the syncer to speed up its work and run though its work
2032 * list several times, then tell it to shut down.
2033 */
2034static void
2035syncer_shutdown(void *arg, int howto)
2036{
2037
2038	if (howto & RB_NOSYNC)
2039		return;
2040	mtx_lock(&sync_mtx);
2041	syncer_state = SYNCER_SHUTTING_DOWN;
2042	rushjob = 0;
2043	mtx_unlock(&sync_mtx);
2044	cv_broadcast(&sync_wakeup);
2045	kproc_shutdown(arg, howto);
2046}
2047
2048void
2049syncer_suspend(void)
2050{
2051
2052	syncer_shutdown(updateproc, 0);
2053}
2054
2055void
2056syncer_resume(void)
2057{
2058
2059	mtx_lock(&sync_mtx);
2060	first_printf = 1;
2061	syncer_state = SYNCER_RUNNING;
2062	mtx_unlock(&sync_mtx);
2063	cv_broadcast(&sync_wakeup);
2064	kproc_resume(updateproc);
2065}
2066
2067/*
2068 * Reassign a buffer from one vnode to another.
2069 * Used to assign file specific control information
2070 * (indirect blocks) to the vnode to which they belong.
2071 */
2072void
2073reassignbuf(struct buf *bp)
2074{
2075	struct vnode *vp;
2076	struct bufobj *bo;
2077	int delay;
2078#ifdef INVARIANTS
2079	struct bufv *bv;
2080#endif
2081
2082	vp = bp->b_vp;
2083	bo = bp->b_bufobj;
2084	++reassignbufcalls;
2085
2086	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
2087	    bp, bp->b_vp, bp->b_flags);
2088	/*
2089	 * B_PAGING flagged buffers cannot be reassigned because their vp
2090	 * is not fully linked in.
2091	 */
2092	if (bp->b_flags & B_PAGING)
2093		panic("cannot reassign paging buffer");
2094
2095	/*
2096	 * Delete from old vnode list, if on one.
2097	 */
2098	BO_LOCK(bo);
2099	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2100		buf_vlist_remove(bp);
2101	else
2102		panic("reassignbuf: Buffer %p not on queue.", bp);
2103	/*
2104	 * If dirty, put on list of dirty buffers; otherwise insert onto list
2105	 * of clean buffers.
2106	 */
2107	if (bp->b_flags & B_DELWRI) {
2108		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
2109			switch (vp->v_type) {
2110			case VDIR:
2111				delay = dirdelay;
2112				break;
2113			case VCHR:
2114				delay = metadelay;
2115				break;
2116			default:
2117				delay = filedelay;
2118			}
2119			vn_syncer_add_to_worklist(bo, delay);
2120		}
2121		buf_vlist_add(bp, bo, BX_VNDIRTY);
2122	} else {
2123		buf_vlist_add(bp, bo, BX_VNCLEAN);
2124
2125		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2126			mtx_lock(&sync_mtx);
2127			LIST_REMOVE(bo, bo_synclist);
2128			syncer_worklist_len--;
2129			mtx_unlock(&sync_mtx);
2130			bo->bo_flag &= ~BO_ONWORKLST;
2131		}
2132	}
2133#ifdef INVARIANTS
2134	bv = &bo->bo_clean;
2135	bp = TAILQ_FIRST(&bv->bv_hd);
2136	KASSERT(bp == NULL || bp->b_bufobj == bo,
2137	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2138	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2139	KASSERT(bp == NULL || bp->b_bufobj == bo,
2140	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2141	bv = &bo->bo_dirty;
2142	bp = TAILQ_FIRST(&bv->bv_hd);
2143	KASSERT(bp == NULL || bp->b_bufobj == bo,
2144	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2145	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2146	KASSERT(bp == NULL || bp->b_bufobj == bo,
2147	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2148#endif
2149	BO_UNLOCK(bo);
2150}
2151
2152/*
2153 * Increment the use and hold counts on the vnode, taking care to reference
2154 * the driver's usecount if this is a chardev.  The vholdl() will remove
2155 * the vnode from the free list if it is presently free.  Requires the
2156 * vnode interlock and returns with it held.
2157 */
2158static void
2159v_incr_usecount(struct vnode *vp)
2160{
2161
2162	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2163	vholdl(vp);
2164	vp->v_usecount++;
2165	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2166		dev_lock();
2167		vp->v_rdev->si_usecount++;
2168		dev_unlock();
2169	}
2170}
2171
2172/*
2173 * Turn a holdcnt into a use+holdcnt such that only one call to
2174 * v_decr_usecount is needed.
2175 */
2176static void
2177v_upgrade_usecount(struct vnode *vp)
2178{
2179
2180	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2181	vp->v_usecount++;
2182	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2183		dev_lock();
2184		vp->v_rdev->si_usecount++;
2185		dev_unlock();
2186	}
2187}
2188
2189/*
2190 * Decrement the vnode use and hold count along with the driver's usecount
2191 * if this is a chardev.  The vdropl() below releases the vnode interlock
2192 * as it may free the vnode.
2193 */
2194static void
2195v_decr_usecount(struct vnode *vp)
2196{
2197
2198	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2199	VNASSERT(vp->v_usecount > 0, vp,
2200	    ("v_decr_usecount: negative usecount"));
2201	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2202	vp->v_usecount--;
2203	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2204		dev_lock();
2205		vp->v_rdev->si_usecount--;
2206		dev_unlock();
2207	}
2208	vdropl(vp);
2209}
2210
2211/*
2212 * Decrement only the use count and driver use count.  This is intended to
2213 * be paired with a follow on vdropl() to release the remaining hold count.
2214 * In this way we may vgone() a vnode with a 0 usecount without risk of
2215 * having it end up on a free list because the hold count is kept above 0.
2216 */
2217static void
2218v_decr_useonly(struct vnode *vp)
2219{
2220
2221	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2222	VNASSERT(vp->v_usecount > 0, vp,
2223	    ("v_decr_useonly: negative usecount"));
2224	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2225	vp->v_usecount--;
2226	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2227		dev_lock();
2228		vp->v_rdev->si_usecount--;
2229		dev_unlock();
2230	}
2231}
2232
2233/*
2234 * Grab a particular vnode from the free list, increment its
2235 * reference count and lock it.  VI_DOOMED is set if the vnode
2236 * is being destroyed.  Only callers who specify LK_RETRY will
2237 * see doomed vnodes.  If inactive processing was delayed in
2238 * vput try to do it here.
2239 */
2240int
2241vget(struct vnode *vp, int flags, struct thread *td)
2242{
2243	int error;
2244
2245	error = 0;
2246	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
2247	    ("vget: invalid lock operation"));
2248	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2249
2250	if ((flags & LK_INTERLOCK) == 0)
2251		VI_LOCK(vp);
2252	vholdl(vp);
2253	if ((error = vn_lock(vp, flags | LK_INTERLOCK)) != 0) {
2254		vdrop(vp);
2255		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
2256		    vp);
2257		return (error);
2258	}
2259	if (vp->v_iflag & VI_DOOMED && (flags & LK_RETRY) == 0)
2260		panic("vget: vn_lock failed to return ENOENT\n");
2261	VI_LOCK(vp);
2262	/* Upgrade our holdcnt to a usecount. */
2263	v_upgrade_usecount(vp);
2264	/*
2265	 * We don't guarantee that any particular close will
2266	 * trigger inactive processing so just make a best effort
2267	 * here at preventing a reference to a removed file.  If
2268	 * we don't succeed no harm is done.
2269	 */
2270	if (vp->v_iflag & VI_OWEINACT) {
2271		if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE &&
2272		    (flags & LK_NOWAIT) == 0)
2273			vinactive(vp, td);
2274		vp->v_iflag &= ~VI_OWEINACT;
2275	}
2276	VI_UNLOCK(vp);
2277	return (0);
2278}
2279
2280/*
2281 * Increase the reference count of a vnode.
2282 */
2283void
2284vref(struct vnode *vp)
2285{
2286
2287	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2288	VI_LOCK(vp);
2289	v_incr_usecount(vp);
2290	VI_UNLOCK(vp);
2291}
2292
2293/*
2294 * Return reference count of a vnode.
2295 *
2296 * The results of this call are only guaranteed when some mechanism other
2297 * than the VI lock is used to stop other processes from gaining references
2298 * to the vnode.  This may be the case if the caller holds the only reference.
2299 * This is also useful when stale data is acceptable as race conditions may
2300 * be accounted for by some other means.
2301 */
2302int
2303vrefcnt(struct vnode *vp)
2304{
2305	int usecnt;
2306
2307	VI_LOCK(vp);
2308	usecnt = vp->v_usecount;
2309	VI_UNLOCK(vp);
2310
2311	return (usecnt);
2312}
2313
2314#define	VPUTX_VRELE	1
2315#define	VPUTX_VPUT	2
2316#define	VPUTX_VUNREF	3
2317
2318static void
2319vputx(struct vnode *vp, int func)
2320{
2321	int error;
2322
2323	KASSERT(vp != NULL, ("vputx: null vp"));
2324	if (func == VPUTX_VUNREF)
2325		ASSERT_VOP_LOCKED(vp, "vunref");
2326	else if (func == VPUTX_VPUT)
2327		ASSERT_VOP_LOCKED(vp, "vput");
2328	else
2329		KASSERT(func == VPUTX_VRELE, ("vputx: wrong func"));
2330	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2331	VI_LOCK(vp);
2332
2333	/* Skip this v_writecount check if we're going to panic below. */
2334	VNASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, vp,
2335	    ("vputx: missed vn_close"));
2336	error = 0;
2337
2338	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2339	    vp->v_usecount == 1)) {
2340		if (func == VPUTX_VPUT)
2341			VOP_UNLOCK(vp, 0);
2342		v_decr_usecount(vp);
2343		return;
2344	}
2345
2346	if (vp->v_usecount != 1) {
2347		vprint("vputx: negative ref count", vp);
2348		panic("vputx: negative ref cnt");
2349	}
2350	CTR2(KTR_VFS, "%s: return vnode %p to the freelist", __func__, vp);
2351	/*
2352	 * We want to hold the vnode until the inactive finishes to
2353	 * prevent vgone() races.  We drop the use count here and the
2354	 * hold count below when we're done.
2355	 */
2356	v_decr_useonly(vp);
2357	/*
2358	 * We must call VOP_INACTIVE with the node locked. Mark
2359	 * as VI_DOINGINACT to avoid recursion.
2360	 */
2361	vp->v_iflag |= VI_OWEINACT;
2362	switch (func) {
2363	case VPUTX_VRELE:
2364		error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
2365		VI_LOCK(vp);
2366		break;
2367	case VPUTX_VPUT:
2368		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
2369			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
2370			    LK_NOWAIT);
2371			VI_LOCK(vp);
2372		}
2373		break;
2374	case VPUTX_VUNREF:
2375		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
2376			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
2377			VI_LOCK(vp);
2378		}
2379		break;
2380	}
2381	if (vp->v_usecount > 0)
2382		vp->v_iflag &= ~VI_OWEINACT;
2383	if (error == 0) {
2384		if (vp->v_iflag & VI_OWEINACT)
2385			vinactive(vp, curthread);
2386		if (func != VPUTX_VUNREF)
2387			VOP_UNLOCK(vp, 0);
2388	}
2389	vdropl(vp);
2390}
2391
2392/*
2393 * Vnode put/release.
2394 * If count drops to zero, call inactive routine and return to freelist.
2395 */
2396void
2397vrele(struct vnode *vp)
2398{
2399
2400	vputx(vp, VPUTX_VRELE);
2401}
2402
2403/*
2404 * Release an already locked vnode.  This give the same effects as
2405 * unlock+vrele(), but takes less time and avoids releasing and
2406 * re-aquiring the lock (as vrele() acquires the lock internally.)
2407 */
2408void
2409vput(struct vnode *vp)
2410{
2411
2412	vputx(vp, VPUTX_VPUT);
2413}
2414
2415/*
2416 * Release an exclusively locked vnode. Do not unlock the vnode lock.
2417 */
2418void
2419vunref(struct vnode *vp)
2420{
2421
2422	vputx(vp, VPUTX_VUNREF);
2423}
2424
2425/*
2426 * Somebody doesn't want the vnode recycled.
