1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/10/sys/kern/subr_bus.c 308402 2016-11-07 09:19:04Z hselasky $");
29
30#include "opt_bus.h"
31#include "opt_random.h"
32
33#include <sys/param.h>
34#include <sys/conf.h>
35#include <sys/filio.h>
36#include <sys/lock.h>
37#include <sys/kernel.h>
38#include <sys/kobj.h>
39#include <sys/limits.h>
40#include <sys/malloc.h>
41#include <sys/module.h>
42#include <sys/mutex.h>
43#include <sys/poll.h>
44#include <sys/priv.h>
45#include <sys/proc.h>
46#include <sys/condvar.h>
47#include <sys/queue.h>
48#include <machine/bus.h>
49#include <sys/random.h>
50#include <sys/rman.h>
51#include <sys/selinfo.h>
52#include <sys/signalvar.h>
53#include <sys/sysctl.h>
54#include <sys/systm.h>
55#include <sys/uio.h>
56#include <sys/bus.h>
57#include <sys/interrupt.h>
58#include <sys/cpuset.h>
59
60#include <net/vnet.h>
61
62#include <machine/cpu.h>
63#include <machine/stdarg.h>
64
65#include <vm/uma.h>
66
67SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
68SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
69
70/*
71 * Used to attach drivers to devclasses.
72 */
73typedef struct driverlink *driverlink_t;
74struct driverlink {
75	kobj_class_t	driver;
76	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
77	int		pass;
78	TAILQ_ENTRY(driverlink) passlink;
79};
80
81/*
82 * Forward declarations
83 */
84typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
85typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
86typedef TAILQ_HEAD(device_list, device) device_list_t;
87
88struct devclass {
89	TAILQ_ENTRY(devclass) link;
90	devclass_t	parent;		/* parent in devclass hierarchy */
91	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
92	char		*name;
93	device_t	*devices;	/* array of devices indexed by unit */
94	int		maxunit;	/* size of devices array */
95	int		flags;
96#define DC_HAS_CHILDREN		1
97
98	struct sysctl_ctx_list sysctl_ctx;
99	struct sysctl_oid *sysctl_tree;
100};
101
102/**
103 * @brief Implementation of device.
104 */
105struct device {
106	/*
107	 * A device is a kernel object. The first field must be the
108	 * current ops table for the object.
109	 */
110	KOBJ_FIELDS;
111
112	/*
113	 * Device hierarchy.
114	 */
115	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
116	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
117	device_t	parent;		/**< parent of this device  */
118	device_list_t	children;	/**< list of child devices */
119
120	/*
121	 * Details of this device.
122	 */
123	driver_t	*driver;	/**< current driver */
124	devclass_t	devclass;	/**< current device class */
125	int		unit;		/**< current unit number */
126	char*		nameunit;	/**< name+unit e.g. foodev0 */
127	char*		desc;		/**< driver specific description */
128	int		busy;		/**< count of calls to device_busy() */
129	device_state_t	state;		/**< current device state  */
130	uint32_t	devflags;	/**< api level flags for device_get_flags() */
131	u_int		flags;		/**< internal device flags  */
132#define	DF_ENABLED	0x01		/* device should be probed/attached */
133#define	DF_FIXEDCLASS	0x02		/* devclass specified at create time */
134#define	DF_WILDCARD	0x04		/* unit was originally wildcard */
135#define	DF_DESCMALLOCED	0x08		/* description was malloced */
136#define	DF_QUIET	0x10		/* don't print verbose attach message */
137#define	DF_DONENOMATCH	0x20		/* don't execute DEVICE_NOMATCH again */
138#define	DF_EXTERNALSOFTC 0x40		/* softc not allocated by us */
139#define	DF_REBID	0x80		/* Can rebid after attach */
140	u_int	order;			/**< order from device_add_child_ordered() */
141	void	*ivars;			/**< instance variables  */
142	void	*softc;			/**< current driver's variables  */
143
144	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
145	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
146};
147
148static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
149static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
150
151static void devctl2_init(void);
152
153#ifdef BUS_DEBUG
154
155static int bus_debug = 1;
156TUNABLE_INT("bus.debug", &bus_debug);
157SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
158    "Debug bus code");
159
160#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
161#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
162#define DRIVERNAME(d)	((d)? d->name : "no driver")
163#define DEVCLANAME(d)	((d)? d->name : "no devclass")
164
165/**
166 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
167 * prevent syslog from deleting initial spaces
168 */
169#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
170
171static void print_device_short(device_t dev, int indent);
172static void print_device(device_t dev, int indent);
173void print_device_tree_short(device_t dev, int indent);
174void print_device_tree(device_t dev, int indent);
175static void print_driver_short(driver_t *driver, int indent);
176static void print_driver(driver_t *driver, int indent);
177static void print_driver_list(driver_list_t drivers, int indent);
178static void print_devclass_short(devclass_t dc, int indent);
179static void print_devclass(devclass_t dc, int indent);
180void print_devclass_list_short(void);
181void print_devclass_list(void);
182
