1/*-
2 * Copyright (c) 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * Modifications/enhancements:
5 * 	Copyright (c) 1995 John S. Dyson.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	@(#)vfs_cluster.c	8.7 (Berkeley) 2/13/94
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD$");
36
37#include "opt_debug_cluster.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/kernel.h>
42#include <sys/proc.h>
43#include <sys/bio.h>
44#include <sys/buf.h>
45#include <sys/vnode.h>
46#include <sys/malloc.h>
47#include <sys/mount.h>
48#include <sys/resourcevar.h>
49#include <sys/rwlock.h>
50#include <sys/vmmeter.h>
51#include <vm/vm.h>
52#include <vm/vm_object.h>
53#include <vm/vm_page.h>
54#include <sys/sysctl.h>
55
56#if defined(CLUSTERDEBUG)
57static int	rcluster= 0;
58SYSCTL_INT(_debug, OID_AUTO, rcluster, CTLFLAG_RW, &rcluster, 0,
59    "Debug VFS clustering code");
60#endif
61
62static MALLOC_DEFINE(M_SEGMENT, "cl_savebuf", "cluster_save buffer");
63
64static struct cluster_save *cluster_collectbufs(struct vnode *vp,
65	    struct buf *last_bp, int gbflags);
66static struct buf *cluster_rbuild(struct vnode *vp, u_quad_t filesize,
67	    daddr_t lbn, daddr_t blkno, long size, int run, int gbflags,
68	    struct buf *fbp);
69static void cluster_callback(struct buf *);
70
71static int write_behind = 1;
72SYSCTL_INT(_vfs, OID_AUTO, write_behind, CTLFLAG_RW, &write_behind, 0,
73    "Cluster write-behind; 0: disable, 1: enable, 2: backed off");
74
75static int read_max = 64;
76SYSCTL_INT(_vfs, OID_AUTO, read_max, CTLFLAG_RW, &read_max, 0,
77    "Cluster read-ahead max block count");
78
79static int read_min = 1;
80SYSCTL_INT(_vfs, OID_AUTO, read_min, CTLFLAG_RW, &read_min, 0,
81    "Cluster read min block count");
82
83/* Page expended to mark partially backed buffers */
84extern vm_page_t	bogus_page;
85
86/*
87 * Read data to a buf, including read-ahead if we find this to be beneficial.
88 * cluster_read replaces bread.
89 */
90int
91cluster_read(struct vnode *vp, u_quad_t filesize, daddr_t lblkno, long size,
92    struct ucred *cred, long totread, int seqcount, int gbflags,
93    struct buf **bpp)
94{
95	struct buf *bp, *rbp, *reqbp;
96	struct bufobj *bo;
97	daddr_t blkno, origblkno;
98	int maxra, racluster;
99	int error, ncontig;
100	int i;
101
102	error = 0;
103	bo = &vp->v_bufobj;
104	if (!unmapped_buf_allowed)
105		gbflags &= ~GB_UNMAPPED;
106
107	/*
108	 * Try to limit the amount of read-ahead by a few
109	 * ad-hoc parameters.  This needs work!!!
110	 */
111	racluster = vp->v_mount->mnt_iosize_max / size;
112	maxra = seqcount;
113	maxra = min(read_max, maxra);
114	maxra = min(nbuf/8, maxra);
115	if (((u_quad_t)(lblkno + maxra + 1) * size) > filesize)
116		maxra = (filesize / size) - lblkno;
117
118	/*
119	 * get the requested block
120	 */
121	*bpp = reqbp = bp = getblk(vp, lblkno, size, 0, 0, gbflags);
122	origblkno = lblkno;
123
124	/*
125	 * if it is in the cache, then check to see if the reads have been
126	 * sequential.  If they have, then try some read-ahead, otherwise
127	 * back-off on prospective read-aheads.
128	 */
129	if (bp->b_flags & B_CACHE) {
130		if (!seqcount) {
131			return 0;
132		} else if ((bp->b_flags & B_RAM) == 0) {
133			return 0;
134		} else {
135			bp->b_flags &= ~B_RAM;
136			BO_RLOCK(bo);
137			for (i = 1; i < maxra; i++) {
138				/*
139				 * Stop if the buffer does not exist or it
140				 * is invalid (about to go away?)
141				 */
142				rbp = gbincore(&vp->v_bufobj, lblkno+i);
143				if (rbp == NULL || (rbp->b_flags & B_INVAL))
144					break;
145
146				/*
147				 * Set another read-ahead mark so we know
148				 * to check again. (If we can lock the
149				 * buffer without waiting)
150				 */
151				if ((((i % racluster) == (racluster - 1)) ||
152				    (i == (maxra - 1)))
153				    && (0 == BUF_LOCK(rbp,
154					LK_EXCLUSIVE | LK_NOWAIT, NULL))) {
155					rbp->b_flags |= B_RAM;
156					BUF_UNLOCK(rbp);
157				}
158			}
159			BO_RUNLOCK(bo);
160			if (i >= maxra) {
161				return 0;
162			}
163			lblkno += i;
164		}
165		reqbp = bp = NULL;
166	/*
167	 * If it isn't in the cache, then get a chunk from
168	 * disk if sequential, otherwise just get the block.