2427 */
2428void
2429vhold(struct vnode *vp)
2430{
2431
2432	VI_LOCK(vp);
2433	vholdl(vp);
2434	VI_UNLOCK(vp);
2435}
2436
2437/*
2438 * Increase the hold count and activate if this is the first reference.
2439 */
2440void
2441vholdl(struct vnode *vp)
2442{
2443	struct mount *mp;
2444
2445	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2446#ifdef INVARIANTS
2447	/* getnewvnode() calls v_incr_usecount() without holding interlock. */
2448	if (vp->v_type != VNON || vp->v_data != NULL)
2449		ASSERT_VI_LOCKED(vp, "vholdl");
2450#endif
2451	vp->v_holdcnt++;
2452	if ((vp->v_iflag & VI_FREE) == 0)
2453		return;
2454	VNASSERT(vp->v_holdcnt == 1, vp, ("vholdl: wrong hold count"));
2455	VNASSERT(vp->v_op != NULL, vp, ("vholdl: vnode already reclaimed."));
2456	/*
2457	 * Remove a vnode from the free list, mark it as in use,
2458	 * and put it on the active list.
2459	 */
2460	mtx_lock(&vnode_free_list_mtx);
2461	TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist);
2462	freevnodes--;
2463	vp->v_iflag &= ~VI_FREE;
2464	KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
2465	    ("Activating already active vnode"));
2466	vp->v_iflag |= VI_ACTIVE;
2467	mp = vp->v_mount;
2468	TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist);
2469	mp->mnt_activevnodelistsize++;
2470	mtx_unlock(&vnode_free_list_mtx);
2471}
2472
2473/*
2474 * Note that there is one less who cares about this vnode.
2475 * vdrop() is the opposite of vhold().
2476 */
2477void
2478vdrop(struct vnode *vp)
2479{
2480
2481	VI_LOCK(vp);
2482	vdropl(vp);
2483}
2484
2485/*
2486 * Drop the hold count of the vnode.  If this is the last reference to
2487 * the vnode we place it on the free list unless it has been vgone'd
2488 * (marked VI_DOOMED) in which case we will free it.
2489 *
2490 * Because the vnode vm object keeps a hold reference on the vnode if
2491 * there is at least one resident non-cached page, the vnode cannot
2492 * leave the active list without the page cleanup done.
2493 */
2494void
2495vdropl(struct vnode *vp)
2496{
2497	struct bufobj *bo;
2498	struct mount *mp;
2499	int active;
2500
2501	ASSERT_VI_LOCKED(vp, "vdropl");
2502	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2503	if (vp->v_holdcnt <= 0)
2504		panic("vdrop: holdcnt %d", vp->v_holdcnt);
2505	vp->v_holdcnt--;
2506	if (vp->v_holdcnt > 0) {
2507		VI_UNLOCK(vp);
2508		return;
2509	}
2510	if ((vp->v_iflag & VI_DOOMED) == 0) {
2511		/*
2512		 * Mark a vnode as free: remove it from its active list
2513		 * and put it up for recycling on the freelist.
2514		 */
2515		VNASSERT(vp->v_op != NULL, vp,
2516		    ("vdropl: vnode already reclaimed."));
2517		VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
2518		    ("vnode already free"));
2519		VNASSERT(vp->v_holdcnt == 0, vp,
2520		    ("vdropl: freeing when we shouldn't"));
2521		active = vp->v_iflag & VI_ACTIVE;
2522		if ((vp->v_iflag & VI_OWEINACT) == 0) {
2523			vp->v_iflag &= ~VI_ACTIVE;
2524			mp = vp->v_mount;
2525			mtx_lock(&vnode_free_list_mtx);
2526			if (active) {
2527				TAILQ_REMOVE(&mp->mnt_activevnodelist, vp,
2528				    v_actfreelist);
2529				mp->mnt_activevnodelistsize--;
2530			}
2531			TAILQ_INSERT_TAIL(&vnode_free_list, vp,
2532			    v_actfreelist);
2533			freevnodes++;
2534			vp->v_iflag |= VI_FREE;
2535			mtx_unlock(&vnode_free_list_mtx);
2536		} else {
2537			atomic_add_long(&free_owe_inact, 1);
2538		}
2539		VI_UNLOCK(vp);
2540		return;
2541	}
2542	/*
2543	 * The vnode has been marked for destruction, so free it.
2544	 *
2545	 * The vnode will be returned to the zone where it will
2546	 * normally remain until it is needed for another vnode. We
2547	 * need to cleanup (or verify that the cleanup has already
2548	 * been done) any residual data left from its current use
2549	 * so as not to contaminate the freshly allocated vnode.
2550	 */
2551	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
2552	atomic_subtract_long(&numvnodes, 1);
2553	bo = &vp->v_bufobj;
2554	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
2555	    ("cleaned vnode still on the free list."));
2556	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
2557	VNASSERT(vp->v_holdcnt == 0, vp, ("Non-zero hold count"));
2558	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
2559	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
2560	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
2561	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
2562	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
2563	    ("clean blk trie not empty"));
2564	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
2565	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
2566	    ("dirty blk trie not empty"));
2567	VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
2568	VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
2569	VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for .."));
2570	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
2571	    ("Dangling rangelock waiters"));
2572	VI_UNLOCK(vp);
2573#ifdef MAC
2574	mac_vnode_destroy(vp);
2575#endif
2576	if (vp->v_pollinfo != NULL) {
2577		destroy_vpollinfo(vp->v_pollinfo);
2578		vp->v_pollinfo = NULL;
2579	}
2580#ifdef INVARIANTS
2581	/* XXX Elsewhere we detect an already freed vnode via NULL v_op. */
2582	vp->v_op = NULL;
2583#endif
2584	bzero(&vp->v_un, sizeof(vp->v_un));
2585	vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
2586	vp->v_iflag = 0;
2587	vp->v_vflag = 0;
2588	bo->bo_flag = 0;
2589	uma_zfree(vnode_zone, vp);
2590}
2591
2592/*
2593 * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
2594 * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
2595 * OWEINACT tracks whether a vnode missed a call to inactive due to a
2596 * failed lock upgrade.
2597 */
2598void
2599vinactive(struct vnode *vp, struct thread *td)
2600{
2601	struct vm_object *obj;
2602
2603	ASSERT_VOP_ELOCKED(vp, "vinactive");
2604	ASSERT_VI_LOCKED(vp, "vinactive");
2605	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
2606	    ("vinactive: recursed on VI_DOINGINACT"));
2607	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2608	vp->v_iflag |= VI_DOINGINACT;
2609	vp->v_iflag &= ~VI_OWEINACT;
2610	VI_UNLOCK(vp);
2611	/*
2612	 * Before moving off the active list, we must be sure that any
2613	 * modified pages are converted into the vnode's dirty
2614	 * buffers, since these will no longer be checked once the
2615	 * vnode is on the inactive list.
2616	 *
2617	 * The write-out of the dirty pages is asynchronous.  At the
2618	 * point that VOP_INACTIVE() is called, there could still be
2619	 * pending I/O and dirty pages in the object.
2620	 */
2621	obj = vp->v_object;
2622	if (obj != NULL && (obj->flags & OBJ_MIGHTBEDIRTY) != 0) {
2623		VM_OBJECT_WLOCK(obj);
2624		vm_object_page_clean(obj, 0, 0, OBJPC_NOSYNC);
2625		VM_OBJECT_WUNLOCK(obj);
2626	}
2627	VOP_INACTIVE(vp, td);
2628	VI_LOCK(vp);
2629	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
2630	    ("vinactive: lost VI_DOINGINACT"));
2631	vp->v_iflag &= ~VI_DOINGINACT;
2632}
2633
2634/*
2635 * Remove any vnodes in the vnode table belonging to mount point mp.
2636 *
2637 * If FORCECLOSE is not specified, there should not be any active ones,
2638 * return error if any are found (nb: this is a user error, not a
2639 * system error). If FORCECLOSE is specified, detach any active vnodes
2640 * that are found.
2641 *
2642 * If WRITECLOSE is set, only flush out regular file vnodes open for
2643 * writing.
2644 *
2645 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
2646 *
2647 * `rootrefs' specifies the base reference count for the root vnode
2648 * of this filesystem. The root vnode is considered busy if its
2649 * v_usecount exceeds this value. On a successful return, vflush(, td)
2650 * will call vrele() on the root vnode exactly rootrefs times.
2651 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
2652 * be zero.
2653 */
2654#ifdef DIAGNOSTIC
2655static int busyprt = 0;		/* print out busy vnodes */
2656SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
2657#endif
2658
2659int
2660vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
2661{
2662	struct vnode *vp, *mvp, *rootvp = NULL;
2663	struct vattr vattr;
2664	int busy = 0, error;
2665
2666	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
2667	    rootrefs, flags);
2668	if (rootrefs > 0) {
2669		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
2670		    ("vflush: bad args"));
2671		/*
2672		 * Get the filesystem root vnode. We can vput() it
2673		 * immediately, since with rootrefs > 0, it won't go away.
2674		 */
2675		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
2676			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
2677			    __func__, error);
2678			return (error);
2679		}
2680		vput(rootvp);
2681	}
2682loop:
2683	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
2684		vholdl(vp);
2685		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
2686		if (error) {
2687			vdrop(vp);
2688			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
2689			goto loop;
2690		}
2691		/*
2692		 * Skip over a vnodes marked VV_SYSTEM.
2693		 */
2694		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
2695			VOP_UNLOCK(vp, 0);
2696			vdrop(vp);
2697			continue;
2698		}
2699		/*
2700		 * If WRITECLOSE is set, flush out unlinked but still open
2701		 * files (even if open only for reading) and regular file
2702		 * vnodes open for writing.
2703		 */
2704		if (flags & WRITECLOSE) {
2705			if (vp->v_object != NULL) {
2706				VM_OBJECT_WLOCK(vp->v_object);
2707				vm_object_page_clean(vp->v_object, 0, 0, 0);
2708				VM_OBJECT_WUNLOCK(vp->v_object);
2709			}
2710			error = VOP_FSYNC(vp, MNT_WAIT, td);
2711			if (error != 0) {
2712				VOP_UNLOCK(vp, 0);
2713				vdrop(vp);
2714				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
2715				return (error);
2716			}
2717			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
2718			VI_LOCK(vp);
2719
2720			if ((vp->v_type == VNON ||
2721			    (error == 0 && vattr.va_nlink > 0)) &&
2722			    (vp->v_writecount == 0 || vp->v_type != VREG)) {
2723				VOP_UNLOCK(vp, 0);
2724				vdropl(vp);
2725				continue;
2726			}
2727		} else
2728			VI_LOCK(vp);
2729		/*
2730		 * With v_usecount == 0, all we need to do is clear out the
2731		 * vnode data structures and we are done.
2732		 *
2733		 * If FORCECLOSE is set, forcibly close the vnode.
2734		 */
2735		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
2736			vgonel(vp);
2737		} else {
2738			busy++;
2739#ifdef DIAGNOSTIC
2740			if (busyprt)
2741				vprint("vflush: busy vnode", vp);
2742#endif
2743		}
2744		VOP_UNLOCK(vp, 0);
2745		vdropl(vp);
2746	}
2747	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
2748		/*
2749		 * If just the root vnode is busy, and if its refcount
2750		 * is equal to `rootrefs', then go ahead and kill it.
2751		 */
2752		VI_LOCK(rootvp);
2753		KASSERT(busy > 0, ("vflush: not busy"));
2754		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
2755		    ("vflush: usecount %d < rootrefs %d",
2756		     rootvp->v_usecount, rootrefs));
2757		if (busy == 1 && rootvp->v_usecount == rootrefs) {
2758			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
2759			vgone(rootvp);
2760			VOP_UNLOCK(rootvp, 0);
2761			busy = 0;
2762		} else
2763			VI_UNLOCK(rootvp);
2764	}
2765	if (busy) {
2766		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
2767		    busy);
2768		return (EBUSY);
2769	}
2770	for (; rootrefs > 0; rootrefs--)
2771		vrele(rootvp);
2772	return (0);
2773}
2774
2775/*
2776 * Recycle an unused vnode to the front of the free list.
