1/*-
2 * Copyright (c) 1997 John S. Dyson.  All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. John S. Dyson's name may not be used to endorse or promote products
10 *    derived from this software without specific prior written permission.
11 *
12 * DISCLAIMER:  This code isn't warranted to do anything useful.  Anything
13 * bad that happens because of using this software isn't the responsibility
14 * of the author.  This software is distributed AS-IS.
15 */
16
17/*
18 * This file contains support for the POSIX 1003.1B AIO/LIO facility.
19 */
20
21#include <sys/cdefs.h>
22__FBSDID("$FreeBSD$");
23
24#include "opt_compat.h"
25
26#include <sys/param.h>
27#include <sys/systm.h>
28#include <sys/malloc.h>
29#include <sys/bio.h>
30#include <sys/buf.h>
31#include <sys/capsicum.h>
32#include <sys/eventhandler.h>
33#include <sys/sysproto.h>
34#include <sys/filedesc.h>
35#include <sys/kernel.h>
36#include <sys/module.h>
37#include <sys/kthread.h>
38#include <sys/fcntl.h>
39#include <sys/file.h>
40#include <sys/limits.h>
41#include <sys/lock.h>
42#include <sys/mutex.h>
43#include <sys/unistd.h>
44#include <sys/posix4.h>
45#include <sys/proc.h>
46#include <sys/resourcevar.h>
47#include <sys/signalvar.h>
48#include <sys/protosw.h>
49#include <sys/rwlock.h>
50#include <sys/sema.h>
51#include <sys/socket.h>
52#include <sys/socketvar.h>
53#include <sys/syscall.h>
54#include <sys/sysent.h>
55#include <sys/sysctl.h>
56#include <sys/sx.h>
57#include <sys/taskqueue.h>
58#include <sys/vnode.h>
59#include <sys/conf.h>
60#include <sys/event.h>
61#include <sys/mount.h>
62#include <geom/geom.h>
63
64#include <machine/atomic.h>
65
66#include <vm/vm.h>
67#include <vm/vm_page.h>
68#include <vm/vm_extern.h>
69#include <vm/pmap.h>
70#include <vm/vm_map.h>
71#include <vm/vm_object.h>
72#include <vm/uma.h>
73#include <sys/aio.h>
74
75#include "opt_vfs_aio.h"
76
77/*
78 * Counter for allocating reference ids to new jobs.  Wrapped to 1 on
79 * overflow. (XXX will be removed soon.)
80 */
81static u_long jobrefid;
82
83/*
84 * Counter for aio_fsync.
85 */
86static uint64_t jobseqno;
87
88#define JOBST_NULL		0
89#define JOBST_JOBQSOCK		1
90#define JOBST_JOBQGLOBAL	2
91#define JOBST_JOBRUNNING	3
92#define JOBST_JOBFINISHED	4
93#define JOBST_JOBQBUF		5
94#define JOBST_JOBQSYNC		6
95
96#ifndef MAX_AIO_PER_PROC
97#define MAX_AIO_PER_PROC	32
98#endif
99
100#ifndef MAX_AIO_QUEUE_PER_PROC
101#define MAX_AIO_QUEUE_PER_PROC	256 /* Bigger than AIO_LISTIO_MAX */
102#endif
103
104#ifndef MAX_AIO_PROCS
105#define MAX_AIO_PROCS		32
106#endif
107
108#ifndef MAX_AIO_QUEUE
109#define	MAX_AIO_QUEUE		1024 /* Bigger than AIO_LISTIO_MAX */
110#endif
111
112#ifndef TARGET_AIO_PROCS
113#define TARGET_AIO_PROCS	4
114#endif
115
116#ifndef MAX_BUF_AIO
117#define MAX_BUF_AIO		16
118#endif
119
120#ifndef AIOD_TIMEOUT_DEFAULT
121#define	AIOD_TIMEOUT_DEFAULT	(10 * hz)
122#endif
123
124#ifndef AIOD_LIFETIME_DEFAULT
125#define AIOD_LIFETIME_DEFAULT	(30 * hz)
126#endif
127
128FEATURE(aio, "Asynchronous I/O");
129
130static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list");
131
132static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management");
133
134static int max_aio_procs = MAX_AIO_PROCS;
135SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs,
136	CTLFLAG_RW, &max_aio_procs, 0,
137	"Maximum number of kernel threads to use for handling async IO ");
138
139static int num_aio_procs = 0;
140SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs,
141	CTLFLAG_RD, &num_aio_procs, 0,
142	"Number of presently active kernel threads for async IO");
143
144/*
145 * The code will adjust the actual number of AIO processes towards this
146 * number when it gets a chance.
147 */
148static int target_aio_procs = TARGET_AIO_PROCS;
149SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
150	0, "Preferred number of ready kernel threads for async IO");
151
152static int max_queue_count = MAX_AIO_QUEUE;
153SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
154    "Maximum number of aio requests to queue, globally");
155
156static int num_queue_count = 0;
157SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
158    "Number of queued aio requests");
159
160static int num_buf_aio = 0;
161SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
162    "Number of aio requests presently handled by the buf subsystem");
163
164/* Number of async I/O thread in the process of being started */
165/* XXX This should be local to aio_aqueue() */
166static int num_aio_resv_start = 0;
167
168static int aiod_timeout;
169SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0,
170    "Timeout value for synchronous aio operations");
171
172static int aiod_lifetime;
173SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
174    "Maximum lifetime for idle aiod");
175
176static int unloadable = 0;
177SYSCTL_INT(_vfs_aio, OID_AUTO, unloadable, CTLFLAG_RW, &unloadable, 0,
178    "Allow unload of aio (not recommended)");
179
180
181static int max_aio_per_proc = MAX_AIO_PER_PROC;
182SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
183    0, "Maximum active aio requests per process (stored in the process)");
184
185static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
186SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
187    &max_aio_queue_per_proc, 0,
188    "Maximum queued aio requests per process (stored in the process)");
189
190static int max_buf_aio = MAX_BUF_AIO;
191SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
192    "Maximum buf aio requests per process (stored in the process)");
193
194typedef struct oaiocb {
195	int	aio_fildes;		/* File descriptor */
196	off_t	aio_offset;		/* File offset for I/O */
197	volatile void *aio_buf;         /* I/O buffer in process space */
198	size_t	aio_nbytes;		/* Number of bytes for I/O */
199	struct	osigevent aio_sigevent;	/* Signal to deliver */
200	int	aio_lio_opcode;		/* LIO opcode */
201	int	aio_reqprio;		/* Request priority -- ignored */
202	struct	__aiocb_private	_aiocb_private;
203} oaiocb_t;
204
205/*
206 * Below is a key of locks used to protect each member of struct aiocblist
207 * aioliojob and kaioinfo and any backends.
208 *
209 * * - need not protected
210 * a - locked by kaioinfo lock
211 * b - locked by backend lock, the backend lock can be null in some cases,
212 *     for example, BIO belongs to this type, in this case, proc lock is
213 *     reused.
214 * c - locked by aio_job_mtx, the lock for the generic file I/O backend.
215 */
216
217/*
218 * Current, there is only two backends: BIO and generic file I/O.
219 * socket I/O is served by generic file I/O, this is not a good idea, since
220 * disk file I/O and any other types without O_NONBLOCK flag can block daemon
221 * threads, if there is no thread to serve socket I/O, the socket I/O will be
222 * delayed too long or starved, we should create some threads dedicated to
223 * sockets to do non-blocking I/O, same for pipe and fifo, for these I/O
224 * systems we really need non-blocking interface, fiddling O_NONBLOCK in file
225 * structure is not safe because there is race between userland and aio
226 * daemons.
227 */
228
229struct aiocblist {
230	TAILQ_ENTRY(aiocblist) list;	/* (b) internal list of for backend */
231	TAILQ_ENTRY(aiocblist) plist;	/* (a) list of jobs for each backend */
232	TAILQ_ENTRY(aiocblist) allist;  /* (a) list of all jobs in proc */
233	int	jobflags;		/* (a) job flags */
234	int	jobstate;		/* (b) job state */
235	int	inputcharge;		/* (*) input blockes */
236	int	outputcharge;		/* (*) output blockes */
237	struct	bio *bp;		/* (*) BIO backend BIO pointer */
238	struct	buf *pbuf;		/* (*) BIO backend buffer pointer */
239	struct	vm_page *pages[btoc(MAXPHYS)+1]; /* BIO backend pages */
240	int	npages;			/* BIO backend number of pages */
241	struct	proc *userproc;		/* (*) user process */
242	struct  ucred *cred;		/* (*) active credential when created */
243	struct	file *fd_file;		/* (*) pointer to file structure */
244	struct	aioliojob *lio;		/* (*) optional lio job */
245	struct	aiocb *uuaiocb;		/* (*) pointer in userspace of aiocb */
246	struct	knlist klist;		/* (a) list of knotes */
247	struct	aiocb uaiocb;		/* (*) kernel I/O control block */
248	ksiginfo_t ksi;			/* (a) realtime signal info */
249	uint64_t seqno;			/* (*) job number */
250	int	pending;		/* (a) number of pending I/O, aio_fsync only */
251};
252
253/* jobflags */
254#define AIOCBLIST_DONE		0x01
255#define AIOCBLIST_BUFDONE	0x02
256#define AIOCBLIST_RUNDOWN	0x04
257#define AIOCBLIST_CHECKSYNC	0x08
258
259/*
260 * AIO process info
261 */
262#define AIOP_FREE	0x1			/* proc on free queue */
263
264struct aiothreadlist {
265	int aiothreadflags;			/* (c) AIO proc flags */
266	TAILQ_ENTRY(aiothreadlist) list;	/* (c) list of processes */
267	struct thread *aiothread;		/* (*) the AIO thread */
268};
269
270/*
271 * data-structure for lio signal management
272 */
273struct aioliojob {
274	int	lioj_flags;			/* (a) listio flags */
275	int	lioj_count;			/* (a) listio flags */
276	int	lioj_finished_count;		/* (a) listio flags */
277	struct	sigevent lioj_signal;		/* (a) signal on all I/O done */
278	TAILQ_ENTRY(aioliojob) lioj_list;	/* (a) lio list */
279	struct  knlist klist;			/* (a) list of knotes */
280	ksiginfo_t lioj_ksi;			/* (a) Realtime signal info */
281};
282
283#define	LIOJ_SIGNAL		0x1	/* signal on all done (lio) */
284#define	LIOJ_SIGNAL_POSTED	0x2	/* signal has been posted */
285#define LIOJ_KEVENT_POSTED	0x4	/* kevent triggered */
286
287/*
288 * per process aio data structure
289 */
290struct kaioinfo {
291	struct mtx	kaio_mtx;	/* the lock to protect this struct */
292	int	kaio_flags;		/* (a) per process kaio flags */
293	int	kaio_maxactive_count;	/* (*) maximum number of AIOs */
294	int	kaio_active_count;	/* (c) number of currently used AIOs */
295	int	kaio_qallowed_count;	/* (*) maxiumu size of AIO queue */
296	int	kaio_count;		/* (a) size of AIO queue */
297	int	kaio_ballowed_count;	/* (*) maximum number of buffers */
298	int	kaio_buffer_count;	/* (a) number of physio buffers */
299	TAILQ_HEAD(,aiocblist) kaio_all;	/* (a) all AIOs in the process */
300	TAILQ_HEAD(,aiocblist) kaio_done;	/* (a) done queue for process */
301	TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */
302	TAILQ_HEAD(,aiocblist) kaio_jobqueue;	/* (a) job queue for process */
303	TAILQ_HEAD(,aiocblist) kaio_bufqueue;	/* (a) buffer job queue for process */
304	TAILQ_HEAD(,aiocblist) kaio_sockqueue;  /* (a) queue for aios waiting on sockets,
305						 *  NOT USED YET.
306						 */
307	TAILQ_HEAD(,aiocblist) kaio_syncqueue;	/* (a) queue for aio_fsync */
308	struct	task	kaio_task;	/* (*) task to kick aio threads */
309};
310
311#define AIO_LOCK(ki)		mtx_lock(&(ki)->kaio_mtx)
312#define AIO_UNLOCK(ki)		mtx_unlock(&(ki)->kaio_mtx)
313#define AIO_LOCK_ASSERT(ki, f)	mtx_assert(&(ki)->kaio_mtx, (f))
314#define AIO_MTX(ki)		(&(ki)->kaio_mtx)
315
316#define KAIO_RUNDOWN	0x1	/* process is being run down */
317#define KAIO_WAKEUP	0x2	/* wakeup process when there is a significant event */
318
319/*
320 * Operations used to interact with userland aio control blocks.
321 * Different ABIs provide their own operations.
