subr_bus.c revision 295131
1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/10/sys/kern/subr_bus.c 295131 2016-02-01 23:07:31Z jhb $");
29
30#include "opt_bus.h"
31#include "opt_random.h"
32
33#include <sys/param.h>
34#include <sys/conf.h>
35#include <sys/filio.h>
36#include <sys/lock.h>
37#include <sys/kernel.h>
38#include <sys/kobj.h>
39#include <sys/limits.h>
40#include <sys/malloc.h>
41#include <sys/module.h>
42#include <sys/mutex.h>
43#include <sys/poll.h>
44#include <sys/priv.h>
45#include <sys/proc.h>
46#include <sys/condvar.h>
47#include <sys/queue.h>
48#include <machine/bus.h>
49#include <sys/random.h>
50#include <sys/rman.h>
51#include <sys/selinfo.h>
52#include <sys/signalvar.h>
53#include <sys/sysctl.h>
54#include <sys/systm.h>
55#include <sys/uio.h>
56#include <sys/bus.h>
57#include <sys/interrupt.h>
58#include <sys/cpuset.h>
59
60#include <net/vnet.h>
61
62#include <machine/cpu.h>
63#include <machine/stdarg.h>
64
65#include <vm/uma.h>
66
67SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
68SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
69
70/*
71 * Used to attach drivers to devclasses.
72 */
73typedef struct driverlink *driverlink_t;
74struct driverlink {
75	kobj_class_t	driver;
76	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
77	int		pass;
78	TAILQ_ENTRY(driverlink) passlink;
79};
80
81/*
82 * Forward declarations
83 */
84typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
85typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
86typedef TAILQ_HEAD(device_list, device) device_list_t;
87
88struct devclass {
89	TAILQ_ENTRY(devclass) link;
90	devclass_t	parent;		/* parent in devclass hierarchy */
91	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
92	char		*name;
93	device_t	*devices;	/* array of devices indexed by unit */
94	int		maxunit;	/* size of devices array */
95	int		flags;
96#define DC_HAS_CHILDREN		1
97
98	struct sysctl_ctx_list sysctl_ctx;
99	struct sysctl_oid *sysctl_tree;
100};
101
102/**
103 * @brief Implementation of device.
104 */
105struct device {
106	/*
107	 * A device is a kernel object. The first field must be the
108	 * current ops table for the object.
109	 */
110	KOBJ_FIELDS;
111
112	/*
113	 * Device hierarchy.
114	 */
115	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
116	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
117	device_t	parent;		/**< parent of this device  */
118	device_list_t	children;	/**< list of child devices */
119
120	/*
121	 * Details of this device.
122	 */
123	driver_t	*driver;	/**< current driver */
124	devclass_t	devclass;	/**< current device class */
125	int		unit;		/**< current unit number */
126	char*		nameunit;	/**< name+unit e.g. foodev0 */
127	char*		desc;		/**< driver specific description */
128	int		busy;		/**< count of calls to device_busy() */
129	device_state_t	state;		/**< current device state  */
130	uint32_t	devflags;	/**< api level flags for device_get_flags() */
131	u_int		flags;		/**< internal device flags  */
132#define	DF_ENABLED	0x01		/* device should be probed/attached */
133#define	DF_FIXEDCLASS	0x02		/* devclass specified at create time */
134#define	DF_WILDCARD	0x04		/* unit was originally wildcard */
135#define	DF_DESCMALLOCED	0x08		/* description was malloced */
136#define	DF_QUIET	0x10		/* don't print verbose attach message */
137#define	DF_DONENOMATCH	0x20		/* don't execute DEVICE_NOMATCH again */
138#define	DF_EXTERNALSOFTC 0x40		/* softc not allocated by us */
139#define	DF_REBID	0x80		/* Can rebid after attach */
140	u_int	order;			/**< order from device_add_child_ordered() */
141	void	*ivars;			/**< instance variables  */
142	void	*softc;			/**< current driver's variables  */
143
144	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
145	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
146};
147
148static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
149static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
150
151static void devctl2_init(void);
152
153#ifdef BUS_DEBUG
154
155static int bus_debug = 1;
156TUNABLE_INT("bus.debug", &bus_debug);
157SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
158    "Debug bus code");
159
160#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
161#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
162#define DRIVERNAME(d)	((d)? d->name : "no driver")
163#define DEVCLANAME(d)	((d)? d->name : "no devclass")
164
165/**
166 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
167 * prevent syslog from deleting initial spaces
168 */
169#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
170
171static void print_device_short(device_t dev, int indent);
172static void print_device(device_t dev, int indent);
173void print_device_tree_short(device_t dev, int indent);
174void print_device_tree(device_t dev, int indent);
175static void print_driver_short(driver_t *driver, int indent);
176static void print_driver(driver_t *driver, int indent);
177static void print_driver_list(driver_list_t drivers, int indent);
178static void print_devclass_short(devclass_t dc, int indent);
179static void print_devclass(devclass_t dc, int indent);
180void print_devclass_list_short(void);
181void print_devclass_list(void);
182
183#else
184/* Make the compiler ignore the function calls */
185#define PDEBUG(a)			/* nop */
186#define DEVICENAME(d)			/* nop */
187#define DRIVERNAME(d)			/* nop */
188#define DEVCLANAME(d)			/* nop */
189
190#define print_device_short(d,i)		/* nop */
191#define print_device(d,i)		/* nop */
192#define print_device_tree_short(d,i)	/* nop */
193#define print_device_tree(d,i)		/* nop */
194#define print_driver_short(d,i)		/* nop */
195#define print_driver(d,i)		/* nop */
196#define print_driver_list(d,i)		/* nop */
197#define print_devclass_short(d,i)	/* nop */
198#define print_devclass(d,i)		/* nop */
199#define print_devclass_list_short()	/* nop */
200#define print_devclass_list()		/* nop */
201#endif
202
203/*
204 * dev sysctl tree
205 */
206
207enum {
208	DEVCLASS_SYSCTL_PARENT,
209};
210
211static int
212devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
213{
214	devclass_t dc = (devclass_t)arg1;
215	const char *value;
216
217	switch (arg2) {
218	case DEVCLASS_SYSCTL_PARENT:
219		value = dc->parent ? dc->parent->name : "";
220		break;
221	default:
222		return (EINVAL);
223	}
224	return (SYSCTL_OUT(req, value, strlen(value)));
225}
226
227static void
228devclass_sysctl_init(devclass_t dc)
229{
230
231	if (dc->sysctl_tree != NULL)
232		return;
233	sysctl_ctx_init(&dc->sysctl_ctx);
234	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
235	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
236	    CTLFLAG_RD, NULL, "");
237	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
238	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
239	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
240	    "parent class");
241}
242
243enum {
244	DEVICE_SYSCTL_DESC,
245	DEVICE_SYSCTL_DRIVER,
246	DEVICE_SYSCTL_LOCATION,
247	DEVICE_SYSCTL_PNPINFO,
248	DEVICE_SYSCTL_PARENT,
249};
250
251static int
252device_sysctl_handler(SYSCTL_HANDLER_ARGS)
253{
254	device_t dev = (device_t)arg1;
255	const char *value;
256	char *buf;
257	int error;
258
259	buf = NULL;
260	switch (arg2) {
261	case DEVICE_SYSCTL_DESC:
262		value = dev->desc ? dev->desc : "";
263		break;
264	case DEVICE_SYSCTL_DRIVER:
265		value = dev->driver ? dev->driver->name : "";
266		break;
267	case DEVICE_SYSCTL_LOCATION:
268		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
269		bus_child_location_str(dev, buf, 1024);
270		break;
271	case DEVICE_SYSCTL_PNPINFO:
272		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
273		bus_child_pnpinfo_str(dev, buf, 1024);
274		break;
275	case DEVICE_SYSCTL_PARENT:
276		value = dev->parent ? dev->parent->nameunit : "";
277		break;
278	default:
279		return (EINVAL);
280	}
281	error = SYSCTL_OUT(req, value, strlen(value));
282	if (buf != NULL)
283		free(buf, M_BUS);
284	return (error);
285}
286
287static void
288device_sysctl_init(device_t dev)
289{
290	devclass_t dc = dev->devclass;
291	int domain;
292
293	if (dev->sysctl_tree != NULL)
294		return;
295	devclass_sysctl_init(dc);
296	sysctl_ctx_init(&dev->sysctl_ctx);
297	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
298	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
299	    dev->nameunit + strlen(dc->name),
300	    CTLFLAG_RD, NULL, "");
301	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
302	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
303	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
304	    "device description");
305	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
306	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
307	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
308	    "device driver name");
309	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
310	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
311	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
312	    "device location relative to parent");
313	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
314	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
315	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
316	    "device identification");
317	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
318	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
319	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
320	    "parent device");
321	if (bus_get_domain(dev, &domain) == 0)
322		SYSCTL_ADD_INT(&dev->sysctl_ctx,
323		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
324		    CTLFLAG_RD, NULL, domain, "NUMA domain");
325}
326
327static void
328device_sysctl_update(device_t dev)
329{
330	devclass_t dc = dev->devclass;
331
332	if (dev->sysctl_tree == NULL)
333		return;
334	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
335}
336
337static void
338device_sysctl_fini(device_t dev)
339{
340	if (dev->sysctl_tree == NULL)
341		return;
342	sysctl_ctx_free(&dev->sysctl_ctx);
343	dev->sysctl_tree = NULL;
344}
345
346/*
347 * /dev/devctl implementation
348 */
349
350/*
351 * This design allows only one reader for /dev/devctl.  This is not desirable
352 * in the long run, but will get a lot of hair out of this implementation.
353 * Maybe we should make this device a clonable device.
354 *
355 * Also note: we specifically do not attach a device to the device_t tree
356 * to avoid potential chicken and egg problems.  One could argue that all
357 * of this belongs to the root node.  One could also further argue that the
358 * sysctl interface that we have not might more properly be an ioctl
359 * interface, but at this stage of the game, I'm not inclined to rock that
360 * boat.
361 *
362 * I'm also not sure that the SIGIO support is done correctly or not, as
363 * I copied it from a driver that had SIGIO support that likely hasn't been
364 * tested since 3.4 or 2.2.8!
365 */
366
367/* Deprecated way to adjust queue length */
368static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
369/* XXX Need to support old-style tunable hw.bus.devctl_disable" */
370SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW |
371    CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I",
372    "devctl disable -- deprecated");
373
374#define DEVCTL_DEFAULT_QUEUE_LEN 1000
375static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
376static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
377TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
378SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW |
379    CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
380
381static d_open_t		devopen;
382static d_close_t	devclose;
383static d_read_t		devread;
384static d_ioctl_t	devioctl;
385static d_poll_t		devpoll;
386static d_kqfilter_t	devkqfilter;
387
388static struct cdevsw dev_cdevsw = {
389	.d_version =	D_VERSION,
390	.d_open =	devopen,
391	.d_close =	devclose,
392	.d_read =	devread,
393	.d_ioctl =	devioctl,
394	.d_poll =	devpoll,
395	.d_kqfilter =	devkqfilter,
396	.d_name =	"devctl",
397};
398
399struct dev_event_info
400{
401	char *dei_data;
402	TAILQ_ENTRY(dev_event_info) dei_link;
403};
404
405TAILQ_HEAD(devq, dev_event_info);
406
407static struct dev_softc
408{
409	int	inuse;
410	int	nonblock;
411	int	queued;
412	int	async;
413	struct mtx mtx;
414	struct cv cv;
415	struct selinfo sel;
416	struct devq devq;
417	struct sigio *sigio;
418} devsoftc;
419
420static void	filt_devctl_detach(struct knote *kn);
421static int	filt_devctl_read(struct knote *kn, long hint);
422
423struct filterops devctl_rfiltops = {
424	.f_isfd = 1,
425	.f_detach = filt_devctl_detach,
426	.f_event = filt_devctl_read,
427};
428
429static struct cdev *devctl_dev;
430
431static void
432devinit(void)
433{
434	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
435	    UID_ROOT, GID_WHEEL, 0600, "devctl");
436	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
437	cv_init(&devsoftc.cv, "dev cv");
438	TAILQ_INIT(&devsoftc.devq);
439	knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx);
440	devctl2_init();
441}
442
443static int
444devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
445{
446
447	mtx_lock(&devsoftc.mtx);
448	if (devsoftc.inuse) {
449		mtx_unlock(&devsoftc.mtx);
450		return (EBUSY);
451	}
452	/* move to init */
453	devsoftc.inuse = 1;
454	mtx_unlock(&devsoftc.mtx);
455	return (0);
456}
457
458static int
459devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
460{
461
462	mtx_lock(&devsoftc.mtx);
463	devsoftc.inuse = 0;
464	devsoftc.nonblock = 0;
465	devsoftc.async = 0;
466	cv_broadcast(&devsoftc.cv);
467	funsetown(&devsoftc.sigio);
468	mtx_unlock(&devsoftc.mtx);
469	return (0);
470}
471
472/*
473 * The read channel for this device is used to report changes to
474 * userland in realtime.  We are required to free the data as well as
475 * the n1 object because we allocate them separately.  Also note that
476 * we return one record at a time.  If you try to read this device a
477 * character at a time, you will lose the rest of the data.  Listening
478 * programs are expected to cope.
479 */
480static int
481devread(struct cdev *dev, struct uio *uio, int ioflag)
482{
483	struct dev_event_info *n1;
484	int rv;
485
486	mtx_lock(&devsoftc.mtx);
487	while (TAILQ_EMPTY(&devsoftc.devq)) {
488		if (devsoftc.nonblock) {
489			mtx_unlock(&devsoftc.mtx);
490			return (EAGAIN);
491		}
492		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
493		if (rv) {
494			/*
495			 * Need to translate ERESTART to EINTR here? -- jake
496			 */
497			mtx_unlock(&devsoftc.mtx);
498			return (rv);
499		}
500	}
501	n1 = TAILQ_FIRST(&devsoftc.devq);
502	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
503	devsoftc.queued--;
504	mtx_unlock(&devsoftc.mtx);
505	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
506	free(n1->dei_data, M_BUS);
507	free(n1, M_BUS);
508	return (rv);
509}
510
511static	int
512devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
513{
514	switch (cmd) {
515
516	case FIONBIO:
517		if (*(int*)data)
518			devsoftc.nonblock = 1;
519		else
520			devsoftc.nonblock = 0;
521		return (0);
522	case FIOASYNC:
523		if (*(int*)data)
524			devsoftc.async = 1;
525		else
526			devsoftc.async = 0;
527		return (0);
528	case FIOSETOWN:
529		return fsetown(*(int *)data, &devsoftc.sigio);
530	case FIOGETOWN:
531		*(int *)data = fgetown(&devsoftc.sigio);
532		return (0);
533
534		/* (un)Support for other fcntl() calls. */
535	case FIOCLEX:
536	case FIONCLEX:
537	case FIONREAD:
538	default:
539		break;
540	}
541	return (ENOTTY);
542}
543
544static	int
545devpoll(struct cdev *dev, int events, struct thread *td)
546{
547	int	revents = 0;
548
549	mtx_lock(&devsoftc.mtx);
550	if (events & (POLLIN | POLLRDNORM)) {
551		if (!TAILQ_EMPTY(&devsoftc.devq))
552			revents = events & (POLLIN | POLLRDNORM);
553		else
554			selrecord(td, &devsoftc.sel);
555	}
556	mtx_unlock(&devsoftc.mtx);
557
558	return (revents);
559}
560
561static int
562devkqfilter(struct cdev *dev, struct knote *kn)
563{
564	int error;
565
566	if (kn->kn_filter == EVFILT_READ) {
567		kn->kn_fop = &devctl_rfiltops;
568		knlist_add(&devsoftc.sel.si_note, kn, 0);
569		error = 0;
570	} else
571		error = EINVAL;
572	return (error);
573}
574
575static void
576filt_devctl_detach(struct knote *kn)
577{
578
579	knlist_remove(&devsoftc.sel.si_note, kn, 0);
580}
581
582static int
583filt_devctl_read(struct knote *kn, long hint)
584{
585	kn->kn_data = devsoftc.queued;
586	return (kn->kn_data != 0);
587}
588
589/**
590 * @brief Return whether the userland process is running
591 */
592boolean_t
593devctl_process_running(void)
594{
595	return (devsoftc.inuse == 1);
596}
597
598/**
599 * @brief Queue data to be read from the devctl device
600 *
601 * Generic interface to queue data to the devctl device.  It is
602 * assumed that @p data is properly formatted.  It is further assumed
603 * that @p data is allocated using the M_BUS malloc type.
604 */
605void
606devctl_queue_data_f(char *data, int flags)
607{
608	struct dev_event_info *n1 = NULL, *n2 = NULL;
609
610	if (strlen(data) == 0)
611		goto out;
612	if (devctl_queue_length == 0)
613		goto out;
614	n1 = malloc(sizeof(*n1), M_BUS, flags);
615	if (n1 == NULL)
616		goto out;
617	n1->dei_data = data;
618	mtx_lock(&devsoftc.mtx);
619	if (devctl_queue_length == 0) {
620		mtx_unlock(&devsoftc.mtx);
621		free(n1->dei_data, M_BUS);
622		free(n1, M_BUS);
623		return;
624	}
625	/* Leave at least one spot in the queue... */
626	while (devsoftc.queued > devctl_queue_length - 1) {
627		n2 = TAILQ_FIRST(&devsoftc.devq);
628		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
629		free(n2->dei_data, M_BUS);
630		free(n2, M_BUS);
631		devsoftc.queued--;
632	}
633	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
634	devsoftc.queued++;
635	cv_broadcast(&devsoftc.cv);
636	KNOTE_LOCKED(&devsoftc.sel.si_note, 0);
637	mtx_unlock(&devsoftc.mtx);
638	selwakeup(&devsoftc.sel);
639	if (devsoftc.async && devsoftc.sigio != NULL)
640		pgsigio(&devsoftc.sigio, SIGIO, 0);
641	return;
642out:
643	/*
644	 * We have to free data on all error paths since the caller
645	 * assumes it will be free'd when this item is dequeued.