2777 */
2778int
2779vrecycle(struct vnode *vp)
2780{
2781	int recycled;
2782
2783	ASSERT_VOP_ELOCKED(vp, "vrecycle");
2784	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2785	recycled = 0;
2786	VI_LOCK(vp);
2787	if (vp->v_usecount == 0) {
2788		recycled = 1;
2789		vgonel(vp);
2790	}
2791	VI_UNLOCK(vp);
2792	return (recycled);
2793}
2794
2795/*
2796 * Eliminate all activity associated with a vnode
2797 * in preparation for reuse.
2798 */
2799void
2800vgone(struct vnode *vp)
2801{
2802	VI_LOCK(vp);
2803	vgonel(vp);
2804	VI_UNLOCK(vp);
2805}
2806
2807static void
2808notify_lowervp_vfs_dummy(struct mount *mp __unused,
2809    struct vnode *lowervp __unused)
2810{
2811}
2812
2813/*
2814 * Notify upper mounts about reclaimed or unlinked vnode.
2815 */
2816void
2817vfs_notify_upper(struct vnode *vp, int event)
2818{
2819	static struct vfsops vgonel_vfsops = {
2820		.vfs_reclaim_lowervp = notify_lowervp_vfs_dummy,
2821		.vfs_unlink_lowervp = notify_lowervp_vfs_dummy,
2822	};
2823	struct mount *mp, *ump, *mmp;
2824
2825	mp = vp->v_mount;
2826	if (mp == NULL)
2827		return;
2828
2829	MNT_ILOCK(mp);
2830	if (TAILQ_EMPTY(&mp->mnt_uppers))
2831		goto unlock;
2832	MNT_IUNLOCK(mp);
2833	mmp = malloc(sizeof(struct mount), M_TEMP, M_WAITOK | M_ZERO);
2834	mmp->mnt_op = &vgonel_vfsops;
2835	mmp->mnt_kern_flag |= MNTK_MARKER;
2836	MNT_ILOCK(mp);
2837	mp->mnt_kern_flag |= MNTK_VGONE_UPPER;
2838	for (ump = TAILQ_FIRST(&mp->mnt_uppers); ump != NULL;) {
2839		if ((ump->mnt_kern_flag & MNTK_MARKER) != 0) {
2840			ump = TAILQ_NEXT(ump, mnt_upper_link);
2841			continue;
2842		}
2843		TAILQ_INSERT_AFTER(&mp->mnt_uppers, ump, mmp, mnt_upper_link);
2844		MNT_IUNLOCK(mp);
2845		switch (event) {
2846		case VFS_NOTIFY_UPPER_RECLAIM:
2847			VFS_RECLAIM_LOWERVP(ump, vp);
2848			break;
2849		case VFS_NOTIFY_UPPER_UNLINK:
2850			VFS_UNLINK_LOWERVP(ump, vp);
2851			break;
2852		default:
2853			KASSERT(0, ("invalid event %d", event));
2854			break;
2855		}
2856		MNT_ILOCK(mp);
2857		ump = TAILQ_NEXT(mmp, mnt_upper_link);
2858		TAILQ_REMOVE(&mp->mnt_uppers, mmp, mnt_upper_link);
2859	}
2860	free(mmp, M_TEMP);
2861	mp->mnt_kern_flag &= ~MNTK_VGONE_UPPER;
2862	if ((mp->mnt_kern_flag & MNTK_VGONE_WAITER) != 0) {
2863		mp->mnt_kern_flag &= ~MNTK_VGONE_WAITER;
2864		wakeup(&mp->mnt_uppers);
2865	}
2866unlock:
2867	MNT_IUNLOCK(mp);
2868}
2869
2870/*
2871 * vgone, with the vp interlock held.
2872 */
2873static void
2874vgonel(struct vnode *vp)
2875{
2876	struct thread *td;
2877	int oweinact;
2878	int active;
2879	struct mount *mp;
2880
2881	ASSERT_VOP_ELOCKED(vp, "vgonel");
2882	ASSERT_VI_LOCKED(vp, "vgonel");
2883	VNASSERT(vp->v_holdcnt, vp,
2884	    ("vgonel: vp %p has no reference.", vp));
2885	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2886	td = curthread;
2887
2888	/*
2889	 * Don't vgonel if we're already doomed.
2890	 */
2891	if (vp->v_iflag & VI_DOOMED)
2892		return;
2893	vp->v_iflag |= VI_DOOMED;
2894
2895	/*
2896	 * Check to see if the vnode is in use.  If so, we have to call
2897	 * VOP_CLOSE() and VOP_INACTIVE().
2898	 */
2899	active = vp->v_usecount;
2900	oweinact = (vp->v_iflag & VI_OWEINACT);
2901	VI_UNLOCK(vp);
2902	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
2903
2904	/*
2905	 * If purging an active vnode, it must be closed and
2906	 * deactivated before being reclaimed.
2907	 */
2908	if (active)
2909		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
2910	if (oweinact || active) {
2911		VI_LOCK(vp);
2912		if ((vp->v_iflag & VI_DOINGINACT) == 0)
2913			vinactive(vp, td);
2914		VI_UNLOCK(vp);
2915	}
2916	if (vp->v_type == VSOCK)
2917		vfs_unp_reclaim(vp);
2918
2919	/*
2920	 * Clean out any buffers associated with the vnode.
2921	 * If the flush fails, just toss the buffers.
2922	 */
2923	mp = NULL;
2924	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
2925		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
2926	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
2927		while (vinvalbuf(vp, 0, 0, 0) != 0)
2928			;
2929	}
2930
2931	BO_LOCK(&vp->v_bufobj);
2932	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
2933	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
2934	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
2935	    vp->v_bufobj.bo_clean.bv_cnt == 0,
2936	    ("vp %p bufobj not invalidated", vp));
2937
2938	/*
2939	 * For VMIO bufobj, BO_DEAD is set in vm_object_terminate()
2940	 * after the object's page queue is flushed.
2941	 */
2942	if (vp->v_bufobj.bo_object == NULL)
2943		vp->v_bufobj.bo_flag |= BO_DEAD;
2944	BO_UNLOCK(&vp->v_bufobj);
2945
2946	/*
2947	 * Reclaim the vnode.
2948	 */
2949	if (VOP_RECLAIM(vp, td))
2950		panic("vgone: cannot reclaim");
2951	if (mp != NULL)
2952		vn_finished_secondary_write(mp);
2953	VNASSERT(vp->v_object == NULL, vp,
2954	    ("vop_reclaim left v_object vp=%p, tag=%s", vp, vp->v_tag));
2955	/*
2956	 * Clear the advisory locks and wake up waiting threads.
2957	 */
2958	(void)VOP_ADVLOCKPURGE(vp);
2959	vp->v_lockf = NULL;
2960	/*
2961	 * Delete from old mount point vnode list.
2962	 */
2963	delmntque(vp);
2964	cache_purge(vp);
2965	/*
2966	 * Done with purge, reset to the standard lock and invalidate
2967	 * the vnode.
2968	 */
2969	VI_LOCK(vp);
2970	vp->v_vnlock = &vp->v_lock;
2971	vp->v_op = &dead_vnodeops;
2972	vp->v_tag = "none";
2973	vp->v_type = VBAD;
2974}
2975
2976/*
2977 * Calculate the total number of references to a special device.
2978 */
2979int
2980vcount(struct vnode *vp)
2981{
2982	int count;
2983
2984	dev_lock();
2985	count = vp->v_rdev->si_usecount;
2986	dev_unlock();
2987	return (count);
2988}
2989
2990/*
2991 * Same as above, but using the struct cdev *as argument
2992 */
2993int
2994count_dev(struct cdev *dev)
2995{
2996	int count;
2997
2998	dev_lock();
2999	count = dev->si_usecount;
3000	dev_unlock();
3001	return(count);
3002}
3003
3004/*
3005 * Print out a description of a vnode.
3006 */
3007static char *typename[] =
3008{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
3009 "VMARKER"};
3010
3011void
3012vn_printf(struct vnode *vp, const char *fmt, ...)
3013{
3014	va_list ap;
3015	char buf[256], buf2[16];
3016	u_long flags;
3017
3018	va_start(ap, fmt);
3019	vprintf(fmt, ap);
3020	va_end(ap);
3021	printf("%p: ", (void *)vp);
3022	printf("tag %s, type %s\n", vp->v_tag, typename[vp->v_type]);
3023	printf("    usecount %d, writecount %d, refcount %d",
3024	    vp->v_usecount, vp->v_writecount, vp->v_holdcnt);
3025	switch (vp->v_type) {
3026	case VDIR:
3027		printf(" mountedhere %p\n", vp->v_mountedhere);
3028		break;
3029	case VCHR:
3030		printf(" rdev %p\n", vp->v_rdev);
3031		break;
3032	case VSOCK:
3033		printf(" socket %p\n", vp->v_socket);
3034		break;
3035	case VFIFO:
3036		printf(" fifoinfo %p\n", vp->v_fifoinfo);
3037		break;
3038	default:
3039		printf("\n");
3040		break;
3041	}
3042	buf[0] = '\0';
3043	buf[1] = '\0';
3044	if (vp->v_vflag & VV_ROOT)
3045		strlcat(buf, "|VV_ROOT", sizeof(buf));
3046	if (vp->v_vflag & VV_ISTTY)
3047		strlcat(buf, "|VV_ISTTY", sizeof(buf));
3048	if (vp->v_vflag & VV_NOSYNC)
3049		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
3050	if (vp->v_vflag & VV_ETERNALDEV)
3051		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
3052	if (vp->v_vflag & VV_CACHEDLABEL)
3053		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
3054	if (vp->v_vflag & VV_TEXT)
3055		strlcat(buf, "|VV_TEXT", sizeof(buf));
3056	if (vp->v_vflag & VV_COPYONWRITE)
3057		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
3058	if (vp->v_vflag & VV_SYSTEM)
3059		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
3060	if (vp->v_vflag & VV_PROCDEP)
3061		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
3062	if (vp->v_vflag & VV_NOKNOTE)
3063		strlcat(buf, "|VV_NOKNOTE", sizeof(buf));
3064	if (vp->v_vflag & VV_DELETED)
3065		strlcat(buf, "|VV_DELETED", sizeof(buf));
3066	if (vp->v_vflag & VV_MD)
3067		strlcat(buf, "|VV_MD", sizeof(buf));
3068	if (vp->v_vflag & VV_FORCEINSMQ)
3069		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
3070	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
3071	    VV_CACHEDLABEL | VV_TEXT | VV_COPYONWRITE | VV_SYSTEM | VV_PROCDEP |
3072	    VV_NOKNOTE | VV_DELETED | VV_MD | VV_FORCEINSMQ);
3073	if (flags != 0) {
3074		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
3075		strlcat(buf, buf2, sizeof(buf));
3076	}
3077	if (vp->v_iflag & VI_MOUNT)
3078		strlcat(buf, "|VI_MOUNT", sizeof(buf));
3079	if (vp->v_iflag & VI_DOOMED)
3080		strlcat(buf, "|VI_DOOMED", sizeof(buf));
3081	if (vp->v_iflag & VI_FREE)
3082		strlcat(buf, "|VI_FREE", sizeof(buf));
3083	if (vp->v_iflag & VI_ACTIVE)
3084		strlcat(buf, "|VI_ACTIVE", sizeof(buf));
3085	if (vp->v_iflag & VI_DOINGINACT)
3086		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
3087	if (vp->v_iflag & VI_OWEINACT)
3088		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
3089	flags = vp->v_iflag & ~(VI_MOUNT | VI_DOOMED | VI_FREE |
3090	    VI_ACTIVE | VI_DOINGINACT | VI_OWEINACT);
3091	if (flags != 0) {
3092		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
3093		strlcat(buf, buf2, sizeof(buf));
3094	}
3095	printf("    flags (%s)\n", buf + 1);
3096	if (mtx_owned(VI_MTX(vp)))
3097		printf(" VI_LOCKed");
3098	if (vp->v_object != NULL)
3099		printf("    v_object %p ref %d pages %d "
3100		    "cleanbuf %d dirtybuf %d\n",
3101		    vp->v_object, vp->v_object->ref_count,
3102		    vp->v_object->resident_page_count,
3103		    vp->v_bufobj.bo_clean.bv_cnt,
3104		    vp->v_bufobj.bo_dirty.bv_cnt);
3105	printf("    ");
3106	lockmgr_printinfo(vp->v_vnlock);
3107	if (vp->v_data != NULL)
3108		VOP_PRINT(vp);
3109}
3110
3111#ifdef DDB
3112/*
3113 * List all of the locked vnodes in the system.