322 */
323struct aiocb_ops {
324	int	(*copyin)(struct aiocb *ujob, struct aiocb *kjob);
325	long	(*fetch_status)(struct aiocb *ujob);
326	long	(*fetch_error)(struct aiocb *ujob);
327	int	(*store_status)(struct aiocb *ujob, long status);
328	int	(*store_error)(struct aiocb *ujob, long error);
329	int	(*store_kernelinfo)(struct aiocb *ujob, long jobref);
330	int	(*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob);
331};
332
333static TAILQ_HEAD(,aiothreadlist) aio_freeproc;		/* (c) Idle daemons */
334static struct sema aio_newproc_sem;
335static struct mtx aio_job_mtx;
336static struct mtx aio_sock_mtx;
337static TAILQ_HEAD(,aiocblist) aio_jobs;			/* (c) Async job list */
338static struct unrhdr *aiod_unr;
339
340void		aio_init_aioinfo(struct proc *p);
341static int	aio_onceonly(void);
342static int	aio_free_entry(struct aiocblist *aiocbe);
343static void	aio_process_rw(struct aiocblist *aiocbe);
344static void	aio_process_sync(struct aiocblist *aiocbe);
345static void	aio_process_mlock(struct aiocblist *aiocbe);
346static int	aio_newproc(int *);
347int		aio_aqueue(struct thread *td, struct aiocb *job,
348			struct aioliojob *lio, int type, struct aiocb_ops *ops);
349static void	aio_physwakeup(struct bio *bp);
350static void	aio_proc_rundown(void *arg, struct proc *p);
351static void	aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp);
352static int	aio_qphysio(struct proc *p, struct aiocblist *iocb);
353static void	aio_daemon(void *param);
354static void	aio_swake_cb(struct socket *, struct sockbuf *);
355static int	aio_unload(void);
356static void	aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type);
357#define DONE_BUF	1
358#define DONE_QUEUE	2
359static int	aio_kick(struct proc *userp);
360static void	aio_kick_nowait(struct proc *userp);
361static void	aio_kick_helper(void *context, int pending);
362static int	filt_aioattach(struct knote *kn);
363static void	filt_aiodetach(struct knote *kn);
364static int	filt_aio(struct knote *kn, long hint);
365static int	filt_lioattach(struct knote *kn);
366static void	filt_liodetach(struct knote *kn);
367static int	filt_lio(struct knote *kn, long hint);
368
369/*
370 * Zones for:
371 * 	kaio	Per process async io info
372 *	aiop	async io thread data
373 *	aiocb	async io jobs
374 *	aiol	list io job pointer - internal to aio_suspend XXX
375 *	aiolio	list io jobs
376 */
377static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone;
378
379/* kqueue filters for aio */
380static struct filterops aio_filtops = {
381	.f_isfd = 0,
382	.f_attach = filt_aioattach,
383	.f_detach = filt_aiodetach,
384	.f_event = filt_aio,
385};
386static struct filterops lio_filtops = {
387	.f_isfd = 0,
388	.f_attach = filt_lioattach,
389	.f_detach = filt_liodetach,
390	.f_event = filt_lio
391};
392
393static eventhandler_tag exit_tag, exec_tag;
394
395TASKQUEUE_DEFINE_THREAD(aiod_bio);
396
397/*
398 * Main operations function for use as a kernel module.
399 */
400static int
401aio_modload(struct module *module, int cmd, void *arg)
402{
403	int error = 0;
404
405	switch (cmd) {
406	case MOD_LOAD:
407		aio_onceonly();
408		break;
409	case MOD_UNLOAD:
410		error = aio_unload();
411		break;
412	case MOD_SHUTDOWN:
413		break;
414	default:
415		error = EINVAL;
416		break;
417	}
418	return (error);
419}
420
421static moduledata_t aio_mod = {
422	"aio",
423	&aio_modload,
424	NULL
425};
426
427static struct syscall_helper_data aio_syscalls[] = {
428	SYSCALL_INIT_HELPER(aio_cancel),
429	SYSCALL_INIT_HELPER(aio_error),
430	SYSCALL_INIT_HELPER(aio_fsync),
431	SYSCALL_INIT_HELPER(aio_mlock),
432	SYSCALL_INIT_HELPER(aio_read),
433	SYSCALL_INIT_HELPER(aio_return),
434	SYSCALL_INIT_HELPER(aio_suspend),
435	SYSCALL_INIT_HELPER(aio_waitcomplete),
436	SYSCALL_INIT_HELPER(aio_write),
437	SYSCALL_INIT_HELPER(lio_listio),
438	SYSCALL_INIT_HELPER(oaio_read),
439	SYSCALL_INIT_HELPER(oaio_write),
440	SYSCALL_INIT_HELPER(olio_listio),
441	SYSCALL_INIT_LAST
442};
443
444#ifdef COMPAT_FREEBSD32
445#include <sys/mount.h>
446#include <sys/socket.h>
447#include <compat/freebsd32/freebsd32.h>
448#include <compat/freebsd32/freebsd32_proto.h>
449#include <compat/freebsd32/freebsd32_signal.h>
450#include <compat/freebsd32/freebsd32_syscall.h>
451#include <compat/freebsd32/freebsd32_util.h>
452
453static struct syscall_helper_data aio32_syscalls[] = {
454	SYSCALL32_INIT_HELPER(freebsd32_aio_return),
455	SYSCALL32_INIT_HELPER(freebsd32_aio_suspend),
456	SYSCALL32_INIT_HELPER(freebsd32_aio_cancel),
457	SYSCALL32_INIT_HELPER(freebsd32_aio_error),
458	SYSCALL32_INIT_HELPER(freebsd32_aio_fsync),
459	SYSCALL32_INIT_HELPER(freebsd32_aio_mlock),
460	SYSCALL32_INIT_HELPER(freebsd32_aio_read),
461	SYSCALL32_INIT_HELPER(freebsd32_aio_write),
462	SYSCALL32_INIT_HELPER(freebsd32_aio_waitcomplete),
463	SYSCALL32_INIT_HELPER(freebsd32_lio_listio),
464	SYSCALL32_INIT_HELPER(freebsd32_oaio_read),
465	SYSCALL32_INIT_HELPER(freebsd32_oaio_write),
466	SYSCALL32_INIT_HELPER(freebsd32_olio_listio),
467	SYSCALL_INIT_LAST
468};
469#endif
470
471DECLARE_MODULE(aio, aio_mod,
472	SI_SUB_VFS, SI_ORDER_ANY);
473MODULE_VERSION(aio, 1);
474
475/*
476 * Startup initialization
477 */
478static int
479aio_onceonly(void)
480{
481	int error;
482
483	/* XXX: should probably just use so->callback */
484	aio_swake = &aio_swake_cb;
485	exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL,
486	    EVENTHANDLER_PRI_ANY);
487	exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, NULL,
488	    EVENTHANDLER_PRI_ANY);
489	kqueue_add_filteropts(EVFILT_AIO, &aio_filtops);
490	kqueue_add_filteropts(EVFILT_LIO, &lio_filtops);
491	TAILQ_INIT(&aio_freeproc);
492	sema_init(&aio_newproc_sem, 0, "aio_new_proc");
493	mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF);
494	mtx_init(&aio_sock_mtx, "aio_sock", NULL, MTX_DEF);
495	TAILQ_INIT(&aio_jobs);
496	aiod_unr = new_unrhdr(1, INT_MAX, NULL);
497	kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL,
498	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
499	aiop_zone = uma_zcreate("AIOP", sizeof(struct aiothreadlist), NULL,
500	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
501	aiocb_zone = uma_zcreate("AIOCB", sizeof(struct aiocblist), NULL, NULL,
502	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
503	aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL,
504	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
505	aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL,
506	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
507	aiod_timeout = AIOD_TIMEOUT_DEFAULT;
508	aiod_lifetime = AIOD_LIFETIME_DEFAULT;
509	jobrefid = 1;
510	async_io_version = _POSIX_VERSION;
511	p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX);
512	p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE);
513	p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0);
514
515	error = syscall_helper_register(aio_syscalls);
516	if (error)
517		return (error);
518#ifdef COMPAT_FREEBSD32
519	error = syscall32_helper_register(aio32_syscalls);
520	if (error)
521		return (error);
522#endif
523	return (0);
524}
525
526/*
527 * Callback for unload of AIO when used as a module.
528 */
529static int
530aio_unload(void)
531{
532	int error;
533
534	/*
535	 * XXX: no unloads by default, it's too dangerous.
536	 * perhaps we could do it if locked out callers and then
537	 * did an aio_proc_rundown() on each process.
538	 *
539	 * jhb: aio_proc_rundown() needs to run on curproc though,
540	 * so I don't think that would fly.
541	 */
542	if (!unloadable)
543		return (EOPNOTSUPP);
544
545#ifdef COMPAT_FREEBSD32
546	syscall32_helper_unregister(aio32_syscalls);
547#endif
548	syscall_helper_unregister(aio_syscalls);
549
550	error = kqueue_del_filteropts(EVFILT_AIO);
551	if (error)
552		return error;
553	error = kqueue_del_filteropts(EVFILT_LIO);
554	if (error)
555		return error;
556	async_io_version = 0;
557	aio_swake = NULL;
558	taskqueue_free(taskqueue_aiod_bio);
559	delete_unrhdr(aiod_unr);
560	uma_zdestroy(kaio_zone);
561	uma_zdestroy(aiop_zone);
562	uma_zdestroy(aiocb_zone);
563	uma_zdestroy(aiol_zone);
564	uma_zdestroy(aiolio_zone);
565	EVENTHANDLER_DEREGISTER(process_exit, exit_tag);
566	EVENTHANDLER_DEREGISTER(process_exec, exec_tag);
567	mtx_destroy(&aio_job_mtx);
568	mtx_destroy(&aio_sock_mtx);
569	sema_destroy(&aio_newproc_sem);
570	p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, -1);
571	p31b_setcfg(CTL_P1003_1B_AIO_MAX, -1);
572	p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, -1);
573	return (0);
574}
575
576/*
577 * Init the per-process aioinfo structure.  The aioinfo limits are set
578 * per-process for user limit (resource) management.
579 */
580void
581aio_init_aioinfo(struct proc *p)
582{
583	struct kaioinfo *ki;
584
585	ki = uma_zalloc(kaio_zone, M_WAITOK);
586	mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF);
587	ki->kaio_flags = 0;
588	ki->kaio_maxactive_count = max_aio_per_proc;
589	ki->kaio_active_count = 0;
590	ki->kaio_qallowed_count = max_aio_queue_per_proc;
591	ki->kaio_count = 0;
592	ki->kaio_ballowed_count = max_buf_aio;
593	ki->kaio_buffer_count = 0;
594	TAILQ_INIT(&ki->kaio_all);
595	TAILQ_INIT(&ki->kaio_done);
596	TAILQ_INIT(&ki->kaio_jobqueue);
597	TAILQ_INIT(&ki->kaio_bufqueue);
598	TAILQ_INIT(&ki->kaio_liojoblist);
599	TAILQ_INIT(&ki->kaio_sockqueue);
600	TAILQ_INIT(&ki->kaio_syncqueue);
601	TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p);
602	PROC_LOCK(p);
603	if (p->p_aioinfo == NULL) {
604		p->p_aioinfo = ki;
605		PROC_UNLOCK(p);
606	} else {
607		PROC_UNLOCK(p);
608		mtx_destroy(&ki->kaio_mtx);
609		uma_zfree(kaio_zone, ki);
610	}
611
612	while (num_aio_procs < MIN(target_aio_procs, max_aio_procs))
613		aio_newproc(NULL);
614}
615
616static int
617aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi)
618{
619	struct thread *td;
620	int error;
621
622	error = sigev_findtd(p, sigev, &td);
623	if (error)
624		return (error);
625	if (!KSI_ONQ(ksi)) {
626		ksiginfo_set_sigev(ksi, sigev);
627		ksi->ksi_code = SI_ASYNCIO;
628		ksi->ksi_flags |= KSI_EXT | KSI_INS;
629		tdsendsignal(p, td, ksi->ksi_signo, ksi);
630	}
631	PROC_UNLOCK(p);
632	return (error);
633}
634
635/*
636 * Free a job entry.  Wait for completion if it is currently active, but don't
637 * delay forever.  If we delay, we return a flag that says that we have to
638 * restart the queue scan.
639 */
640static int
641aio_free_entry(struct aiocblist *aiocbe)
642{
643	struct kaioinfo *ki;
644	struct aioliojob *lj;
645	struct proc *p;
646
647	p = aiocbe->userproc;
648	MPASS(curproc == p);
649	ki = p->p_aioinfo;
650	MPASS(ki != NULL);
651
652	AIO_LOCK_ASSERT(ki, MA_OWNED);
653	MPASS(aiocbe->jobstate == JOBST_JOBFINISHED);
654
655	atomic_subtract_int(&num_queue_count, 1);
656
657	ki->kaio_count--;
658	MPASS(ki->kaio_count >= 0);
659
660	TAILQ_REMOVE(&ki->kaio_done, aiocbe, plist);
661	TAILQ_REMOVE(&ki->kaio_all, aiocbe, allist);
662
663	lj = aiocbe->lio;
664	if (lj) {
665		lj->lioj_count--;
666		lj->lioj_finished_count--;
667
668		if (lj->lioj_count == 0) {
669			TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
670			/* lio is going away, we need to destroy any knotes */
671			knlist_delete(&lj->klist, curthread, 1);
672			PROC_LOCK(p);
673			sigqueue_take(&lj->lioj_ksi);
674			PROC_UNLOCK(p);
675			uma_zfree(aiolio_zone, lj);
676		}
677	}
678
679	/* aiocbe is going away, we need to destroy any knotes */
680	knlist_delete(&aiocbe->klist, curthread, 1);
681	PROC_LOCK(p);
682	sigqueue_take(&aiocbe->ksi);
683	PROC_UNLOCK(p);
684
685	MPASS(aiocbe->bp == NULL);
686	aiocbe->jobstate = JOBST_NULL;
687	AIO_UNLOCK(ki);
688
689	/*
690	 * The thread argument here is used to find the owning process
691	 * and is also passed to fo_close() which may pass it to various
692	 * places such as devsw close() routines.  Because of that, we
693	 * need a thread pointer from the process owning the job that is
694	 * persistent and won't disappear out from under us or move to
695	 * another process.