646	 */
647	free(data, M_BUS);
648	return;
649}
650
651void
652devctl_queue_data(char *data)
653{
654
655	devctl_queue_data_f(data, M_NOWAIT);
656}
657
658/**
659 * @brief Send a 'notification' to userland, using standard ways
660 */
661void
662devctl_notify_f(const char *system, const char *subsystem, const char *type,
663    const char *data, int flags)
664{
665	int len = 0;
666	char *msg;
667
668	if (system == NULL)
669		return;		/* BOGUS!  Must specify system. */
670	if (subsystem == NULL)
671		return;		/* BOGUS!  Must specify subsystem. */
672	if (type == NULL)
673		return;		/* BOGUS!  Must specify type. */
674	len += strlen(" system=") + strlen(system);
675	len += strlen(" subsystem=") + strlen(subsystem);
676	len += strlen(" type=") + strlen(type);
677	/* add in the data message plus newline. */
678	if (data != NULL)
679		len += strlen(data);
680	len += 3;	/* '!', '\n', and NUL */
681	msg = malloc(len, M_BUS, flags);
682	if (msg == NULL)
683		return;		/* Drop it on the floor */
684	if (data != NULL)
685		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
686		    system, subsystem, type, data);
687	else
688		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
689		    system, subsystem, type);
690	devctl_queue_data_f(msg, flags);
691}
692
693void
694devctl_notify(const char *system, const char *subsystem, const char *type,
695    const char *data)
696{
697
698	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
699}
700
701/*
702 * Common routine that tries to make sending messages as easy as possible.
703 * We allocate memory for the data, copy strings into that, but do not
704 * free it unless there's an error.  The dequeue part of the driver should
705 * free the data.  We don't send data when the device is disabled.  We do
706 * send data, even when we have no listeners, because we wish to avoid
707 * races relating to startup and restart of listening applications.
708 *
709 * devaddq is designed to string together the type of event, with the
710 * object of that event, plus the plug and play info and location info
711 * for that event.  This is likely most useful for devices, but less
712 * useful for other consumers of this interface.  Those should use
713 * the devctl_queue_data() interface instead.
714 */
715static void
716devaddq(const char *type, const char *what, device_t dev)
717{
718	char *data = NULL;
719	char *loc = NULL;
720	char *pnp = NULL;
721	const char *parstr;
722
723	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
724		return;
725	data = malloc(1024, M_BUS, M_NOWAIT);
726	if (data == NULL)
727		goto bad;
728
729	/* get the bus specific location of this device */
730	loc = malloc(1024, M_BUS, M_NOWAIT);
731	if (loc == NULL)
732		goto bad;
733	*loc = '\0';
734	bus_child_location_str(dev, loc, 1024);
735
736	/* Get the bus specific pnp info of this device */
737	pnp = malloc(1024, M_BUS, M_NOWAIT);
738	if (pnp == NULL)
739		goto bad;
740	*pnp = '\0';
741	bus_child_pnpinfo_str(dev, pnp, 1024);
742
743	/* Get the parent of this device, or / if high enough in the tree. */
744	if (device_get_parent(dev) == NULL)
745		parstr = ".";	/* Or '/' ? */
746	else
747		parstr = device_get_nameunit(device_get_parent(dev));
748	/* String it all together. */
749	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
750	  parstr);
751	free(loc, M_BUS);
752	free(pnp, M_BUS);
753	devctl_queue_data(data);
754	return;
755bad:
756	free(pnp, M_BUS);
757	free(loc, M_BUS);
758	free(data, M_BUS);
759	return;
760}
761
762/*
763 * A device was added to the tree.  We are called just after it successfully
764 * attaches (that is, probe and attach success for this device).  No call
765 * is made if a device is merely parented into the tree.  See devnomatch
766 * if probe fails.  If attach fails, no notification is sent (but maybe
767 * we should have a different message for this).
768 */
769static void
770devadded(device_t dev)
771{
772	devaddq("+", device_get_nameunit(dev), dev);
773}
774
775/*
776 * A device was removed from the tree.  We are called just before this
777 * happens.
778 */
779static void
780devremoved(device_t dev)
781{
782	devaddq("-", device_get_nameunit(dev), dev);
783}
784
785/*
786 * Called when there's no match for this device.  This is only called
787 * the first time that no match happens, so we don't keep getting this
788 * message.  Should that prove to be undesirable, we can change it.
789 * This is called when all drivers that can attach to a given bus
790 * decline to accept this device.  Other errors may not be detected.
791 */
792static void
793devnomatch(device_t dev)
794{
795	devaddq("?", "", dev);
796}
797
798static int
799sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
800{
801	struct dev_event_info *n1;
802	int dis, error;
803
804	dis = devctl_queue_length == 0;
805	error = sysctl_handle_int(oidp, &dis, 0, req);
806	if (error || !req->newptr)
807		return (error);
808	mtx_lock(&devsoftc.mtx);
809	if (dis) {
810		while (!TAILQ_EMPTY(&devsoftc.devq)) {
811			n1 = TAILQ_FIRST(&devsoftc.devq);
812			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
813			free(n1->dei_data, M_BUS);
814			free(n1, M_BUS);
815		}
816		devsoftc.queued = 0;
817		devctl_queue_length = 0;
818	} else {
819		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
820	}
821	mtx_unlock(&devsoftc.mtx);
822	return (0);
823}
824
825static int
826sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
827{
828	struct dev_event_info *n1;
829	int q, error;
830
831	q = devctl_queue_length;
832	error = sysctl_handle_int(oidp, &q, 0, req);
833	if (error || !req->newptr)
834		return (error);
835	if (q < 0)
836		return (EINVAL);
837	mtx_lock(&devsoftc.mtx);
838	devctl_queue_length = q;
839	while (devsoftc.queued > devctl_queue_length) {
840		n1 = TAILQ_FIRST(&devsoftc.devq);
841		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
842		free(n1->dei_data, M_BUS);
843		free(n1, M_BUS);
844		devsoftc.queued--;
845	}
846	mtx_unlock(&devsoftc.mtx);
847	return (0);
848}
849
850/* End of /dev/devctl code */
851
852static TAILQ_HEAD(,device)	bus_data_devices;
853static int bus_data_generation = 1;
854
855static kobj_method_t null_methods[] = {
856	KOBJMETHOD_END
857};
858
859DEFINE_CLASS(null, null_methods, 0);
860
861/*
862 * Bus pass implementation
863 */
864
865static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
866int bus_current_pass = BUS_PASS_ROOT;
867
868/**
869 * @internal
870 * @brief Register the pass level of a new driver attachment
871 *
872 * Register a new driver attachment's pass level.  If no driver
873 * attachment with the same pass level has been added, then @p new
874 * will be added to the global passes list.
875 *
876 * @param new		the new driver attachment
877 */
878static void
879driver_register_pass(struct driverlink *new)
880{
881	struct driverlink *dl;
882
883	/* We only consider pass numbers during boot. */
884	if (bus_current_pass == BUS_PASS_DEFAULT)
885		return;
886
887	/*
888	 * Walk the passes list.  If we already know about this pass
889	 * then there is nothing to do.  If we don't, then insert this
890	 * driver link into the list.
891	 */
892	TAILQ_FOREACH(dl, &passes, passlink) {
893		if (dl->pass < new->pass)
894			continue;
895		if (dl->pass == new->pass)
896			return;
897		TAILQ_INSERT_BEFORE(dl, new, passlink);
898		return;
899	}
900	TAILQ_INSERT_TAIL(&passes, new, passlink);
901}
902
903/**
904 * @brief Raise the current bus pass
905 *
906 * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
907 * method on the root bus to kick off a new device tree scan for each
908 * new pass level that has at least one driver.
909 */
910void
911bus_set_pass(int pass)
912{
913	struct driverlink *dl;
914
915	if (bus_current_pass > pass)
916		panic("Attempt to lower bus pass level");
917
918	TAILQ_FOREACH(dl, &passes, passlink) {
919		/* Skip pass values below the current pass level. */
920		if (dl->pass <= bus_current_pass)
921			continue;
922
923		/*
924		 * Bail once we hit a driver with a pass level that is
925		 * too high.
926		 */
927		if (dl->pass > pass)
928			break;
929
930		/*
931		 * Raise the pass level to the next level and rescan
932		 * the tree.
933		 */
934		bus_current_pass = dl->pass;
935		BUS_NEW_PASS(root_bus);
936	}
937
938	/*
939	 * If there isn't a driver registered for the requested pass,
940	 * then bus_current_pass might still be less than 'pass'.  Set
941	 * it to 'pass' in that case.
942	 */
943	if (bus_current_pass < pass)
944		bus_current_pass = pass;
945	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
946}
947
948/*
949 * Devclass implementation
950 */
951
952static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
953
954/**
955 * @internal
956 * @brief Find or create a device class
957 *
958 * If a device class with the name @p classname exists, return it,
959 * otherwise if @p create is non-zero create and return a new device
960 * class.
961 *
962 * If @p parentname is non-NULL, the parent of the devclass is set to
963 * the devclass of that name.
964 *
965 * @param classname	the devclass name to find or create
966 * @param parentname	the parent devclass name or @c NULL
967 * @param create	non-zero to create a devclass
968 */
969static devclass_t
970devclass_find_internal(const char *classname, const char *parentname,
971		       int create)
972{
973	devclass_t dc;
974
975	PDEBUG(("looking for %s", classname));
976	if (!classname)
977		return (NULL);
978
979	TAILQ_FOREACH(dc, &devclasses, link) {
980		if (!strcmp(dc->name, classname))
981			break;
982	}
983
984	if (create && !dc) {
985		PDEBUG(("creating %s", classname));
986		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
987		    M_BUS, M_NOWAIT | M_ZERO);
988		if (!dc)
989			return (NULL);
990		dc->parent = NULL;
991		dc->name = (char*) (dc + 1);
992		strcpy(dc->name, classname);
993		TAILQ_INIT(&dc->drivers);
994		TAILQ_INSERT_TAIL(&devclasses, dc, link);
995
996		bus_data_generation_update();
997	}
998
999	/*
1000	 * If a parent class is specified, then set that as our parent so
1001	 * that this devclass will support drivers for the parent class as
1002	 * well.  If the parent class has the same name don't do this though
1003	 * as it creates a cycle that can trigger an infinite loop in
1004	 * device_probe_child() if a device exists for which there is no
1005	 * suitable driver.
1006	 */
1007	if (parentname && dc && !dc->parent &&
1008	    strcmp(classname, parentname) != 0) {
1009		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
1010		dc->parent->flags |= DC_HAS_CHILDREN;
1011	}
1012
1013	return (dc);
1014}
1015
1016/**
1017 * @brief Create a device class
1018 *
1019 * If a device class with the name @p classname exists, return it,
1020 * otherwise create and return a new device class.
1021 *
1022 * @param classname	the devclass name to find or create
1023 */
1024devclass_t
1025devclass_create(const char *classname)
1026{
1027	return (devclass_find_internal(classname, NULL, TRUE));
1028}
1029
1030/**
1031 * @brief Find a device class
1032 *
1033 * If a device class with the name @p classname exists, return it,
1034 * otherwise return @c NULL.
1035 *
1036 * @param classname	the devclass name to find
1037 */
1038devclass_t
1039devclass_find(const char *classname)
1040{
1041	return (devclass_find_internal(classname, NULL, FALSE));
1042}
1043
1044/**
1045 * @brief Register that a device driver has been added to a devclass
1046 *
1047 * Register that a device driver has been added to a devclass.  This
1048 * is called by devclass_add_driver to accomplish the recursive
1049 * notification of all the children classes of dc, as well as dc.
1050 * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1051 * the devclass.
1052 *
1053 * We do a full search here of the devclass list at each iteration
1054 * level to save storing children-lists in the devclass structure.  If
1055 * we ever move beyond a few dozen devices doing this, we may need to
1056 * reevaluate...
1057 *
1058 * @param dc		the devclass to edit
1059 * @param driver	the driver that was just added
1060 */
1061static void
1062devclass_driver_added(devclass_t dc, driver_t *driver)
1063{
1064	devclass_t parent;
1065	int i;
1066
1067	/*
1068	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1069	 */
1070	for (i = 0; i < dc->maxunit; i++)
1071		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1072			BUS_DRIVER_ADDED(dc->devices[i], driver);
1073
1074	/*
1075	 * Walk through the children classes.  Since we only keep a
1076	 * single parent pointer around, we walk the entire list of
1077	 * devclasses looking for children.  We set the
1078	 * DC_HAS_CHILDREN flag when a child devclass is created on
1079	 * the parent, so we only walk the list for those devclasses
1080	 * that have children.
1081	 */
1082	if (!(dc->flags & DC_HAS_CHILDREN))
1083		return;
1084	parent = dc;
1085	TAILQ_FOREACH(dc, &devclasses, link) {
1086		if (dc->parent == parent)
1087			devclass_driver_added(dc, driver);
1088	}
1089}
1090
1091/**
1092 * @brief Add a device driver to a device class
1093 *
1094 * Add a device driver to a devclass. This is normally called
1095 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1096 * all devices in the devclass will be called to allow them to attempt
1097 * to re-probe any unmatched children.
1098 *
1099 * @param dc		the devclass to edit
1100 * @param driver	the driver to register
1101 */
1102int
1103devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1104{
1105	driverlink_t dl;
1106	const char *parentname;
1107
1108	PDEBUG(("%s", DRIVERNAME(driver)));
1109
1110	/* Don't allow invalid pass values. */
1111	if (pass <= BUS_PASS_ROOT)
1112		return (EINVAL);
1113
1114	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1115	if (!dl)
1116		return (ENOMEM);
1117
1118	/*
1119	 * Compile the driver's methods. Also increase the reference count
1120	 * so that the class doesn't get freed when the last instance
1121	 * goes. This means we can safely use static methods and avoids a
1122	 * double-free in devclass_delete_driver.
1123	 */
1124	kobj_class_compile((kobj_class_t) driver);
1125
1126	/*
1127	 * If the driver has any base classes, make the
1128	 * devclass inherit from the devclass of the driver's
1129	 * first base class. This will allow the system to
1130	 * search for drivers in both devclasses for children
1131	 * of a device using this driver.
1132	 */
1133	if (driver->baseclasses)
1134		parentname = driver->baseclasses[0]->name;
1135	else
1136		parentname = NULL;
1137	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1138
1139	dl->driver = driver;
1140	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1141	driver->refs++;		/* XXX: kobj_mtx */
1142	dl->pass = pass;
1143	driver_register_pass(dl);
1144
1145	devclass_driver_added(dc, driver);
1146	bus_data_generation_update();
1147	return (0);
1148}
1149
1150/**
1151 * @brief Register that a device driver has been deleted from a devclass
1152 *
1153 * Register that a device driver has been removed from a devclass.
1154 * This is called by devclass_delete_driver to accomplish the
1155 * recursive notification of all the children classes of busclass, as
1156 * well as busclass.  Each layer will attempt to detach the driver
1157 * from any devices that are children of the bus's devclass.  The function
1158 * will return an error if a device fails to detach.
1159 *
1160 * We do a full search here of the devclass list at each iteration
1161 * level to save storing children-lists in the devclass structure.  If
1162 * we ever move beyond a few dozen devices doing this, we may need to
1163 * reevaluate...
1164 *
1165 * @param busclass	the devclass of the parent bus
1166 * @param dc		the devclass of the driver being deleted
1167 * @param driver	the driver being deleted
1168 */
1169static int
1170devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1171{
1172	devclass_t parent;
1173	device_t dev;
1174	int error, i;
1175
1176	/*
1177	 * Disassociate from any devices.  We iterate through all the
1178	 * devices in the devclass of the driver and detach any which are
1179	 * using the driver and which have a parent in the devclass which
1180	 * we are deleting from.
1181	 *
1182	 * Note that since a driver can be in multiple devclasses, we
1183	 * should not detach devices which are not children of devices in
1184	 * the affected devclass.
1185	 */
1186	for (i = 0; i < dc->maxunit; i++) {
1187		if (dc->devices[i]) {
1188			dev = dc->devices[i];
1189			if (dev->driver == driver && dev->parent &&
1190			    dev->parent->devclass == busclass) {
1191				if ((error = device_detach(dev)) != 0)
1192					return (error);
1193				BUS_PROBE_NOMATCH(dev->parent, dev);
1194				devnomatch(dev);
1195				dev->flags |= DF_DONENOMATCH;
1196			}
1197		}
1198	}
1199
1200	/*
1201	 * Walk through the children classes.  Since we only keep a
1202	 * single parent pointer around, we walk the entire list of
1203	 * devclasses looking for children.  We set the
1204	 * DC_HAS_CHILDREN flag when a child devclass is created on
1205	 * the parent, so we only walk the list for those devclasses
1206	 * that have children.
1207	 */
1208	if (!(busclass->flags & DC_HAS_CHILDREN))
1209		return (0);
1210	parent = busclass;
1211	TAILQ_FOREACH(busclass, &devclasses, link) {
1212		if (busclass->parent == parent) {
1213			error = devclass_driver_deleted(busclass, dc, driver);
1214			if (error)
1215				return (error);
1216		}
1217	}
1218	return (0);
1219}
1220
1221/**
1222 * @brief Delete a device driver from a device class
1223 *
1224 * Delete a device driver from a devclass. This is normally called
1225 * automatically by DRIVER_MODULE().
1226 *
1227 * If the driver is currently attached to any devices,
1228 * devclass_delete_driver() will first attempt to detach from each
1229 * device. If one of the detach calls fails, the driver will not be
1230 * deleted.
1231 *
1232 * @param dc		the devclass to edit
1233 * @param driver	the driver to unregister
1234 */
1235int
1236devclass_delete_driver(devclass_t busclass, driver_t *driver)
1237{
1238	devclass_t dc = devclass_find(driver->name);
1239	driverlink_t dl;
1240	int error;
1241
1242	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1243
1244	if (!dc)
1245		return (0);
1246
1247	/*
1248	 * Find the link structure in the bus' list of drivers.