3114 * Called when debugging the kernel.
3115 */
3116DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
3117{
3118	struct mount *mp;
3119	struct vnode *vp;
3120
3121	/*
3122	 * Note: because this is DDB, we can't obey the locking semantics
3123	 * for these structures, which means we could catch an inconsistent
3124	 * state and dereference a nasty pointer.  Not much to be done
3125	 * about that.
3126	 */
3127	db_printf("Locked vnodes\n");
3128	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3129		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3130			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
3131				vprint("", vp);
3132		}
3133	}
3134}
3135
3136/*
3137 * Show details about the given vnode.
3138 */
3139DB_SHOW_COMMAND(vnode, db_show_vnode)
3140{
3141	struct vnode *vp;
3142
3143	if (!have_addr)
3144		return;
3145	vp = (struct vnode *)addr;
3146	vn_printf(vp, "vnode ");
3147}
3148
3149/*
3150 * Show details about the given mount point.
3151 */
3152DB_SHOW_COMMAND(mount, db_show_mount)
3153{
3154	struct mount *mp;
3155	struct vfsopt *opt;
3156	struct statfs *sp;
3157	struct vnode *vp;
3158	char buf[512];
3159	uint64_t mflags;
3160	u_int flags;
3161
3162	if (!have_addr) {
3163		/* No address given, print short info about all mount points. */
3164		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3165			db_printf("%p %s on %s (%s)\n", mp,
3166			    mp->mnt_stat.f_mntfromname,
3167			    mp->mnt_stat.f_mntonname,
3168			    mp->mnt_stat.f_fstypename);
3169			if (db_pager_quit)
3170				break;
3171		}
3172		db_printf("\nMore info: show mount <addr>\n");
3173		return;
3174	}
3175
3176	mp = (struct mount *)addr;
3177	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
3178	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
3179
3180	buf[0] = '\0';
3181	mflags = mp->mnt_flag;
3182#define	MNT_FLAG(flag)	do {						\
3183	if (mflags & (flag)) {						\
3184		if (buf[0] != '\0')					\
3185			strlcat(buf, ", ", sizeof(buf));		\
3186		strlcat(buf, (#flag) + 4, sizeof(buf));			\
3187		mflags &= ~(flag);					\
3188	}								\
3189} while (0)
3190	MNT_FLAG(MNT_RDONLY);
3191	MNT_FLAG(MNT_SYNCHRONOUS);
3192	MNT_FLAG(MNT_NOEXEC);
3193	MNT_FLAG(MNT_NOSUID);
3194	MNT_FLAG(MNT_NFS4ACLS);
3195	MNT_FLAG(MNT_UNION);
3196	MNT_FLAG(MNT_ASYNC);
3197	MNT_FLAG(MNT_SUIDDIR);
3198	MNT_FLAG(MNT_SOFTDEP);
3199	MNT_FLAG(MNT_NOSYMFOLLOW);
3200	MNT_FLAG(MNT_GJOURNAL);
3201	MNT_FLAG(MNT_MULTILABEL);
3202	MNT_FLAG(MNT_ACLS);
3203	MNT_FLAG(MNT_NOATIME);
3204	MNT_FLAG(MNT_NOCLUSTERR);
3205	MNT_FLAG(MNT_NOCLUSTERW);
3206	MNT_FLAG(MNT_SUJ);
3207	MNT_FLAG(MNT_EXRDONLY);
3208	MNT_FLAG(MNT_EXPORTED);
3209	MNT_FLAG(MNT_DEFEXPORTED);
3210	MNT_FLAG(MNT_EXPORTANON);
3211	MNT_FLAG(MNT_EXKERB);
3212	MNT_FLAG(MNT_EXPUBLIC);
3213	MNT_FLAG(MNT_LOCAL);
3214	MNT_FLAG(MNT_QUOTA);
3215	MNT_FLAG(MNT_ROOTFS);
3216	MNT_FLAG(MNT_USER);
3217	MNT_FLAG(MNT_IGNORE);
3218	MNT_FLAG(MNT_UPDATE);
3219	MNT_FLAG(MNT_DELEXPORT);
3220	MNT_FLAG(MNT_RELOAD);
3221	MNT_FLAG(MNT_FORCE);
3222	MNT_FLAG(MNT_SNAPSHOT);
3223	MNT_FLAG(MNT_BYFSID);
3224#undef MNT_FLAG
3225	if (mflags != 0) {
3226		if (buf[0] != '\0')
3227			strlcat(buf, ", ", sizeof(buf));
3228		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
3229		    "0x%016jx", mflags);
3230	}
3231	db_printf("    mnt_flag = %s\n", buf);
3232
3233	buf[0] = '\0';
3234	flags = mp->mnt_kern_flag;
3235#define	MNT_KERN_FLAG(flag)	do {					\
3236	if (flags & (flag)) {						\
3237		if (buf[0] != '\0')					\
3238			strlcat(buf, ", ", sizeof(buf));		\
3239		strlcat(buf, (#flag) + 5, sizeof(buf));			\
3240		flags &= ~(flag);					\
3241	}								\
3242} while (0)
3243	MNT_KERN_FLAG(MNTK_UNMOUNTF);
3244	MNT_KERN_FLAG(MNTK_ASYNC);
3245	MNT_KERN_FLAG(MNTK_SOFTDEP);
3246	MNT_KERN_FLAG(MNTK_NOINSMNTQ);
3247	MNT_KERN_FLAG(MNTK_DRAINING);
3248	MNT_KERN_FLAG(MNTK_REFEXPIRE);
3249	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
3250	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
3251	MNT_KERN_FLAG(MNTK_NO_IOPF);
3252	MNT_KERN_FLAG(MNTK_VGONE_UPPER);
3253	MNT_KERN_FLAG(MNTK_VGONE_WAITER);
3254	MNT_KERN_FLAG(MNTK_LOOKUP_EXCL_DOTDOT);
3255	MNT_KERN_FLAG(MNTK_MARKER);
3256	MNT_KERN_FLAG(MNTK_USES_BCACHE);
3257	MNT_KERN_FLAG(MNTK_NOASYNC);
3258	MNT_KERN_FLAG(MNTK_UNMOUNT);
3259	MNT_KERN_FLAG(MNTK_MWAIT);
3260	MNT_KERN_FLAG(MNTK_SUSPEND);
3261	MNT_KERN_FLAG(MNTK_SUSPEND2);
3262	MNT_KERN_FLAG(MNTK_SUSPENDED);
3263	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
3264	MNT_KERN_FLAG(MNTK_NOKNOTE);
3265#undef MNT_KERN_FLAG
3266	if (flags != 0) {
3267		if (buf[0] != '\0')
3268			strlcat(buf, ", ", sizeof(buf));
3269		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
3270		    "0x%08x", flags);
3271	}
3272	db_printf("    mnt_kern_flag = %s\n", buf);
3273
3274	db_printf("    mnt_opt = ");
3275	opt = TAILQ_FIRST(mp->mnt_opt);
3276	if (opt != NULL) {
3277		db_printf("%s", opt->name);
3278		opt = TAILQ_NEXT(opt, link);
3279		while (opt != NULL) {
3280			db_printf(", %s", opt->name);
3281			opt = TAILQ_NEXT(opt, link);
3282		}
3283	}
3284	db_printf("\n");
3285
3286	sp = &mp->mnt_stat;
3287	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
3288	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
3289	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
3290	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
3291	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
3292	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
3293	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
3294	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
3295	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
3296	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
3297	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
3298	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
3299
3300	db_printf("    mnt_cred = { uid=%u ruid=%u",
3301	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
3302	if (jailed(mp->mnt_cred))
3303		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
3304	db_printf(" }\n");
3305	db_printf("    mnt_ref = %d\n", mp->mnt_ref);
3306	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
3307	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
3308	db_printf("    mnt_activevnodelistsize = %d\n",
3309	    mp->mnt_activevnodelistsize);
3310	db_printf("    mnt_writeopcount = %d\n", mp->mnt_writeopcount);
3311	db_printf("    mnt_maxsymlinklen = %d\n", mp->mnt_maxsymlinklen);
3312	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
3313	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
3314	db_printf("    mnt_lockref = %d\n", mp->mnt_lockref);
3315	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
3316	db_printf("    mnt_secondary_accwrites = %d\n",
3317	    mp->mnt_secondary_accwrites);
3318	db_printf("    mnt_gjprovider = %s\n",
3319	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
3320
3321	db_printf("\n\nList of active vnodes\n");
3322	TAILQ_FOREACH(vp, &mp->mnt_activevnodelist, v_actfreelist) {
3323		if (vp->v_type != VMARKER) {
3324			vn_printf(vp, "vnode ");
3325			if (db_pager_quit)
3326				break;
3327		}
3328	}
3329	db_printf("\n\nList of inactive vnodes\n");
3330	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3331		if (vp->v_type != VMARKER && (vp->v_iflag & VI_ACTIVE) == 0) {
3332			vn_printf(vp, "vnode ");
3333			if (db_pager_quit)
3334				break;
3335		}
3336	}
3337}
3338#endif	/* DDB */
3339
3340/*
3341 * Fill in a struct xvfsconf based on a struct vfsconf.
3342 */
3343static int
3344vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
3345{
3346	struct xvfsconf xvfsp;
3347
3348	bzero(&xvfsp, sizeof(xvfsp));
3349	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
3350	xvfsp.vfc_typenum = vfsp->vfc_typenum;
3351	xvfsp.vfc_refcount = vfsp->vfc_refcount;
3352	xvfsp.vfc_flags = vfsp->vfc_flags;
3353	/*
3354	 * These are unused in userland, we keep them
3355	 * to not break binary compatibility.
3356	 */
3357	xvfsp.vfc_vfsops = NULL;
3358	xvfsp.vfc_next = NULL;
3359	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
3360}
3361
3362#ifdef COMPAT_FREEBSD32
3363struct xvfsconf32 {
3364	uint32_t	vfc_vfsops;
3365	char		vfc_name[MFSNAMELEN];
3366	int32_t		vfc_typenum;
3367	int32_t		vfc_refcount;
3368	int32_t		vfc_flags;
3369	uint32_t	vfc_next;
3370};
3371
3372static int
3373vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
3374{
3375	struct xvfsconf32 xvfsp;
3376
3377	bzero(&xvfsp, sizeof(xvfsp));
3378	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
3379	xvfsp.vfc_typenum = vfsp->vfc_typenum;
3380	xvfsp.vfc_refcount = vfsp->vfc_refcount;
3381	xvfsp.vfc_flags = vfsp->vfc_flags;
3382	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
3383}
3384#endif
3385
3386/*
3387 * Top level filesystem related information gathering.