169	 */
170	} else {
171		off_t firstread = bp->b_offset;
172		int nblks;
173		long minread;
174
175		KASSERT(bp->b_offset != NOOFFSET,
176		    ("cluster_read: no buffer offset"));
177
178		ncontig = 0;
179
180		/*
181		 * Adjust totread if needed
182		 */
183		minread = read_min * size;
184		if (minread > totread)
185			totread = minread;
186
187		/*
188		 * Compute the total number of blocks that we should read
189		 * synchronously.
190		 */
191		if (firstread + totread > filesize)
192			totread = filesize - firstread;
193		nblks = howmany(totread, size);
194		if (nblks > racluster)
195			nblks = racluster;
196
197		/*
198		 * Now compute the number of contiguous blocks.
199		 */
200		if (nblks > 1) {
201	    		error = VOP_BMAP(vp, lblkno, NULL,
202				&blkno, &ncontig, NULL);
203			/*
204			 * If this failed to map just do the original block.
205			 */
206			if (error || blkno == -1)
207				ncontig = 0;
208		}
209
210		/*
211		 * If we have contiguous data available do a cluster
212		 * otherwise just read the requested block.
213		 */
214		if (ncontig) {
215			/* Account for our first block. */
216			ncontig = min(ncontig + 1, nblks);
217			if (ncontig < nblks)
218				nblks = ncontig;
219			bp = cluster_rbuild(vp, filesize, lblkno,
220			    blkno, size, nblks, gbflags, bp);
221			lblkno += (bp->b_bufsize / size);
222		} else {
223			bp->b_flags |= B_RAM;
224			bp->b_iocmd = BIO_READ;
225			lblkno += 1;
226		}
227	}
228
229	/*
230	 * handle the synchronous read so that it is available ASAP.
231	 */
232	if (bp) {
233		if ((bp->b_flags & B_CLUSTER) == 0) {
234			vfs_busy_pages(bp, 0);
235		}
236		bp->b_flags &= ~B_INVAL;
237		bp->b_ioflags &= ~BIO_ERROR;
238		if ((bp->b_flags & B_ASYNC) || bp->b_iodone != NULL)
239			BUF_KERNPROC(bp);
240		bp->b_iooffset = dbtob(bp->b_blkno);
241		bstrategy(bp);
242		curthread->td_ru.ru_inblock++;
243	}
244
245	/*
246	 * If we have been doing sequential I/O, then do some read-ahead.
247	 */
248	while (lblkno < (origblkno + maxra)) {
249		error = VOP_BMAP(vp, lblkno, NULL, &blkno, &ncontig, NULL);
250		if (error)
251			break;
252
253		if (blkno == -1)
254			break;
255
256		/*
257		 * We could throttle ncontig here by maxra but we might as
258		 * well read the data if it is contiguous.  We're throttled
259		 * by racluster anyway.
260		 */
261		if (ncontig) {
262			ncontig = min(ncontig + 1, racluster);
263			rbp = cluster_rbuild(vp, filesize, lblkno, blkno,
264			    size, ncontig, gbflags, NULL);
265			lblkno += (rbp->b_bufsize / size);
266			if (rbp->b_flags & B_DELWRI) {
267				bqrelse(rbp);
268				continue;
269			}
270		} else {
271			rbp = getblk(vp, lblkno, size, 0, 0, gbflags);
272			lblkno += 1;
273			if (rbp->b_flags & B_DELWRI) {
274				bqrelse(rbp);
275				continue;
276			}
277			rbp->b_flags |= B_ASYNC | B_RAM;
278			rbp->b_iocmd = BIO_READ;
279			rbp->b_blkno = blkno;
280		}
281		if (rbp->b_flags & B_CACHE) {
282			rbp->b_flags &= ~B_ASYNC;
283			bqrelse(rbp);
284			continue;
285		}
286		if ((rbp->b_flags & B_CLUSTER) == 0) {
287			vfs_busy_pages(rbp, 0);
288		}
289		rbp->b_flags &= ~B_INVAL;
290		rbp->b_ioflags &= ~BIO_ERROR;
291		if ((rbp->b_flags & B_ASYNC) || rbp->b_iodone != NULL)
292			BUF_KERNPROC(rbp);
293		rbp->b_iooffset = dbtob(rbp->b_blkno);
294		bstrategy(rbp);
295		curthread->td_ru.ru_inblock++;
296	}
297
298	if (reqbp)
299		return (bufwait(reqbp));
300	else
301		return (error);
302}
303
304/*
305 * If blocks are contiguous on disk, use this to provide clustered
306 * read ahead.  We will read as many blocks as possible sequentially
307 * and then parcel them up into logical blocks in the buffer hash table.