696	 *
697	 * Currently, all the callers of this function call it to remove
698	 * an aiocblist from the current process' job list either via a
699	 * syscall or due to the current process calling exit() or
700	 * execve().  Thus, we know that p == curproc.  We also know that
701	 * curthread can't exit since we are curthread.
702	 *
703	 * Therefore, we use curthread as the thread to pass to
704	 * knlist_delete().  This does mean that it is possible for the
705	 * thread pointer at close time to differ from the thread pointer
706	 * at open time, but this is already true of file descriptors in
707	 * a multithreaded process.
708	 */
709	if (aiocbe->fd_file)
710		fdrop(aiocbe->fd_file, curthread);
711	crfree(aiocbe->cred);
712	uma_zfree(aiocb_zone, aiocbe);
713	AIO_LOCK(ki);
714
715	return (0);
716}
717
718static void
719aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp __unused)
720{
721   	aio_proc_rundown(arg, p);
722}
723
724/*
725 * Rundown the jobs for a given process.
726 */
727static void
728aio_proc_rundown(void *arg, struct proc *p)
729{
730	struct kaioinfo *ki;
731	struct aioliojob *lj;
732	struct aiocblist *cbe, *cbn;
733	struct file *fp;
734	struct socket *so;
735	int remove;
736
737	KASSERT(curthread->td_proc == p,
738	    ("%s: called on non-curproc", __func__));
739	ki = p->p_aioinfo;
740	if (ki == NULL)
741		return;
742
743	AIO_LOCK(ki);
744	ki->kaio_flags |= KAIO_RUNDOWN;
745
746restart:
747
748	/*
749	 * Try to cancel all pending requests. This code simulates
750	 * aio_cancel on all pending I/O requests.
751	 */
752	TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) {
753		remove = 0;
754		mtx_lock(&aio_job_mtx);
755		if (cbe->jobstate == JOBST_JOBQGLOBAL) {
756			TAILQ_REMOVE(&aio_jobs, cbe, list);
757			remove = 1;
758		} else if (cbe->jobstate == JOBST_JOBQSOCK) {
759			fp = cbe->fd_file;
760			MPASS(fp->f_type == DTYPE_SOCKET);
761			so = fp->f_data;
762			TAILQ_REMOVE(&so->so_aiojobq, cbe, list);
763			remove = 1;
764		} else if (cbe->jobstate == JOBST_JOBQSYNC) {
765			TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list);
766			remove = 1;
767		}
768		mtx_unlock(&aio_job_mtx);
769
770		if (remove) {
771			cbe->jobstate = JOBST_JOBFINISHED;
772			cbe->uaiocb._aiocb_private.status = -1;
773			cbe->uaiocb._aiocb_private.error = ECANCELED;
774			TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist);
775			aio_bio_done_notify(p, cbe, DONE_QUEUE);
776		}
777	}
778
779	/* Wait for all running I/O to be finished */
780	if (TAILQ_FIRST(&ki->kaio_bufqueue) ||
781	    TAILQ_FIRST(&ki->kaio_jobqueue)) {
782		ki->kaio_flags |= KAIO_WAKEUP;
783		msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz);
784		goto restart;
785	}
786
787	/* Free all completed I/O requests. */
788	while ((cbe = TAILQ_FIRST(&ki->kaio_done)) != NULL)
789		aio_free_entry(cbe);
790
791	while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) {
792		if (lj->lioj_count == 0) {
793			TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
794			knlist_delete(&lj->klist, curthread, 1);
795			PROC_LOCK(p);
796			sigqueue_take(&lj->lioj_ksi);
797			PROC_UNLOCK(p);
798			uma_zfree(aiolio_zone, lj);
799		} else {
800			panic("LIO job not cleaned up: C:%d, FC:%d\n",
801			    lj->lioj_count, lj->lioj_finished_count);
802		}
803	}
804	AIO_UNLOCK(ki);
805	taskqueue_drain(taskqueue_aiod_bio, &ki->kaio_task);
806	mtx_destroy(&ki->kaio_mtx);
807	uma_zfree(kaio_zone, ki);
808	p->p_aioinfo = NULL;
809}
810
811/*
812 * Select a job to run (called by an AIO daemon).
813 */
814static struct aiocblist *
815aio_selectjob(struct aiothreadlist *aiop)
816{
817	struct aiocblist *aiocbe;
818	struct kaioinfo *ki;
819	struct proc *userp;
820
821	mtx_assert(&aio_job_mtx, MA_OWNED);
822	TAILQ_FOREACH(aiocbe, &aio_jobs, list) {
823		userp = aiocbe->userproc;
824		ki = userp->p_aioinfo;
825
826		if (ki->kaio_active_count < ki->kaio_maxactive_count) {
827			TAILQ_REMOVE(&aio_jobs, aiocbe, list);
828			/* Account for currently active jobs. */
829			ki->kaio_active_count++;
830			aiocbe->jobstate = JOBST_JOBRUNNING;
831			break;
832		}
833	}
834	return (aiocbe);
835}
836
837/*
838 *  Move all data to a permanent storage device, this code
839 *  simulates fsync syscall.
840 */
841static int
842aio_fsync_vnode(struct thread *td, struct vnode *vp)
843{
844	struct mount *mp;
845	int error;
846
847	if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
848		goto drop;
849	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
850	if (vp->v_object != NULL) {
851		VM_OBJECT_WLOCK(vp->v_object);
852		vm_object_page_clean(vp->v_object, 0, 0, 0);
853		VM_OBJECT_WUNLOCK(vp->v_object);
854	}
855	error = VOP_FSYNC(vp, MNT_WAIT, td);
856
857	VOP_UNLOCK(vp, 0);
858	vn_finished_write(mp);
859drop:
860	return (error);
861}
862
863/*
864 * The AIO processing activity for LIO_READ/LIO_WRITE.  This is the code that
865 * does the I/O request for the non-physio version of the operations.  The
866 * normal vn operations are used, and this code should work in all instances
867 * for every type of file, including pipes, sockets, fifos, and regular files.
868 *
869 * XXX I don't think it works well for socket, pipe, and fifo.
870 */
871static void
872aio_process_rw(struct aiocblist *aiocbe)
873{
874	struct ucred *td_savedcred;
875	struct thread *td;
876	struct aiocb *cb;
877	struct file *fp;
878	struct socket *so;
879	struct uio auio;
880	struct iovec aiov;
881	int cnt;
882	int error;
883	int oublock_st, oublock_end;
884	int inblock_st, inblock_end;
885
886	KASSERT(aiocbe->uaiocb.aio_lio_opcode == LIO_READ ||
887	    aiocbe->uaiocb.aio_lio_opcode == LIO_WRITE,
888	    ("%s: opcode %d", __func__, aiocbe->uaiocb.aio_lio_opcode));
889
890	td = curthread;
891	td_savedcred = td->td_ucred;
892	td->td_ucred = aiocbe->cred;
893	cb = &aiocbe->uaiocb;
894	fp = aiocbe->fd_file;
895
896	aiov.iov_base = (void *)(uintptr_t)cb->aio_buf;
897	aiov.iov_len = cb->aio_nbytes;
898
899	auio.uio_iov = &aiov;
900	auio.uio_iovcnt = 1;
901	auio.uio_offset = cb->aio_offset;
902	auio.uio_resid = cb->aio_nbytes;
903	cnt = cb->aio_nbytes;
904	auio.uio_segflg = UIO_USERSPACE;
905	auio.uio_td = td;
906
907	inblock_st = td->td_ru.ru_inblock;
908	oublock_st = td->td_ru.ru_oublock;
909	/*
910	 * aio_aqueue() acquires a reference to the file that is
911	 * released in aio_free_entry().
912	 */
913	if (cb->aio_lio_opcode == LIO_READ) {
914		auio.uio_rw = UIO_READ;
915		if (auio.uio_resid == 0)
916			error = 0;
917		else
918			error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td);
919	} else {
920		if (fp->f_type == DTYPE_VNODE)
921			bwillwrite();
922		auio.uio_rw = UIO_WRITE;
923		error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td);
924	}
925	inblock_end = td->td_ru.ru_inblock;
926	oublock_end = td->td_ru.ru_oublock;
927
928	aiocbe->inputcharge = inblock_end - inblock_st;
929	aiocbe->outputcharge = oublock_end - oublock_st;
930
931	if ((error) && (auio.uio_resid != cnt)) {
932		if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
933			error = 0;
934		if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) {
935			int sigpipe = 1;
936			if (fp->f_type == DTYPE_SOCKET) {
937				so = fp->f_data;
938				if (so->so_options & SO_NOSIGPIPE)
939					sigpipe = 0;
940			}
941			if (sigpipe) {
942				PROC_LOCK(aiocbe->userproc);
943				kern_psignal(aiocbe->userproc, SIGPIPE);
944				PROC_UNLOCK(aiocbe->userproc);
945			}
946		}
947	}
948
949	cnt -= auio.uio_resid;
950	cb->_aiocb_private.error = error;
951	cb->_aiocb_private.status = cnt;
952	td->td_ucred = td_savedcred;
953}
954
955static void
956aio_process_sync(struct aiocblist *aiocbe)
957{
958	struct thread *td = curthread;
959	struct ucred *td_savedcred = td->td_ucred;
960	struct aiocb *cb = &aiocbe->uaiocb;
961	struct file *fp = aiocbe->fd_file;
962	int error = 0;
963
964	KASSERT(aiocbe->uaiocb.aio_lio_opcode == LIO_SYNC,
965	    ("%s: opcode %d", __func__, aiocbe->uaiocb.aio_lio_opcode));
966
967	td->td_ucred = aiocbe->cred;
968	if (fp->f_vnode != NULL)
969		error = aio_fsync_vnode(td, fp->f_vnode);
970	cb->_aiocb_private.error = error;
971	cb->_aiocb_private.status = 0;
972	td->td_ucred = td_savedcred;
973}
974
975static void
976aio_process_mlock(struct aiocblist *aiocbe)
977{
978	struct aiocb *cb = &aiocbe->uaiocb;
979	int error;
980
981	KASSERT(aiocbe->uaiocb.aio_lio_opcode == LIO_MLOCK,
982	    ("%s: opcode %d", __func__, aiocbe->uaiocb.aio_lio_opcode));
983
984	error = vm_mlock(aiocbe->userproc, aiocbe->cred,
985	    __DEVOLATILE(void *, cb->aio_buf), cb->aio_nbytes);
986	cb->_aiocb_private.error = error;
987	cb->_aiocb_private.status = 0;
988}
989
990static void
991aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type)
992{
993	struct aioliojob *lj;
994	struct kaioinfo *ki;
995	struct aiocblist *scb, *scbn;
996	int lj_done;
997
998	ki = userp->p_aioinfo;
999	AIO_LOCK_ASSERT(ki, MA_OWNED);
1000	lj = aiocbe->lio;
1001	lj_done = 0;
1002	if (lj) {
1003		lj->lioj_finished_count++;
1004		if (lj->lioj_count == lj->lioj_finished_count)
1005			lj_done = 1;
1006	}
1007	if (type == DONE_QUEUE) {
1008		aiocbe->jobflags |= AIOCBLIST_DONE;
1009	} else {
1010		aiocbe->jobflags |= AIOCBLIST_BUFDONE;
1011	}
1012	TAILQ_INSERT_TAIL(&ki->kaio_done, aiocbe, plist);
1013	aiocbe->jobstate = JOBST_JOBFINISHED;
1014
1015	if (ki->kaio_flags & KAIO_RUNDOWN)
1016		goto notification_done;
1017
1018	if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
1019	    aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID)
1020		aio_sendsig(userp, &aiocbe->uaiocb.aio_sigevent, &aiocbe->ksi);
1021
1022	KNOTE_LOCKED(&aiocbe->klist, 1);
1023
1024	if (lj_done) {
1025		if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
1026			lj->lioj_flags |= LIOJ_KEVENT_POSTED;
1027			KNOTE_LOCKED(&lj->klist, 1);
1028		}
1029		if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED))
1030		    == LIOJ_SIGNAL
1031		    && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
1032		        lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
1033			aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi);
1034			lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
1035		}
1036	}
1037
1038notification_done:
1039	if (aiocbe->jobflags & AIOCBLIST_CHECKSYNC) {
1040		TAILQ_FOREACH_SAFE(scb, &ki->kaio_syncqueue, list, scbn) {
1041			if (aiocbe->fd_file == scb->fd_file &&
1042			    aiocbe->seqno < scb->seqno) {
1043				if (--scb->pending == 0) {
1044					mtx_lock(&aio_job_mtx);
1045					scb->jobstate = JOBST_JOBQGLOBAL;
1046					TAILQ_REMOVE(&ki->kaio_syncqueue, scb, list);
1047					TAILQ_INSERT_TAIL(&aio_jobs, scb, list);
1048					aio_kick_nowait(userp);
1049					mtx_unlock(&aio_job_mtx);
1050				}
1051			}
1052		}
1053	}
1054	if (ki->kaio_flags & KAIO_WAKEUP) {
1055		ki->kaio_flags &= ~KAIO_WAKEUP;
1056		wakeup(&userp->p_aioinfo);
1057	}
1058}
1059
1060/*
1061 * The AIO daemon, most of the actual work is done in aio_process_*,
1062 * but the setup (and address space mgmt) is done in this routine.