1249	 */
1250	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1251		if (dl->driver == driver)
1252			break;
1253	}
1254
1255	if (!dl) {
1256		PDEBUG(("%s not found in %s list", driver->name,
1257		    busclass->name));
1258		return (ENOENT);
1259	}
1260
1261	error = devclass_driver_deleted(busclass, dc, driver);
1262	if (error != 0)
1263		return (error);
1264
1265	TAILQ_REMOVE(&busclass->drivers, dl, link);
1266	free(dl, M_BUS);
1267
1268	/* XXX: kobj_mtx */
1269	driver->refs--;
1270	if (driver->refs == 0)
1271		kobj_class_free((kobj_class_t) driver);
1272
1273	bus_data_generation_update();
1274	return (0);
1275}
1276
1277/**
1278 * @brief Quiesces a set of device drivers from a device class
1279 *
1280 * Quiesce a device driver from a devclass. This is normally called
1281 * automatically by DRIVER_MODULE().
1282 *
1283 * If the driver is currently attached to any devices,
1284 * devclass_quiesece_driver() will first attempt to quiesce each
1285 * device.
1286 *
1287 * @param dc		the devclass to edit
1288 * @param driver	the driver to unregister
1289 */
1290static int
1291devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1292{
1293	devclass_t dc = devclass_find(driver->name);
1294	driverlink_t dl;
1295	device_t dev;
1296	int i;
1297	int error;
1298
1299	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1300
1301	if (!dc)
1302		return (0);
1303
1304	/*
1305	 * Find the link structure in the bus' list of drivers.
1306	 */
1307	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1308		if (dl->driver == driver)
1309			break;
1310	}
1311
1312	if (!dl) {
1313		PDEBUG(("%s not found in %s list", driver->name,
1314		    busclass->name));
1315		return (ENOENT);
1316	}
1317
1318	/*
1319	 * Quiesce all devices.  We iterate through all the devices in
1320	 * the devclass of the driver and quiesce any which are using
1321	 * the driver and which have a parent in the devclass which we
1322	 * are quiescing.
1323	 *
1324	 * Note that since a driver can be in multiple devclasses, we
1325	 * should not quiesce devices which are not children of
1326	 * devices in the affected devclass.
1327	 */
1328	for (i = 0; i < dc->maxunit; i++) {
1329		if (dc->devices[i]) {
1330			dev = dc->devices[i];
1331			if (dev->driver == driver && dev->parent &&
1332			    dev->parent->devclass == busclass) {
1333				if ((error = device_quiesce(dev)) != 0)
1334					return (error);
1335			}
1336		}
1337	}
1338
1339	return (0);
1340}
1341
1342/**
1343 * @internal
1344 */
1345static driverlink_t
1346devclass_find_driver_internal(devclass_t dc, const char *classname)
1347{
1348	driverlink_t dl;
1349
1350	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1351
1352	TAILQ_FOREACH(dl, &dc->drivers, link) {
1353		if (!strcmp(dl->driver->name, classname))
1354			return (dl);
1355	}
1356
1357	PDEBUG(("not found"));
1358	return (NULL);
1359}
1360
1361/**
1362 * @brief Return the name of the devclass
1363 */
1364const char *
1365devclass_get_name(devclass_t dc)
1366{
1367	return (dc->name);
1368}
1369
1370/**
1371 * @brief Find a device given a unit number
1372 *
1373 * @param dc		the devclass to search
1374 * @param unit		the unit number to search for
1375 *
1376 * @returns		the device with the given unit number or @c
1377 *			NULL if there is no such device
1378 */
1379device_t
1380devclass_get_device(devclass_t dc, int unit)
1381{
1382	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1383		return (NULL);
1384	return (dc->devices[unit]);
1385}
1386
1387/**
1388 * @brief Find the softc field of a device given a unit number
1389 *
1390 * @param dc		the devclass to search
1391 * @param unit		the unit number to search for
1392 *
1393 * @returns		the softc field of the device with the given
1394 *			unit number or @c NULL if there is no such
1395 *			device
1396 */
1397void *
1398devclass_get_softc(devclass_t dc, int unit)
1399{
1400	device_t dev;
1401
1402	dev = devclass_get_device(dc, unit);
1403	if (!dev)
1404		return (NULL);
1405
1406	return (device_get_softc(dev));
1407}
1408
1409/**
1410 * @brief Get a list of devices in the devclass
1411 *
1412 * An array containing a list of all the devices in the given devclass
1413 * is allocated and returned in @p *devlistp. The number of devices
1414 * in the array is returned in @p *devcountp. The caller should free
1415 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1416 *
1417 * @param dc		the devclass to examine
1418 * @param devlistp	points at location for array pointer return
1419 *			value
1420 * @param devcountp	points at location for array size return value
1421 *
1422 * @retval 0		success
1423 * @retval ENOMEM	the array allocation failed
1424 */
1425int
1426devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1427{
1428	int count, i;
1429	device_t *list;
1430
1431	count = devclass_get_count(dc);
1432	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1433	if (!list)
1434		return (ENOMEM);
1435
1436	count = 0;
1437	for (i = 0; i < dc->maxunit; i++) {
1438		if (dc->devices[i]) {
1439			list[count] = dc->devices[i];
1440			count++;
1441		}
1442	}
1443
1444	*devlistp = list;
1445	*devcountp = count;
1446
1447	return (0);
1448}
1449
1450/**
1451 * @brief Get a list of drivers in the devclass
1452 *
1453 * An array containing a list of pointers to all the drivers in the
1454 * given devclass is allocated and returned in @p *listp.  The number
1455 * of drivers in the array is returned in @p *countp. The caller should
1456 * free the array using @c free(p, M_TEMP).
1457 *
1458 * @param dc		the devclass to examine
1459 * @param listp		gives location for array pointer return value
1460 * @param countp	gives location for number of array elements
1461 *			return value
1462 *
1463 * @retval 0		success
1464 * @retval ENOMEM	the array allocation failed
1465 */
1466int
1467devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1468{
1469	driverlink_t dl;
1470	driver_t **list;
1471	int count;
1472
1473	count = 0;
1474	TAILQ_FOREACH(dl, &dc->drivers, link)
1475		count++;
1476	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1477	if (list == NULL)
1478		return (ENOMEM);
1479
1480	count = 0;
1481	TAILQ_FOREACH(dl, &dc->drivers, link) {
1482		list[count] = dl->driver;
1483		count++;
1484	}
1485	*listp = list;
1486	*countp = count;
1487
1488	return (0);
1489}
1490
1491/**
1492 * @brief Get the number of devices in a devclass
1493 *
1494 * @param dc		the devclass to examine
1495 */
1496int
1497devclass_get_count(devclass_t dc)
1498{
1499	int count, i;
1500
1501	count = 0;
1502	for (i = 0; i < dc->maxunit; i++)
1503		if (dc->devices[i])
1504			count++;
1505	return (count);
1506}
1507
1508/**
1509 * @brief Get the maximum unit number used in a devclass
1510 *
1511 * Note that this is one greater than the highest currently-allocated
1512 * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1513 * that not even the devclass has been allocated yet.
1514 *
1515 * @param dc		the devclass to examine
1516 */
1517int
1518devclass_get_maxunit(devclass_t dc)
1519{
1520	if (dc == NULL)
1521		return (-1);
1522	return (dc->maxunit);
1523}
1524
1525/**
1526 * @brief Find a free unit number in a devclass
1527 *
1528 * This function searches for the first unused unit number greater
1529 * that or equal to @p unit.
1530 *
1531 * @param dc		the devclass to examine
1532 * @param unit		the first unit number to check
1533 */
1534int
1535devclass_find_free_unit(devclass_t dc, int unit)
1536{
1537	if (dc == NULL)
1538		return (unit);
1539	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1540		unit++;
1541	return (unit);
1542}
1543
1544/**
1545 * @brief Set the parent of a devclass
1546 *
1547 * The parent class is normally initialised automatically by
1548 * DRIVER_MODULE().
1549 *
1550 * @param dc		the devclass to edit
1551 * @param pdc		the new parent devclass
1552 */
1553void
1554devclass_set_parent(devclass_t dc, devclass_t pdc)
1555{
1556	dc->parent = pdc;
1557}
1558
1559/**
1560 * @brief Get the parent of a devclass
1561 *
1562 * @param dc		the devclass to examine
1563 */
1564devclass_t
1565devclass_get_parent(devclass_t dc)
1566{
1567	return (dc->parent);
1568}
1569
1570struct sysctl_ctx_list *
1571devclass_get_sysctl_ctx(devclass_t dc)
1572{
1573	return (&dc->sysctl_ctx);
1574}
1575
1576struct sysctl_oid *
1577devclass_get_sysctl_tree(devclass_t dc)
1578{
1579	return (dc->sysctl_tree);
1580}
1581
1582/**
1583 * @internal
1584 * @brief Allocate a unit number
1585 *
1586 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1587 * will do). The allocated unit number is returned in @p *unitp.
1588
1589 * @param dc		the devclass to allocate from
1590 * @param unitp		points at the location for the allocated unit
1591 *			number
1592 *
1593 * @retval 0		success
1594 * @retval EEXIST	the requested unit number is already allocated
1595 * @retval ENOMEM	memory allocation failure
1596 */
1597static int
1598devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1599{
1600	const char *s;
1601	int unit = *unitp;
1602
1603	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1604
1605	/* Ask the parent bus if it wants to wire this device. */
1606	if (unit == -1)
1607		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1608		    &unit);
1609
1610	/* If we were given a wired unit number, check for existing device */
1611	/* XXX imp XXX */
1612	if (unit != -1) {
1613		if (unit >= 0 && unit < dc->maxunit &&
1614		    dc->devices[unit] != NULL) {
1615			if (bootverbose)
1616				printf("%s: %s%d already exists; skipping it\n",
1617				    dc->name, dc->name, *unitp);
1618			return (EEXIST);
1619		}
1620	} else {
1621		/* Unwired device, find the next available slot for it */
1622		unit = 0;
1623		for (unit = 0;; unit++) {
1624			/* If there is an "at" hint for a unit then skip it. */
1625			if (resource_string_value(dc->name, unit, "at", &s) ==
1626			    0)
1627				continue;
1628
1629			/* If this device slot is already in use, skip it. */
1630			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1631				continue;
1632
1633			break;
1634		}
1635	}
1636
1637	/*
1638	 * We've selected a unit beyond the length of the table, so let's
1639	 * extend the table to make room for all units up to and including
1640	 * this one.
1641	 */
1642	if (unit >= dc->maxunit) {
1643		device_t *newlist, *oldlist;
1644		int newsize;
1645
1646		oldlist = dc->devices;
1647		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1648		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1649		if (!newlist)
1650			return (ENOMEM);
1651		if (oldlist != NULL)
1652			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1653		bzero(newlist + dc->maxunit,
1654		    sizeof(device_t) * (newsize - dc->maxunit));
1655		dc->devices = newlist;
1656		dc->maxunit = newsize;
1657		if (oldlist != NULL)
1658			free(oldlist, M_BUS);
1659	}
1660	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1661
1662	*unitp = unit;
1663	return (0);
1664}
1665
1666/**
1667 * @internal
1668 * @brief Add a device to a devclass
1669 *
1670 * A unit number is allocated for the device (using the device's
1671 * preferred unit number if any) and the device is registered in the
1672 * devclass. This allows the device to be looked up by its unit
1673 * number, e.g. by decoding a dev_t minor number.
1674 *
1675 * @param dc		the devclass to add to
1676 * @param dev		the device to add
1677 *
1678 * @retval 0		success
1679 * @retval EEXIST	the requested unit number is already allocated
1680 * @retval ENOMEM	memory allocation failure
1681 */
1682static int
1683devclass_add_device(devclass_t dc, device_t dev)
1684{
1685	int buflen, error;
1686
1687	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1688
1689	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1690	if (buflen < 0)
1691		return (ENOMEM);
1692	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1693	if (!dev->nameunit)
1694		return (ENOMEM);
1695
1696	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1697		free(dev->nameunit, M_BUS);
1698		dev->nameunit = NULL;
1699		return (error);
1700	}
1701	dc->devices[dev->unit] = dev;
1702	dev->devclass = dc;
1703	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1704
1705	return (0);
1706}
1707
1708/**
1709 * @internal
1710 * @brief Delete a device from a devclass
1711 *
1712 * The device is removed from the devclass's device list and its unit
1713 * number is freed.
1714
1715 * @param dc		the devclass to delete from
1716 * @param dev		the device to delete
1717 *
1718 * @retval 0		success
1719 */
1720static int
1721devclass_delete_device(devclass_t dc, device_t dev)
1722{
1723	if (!dc || !dev)
1724		return (0);
1725
1726	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1727
1728	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1729		panic("devclass_delete_device: inconsistent device class");
1730	dc->devices[dev->unit] = NULL;
1731	if (dev->flags & DF_WILDCARD)
1732		dev->unit = -1;
1733	dev->devclass = NULL;
1734	free(dev->nameunit, M_BUS);
1735	dev->nameunit = NULL;
1736
1737	return (0);
1738}
1739
1740/**
1741 * @internal
1742 * @brief Make a new device and add it as a child of @p parent
1743 *
1744 * @param parent	the parent of the new device
1745 * @param name		the devclass name of the new device or @c NULL
1746 *			to leave the devclass unspecified
1747 * @parem unit		the unit number of the new device of @c -1 to
1748 *			leave the unit number unspecified
1749 *
1750 * @returns the new device
1751 */
1752static device_t
1753make_device(device_t parent, const char *name, int unit)
1754{
1755	device_t dev;
1756	devclass_t dc;
1757
1758	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1759
1760	if (name) {
1761		dc = devclass_find_internal(name, NULL, TRUE);
1762		if (!dc) {
1763			printf("make_device: can't find device class %s\n",
1764			    name);
1765			return (NULL);
1766		}
1767	} else {
1768		dc = NULL;
1769	}
1770
1771	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1772	if (!dev)
1773		return (NULL);
1774
1775	dev->parent = parent;
1776	TAILQ_INIT(&dev->children);
1777	kobj_init((kobj_t) dev, &null_class);
1778	dev->driver = NULL;
1779	dev->devclass = NULL;
1780	dev->unit = unit;
1781	dev->nameunit = NULL;
1782	dev->desc = NULL;
1783	dev->busy = 0;
1784	dev->devflags = 0;
1785	dev->flags = DF_ENABLED;
1786	dev->order = 0;
1787	if (unit == -1)
1788		dev->flags |= DF_WILDCARD;
1789	if (name) {
1790		dev->flags |= DF_FIXEDCLASS;
1791		if (devclass_add_device(dc, dev)) {
1792			kobj_delete((kobj_t) dev, M_BUS);
1793			return (NULL);
1794		}
1795	}
1796	dev->ivars = NULL;
1797	dev->softc = NULL;
1798
1799	dev->state = DS_NOTPRESENT;
1800
1801	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1802	bus_data_generation_update();
1803
1804	return (dev);
1805}
1806
1807/**
1808 * @internal
1809 * @brief Print a description of a device.
1810 */
1811static int
1812device_print_child(device_t dev, device_t child)
1813{
1814	int retval = 0;
1815
1816	if (device_is_alive(child))
1817		retval += BUS_PRINT_CHILD(dev, child);
1818	else
1819		retval += device_printf(child, " not found\n");
1820
1821	return (retval);
1822}
1823
1824/**
1825 * @brief Create a new device
1826 *
1827 * This creates a new device and adds it as a child of an existing
1828 * parent device. The new device will be added after the last existing
1829 * child with order zero.
1830 *
1831 * @param dev		the device which will be the parent of the
1832 *			new child device
1833 * @param name		devclass name for new device or @c NULL if not
1834 *			specified
1835 * @param unit		unit number for new device or @c -1 if not
1836 *			specified
1837 *
1838 * @returns		the new device
1839 */
1840device_t
1841device_add_child(device_t dev, const char *name, int unit)
1842{
1843	return (device_add_child_ordered(dev, 0, name, unit));
1844}
1845
1846/**
1847 * @brief Create a new device
1848 *
1849 * This creates a new device and adds it as a child of an existing
1850 * parent device. The new device will be added after the last existing
1851 * child with the same order.
1852 *
1853 * @param dev		the device which will be the parent of the
1854 *			new child device
1855 * @param order		a value which is used to partially sort the
1856 *			children of @p dev - devices created using
1857 *			lower values of @p order appear first in @p
1858 *			dev's list of children
1859 * @param name		devclass name for new device or @c NULL if not
1860 *			specified
1861 * @param unit		unit number for new device or @c -1 if not
1862 *			specified
1863 *
1864 * @returns		the new device
1865 */
1866device_t
1867device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1868{
1869	device_t child;
1870	device_t place;
1871
1872	PDEBUG(("%s at %s with order %u as unit %d",
1873	    name, DEVICENAME(dev), order, unit));
1874	KASSERT(name != NULL || unit == -1,
1875	    ("child device with wildcard name and specific unit number"));
1876
1877	child = make_device(dev, name, unit);
1878	if (child == NULL)
1879		return (child);
1880	child->order = order;
1881
1882	TAILQ_FOREACH(place, &dev->children, link) {
1883		if (place->order > order)
1884			break;
1885	}
1886
1887	if (place) {
1888		/*
1889		 * The device 'place' is the first device whose order is
1890		 * greater than the new child.
1891		 */
1892		TAILQ_INSERT_BEFORE(place, child, link);
1893	} else {
1894		/*
1895		 * The new child's order is greater or equal to the order of
1896		 * any existing device. Add the child to the tail of the list.
1897		 */
1898		TAILQ_INSERT_TAIL(&dev->children, child, link);
1899	}
1900
1901	bus_data_generation_update();
1902	return (child);
1903}
1904
1905/**
1906 * @brief Delete a device
1907 *
1908 * This function deletes a device along with all of its children. If
1909 * the device currently has a driver attached to it, the device is
1910 * detached first using device_detach().