308 */
309static struct buf *
310cluster_rbuild(struct vnode *vp, u_quad_t filesize, daddr_t lbn,
311    daddr_t blkno, long size, int run, int gbflags, struct buf *fbp)
312{
313	struct buf *bp, *tbp;
314	daddr_t bn;
315	off_t off;
316	long tinc, tsize;
317	int i, inc, j, k, toff;
318
319	KASSERT(size == vp->v_mount->mnt_stat.f_iosize,
320	    ("cluster_rbuild: size %ld != f_iosize %jd\n",
321	    size, (intmax_t)vp->v_mount->mnt_stat.f_iosize));
322
323	/*
324	 * avoid a division
325	 */
326	while ((u_quad_t) size * (lbn + run) > filesize) {
327		--run;
328	}
329
330	if (fbp) {
331		tbp = fbp;
332		tbp->b_iocmd = BIO_READ;
333	} else {
334		tbp = getblk(vp, lbn, size, 0, 0, gbflags);
335		if (tbp->b_flags & B_CACHE)
336			return tbp;
337		tbp->b_flags |= B_ASYNC | B_RAM;
338		tbp->b_iocmd = BIO_READ;
339	}
340	tbp->b_blkno = blkno;
341	if( (tbp->b_flags & B_MALLOC) ||
342		((tbp->b_flags & B_VMIO) == 0) || (run <= 1) )
343		return tbp;
344
345	bp = trypbuf(&cluster_pbuf_freecnt);
346	if (bp == 0)
347		return tbp;
348
349	/*
350	 * We are synthesizing a buffer out of vm_page_t's, but
351	 * if the block size is not page aligned then the starting
352	 * address may not be either.  Inherit the b_data offset
353	 * from the original buffer.
354	 */
355	bp->b_flags = B_ASYNC | B_CLUSTER | B_VMIO;
356	if ((gbflags & GB_UNMAPPED) != 0) {
357		bp->b_flags |= B_UNMAPPED;
358		bp->b_data = unmapped_buf;
359	} else {
360		bp->b_data = (char *)((vm_offset_t)bp->b_data |
361		    ((vm_offset_t)tbp->b_data & PAGE_MASK));
362	}
363	bp->b_iocmd = BIO_READ;
364	bp->b_iodone = cluster_callback;
365	bp->b_blkno = blkno;
366	bp->b_lblkno = lbn;
367	bp->b_offset = tbp->b_offset;
368	KASSERT(bp->b_offset != NOOFFSET, ("cluster_rbuild: no buffer offset"));
369	pbgetvp(vp, bp);
370
371	TAILQ_INIT(&bp->b_cluster.cluster_head);
372
373	bp->b_bcount = 0;
374	bp->b_bufsize = 0;
375	bp->b_npages = 0;
376
377	inc = btodb(size);
378	for (bn = blkno, i = 0; i < run; ++i, bn += inc) {
379		if (i == 0) {
380			VM_OBJECT_WLOCK(tbp->b_bufobj->bo_object);
381			vfs_drain_busy_pages(tbp);
382			vm_object_pip_add(tbp->b_bufobj->bo_object,
383			    tbp->b_npages);
384			for (k = 0; k < tbp->b_npages; k++)
385				vm_page_sbusy(tbp->b_pages[k]);
386			VM_OBJECT_WUNLOCK(tbp->b_bufobj->bo_object);
387		} else {
388			if ((bp->b_npages * PAGE_SIZE) +
389			    round_page(size) > vp->v_mount->mnt_iosize_max) {
390				break;
391			}
392
393			tbp = getblk(vp, lbn + i, size, 0, 0, GB_LOCK_NOWAIT |
394			    (gbflags & GB_UNMAPPED));
395
396			/* Don't wait around for locked bufs. */
397			if (tbp == NULL)
398				break;
399
400			/*
401			 * Stop scanning if the buffer is fully valid
402			 * (marked B_CACHE), or locked (may be doing a
403			 * background write), or if the buffer is not
404			 * VMIO backed.  The clustering code can only deal
405			 * with VMIO-backed buffers.  The bo lock is not
406			 * required for the BKGRDINPROG check since it
407			 * can not be set without the buf lock.
408			 */
409			if ((tbp->b_vflags & BV_BKGRDINPROG) ||
410			    (tbp->b_flags & B_CACHE) ||
411			    (tbp->b_flags & B_VMIO) == 0) {
412				bqrelse(tbp);
413				break;
414			}
415
416			/*
417			 * The buffer must be completely invalid in order to
418			 * take part in the cluster.  If it is partially valid
419			 * then we stop.