1063 */
1064static void
1065aio_daemon(void *_id)
1066{
1067	struct aiocblist *aiocbe;
1068	struct aiothreadlist *aiop;
1069	struct kaioinfo *ki;
1070	struct proc *curcp, *mycp, *userp;
1071	struct vmspace *myvm, *tmpvm;
1072	struct thread *td = curthread;
1073	int id = (intptr_t)_id;
1074
1075	/*
1076	 * Local copies of curproc (cp) and vmspace (myvm)
1077	 */
1078	mycp = td->td_proc;
1079	myvm = mycp->p_vmspace;
1080
1081	KASSERT(mycp->p_textvp == NULL, ("kthread has a textvp"));
1082
1083	/*
1084	 * Allocate and ready the aio control info.  There is one aiop structure
1085	 * per daemon.
1086	 */
1087	aiop = uma_zalloc(aiop_zone, M_WAITOK);
1088	aiop->aiothread = td;
1089	aiop->aiothreadflags = 0;
1090
1091	/* The daemon resides in its own pgrp. */
1092	sys_setsid(td, NULL);
1093
1094	/*
1095	 * Wakeup parent process.  (Parent sleeps to keep from blasting away
1096	 * and creating too many daemons.)
1097	 */
1098	sema_post(&aio_newproc_sem);
1099
1100	mtx_lock(&aio_job_mtx);
1101	for (;;) {
1102		/*
1103		 * curcp is the current daemon process context.
1104		 * userp is the current user process context.
1105		 */
1106		curcp = mycp;
1107
1108		/*
1109		 * Take daemon off of free queue
1110		 */
1111		if (aiop->aiothreadflags & AIOP_FREE) {
1112			TAILQ_REMOVE(&aio_freeproc, aiop, list);
1113			aiop->aiothreadflags &= ~AIOP_FREE;
1114		}
1115
1116		/*
1117		 * Check for jobs.
1118		 */
1119		while ((aiocbe = aio_selectjob(aiop)) != NULL) {
1120			mtx_unlock(&aio_job_mtx);
1121			userp = aiocbe->userproc;
1122
1123			/*
1124			 * Connect to process address space for user program.
1125			 */
1126			if (userp != curcp) {
1127				/*
1128				 * Save the current address space that we are
1129				 * connected to.
1130				 */
1131				tmpvm = mycp->p_vmspace;
1132
1133				/*
1134				 * Point to the new user address space, and
1135				 * refer to it.
1136				 */
1137				mycp->p_vmspace = userp->p_vmspace;
1138				atomic_add_int(&mycp->p_vmspace->vm_refcnt, 1);
1139
1140				/* Activate the new mapping. */
1141				pmap_activate(FIRST_THREAD_IN_PROC(mycp));
1142
1143				/*
1144				 * If the old address space wasn't the daemons
1145				 * own address space, then we need to remove the
1146				 * daemon's reference from the other process
1147				 * that it was acting on behalf of.
1148				 */
1149				if (tmpvm != myvm) {
1150					vmspace_free(tmpvm);
1151				}
1152				curcp = userp;
1153			}
1154
1155			ki = userp->p_aioinfo;
1156
1157			/* Do the I/O function. */
1158			switch(aiocbe->uaiocb.aio_lio_opcode) {
1159			case LIO_READ:
1160			case LIO_WRITE:
1161				aio_process_rw(aiocbe);
1162				break;
1163			case LIO_SYNC:
1164				aio_process_sync(aiocbe);
1165				break;
1166			case LIO_MLOCK:
1167				aio_process_mlock(aiocbe);
1168				break;
1169			}
1170
1171			mtx_lock(&aio_job_mtx);
1172			/* Decrement the active job count. */
1173			ki->kaio_active_count--;
1174			mtx_unlock(&aio_job_mtx);
1175
1176			AIO_LOCK(ki);
1177			TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist);
1178			aio_bio_done_notify(userp, aiocbe, DONE_QUEUE);
1179			AIO_UNLOCK(ki);
1180
1181			mtx_lock(&aio_job_mtx);
1182		}
1183
1184		/*
1185		 * Disconnect from user address space.
1186		 */
1187		if (curcp != mycp) {
1188
1189			mtx_unlock(&aio_job_mtx);
1190
1191			/* Get the user address space to disconnect from. */
1192			tmpvm = mycp->p_vmspace;
1193
1194			/* Get original address space for daemon. */
1195			mycp->p_vmspace = myvm;
1196
1197			/* Activate the daemon's address space. */
1198			pmap_activate(FIRST_THREAD_IN_PROC(mycp));
1199#ifdef DIAGNOSTIC
1200			if (tmpvm == myvm) {
1201				printf("AIOD: vmspace problem -- %d\n",
1202				    mycp->p_pid);
1203			}
1204#endif
1205			/* Remove our vmspace reference. */
1206			vmspace_free(tmpvm);
1207
1208			curcp = mycp;
1209
1210			mtx_lock(&aio_job_mtx);
1211			/*
1212			 * We have to restart to avoid race, we only sleep if
1213			 * no job can be selected, that should be
1214			 * curcp == mycp.
1215			 */
1216			continue;
1217		}
1218
1219		mtx_assert(&aio_job_mtx, MA_OWNED);
1220
1221		TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
1222		aiop->aiothreadflags |= AIOP_FREE;
1223
1224		/*
1225		 * If daemon is inactive for a long time, allow it to exit,
1226		 * thereby freeing resources.
1227		 */
1228		if (msleep(aiop->aiothread, &aio_job_mtx, PRIBIO, "aiordy",
1229		    aiod_lifetime)) {
1230			if (TAILQ_EMPTY(&aio_jobs)) {
1231				if ((aiop->aiothreadflags & AIOP_FREE) &&
1232				    (num_aio_procs > target_aio_procs)) {
1233					TAILQ_REMOVE(&aio_freeproc, aiop, list);
1234					num_aio_procs--;
1235					mtx_unlock(&aio_job_mtx);
1236					uma_zfree(aiop_zone, aiop);
1237					free_unr(aiod_unr, id);
1238#ifdef DIAGNOSTIC
1239					if (mycp->p_vmspace->vm_refcnt <= 1) {
1240						printf("AIOD: bad vm refcnt for"
1241						    " exiting daemon: %d\n",
1242						    mycp->p_vmspace->vm_refcnt);
1243					}
1244#endif
1245					kproc_exit(0);
1246				}
1247			}
1248		}
1249	}
1250	mtx_unlock(&aio_job_mtx);
1251	panic("shouldn't be here\n");
1252}
1253
1254/*
1255 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The
1256 * AIO daemon modifies its environment itself.
1257 */
1258static int
1259aio_newproc(int *start)
1260{
1261	int error;
1262	struct proc *p;
1263	int id;
1264
1265	id = alloc_unr(aiod_unr);
1266	error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p,
1267		RFNOWAIT, 0, "aiod%d", id);
1268	if (error == 0) {
1269		/*
1270		 * Wait until daemon is started.
1271		 */
1272		sema_wait(&aio_newproc_sem);
1273		mtx_lock(&aio_job_mtx);
1274		num_aio_procs++;
1275		if (start != NULL)
1276			(*start)--;
1277		mtx_unlock(&aio_job_mtx);
1278	} else {
1279		free_unr(aiod_unr, id);
1280	}
1281	return (error);
1282}
1283
1284/*
1285 * Try the high-performance, low-overhead physio method for eligible
1286 * VCHR devices.  This method doesn't use an aio helper thread, and
1287 * thus has very low overhead.
1288 *
1289 * Assumes that the caller, aio_aqueue(), has incremented the file
1290 * structure's reference count, preventing its deallocation for the
1291 * duration of this call.
1292 */
1293static int
1294aio_qphysio(struct proc *p, struct aiocblist *aiocbe)
1295{
1296	struct aiocb *cb;
1297	struct file *fp;
1298	struct bio *bp;
1299	struct buf *pbuf;
1300	struct vnode *vp;
1301	struct cdevsw *csw;
1302	struct cdev *dev;
1303	struct kaioinfo *ki;
1304	struct aioliojob *lj;
1305	int error, ref, unmap, poff;
1306	vm_prot_t prot;
1307
1308	cb = &aiocbe->uaiocb;
1309	fp = aiocbe->fd_file;
1310
1311	if (fp == NULL || fp->f_type != DTYPE_VNODE)
1312		return (-1);
1313
1314	vp = fp->f_vnode;
1315	if (vp->v_type != VCHR)
1316		return (-1);
1317	if (vp->v_bufobj.bo_bsize == 0)
1318		return (-1);
1319	if (cb->aio_nbytes % vp->v_bufobj.bo_bsize)
1320		return (-1);
1321
1322	ref = 0;
1323	csw = devvn_refthread(vp, &dev, &ref);
1324	if (csw == NULL)
1325		return (ENXIO);
1326
1327	if ((csw->d_flags & D_DISK) == 0) {
1328		error = -1;
1329		goto unref;
1330	}
1331	if (cb->aio_nbytes > dev->si_iosize_max) {
1332		error = -1;
1333		goto unref;
1334	}
1335
1336	ki = p->p_aioinfo;
1337	poff = (vm_offset_t)cb->aio_buf & PAGE_MASK;
1338	unmap = ((dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed);
1339	if (unmap) {
1340		if (cb->aio_nbytes > MAXPHYS) {
1341			error = -1;
1342			goto unref;
1343		}
1344	} else {
1345		if (cb->aio_nbytes > MAXPHYS - poff) {
1346			error = -1;
1347			goto unref;
1348		}
1349		if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) {
1350			error = -1;
1351			goto unref;
1352		}
1353	}
1354	aiocbe->bp = bp = g_alloc_bio();
1355	if (!unmap) {
1356		aiocbe->pbuf = pbuf = (struct buf *)getpbuf(NULL);
1357		BUF_KERNPROC(pbuf);
1358	} else
1359		pbuf = NULL;
1360
1361	AIO_LOCK(ki);
1362	ki->kaio_count++;
1363	if (!unmap)
1364		ki->kaio_buffer_count++;
1365	lj = aiocbe->lio;
1366	if (lj)
1367		lj->lioj_count++;
1368	TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist);
1369	TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist);
1370	aiocbe->jobstate = JOBST_JOBQBUF;
1371	cb->_aiocb_private.status = cb->aio_nbytes;
1372	AIO_UNLOCK(ki);
1373
1374	bp->bio_length = cb->aio_nbytes;
1375	bp->bio_bcount = cb->aio_nbytes;
1376	bp->bio_done = aio_physwakeup;
1377	bp->bio_data = (void *)(uintptr_t)cb->aio_buf;
1378	bp->bio_offset = cb->aio_offset;
1379	bp->bio_cmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ;
1380	bp->bio_dev = dev;
1381	bp->bio_caller1 = (void *)aiocbe;
1382
1383	prot = VM_PROT_READ;
1384	if (cb->aio_lio_opcode == LIO_READ)
1385		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
1386	if ((aiocbe->npages = vm_fault_quick_hold_pages(
1387	    &curproc->p_vmspace->vm_map,
1388	    (vm_offset_t)bp->bio_data, bp->bio_length, prot, aiocbe->pages,
1389	    sizeof(aiocbe->pages)/sizeof(aiocbe->pages[0]))) < 0) {
1390		error = EFAULT;
1391		goto doerror;
1392	}
1393	if (!unmap) {
1394		pmap_qenter((vm_offset_t)pbuf->b_data,
1395		    aiocbe->pages, aiocbe->npages);
1396		bp->bio_data = pbuf->b_data + poff;
1397	} else {
1398		bp->bio_ma = aiocbe->pages;
1399		bp->bio_ma_n = aiocbe->npages;
1400		bp->bio_ma_offset = poff;
1401		bp->bio_data = unmapped_buf;
1402		bp->bio_flags |= BIO_UNMAPPED;
1403	}
1404
1405	atomic_add_int(&num_queue_count, 1);
1406	if (!unmap)
1407		atomic_add_int(&num_buf_aio, 1);
1408
1409	/* Perform transfer. */
1410	csw->d_strategy(bp);
1411	dev_relthread(dev, ref);
1412	return (0);
1413
1414doerror:
1415	AIO_LOCK(ki);
1416	aiocbe->jobstate = JOBST_NULL;
1417	TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist);
1418	TAILQ_REMOVE(&ki->kaio_all, aiocbe, allist);
1419	ki->kaio_count--;
1420	if (!unmap)
1421		ki->kaio_buffer_count--;
1422	if (lj)
1423		lj->lioj_count--;
1424	AIO_UNLOCK(ki);
1425	if (pbuf) {
1426		relpbuf(pbuf, NULL);
1427		aiocbe->pbuf = NULL;
1428	}
1429	g_destroy_bio(bp);
1430	aiocbe->bp = NULL;
1431unref:
1432	dev_relthread(dev, ref);
1433	return (error);
1434}
1435
1436/*
1437 * Wake up aio requests that may be serviceable now.