3388 */
3389static int
3390sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
3391{
3392	struct vfsconf *vfsp;
3393	int error;
3394
3395	error = 0;
3396	vfsconf_slock();
3397	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
3398#ifdef COMPAT_FREEBSD32
3399		if (req->flags & SCTL_MASK32)
3400			error = vfsconf2x32(req, vfsp);
3401		else
3402#endif
3403			error = vfsconf2x(req, vfsp);
3404		if (error)
3405			break;
3406	}
3407	vfsconf_sunlock();
3408	return (error);
3409}
3410
3411SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
3412    CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
3413    "S,xvfsconf", "List of all configured filesystems");
3414
3415#ifndef BURN_BRIDGES
3416static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
3417
3418static int
3419vfs_sysctl(SYSCTL_HANDLER_ARGS)
3420{
3421	int *name = (int *)arg1 - 1;	/* XXX */
3422	u_int namelen = arg2 + 1;	/* XXX */
3423	struct vfsconf *vfsp;
3424
3425	log(LOG_WARNING, "userland calling deprecated sysctl, "
3426	    "please rebuild world\n");
3427
3428#if 1 || defined(COMPAT_PRELITE2)
3429	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
3430	if (namelen == 1)
3431		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
3432#endif
3433
3434	switch (name[1]) {
3435	case VFS_MAXTYPENUM:
3436		if (namelen != 2)
3437			return (ENOTDIR);
3438		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
3439	case VFS_CONF:
3440		if (namelen != 3)
3441			return (ENOTDIR);	/* overloaded */
3442		vfsconf_slock();
3443		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
3444			if (vfsp->vfc_typenum == name[2])
3445				break;
3446		}
3447		vfsconf_sunlock();
3448		if (vfsp == NULL)
3449			return (EOPNOTSUPP);
3450#ifdef COMPAT_FREEBSD32
3451		if (req->flags & SCTL_MASK32)
3452			return (vfsconf2x32(req, vfsp));
3453		else
3454#endif
3455			return (vfsconf2x(req, vfsp));
3456	}
3457	return (EOPNOTSUPP);
3458}
3459
3460static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
3461    CTLFLAG_MPSAFE, vfs_sysctl,
3462    "Generic filesystem");
3463
3464#if 1 || defined(COMPAT_PRELITE2)
3465
3466static int
3467sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
3468{
3469	int error;
3470	struct vfsconf *vfsp;
3471	struct ovfsconf ovfs;
3472
3473	vfsconf_slock();
3474	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
3475		bzero(&ovfs, sizeof(ovfs));
3476		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
3477		strcpy(ovfs.vfc_name, vfsp->vfc_name);
3478		ovfs.vfc_index = vfsp->vfc_typenum;
3479		ovfs.vfc_refcount = vfsp->vfc_refcount;
3480		ovfs.vfc_flags = vfsp->vfc_flags;
3481		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
3482		if (error != 0) {
3483			vfsconf_sunlock();
3484			return (error);
3485		}
3486	}
3487	vfsconf_sunlock();
3488	return (0);
3489}
3490
3491#endif /* 1 || COMPAT_PRELITE2 */
3492#endif /* !BURN_BRIDGES */
3493
3494#define KINFO_VNODESLOP		10
3495#ifdef notyet
3496/*
3497 * Dump vnode list (via sysctl).
3498 */
3499/* ARGSUSED */
3500static int
3501sysctl_vnode(SYSCTL_HANDLER_ARGS)
3502{
3503	struct xvnode *xvn;
3504	struct mount *mp;
3505	struct vnode *vp;
3506	int error, len, n;
3507
3508	/*
3509	 * Stale numvnodes access is not fatal here.
3510	 */
3511	req->lock = 0;
3512	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
3513	if (!req->oldptr)
3514		/* Make an estimate */
3515		return (SYSCTL_OUT(req, 0, len));
3516
3517	error = sysctl_wire_old_buffer(req, 0);
3518	if (error != 0)
3519		return (error);
3520	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
3521	n = 0;
3522	mtx_lock(&mountlist_mtx);
3523	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3524		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
3525			continue;
3526		MNT_ILOCK(mp);
3527		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3528			if (n == len)
3529				break;
3530			vref(vp);
3531			xvn[n].xv_size = sizeof *xvn;
3532			xvn[n].xv_vnode = vp;
3533			xvn[n].xv_id = 0;	/* XXX compat */
3534#define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
3535			XV_COPY(usecount);
3536			XV_COPY(writecount);
3537			XV_COPY(holdcnt);
3538			XV_COPY(mount);
3539			XV_COPY(numoutput);
3540			XV_COPY(type);
3541#undef XV_COPY
3542			xvn[n].xv_flag = vp->v_vflag;
3543
3544			switch (vp->v_type) {
3545			case VREG:
3546			case VDIR:
3547			case VLNK:
3548				break;
3549			case VBLK:
3550			case VCHR:
3551				if (vp->v_rdev == NULL) {
3552					vrele(vp);
3553					continue;
3554				}
3555				xvn[n].xv_dev = dev2udev(vp->v_rdev);
3556				break;
3557			case VSOCK:
3558				xvn[n].xv_socket = vp->v_socket;
3559				break;
3560			case VFIFO:
3561				xvn[n].xv_fifo = vp->v_fifoinfo;
3562				break;
3563			case VNON:
3564			case VBAD:
3565			default:
3566				/* shouldn't happen? */
3567				vrele(vp);
3568				continue;
3569			}
3570			vrele(vp);
3571			++n;
3572		}
3573		MNT_IUNLOCK(mp);
3574		mtx_lock(&mountlist_mtx);
3575		vfs_unbusy(mp);
3576		if (n == len)
3577			break;
3578	}
3579	mtx_unlock(&mountlist_mtx);
3580
3581	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
3582	free(xvn, M_TEMP);
3583	return (error);
3584}
3585
3586SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE | CTLFLAG_RD |
3587    CTLFLAG_MPSAFE, 0, 0, sysctl_vnode, "S,xvnode",
3588    "");
3589#endif
3590
3591static void
3592unmount_or_warn(struct mount *mp)
3593{
3594	int error;
3595
3596	error = dounmount(mp, MNT_FORCE, curthread);
3597	if (error != 0 && strcmp(mp->mnt_vfc->vfc_name, "devfs") != 0) {
3598		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
3599		if (error == EBUSY)
3600			printf("BUSY)\n");
3601		else
3602			printf("%d)\n", error);
3603	}
3604}
3605
3606/*
3607 * Unmount all filesystems. The list is traversed in reverse order
3608 * of mounting to avoid dependencies.
3609 */
3610void
3611vfs_unmountall(void)
3612{
3613	struct mount *mp, *tmp;
3614
3615	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
3616
3617	/*
3618	 * Since this only runs when rebooting, it is not interlocked.
3619	 */
3620	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
3621		vfs_ref(mp);
3622
3623		/*
3624		 * Forcibly unmounting "/dev" before "/" would prevent clean
3625		 * unmount of the latter.
3626		 */
3627		if (mp == rootdevmp)
3628			continue;
3629
3630		unmount_or_warn(mp);
3631	}
3632
3633	if (rootdevmp != NULL)
3634		unmount_or_warn(rootdevmp);
3635}
3636
3637/*
3638 * perform msync on all vnodes under a mount point
3639 * the mount point must be locked.
3640 */
3641void
3642vfs_msync(struct mount *mp, int flags)
3643{
3644	struct vnode *vp, *mvp;
3645	struct vm_object *obj;
3646
3647	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
3648	MNT_VNODE_FOREACH_ACTIVE(vp, mp, mvp) {
3649		obj = vp->v_object;
3650		if (obj != NULL && (obj->flags & OBJ_MIGHTBEDIRTY) != 0 &&
3651		    (flags == MNT_WAIT || VOP_ISLOCKED(vp) == 0)) {
3652			if (!vget(vp,
3653			    LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
3654			    curthread)) {
3655				if (vp->v_vflag & VV_NOSYNC) {	/* unlinked */
3656					vput(vp);
3657					continue;
3658				}
3659
3660				obj = vp->v_object;
3661				if (obj != NULL) {
3662					VM_OBJECT_WLOCK(obj);
3663					vm_object_page_clean(obj, 0, 0,
3664					    flags == MNT_WAIT ?
3665					    OBJPC_SYNC : OBJPC_NOSYNC);
3666					VM_OBJECT_WUNLOCK(obj);
3667				}
3668				vput(vp);
3669			}
3670		} else
3671			VI_UNLOCK(vp);
3672	}
3673}
3674
3675static void
3676destroy_vpollinfo_free(struct vpollinfo *vi)
3677{
3678
3679	knlist_destroy(&vi->vpi_selinfo.si_note);
3680	mtx_destroy(&vi->vpi_lock);
3681	uma_zfree(vnodepoll_zone, vi);
3682}
3683
3684static void
3685destroy_vpollinfo(struct vpollinfo *vi)
3686{
3687
3688	knlist_clear(&vi->vpi_selinfo.si_note, 1);
3689	seldrain(&vi->vpi_selinfo);
3690	destroy_vpollinfo_free(vi);
3691}
3692
3693/*
3694 * Initialize per-vnode helper structure to hold poll-related state.
3695 */
3696void
3697v_addpollinfo(struct vnode *vp)
3698{
3699	struct vpollinfo *vi;
3700
3701	if (vp->v_pollinfo != NULL)
3702		return;
3703	vi = uma_zalloc(vnodepoll_zone, M_WAITOK);
3704	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
3705	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
3706	    vfs_knlunlock, vfs_knl_assert_locked, vfs_knl_assert_unlocked);
3707	VI_LOCK(vp);
3708	if (vp->v_pollinfo != NULL) {
3709		VI_UNLOCK(vp);
3710		destroy_vpollinfo_free(vi);
3711		return;
3712	}
3713	vp->v_pollinfo = vi;
3714	VI_UNLOCK(vp);
3715}
3716
3717/*
3718 * Record a process's interest in events which might happen to
3719 * a vnode.  Because poll uses the historic select-style interface
3720 * internally, this routine serves as both the ``check for any
3721 * pending events'' and the ``record my interest in future events''
3722 * functions.  (These are done together, while the lock is held,
3723 * to avoid race conditions.)
3724 */
3725int
3726vn_pollrecord(struct vnode *vp, struct thread *td, int events)
3727{
3728
3729	v_addpollinfo(vp);
3730	mtx_lock(&vp->v_pollinfo->vpi_lock);
3731	if (vp->v_pollinfo->vpi_revents & events) {
3732		/*
3733		 * This leaves events we are not interested
3734		 * in available for the other process which
3735		 * which presumably had requested them
3736		 * (otherwise they would never have been
3737		 * recorded).
3738		 */
3739		events &= vp->v_pollinfo->vpi_revents;
3740		vp->v_pollinfo->vpi_revents &= ~events;
3741
3742		mtx_unlock(&vp->v_pollinfo->vpi_lock);
3743		return (events);
3744	}
3745	vp->v_pollinfo->vpi_events |= events;
3746	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
3747	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3748	return (0);
3749}
3750
3751/*
3752 * Routine to create and manage a filesystem syncer vnode.
3753 */
3754#define sync_close ((int (*)(struct  vop_close_args *))nullop)
3755static int	sync_fsync(struct  vop_fsync_args *);
3756static int	sync_inactive(struct  vop_inactive_args *);
3757static int	sync_reclaim(struct  vop_reclaim_args *);
3758
3759static struct vop_vector sync_vnodeops = {
3760	.vop_bypass =	VOP_EOPNOTSUPP,
3761	.vop_close =	sync_close,		/* close */
3762	.vop_fsync =	sync_fsync,		/* fsync */
3763	.vop_inactive =	sync_inactive,	/* inactive */
3764	.vop_reclaim =	sync_reclaim,	/* reclaim */
3765	.vop_lock1 =	vop_stdlock,	/* lock */
3766	.vop_unlock =	vop_stdunlock,	/* unlock */
3767	.vop_islocked =	vop_stdislocked,	/* islocked */
3768};
3769
3770/*
3771 * Create a new filesystem syncer vnode for the specified mount point.
3772 */
3773void
3774vfs_allocate_syncvnode(struct mount *mp)
3775{
3776	struct vnode *vp;
3777	struct bufobj *bo;
3778	static long start, incr, next;
3779	int error;
3780
3781	/* Allocate a new vnode */
3782	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
3783	if (error != 0)
3784		panic("vfs_allocate_syncvnode: getnewvnode() failed");
3785	vp->v_type = VNON;
3786	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3787	vp->v_vflag |= VV_FORCEINSMQ;
3788	error = insmntque(vp, mp);
3789	if (error != 0)
3790		panic("vfs_allocate_syncvnode: insmntque() failed");
3791	vp->v_vflag &= ~VV_FORCEINSMQ;
3792	VOP_UNLOCK(vp, 0);
3793	/*
3794	 * Place the vnode onto the syncer worklist. We attempt to
3795	 * scatter them about on the list so that they will go off
3796	 * at evenly distributed times even if all the filesystems
3797	 * are mounted at once.