420			 */
421			off = tbp->b_offset;
422			tsize = size;
423			VM_OBJECT_WLOCK(tbp->b_bufobj->bo_object);
424			for (j = 0; tsize > 0; j++) {
425				toff = off & PAGE_MASK;
426				tinc = tsize;
427				if (toff + tinc > PAGE_SIZE)
428					tinc = PAGE_SIZE - toff;
429				VM_OBJECT_ASSERT_WLOCKED(tbp->b_pages[j]->object);
430				if ((tbp->b_pages[j]->valid &
431				    vm_page_bits(toff, tinc)) != 0)
432					break;
433				if (vm_page_xbusied(tbp->b_pages[j]))
434					break;
435				vm_object_pip_add(tbp->b_bufobj->bo_object, 1);
436				vm_page_sbusy(tbp->b_pages[j]);
437				off += tinc;
438				tsize -= tinc;
439			}
440			if (tsize > 0) {
441clean_sbusy:
442				vm_object_pip_add(tbp->b_bufobj->bo_object, -j);
443				for (k = 0; k < j; k++)
444					vm_page_sunbusy(tbp->b_pages[k]);
445				VM_OBJECT_WUNLOCK(tbp->b_bufobj->bo_object);
446				bqrelse(tbp);
447				break;
448			}
449			VM_OBJECT_WUNLOCK(tbp->b_bufobj->bo_object);
450
451			/*
452			 * Set a read-ahead mark as appropriate
453			 */
454			if ((fbp && (i == 1)) || (i == (run - 1)))
455				tbp->b_flags |= B_RAM;
456
457			/*
458			 * Set the buffer up for an async read (XXX should
459			 * we do this only if we do not wind up brelse()ing?).
460			 * Set the block number if it isn't set, otherwise
461			 * if it is make sure it matches the block number we
462			 * expect.
463			 */
464			tbp->b_flags |= B_ASYNC;
465			tbp->b_iocmd = BIO_READ;
466			if (tbp->b_blkno == tbp->b_lblkno) {
467				tbp->b_blkno = bn;
468			} else if (tbp->b_blkno != bn) {
469				VM_OBJECT_WLOCK(tbp->b_bufobj->bo_object);
470				goto clean_sbusy;
471			}
472		}
473		/*
474		 * XXX fbp from caller may not be B_ASYNC, but we are going
475		 * to biodone() it in cluster_callback() anyway
476		 */
477		BUF_KERNPROC(tbp);
478		TAILQ_INSERT_TAIL(&bp->b_cluster.cluster_head,
479			tbp, b_cluster.cluster_entry);
480		VM_OBJECT_WLOCK(tbp->b_bufobj->bo_object);
481		for (j = 0; j < tbp->b_npages; j += 1) {
482			vm_page_t m;
483			m = tbp->b_pages[j];
484			if ((bp->b_npages == 0) ||
485			    (bp->b_pages[bp->b_npages-1] != m)) {
486				bp->b_pages[bp->b_npages] = m;
487				bp->b_npages++;
488			}
489			if (m->valid == VM_PAGE_BITS_ALL)
490				tbp->b_pages[j] = bogus_page;
491		}
492		VM_OBJECT_WUNLOCK(tbp->b_bufobj->bo_object);
493		/*
494		 * Don't inherit tbp->b_bufsize as it may be larger due to
495		 * a non-page-aligned size.  Instead just aggregate using
496		 * 'size'.
497		 */
498		if (tbp->b_bcount != size)
499			printf("warning: tbp->b_bcount wrong %ld vs %ld\n", tbp->b_bcount, size);
500		if (tbp->b_bufsize != size)
501			printf("warning: tbp->b_bufsize wrong %ld vs %ld\n", tbp->b_bufsize, size);
502		bp->b_bcount += size;
503		bp->b_bufsize += size;
504	}
505
506	/*
507	 * Fully valid pages in the cluster are already good and do not need
508	 * to be re-read from disk.  Replace the page with bogus_page
509	 */
510	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
511	for (j = 0; j < bp->b_npages; j++) {
512		VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[j]->object);
513		if (bp->b_pages[j]->valid == VM_PAGE_BITS_ALL)
514			bp->b_pages[j] = bogus_page;
515	}
516	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
517	if (bp->b_bufsize > bp->b_kvasize)
518		panic("cluster_rbuild: b_bufsize(%ld) > b_kvasize(%d)\n",
519		    bp->b_bufsize, bp->b_kvasize);
520	bp->b_kvasize = bp->b_bufsize;
521
522	if ((bp->b_flags & B_UNMAPPED) == 0) {
523		pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
524		    (vm_page_t *)bp->b_pages, bp->b_npages);
525	}
526	return (bp);
527}
528
529/*
530 * Cleanup after a clustered read or write.
531 * This is complicated by the fact that any of the buffers might have
532 * extra memory (if there were no empty buffer headers at allocbuf time)
533 * that we will need to shift around.