1911 *
1912 * @param dev		the parent device
1913 * @param child		the device to delete
1914 *
1915 * @retval 0		success
1916 * @retval non-zero	a unit error code describing the error
1917 */
1918int
1919device_delete_child(device_t dev, device_t child)
1920{
1921	int error;
1922	device_t grandchild;
1923
1924	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1925
1926	/* remove children first */
1927	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1928		error = device_delete_child(child, grandchild);
1929		if (error)
1930			return (error);
1931	}
1932
1933	if ((error = device_detach(child)) != 0)
1934		return (error);
1935	if (child->devclass)
1936		devclass_delete_device(child->devclass, child);
1937	if (child->parent)
1938		BUS_CHILD_DELETED(dev, child);
1939	TAILQ_REMOVE(&dev->children, child, link);
1940	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1941	kobj_delete((kobj_t) child, M_BUS);
1942
1943	bus_data_generation_update();
1944	return (0);
1945}
1946
1947/**
1948 * @brief Delete all children devices of the given device, if any.
1949 *
1950 * This function deletes all children devices of the given device, if
1951 * any, using the device_delete_child() function for each device it
1952 * finds. If a child device cannot be deleted, this function will
1953 * return an error code.
1954 *
1955 * @param dev		the parent device
1956 *
1957 * @retval 0		success
1958 * @retval non-zero	a device would not detach
1959 */
1960int
1961device_delete_children(device_t dev)
1962{
1963	device_t child;
1964	int error;
1965
1966	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1967
1968	error = 0;
1969
1970	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1971		error = device_delete_child(dev, child);
1972		if (error) {
1973			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1974			break;
1975		}
1976	}
1977	return (error);
1978}
1979
1980/**
1981 * @brief Find a device given a unit number
1982 *
1983 * This is similar to devclass_get_devices() but only searches for
1984 * devices which have @p dev as a parent.
1985 *
1986 * @param dev		the parent device to search
1987 * @param unit		the unit number to search for.  If the unit is -1,
1988 *			return the first child of @p dev which has name
1989 *			@p classname (that is, the one with the lowest unit.)
1990 *
1991 * @returns		the device with the given unit number or @c
1992 *			NULL if there is no such device
1993 */
1994device_t
1995device_find_child(device_t dev, const char *classname, int unit)
1996{
1997	devclass_t dc;
1998	device_t child;
1999
2000	dc = devclass_find(classname);
2001	if (!dc)
2002		return (NULL);
2003
2004	if (unit != -1) {
2005		child = devclass_get_device(dc, unit);
2006		if (child && child->parent == dev)
2007			return (child);
2008	} else {
2009		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
2010			child = devclass_get_device(dc, unit);
2011			if (child && child->parent == dev)
2012				return (child);
2013		}
2014	}
2015	return (NULL);
2016}
2017
2018/**
2019 * @internal
2020 */
2021static driverlink_t
2022first_matching_driver(devclass_t dc, device_t dev)
2023{
2024	if (dev->devclass)
2025		return (devclass_find_driver_internal(dc, dev->devclass->name));
2026	return (TAILQ_FIRST(&dc->drivers));
2027}
2028
2029/**
2030 * @internal
2031 */
2032static driverlink_t
2033next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
2034{
2035	if (dev->devclass) {
2036		driverlink_t dl;
2037		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
2038			if (!strcmp(dev->devclass->name, dl->driver->name))
2039				return (dl);
2040		return (NULL);
2041	}
2042	return (TAILQ_NEXT(last, link));
2043}
2044
2045/**
2046 * @internal
2047 */
2048int
2049device_probe_child(device_t dev, device_t child)
2050{
2051	devclass_t dc;
2052	driverlink_t best = NULL;
2053	driverlink_t dl;
2054	int result, pri = 0;
2055	int hasclass = (child->devclass != NULL);
2056
2057	GIANT_REQUIRED;
2058
2059	dc = dev->devclass;
2060	if (!dc)
2061		panic("device_probe_child: parent device has no devclass");
2062
2063	/*
2064	 * If the state is already probed, then return.  However, don't
2065	 * return if we can rebid this object.
2066	 */
2067	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2068		return (0);
2069
2070	for (; dc; dc = dc->parent) {
2071		for (dl = first_matching_driver(dc, child);
2072		     dl;
2073		     dl = next_matching_driver(dc, child, dl)) {
2074			/* If this driver's pass is too high, then ignore it. */
2075			if (dl->pass > bus_current_pass)
2076				continue;
2077
2078			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2079			result = device_set_driver(child, dl->driver);
2080			if (result == ENOMEM)
2081				return (result);
2082			else if (result != 0)
2083				continue;
2084			if (!hasclass) {
2085				if (device_set_devclass(child,
2086				    dl->driver->name) != 0) {
2087					char const * devname =
2088					    device_get_name(child);
2089					if (devname == NULL)
2090						devname = "(unknown)";
2091					printf("driver bug: Unable to set "
2092					    "devclass (class: %s "
2093					    "devname: %s)\n",
2094					    dl->driver->name,
2095					    devname);
2096					(void)device_set_driver(child, NULL);
2097					continue;
2098				}
2099			}
2100
2101			/* Fetch any flags for the device before probing. */
2102			resource_int_value(dl->driver->name, child->unit,
2103			    "flags", &child->devflags);
2104
2105			result = DEVICE_PROBE(child);
2106
2107			/* Reset flags and devclass before the next probe. */
2108			child->devflags = 0;
2109			if (!hasclass)
2110				(void)device_set_devclass(child, NULL);
2111
2112			/*
2113			 * If the driver returns SUCCESS, there can be
2114			 * no higher match for this device.
2115			 */
2116			if (result == 0) {
2117				best = dl;
2118				pri = 0;
2119				break;
2120			}
2121
2122			/*
2123			 * Probes that return BUS_PROBE_NOWILDCARD or lower
2124			 * only match on devices whose driver was explicitly
2125			 * specified.
2126			 */
2127			if (result <= BUS_PROBE_NOWILDCARD &&
2128			    !(child->flags & DF_FIXEDCLASS)) {
2129				result = ENXIO;
2130			}
2131
2132			/*
2133			 * The driver returned an error so it
2134			 * certainly doesn't match.
2135			 */
2136			if (result > 0) {
2137				(void)device_set_driver(child, NULL);
2138				continue;
2139			}
2140
2141			/*
2142			 * A priority lower than SUCCESS, remember the
2143			 * best matching driver. Initialise the value
2144			 * of pri for the first match.
2145			 */
2146			if (best == NULL || result > pri) {
2147				best = dl;
2148				pri = result;
2149				continue;
2150			}
2151		}
2152		/*
2153		 * If we have an unambiguous match in this devclass,
2154		 * don't look in the parent.
2155		 */
2156		if (best && pri == 0)
2157			break;
2158	}
2159
2160	/*
2161	 * If we found a driver, change state and initialise the devclass.
2162	 */
2163	/* XXX What happens if we rebid and got no best? */
2164	if (best) {
2165		/*
2166		 * If this device was attached, and we were asked to
2167		 * rescan, and it is a different driver, then we have
2168		 * to detach the old driver and reattach this new one.
2169		 * Note, we don't have to check for DF_REBID here
2170		 * because if the state is > DS_ALIVE, we know it must
2171		 * be.
2172		 *
2173		 * This assumes that all DF_REBID drivers can have
2174		 * their probe routine called at any time and that
2175		 * they are idempotent as well as completely benign in
2176		 * normal operations.
2177		 *
2178		 * We also have to make sure that the detach
2179		 * succeeded, otherwise we fail the operation (or
2180		 * maybe it should just fail silently?  I'm torn).
2181		 */
2182		if (child->state > DS_ALIVE && best->driver != child->driver)
2183			if ((result = device_detach(dev)) != 0)
2184				return (result);
2185
2186		/* Set the winning driver, devclass, and flags. */
2187		if (!child->devclass) {
2188			result = device_set_devclass(child, best->driver->name);
2189			if (result != 0)
2190				return (result);
2191		}
2192		result = device_set_driver(child, best->driver);
2193		if (result != 0)
2194			return (result);
2195		resource_int_value(best->driver->name, child->unit,
2196		    "flags", &child->devflags);
2197
2198		if (pri < 0) {
2199			/*
2200			 * A bit bogus. Call the probe method again to make
2201			 * sure that we have the right description.
2202			 */
2203			DEVICE_PROBE(child);
2204#if 0
2205			child->flags |= DF_REBID;
2206#endif
2207		} else
2208			child->flags &= ~DF_REBID;
2209		child->state = DS_ALIVE;
2210
2211		bus_data_generation_update();
2212		return (0);
2213	}
2214
2215	return (ENXIO);
2216}
2217
2218/**
2219 * @brief Return the parent of a device
2220 */
2221device_t
2222device_get_parent(device_t dev)
2223{
2224	return (dev->parent);
2225}
2226
2227/**
2228 * @brief Get a list of children of a device
2229 *
2230 * An array containing a list of all the children of the given device
2231 * is allocated and returned in @p *devlistp. The number of devices
2232 * in the array is returned in @p *devcountp. The caller should free
2233 * the array using @c free(p, M_TEMP).
2234 *
2235 * @param dev		the device to examine
2236 * @param devlistp	points at location for array pointer return
2237 *			value
2238 * @param devcountp	points at location for array size return value
2239 *
2240 * @retval 0		success
2241 * @retval ENOMEM	the array allocation failed
2242 */
2243int
2244device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2245{
2246	int count;
2247	device_t child;
2248	device_t *list;
2249
2250	count = 0;
2251	TAILQ_FOREACH(child, &dev->children, link) {
2252		count++;
2253	}
2254	if (count == 0) {
2255		*devlistp = NULL;
2256		*devcountp = 0;
2257		return (0);
2258	}
2259
2260	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2261	if (!list)
2262		return (ENOMEM);
2263
2264	count = 0;
2265	TAILQ_FOREACH(child, &dev->children, link) {
2266		list[count] = child;
2267		count++;
2268	}
2269
2270	*devlistp = list;
2271	*devcountp = count;
2272
2273	return (0);
2274}
2275
2276/**
2277 * @brief Return the current driver for the device or @c NULL if there
2278 * is no driver currently attached
2279 */
2280driver_t *
2281device_get_driver(device_t dev)
2282{
2283	return (dev->driver);
2284}
2285
2286/**
2287 * @brief Return the current devclass for the device or @c NULL if
2288 * there is none.
2289 */
2290devclass_t
2291device_get_devclass(device_t dev)
2292{
2293	return (dev->devclass);
2294}
2295
2296/**
2297 * @brief Return the name of the device's devclass or @c NULL if there
2298 * is none.
2299 */
2300const char *
2301device_get_name(device_t dev)
2302{
2303	if (dev != NULL && dev->devclass)
2304		return (devclass_get_name(dev->devclass));
2305	return (NULL);
2306}
2307
2308/**
2309 * @brief Return a string containing the device's devclass name
2310 * followed by an ascii representation of the device's unit number
2311 * (e.g. @c "foo2").
2312 */
2313const char *
2314device_get_nameunit(device_t dev)
2315{
2316	return (dev->nameunit);
2317}
2318
2319/**
2320 * @brief Return the device's unit number.
2321 */
2322int
2323device_get_unit(device_t dev)
2324{
2325	return (dev->unit);
2326}
2327
2328/**
2329 * @brief Return the device's description string
2330 */
2331const char *
2332device_get_desc(device_t dev)
2333{
2334	return (dev->desc);
2335}
2336
2337/**
2338 * @brief Return the device's flags
2339 */
2340uint32_t
2341device_get_flags(device_t dev)
2342{
2343	return (dev->devflags);
2344}
2345
2346struct sysctl_ctx_list *
2347device_get_sysctl_ctx(device_t dev)
2348{
2349	return (&dev->sysctl_ctx);
2350}
2351
2352struct sysctl_oid *
2353device_get_sysctl_tree(device_t dev)
2354{
2355	return (dev->sysctl_tree);
2356}
2357
2358/**
2359 * @brief Print the name of the device followed by a colon and a space
2360 *
2361 * @returns the number of characters printed
2362 */
2363int
2364device_print_prettyname(device_t dev)
2365{
2366	const char *name = device_get_name(dev);
2367
2368	if (name == NULL)
2369		return (printf("unknown: "));
2370	return (printf("%s%d: ", name, device_get_unit(dev)));
2371}
2372
2373/**
2374 * @brief Print the name of the device followed by a colon, a space
2375 * and the result of calling vprintf() with the value of @p fmt and
2376 * the following arguments.
2377 *
2378 * @returns the number of characters printed
2379 */
2380int
2381device_printf(device_t dev, const char * fmt, ...)
2382{
2383	va_list ap;
2384	int retval;
2385
2386	retval = device_print_prettyname(dev);
2387	va_start(ap, fmt);
2388	retval += vprintf(fmt, ap);
2389	va_end(ap);
2390	return (retval);
2391}
2392
2393/**
2394 * @internal
2395 */
2396static void
2397device_set_desc_internal(device_t dev, const char* desc, int copy)
2398{
2399	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2400		free(dev->desc, M_BUS);
2401		dev->flags &= ~DF_DESCMALLOCED;
2402		dev->desc = NULL;
2403	}
2404
2405	if (copy && desc) {
2406		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2407		if (dev->desc) {
2408			strcpy(dev->desc, desc);
2409			dev->flags |= DF_DESCMALLOCED;
2410		}
2411	} else {
2412		/* Avoid a -Wcast-qual warning */
2413		dev->desc = (char *)(uintptr_t) desc;
2414	}
2415
2416	bus_data_generation_update();
2417}
2418
2419/**
2420 * @brief Set the device's description
2421 *
2422 * The value of @c desc should be a string constant that will not
2423 * change (at least until the description is changed in a subsequent
2424 * call to device_set_desc() or device_set_desc_copy()).
2425 */
2426void
2427device_set_desc(device_t dev, const char* desc)
2428{
2429	device_set_desc_internal(dev, desc, FALSE);
2430}
2431
2432/**
2433 * @brief Set the device's description
2434 *
2435 * The string pointed to by @c desc is copied. Use this function if
2436 * the device description is generated, (e.g. with sprintf()).
2437 */
2438void
2439device_set_desc_copy(device_t dev, const char* desc)
2440{
2441	device_set_desc_internal(dev, desc, TRUE);
2442}
2443
2444/**
2445 * @brief Set the device's flags
2446 */
2447void
2448device_set_flags(device_t dev, uint32_t flags)
2449{
2450	dev->devflags = flags;
2451}
2452
2453/**
2454 * @brief Return the device's softc field
2455 *
2456 * The softc is allocated and zeroed when a driver is attached, based
2457 * on the size field of the driver.
2458 */
2459void *
2460device_get_softc(device_t dev)
2461{
2462	return (dev->softc);
2463}
2464
2465/**
2466 * @brief Set the device's softc field
2467 *
2468 * Most drivers do not need to use this since the softc is allocated
2469 * automatically when the driver is attached.
2470 */
2471void
2472device_set_softc(device_t dev, void *softc)
2473{
2474	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2475		free(dev->softc, M_BUS_SC);
2476	dev->softc = softc;
2477	if (dev->softc)
2478		dev->flags |= DF_EXTERNALSOFTC;
2479	else
2480		dev->flags &= ~DF_EXTERNALSOFTC;
2481}
2482
2483/**
2484 * @brief Free claimed softc
2485 *
2486 * Most drivers do not need to use this since the softc is freed
2487 * automatically when the driver is detached.
2488 */
2489void
2490device_free_softc(void *softc)
2491{
2492	free(softc, M_BUS_SC);
2493}
2494
2495/**
2496 * @brief Claim softc
2497 *
2498 * This function can be used to let the driver free the automatically
2499 * allocated softc using "device_free_softc()". This function is
2500 * useful when the driver is refcounting the softc and the softc
2501 * cannot be freed when the "device_detach" method is called.
2502 */
2503void
2504device_claim_softc(device_t dev)
2505{
2506	if (dev->softc)
2507		dev->flags |= DF_EXTERNALSOFTC;
2508	else
2509		dev->flags &= ~DF_EXTERNALSOFTC;
2510}
2511
2512/**
2513 * @brief Get the device's ivars field
2514 *
2515 * The ivars field is used by the parent device to store per-device
2516 * state (e.g. the physical location of the device or a list of
2517 * resources).
2518 */
2519void *
2520device_get_ivars(device_t dev)
2521{
2522
2523	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2524	return (dev->ivars);
2525}
2526
2527/**
2528 * @brief Set the device's ivars field
2529 */
2530void
2531device_set_ivars(device_t dev, void * ivars)
2532{
2533
2534	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2535	dev->ivars = ivars;
2536}
2537
2538/**
2539 * @brief Return the device's state
2540 */
2541device_state_t
2542device_get_state(device_t dev)
2543{
2544	return (dev->state);
2545}
2546
2547/**
2548 * @brief Set the DF_ENABLED flag for the device
2549 */
2550void
2551device_enable(device_t dev)
2552{
2553	dev->flags |= DF_ENABLED;
2554}
2555
2556/**
2557 * @brief Clear the DF_ENABLED flag for the device
2558 */
2559void
2560device_disable(device_t dev)
2561{
2562	dev->flags &= ~DF_ENABLED;
2563}
2564
2565/**
2566 * @brief Increment the busy counter for the device
2567 */
2568void
2569device_busy(device_t dev)
2570{
2571	if (dev->state < DS_ATTACHING)
2572		panic("device_busy: called for unattached device");
2573	if (dev->busy == 0 && dev->parent)
2574		device_busy(dev->parent);
2575	dev->busy++;
2576	if (dev->state == DS_ATTACHED)
2577		dev->state = DS_BUSY;
2578}
2579
2580/**
2581 * @brief Decrement the busy counter for the device
2582 */
2583void
2584device_unbusy(device_t dev)
2585{
2586	if (dev->busy != 0 && dev->state != DS_BUSY &&
2587	    dev->state != DS_ATTACHING)
2588		panic("device_unbusy: called for non-busy device %s",
2589		    device_get_nameunit(dev));
2590	dev->busy--;
2591	if (dev->busy == 0) {
2592		if (dev->parent)
2593			device_unbusy(dev->parent);
2594		if (dev->state == DS_BUSY)
2595			dev->state = DS_ATTACHED;
2596	}
2597}
2598
2599/**
2600 * @brief Set the DF_QUIET flag for the device
2601 */
2602void
2603device_quiet(device_t dev)
2604{
2605	dev->flags |= DF_QUIET;
2606}
2607
2608/**
2609 * @brief Clear the DF_QUIET flag for the device
2610 */
2611void
2612device_verbose(device_t dev)
2613{
2614	dev->flags &= ~DF_QUIET;
2615}
2616
2617/**
2618 * @brief Return non-zero if the DF_QUIET flag is set on the device
2619 */
2620int
2621device_is_quiet(device_t dev)
2622{
2623	return ((dev->flags & DF_QUIET) != 0);
2624}
2625
2626/**
2627 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2628 */
2629int
2630device_is_enabled(device_t dev)
2631{
2632	return ((dev->flags & DF_ENABLED) != 0);
2633}
2634
2635/**
2636 * @brief Return non-zero if the device was successfully probed
2637 */
2638int
2639device_is_alive(device_t dev)
2640{
2641	return (dev->state >= DS_ALIVE);
2642}
2643
2644/**
2645 * @brief Return non-zero if the device currently has a driver
2646 * attached to it
2647 */
2648int
2649device_is_attached(device_t dev)
2650{
2651	return (dev->state >= DS_ATTACHED);
2652}
2653
2654/**
2655 * @brief Set the devclass of a device
2656 * @see devclass_add_device().