1438 */
1439static void
1440aio_swake_cb(struct socket *so, struct sockbuf *sb)
1441{
1442	struct aiocblist *cb, *cbn;
1443	int opcode;
1444
1445	SOCKBUF_LOCK_ASSERT(sb);
1446	if (sb == &so->so_snd)
1447		opcode = LIO_WRITE;
1448	else
1449		opcode = LIO_READ;
1450
1451	sb->sb_flags &= ~SB_AIO;
1452	mtx_lock(&aio_job_mtx);
1453	TAILQ_FOREACH_SAFE(cb, &so->so_aiojobq, list, cbn) {
1454		if (opcode == cb->uaiocb.aio_lio_opcode) {
1455			if (cb->jobstate != JOBST_JOBQSOCK)
1456				panic("invalid queue value");
1457			/* XXX
1458			 * We don't have actual sockets backend yet,
1459			 * so we simply move the requests to the generic
1460			 * file I/O backend.
1461			 */
1462			TAILQ_REMOVE(&so->so_aiojobq, cb, list);
1463			TAILQ_INSERT_TAIL(&aio_jobs, cb, list);
1464			aio_kick_nowait(cb->userproc);
1465		}
1466	}
1467	mtx_unlock(&aio_job_mtx);
1468}
1469
1470static int
1471convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig)
1472{
1473
1474	/*
1475	 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
1476	 * supported by AIO with the old sigevent structure.
1477	 */
1478	nsig->sigev_notify = osig->sigev_notify;
1479	switch (nsig->sigev_notify) {
1480	case SIGEV_NONE:
1481		break;
1482	case SIGEV_SIGNAL:
1483		nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
1484		break;
1485	case SIGEV_KEVENT:
1486		nsig->sigev_notify_kqueue =
1487		    osig->__sigev_u.__sigev_notify_kqueue;
1488		nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr;
1489		break;
1490	default:
1491		return (EINVAL);
1492	}
1493	return (0);
1494}
1495
1496static int
1497aiocb_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob)
1498{
1499	struct oaiocb *ojob;
1500	int error;
1501
1502	bzero(kjob, sizeof(struct aiocb));
1503	error = copyin(ujob, kjob, sizeof(struct oaiocb));
1504	if (error)
1505		return (error);
1506	ojob = (struct oaiocb *)kjob;
1507	return (convert_old_sigevent(&ojob->aio_sigevent, &kjob->aio_sigevent));
1508}
1509
1510static int
1511aiocb_copyin(struct aiocb *ujob, struct aiocb *kjob)
1512{
1513
1514	return (copyin(ujob, kjob, sizeof(struct aiocb)));
1515}
1516
1517static long
1518aiocb_fetch_status(struct aiocb *ujob)
1519{
1520
1521	return (fuword(&ujob->_aiocb_private.status));
1522}
1523
1524static long
1525aiocb_fetch_error(struct aiocb *ujob)
1526{
1527
1528	return (fuword(&ujob->_aiocb_private.error));
1529}
1530
1531static int
1532aiocb_store_status(struct aiocb *ujob, long status)
1533{
1534
1535	return (suword(&ujob->_aiocb_private.status, status));
1536}
1537
1538static int
1539aiocb_store_error(struct aiocb *ujob, long error)
1540{
1541
1542	return (suword(&ujob->_aiocb_private.error, error));
1543}
1544
1545static int
1546aiocb_store_kernelinfo(struct aiocb *ujob, long jobref)
1547{
1548
1549	return (suword(&ujob->_aiocb_private.kernelinfo, jobref));
1550}
1551
1552static int
1553aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
1554{
1555
1556	return (suword(ujobp, (long)ujob));
1557}
1558
1559static struct aiocb_ops aiocb_ops = {
1560	.copyin = aiocb_copyin,
1561	.fetch_status = aiocb_fetch_status,
1562	.fetch_error = aiocb_fetch_error,
1563	.store_status = aiocb_store_status,
1564	.store_error = aiocb_store_error,
1565	.store_kernelinfo = aiocb_store_kernelinfo,
1566	.store_aiocb = aiocb_store_aiocb,
1567};
1568
1569static struct aiocb_ops aiocb_ops_osigevent = {
1570	.copyin = aiocb_copyin_old_sigevent,
1571	.fetch_status = aiocb_fetch_status,
1572	.fetch_error = aiocb_fetch_error,
1573	.store_status = aiocb_store_status,
1574	.store_error = aiocb_store_error,
1575	.store_kernelinfo = aiocb_store_kernelinfo,
1576	.store_aiocb = aiocb_store_aiocb,
1577};
1578
1579/*
1580 * Queue a new AIO request.  Choosing either the threaded or direct physio VCHR
1581 * technique is done in this code.
1582 */
1583int
1584aio_aqueue(struct thread *td, struct aiocb *job, struct aioliojob *lj,
1585    int type, struct aiocb_ops *ops)
1586{
1587	struct proc *p = td->td_proc;
1588	cap_rights_t rights;
1589	struct file *fp;
1590	struct socket *so;
1591	struct aiocblist *aiocbe, *cb;
1592	struct kaioinfo *ki;
1593	struct kevent kev;
1594	struct sockbuf *sb;
1595	int opcode;
1596	int error;
1597	int fd, kqfd;
1598	int jid;
1599	u_short evflags;
1600
1601	if (p->p_aioinfo == NULL)
1602		aio_init_aioinfo(p);
1603
1604	ki = p->p_aioinfo;
1605
1606	ops->store_status(job, -1);
1607	ops->store_error(job, 0);
1608	ops->store_kernelinfo(job, -1);
1609
1610	if (num_queue_count >= max_queue_count ||
1611	    ki->kaio_count >= ki->kaio_qallowed_count) {
1612		ops->store_error(job, EAGAIN);
1613		return (EAGAIN);
1614	}
1615
1616	aiocbe = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO);
1617	knlist_init_mtx(&aiocbe->klist, AIO_MTX(ki));
1618
1619	error = ops->copyin(job, &aiocbe->uaiocb);
1620	if (error) {
1621		ops->store_error(job, error);
1622		uma_zfree(aiocb_zone, aiocbe);
1623		return (error);
1624	}
1625
1626	/* XXX: aio_nbytes is later casted to signed types. */
1627	if (aiocbe->uaiocb.aio_nbytes > INT_MAX) {
1628		uma_zfree(aiocb_zone, aiocbe);
1629		return (EINVAL);
1630	}
1631
1632	if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT &&
1633	    aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL &&
1634	    aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID &&
1635	    aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) {
1636		ops->store_error(job, EINVAL);
1637		uma_zfree(aiocb_zone, aiocbe);
1638		return (EINVAL);
1639	}
1640
1641	if ((aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
1642	     aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) &&
1643		!_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) {
1644		uma_zfree(aiocb_zone, aiocbe);
1645		return (EINVAL);
1646	}
1647
1648	ksiginfo_init(&aiocbe->ksi);
1649
1650	/* Save userspace address of the job info. */
1651	aiocbe->uuaiocb = job;
1652
1653	/* Get the opcode. */
1654	if (type != LIO_NOP)
1655		aiocbe->uaiocb.aio_lio_opcode = type;
1656	opcode = aiocbe->uaiocb.aio_lio_opcode;
1657
1658	/*
1659	 * Validate the opcode and fetch the file object for the specified
1660	 * file descriptor.
1661	 *
1662	 * XXXRW: Moved the opcode validation up here so that we don't
1663	 * retrieve a file descriptor without knowing what the capabiltity
1664	 * should be.
1665	 */
1666	fd = aiocbe->uaiocb.aio_fildes;
1667	switch (opcode) {
1668	case LIO_WRITE:
1669		error = fget_write(td, fd,
1670		    cap_rights_init(&rights, CAP_PWRITE), &fp);
1671		break;
1672	case LIO_READ:
1673		error = fget_read(td, fd,
1674		    cap_rights_init(&rights, CAP_PREAD), &fp);
1675		break;
1676	case LIO_SYNC:
1677		error = fget(td, fd, cap_rights_init(&rights, CAP_FSYNC), &fp);
1678		break;
1679	case LIO_MLOCK:
1680		fp = NULL;
1681		break;
1682	case LIO_NOP:
1683		error = fget(td, fd, cap_rights_init(&rights), &fp);
1684		break;
1685	default:
1686		error = EINVAL;
1687	}
1688	if (error) {
1689		uma_zfree(aiocb_zone, aiocbe);
1690		ops->store_error(job, error);
1691		return (error);
1692	}
1693
1694	if (opcode == LIO_SYNC && fp->f_vnode == NULL) {
1695		error = EINVAL;
1696		goto aqueue_fail;
1697	}
1698
1699	if (opcode != LIO_SYNC && aiocbe->uaiocb.aio_offset == -1LL) {
1700		error = EINVAL;
1701		goto aqueue_fail;
1702	}
1703
1704	aiocbe->fd_file = fp;
1705
1706	mtx_lock(&aio_job_mtx);
1707	jid = jobrefid++;
1708	aiocbe->seqno = jobseqno++;
1709	mtx_unlock(&aio_job_mtx);
1710	error = ops->store_kernelinfo(job, jid);
1711	if (error) {
1712		error = EINVAL;
1713		goto aqueue_fail;
1714	}
1715	aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid;
1716
1717	if (opcode == LIO_NOP) {
1718		fdrop(fp, td);
1719		uma_zfree(aiocb_zone, aiocbe);
1720		return (0);
1721	}
1722
1723	if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT)
1724		goto no_kqueue;
1725	evflags = aiocbe->uaiocb.aio_sigevent.sigev_notify_kevent_flags;
1726	if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) {
1727		error = EINVAL;
1728		goto aqueue_fail;
1729	}
1730	kqfd = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue;
1731	kev.ident = (uintptr_t)aiocbe->uuaiocb;
1732	kev.filter = EVFILT_AIO;
1733	kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags;
1734	kev.data = (intptr_t)aiocbe;
1735	kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sival_ptr;
1736	error = kqfd_register(kqfd, &kev, td, 1);
1737aqueue_fail:
1738	if (error) {
1739		if (fp)
1740			fdrop(fp, td);
1741		uma_zfree(aiocb_zone, aiocbe);
1742		ops->store_error(job, error);
1743		goto done;
1744	}
1745no_kqueue:
1746
1747	ops->store_error(job, EINPROGRESS);
1748	aiocbe->uaiocb._aiocb_private.error = EINPROGRESS;
1749	aiocbe->userproc = p;
1750	aiocbe->cred = crhold(td->td_ucred);
1751	aiocbe->jobflags = 0;
1752	aiocbe->lio = lj;
1753
1754	if (opcode == LIO_SYNC)
1755		goto queueit;
1756
1757	if (fp && fp->f_type == DTYPE_SOCKET) {
1758		/*
1759		 * Alternate queueing for socket ops: Reach down into the
1760		 * descriptor to get the socket data.  Then check to see if the
1761		 * socket is ready to be read or written (based on the requested
1762		 * operation).
1763		 *
1764		 * If it is not ready for io, then queue the aiocbe on the
1765		 * socket, and set the flags so we get a call when sbnotify()
1766		 * happens.
1767		 *
1768		 * Note if opcode is neither LIO_WRITE nor LIO_READ we lock
1769		 * and unlock the snd sockbuf for no reason.