3798	 */
3799	next += incr;
3800	if (next == 0 || next > syncer_maxdelay) {
3801		start /= 2;
3802		incr /= 2;
3803		if (start == 0) {
3804			start = syncer_maxdelay / 2;
3805			incr = syncer_maxdelay;
3806		}
3807		next = start;
3808	}
3809	bo = &vp->v_bufobj;
3810	BO_LOCK(bo);
3811	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
3812	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
3813	mtx_lock(&sync_mtx);
3814	sync_vnode_count++;
3815	if (mp->mnt_syncer == NULL) {
3816		mp->mnt_syncer = vp;
3817		vp = NULL;
3818	}
3819	mtx_unlock(&sync_mtx);
3820	BO_UNLOCK(bo);
3821	if (vp != NULL) {
3822		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3823		vgone(vp);
3824		vput(vp);
3825	}
3826}
3827
3828void
3829vfs_deallocate_syncvnode(struct mount *mp)
3830{
3831	struct vnode *vp;
3832
3833	mtx_lock(&sync_mtx);
3834	vp = mp->mnt_syncer;
3835	if (vp != NULL)
3836		mp->mnt_syncer = NULL;
3837	mtx_unlock(&sync_mtx);
3838	if (vp != NULL)
3839		vrele(vp);
3840}
3841
3842/*
3843 * Do a lazy sync of the filesystem.
3844 */
3845static int
3846sync_fsync(struct vop_fsync_args *ap)
3847{
3848	struct vnode *syncvp = ap->a_vp;
3849	struct mount *mp = syncvp->v_mount;
3850	int error, save;
3851	struct bufobj *bo;
3852
3853	/*
3854	 * We only need to do something if this is a lazy evaluation.
3855	 */
3856	if (ap->a_waitfor != MNT_LAZY)
3857		return (0);
3858
3859	/*
3860	 * Move ourselves to the back of the sync list.
3861	 */
3862	bo = &syncvp->v_bufobj;
3863	BO_LOCK(bo);
3864	vn_syncer_add_to_worklist(bo, syncdelay);
3865	BO_UNLOCK(bo);
3866
3867	/*
3868	 * Walk the list of vnodes pushing all that are dirty and
3869	 * not already on the sync list.
3870	 */
3871	if (vfs_busy(mp, MBF_NOWAIT) != 0)
3872		return (0);
3873	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
3874		vfs_unbusy(mp);
3875		return (0);
3876	}
3877	save = curthread_pflags_set(TDP_SYNCIO);
3878	vfs_msync(mp, MNT_NOWAIT);
3879	error = VFS_SYNC(mp, MNT_LAZY);
3880	curthread_pflags_restore(save);
3881	vn_finished_write(mp);
3882	vfs_unbusy(mp);
3883	return (error);
3884}
3885
3886/*
3887 * The syncer vnode is no referenced.
3888 */
3889static int
3890sync_inactive(struct vop_inactive_args *ap)
3891{
3892
3893	vgone(ap->a_vp);
3894	return (0);
3895}
3896
3897/*
3898 * The syncer vnode is no longer needed and is being decommissioned.
3899 *
3900 * Modifications to the worklist must be protected by sync_mtx.
3901 */
3902static int
3903sync_reclaim(struct vop_reclaim_args *ap)
3904{
3905	struct vnode *vp = ap->a_vp;
3906	struct bufobj *bo;
3907
3908	bo = &vp->v_bufobj;
3909	BO_LOCK(bo);
3910	mtx_lock(&sync_mtx);
3911	if (vp->v_mount->mnt_syncer == vp)
3912		vp->v_mount->mnt_syncer = NULL;
3913	if (bo->bo_flag & BO_ONWORKLST) {
3914		LIST_REMOVE(bo, bo_synclist);
3915		syncer_worklist_len--;
3916		sync_vnode_count--;
3917		bo->bo_flag &= ~BO_ONWORKLST;
3918	}
3919	mtx_unlock(&sync_mtx);
3920	BO_UNLOCK(bo);
3921
3922	return (0);
3923}
3924
3925/*
3926 * Check if vnode represents a disk device
3927 */
3928int
3929vn_isdisk(struct vnode *vp, int *errp)
3930{
3931	int error;
3932
3933	if (vp->v_type != VCHR) {
3934		error = ENOTBLK;
3935		goto out;
3936	}
3937	error = 0;
3938	dev_lock();
3939	if (vp->v_rdev == NULL)
3940		error = ENXIO;
3941	else if (vp->v_rdev->si_devsw == NULL)
3942		error = ENXIO;
3943	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
3944		error = ENOTBLK;
3945	dev_unlock();
3946out:
3947	if (errp != NULL)
3948		*errp = error;
3949	return (error == 0);
3950}
3951
3952/*
3953 * Common filesystem object access control check routine.  Accepts a
3954 * vnode's type, "mode", uid and gid, requested access mode, credentials,
3955 * and optional call-by-reference privused argument allowing vaccess()
3956 * to indicate to the caller whether privilege was used to satisfy the
3957 * request (obsoleted).  Returns 0 on success, or an errno on failure.
3958 */
3959int
3960vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
3961    accmode_t accmode, struct ucred *cred, int *privused)
3962{
3963	accmode_t dac_granted;
3964	accmode_t priv_granted;
3965
3966	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
3967	    ("invalid bit in accmode"));
3968	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
3969	    ("VAPPEND without VWRITE"));
3970
3971	/*
3972	 * Look for a normal, non-privileged way to access the file/directory
3973	 * as requested.  If it exists, go with that.
3974	 */
3975
3976	if (privused != NULL)
3977		*privused = 0;
3978
3979	dac_granted = 0;
3980
3981	/* Check the owner. */
3982	if (cred->cr_uid == file_uid) {
3983		dac_granted |= VADMIN;
3984		if (file_mode & S_IXUSR)
3985			dac_granted |= VEXEC;
3986		if (file_mode & S_IRUSR)
3987			dac_granted |= VREAD;
3988		if (file_mode & S_IWUSR)
3989			dac_granted |= (VWRITE | VAPPEND);
3990
3991		if ((accmode & dac_granted) == accmode)
3992			return (0);
3993
3994		goto privcheck;
3995	}
3996
3997	/* Otherwise, check the groups (first match) */
3998	if (groupmember(file_gid, cred)) {
3999		if (file_mode & S_IXGRP)
4000			dac_granted |= VEXEC;
4001		if (file_mode & S_IRGRP)
4002			dac_granted |= VREAD;
4003		if (file_mode & S_IWGRP)
4004			dac_granted |= (VWRITE | VAPPEND);
4005
4006		if ((accmode & dac_granted) == accmode)
4007			return (0);
4008
4009		goto privcheck;
4010	}
4011
4012	/* Otherwise, check everyone else. */
4013	if (file_mode & S_IXOTH)
4014		dac_granted |= VEXEC;
4015	if (file_mode & S_IROTH)
4016		dac_granted |= VREAD;
4017	if (file_mode & S_IWOTH)
4018		dac_granted |= (VWRITE | VAPPEND);
4019	if ((accmode & dac_granted) == accmode)
4020		return (0);
4021
4022privcheck:
4023	/*
4024	 * Build a privilege mask to determine if the set of privileges
4025	 * satisfies the requirements when combined with the granted mask
4026	 * from above.  For each privilege, if the privilege is required,
4027	 * bitwise or the request type onto the priv_granted mask.
4028	 */
4029	priv_granted = 0;
4030
4031	if (type == VDIR) {
4032		/*
4033		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
4034		 * requests, instead of PRIV_VFS_EXEC.
4035		 */
4036		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
4037		    !priv_check_cred(cred, PRIV_VFS_LOOKUP, 0))
4038			priv_granted |= VEXEC;
4039	} else {
4040		/*
4041		 * Ensure that at least one execute bit is on. Otherwise,
4042		 * a privileged user will always succeed, and we don't want
4043		 * this to happen unless the file really is executable.
4044		 */
4045		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
4046		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
4047		    !priv_check_cred(cred, PRIV_VFS_EXEC, 0))
4048			priv_granted |= VEXEC;
4049	}
4050
4051	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
4052	    !priv_check_cred(cred, PRIV_VFS_READ, 0))
4053		priv_granted |= VREAD;
4054
4055	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
4056	    !priv_check_cred(cred, PRIV_VFS_WRITE, 0))
4057		priv_granted |= (VWRITE | VAPPEND);
4058
4059	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
4060	    !priv_check_cred(cred, PRIV_VFS_ADMIN, 0))
4061		priv_granted |= VADMIN;
4062
4063	if ((accmode & (priv_granted | dac_granted)) == accmode) {
4064		/* XXX audit: privilege used */
4065		if (privused != NULL)
4066			*privused = 1;
4067		return (0);
4068	}
4069
4070	return ((accmode & VADMIN) ? EPERM : EACCES);
4071}
4072
4073/*
4074 * Credential check based on process requesting service, and per-attribute
4075 * permissions.
4076 */
4077int
4078extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
4079    struct thread *td, accmode_t accmode)
4080{
4081
4082	/*
4083	 * Kernel-invoked always succeeds.
4084	 */
4085	if (cred == NOCRED)
4086		return (0);
4087
4088	/*
4089	 * Do not allow privileged processes in jail to directly manipulate
4090	 * system attributes.
4091	 */
4092	switch (attrnamespace) {
4093	case EXTATTR_NAMESPACE_SYSTEM:
4094		/* Potentially should be: return (EPERM); */
4095		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM, 0));
4096	case EXTATTR_NAMESPACE_USER:
4097		return (VOP_ACCESS(vp, accmode, cred, td));
4098	default:
4099		return (EPERM);
4100	}
4101}
4102
4103#ifdef DEBUG_VFS_LOCKS
4104/*
4105 * This only exists to suppress warnings from unlocked specfs accesses.  It is
4106 * no longer ok to have an unlocked VFS.
4107 */
4108#define	IGNORE_LOCK(vp) (panicstr != NULL || (vp) == NULL ||		\
4109	(vp)->v_type == VCHR ||	(vp)->v_type == VBAD)
4110
4111int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
4112SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
4113    "Drop into debugger on lock violation");
4114
4115int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
4116SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
4117    0, "Check for interlock across VOPs");
4118
4119int vfs_badlock_print = 1;	/* Print lock violations. */
4120SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
4121    0, "Print lock violations");
4122
4123#ifdef KDB
4124int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
4125SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
4126    &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
4127#endif
4128
4129static void
4130vfs_badlock(const char *msg, const char *str, struct vnode *vp)
4131{
4132
4133#ifdef KDB
4134	if (vfs_badlock_backtrace)
4135		kdb_backtrace();
4136#endif
4137	if (vfs_badlock_print)
4138		printf("%s: %p %s\n", str, (void *)vp, msg);
4139	if (vfs_badlock_ddb)
4140		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
4141}
4142
4143void
4144assert_vi_locked(struct vnode *vp, const char *str)
4145{
4146
4147	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
4148		vfs_badlock("interlock is not locked but should be", str, vp);
4149}
4150
4151void
4152assert_vi_unlocked(struct vnode *vp, const char *str)
4153{
4154
4155	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
4156		vfs_badlock("interlock is locked but should not be", str, vp);
4157}
4158
4159void
4160assert_vop_locked(struct vnode *vp, const char *str)
4161{
4162	int locked;
4163
4164	if (!IGNORE_LOCK(vp)) {
4165		locked = VOP_ISLOCKED(vp);
4166		if (locked == 0 || locked == LK_EXCLOTHER)
4167			vfs_badlock("is not locked but should be", str, vp);
4168	}
4169}
4170
4171void
4172assert_vop_unlocked(struct vnode *vp, const char *str)
4173{
4174
4175	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
4176		vfs_badlock("is locked but should not be", str, vp);
4177}
4178
4179void
4180assert_vop_elocked(struct vnode *vp, const char *str)
4181{
4182
4183	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
4184		vfs_badlock("is not exclusive locked but should be", str, vp);
4185}
4186
4187#if 0
4188void
4189assert_vop_elocked_other(struct vnode *vp, const char *str)
4190{
4191
4192	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLOTHER)
4193		vfs_badlock("is not exclusive locked by another thread",
4194		    str, vp);
4195}
4196
4197void
4198assert_vop_slocked(struct vnode *vp, const char *str)
4199{
4200
4201	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_SHARED)
4202		vfs_badlock("is not locked shared but should be", str, vp);
4203}
4204#endif /* 0 */
4205#endif /* DEBUG_VFS_LOCKS */
4206
4207void
4208vop_rename_fail(struct vop_rename_args *ap)
4209{
4210
4211	if (ap->a_tvp != NULL)
4212		vput(ap->a_tvp);
4213	if (ap->a_tdvp == ap->a_tvp)
4214		vrele(ap->a_tdvp);
4215	else
4216		vput(ap->a_tdvp);
4217	vrele(ap->a_fdvp);
4218	vrele(ap->a_fvp);
4219}
4220
4221void
4222vop_rename_pre(void *ap)
4223{
4224	struct vop_rename_args *a = ap;
4225
4226#ifdef DEBUG_VFS_LOCKS
4227	if (a->a_tvp)
4228		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
4229	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
4230	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
4231	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
4232
4233	/* Check the source (from). */
4234	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
4235	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
4236		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
4237	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
4238		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
4239
4240	/* Check the target. */
4241	if (a->a_tvp)
4242		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
4243	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
4244#endif
4245	if (a->a_tdvp != a->a_fdvp)
4246		vhold(a->a_fdvp);
4247	if (a->a_tvp != a->a_fvp)
4248		vhold(a->a_fvp);
4249	vhold(a->a_tdvp);
4250	if (a->a_tvp)
4251		vhold(a->a_tvp);
4252}
4253
4254void
4255vop_strategy_pre(void *ap)
4256{
4257#ifdef DEBUG_VFS_LOCKS
4258	struct vop_strategy_args *a;
4259	struct buf *bp;
4260
4261	a = ap;
4262	bp = a->a_bp;
4263
4264	/*
4265	 * Cluster ops lock their component buffers but not the IO container.