2657 */
2658int
2659device_set_devclass(device_t dev, const char *classname)
2660{
2661	devclass_t dc;
2662	int error;
2663
2664	if (!classname) {
2665		if (dev->devclass)
2666			devclass_delete_device(dev->devclass, dev);
2667		return (0);
2668	}
2669
2670	if (dev->devclass) {
2671		printf("device_set_devclass: device class already set\n");
2672		return (EINVAL);
2673	}
2674
2675	dc = devclass_find_internal(classname, NULL, TRUE);
2676	if (!dc)
2677		return (ENOMEM);
2678
2679	error = devclass_add_device(dc, dev);
2680
2681	bus_data_generation_update();
2682	return (error);
2683}
2684
2685/**
2686 * @brief Set the driver of a device
2687 *
2688 * @retval 0		success
2689 * @retval EBUSY	the device already has a driver attached
2690 * @retval ENOMEM	a memory allocation failure occurred
2691 */
2692int
2693device_set_driver(device_t dev, driver_t *driver)
2694{
2695	if (dev->state >= DS_ATTACHED)
2696		return (EBUSY);
2697
2698	if (dev->driver == driver)
2699		return (0);
2700
2701	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2702		free(dev->softc, M_BUS_SC);
2703		dev->softc = NULL;
2704	}
2705	device_set_desc(dev, NULL);
2706	kobj_delete((kobj_t) dev, NULL);
2707	dev->driver = driver;
2708	if (driver) {
2709		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2710		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2711			dev->softc = malloc(driver->size, M_BUS_SC,
2712			    M_NOWAIT | M_ZERO);
2713			if (!dev->softc) {
2714				kobj_delete((kobj_t) dev, NULL);
2715				kobj_init((kobj_t) dev, &null_class);
2716				dev->driver = NULL;
2717				return (ENOMEM);
2718			}
2719		}
2720	} else {
2721		kobj_init((kobj_t) dev, &null_class);
2722	}
2723
2724	bus_data_generation_update();
2725	return (0);
2726}
2727
2728/**
2729 * @brief Probe a device, and return this status.
2730 *
2731 * This function is the core of the device autoconfiguration
2732 * system. Its purpose is to select a suitable driver for a device and
2733 * then call that driver to initialise the hardware appropriately. The
2734 * driver is selected by calling the DEVICE_PROBE() method of a set of
2735 * candidate drivers and then choosing the driver which returned the
2736 * best value. This driver is then attached to the device using
2737 * device_attach().
2738 *
2739 * The set of suitable drivers is taken from the list of drivers in
2740 * the parent device's devclass. If the device was originally created
2741 * with a specific class name (see device_add_child()), only drivers
2742 * with that name are probed, otherwise all drivers in the devclass
2743 * are probed. If no drivers return successful probe values in the
2744 * parent devclass, the search continues in the parent of that
2745 * devclass (see devclass_get_parent()) if any.
2746 *
2747 * @param dev		the device to initialise
2748 *
2749 * @retval 0		success
2750 * @retval ENXIO	no driver was found
2751 * @retval ENOMEM	memory allocation failure
2752 * @retval non-zero	some other unix error code
2753 * @retval -1		Device already attached
2754 */
2755int
2756device_probe(device_t dev)
2757{
2758	int error;
2759
2760	GIANT_REQUIRED;
2761
2762	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2763		return (-1);
2764
2765	if (!(dev->flags & DF_ENABLED)) {
2766		if (bootverbose && device_get_name(dev) != NULL) {
2767			device_print_prettyname(dev);
2768			printf("not probed (disabled)\n");
2769		}
2770		return (-1);
2771	}
2772	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2773		if (bus_current_pass == BUS_PASS_DEFAULT &&
2774		    !(dev->flags & DF_DONENOMATCH)) {
2775			BUS_PROBE_NOMATCH(dev->parent, dev);
2776			devnomatch(dev);
2777			dev->flags |= DF_DONENOMATCH;
2778		}
2779		return (error);
2780	}
2781	return (0);
2782}
2783
2784/**
2785 * @brief Probe a device and attach a driver if possible
2786 *
2787 * calls device_probe() and attaches if that was successful.
2788 */
2789int
2790device_probe_and_attach(device_t dev)
2791{
2792	int error;
2793
2794	GIANT_REQUIRED;
2795
2796	error = device_probe(dev);
2797	if (error == -1)
2798		return (0);
2799	else if (error != 0)
2800		return (error);
2801
2802	CURVNET_SET_QUIET(vnet0);
2803	error = device_attach(dev);
2804	CURVNET_RESTORE();
2805	return error;
2806}
2807
2808/**
2809 * @brief Attach a device driver to a device
2810 *
2811 * This function is a wrapper around the DEVICE_ATTACH() driver
2812 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2813 * device's sysctl tree, optionally prints a description of the device
2814 * and queues a notification event for user-based device management
2815 * services.
2816 *
2817 * Normally this function is only called internally from
2818 * device_probe_and_attach().
2819 *
2820 * @param dev		the device to initialise
2821 *
2822 * @retval 0		success
2823 * @retval ENXIO	no driver was found
2824 * @retval ENOMEM	memory allocation failure
2825 * @retval non-zero	some other unix error code
2826 */
2827int
2828device_attach(device_t dev)
2829{
2830	uint64_t attachtime;
2831	int error;
2832
2833	if (resource_disabled(dev->driver->name, dev->unit)) {
2834		device_disable(dev);
2835		if (bootverbose)
2836			 device_printf(dev, "disabled via hints entry\n");
2837		return (ENXIO);
2838	}
2839
2840	device_sysctl_init(dev);
2841	if (!device_is_quiet(dev))
2842		device_print_child(dev->parent, dev);
2843	attachtime = get_cyclecount();
2844	dev->state = DS_ATTACHING;
2845	if ((error = DEVICE_ATTACH(dev)) != 0) {
2846		printf("device_attach: %s%d attach returned %d\n",
2847		    dev->driver->name, dev->unit, error);
2848		if (!(dev->flags & DF_FIXEDCLASS))
2849			devclass_delete_device(dev->devclass, dev);
2850		(void)device_set_driver(dev, NULL);
2851		device_sysctl_fini(dev);
2852		KASSERT(dev->busy == 0, ("attach failed but busy"));
2853		dev->state = DS_NOTPRESENT;
2854		return (error);
2855	}
2856	attachtime = get_cyclecount() - attachtime;
2857	/*
2858	 * 4 bits per device is a reasonable value for desktop and server
2859	 * hardware with good get_cyclecount() implementations, but may
2860	 * need to be adjusted on other platforms.
2861	 */
2862#ifdef RANDOM_DEBUG
2863	printf("%s(): feeding %d bit(s) of entropy from %s%d\n",
2864	    __func__, 4, dev->driver->name, dev->unit);
2865#endif
2866	random_harvest(&attachtime, sizeof(attachtime), 4, RANDOM_ATTACH);
2867	device_sysctl_update(dev);
2868	if (dev->busy)
2869		dev->state = DS_BUSY;
2870	else
2871		dev->state = DS_ATTACHED;
2872	dev->flags &= ~DF_DONENOMATCH;
2873	devadded(dev);
2874	return (0);
2875}
2876
2877/**
2878 * @brief Detach a driver from a device
2879 *
2880 * This function is a wrapper around the DEVICE_DETACH() driver
2881 * method. If the call to DEVICE_DETACH() succeeds, it calls
2882 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2883 * notification event for user-based device management services and
2884 * cleans up the device's sysctl tree.
2885 *
2886 * @param dev		the device to un-initialise
2887 *
2888 * @retval 0		success
2889 * @retval ENXIO	no driver was found
2890 * @retval ENOMEM	memory allocation failure
2891 * @retval non-zero	some other unix error code
2892 */
2893int
2894device_detach(device_t dev)
2895{
2896	int error;
2897
2898	GIANT_REQUIRED;
2899
2900	PDEBUG(("%s", DEVICENAME(dev)));
2901	if (dev->state == DS_BUSY)
2902		return (EBUSY);
2903	if (dev->state != DS_ATTACHED)
2904		return (0);
2905
2906	if ((error = DEVICE_DETACH(dev)) != 0)
2907		return (error);
2908	devremoved(dev);
2909	if (!device_is_quiet(dev))
2910		device_printf(dev, "detached\n");
2911	if (dev->parent)
2912		BUS_CHILD_DETACHED(dev->parent, dev);
2913
2914	if (!(dev->flags & DF_FIXEDCLASS))
2915		devclass_delete_device(dev->devclass, dev);
2916
2917	dev->state = DS_NOTPRESENT;
2918	(void)device_set_driver(dev, NULL);
2919	device_sysctl_fini(dev);
2920
2921	return (0);
2922}
2923
2924/**
2925 * @brief Tells a driver to quiesce itself.
2926 *
2927 * This function is a wrapper around the DEVICE_QUIESCE() driver
2928 * method. If the call to DEVICE_QUIESCE() succeeds.
2929 *
2930 * @param dev		the device to quiesce
2931 *
2932 * @retval 0		success
2933 * @retval ENXIO	no driver was found
2934 * @retval ENOMEM	memory allocation failure
2935 * @retval non-zero	some other unix error code
2936 */
2937int
2938device_quiesce(device_t dev)
2939{
2940
2941	PDEBUG(("%s", DEVICENAME(dev)));
2942	if (dev->state == DS_BUSY)
2943		return (EBUSY);
2944	if (dev->state != DS_ATTACHED)
2945		return (0);
2946
2947	return (DEVICE_QUIESCE(dev));
2948}
2949
2950/**
2951 * @brief Notify a device of system shutdown
2952 *
2953 * This function calls the DEVICE_SHUTDOWN() driver method if the
2954 * device currently has an attached driver.
2955 *
2956 * @returns the value returned by DEVICE_SHUTDOWN()
2957 */
2958int
2959device_shutdown(device_t dev)
2960{
2961	if (dev->state < DS_ATTACHED)
2962		return (0);
2963	return (DEVICE_SHUTDOWN(dev));
2964}
2965
2966/**
2967 * @brief Set the unit number of a device
2968 *
2969 * This function can be used to override the unit number used for a
2970 * device (e.g. to wire a device to a pre-configured unit number).
2971 */
2972int
2973device_set_unit(device_t dev, int unit)
2974{
2975	devclass_t dc;
2976	int err;
2977
2978	dc = device_get_devclass(dev);
2979	if (unit < dc->maxunit && dc->devices[unit])
2980		return (EBUSY);
2981	err = devclass_delete_device(dc, dev);
2982	if (err)
2983		return (err);
2984	dev->unit = unit;
2985	err = devclass_add_device(dc, dev);
2986	if (err)
2987		return (err);
2988
2989	bus_data_generation_update();
2990	return (0);
2991}
2992
2993/*======================================*/
2994/*
2995 * Some useful method implementations to make life easier for bus drivers.
2996 */
2997
2998/**
2999 * @brief Initialise a resource list.
3000 *
3001 * @param rl		the resource list to initialise
3002 */
3003void
3004resource_list_init(struct resource_list *rl)
3005{
3006	STAILQ_INIT(rl);
3007}
3008
3009/**
3010 * @brief Reclaim memory used by a resource list.
3011 *
3012 * This function frees the memory for all resource entries on the list
3013 * (if any).
3014 *
3015 * @param rl		the resource list to free
3016 */
3017void
3018resource_list_free(struct resource_list *rl)
3019{
3020	struct resource_list_entry *rle;
3021
3022	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3023		if (rle->res)
3024			panic("resource_list_free: resource entry is busy");
3025		STAILQ_REMOVE_HEAD(rl, link);
3026		free(rle, M_BUS);
3027	}
3028}
3029
3030/**
3031 * @brief Add a resource entry.
3032 *
3033 * This function adds a resource entry using the given @p type, @p
3034 * start, @p end and @p count values. A rid value is chosen by
3035 * searching sequentially for the first unused rid starting at zero.
3036 *
3037 * @param rl		the resource list to edit
3038 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3039 * @param start		the start address of the resource
3040 * @param end		the end address of the resource
3041 * @param count		XXX end-start+1
3042 */
3043int
3044resource_list_add_next(struct resource_list *rl, int type, u_long start,
3045    u_long end, u_long count)
3046{
3047	int rid;
3048
3049	rid = 0;
3050	while (resource_list_find(rl, type, rid) != NULL)
3051		rid++;
3052	resource_list_add(rl, type, rid, start, end, count);
3053	return (rid);
3054}
3055
3056/**
3057 * @brief Add or modify a resource entry.
3058 *
3059 * If an existing entry exists with the same type and rid, it will be
3060 * modified using the given values of @p start, @p end and @p
3061 * count. If no entry exists, a new one will be created using the
3062 * given values.  The resource list entry that matches is then returned.
3063 *
3064 * @param rl		the resource list to edit
3065 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3066 * @param rid		the resource identifier
3067 * @param start		the start address of the resource
3068 * @param end		the end address of the resource
3069 * @param count		XXX end-start+1
3070 */
3071struct resource_list_entry *
3072resource_list_add(struct resource_list *rl, int type, int rid,
3073    u_long start, u_long end, u_long count)
3074{
3075	struct resource_list_entry *rle;
3076
3077	rle = resource_list_find(rl, type, rid);
3078	if (!rle) {
3079		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
3080		    M_NOWAIT);
3081		if (!rle)
3082			panic("resource_list_add: can't record entry");
3083		STAILQ_INSERT_TAIL(rl, rle, link);
3084		rle->type = type;
3085		rle->rid = rid;
3086		rle->res = NULL;
3087		rle->flags = 0;
3088	}
3089
3090	if (rle->res)
3091		panic("resource_list_add: resource entry is busy");
3092
3093	rle->start = start;
3094	rle->end = end;
3095	rle->count = count;
3096	return (rle);
3097}
3098
3099/**
3100 * @brief Determine if a resource entry is busy.
3101 *
3102 * Returns true if a resource entry is busy meaning that it has an
3103 * associated resource that is not an unallocated "reserved" resource.
3104 *
3105 * @param rl		the resource list to search
3106 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3107 * @param rid		the resource identifier
3108 *
3109 * @returns Non-zero if the entry is busy, zero otherwise.
3110 */
3111int
3112resource_list_busy(struct resource_list *rl, int type, int rid)
3113{
3114	struct resource_list_entry *rle;
3115
3116	rle = resource_list_find(rl, type, rid);
3117	if (rle == NULL || rle->res == NULL)
3118		return (0);
3119	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3120		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3121		    ("reserved resource is active"));
3122		return (0);
3123	}
3124	return (1);
3125}
3126
3127/**
3128 * @brief Determine if a resource entry is reserved.
3129 *
3130 * Returns true if a resource entry is reserved meaning that it has an
3131 * associated "reserved" resource.  The resource can either be
3132 * allocated or unallocated.
3133 *
3134 * @param rl		the resource list to search
3135 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3136 * @param rid		the resource identifier
3137 *
3138 * @returns Non-zero if the entry is reserved, zero otherwise.
3139 */
3140int
3141resource_list_reserved(struct resource_list *rl, int type, int rid)
3142{
3143	struct resource_list_entry *rle;
3144
3145	rle = resource_list_find(rl, type, rid);
3146	if (rle != NULL && rle->flags & RLE_RESERVED)
3147		return (1);
3148	return (0);
3149}
3150
3151/**
3152 * @brief Find a resource entry by type and rid.
3153 *
3154 * @param rl		the resource list to search
3155 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3156 * @param rid		the resource identifier
3157 *
3158 * @returns the resource entry pointer or NULL if there is no such
3159 * entry.
3160 */
3161struct resource_list_entry *
3162resource_list_find(struct resource_list *rl, int type, int rid)
3163{
3164	struct resource_list_entry *rle;
3165
3166	STAILQ_FOREACH(rle, rl, link) {
3167		if (rle->type == type && rle->rid == rid)
3168			return (rle);
3169	}
3170	return (NULL);
3171}
3172
3173/**
3174 * @brief Delete a resource entry.
3175 *
3176 * @param rl		the resource list to edit
3177 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3178 * @param rid		the resource identifier
3179 */
3180void
3181resource_list_delete(struct resource_list *rl, int type, int rid)
3182{
3183	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3184
3185	if (rle) {
3186		if (rle->res != NULL)
3187			panic("resource_list_delete: resource has not been released");
3188		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3189		free(rle, M_BUS);
3190	}
3191}
3192
3193/**
3194 * @brief Allocate a reserved resource
3195 *
3196 * This can be used by busses to force the allocation of resources
3197 * that are always active in the system even if they are not allocated
3198 * by a driver (e.g. PCI BARs).  This function is usually called when
3199 * adding a new child to the bus.  The resource is allocated from the
3200 * parent bus when it is reserved.  The resource list entry is marked
3201 * with RLE_RESERVED to note that it is a reserved resource.
3202 *
3203 * Subsequent attempts to allocate the resource with
3204 * resource_list_alloc() will succeed the first time and will set
3205 * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3206 * resource that has been allocated is released with
3207 * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3208 * the actual resource remains allocated.  The resource can be released to
3209 * the parent bus by calling resource_list_unreserve().