1770		 */
1771		so = fp->f_data;
1772		sb = (opcode == LIO_READ) ? &so->so_rcv : &so->so_snd;
1773		SOCKBUF_LOCK(sb);
1774		if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode ==
1775		    LIO_WRITE) && (!sowriteable(so)))) {
1776			sb->sb_flags |= SB_AIO;
1777
1778			mtx_lock(&aio_job_mtx);
1779			TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list);
1780			mtx_unlock(&aio_job_mtx);
1781
1782			AIO_LOCK(ki);
1783			TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist);
1784			TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist);
1785			aiocbe->jobstate = JOBST_JOBQSOCK;
1786			ki->kaio_count++;
1787			if (lj)
1788				lj->lioj_count++;
1789			AIO_UNLOCK(ki);
1790			SOCKBUF_UNLOCK(sb);
1791			atomic_add_int(&num_queue_count, 1);
1792			error = 0;
1793			goto done;
1794		}
1795		SOCKBUF_UNLOCK(sb);
1796	}
1797
1798	if ((error = aio_qphysio(p, aiocbe)) == 0)
1799		goto done;
1800#if 0
1801	if (error > 0) {
1802		aiocbe->uaiocb._aiocb_private.error = error;
1803		ops->store_error(job, error);
1804		goto done;
1805	}
1806#endif
1807queueit:
1808	atomic_add_int(&num_queue_count, 1);
1809
1810	AIO_LOCK(ki);
1811	ki->kaio_count++;
1812	if (lj)
1813		lj->lioj_count++;
1814	TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist);
1815	TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist);
1816	if (opcode == LIO_SYNC) {
1817		TAILQ_FOREACH(cb, &ki->kaio_jobqueue, plist) {
1818			if (cb->fd_file == aiocbe->fd_file &&
1819			    cb->uaiocb.aio_lio_opcode != LIO_SYNC &&
1820			    cb->seqno < aiocbe->seqno) {
1821				cb->jobflags |= AIOCBLIST_CHECKSYNC;
1822				aiocbe->pending++;
1823			}
1824		}
1825		TAILQ_FOREACH(cb, &ki->kaio_bufqueue, plist) {
1826			if (cb->fd_file == aiocbe->fd_file &&
1827			    cb->uaiocb.aio_lio_opcode != LIO_SYNC &&
1828			    cb->seqno < aiocbe->seqno) {
1829				cb->jobflags |= AIOCBLIST_CHECKSYNC;
1830				aiocbe->pending++;
1831			}
1832		}
1833		if (aiocbe->pending != 0) {
1834			TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, aiocbe, list);
1835			aiocbe->jobstate = JOBST_JOBQSYNC;
1836			AIO_UNLOCK(ki);
1837			goto done;
1838		}
1839	}
1840	mtx_lock(&aio_job_mtx);
1841	TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list);
1842	aiocbe->jobstate = JOBST_JOBQGLOBAL;
1843	aio_kick_nowait(p);
1844	mtx_unlock(&aio_job_mtx);
1845	AIO_UNLOCK(ki);
1846	error = 0;
1847done:
1848	return (error);
1849}
1850
1851static void
1852aio_kick_nowait(struct proc *userp)
1853{
1854	struct kaioinfo *ki = userp->p_aioinfo;
1855	struct aiothreadlist *aiop;
1856
1857	mtx_assert(&aio_job_mtx, MA_OWNED);
1858	if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1859		TAILQ_REMOVE(&aio_freeproc, aiop, list);
1860		aiop->aiothreadflags &= ~AIOP_FREE;
1861		wakeup(aiop->aiothread);
1862	} else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) &&
1863	    ((ki->kaio_active_count + num_aio_resv_start) <
1864	    ki->kaio_maxactive_count)) {
1865		taskqueue_enqueue(taskqueue_aiod_bio, &ki->kaio_task);
1866	}
1867}
1868
1869static int
1870aio_kick(struct proc *userp)
1871{
1872	struct kaioinfo *ki = userp->p_aioinfo;
1873	struct aiothreadlist *aiop;
1874	int error, ret = 0;
1875
1876	mtx_assert(&aio_job_mtx, MA_OWNED);
1877retryproc:
1878	if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1879		TAILQ_REMOVE(&aio_freeproc, aiop, list);
1880		aiop->aiothreadflags &= ~AIOP_FREE;
1881		wakeup(aiop->aiothread);
1882	} else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) &&
1883	    ((ki->kaio_active_count + num_aio_resv_start) <
1884	    ki->kaio_maxactive_count)) {
1885		num_aio_resv_start++;
1886		mtx_unlock(&aio_job_mtx);
1887		error = aio_newproc(&num_aio_resv_start);
1888		mtx_lock(&aio_job_mtx);
1889		if (error) {
1890			num_aio_resv_start--;
1891			goto retryproc;
1892		}
1893	} else {
1894		ret = -1;
1895	}
1896	return (ret);
1897}
1898
1899static void
1900aio_kick_helper(void *context, int pending)
1901{
1902	struct proc *userp = context;
1903
1904	mtx_lock(&aio_job_mtx);
1905	while (--pending >= 0) {
1906		if (aio_kick(userp))
1907			break;
1908	}
1909	mtx_unlock(&aio_job_mtx);
1910}
1911
1912/*
1913 * Support the aio_return system call, as a side-effect, kernel resources are
1914 * released.
1915 */
1916static int
1917kern_aio_return(struct thread *td, struct aiocb *uaiocb, struct aiocb_ops *ops)
1918{
1919	struct proc *p = td->td_proc;
1920	struct aiocblist *cb;
1921	struct kaioinfo *ki;
1922	int status, error;
1923
1924	ki = p->p_aioinfo;
1925	if (ki == NULL)
1926		return (EINVAL);
1927	AIO_LOCK(ki);
1928	TAILQ_FOREACH(cb, &ki->kaio_done, plist) {
1929		if (cb->uuaiocb == uaiocb)
1930			break;
1931	}
1932	if (cb != NULL) {
1933		MPASS(cb->jobstate == JOBST_JOBFINISHED);
1934		status = cb->uaiocb._aiocb_private.status;
1935		error = cb->uaiocb._aiocb_private.error;
1936		td->td_retval[0] = status;
1937		if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
1938			td->td_ru.ru_oublock += cb->outputcharge;
1939			cb->outputcharge = 0;
1940		} else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
1941			td->td_ru.ru_inblock += cb->inputcharge;
1942			cb->inputcharge = 0;
1943		}
1944		aio_free_entry(cb);
1945		AIO_UNLOCK(ki);
1946		ops->store_error(uaiocb, error);
1947		ops->store_status(uaiocb, status);
1948	} else {
1949		error = EINVAL;
1950		AIO_UNLOCK(ki);
1951	}
1952	return (error);
1953}
1954
1955int
1956sys_aio_return(struct thread *td, struct aio_return_args *uap)
1957{
1958
1959	return (kern_aio_return(td, uap->aiocbp, &aiocb_ops));
1960}
1961
1962/*
1963 * Allow a process to wakeup when any of the I/O requests are completed.
1964 */
1965static int
1966kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist,
1967    struct timespec *ts)
1968{
1969	struct proc *p = td->td_proc;
1970	struct timeval atv;
1971	struct kaioinfo *ki;
1972	struct aiocblist *cb, *cbfirst;
1973	int error, i, timo;
1974
1975	timo = 0;
1976	if (ts) {
1977		if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1978			return (EINVAL);
1979
1980		TIMESPEC_TO_TIMEVAL(&atv, ts);
1981		if (itimerfix(&atv))
1982			return (EINVAL);
1983		timo = tvtohz(&atv);
1984	}
1985
1986	ki = p->p_aioinfo;
1987	if (ki == NULL)
1988		return (EAGAIN);
1989
1990	if (njoblist == 0)
1991		return (0);
1992
1993	AIO_LOCK(ki);
1994	for (;;) {
1995		cbfirst = NULL;
1996		error = 0;
1997		TAILQ_FOREACH(cb, &ki->kaio_all, allist) {
1998			for (i = 0; i < njoblist; i++) {
1999				if (cb->uuaiocb == ujoblist[i]) {
2000					if (cbfirst == NULL)
2001						cbfirst = cb;
2002					if (cb->jobstate == JOBST_JOBFINISHED)
2003						goto RETURN;
2004				}
2005			}
2006		}
2007		/* All tasks were finished. */
2008		if (cbfirst == NULL)
2009			break;
2010
2011		ki->kaio_flags |= KAIO_WAKEUP;
2012		error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
2013		    "aiospn", timo);
2014		if (error == ERESTART)
2015			error = EINTR;
2016		if (error)
2017			break;
2018	}
2019RETURN:
2020	AIO_UNLOCK(ki);
2021	return (error);
2022}
2023
2024int
2025sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap)
2026{
2027	struct timespec ts, *tsp;
2028	struct aiocb **ujoblist;
2029	int error;
2030
2031	if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX)
2032		return (EINVAL);
2033
2034	if (uap->timeout) {
2035		/* Get timespec struct. */
2036		if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
2037			return (error);
2038		tsp = &ts;
2039	} else
2040		tsp = NULL;
2041
2042	ujoblist = uma_zalloc(aiol_zone, M_WAITOK);
2043	error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0]));
2044	if (error == 0)
2045		error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
2046	uma_zfree(aiol_zone, ujoblist);
2047	return (error);
2048}
2049
2050/*
2051 * aio_cancel cancels any non-physio aio operations not currently in
2052 * progress.
2053 */
2054int
2055sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap)
2056{
2057	struct proc *p = td->td_proc;
2058	struct kaioinfo *ki;
2059	struct aiocblist *cbe, *cbn;
2060	struct file *fp;
2061	struct socket *so;
2062	int error;
2063	int remove;
2064	int cancelled = 0;
2065	int notcancelled = 0;
2066	struct vnode *vp;
2067
2068	/* Lookup file object. */
2069	error = fget(td, uap->fd, NULL, &fp);
2070	if (error)
2071		return (error);
2072
2073	ki = p->p_aioinfo;
2074	if (ki == NULL)
2075		goto done;
2076
2077	if (fp->f_type == DTYPE_VNODE) {
2078		vp = fp->f_vnode;
2079		if (vn_isdisk(vp, &error)) {
2080			fdrop(fp, td);
2081			td->td_retval[0] = AIO_NOTCANCELED;
2082			return (0);
2083		}
2084	}
2085
2086	AIO_LOCK(ki);
2087	TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) {
2088		if ((uap->fd == cbe->uaiocb.aio_fildes) &&
2089		    ((uap->aiocbp == NULL) ||
2090		     (uap->aiocbp == cbe->uuaiocb))) {
2091			remove = 0;
2092
2093			mtx_lock(&aio_job_mtx);
2094			if (cbe->jobstate == JOBST_JOBQGLOBAL) {
2095				TAILQ_REMOVE(&aio_jobs, cbe, list);
2096				remove = 1;
2097			} else if (cbe->jobstate == JOBST_JOBQSOCK) {
2098				MPASS(fp->f_type == DTYPE_SOCKET);
2099				so = fp->f_data;
2100				TAILQ_REMOVE(&so->so_aiojobq, cbe, list);
2101				remove = 1;
2102			} else if (cbe->jobstate == JOBST_JOBQSYNC) {
2103				TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list);
2104				remove = 1;
2105			}
2106			mtx_unlock(&aio_job_mtx);
2107
2108			if (remove) {
2109				TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist);
2110				cbe->uaiocb._aiocb_private.status = -1;
2111				cbe->uaiocb._aiocb_private.error = ECANCELED;
2112				aio_bio_done_notify(p, cbe, DONE_QUEUE);
2113				cancelled++;
2114			} else {
2115				notcancelled++;
2116			}
2117			if (uap->aiocbp != NULL)
2118				break;
2119		}
2120	}
2121	AIO_UNLOCK(ki);
2122
2123done:
2124	fdrop(fp, td);
2125
2126	if (uap->aiocbp != NULL) {
2127		if (cancelled) {
2128			td->td_retval[0] = AIO_CANCELED;
2129			return (0);
2130		}
2131	}
2132
2133	if (notcancelled) {
2134		td->td_retval[0] = AIO_NOTCANCELED;
2135		return (0);
2136	}
2137
2138	if (cancelled) {
2139		td->td_retval[0] = AIO_CANCELED;
2140		return (0);
2141	}
2142
2143	td->td_retval[0] = AIO_ALLDONE;
2144
2145	return (0);
2146}
2147
2148/*
2149 * aio_error is implemented in the kernel level for compatibility purposes
2150 * only.  For a user mode async implementation, it would be best to do it in
2151 * a userland subroutine.
2152 */
2153static int
2154kern_aio_error(struct thread *td, struct aiocb *aiocbp, struct aiocb_ops *ops)
2155{
2156	struct proc *p = td->td_proc;
2157	struct aiocblist *cb;
2158	struct kaioinfo *ki;
2159	int status;
2160
2161	ki = p->p_aioinfo;
2162	if (ki == NULL) {
2163		td->td_retval[0] = EINVAL;
2164		return (0);
2165	}
2166
2167	AIO_LOCK(ki);
2168	TAILQ_FOREACH(cb, &ki->kaio_all, allist) {
2169		if (cb->uuaiocb == aiocbp) {
2170			if (cb->jobstate == JOBST_JOBFINISHED)
2171				td->td_retval[0] =
2172					cb->uaiocb._aiocb_private.error;
2173			else
2174				td->td_retval[0] = EINPROGRESS;
2175			AIO_UNLOCK(ki);
2176			return (0);
2177		}
2178	}
2179	AIO_UNLOCK(ki);
2180
2181	/*
2182	 * Hack for failure of aio_aqueue.
2183	 */
2184	status = ops->fetch_status(aiocbp);
2185	if (status == -1) {
2186		td->td_retval[0] = ops->fetch_error(aiocbp);
2187		return (0);
2188	}
2189
2190	td->td_retval[0] = EINVAL;
2191	return (0);
2192}
2193
2194int
2195sys_aio_error(struct thread *td, struct aio_error_args *uap)
2196{
2197
2198	return (kern_aio_error(td, uap->aiocbp, &aiocb_ops));
2199}
2200
2201/* syscall - asynchronous read from a file (REALTIME) */
2202int
2203sys_oaio_read(struct thread *td, struct oaio_read_args *uap)
2204{
2205
2206	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2207	    &aiocb_ops_osigevent));
2208}
2209
2210int
2211sys_aio_read(struct thread *td, struct aio_read_args *uap)
2212{
2213
2214	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops));
2215}
2216
2217/* syscall - asynchronous write to a file (REALTIME) */
2218int
2219sys_oaio_write(struct thread *td, struct oaio_write_args *uap)
2220{
2221
2222	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2223	    &aiocb_ops_osigevent));
2224}
2225
2226int
2227sys_aio_write(struct thread *td, struct aio_write_args *uap)
2228{
2229
2230	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops));
2231}
2232
2233int
2234sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap)
2235{
2236
2237	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops));
2238}
2239
2240static int
2241kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list,
2242    struct aiocb **acb_list, int nent, struct sigevent *sig,
2243    struct aiocb_ops *ops)
2244{
2245	struct proc *p = td->td_proc;
2246	struct aiocb *iocb;
2247	struct kaioinfo *ki;
2248	struct aioliojob *lj;
2249	struct kevent kev;
2250	int error;
2251	int nerror;
2252	int i;
2253
2254	if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT))
2255		return (EINVAL);
2256
2257	if (nent < 0 || nent > AIO_LISTIO_MAX)
2258		return (EINVAL);
2259
2260	if (p->p_aioinfo == NULL)
2261		aio_init_aioinfo(p);
2262
2263	ki = p->p_aioinfo;
2264
2265	lj = uma_zalloc(aiolio_zone, M_WAITOK);
2266	lj->lioj_flags = 0;
2267	lj->lioj_count = 0;
2268	lj->lioj_finished_count = 0;
2269	knlist_init_mtx(&lj->klist, AIO_MTX(ki));
2270	ksiginfo_init(&lj->lioj_ksi);
2271
2272	/*
2273	 * Setup signal.