4266	 */
4267	if ((bp->b_flags & B_CLUSTER) != 0)
4268		return;
4269
4270	if (panicstr == NULL && !BUF_ISLOCKED(bp)) {
4271		if (vfs_badlock_print)
4272			printf(
4273			    "VOP_STRATEGY: bp is not locked but should be\n");
4274		if (vfs_badlock_ddb)
4275			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
4276	}
4277#endif
4278}
4279
4280void
4281vop_lock_pre(void *ap)
4282{
4283#ifdef DEBUG_VFS_LOCKS
4284	struct vop_lock1_args *a = ap;
4285
4286	if ((a->a_flags & LK_INTERLOCK) == 0)
4287		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
4288	else
4289		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
4290#endif
4291}
4292
4293void
4294vop_lock_post(void *ap, int rc)
4295{
4296#ifdef DEBUG_VFS_LOCKS
4297	struct vop_lock1_args *a = ap;
4298
4299	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
4300	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
4301		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
4302#endif
4303}
4304
4305void
4306vop_unlock_pre(void *ap)
4307{
4308#ifdef DEBUG_VFS_LOCKS
4309	struct vop_unlock_args *a = ap;
4310
4311	if (a->a_flags & LK_INTERLOCK)
4312		ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK");
4313	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
4314#endif
4315}
4316
4317void
4318vop_unlock_post(void *ap, int rc)
4319{
4320#ifdef DEBUG_VFS_LOCKS
4321	struct vop_unlock_args *a = ap;
4322
4323	if (a->a_flags & LK_INTERLOCK)
4324		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK");
4325#endif
4326}
4327
4328void
4329vop_create_post(void *ap, int rc)
4330{
4331	struct vop_create_args *a = ap;
4332
4333	if (!rc)
4334		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4335}
4336
4337void
4338vop_deleteextattr_post(void *ap, int rc)
4339{
4340	struct vop_deleteextattr_args *a = ap;
4341
4342	if (!rc)
4343		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
4344}
4345
4346void
4347vop_link_post(void *ap, int rc)
4348{
4349	struct vop_link_args *a = ap;
4350
4351	if (!rc) {
4352		VFS_KNOTE_LOCKED(a->a_vp, NOTE_LINK);
4353		VFS_KNOTE_LOCKED(a->a_tdvp, NOTE_WRITE);
4354	}
4355}
4356
4357void
4358vop_mkdir_post(void *ap, int rc)
4359{
4360	struct vop_mkdir_args *a = ap;
4361
4362	if (!rc)
4363		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
4364}
4365
4366void
4367vop_mknod_post(void *ap, int rc)
4368{
4369	struct vop_mknod_args *a = ap;
4370
4371	if (!rc)
4372		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4373}
4374
4375void
4376vop_reclaim_post(void *ap, int rc)
4377{
4378	struct vop_reclaim_args *a = ap;
4379
4380	if (!rc)
4381		VFS_KNOTE_LOCKED(a->a_vp, NOTE_REVOKE);
4382}
4383
4384void
4385vop_remove_post(void *ap, int rc)
4386{
4387	struct vop_remove_args *a = ap;
4388
4389	if (!rc) {
4390		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4391		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
4392	}
4393}
4394
4395void
4396vop_rename_post(void *ap, int rc)
4397{
4398	struct vop_rename_args *a = ap;
4399	long hint;
4400
4401	if (!rc) {
4402		hint = NOTE_WRITE;
4403		if (a->a_fdvp == a->a_tdvp) {
4404			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
4405				hint |= NOTE_LINK;
4406			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
4407			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
4408		} else {
4409			hint |= NOTE_EXTEND;
4410			if (a->a_fvp->v_type == VDIR)
4411				hint |= NOTE_LINK;
4412			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
4413
4414			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
4415			    a->a_tvp->v_type == VDIR)
4416				hint &= ~NOTE_LINK;
4417			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
4418		}
4419
4420		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
4421		if (a->a_tvp)
4422			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
4423	}
4424	if (a->a_tdvp != a->a_fdvp)
4425		vdrop(a->a_fdvp);
4426	if (a->a_tvp != a->a_fvp)
4427		vdrop(a->a_fvp);
4428	vdrop(a->a_tdvp);
4429	if (a->a_tvp)
4430		vdrop(a->a_tvp);
4431}
4432
4433void
4434vop_rmdir_post(void *ap, int rc)
4435{
4436	struct vop_rmdir_args *a = ap;
4437
4438	if (!rc) {
4439		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
4440		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
4441	}
4442}
4443
4444void
4445vop_setattr_post(void *ap, int rc)
4446{
4447	struct vop_setattr_args *a = ap;
4448
4449	if (!rc)
4450		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
4451}
4452
4453void
4454vop_setextattr_post(void *ap, int rc)
4455{
4456	struct vop_setextattr_args *a = ap;
4457
4458	if (!rc)
4459		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
4460}
4461
4462void
4463vop_symlink_post(void *ap, int rc)
4464{
4465	struct vop_symlink_args *a = ap;
4466
4467	if (!rc)
4468		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4469}
4470
4471void
4472vop_open_post(void *ap, int rc)
4473{
4474	struct vop_open_args *a = ap;
4475
4476	if (!rc)
4477		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
4478}
4479
4480void
4481vop_close_post(void *ap, int rc)
4482{
4483	struct vop_close_args *a = ap;
4484
4485	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
4486	    (a->a_vp->v_iflag & VI_DOOMED) == 0)) {
4487		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
4488		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
4489	}
4490}
4491
4492void
4493vop_read_post(void *ap, int rc)
4494{
4495	struct vop_read_args *a = ap;
4496
4497	if (!rc)
4498		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
4499}
4500
4501void
4502vop_readdir_post(void *ap, int rc)
4503{
4504	struct vop_readdir_args *a = ap;
4505
4506	if (!rc)
4507		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
4508}
4509
4510static struct knlist fs_knlist;
4511
4512static void
4513vfs_event_init(void *arg)
4514{
4515	knlist_init_mtx(&fs_knlist, NULL);
4516}
4517/* XXX - correct order? */
4518SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
4519
4520void
4521vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
4522{
4523
4524	KNOTE_UNLOCKED(&fs_knlist, event);
4525}
4526
4527static int	filt_fsattach(struct knote *kn);
4528static void	filt_fsdetach(struct knote *kn);
4529static int	filt_fsevent(struct knote *kn, long hint);
4530
4531struct filterops fs_filtops = {
4532	.f_isfd = 0,
4533	.f_attach = filt_fsattach,
4534	.f_detach = filt_fsdetach,
4535	.f_event = filt_fsevent
4536};
4537
4538static int
4539filt_fsattach(struct knote *kn)
4540{
4541
4542	kn->kn_flags |= EV_CLEAR;
4543	knlist_add(&fs_knlist, kn, 0);
4544	return (0);
4545}
4546
4547static void
4548filt_fsdetach(struct knote *kn)
4549{
4550
4551	knlist_remove(&fs_knlist, kn, 0);
4552}
4553
4554static int
4555filt_fsevent(struct knote *kn, long hint)
4556{
4557
4558	kn->kn_fflags |= hint;
4559	return (kn->kn_fflags != 0);
4560}
4561
4562static int
4563sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
4564{
4565	struct vfsidctl vc;
4566	int error;
4567	struct mount *mp;
4568
4569	error = SYSCTL_IN(req, &vc, sizeof(vc));
4570	if (error)
4571		return (error);
4572	if (vc.vc_vers != VFS_CTL_VERS1)
4573		return (EINVAL);
4574	mp = vfs_getvfs(&vc.vc_fsid);
4575	if (mp == NULL)
4576		return (ENOENT);
4577	/* ensure that a specific sysctl goes to the right filesystem. */
4578	if (strcmp(vc.vc_fstypename, "*") != 0 &&
4579	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
4580		vfs_rel(mp);
4581		return (EINVAL);
4582	}
4583	VCTLTOREQ(&vc, req);
4584	error = VFS_SYSCTL(mp, vc.vc_op, req);
4585	vfs_rel(mp);
4586	return (error);
4587}
4588
4589SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_WR,
4590    NULL, 0, sysctl_vfs_ctl, "",
4591    "Sysctl by fsid");
4592
4593/*
4594 * Function to initialize a va_filerev field sensibly.
4595 * XXX: Wouldn't a random number make a lot more sense ??
4596 */
4597u_quad_t
4598init_va_filerev(void)
4599{
4600	struct bintime bt;
4601
4602	getbinuptime(&bt);
4603	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
4604}
4605
4606static int	filt_vfsread(struct knote *kn, long hint);
4607static int	filt_vfswrite(struct knote *kn, long hint);
4608static int	filt_vfsvnode(struct knote *kn, long hint);
4609static void	filt_vfsdetach(struct knote *kn);
4610static struct filterops vfsread_filtops = {
4611	.f_isfd = 1,
4612	.f_detach = filt_vfsdetach,
4613	.f_event = filt_vfsread
4614};
4615static struct filterops vfswrite_filtops = {
4616	.f_isfd = 1,
4617	.f_detach = filt_vfsdetach,
4618	.f_event = filt_vfswrite
4619};
4620static struct filterops vfsvnode_filtops = {
4621	.f_isfd = 1,
4622	.f_detach = filt_vfsdetach,
4623	.f_event = filt_vfsvnode
4624};
4625
4626static void
4627vfs_knllock(void *arg)
4628{
4629	struct vnode *vp = arg;
4630
4631	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4632}
4633
4634static void
4635vfs_knlunlock(void *arg)
4636{
4637	struct vnode *vp = arg;
4638
4639	VOP_UNLOCK(vp, 0);
4640}
4641
4642static void
4643vfs_knl_assert_locked(void *arg)
4644{
4645#ifdef DEBUG_VFS_LOCKS
4646	struct vnode *vp = arg;
4647
4648	ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
4649#endif
4650}
4651
4652static void
4653vfs_knl_assert_unlocked(void *arg)
4654{
4655#ifdef DEBUG_VFS_LOCKS
4656	struct vnode *vp = arg;
4657
4658	ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
4659#endif
4660}
4661
4662int
4663vfs_kqfilter(struct vop_kqfilter_args *ap)
4664{
4665	struct vnode *vp = ap->a_vp;
4666	struct knote *kn = ap->a_kn;
4667	struct knlist *knl;
4668
4669	switch (kn->kn_filter) {
4670	case EVFILT_READ:
4671		kn->kn_fop = &vfsread_filtops;
4672		break;
4673	case EVFILT_WRITE:
4674		kn->kn_fop = &vfswrite_filtops;
4675		break;
4676	case EVFILT_VNODE:
4677		kn->kn_fop = &vfsvnode_filtops;
4678		break;
4679	default:
4680		return (EINVAL);
4681	}
4682
4683	kn->kn_hook = (caddr_t)vp;
4684
4685	v_addpollinfo(vp);
4686	if (vp->v_pollinfo == NULL)
4687		return (ENOMEM);
4688	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
4689	vhold(vp);
4690	knlist_add(knl, kn, 0);
4691
4692	return (0);
4693}
4694
4695/*
4696 * Detach knote from vnode
4697 */
4698static void
4699filt_vfsdetach(struct knote *kn)
4700{
4701	struct vnode *vp = (struct vnode *)kn->kn_hook;
4702
4703	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
4704	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
4705	vdrop(vp);
4706}
4707
4708/*ARGSUSED*/
4709static int
4710filt_vfsread(struct knote *kn, long hint)
4711{
4712	struct vnode *vp = (struct vnode *)kn->kn_hook;
4713	struct vattr va;
4714	int res;
4715
4716	/*
4717	 * filesystem is gone, so set the EOF flag and schedule
4718	 * the knote for deletion.