3210 *
3211 * @param rl		the resource list to allocate from
3212 * @param bus		the parent device of @p child
3213 * @param child		the device for which the resource is being reserved
3214 * @param type		the type of resource to allocate
3215 * @param rid		a pointer to the resource identifier
3216 * @param start		hint at the start of the resource range - pass
3217 *			@c 0UL for any start address
3218 * @param end		hint at the end of the resource range - pass
3219 *			@c ~0UL for any end address
3220 * @param count		hint at the size of range required - pass @c 1
3221 *			for any size
3222 * @param flags		any extra flags to control the resource
3223 *			allocation - see @c RF_XXX flags in
3224 *			<sys/rman.h> for details
3225 *
3226 * @returns		the resource which was allocated or @c NULL if no
3227 *			resource could be allocated
3228 */
3229struct resource *
3230resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3231    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3232{
3233	struct resource_list_entry *rle = NULL;
3234	int passthrough = (device_get_parent(child) != bus);
3235	struct resource *r;
3236
3237	if (passthrough)
3238		panic(
3239    "resource_list_reserve() should only be called for direct children");
3240	if (flags & RF_ACTIVE)
3241		panic(
3242    "resource_list_reserve() should only reserve inactive resources");
3243
3244	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3245	    flags);
3246	if (r != NULL) {
3247		rle = resource_list_find(rl, type, *rid);
3248		rle->flags |= RLE_RESERVED;
3249	}
3250	return (r);
3251}
3252
3253/**
3254 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3255 *
3256 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3257 * and passing the allocation up to the parent of @p bus. This assumes
3258 * that the first entry of @c device_get_ivars(child) is a struct
3259 * resource_list. This also handles 'passthrough' allocations where a
3260 * child is a remote descendant of bus by passing the allocation up to
3261 * the parent of bus.
3262 *
3263 * Typically, a bus driver would store a list of child resources
3264 * somewhere in the child device's ivars (see device_get_ivars()) and
3265 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3266 * then call resource_list_alloc() to perform the allocation.
3267 *
3268 * @param rl		the resource list to allocate from
3269 * @param bus		the parent device of @p child
3270 * @param child		the device which is requesting an allocation
3271 * @param type		the type of resource to allocate
3272 * @param rid		a pointer to the resource identifier
3273 * @param start		hint at the start of the resource range - pass
3274 *			@c 0UL for any start address
3275 * @param end		hint at the end of the resource range - pass
3276 *			@c ~0UL for any end address
3277 * @param count		hint at the size of range required - pass @c 1
3278 *			for any size
3279 * @param flags		any extra flags to control the resource
3280 *			allocation - see @c RF_XXX flags in
3281 *			<sys/rman.h> for details
3282 *
3283 * @returns		the resource which was allocated or @c NULL if no
3284 *			resource could be allocated
3285 */
3286struct resource *
3287resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3288    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3289{
3290	struct resource_list_entry *rle = NULL;
3291	int passthrough = (device_get_parent(child) != bus);
3292	int isdefault = (start == 0UL && end == ~0UL);
3293
3294	if (passthrough) {
3295		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3296		    type, rid, start, end, count, flags));
3297	}
3298
3299	rle = resource_list_find(rl, type, *rid);
3300
3301	if (!rle)
3302		return (NULL);		/* no resource of that type/rid */
3303
3304	if (rle->res) {
3305		if (rle->flags & RLE_RESERVED) {
3306			if (rle->flags & RLE_ALLOCATED)
3307				return (NULL);
3308			if ((flags & RF_ACTIVE) &&
3309			    bus_activate_resource(child, type, *rid,
3310			    rle->res) != 0)
3311				return (NULL);
3312			rle->flags |= RLE_ALLOCATED;
3313			return (rle->res);
3314		}
3315		device_printf(bus,
3316		    "resource entry %#x type %d for child %s is busy\n", *rid,
3317		    type, device_get_nameunit(child));
3318		return (NULL);
3319	}
3320
3321	if (isdefault) {
3322		start = rle->start;
3323		count = ulmax(count, rle->count);
3324		end = ulmax(rle->end, start + count - 1);
3325	}
3326
3327	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3328	    type, rid, start, end, count, flags);
3329
3330	/*
3331	 * Record the new range.
3332	 */
3333	if (rle->res) {
3334		rle->start = rman_get_start(rle->res);
3335		rle->end = rman_get_end(rle->res);
3336		rle->count = count;
3337	}
3338
3339	return (rle->res);
3340}
3341
3342/**
3343 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3344 *
3345 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3346 * used with resource_list_alloc().
3347 *
3348 * @param rl		the resource list which was allocated from
3349 * @param bus		the parent device of @p child
3350 * @param child		the device which is requesting a release
3351 * @param type		the type of resource to release
3352 * @param rid		the resource identifier
3353 * @param res		the resource to release
3354 *
3355 * @retval 0		success
3356 * @retval non-zero	a standard unix error code indicating what
3357 *			error condition prevented the operation
3358 */
3359int
3360resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3361    int type, int rid, struct resource *res)
3362{
3363	struct resource_list_entry *rle = NULL;
3364	int passthrough = (device_get_parent(child) != bus);
3365	int error;
3366
3367	if (passthrough) {
3368		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3369		    type, rid, res));
3370	}
3371
3372	rle = resource_list_find(rl, type, rid);
3373
3374	if (!rle)
3375		panic("resource_list_release: can't find resource");
3376	if (!rle->res)
3377		panic("resource_list_release: resource entry is not busy");
3378	if (rle->flags & RLE_RESERVED) {
3379		if (rle->flags & RLE_ALLOCATED) {
3380			if (rman_get_flags(res) & RF_ACTIVE) {
3381				error = bus_deactivate_resource(child, type,
3382				    rid, res);
3383				if (error)
3384					return (error);
3385			}
3386			rle->flags &= ~RLE_ALLOCATED;
3387			return (0);
3388		}
3389		return (EINVAL);
3390	}
3391
3392	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3393	    type, rid, res);
3394	if (error)
3395		return (error);
3396
3397	rle->res = NULL;
3398	return (0);
3399}
3400
3401/**
3402 * @brief Release all active resources of a given type
3403 *
3404 * Release all active resources of a specified type.  This is intended
3405 * to be used to cleanup resources leaked by a driver after detach or
3406 * a failed attach.
3407 *
3408 * @param rl		the resource list which was allocated from
3409 * @param bus		the parent device of @p child
3410 * @param child		the device whose active resources are being released
3411 * @param type		the type of resources to release
3412 *
3413 * @retval 0		success
3414 * @retval EBUSY	at least one resource was active
3415 */
3416int
3417resource_list_release_active(struct resource_list *rl, device_t bus,
3418    device_t child, int type)
3419{
3420	struct resource_list_entry *rle;
3421	int error, retval;
3422
3423	retval = 0;
3424	STAILQ_FOREACH(rle, rl, link) {
3425		if (rle->type != type)
3426			continue;
3427		if (rle->res == NULL)
3428			continue;
3429		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3430		    RLE_RESERVED)
3431			continue;
3432		retval = EBUSY;
3433		error = resource_list_release(rl, bus, child, type,
3434		    rman_get_rid(rle->res), rle->res);
3435		if (error != 0)
3436			device_printf(bus,
3437			    "Failed to release active resource: %d\n", error);
3438	}
3439	return (retval);
3440}
3441
3442
3443/**
3444 * @brief Fully release a reserved resource
3445 *
3446 * Fully releases a resource reserved via resource_list_reserve().
3447 *
3448 * @param rl		the resource list which was allocated from
3449 * @param bus		the parent device of @p child
3450 * @param child		the device whose reserved resource is being released
3451 * @param type		the type of resource to release
3452 * @param rid		the resource identifier
3453 * @param res		the resource to release
3454 *
3455 * @retval 0		success
3456 * @retval non-zero	a standard unix error code indicating what
3457 *			error condition prevented the operation
3458 */
3459int
3460resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3461    int type, int rid)
3462{
3463	struct resource_list_entry *rle = NULL;
3464	int passthrough = (device_get_parent(child) != bus);
3465
3466	if (passthrough)
3467		panic(
3468    "resource_list_unreserve() should only be called for direct children");
3469
3470	rle = resource_list_find(rl, type, rid);
3471
3472	if (!rle)
3473		panic("resource_list_unreserve: can't find resource");
3474	if (!(rle->flags & RLE_RESERVED))
3475		return (EINVAL);
3476	if (rle->flags & RLE_ALLOCATED)
3477		return (EBUSY);
3478	rle->flags &= ~RLE_RESERVED;
3479	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3480}
3481
3482/**
3483 * @brief Print a description of resources in a resource list
3484 *
3485 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3486 * The name is printed if at least one resource of the given type is available.
3487 * The format is used to print resource start and end.
3488 *
3489 * @param rl		the resource list to print
3490 * @param name		the name of @p type, e.g. @c "memory"
3491 * @param type		type type of resource entry to print
3492 * @param format	printf(9) format string to print resource
3493 *			start and end values
3494 *
3495 * @returns		the number of characters printed
3496 */
3497int
3498resource_list_print_type(struct resource_list *rl, const char *name, int type,
3499    const char *format)
3500{
3501	struct resource_list_entry *rle;
3502	int printed, retval;
3503
3504	printed = 0;
3505	retval = 0;
3506	/* Yes, this is kinda cheating */
3507	STAILQ_FOREACH(rle, rl, link) {
3508		if (rle->type == type) {
3509			if (printed == 0)
3510				retval += printf(" %s ", name);
3511			else
3512				retval += printf(",");
3513			printed++;
3514			retval += printf(format, rle->start);
3515			if (rle->count > 1) {
3516				retval += printf("-");
3517				retval += printf(format, rle->start +
3518						 rle->count - 1);
3519			}
3520		}
3521	}
3522	return (retval);
3523}
3524
3525/**
3526 * @brief Releases all the resources in a list.
3527 *
3528 * @param rl		The resource list to purge.
3529 *
3530 * @returns		nothing
3531 */
3532void
3533resource_list_purge(struct resource_list *rl)
3534{
3535	struct resource_list_entry *rle;
3536
3537	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3538		if (rle->res)
3539			bus_release_resource(rman_get_device(rle->res),
3540			    rle->type, rle->rid, rle->res);
3541		STAILQ_REMOVE_HEAD(rl, link);
3542		free(rle, M_BUS);
3543	}
3544}
3545
3546device_t
3547bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3548{
3549
3550	return (device_add_child_ordered(dev, order, name, unit));
3551}
3552
3553/**
3554 * @brief Helper function for implementing DEVICE_PROBE()
3555 *
3556 * This function can be used to help implement the DEVICE_PROBE() for
3557 * a bus (i.e. a device which has other devices attached to it). It
3558 * calls the DEVICE_IDENTIFY() method of each driver in the device's
3559 * devclass.
3560 */
3561int
3562bus_generic_probe(device_t dev)
3563{
3564	devclass_t dc = dev->devclass;
3565	driverlink_t dl;
3566
3567	TAILQ_FOREACH(dl, &dc->drivers, link) {
3568		/*
3569		 * If this driver's pass is too high, then ignore it.
3570		 * For most drivers in the default pass, this will
3571		 * never be true.  For early-pass drivers they will
3572		 * only call the identify routines of eligible drivers
3573		 * when this routine is called.  Drivers for later
3574		 * passes should have their identify routines called
3575		 * on early-pass busses during BUS_NEW_PASS().
3576		 */
3577		if (dl->pass > bus_current_pass)
3578			continue;
3579		DEVICE_IDENTIFY(dl->driver, dev);
3580	}
3581
3582	return (0);
3583}
3584
3585/**
3586 * @brief Helper function for implementing DEVICE_ATTACH()
3587 *
3588 * This function can be used to help implement the DEVICE_ATTACH() for
3589 * a bus. It calls device_probe_and_attach() for each of the device's
3590 * children.
3591 */
3592int
3593bus_generic_attach(device_t dev)
3594{
3595	device_t child;
3596
3597	TAILQ_FOREACH(child, &dev->children, link) {
3598		device_probe_and_attach(child);
3599	}
3600
3601	return (0);
3602}
3603
3604/**
3605 * @brief Helper function for implementing DEVICE_DETACH()
3606 *
3607 * This function can be used to help implement the DEVICE_DETACH() for
3608 * a bus. It calls device_detach() for each of the device's
3609 * children.
3610 */
3611int
3612bus_generic_detach(device_t dev)
3613{
3614	device_t child;
3615	int error;
3616
3617	if (dev->state != DS_ATTACHED)
3618		return (EBUSY);
3619
3620	TAILQ_FOREACH(child, &dev->children, link) {
3621		if ((error = device_detach(child)) != 0)
3622			return (error);
3623	}
3624
3625	return (0);
3626}
3627
3628/**
3629 * @brief Helper function for implementing DEVICE_SHUTDOWN()
3630 *
3631 * This function can be used to help implement the DEVICE_SHUTDOWN()
3632 * for a bus. It calls device_shutdown() for each of the device's
3633 * children.
3634 */
3635int
3636bus_generic_shutdown(device_t dev)
3637{
3638	device_t child;
3639
3640	TAILQ_FOREACH(child, &dev->children, link) {
3641		device_shutdown(child);
3642	}
3643
3644	return (0);
3645}
3646
3647/**
3648 * @brief Helper function for implementing DEVICE_SUSPEND()
3649 *
3650 * This function can be used to help implement the DEVICE_SUSPEND()
3651 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3652 * children. If any call to DEVICE_SUSPEND() fails, the suspend
3653 * operation is aborted and any devices which were suspended are
3654 * resumed immediately by calling their DEVICE_RESUME() methods.
3655 */
3656int
3657bus_generic_suspend(device_t dev)
3658{
3659	int		error;
3660	device_t	child, child2;
3661
3662	TAILQ_FOREACH(child, &dev->children, link) {
3663		error = DEVICE_SUSPEND(child);
3664		if (error) {
3665			for (child2 = TAILQ_FIRST(&dev->children);
3666			     child2 && child2 != child;
3667			     child2 = TAILQ_NEXT(child2, link))
3668				DEVICE_RESUME(child2);
3669			return (error);
3670		}
3671	}
3672	return (0);
3673}
3674
3675/**
3676 * @brief Helper function for implementing DEVICE_RESUME()
3677 *
3678 * This function can be used to help implement the DEVICE_RESUME() for
3679 * a bus. It calls DEVICE_RESUME() on each of the device's children.
3680 */
3681int
3682bus_generic_resume(device_t dev)
3683{
3684	device_t	child;
3685
3686	TAILQ_FOREACH(child, &dev->children, link) {
3687		DEVICE_RESUME(child);
3688		/* if resume fails, there's nothing we can usefully do... */
3689	}
3690	return (0);
3691}
3692
3693/**
3694 * @brief Helper function for implementing BUS_PRINT_CHILD().
3695 *
3696 * This function prints the first part of the ascii representation of
3697 * @p child, including its name, unit and description (if any - see
3698 * device_set_desc()).
3699 *
3700 * @returns the number of characters printed
3701 */
3702int
3703bus_print_child_header(device_t dev, device_t child)
3704{
3705	int	retval = 0;
3706
3707	if (device_get_desc(child)) {
3708		retval += device_printf(child, "<%s>", device_get_desc(child));
3709	} else {
3710		retval += printf("%s", device_get_nameunit(child));
3711	}
3712
3713	return (retval);
3714}
3715
3716/**
3717 * @brief Helper function for implementing BUS_PRINT_CHILD().
3718 *
3719 * This function prints the last part of the ascii representation of
3720 * @p child, which consists of the string @c " on " followed by the
3721 * name and unit of the @p dev.
3722 *
3723 * @returns the number of characters printed
3724 */
3725int
3726bus_print_child_footer(device_t dev, device_t child)
3727{
3728	return (printf(" on %s\n", device_get_nameunit(dev)));
3729}
3730
3731/**
3732 * @brief Helper function for implementing BUS_PRINT_CHILD().
3733 *
3734 * This function prints out the VM domain for the given device.
3735 *
3736 * @returns the number of characters printed
3737 */
3738int
3739bus_print_child_domain(device_t dev, device_t child)
3740{
3741	int domain;
3742
3743	/* No domain? Don't print anything */
3744	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
3745		return (0);
3746
3747	return (printf(" numa-domain %d", domain));
3748}
3749
3750/**
3751 * @brief Helper function for implementing BUS_PRINT_CHILD().
3752 *
3753 * This function simply calls bus_print_child_header() followed by
3754 * bus_print_child_footer().
3755 *
3756 * @returns the number of characters printed
3757 */
3758int
3759bus_generic_print_child(device_t dev, device_t child)
3760{
3761	int	retval = 0;
3762
3763	retval += bus_print_child_header(dev, child);
3764	retval += bus_print_child_domain(dev, child);
3765	retval += bus_print_child_footer(dev, child);
3766
3767	return (retval);
3768}
3769
3770/**
3771 * @brief Stub function for implementing BUS_READ_IVAR().
3772 *
3773 * @returns ENOENT
3774 */
3775int
3776bus_generic_read_ivar(device_t dev, device_t child, int index,
3777    uintptr_t * result)
3778{
3779	return (ENOENT);
3780}
3781
3782/**
3783 * @brief Stub function for implementing BUS_WRITE_IVAR().
3784 *
3785 * @returns ENOENT
3786 */
3787int
3788bus_generic_write_ivar(device_t dev, device_t child, int index,
3789    uintptr_t value)
3790{
3791	return (ENOENT);
3792}
3793
3794/**
3795 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3796 *
3797 * @returns NULL
3798 */
3799struct resource_list *
3800bus_generic_get_resource_list(device_t dev, device_t child)
3801{
3802	return (NULL);
3803}
3804
3805/**
3806 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3807 *
3808 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3809 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3810 * and then calls device_probe_and_attach() for each unattached child.
3811 */
3812void
3813bus_generic_driver_added(device_t dev, driver_t *driver)
3814{
3815	device_t child;
3816
3817	DEVICE_IDENTIFY(driver, dev);
3818	TAILQ_FOREACH(child, &dev->children, link) {
3819		if (child->state == DS_NOTPRESENT ||
3820		    (child->flags & DF_REBID))
3821			device_probe_and_attach(child);
3822	}
3823}
3824
3825/**
3826 * @brief Helper function for implementing BUS_NEW_PASS().