534 */
535static void
536cluster_callback(bp)
537	struct buf *bp;
538{
539	struct buf *nbp, *tbp;
540	int error = 0;
541
542	/*
543	 * Must propagate errors to all the components.
544	 */
545	if (bp->b_ioflags & BIO_ERROR)
546		error = bp->b_error;
547
548	if ((bp->b_flags & B_UNMAPPED) == 0) {
549		pmap_qremove(trunc_page((vm_offset_t) bp->b_data),
550		    bp->b_npages);
551	}
552	/*
553	 * Move memory from the large cluster buffer into the component
554	 * buffers and mark IO as done on these.
555	 */
556	for (tbp = TAILQ_FIRST(&bp->b_cluster.cluster_head);
557		tbp; tbp = nbp) {
558		nbp = TAILQ_NEXT(&tbp->b_cluster, cluster_entry);
559		if (error) {
560			tbp->b_ioflags |= BIO_ERROR;
561			tbp->b_error = error;
562		} else {
563			tbp->b_dirtyoff = tbp->b_dirtyend = 0;
564			tbp->b_flags &= ~B_INVAL;
565			tbp->b_ioflags &= ~BIO_ERROR;
566			/*
567			 * XXX the bdwrite()/bqrelse() issued during
568			 * cluster building clears B_RELBUF (see bqrelse()
569			 * comment).  If direct I/O was specified, we have
570			 * to restore it here to allow the buffer and VM
571			 * to be freed.
572			 */
573			if (tbp->b_flags & B_DIRECT)
574				tbp->b_flags |= B_RELBUF;
575		}
576		bufdone(tbp);
577	}
578	pbrelvp(bp);
579	relpbuf(bp, &cluster_pbuf_freecnt);
580}
581
582/*
583 *	cluster_wbuild_wb:
584 *
585 *	Implement modified write build for cluster.
586 *
587 *		write_behind = 0	write behind disabled
588 *		write_behind = 1	write behind normal (default)
589 *		write_behind = 2	write behind backed-off
590 */
591
592static __inline int
593cluster_wbuild_wb(struct vnode *vp, long size, daddr_t start_lbn, int len,
594    int gbflags)
595{
596	int r = 0;
597
598	switch (write_behind) {
599	case 2:
600		if (start_lbn < len)
601			break;
602		start_lbn -= len;
603		/* FALLTHROUGH */
604	case 1:
605		r = cluster_wbuild(vp, size, start_lbn, len, gbflags);
606		/* FALLTHROUGH */
607	default:
608		/* FALLTHROUGH */
609		break;
610	}
611	return(r);
612}
613
614/*
615 * Do clustered write for FFS.
616 *
617 * Three cases:
618 *	1. Write is not sequential (write asynchronously)
619 *	Write is sequential:
620 *	2.	beginning of cluster - begin cluster
621 *	3.	middle of a cluster - add to cluster
622 *	4.	end of a cluster - asynchronously write cluster
623 */
624void
625cluster_write(struct vnode *vp, struct buf *bp, u_quad_t filesize, int seqcount,
626    int gbflags)
627{
628	daddr_t lbn;
629	int maxclen, cursize;
630	int lblocksize;
631	int async;
632
633	if (!unmapped_buf_allowed)
634		gbflags &= ~GB_UNMAPPED;
635
636	if (vp->v_type == VREG) {
637		async = DOINGASYNC(vp);
638		lblocksize = vp->v_mount->mnt_stat.f_iosize;
639	} else {
640		async = 0;
641		lblocksize = bp->b_bufsize;
642	}
643	lbn = bp->b_lblkno;
644	KASSERT(bp->b_offset != NOOFFSET, ("cluster_write: no buffer offset"));
645
646	/* Initialize vnode to beginning of file. */
647	if (lbn == 0)
648		vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
649
650	if (vp->v_clen == 0 || lbn != vp->v_lastw + 1 ||
651	    (bp->b_blkno != vp->v_lasta + btodb(lblocksize))) {
652		maxclen = vp->v_mount->mnt_iosize_max / lblocksize - 1;
653		if (vp->v_clen != 0) {
654			/*
655			 * Next block is not sequential.
656			 *
657			 * If we are not writing at end of file, the process
658			 * seeked to another point in the file since its last
659			 * write, or we have reached our maximum cluster size,
660			 * then push the previous cluster. Otherwise try
661			 * reallocating to make it sequential.
662			 *
663			 * Change to algorithm: only push previous cluster if
664			 * it was sequential from the point of view of the
665			 * seqcount heuristic, otherwise leave the buffer
666			 * intact so we can potentially optimize the I/O
667			 * later on in the buf_daemon or update daemon
668			 * flush.