2274	 */
2275	if (sig && (mode == LIO_NOWAIT)) {
2276		bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal));
2277		if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2278			/* Assume only new style KEVENT */
2279			kev.filter = EVFILT_LIO;
2280			kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
2281			kev.ident = (uintptr_t)uacb_list; /* something unique */
2282			kev.data = (intptr_t)lj;
2283			/* pass user defined sigval data */
2284			kev.udata = lj->lioj_signal.sigev_value.sival_ptr;
2285			error = kqfd_register(
2286			    lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1);
2287			if (error) {
2288				uma_zfree(aiolio_zone, lj);
2289				return (error);
2290			}
2291		} else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) {
2292			;
2293		} else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2294			   lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) {
2295				if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
2296					uma_zfree(aiolio_zone, lj);
2297					return EINVAL;
2298				}
2299				lj->lioj_flags |= LIOJ_SIGNAL;
2300		} else {
2301			uma_zfree(aiolio_zone, lj);
2302			return EINVAL;
2303		}
2304	}
2305
2306	AIO_LOCK(ki);
2307	TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
2308	/*
2309	 * Add extra aiocb count to avoid the lio to be freed
2310	 * by other threads doing aio_waitcomplete or aio_return,
2311	 * and prevent event from being sent until we have queued
2312	 * all tasks.
2313	 */
2314	lj->lioj_count = 1;
2315	AIO_UNLOCK(ki);
2316
2317	/*
2318	 * Get pointers to the list of I/O requests.
2319	 */
2320	nerror = 0;
2321	for (i = 0; i < nent; i++) {
2322		iocb = acb_list[i];
2323		if (iocb != NULL) {
2324			error = aio_aqueue(td, iocb, lj, LIO_NOP, ops);
2325			if (error != 0)
2326				nerror++;
2327		}
2328	}
2329
2330	error = 0;
2331	AIO_LOCK(ki);
2332	if (mode == LIO_WAIT) {
2333		while (lj->lioj_count - 1 != lj->lioj_finished_count) {
2334			ki->kaio_flags |= KAIO_WAKEUP;
2335			error = msleep(&p->p_aioinfo, AIO_MTX(ki),
2336			    PRIBIO | PCATCH, "aiospn", 0);
2337			if (error == ERESTART)
2338				error = EINTR;
2339			if (error)
2340				break;
2341		}
2342	} else {
2343		if (lj->lioj_count - 1 == lj->lioj_finished_count) {
2344			if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2345				lj->lioj_flags |= LIOJ_KEVENT_POSTED;
2346				KNOTE_LOCKED(&lj->klist, 1);
2347			}
2348			if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED))
2349			    == LIOJ_SIGNAL
2350			    && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2351			    lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
2352				aio_sendsig(p, &lj->lioj_signal,
2353					    &lj->lioj_ksi);
2354				lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
2355			}
2356		}
2357	}
2358	lj->lioj_count--;
2359	if (lj->lioj_count == 0) {
2360		TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
2361		knlist_delete(&lj->klist, curthread, 1);
2362		PROC_LOCK(p);
2363		sigqueue_take(&lj->lioj_ksi);
2364		PROC_UNLOCK(p);
2365		AIO_UNLOCK(ki);
2366		uma_zfree(aiolio_zone, lj);
2367	} else
2368		AIO_UNLOCK(ki);
2369
2370	if (nerror)
2371		return (EIO);
2372	return (error);
2373}
2374
2375/* syscall - list directed I/O (REALTIME) */
2376int
2377sys_olio_listio(struct thread *td, struct olio_listio_args *uap)
2378{
2379	struct aiocb **acb_list;
2380	struct sigevent *sigp, sig;
2381	struct osigevent osig;
2382	int error, nent;
2383
2384	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2385		return (EINVAL);
2386
2387	nent = uap->nent;
2388	if (nent < 0 || nent > AIO_LISTIO_MAX)
2389		return (EINVAL);
2390
2391	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2392		error = copyin(uap->sig, &osig, sizeof(osig));
2393		if (error)
2394			return (error);
2395		error = convert_old_sigevent(&osig, &sig);
2396		if (error)
2397			return (error);
2398		sigp = &sig;
2399	} else
2400		sigp = NULL;
2401
2402	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2403	error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2404	if (error == 0)
2405		error = kern_lio_listio(td, uap->mode,
2406		    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
2407		    &aiocb_ops_osigevent);
2408	free(acb_list, M_LIO);
2409	return (error);
2410}
2411
2412/* syscall - list directed I/O (REALTIME) */
2413int
2414sys_lio_listio(struct thread *td, struct lio_listio_args *uap)
2415{
2416	struct aiocb **acb_list;
2417	struct sigevent *sigp, sig;
2418	int error, nent;
2419
2420	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2421		return (EINVAL);
2422
2423	nent = uap->nent;
2424	if (nent < 0 || nent > AIO_LISTIO_MAX)
2425		return (EINVAL);
2426
2427	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2428		error = copyin(uap->sig, &sig, sizeof(sig));
2429		if (error)
2430			return (error);
2431		sigp = &sig;
2432	} else
2433		sigp = NULL;
2434
2435	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2436	error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2437	if (error == 0)
2438		error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list,
2439		    nent, sigp, &aiocb_ops);
2440	free(acb_list, M_LIO);
2441	return (error);
2442}
2443
2444static void
2445aio_physwakeup(struct bio *bp)
2446{
2447	struct aiocblist *aiocbe = (struct aiocblist *)bp->bio_caller1;
2448	struct proc *userp;
2449	struct kaioinfo *ki;
2450	int nblks;
2451
2452	/* Release mapping into kernel space. */
2453	if (aiocbe->pbuf) {
2454		pmap_qremove((vm_offset_t)aiocbe->pbuf->b_data, aiocbe->npages);
2455		relpbuf(aiocbe->pbuf, NULL);
2456		aiocbe->pbuf = NULL;
2457		atomic_subtract_int(&num_buf_aio, 1);
2458	}
2459	vm_page_unhold_pages(aiocbe->pages, aiocbe->npages);
2460
2461	bp = aiocbe->bp;
2462	aiocbe->bp = NULL;
2463	userp = aiocbe->userproc;
2464	ki = userp->p_aioinfo;
2465	AIO_LOCK(ki);
2466	aiocbe->uaiocb._aiocb_private.status -= bp->bio_resid;
2467	aiocbe->uaiocb._aiocb_private.error = 0;
2468	if (bp->bio_flags & BIO_ERROR)
2469		aiocbe->uaiocb._aiocb_private.error = bp->bio_error;
2470	nblks = btodb(aiocbe->uaiocb.aio_nbytes);
2471	if (aiocbe->uaiocb.aio_lio_opcode == LIO_WRITE)
2472		aiocbe->outputcharge += nblks;
2473	else
2474		aiocbe->inputcharge += nblks;
2475	TAILQ_REMOVE(&userp->p_aioinfo->kaio_bufqueue, aiocbe, plist);
2476	ki->kaio_buffer_count--;
2477	aio_bio_done_notify(userp, aiocbe, DONE_BUF);
2478	AIO_UNLOCK(ki);
2479
2480	g_destroy_bio(bp);
2481}
2482
2483/* syscall - wait for the next completion of an aio request */
2484static int
2485kern_aio_waitcomplete(struct thread *td, struct aiocb **aiocbp,
2486    struct timespec *ts, struct aiocb_ops *ops)
2487{
2488	struct proc *p = td->td_proc;
2489	struct timeval atv;
2490	struct kaioinfo *ki;
2491	struct aiocblist *cb;
2492	struct aiocb *uuaiocb;
2493	int error, status, timo;
2494
2495	ops->store_aiocb(aiocbp, NULL);
2496
2497	timo = 0;
2498	if (ts) {
2499		if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000))
2500			return (EINVAL);
2501
2502		TIMESPEC_TO_TIMEVAL(&atv, ts);
2503		if (itimerfix(&atv))
2504			return (EINVAL);
2505		timo = tvtohz(&atv);
2506	}
2507
2508	if (p->p_aioinfo == NULL)
2509		aio_init_aioinfo(p);
2510	ki = p->p_aioinfo;
2511
2512	error = 0;
2513	cb = NULL;
2514	AIO_LOCK(ki);
2515	while ((cb = TAILQ_FIRST(&ki->kaio_done)) == NULL) {
2516		ki->kaio_flags |= KAIO_WAKEUP;
2517		error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
2518		    "aiowc", timo);
2519		if (timo && error == ERESTART)
2520			error = EINTR;
2521		if (error)
2522			break;
2523	}
2524
2525	if (cb != NULL) {
2526		MPASS(cb->jobstate == JOBST_JOBFINISHED);
2527		uuaiocb = cb->uuaiocb;
2528		status = cb->uaiocb._aiocb_private.status;
2529		error = cb->uaiocb._aiocb_private.error;
2530		td->td_retval[0] = status;
2531		if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
2532			td->td_ru.ru_oublock += cb->outputcharge;
2533			cb->outputcharge = 0;
2534		} else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
2535			td->td_ru.ru_inblock += cb->inputcharge;
2536			cb->inputcharge = 0;
2537		}
2538		aio_free_entry(cb);
2539		AIO_UNLOCK(ki);
2540		ops->store_aiocb(aiocbp, uuaiocb);
2541		ops->store_error(uuaiocb, error);
2542		ops->store_status(uuaiocb, status);
2543	} else
2544		AIO_UNLOCK(ki);
2545
2546	return (error);
2547}
2548
2549int
2550sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap)
2551{
2552	struct timespec ts, *tsp;
2553	int error;
2554
2555	if (uap->timeout) {
2556		/* Get timespec struct. */
2557		error = copyin(uap->timeout, &ts, sizeof(ts));
2558		if (error)
2559			return (error);
2560		tsp = &ts;
2561	} else
2562		tsp = NULL;
2563
2564	return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops));
2565}
2566
2567static int
2568kern_aio_fsync(struct thread *td, int op, struct aiocb *aiocbp,
2569    struct aiocb_ops *ops)
2570{
2571
2572	if (op != O_SYNC) /* XXX lack of O_DSYNC */
2573		return (EINVAL);
2574	return (aio_aqueue(td, aiocbp, NULL, LIO_SYNC, ops));
2575}
2576
2577int
2578sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap)
2579{
2580
2581	return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops));
2582}
2583
2584/* kqueue attach function */
2585static int
2586filt_aioattach(struct knote *kn)
2587{
2588	struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata;
2589
2590	/*
2591	 * The aiocbe pointer must be validated before using it, so
2592	 * registration is restricted to the kernel; the user cannot
2593	 * set EV_FLAG1.
2594	 */
2595	if ((kn->kn_flags & EV_FLAG1) == 0)
2596		return (EPERM);
2597	kn->kn_ptr.p_aio = aiocbe;
2598	kn->kn_flags &= ~EV_FLAG1;
2599
2600	knlist_add(&aiocbe->klist, kn, 0);
2601
2602	return (0);
2603}
2604
2605/* kqueue detach function */
2606static void
2607filt_aiodetach(struct knote *kn)
2608{
2609	struct knlist *knl;
2610
2611	knl = &kn->kn_ptr.p_aio->klist;
2612	knl->kl_lock(knl->kl_lockarg);
2613	if (!knlist_empty(knl))
2614		knlist_remove(knl, kn, 1);
2615	knl->kl_unlock(knl->kl_lockarg);
2616}
2617
2618/* kqueue filter function */
2619/*ARGSUSED*/
2620static int
2621filt_aio(struct knote *kn, long hint)
2622{
2623	struct aiocblist *aiocbe = kn->kn_ptr.p_aio;
2624
2625	kn->kn_data = aiocbe->uaiocb._aiocb_private.error;
2626	if (aiocbe->jobstate != JOBST_JOBFINISHED)
2627		return (0);
2628	kn->kn_flags |= EV_EOF;
2629	return (1);
2630}
2631
2632/* kqueue attach function */
2633static int
2634filt_lioattach(struct knote *kn)
2635{
2636	struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata;
2637
2638	/*
2639	 * The aioliojob pointer must be validated before using it, so
2640	 * registration is restricted to the kernel; the user cannot
2641	 * set EV_FLAG1.