3827 *
3828 * This implementing of BUS_NEW_PASS() first calls the identify
3829 * routines for any drivers that probe at the current pass.  Then it
3830 * walks the list of devices for this bus.  If a device is already
3831 * attached, then it calls BUS_NEW_PASS() on that device.  If the
3832 * device is not already attached, it attempts to attach a driver to
3833 * it.
3834 */
3835void
3836bus_generic_new_pass(device_t dev)
3837{
3838	driverlink_t dl;
3839	devclass_t dc;
3840	device_t child;
3841
3842	dc = dev->devclass;
3843	TAILQ_FOREACH(dl, &dc->drivers, link) {
3844		if (dl->pass == bus_current_pass)
3845			DEVICE_IDENTIFY(dl->driver, dev);
3846	}
3847	TAILQ_FOREACH(child, &dev->children, link) {
3848		if (child->state >= DS_ATTACHED)
3849			BUS_NEW_PASS(child);
3850		else if (child->state == DS_NOTPRESENT)
3851			device_probe_and_attach(child);
3852	}
3853}
3854
3855/**
3856 * @brief Helper function for implementing BUS_SETUP_INTR().
3857 *
3858 * This simple implementation of BUS_SETUP_INTR() simply calls the
3859 * BUS_SETUP_INTR() method of the parent of @p dev.
3860 */
3861int
3862bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3863    int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3864    void **cookiep)
3865{
3866	/* Propagate up the bus hierarchy until someone handles it. */
3867	if (dev->parent)
3868		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3869		    filter, intr, arg, cookiep));
3870	return (EINVAL);
3871}
3872
3873/**
3874 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3875 *
3876 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3877 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3878 */
3879int
3880bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3881    void *cookie)
3882{
3883	/* Propagate up the bus hierarchy until someone handles it. */
3884	if (dev->parent)
3885		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3886	return (EINVAL);
3887}
3888
3889/**
3890 * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3891 *
3892 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3893 * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3894 */
3895int
3896bus_generic_adjust_resource(device_t dev, device_t child, int type,
3897    struct resource *r, u_long start, u_long end)
3898{
3899	/* Propagate up the bus hierarchy until someone handles it. */
3900	if (dev->parent)
3901		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
3902		    end));
3903	return (EINVAL);
3904}
3905
3906/**
3907 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3908 *
3909 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3910 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3911 */
3912struct resource *
3913bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3914    u_long start, u_long end, u_long count, u_int flags)
3915{
3916	/* Propagate up the bus hierarchy until someone handles it. */
3917	if (dev->parent)
3918		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3919		    start, end, count, flags));
3920	return (NULL);
3921}
3922
3923/**
3924 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3925 *
3926 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3927 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3928 */
3929int
3930bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3931    struct resource *r)
3932{
3933	/* Propagate up the bus hierarchy until someone handles it. */
3934	if (dev->parent)
3935		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3936		    r));
3937	return (EINVAL);
3938}
3939
3940/**
3941 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3942 *
3943 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3944 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3945 */
3946int
3947bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3948    struct resource *r)
3949{
3950	/* Propagate up the bus hierarchy until someone handles it. */
3951	if (dev->parent)
3952		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3953		    r));
3954	return (EINVAL);
3955}
3956
3957/**
3958 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3959 *
3960 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3961 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3962 */
3963int
3964bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3965    int rid, struct resource *r)
3966{
3967	/* Propagate up the bus hierarchy until someone handles it. */
3968	if (dev->parent)
3969		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3970		    r));
3971	return (EINVAL);
3972}
3973
3974/**
3975 * @brief Helper function for implementing BUS_BIND_INTR().
3976 *
3977 * This simple implementation of BUS_BIND_INTR() simply calls the
3978 * BUS_BIND_INTR() method of the parent of @p dev.
3979 */
3980int
3981bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3982    int cpu)
3983{
3984
3985	/* Propagate up the bus hierarchy until someone handles it. */
3986	if (dev->parent)
3987		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3988	return (EINVAL);
3989}
3990
3991/**
3992 * @brief Helper function for implementing BUS_CONFIG_INTR().
3993 *
3994 * This simple implementation of BUS_CONFIG_INTR() simply calls the
3995 * BUS_CONFIG_INTR() method of the parent of @p dev.
3996 */
3997int
3998bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3999    enum intr_polarity pol)
4000{
4001
4002	/* Propagate up the bus hierarchy until someone handles it. */
4003	if (dev->parent)
4004		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4005	return (EINVAL);
4006}
4007
4008/**
4009 * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4010 *
4011 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4012 * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4013 */
4014int
4015bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4016    void *cookie, const char *descr)
4017{
4018
4019	/* Propagate up the bus hierarchy until someone handles it. */
4020	if (dev->parent)
4021		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4022		    descr));
4023	return (EINVAL);
4024}
4025
4026/**
4027 * @brief Helper function for implementing BUS_GET_DMA_TAG().
4028 *
4029 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4030 * BUS_GET_DMA_TAG() method of the parent of @p dev.
4031 */
4032bus_dma_tag_t
4033bus_generic_get_dma_tag(device_t dev, device_t child)
4034{
4035
4036	/* Propagate up the bus hierarchy until someone handles it. */
4037	if (dev->parent != NULL)
4038		return (BUS_GET_DMA_TAG(dev->parent, child));
4039	return (NULL);
4040}
4041
4042/**
4043 * @brief Helper function for implementing BUS_GET_RESOURCE().
4044 *
4045 * This implementation of BUS_GET_RESOURCE() uses the
4046 * resource_list_find() function to do most of the work. It calls
4047 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4048 * search.
4049 */
4050int
4051bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4052    u_long *startp, u_long *countp)
4053{
4054	struct resource_list *		rl = NULL;
4055	struct resource_list_entry *	rle = NULL;
4056
4057	rl = BUS_GET_RESOURCE_LIST(dev, child);
4058	if (!rl)
4059		return (EINVAL);
4060
4061	rle = resource_list_find(rl, type, rid);
4062	if (!rle)
4063		return (ENOENT);
4064
4065	if (startp)
4066		*startp = rle->start;
4067	if (countp)
4068		*countp = rle->count;
4069
4070	return (0);
4071}
4072
4073/**
4074 * @brief Helper function for implementing BUS_SET_RESOURCE().
4075 *
4076 * This implementation of BUS_SET_RESOURCE() uses the
4077 * resource_list_add() function to do most of the work. It calls
4078 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4079 * edit.
4080 */
4081int
4082bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4083    u_long start, u_long count)
4084{
4085	struct resource_list *		rl = NULL;
4086
4087	rl = BUS_GET_RESOURCE_LIST(dev, child);
4088	if (!rl)
4089		return (EINVAL);
4090
4091	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4092
4093	return (0);
4094}
4095
4096/**
4097 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4098 *
4099 * This implementation of BUS_DELETE_RESOURCE() uses the
4100 * resource_list_delete() function to do most of the work. It calls
4101 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4102 * edit.
4103 */
4104void
4105bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4106{
4107	struct resource_list *		rl = NULL;
4108
4109	rl = BUS_GET_RESOURCE_LIST(dev, child);
4110	if (!rl)
4111		return;
4112
4113	resource_list_delete(rl, type, rid);
4114
4115	return;
4116}
4117
4118/**
4119 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4120 *
4121 * This implementation of BUS_RELEASE_RESOURCE() uses the
4122 * resource_list_release() function to do most of the work. It calls
4123 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4124 */
4125int
4126bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4127    int rid, struct resource *r)
4128{
4129	struct resource_list *		rl = NULL;
4130
4131	if (device_get_parent(child) != dev)
4132		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4133		    type, rid, r));
4134
4135	rl = BUS_GET_RESOURCE_LIST(dev, child);
4136	if (!rl)
4137		return (EINVAL);
4138
4139	return (resource_list_release(rl, dev, child, type, rid, r));
4140}
4141
4142/**
4143 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4144 *
4145 * This implementation of BUS_ALLOC_RESOURCE() uses the
4146 * resource_list_alloc() function to do most of the work. It calls
4147 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4148 */
4149struct resource *
4150bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4151    int *rid, u_long start, u_long end, u_long count, u_int flags)
4152{
4153	struct resource_list *		rl = NULL;
4154
4155	if (device_get_parent(child) != dev)
4156		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4157		    type, rid, start, end, count, flags));
4158
4159	rl = BUS_GET_RESOURCE_LIST(dev, child);
4160	if (!rl)
4161		return (NULL);
4162
4163	return (resource_list_alloc(rl, dev, child, type, rid,
4164	    start, end, count, flags));
4165}
4166
4167/**
4168 * @brief Helper function for implementing BUS_CHILD_PRESENT().
4169 *
4170 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4171 * BUS_CHILD_PRESENT() method of the parent of @p dev.
4172 */
4173int
4174bus_generic_child_present(device_t dev, device_t child)
4175{
4176	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4177}
4178
4179int
4180bus_generic_get_domain(device_t dev, device_t child, int *domain)
4181{
4182
4183	if (dev->parent)
4184		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4185
4186	return (ENOENT);
4187}
4188
4189/*
4190 * Some convenience functions to make it easier for drivers to use the
4191 * resource-management functions.  All these really do is hide the
4192 * indirection through the parent's method table, making for slightly
4193 * less-wordy code.  In the future, it might make sense for this code
4194 * to maintain some sort of a list of resources allocated by each device.
4195 */
4196
4197int
4198bus_alloc_resources(device_t dev, struct resource_spec *rs,
4199    struct resource **res)
4200{
4201	int i;
4202
4203	for (i = 0; rs[i].type != -1; i++)
4204		res[i] = NULL;
4205	for (i = 0; rs[i].type != -1; i++) {
4206		res[i] = bus_alloc_resource_any(dev,
4207		    rs[i].type, &rs[i].rid, rs[i].flags);
4208		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4209			bus_release_resources(dev, rs, res);
4210			return (ENXIO);
4211		}
4212	}
4213	return (0);
4214}
4215
4216void
4217bus_release_resources(device_t dev, const struct resource_spec *rs,
4218    struct resource **res)
4219{
4220	int i;
4221
4222	for (i = 0; rs[i].type != -1; i++)
4223		if (res[i] != NULL) {
4224			bus_release_resource(
4225			    dev, rs[i].type, rs[i].rid, res[i]);
4226			res[i] = NULL;
4227		}
4228}
4229
4230/**
4231 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4232 *
4233 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4234 * parent of @p dev.
4235 */
4236struct resource *
4237bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
4238    u_long count, u_int flags)
4239{
4240	if (dev->parent == NULL)
4241		return (NULL);
4242	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4243	    count, flags));
4244}
4245
4246/**
4247 * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4248 *
4249 * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4250 * parent of @p dev.
4251 */
4252int
4253bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start,
4254    u_long end)
4255{
4256	if (dev->parent == NULL)
4257		return (EINVAL);
4258	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4259}
4260
4261/**
4262 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4263 *
4264 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4265 * parent of @p dev.
4266 */
4267int
4268bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4269{
4270	if (dev->parent == NULL)
4271		return (EINVAL);
4272	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4273}
4274
4275/**
4276 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4277 *
4278 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4279 * parent of @p dev.
4280 */
4281int
4282bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4283{
4284	if (dev->parent == NULL)
4285		return (EINVAL);
4286	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4287}
4288
4289/**
4290 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4291 *
4292 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4293 * parent of @p dev.
4294 */
4295int
4296bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4297{
4298	if (dev->parent == NULL)
4299		return (EINVAL);
4300	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
4301}
4302
4303/**
4304 * @brief Wrapper function for BUS_SETUP_INTR().
4305 *
4306 * This function simply calls the BUS_SETUP_INTR() method of the
4307 * parent of @p dev.
4308 */
4309int
4310bus_setup_intr(device_t dev, struct resource *r, int flags,
4311    driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4312{
4313	int error;
4314
4315	if (dev->parent == NULL)
4316		return (EINVAL);
4317	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4318	    arg, cookiep);
4319	if (error != 0)
4320		return (error);
4321	if (handler != NULL && !(flags & INTR_MPSAFE))
4322		device_printf(dev, "[GIANT-LOCKED]\n");
4323	return (0);
4324}
4325
4326/**
4327 * @brief Wrapper function for BUS_TEARDOWN_INTR().
4328 *
4329 * This function simply calls the BUS_TEARDOWN_INTR() method of the
4330 * parent of @p dev.
4331 */
4332int
4333bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4334{
4335	if (dev->parent == NULL)
4336		return (EINVAL);
4337	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4338}
4339
4340/**
4341 * @brief Wrapper function for BUS_BIND_INTR().
4342 *
4343 * This function simply calls the BUS_BIND_INTR() method of the
4344 * parent of @p dev.
4345 */
4346int
4347bus_bind_intr(device_t dev, struct resource *r, int cpu)
4348{
4349	if (dev->parent == NULL)
4350		return (EINVAL);
4351	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4352}
4353
4354/**
4355 * @brief Wrapper function for BUS_DESCRIBE_INTR().
4356 *
4357 * This function first formats the requested description into a
4358 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4359 * the parent of @p dev.
4360 */
4361int
4362bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4363    const char *fmt, ...)
4364{
4365	va_list ap;
4366	char descr[MAXCOMLEN + 1];
4367
4368	if (dev->parent == NULL)
4369		return (EINVAL);
4370	va_start(ap, fmt);
4371	vsnprintf(descr, sizeof(descr), fmt, ap);
4372	va_end(ap);
4373	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4374}
4375
4376/**
4377 * @brief Wrapper function for BUS_SET_RESOURCE().
4378 *
4379 * This function simply calls the BUS_SET_RESOURCE() method of the
4380 * parent of @p dev.
4381 */
4382int
4383bus_set_resource(device_t dev, int type, int rid,
4384    u_long start, u_long count)
4385{
4386	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4387	    start, count));
4388}
4389
4390/**
4391 * @brief Wrapper function for BUS_GET_RESOURCE().
4392 *
4393 * This function simply calls the BUS_GET_RESOURCE() method of the
4394 * parent of @p dev.
4395 */
4396int
4397bus_get_resource(device_t dev, int type, int rid,
4398    u_long *startp, u_long *countp)
4399{
4400	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4401	    startp, countp));
4402}
4403
4404/**
4405 * @brief Wrapper function for BUS_GET_RESOURCE().
4406 *
4407 * This function simply calls the BUS_GET_RESOURCE() method of the
4408 * parent of @p dev and returns the start value.
4409 */
4410u_long
4411bus_get_resource_start(device_t dev, int type, int rid)
4412{
4413	u_long start, count;
4414	int error;
4415
4416	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4417	    &start, &count);
4418	if (error)
4419		return (0);
4420	return (start);
4421}
4422
4423/**
4424 * @brief Wrapper function for BUS_GET_RESOURCE().
4425 *
4426 * This function simply calls the BUS_GET_RESOURCE() method of the
4427 * parent of @p dev and returns the count value.
4428 */
4429u_long
4430bus_get_resource_count(device_t dev, int type, int rid)
4431{
4432	u_long start, count;
4433	int error;
4434
4435	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4436	    &start, &count);
4437	if (error)
4438		return (0);
4439	return (count);
4440}
4441
4442/**
4443 * @brief Wrapper function for BUS_DELETE_RESOURCE().
4444 *
4445 * This function simply calls the BUS_DELETE_RESOURCE() method of the
4446 * parent of @p dev.
4447 */
4448void
4449bus_delete_resource(device_t dev, int type, int rid)
4450{
4451	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4452}
4453
4454/**
4455 * @brief Wrapper function for BUS_CHILD_PRESENT().
4456 *
4457 * This function simply calls the BUS_CHILD_PRESENT() method of the
4458 * parent of @p dev.
4459 */
4460int
4461bus_child_present(device_t child)
4462{
4463	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4464}
4465
4466/**
4467 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4468 *
4469 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4470 * parent of @p dev.
4471 */
4472int
4473bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4474{
4475	device_t parent;
4476
4477	parent = device_get_parent(child);
4478	if (parent == NULL) {
4479		*buf = '\0';
4480		return (0);
4481	}
4482	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4483}
4484
4485/**
4486 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4487 *
4488 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4489 * parent of @p dev.
4490 */
4491int
4492bus_child_location_str(device_t child, char *buf, size_t buflen)
4493{
4494	device_t parent;
4495
4496	parent = device_get_parent(child);
4497	if (parent == NULL) {
4498		*buf = '\0';
4499		return (0);
4500	}
4501	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4502}
4503
4504/**
4505 * @brief Wrapper function for BUS_GET_DMA_TAG().
4506 *
4507 * This function simply calls the BUS_GET_DMA_TAG() method of the
4508 * parent of @p dev.
4509 */
4510bus_dma_tag_t
4511bus_get_dma_tag(device_t dev)
4512{
4513	device_t parent;
4514
4515	parent = device_get_parent(dev);
4516	if (parent == NULL)
4517		return (NULL);
4518	return (BUS_GET_DMA_TAG(parent, dev));
4519}
4520
4521/**
4522 * @brief Wrapper function for BUS_GET_DOMAIN().
4523 *
4524 * This function simply calls the BUS_GET_DOMAIN() method of the
4525 * parent of @p dev.
4526 */
4527int
4528bus_get_domain(device_t dev, int *domain)
4529{
4530	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
4531}
4532
4533/* Resume all devices and then notify userland that we're up again. */
4534static int
4535root_resume(device_t dev)
4536{
4537	int error;
4538
4539	error = bus_generic_resume(dev);
4540	if (error == 0)
4541		devctl_notify("kern", "power", "resume", NULL);
4542	return (error);
4543}
4544
4545static int
4546root_print_child(device_t dev, device_t child)
4547{
4548	int	retval = 0;
4549
4550	retval += bus_print_child_header(dev, child);
4551	retval += printf("\n");
4552
4553	return (retval);
4554}
4555
4556static int
4557root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4558    driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4559{
4560	/*
4561	 * If an interrupt mapping gets to here something bad has happened.