669			 */
670			cursize = vp->v_lastw - vp->v_cstart + 1;
671			if (((u_quad_t) bp->b_offset + lblocksize) != filesize ||
672			    lbn != vp->v_lastw + 1 || vp->v_clen <= cursize) {
673				if (!async && seqcount > 0) {
674					cluster_wbuild_wb(vp, lblocksize,
675					    vp->v_cstart, cursize, gbflags);
676				}
677			} else {
678				struct buf **bpp, **endbp;
679				struct cluster_save *buflist;
680
681				buflist = cluster_collectbufs(vp, bp, gbflags);
682				endbp = &buflist->bs_children
683				    [buflist->bs_nchildren - 1];
684				if (VOP_REALLOCBLKS(vp, buflist)) {
685					/*
686					 * Failed, push the previous cluster
687					 * if *really* writing sequentially
688					 * in the logical file (seqcount > 1),
689					 * otherwise delay it in the hopes that
690					 * the low level disk driver can
691					 * optimize the write ordering.
692					 */
693					for (bpp = buflist->bs_children;
694					     bpp < endbp; bpp++)
695						brelse(*bpp);
696					free(buflist, M_SEGMENT);
697					if (seqcount > 1) {
698						cluster_wbuild_wb(vp,
699						    lblocksize, vp->v_cstart,
700						    cursize, gbflags);
701					}
702				} else {
703					/*
704					 * Succeeded, keep building cluster.
705					 */
706					for (bpp = buflist->bs_children;
707					     bpp <= endbp; bpp++)
708						bdwrite(*bpp);
709					free(buflist, M_SEGMENT);
710					vp->v_lastw = lbn;
711					vp->v_lasta = bp->b_blkno;
712					return;
713				}
714			}
715		}
716		/*
717		 * Consider beginning a cluster. If at end of file, make
718		 * cluster as large as possible, otherwise find size of
719		 * existing cluster.
720		 */
721		if ((vp->v_type == VREG) &&
722			((u_quad_t) bp->b_offset + lblocksize) != filesize &&
723		    (bp->b_blkno == bp->b_lblkno) &&
724		    (VOP_BMAP(vp, lbn, NULL, &bp->b_blkno, &maxclen, NULL) ||
725		     bp->b_blkno == -1)) {
726			bawrite(bp);
727			vp->v_clen = 0;
728			vp->v_lasta = bp->b_blkno;
729			vp->v_cstart = lbn + 1;
730			vp->v_lastw = lbn;
731			return;
732		}
733		vp->v_clen = maxclen;
734		if (!async && maxclen == 0) {	/* I/O not contiguous */
735			vp->v_cstart = lbn + 1;
736			bawrite(bp);
737		} else {	/* Wait for rest of cluster */
738			vp->v_cstart = lbn;
739			bdwrite(bp);
740		}
741	} else if (lbn == vp->v_cstart + vp->v_clen) {
742		/*
743		 * At end of cluster, write it out if seqcount tells us we
744		 * are operating sequentially, otherwise let the buf or
745		 * update daemon handle it.
746		 */
747		bdwrite(bp);
748		if (seqcount > 1) {
749			cluster_wbuild_wb(vp, lblocksize, vp->v_cstart,
750			    vp->v_clen + 1, gbflags);
751		}
752		vp->v_clen = 0;
753		vp->v_cstart = lbn + 1;
754	} else if (vm_page_count_severe()) {
755		/*
756		 * We are low on memory, get it going NOW
757		 */
758		bawrite(bp);
759	} else {
760		/*
761		 * In the middle of a cluster, so just delay the I/O for now.
762		 */
763		bdwrite(bp);
764	}
765	vp->v_lastw = lbn;
766	vp->v_lasta = bp->b_blkno;
767}
768
769
770/*
771 * This is an awful lot like cluster_rbuild...wish they could be combined.
772 * The last lbn argument is the current block on which I/O is being
773 * performed.  Check to see that it doesn't fall in the middle of
774 * the current block (if last_bp == NULL).
775 */
776int
777cluster_wbuild(struct vnode *vp, long size, daddr_t start_lbn, int len,
778    int gbflags)
779{
780	struct buf *bp, *tbp;
781	struct bufobj *bo;
782	int i, j;
783	int totalwritten = 0;
784	int dbsize = btodb(size);
785
786	if (!unmapped_buf_allowed)
787		gbflags &= ~GB_UNMAPPED;
788
789	bo = &vp->v_bufobj;
790	while (len > 0) {
791		/*
792		 * If the buffer is not delayed-write (i.e. dirty), or it
793		 * is delayed-write but either locked or inval, it cannot
794		 * partake in the clustered write.
795		 */
796		BO_LOCK(bo);
797		if ((tbp = gbincore(&vp->v_bufobj, start_lbn)) == NULL ||
798		    (tbp->b_vflags & BV_BKGRDINPROG)) {
799			BO_UNLOCK(bo);
800			++start_lbn;
801			--len;
802			continue;
803		}
804		if (BUF_LOCK(tbp,
805		    LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK, BO_LOCKPTR(bo))) {
806			++start_lbn;
807			--len;
808			continue;
809		}
810		if ((tbp->b_flags & (B_INVAL | B_DELWRI)) != B_DELWRI) {
811			BUF_UNLOCK(tbp);
812			++start_lbn;
813			--len;
814			continue;
815		}
816		if (tbp->b_pin_count >  0) {
817			BUF_UNLOCK(tbp);
818			++start_lbn;
819			--len;
820			continue;
821		}
822		bremfree(tbp);
823		tbp->b_flags &= ~B_DONE;
824
825		/*
826		 * Extra memory in the buffer, punt on this buffer.