2642	 */
2643	if ((kn->kn_flags & EV_FLAG1) == 0)
2644		return (EPERM);
2645	kn->kn_ptr.p_lio = lj;
2646	kn->kn_flags &= ~EV_FLAG1;
2647
2648	knlist_add(&lj->klist, kn, 0);
2649
2650	return (0);
2651}
2652
2653/* kqueue detach function */
2654static void
2655filt_liodetach(struct knote *kn)
2656{
2657	struct knlist *knl;
2658
2659	knl = &kn->kn_ptr.p_lio->klist;
2660	knl->kl_lock(knl->kl_lockarg);
2661	if (!knlist_empty(knl))
2662		knlist_remove(knl, kn, 1);
2663	knl->kl_unlock(knl->kl_lockarg);
2664}
2665
2666/* kqueue filter function */
2667/*ARGSUSED*/
2668static int
2669filt_lio(struct knote *kn, long hint)
2670{
2671	struct aioliojob * lj = kn->kn_ptr.p_lio;
2672
2673	return (lj->lioj_flags & LIOJ_KEVENT_POSTED);
2674}
2675
2676#ifdef COMPAT_FREEBSD32
2677
2678struct __aiocb_private32 {
2679	int32_t	status;
2680	int32_t	error;
2681	uint32_t kernelinfo;
2682};
2683
2684typedef struct oaiocb32 {
2685	int	aio_fildes;		/* File descriptor */
2686	uint64_t aio_offset __packed;	/* File offset for I/O */
2687	uint32_t aio_buf;		/* I/O buffer in process space */
2688	uint32_t aio_nbytes;		/* Number of bytes for I/O */
2689	struct	osigevent32 aio_sigevent; /* Signal to deliver */
2690	int	aio_lio_opcode;		/* LIO opcode */
2691	int	aio_reqprio;		/* Request priority -- ignored */
2692	struct	__aiocb_private32 _aiocb_private;
2693} oaiocb32_t;
2694
2695typedef struct aiocb32 {
2696	int32_t	aio_fildes;		/* File descriptor */
2697	uint64_t aio_offset __packed;	/* File offset for I/O */
2698	uint32_t aio_buf;		/* I/O buffer in process space */
2699	uint32_t aio_nbytes;		/* Number of bytes for I/O */
2700	int	__spare__[2];
2701	uint32_t __spare2__;
2702	int	aio_lio_opcode;		/* LIO opcode */
2703	int	aio_reqprio;		/* Request priority -- ignored */
2704	struct __aiocb_private32 _aiocb_private;
2705	struct sigevent32 aio_sigevent;	/* Signal to deliver */
2706} aiocb32_t;
2707
2708static int
2709convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig)
2710{
2711
2712	/*
2713	 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
2714	 * supported by AIO with the old sigevent structure.
2715	 */
2716	CP(*osig, *nsig, sigev_notify);
2717	switch (nsig->sigev_notify) {
2718	case SIGEV_NONE:
2719		break;
2720	case SIGEV_SIGNAL:
2721		nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
2722		break;
2723	case SIGEV_KEVENT:
2724		nsig->sigev_notify_kqueue =
2725		    osig->__sigev_u.__sigev_notify_kqueue;
2726		PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr);
2727		break;
2728	default:
2729		return (EINVAL);
2730	}
2731	return (0);
2732}
2733
2734static int
2735aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob)
2736{
2737	struct oaiocb32 job32;
2738	int error;
2739
2740	bzero(kjob, sizeof(struct aiocb));
2741	error = copyin(ujob, &job32, sizeof(job32));
2742	if (error)
2743		return (error);
2744
2745	CP(job32, *kjob, aio_fildes);
2746	CP(job32, *kjob, aio_offset);
2747	PTRIN_CP(job32, *kjob, aio_buf);
2748	CP(job32, *kjob, aio_nbytes);
2749	CP(job32, *kjob, aio_lio_opcode);
2750	CP(job32, *kjob, aio_reqprio);
2751	CP(job32, *kjob, _aiocb_private.status);
2752	CP(job32, *kjob, _aiocb_private.error);
2753	PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo);
2754	return (convert_old_sigevent32(&job32.aio_sigevent,
2755	    &kjob->aio_sigevent));
2756}
2757
2758static int
2759aiocb32_copyin(struct aiocb *ujob, struct aiocb *kjob)
2760{
2761	struct aiocb32 job32;
2762	int error;
2763
2764	error = copyin(ujob, &job32, sizeof(job32));
2765	if (error)
2766		return (error);
2767	CP(job32, *kjob, aio_fildes);
2768	CP(job32, *kjob, aio_offset);
2769	PTRIN_CP(job32, *kjob, aio_buf);
2770	CP(job32, *kjob, aio_nbytes);
2771	CP(job32, *kjob, aio_lio_opcode);
2772	CP(job32, *kjob, aio_reqprio);
2773	CP(job32, *kjob, _aiocb_private.status);
2774	CP(job32, *kjob, _aiocb_private.error);
2775	PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo);
2776	return (convert_sigevent32(&job32.aio_sigevent, &kjob->aio_sigevent));
2777}
2778
2779static long
2780aiocb32_fetch_status(struct aiocb *ujob)
2781{
2782	struct aiocb32 *ujob32;
2783
2784	ujob32 = (struct aiocb32 *)ujob;
2785	return (fuword32(&ujob32->_aiocb_private.status));
2786}
2787
2788static long
2789aiocb32_fetch_error(struct aiocb *ujob)
2790{
2791	struct aiocb32 *ujob32;
2792
2793	ujob32 = (struct aiocb32 *)ujob;
2794	return (fuword32(&ujob32->_aiocb_private.error));
2795}
2796
2797static int
2798aiocb32_store_status(struct aiocb *ujob, long status)
2799{
2800	struct aiocb32 *ujob32;
2801
2802	ujob32 = (struct aiocb32 *)ujob;
2803	return (suword32(&ujob32->_aiocb_private.status, status));
2804}
2805
2806static int
2807aiocb32_store_error(struct aiocb *ujob, long error)
2808{
2809	struct aiocb32 *ujob32;
2810
2811	ujob32 = (struct aiocb32 *)ujob;
2812	return (suword32(&ujob32->_aiocb_private.error, error));
2813}
2814
2815static int
2816aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref)
2817{
2818	struct aiocb32 *ujob32;
2819
2820	ujob32 = (struct aiocb32 *)ujob;
2821	return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref));
2822}
2823
2824static int
2825aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
2826{
2827
2828	return (suword32(ujobp, (long)ujob));
2829}
2830
2831static struct aiocb_ops aiocb32_ops = {
2832	.copyin = aiocb32_copyin,
2833	.fetch_status = aiocb32_fetch_status,
2834	.fetch_error = aiocb32_fetch_error,
2835	.store_status = aiocb32_store_status,
2836	.store_error = aiocb32_store_error,
2837	.store_kernelinfo = aiocb32_store_kernelinfo,
2838	.store_aiocb = aiocb32_store_aiocb,
2839};
2840
2841static struct aiocb_ops aiocb32_ops_osigevent = {
2842	.copyin = aiocb32_copyin_old_sigevent,
2843	.fetch_status = aiocb32_fetch_status,
2844	.fetch_error = aiocb32_fetch_error,
2845	.store_status = aiocb32_store_status,
2846	.store_error = aiocb32_store_error,
2847	.store_kernelinfo = aiocb32_store_kernelinfo,
2848	.store_aiocb = aiocb32_store_aiocb,
2849};
2850
2851int
2852freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap)
2853{
2854
2855	return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2856}
2857
2858int
2859freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap)
2860{
2861	struct timespec32 ts32;
2862	struct timespec ts, *tsp;
2863	struct aiocb **ujoblist;
2864	uint32_t *ujoblist32;
2865	int error, i;
2866
2867	if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX)
2868		return (EINVAL);
2869
2870	if (uap->timeout) {
2871		/* Get timespec struct. */
2872		if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0)
2873			return (error);
2874		CP(ts32, ts, tv_sec);
2875		CP(ts32, ts, tv_nsec);
2876		tsp = &ts;
2877	} else
2878		tsp = NULL;
2879
2880	ujoblist = uma_zalloc(aiol_zone, M_WAITOK);
2881	ujoblist32 = (uint32_t *)ujoblist;
2882	error = copyin(uap->aiocbp, ujoblist32, uap->nent *
2883	    sizeof(ujoblist32[0]));
2884	if (error == 0) {
2885		for (i = uap->nent; i > 0; i--)
2886			ujoblist[i] = PTRIN(ujoblist32[i]);
2887
2888		error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
2889	}
2890	uma_zfree(aiol_zone, ujoblist);
2891	return (error);
2892}
2893
2894int
2895freebsd32_aio_cancel(struct thread *td, struct freebsd32_aio_cancel_args *uap)
2896{
2897
2898	return (sys_aio_cancel(td, (struct aio_cancel_args *)uap));
2899}
2900
2901int
2902freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap)
2903{
2904
2905	return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2906}
2907
2908int
2909freebsd32_oaio_read(struct thread *td, struct freebsd32_oaio_read_args *uap)
2910{
2911
2912	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2913	    &aiocb32_ops_osigevent));
2914}
2915
2916int
2917freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap)
2918{
2919
2920	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2921	    &aiocb32_ops));
2922}
2923
2924int
2925freebsd32_oaio_write(struct thread *td, struct freebsd32_oaio_write_args *uap)
2926{
2927
2928	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2929	    &aiocb32_ops_osigevent));
2930}
2931
2932int
2933freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap)
2934{
2935
2936	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2937	    &aiocb32_ops));
2938}
2939
2940int
2941freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap)
2942{
2943
2944	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK,
2945	    &aiocb32_ops));
2946}
2947
2948int
2949freebsd32_aio_waitcomplete(struct thread *td,
2950    struct freebsd32_aio_waitcomplete_args *uap)
2951{
2952	struct timespec32 ts32;
2953	struct timespec ts, *tsp;
2954	int error;
2955
2956	if (uap->timeout) {
2957		/* Get timespec struct. */
2958		error = copyin(uap->timeout, &ts32, sizeof(ts32));
2959		if (error)
2960			return (error);
2961		CP(ts32, ts, tv_sec);
2962		CP(ts32, ts, tv_nsec);
2963		tsp = &ts;
2964	} else
2965		tsp = NULL;
2966
2967	return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp,
2968	    &aiocb32_ops));
2969}
2970
2971int
2972freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap)
2973{
2974
2975	return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp,
2976	    &aiocb32_ops));
2977}
2978
2979int
2980freebsd32_olio_listio(struct thread *td, struct freebsd32_olio_listio_args *uap)
2981{
2982	struct aiocb **acb_list;
2983	struct sigevent *sigp, sig;
2984	struct osigevent32 osig;
2985	uint32_t *acb_list32;
2986	int error, i, nent;
2987
2988	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2989		return (EINVAL);
2990
2991	nent = uap->nent;
2992	if (nent < 0 || nent > AIO_LISTIO_MAX)
2993		return (EINVAL);
2994
2995	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2996		error = copyin(uap->sig, &osig, sizeof(osig));
2997		if (error)
2998			return (error);
2999		error = convert_old_sigevent32(&osig, &sig);
3000		if (error)
3001			return (error);
3002		sigp = &sig;
3003	} else
3004		sigp = NULL;
3005
3006	acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
3007	error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
3008	if (error) {
3009		free(acb_list32, M_LIO);
3010		return (error);
3011	}
3012	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
3013	for (i = 0; i < nent; i++)
3014		acb_list[i] = PTRIN(acb_list32[i]);
3015	free(acb_list32, M_LIO);
3016
3017	error = kern_lio_listio(td, uap->mode,
3018	    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
3019	    &aiocb32_ops_osigevent);
3020	free(acb_list, M_LIO);
3021	return (error);
3022}
3023
3024int
3025freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap)
3026{
3027	struct aiocb **acb_list;
3028	struct sigevent *sigp, sig;
3029	struct sigevent32 sig32;
3030	uint32_t *acb_list32;
3031	int error, i, nent;
3032
3033	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
3034		return (EINVAL);
3035
3036	nent = uap->nent;
3037	if (nent < 0 || nent > AIO_LISTIO_MAX)
3038		return (EINVAL);
3039
3040	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
3041		error = copyin(uap->sig, &sig32, sizeof(sig32));
3042		if (error)
3043			return (error);
3044		error = convert_sigevent32(&sig32, &sig);
3045		if (error)
3046			return (error);
3047		sigp = &sig;
3048	} else
3049		sigp = NULL;
3050
3051	acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
3052	error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
3053	if (error) {
3054		free(acb_list32, M_LIO);
3055		return (error);
3056	}
3057	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
3058	for (i = 0; i < nent; i++)
3059		acb_list[i] = PTRIN(acb_list32[i]);
3060	free(acb_list32, M_LIO);
3061
3062	error = kern_lio_listio(td, uap->mode,
3063	    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
3064	    &aiocb32_ops);
3065	free(acb_list, M_LIO);
3066	return (error);
3067}
3068
3069#endif
3070