4562	 */
4563	panic("root_setup_intr");
4564}
4565
4566/*
4567 * If we get here, assume that the device is permanant and really is
4568 * present in the system.  Removable bus drivers are expected to intercept
4569 * this call long before it gets here.  We return -1 so that drivers that
4570 * really care can check vs -1 or some ERRNO returned higher in the food
4571 * chain.
4572 */
4573static int
4574root_child_present(device_t dev, device_t child)
4575{
4576	return (-1);
4577}
4578
4579static kobj_method_t root_methods[] = {
4580	/* Device interface */
4581	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4582	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4583	KOBJMETHOD(device_resume,	root_resume),
4584
4585	/* Bus interface */
4586	KOBJMETHOD(bus_print_child,	root_print_child),
4587	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4588	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4589	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4590	KOBJMETHOD(bus_child_present,	root_child_present),
4591
4592	KOBJMETHOD_END
4593};
4594
4595static driver_t root_driver = {
4596	"root",
4597	root_methods,
4598	1,			/* no softc */
4599};
4600
4601device_t	root_bus;
4602devclass_t	root_devclass;
4603
4604static int
4605root_bus_module_handler(module_t mod, int what, void* arg)
4606{
4607	switch (what) {
4608	case MOD_LOAD:
4609		TAILQ_INIT(&bus_data_devices);
4610		kobj_class_compile((kobj_class_t) &root_driver);
4611		root_bus = make_device(NULL, "root", 0);
4612		root_bus->desc = "System root bus";
4613		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4614		root_bus->driver = &root_driver;
4615		root_bus->state = DS_ATTACHED;
4616		root_devclass = devclass_find_internal("root", NULL, FALSE);
4617		devinit();
4618		return (0);
4619
4620	case MOD_SHUTDOWN:
4621		device_shutdown(root_bus);
4622		return (0);
4623	default:
4624		return (EOPNOTSUPP);
4625	}
4626
4627	return (0);
4628}
4629
4630static moduledata_t root_bus_mod = {
4631	"rootbus",
4632	root_bus_module_handler,
4633	NULL
4634};
4635DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4636
4637/**
4638 * @brief Automatically configure devices
4639 *
4640 * This function begins the autoconfiguration process by calling
4641 * device_probe_and_attach() for each child of the @c root0 device.
4642 */
4643void
4644root_bus_configure(void)
4645{
4646
4647	PDEBUG(("."));
4648
4649	/* Eventually this will be split up, but this is sufficient for now. */
4650	bus_set_pass(BUS_PASS_DEFAULT);
4651}
4652
4653/**
4654 * @brief Module handler for registering device drivers
4655 *
4656 * This module handler is used to automatically register device
4657 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4658 * devclass_add_driver() for the driver described by the
4659 * driver_module_data structure pointed to by @p arg
4660 */
4661int
4662driver_module_handler(module_t mod, int what, void *arg)
4663{
4664	struct driver_module_data *dmd;
4665	devclass_t bus_devclass;
4666	kobj_class_t driver;
4667	int error, pass;
4668
4669	dmd = (struct driver_module_data *)arg;
4670	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4671	error = 0;
4672
4673	switch (what) {
4674	case MOD_LOAD:
4675		if (dmd->dmd_chainevh)
4676			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4677
4678		pass = dmd->dmd_pass;
4679		driver = dmd->dmd_driver;
4680		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4681		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4682		error = devclass_add_driver(bus_devclass, driver, pass,
4683		    dmd->dmd_devclass);
4684		break;
4685
4686	case MOD_UNLOAD:
4687		PDEBUG(("Unloading module: driver %s from bus %s",
4688		    DRIVERNAME(dmd->dmd_driver),
4689		    dmd->dmd_busname));
4690		error = devclass_delete_driver(bus_devclass,
4691		    dmd->dmd_driver);
4692
4693		if (!error && dmd->dmd_chainevh)
4694			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4695		break;
4696	case MOD_QUIESCE:
4697		PDEBUG(("Quiesce module: driver %s from bus %s",
4698		    DRIVERNAME(dmd->dmd_driver),
4699		    dmd->dmd_busname));
4700		error = devclass_quiesce_driver(bus_devclass,
4701		    dmd->dmd_driver);
4702
4703		if (!error && dmd->dmd_chainevh)
4704			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4705		break;
4706	default:
4707		error = EOPNOTSUPP;
4708		break;
4709	}
4710
4711	return (error);
4712}
4713
4714/**
4715 * @brief Enumerate all hinted devices for this bus.
4716 *
4717 * Walks through the hints for this bus and calls the bus_hinted_child
4718 * routine for each one it fines.  It searches first for the specific
4719 * bus that's being probed for hinted children (eg isa0), and then for
4720 * generic children (eg isa).
4721 *
4722 * @param	dev	bus device to enumerate
4723 */
4724void
4725bus_enumerate_hinted_children(device_t bus)
4726{
4727	int i;
4728	const char *dname, *busname;
4729	int dunit;
4730
4731	/*
4732	 * enumerate all devices on the specific bus
4733	 */
4734	busname = device_get_nameunit(bus);
4735	i = 0;
4736	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4737		BUS_HINTED_CHILD(bus, dname, dunit);
4738
4739	/*
4740	 * and all the generic ones.
4741	 */
4742	busname = device_get_name(bus);
4743	i = 0;
4744	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4745		BUS_HINTED_CHILD(bus, dname, dunit);
4746}
4747
4748#ifdef BUS_DEBUG
4749
4750/* the _short versions avoid iteration by not calling anything that prints
4751 * more than oneliners. I love oneliners.
4752 */
4753
4754static void
4755print_device_short(device_t dev, int indent)
4756{
4757	if (!dev)
4758		return;
4759
4760	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4761	    dev->unit, dev->desc,
4762	    (dev->parent? "":"no "),
4763	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4764	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4765	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4766	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4767	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4768	    (dev->flags&DF_REBID? "rebiddable,":""),
4769	    (dev->ivars? "":"no "),
4770	    (dev->softc? "":"no "),
4771	    dev->busy));
4772}
4773
4774static void
4775print_device(device_t dev, int indent)
4776{
4777	if (!dev)
4778		return;
4779
4780	print_device_short(dev, indent);
4781
4782	indentprintf(("Parent:\n"));
4783	print_device_short(dev->parent, indent+1);
4784	indentprintf(("Driver:\n"));
4785	print_driver_short(dev->driver, indent+1);
4786	indentprintf(("Devclass:\n"));
4787	print_devclass_short(dev->devclass, indent+1);
4788}
4789
4790void
4791print_device_tree_short(device_t dev, int indent)
4792/* print the device and all its children (indented) */
4793{
4794	device_t child;
4795
4796	if (!dev)
4797		return;
4798
4799	print_device_short(dev, indent);
4800
4801	TAILQ_FOREACH(child, &dev->children, link) {
4802		print_device_tree_short(child, indent+1);
4803	}
4804}
4805
4806void
4807print_device_tree(device_t dev, int indent)
4808/* print the device and all its children (indented) */
4809{
4810	device_t child;
4811
4812	if (!dev)
4813		return;
4814
4815	print_device(dev, indent);
4816
4817	TAILQ_FOREACH(child, &dev->children, link) {
4818		print_device_tree(child, indent+1);
4819	}
4820}
4821
4822static void
4823print_driver_short(driver_t *driver, int indent)
4824{
4825	if (!driver)
4826		return;
4827
4828	indentprintf(("driver %s: softc size = %zd\n",
4829	    driver->name, driver->size));
4830}
4831
4832static void
4833print_driver(driver_t *driver, int indent)
4834{
4835	if (!driver)
4836		return;
4837
4838	print_driver_short(driver, indent);
4839}
4840
4841static void
4842print_driver_list(driver_list_t drivers, int indent)
4843{
4844	driverlink_t driver;
4845
4846	TAILQ_FOREACH(driver, &drivers, link) {
4847		print_driver(driver->driver, indent);
4848	}
4849}
4850
4851static void
4852print_devclass_short(devclass_t dc, int indent)
4853{
4854	if ( !dc )
4855		return;
4856
4857	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4858}
4859
4860static void
4861print_devclass(devclass_t dc, int indent)
4862{
4863	int i;
4864
4865	if ( !dc )
4866		return;
4867
4868	print_devclass_short(dc, indent);
4869	indentprintf(("Drivers:\n"));
4870	print_driver_list(dc->drivers, indent+1);
4871
4872	indentprintf(("Devices:\n"));
4873	for (i = 0; i < dc->maxunit; i++)
4874		if (dc->devices[i])
4875			print_device(dc->devices[i], indent+1);
4876}
4877
4878void
4879print_devclass_list_short(void)
4880{
4881	devclass_t dc;
4882
4883	printf("Short listing of devclasses, drivers & devices:\n");
4884	TAILQ_FOREACH(dc, &devclasses, link) {
4885		print_devclass_short(dc, 0);
4886	}
4887}
4888
4889void
4890print_devclass_list(void)
4891{
4892	devclass_t dc;
4893
4894	printf("Full listing of devclasses, drivers & devices:\n");
4895	TAILQ_FOREACH(dc, &devclasses, link) {
4896		print_devclass(dc, 0);
4897	}
4898}
4899
4900#endif
4901
4902/*
4903 * User-space access to the device tree.
4904 *
4905 * We implement a small set of nodes:
4906 *
4907 * hw.bus			Single integer read method to obtain the
4908 *				current generation count.
4909 * hw.bus.devices		Reads the entire device tree in flat space.
4910 * hw.bus.rman			Resource manager interface
4911 *
4912 * We might like to add the ability to scan devclasses and/or drivers to
4913 * determine what else is currently loaded/available.
4914 */
4915
4916static int
4917sysctl_bus(SYSCTL_HANDLER_ARGS)
4918{
4919	struct u_businfo	ubus;
4920
4921	ubus.ub_version = BUS_USER_VERSION;
4922	ubus.ub_generation = bus_data_generation;
4923
4924	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4925}
4926SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4927    "bus-related data");
4928
4929static int
4930sysctl_devices(SYSCTL_HANDLER_ARGS)
4931{
4932	int			*name = (int *)arg1;
4933	u_int			namelen = arg2;
4934	int			index;
4935	struct device		*dev;
4936	struct u_device		udev;	/* XXX this is a bit big */
4937	int			error;
4938
4939	if (namelen != 2)
4940		return (EINVAL);
4941
4942	if (bus_data_generation_check(name[0]))
4943		return (EINVAL);
4944
4945	index = name[1];
4946
4947	/*
4948	 * Scan the list of devices, looking for the requested index.
4949	 */
4950	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4951		if (index-- == 0)
4952			break;
4953	}
4954	if (dev == NULL)
4955		return (ENOENT);
4956
4957	/*
4958	 * Populate the return array.
4959	 */
4960	bzero(&udev, sizeof(udev));
4961	udev.dv_handle = (uintptr_t)dev;
4962	udev.dv_parent = (uintptr_t)dev->parent;
4963	if (dev->nameunit != NULL)
4964		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4965	if (dev->desc != NULL)
4966		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4967	if (dev->driver != NULL && dev->driver->name != NULL)
4968		strlcpy(udev.dv_drivername, dev->driver->name,
4969		    sizeof(udev.dv_drivername));
4970	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4971	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4972	udev.dv_devflags = dev->devflags;
4973	udev.dv_flags = dev->flags;
4974	udev.dv_state = dev->state;
4975	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4976	return (error);
4977}
4978
4979SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4980    "system device tree");
4981
4982int
4983bus_data_generation_check(int generation)
4984{
4985	if (generation != bus_data_generation)
4986		return (1);
4987
4988	/* XXX generate optimised lists here? */
4989	return (0);
4990}
4991
4992void
4993bus_data_generation_update(void)
4994{
4995	bus_data_generation++;
4996}
4997
4998int
4999bus_free_resource(device_t dev, int type, struct resource *r)
5000{
5001	if (r == NULL)
5002		return (0);
5003	return (bus_release_resource(dev, type, rman_get_rid(r), r));
5004}
5005
5006/*
5007 * /dev/devctl2 implementation.  The existing /dev/devctl device has
5008 * implicit semantics on open, so it could not be reused for this.
5009 * Another option would be to call this /dev/bus?
5010 */
5011static int
5012find_device(struct devreq *req, device_t *devp)
5013{
5014	device_t dev;
5015
5016	/*
5017	 * First, ensure that the name is nul terminated.
5018	 */
5019	if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5020		return (EINVAL);
5021
5022	/*
5023	 * Second, try to find an attached device whose name matches
5024	 * 'name'.
5025	 */
5026	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5027		if (dev->nameunit != NULL &&
5028		    strcmp(dev->nameunit, req->dr_name) == 0) {
5029			*devp = dev;
5030			return (0);
5031		}
5032	}
5033
5034	/* Finally, give device enumerators a chance. */
5035	dev = NULL;
5036	EVENTHANDLER_INVOKE(dev_lookup, req->dr_name, &dev);
5037	if (dev == NULL)
5038		return (ENOENT);
5039	*devp = dev;
5040	return (0);
5041}
5042
5043static bool
5044driver_exists(struct device *bus, const char *driver)
5045{
5046	devclass_t dc;
5047
5048	for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5049		if (devclass_find_driver_internal(dc, driver) != NULL)
5050			return (true);
5051	}
5052	return (false);
5053}
5054
5055static int
5056devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5057    struct thread *td)
5058{
5059	struct devreq *req;
5060	device_t dev;
5061	int error, old;
5062
5063	/* Locate the device to control. */
5064	mtx_lock(&Giant);
5065	req = (struct devreq *)data;
5066	switch (cmd) {
5067	case DEV_ATTACH:
5068	case DEV_DETACH:
5069	case DEV_ENABLE:
5070	case DEV_DISABLE:
5071	case DEV_SET_DRIVER:
5072		error = priv_check(td, PRIV_DRIVER);
5073		if (error == 0)
5074			error = find_device(req, &dev);
5075		break;
5076	default:
5077		error = ENOTTY;
5078		break;
5079	}
5080	if (error) {
5081		mtx_unlock(&Giant);
5082		return (error);
5083	}
5084
5085	/* Perform the requested operation. */
5086	switch (cmd) {
5087	case DEV_ATTACH:
5088		if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0)
5089			error = EBUSY;
5090		else if (!device_is_enabled(dev))
5091			error = ENXIO;
5092		else
5093			error = device_probe_and_attach(dev);
5094		break;
5095	case DEV_DETACH:
5096		if (!device_is_attached(dev)) {
5097			error = ENXIO;
5098			break;
5099		}
5100		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5101			error = device_quiesce(dev);
5102			if (error)
5103				break;
5104		}
5105		error = device_detach(dev);
5106		break;
5107	case DEV_ENABLE:
5108		if (device_is_enabled(dev)) {
5109			error = EBUSY;
5110			break;
5111		}
5112
5113		/*
5114		 * If the device has been probed but not attached (e.g.
5115		 * when it has been disabled by a loader hint), just
5116		 * attach the device rather than doing a full probe.
5117		 */
5118		device_enable(dev);
5119		if (device_is_alive(dev)) {
5120			/*
5121			 * If the device was disabled via a hint, clear
5122			 * the hint.
5123			 */
5124			if (resource_disabled(dev->driver->name, dev->unit))
5125				resource_unset_value(dev->driver->name,
5126				    dev->unit, "disabled");
5127			error = device_attach(dev);
5128		} else
5129			error = device_probe_and_attach(dev);
5130		break;
5131	case DEV_DISABLE:
5132		if (!device_is_enabled(dev)) {
5133			error = ENXIO;
5134			break;
5135		}
5136
5137		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5138			error = device_quiesce(dev);
5139			if (error)
5140				break;
5141		}
5142
5143		/*
5144		 * Force DF_FIXEDCLASS on around detach to preserve
5145		 * the existing name.
5146		 */
5147		old = dev->flags;
5148		dev->flags |= DF_FIXEDCLASS;
5149		error = device_detach(dev);
5150		if (!(old & DF_FIXEDCLASS))
5151			dev->flags &= ~DF_FIXEDCLASS;
5152		if (error == 0)
5153			device_disable(dev);
5154		break;
5155	case DEV_SET_DRIVER: {
5156		devclass_t dc;
5157		char driver[128];
5158
5159		error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5160		if (error)
5161			break;
5162		if (driver[0] == '\0') {
5163			error = EINVAL;
5164			break;
5165		}
5166		if (dev->devclass != NULL &&
5167		    strcmp(driver, dev->devclass->name) == 0)
5168			/* XXX: Could possibly force DF_FIXEDCLASS on? */
5169			break;
5170
5171		/*
5172		 * Scan drivers for this device's bus looking for at
5173		 * least one matching driver.
5174		 */
5175		if (dev->parent == NULL) {
5176			error = EINVAL;
5177			break;
5178		}
5179		if (!driver_exists(dev->parent, driver)) {
5180			error = ENOENT;
5181			break;
5182		}
5183		dc = devclass_create(driver);
5184		if (dc == NULL) {
5185			error = ENOMEM;
5186			break;
5187		}
5188
5189		/* Detach device if necessary. */
5190		if (device_is_attached(dev)) {
5191			if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5192				error = device_detach(dev);
5193			else
5194				error = EBUSY;
5195			if (error)
5196				break;
5197		}
5198
5199		/* Clear any previously-fixed device class and unit. */
5200		if (dev->flags & DF_FIXEDCLASS)
5201			devclass_delete_device(dev->devclass, dev);
5202		dev->flags |= DF_WILDCARD;
5203		dev->unit = -1;
5204
5205		/* Force the new device class. */
5206		error = devclass_add_device(dc, dev);
5207		if (error)
5208			break;
5209		dev->flags |= DF_FIXEDCLASS;
5210		error = device_probe_and_attach(dev);
5211		break;
5212	}
5213	}
5214	mtx_unlock(&Giant);
5215	return (error);
5216}
5217
5218static struct cdevsw devctl2_cdevsw = {
5219	.d_version =	D_VERSION,
5220	.d_ioctl =	devctl2_ioctl,
5221	.d_name =	"devctl2",
5222};
5223
5224static void
5225devctl2_init(void)
5226{
5227
5228	make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
5229	    UID_ROOT, GID_WHEEL, 0600, "devctl2");
5230}
5231