827		 * XXX we could handle this in most cases, but we would
828		 * have to push the extra memory down to after our max
829		 * possible cluster size and then potentially pull it back
830		 * up if the cluster was terminated prematurely--too much
831		 * hassle.
832		 */
833		if (((tbp->b_flags & (B_CLUSTEROK | B_MALLOC | B_VMIO)) !=
834		     (B_CLUSTEROK | B_VMIO)) ||
835		  (tbp->b_bcount != tbp->b_bufsize) ||
836		  (tbp->b_bcount != size) ||
837		  (len == 1) ||
838		  ((bp = (vp->v_vflag & VV_MD) != 0 ?
839		  trypbuf(&cluster_pbuf_freecnt) :
840		  getpbuf(&cluster_pbuf_freecnt)) == NULL)) {
841			totalwritten += tbp->b_bufsize;
842			bawrite(tbp);
843			++start_lbn;
844			--len;
845			continue;
846		}
847
848		/*
849		 * We got a pbuf to make the cluster in.
850		 * so initialise it.
851		 */
852		TAILQ_INIT(&bp->b_cluster.cluster_head);
853		bp->b_bcount = 0;
854		bp->b_bufsize = 0;
855		bp->b_npages = 0;
856		if (tbp->b_wcred != NOCRED)
857			bp->b_wcred = crhold(tbp->b_wcred);
858
859		bp->b_blkno = tbp->b_blkno;
860		bp->b_lblkno = tbp->b_lblkno;
861		bp->b_offset = tbp->b_offset;
862
863		/*
864		 * We are synthesizing a buffer out of vm_page_t's, but
865		 * if the block size is not page aligned then the starting
866		 * address may not be either.  Inherit the b_data offset
867		 * from the original buffer.
868		 */
869		if ((gbflags & GB_UNMAPPED) == 0 ||
870		    (tbp->b_flags & B_VMIO) == 0) {
871			bp->b_data = (char *)((vm_offset_t)bp->b_data |
872			    ((vm_offset_t)tbp->b_data & PAGE_MASK));
873		} else {
874			bp->b_flags |= B_UNMAPPED;
875			bp->b_data = unmapped_buf;
876		}
877		bp->b_flags |= B_CLUSTER | (tbp->b_flags & (B_VMIO |
878		    B_NEEDCOMMIT));
879		bp->b_iodone = cluster_callback;
880		pbgetvp(vp, bp);
881		/*
882		 * From this location in the file, scan forward to see
883		 * if there are buffers with adjacent data that need to
884		 * be written as well.
885		 */
886		for (i = 0; i < len; ++i, ++start_lbn) {
887			if (i != 0) { /* If not the first buffer */
888				/*
889				 * If the adjacent data is not even in core it
890				 * can't need to be written.
891				 */
892				BO_LOCK(bo);
893				if ((tbp = gbincore(bo, start_lbn)) == NULL ||
894				    (tbp->b_vflags & BV_BKGRDINPROG)) {
895					BO_UNLOCK(bo);
896					break;
897				}
898
899				/*
900				 * If it IS in core, but has different
901				 * characteristics, or is locked (which
902				 * means it could be undergoing a background
903				 * I/O or be in a weird state), then don't
904				 * cluster with it.
905				 */
906				if (BUF_LOCK(tbp,
907				    LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK,
908				    BO_LOCKPTR(bo)))
909					break;
910
911				if ((tbp->b_flags & (B_VMIO | B_CLUSTEROK |
912				    B_INVAL | B_DELWRI | B_NEEDCOMMIT))
913				    != (B_DELWRI | B_CLUSTEROK |
914				    (bp->b_flags & (B_VMIO | B_NEEDCOMMIT))) ||
915				    tbp->b_wcred != bp->b_wcred) {
916					BUF_UNLOCK(tbp);
917					break;
918				}
919
920				/*
921				 * Check that the combined cluster
922				 * would make sense with regard to pages
923				 * and would not be too large
924				 */
925				if ((tbp->b_bcount != size) ||
926				  ((bp->b_blkno + (dbsize * i)) !=
927				    tbp->b_blkno) ||
928				  ((tbp->b_npages + bp->b_npages) >
929				    (vp->v_mount->mnt_iosize_max / PAGE_SIZE))) {
930					BUF_UNLOCK(tbp);
931					break;
932				}
933
934				/*
935				 * Do not pull in pinned buffers.