4719	 */
4720	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
4721		VI_LOCK(vp);
4722		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
4723		VI_UNLOCK(vp);
4724		return (1);
4725	}
4726
4727	if (VOP_GETATTR(vp, &va, curthread->td_ucred))
4728		return (0);
4729
4730	VI_LOCK(vp);
4731	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
4732	res = (kn->kn_data != 0);
4733	VI_UNLOCK(vp);
4734	return (res);
4735}
4736
4737/*ARGSUSED*/
4738static int
4739filt_vfswrite(struct knote *kn, long hint)
4740{
4741	struct vnode *vp = (struct vnode *)kn->kn_hook;
4742
4743	VI_LOCK(vp);
4744
4745	/*
4746	 * filesystem is gone, so set the EOF flag and schedule
4747	 * the knote for deletion.
4748	 */
4749	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
4750		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
4751
4752	kn->kn_data = 0;
4753	VI_UNLOCK(vp);
4754	return (1);
4755}
4756
4757static int
4758filt_vfsvnode(struct knote *kn, long hint)
4759{
4760	struct vnode *vp = (struct vnode *)kn->kn_hook;
4761	int res;
4762
4763	VI_LOCK(vp);
4764	if (kn->kn_sfflags & hint)
4765		kn->kn_fflags |= hint;
4766	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
4767		kn->kn_flags |= EV_EOF;
4768		VI_UNLOCK(vp);
4769		return (1);
4770	}
4771	res = (kn->kn_fflags != 0);
4772	VI_UNLOCK(vp);
4773	return (res);
4774}
4775
4776int
4777vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
4778{
4779	int error;
4780
4781	if (dp->d_reclen > ap->a_uio->uio_resid)
4782		return (ENAMETOOLONG);
4783	error = uiomove(dp, dp->d_reclen, ap->a_uio);
4784	if (error) {
4785		if (ap->a_ncookies != NULL) {
4786			if (ap->a_cookies != NULL)
4787				free(ap->a_cookies, M_TEMP);
4788			ap->a_cookies = NULL;
4789			*ap->a_ncookies = 0;
4790		}
4791		return (error);
4792	}
4793	if (ap->a_ncookies == NULL)
4794		return (0);
4795
4796	KASSERT(ap->a_cookies,
4797	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
4798
4799	*ap->a_cookies = realloc(*ap->a_cookies,
4800	    (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
4801	(*ap->a_cookies)[*ap->a_ncookies] = off;
4802	*ap->a_ncookies += 1;
4803	return (0);
4804}
4805
4806/*
4807 * Mark for update the access time of the file if the filesystem
4808 * supports VOP_MARKATIME.  This functionality is used by execve and
4809 * mmap, so we want to avoid the I/O implied by directly setting
4810 * va_atime for the sake of efficiency.
4811 */
4812void
4813vfs_mark_atime(struct vnode *vp, struct ucred *cred)
4814{
4815	struct mount *mp;
4816
4817	mp = vp->v_mount;
4818	ASSERT_VOP_LOCKED(vp, "vfs_mark_atime");
4819	if (mp != NULL && (mp->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0)
4820		(void)VOP_MARKATIME(vp);
4821}
4822
4823/*
4824 * The purpose of this routine is to remove granularity from accmode_t,
4825 * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
4826 * VADMIN and VAPPEND.
4827 *
4828 * If it returns 0, the caller is supposed to continue with the usual
4829 * access checks using 'accmode' as modified by this routine.  If it
4830 * returns nonzero value, the caller is supposed to return that value
4831 * as errno.
4832 *
4833 * Note that after this routine runs, accmode may be zero.
4834 */
4835int
4836vfs_unixify_accmode(accmode_t *accmode)
4837{
4838	/*
4839	 * There is no way to specify explicit "deny" rule using
4840	 * file mode or POSIX.1e ACLs.
4841	 */
4842	if (*accmode & VEXPLICIT_DENY) {
4843		*accmode = 0;
4844		return (0);
4845	}
4846
4847	/*
4848	 * None of these can be translated into usual access bits.
4849	 * Also, the common case for NFSv4 ACLs is to not contain
4850	 * either of these bits. Caller should check for VWRITE
4851	 * on the containing directory instead.
4852	 */
4853	if (*accmode & (VDELETE_CHILD | VDELETE))
4854		return (EPERM);
4855
4856	if (*accmode & VADMIN_PERMS) {
4857		*accmode &= ~VADMIN_PERMS;
4858		*accmode |= VADMIN;
4859	}
4860
4861	/*
4862	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
4863	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
4864	 */
4865	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
4866
4867	return (0);
4868}
4869
4870/*
4871 * These are helper functions for filesystems to traverse all
4872 * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
4873 *
4874 * This interface replaces MNT_VNODE_FOREACH.
4875 */
4876
4877MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
4878
4879struct vnode *
4880__mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
4881{
4882	struct vnode *vp;
4883
4884	if (should_yield())
4885		kern_yield(PRI_USER);
4886	MNT_ILOCK(mp);
4887	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
4888	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
4889	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
4890		/* Allow a racy peek at VI_DOOMED to save a lock acquisition. */
4891		if (vp->v_type == VMARKER || (vp->v_iflag & VI_DOOMED) != 0)
4892			continue;
4893		VI_LOCK(vp);
4894		if ((vp->v_iflag & VI_DOOMED) != 0) {
4895			VI_UNLOCK(vp);
4896			continue;
4897		}
4898		break;
4899	}
4900	if (vp == NULL) {
4901		__mnt_vnode_markerfree_all(mvp, mp);
4902		/* MNT_IUNLOCK(mp); -- done in above function */
4903		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
4904		return (NULL);
4905	}
4906	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
4907	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
4908	MNT_IUNLOCK(mp);
4909	return (vp);
4910}
4911
4912struct vnode *
4913__mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
4914{
4915	struct vnode *vp;
4916
4917	*mvp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
4918	MNT_ILOCK(mp);
4919	MNT_REF(mp);
4920	(*mvp)->v_mount = mp;
4921	(*mvp)->v_type = VMARKER;
4922
4923	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4924		/* Allow a racy peek at VI_DOOMED to save a lock acquisition. */
4925		if (vp->v_type == VMARKER || (vp->v_iflag & VI_DOOMED) != 0)
4926			continue;
4927		VI_LOCK(vp);
4928		if ((vp->v_iflag & VI_DOOMED) != 0) {
4929			VI_UNLOCK(vp);
4930			continue;
4931		}
4932		break;
4933	}
4934	if (vp == NULL) {
4935		MNT_REL(mp);
4936		MNT_IUNLOCK(mp);
4937		free(*mvp, M_VNODE_MARKER);
4938		*mvp = NULL;
4939		return (NULL);
4940	}
4941	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
4942	MNT_IUNLOCK(mp);
4943	return (vp);
4944}
4945
4946void
4947__mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
4948{
4949
4950	if (*mvp == NULL) {
4951		MNT_IUNLOCK(mp);
4952		return;
4953	}
4954
4955	mtx_assert(MNT_MTX(mp), MA_OWNED);
4956
4957	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
4958	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
4959	MNT_REL(mp);
4960	MNT_IUNLOCK(mp);
4961	free(*mvp, M_VNODE_MARKER);
4962	*mvp = NULL;
4963}
4964
4965/*
4966 * These are helper functions for filesystems to traverse their
4967 * active vnodes.  See MNT_VNODE_FOREACH_ACTIVE() in sys/mount.h
4968 */
4969static void
4970mnt_vnode_markerfree_active(struct vnode **mvp, struct mount *mp)
4971{
4972
4973	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
4974
4975	MNT_ILOCK(mp);
4976	MNT_REL(mp);
4977	MNT_IUNLOCK(mp);
4978	free(*mvp, M_VNODE_MARKER);
4979	*mvp = NULL;
4980}
4981
4982static struct vnode *
4983mnt_vnode_next_active(struct vnode **mvp, struct mount *mp)
4984{
4985	struct vnode *vp, *nvp;
4986
4987	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
4988	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
4989restart:
4990	vp = TAILQ_NEXT(*mvp, v_actfreelist);
4991	TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist);
4992	while (vp != NULL) {
4993		if (vp->v_type == VMARKER) {
4994			vp = TAILQ_NEXT(vp, v_actfreelist);
4995			continue;
4996		}
4997		if (!VI_TRYLOCK(vp)) {
4998			if (mp_ncpus == 1 || should_yield()) {
4999				TAILQ_INSERT_BEFORE(vp, *mvp, v_actfreelist);
5000				mtx_unlock(&vnode_free_list_mtx);
5001				pause("vnacti", 1);
5002				mtx_lock(&vnode_free_list_mtx);
5003				goto restart;
5004			}
5005			continue;
5006		}
5007		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
5008		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
5009		    ("alien vnode on the active list %p %p", vp, mp));
5010		if (vp->v_mount == mp && (vp->v_iflag & VI_DOOMED) == 0)
5011			break;
5012		nvp = TAILQ_NEXT(vp, v_actfreelist);
5013		VI_UNLOCK(vp);
5014		vp = nvp;
5015	}
5016
5017	/* Check if we are done */
5018	if (vp == NULL) {
5019		mtx_unlock(&vnode_free_list_mtx);
5020		mnt_vnode_markerfree_active(mvp, mp);
5021		return (NULL);
5022	}
5023	TAILQ_INSERT_AFTER(&mp->mnt_activevnodelist, vp, *mvp, v_actfreelist);
5024	mtx_unlock(&vnode_free_list_mtx);
5025	ASSERT_VI_LOCKED(vp, "active iter");
5026	KASSERT((vp->v_iflag & VI_ACTIVE) != 0, ("Non-active vp %p", vp));
5027	return (vp);
5028}
5029
5030struct vnode *
5031__mnt_vnode_next_active(struct vnode **mvp, struct mount *mp)
5032{
5033
5034	if (should_yield())
5035		kern_yield(PRI_USER);
5036	mtx_lock(&vnode_free_list_mtx);
5037	return (mnt_vnode_next_active(mvp, mp));
5038}
5039
5040struct vnode *
5041__mnt_vnode_first_active(struct vnode **mvp, struct mount *mp)
5042{
5043	struct vnode *vp;
5044
5045	*mvp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
5046	MNT_ILOCK(mp);
5047	MNT_REF(mp);
5048	MNT_IUNLOCK(mp);
5049	(*mvp)->v_type = VMARKER;
5050	(*mvp)->v_mount = mp;
5051
5052	mtx_lock(&vnode_free_list_mtx);
5053	vp = TAILQ_FIRST(&mp->mnt_activevnodelist);
5054	if (vp == NULL) {
5055		mtx_unlock(&vnode_free_list_mtx);
5056		mnt_vnode_markerfree_active(mvp, mp);
5057		return (NULL);
5058	}
5059	TAILQ_INSERT_BEFORE(vp, *mvp, v_actfreelist);
5060	return (mnt_vnode_next_active(mvp, mp));
5061}
5062
5063void
5064__mnt_vnode_markerfree_active(struct vnode **mvp, struct mount *mp)
5065{
5066
5067	if (*mvp == NULL)
5068		return;
5069
5070	mtx_lock(&vnode_free_list_mtx);
5071	TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist);
5072	mtx_unlock(&vnode_free_list_mtx);
5073	mnt_vnode_markerfree_active(mvp, mp);
5074}
5075