936				 */
937				if (tbp->b_pin_count > 0) {
938					BUF_UNLOCK(tbp);
939					break;
940				}
941
942				/*
943				 * Ok, it's passed all the tests,
944				 * so remove it from the free list
945				 * and mark it busy. We will use it.
946				 */
947				bremfree(tbp);
948				tbp->b_flags &= ~B_DONE;
949			} /* end of code for non-first buffers only */
950			/*
951			 * If the IO is via the VM then we do some
952			 * special VM hackery (yuck).  Since the buffer's
953			 * block size may not be page-aligned it is possible
954			 * for a page to be shared between two buffers.  We
955			 * have to get rid of the duplication when building
956			 * the cluster.
957			 */
958			if (tbp->b_flags & B_VMIO) {
959				vm_page_t m;
960
961				VM_OBJECT_WLOCK(tbp->b_bufobj->bo_object);
962				if (i == 0) {
963					vfs_drain_busy_pages(tbp);
964				} else { /* if not first buffer */
965					for (j = 0; j < tbp->b_npages; j += 1) {
966						m = tbp->b_pages[j];
967						if (vm_page_xbusied(m)) {
968							VM_OBJECT_WUNLOCK(
969							    tbp->b_object);
970							bqrelse(tbp);
971							goto finishcluster;
972						}
973					}
974				}
975				for (j = 0; j < tbp->b_npages; j += 1) {
976					m = tbp->b_pages[j];
977					vm_page_sbusy(m);
978					vm_object_pip_add(m->object, 1);
979					if ((bp->b_npages == 0) ||
980					  (bp->b_pages[bp->b_npages - 1] != m)) {
981						bp->b_pages[bp->b_npages] = m;
982						bp->b_npages++;
983					}
984				}
985				VM_OBJECT_WUNLOCK(tbp->b_bufobj->bo_object);
986			}
987			bp->b_bcount += size;
988			bp->b_bufsize += size;
989			/*
990			 * If any of the clustered buffers have their
991			 * B_BARRIER flag set, transfer that request to
992			 * the cluster.
993			 */
994			bp->b_flags |= (tbp->b_flags & B_BARRIER);
995			tbp->b_flags &= ~(B_DONE | B_BARRIER);
996			tbp->b_flags |= B_ASYNC;
997			tbp->b_ioflags &= ~BIO_ERROR;
998			tbp->b_iocmd = BIO_WRITE;
999			bundirty(tbp);
1000			reassignbuf(tbp);		/* put on clean list */
1001			bufobj_wref(tbp->b_bufobj);
1002			BUF_KERNPROC(tbp);
1003			TAILQ_INSERT_TAIL(&bp->b_cluster.cluster_head,
1004				tbp, b_cluster.cluster_entry);
1005		}
1006	finishcluster:
1007		if ((bp->b_flags & B_UNMAPPED) == 0) {
1008			pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
1009			    (vm_page_t *)bp->b_pages, bp->b_npages);
1010		}
1011		if (bp->b_bufsize > bp->b_kvasize)
1012			panic(
1013			    "cluster_wbuild: b_bufsize(%ld) > b_kvasize(%d)\n",
1014			    bp->b_bufsize, bp->b_kvasize);
1015		bp->b_kvasize = bp->b_bufsize;
1016		totalwritten += bp->b_bufsize;
1017		bp->b_dirtyoff = 0;
1018		bp->b_dirtyend = bp->b_bufsize;
1019		bawrite(bp);
1020
1021		len -= i;
1022	}
1023	return totalwritten;
1024}
1025
1026/*
1027 * Collect together all the buffers in a cluster.
1028 * Plus add one additional buffer.
1029 */
1030static struct cluster_save *
1031cluster_collectbufs(struct vnode *vp, struct buf *last_bp, int gbflags)
1032{
1033	struct cluster_save *buflist;
1034	struct buf *bp;
1035	daddr_t lbn;
1036	int i, len;
1037
1038	len = vp->v_lastw - vp->v_cstart + 1;
1039	buflist = malloc(sizeof(struct buf *) * (len + 1) + sizeof(*buflist),
1040	    M_SEGMENT, M_WAITOK);
1041	buflist->bs_nchildren = 0;
1042	buflist->bs_children = (struct buf **) (buflist + 1);
1043	for (lbn = vp->v_cstart, i = 0; i < len; lbn++, i++) {
1044		(void)bread_gb(vp, lbn, last_bp->b_bcount, NOCRED,
1045		    gbflags, &bp);
1046		buflist->bs_children[i] = bp;
1047		if (bp->b_blkno == bp->b_lblkno)
1048			VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1049				NULL, NULL);
1050	}
1051	buflist->bs_children[i] = bp = last_bp;
1052	if (bp->b_blkno == bp->b_lblkno)
1053		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1054	buflist->bs_nchildren = i + 1;
1055	return (buflist);
1056}
1057