183#else
184/* Make the compiler ignore the function calls */
185#define PDEBUG(a)			/* nop */
186#define DEVICENAME(d)			/* nop */
187#define DRIVERNAME(d)			/* nop */
188#define DEVCLANAME(d)			/* nop */
189
190#define print_device_short(d,i)		/* nop */
191#define print_device(d,i)		/* nop */
192#define print_device_tree_short(d,i)	/* nop */
193#define print_device_tree(d,i)		/* nop */
194#define print_driver_short(d,i)		/* nop */
195#define print_driver(d,i)		/* nop */
196#define print_driver_list(d,i)		/* nop */
197#define print_devclass_short(d,i)	/* nop */
198#define print_devclass(d,i)		/* nop */
199#define print_devclass_list_short()	/* nop */
200#define print_devclass_list()		/* nop */
201#endif
202
203/*
204 * dev sysctl tree
205 */
206
207enum {
208	DEVCLASS_SYSCTL_PARENT,
209};
210
211static int
212devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
213{
214	devclass_t dc = (devclass_t)arg1;
215	const char *value;
216
217	switch (arg2) {
218	case DEVCLASS_SYSCTL_PARENT:
219		value = dc->parent ? dc->parent->name : "";
220		break;
221	default:
222		return (EINVAL);
223	}
224	return (SYSCTL_OUT(req, value, strlen(value)));
225}
226
227static void
228devclass_sysctl_init(devclass_t dc)
229{
230
231	if (dc->sysctl_tree != NULL)
232		return;
233	sysctl_ctx_init(&dc->sysctl_ctx);
234	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
235	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
236	    CTLFLAG_RD, NULL, "");
237	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
238	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
239	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
240	    "parent class");
241}
242
243enum {
244	DEVICE_SYSCTL_DESC,
245	DEVICE_SYSCTL_DRIVER,
246	DEVICE_SYSCTL_LOCATION,
247	DEVICE_SYSCTL_PNPINFO,
248	DEVICE_SYSCTL_PARENT,
249};
250
251static int
252device_sysctl_handler(SYSCTL_HANDLER_ARGS)
253{
254	device_t dev = (device_t)arg1;
255	const char *value;
256	char *buf;
257	int error;
258
259	buf = NULL;
260	switch (arg2) {
261	case DEVICE_SYSCTL_DESC:
262		value = dev->desc ? dev->desc : "";
263		break;
264	case DEVICE_SYSCTL_DRIVER:
265		value = dev->driver ? dev->driver->name : "";
266		break;
267	case DEVICE_SYSCTL_LOCATION:
268		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
269		bus_child_location_str(dev, buf, 1024);
270		break;
271	case DEVICE_SYSCTL_PNPINFO:
272		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
273		bus_child_pnpinfo_str(dev, buf, 1024);
274		break;
275	case DEVICE_SYSCTL_PARENT:
276		value = dev->parent ? dev->parent->nameunit : "";
277		break;
278	default:
279		return (EINVAL);
280	}
281	error = SYSCTL_OUT(req, value, strlen(value));
282	if (buf != NULL)
283		free(buf, M_BUS);
284	return (error);
285}
286
287static void
288device_sysctl_init(device_t dev)
289{
290	devclass_t dc = dev->devclass;
291	int domain;
292
293	if (dev->sysctl_tree != NULL)
294		return;
295	devclass_sysctl_init(dc);
296	sysctl_ctx_init(&dev->sysctl_ctx);
297	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
298	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
299	    dev->nameunit + strlen(dc->name),
300	    CTLFLAG_RD, NULL, "");
301	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
302	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
303	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
304	    "device description");
305	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
306	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
307	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
308	    "device driver name");
309	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
310	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
311	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
312	    "device location relative to parent");
313	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
314	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
315	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
316	    "device identification");
317	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
318	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
319	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
320	    "parent device");
321	if (bus_get_domain(dev, &domain) == 0)
322		SYSCTL_ADD_INT(&dev->sysctl_ctx,
323		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
324		    CTLFLAG_RD, NULL, domain, "NUMA domain");
325}
326
327static void
328device_sysctl_update(device_t dev)
329{
330	devclass_t dc = dev->devclass;
331
332	if (dev->sysctl_tree == NULL)
333		return;
334	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
335}
336
337static void
338device_sysctl_fini(device_t dev)
339{
340	if (dev->sysctl_tree == NULL)
341		return;
342	sysctl_ctx_free(&dev->sysctl_ctx);
343	dev->sysctl_tree = NULL;
344}
345
346/*
347 * /dev/devctl implementation
348 */
349
350/*
351 * This design allows only one reader for /dev/devctl.  This is not desirable
352 * in the long run, but will get a lot of hair out of this implementation.
353 * Maybe we should make this device a clonable device.
354 *
355 * Also note: we specifically do not attach a device to the device_t tree
356 * to avoid potential chicken and egg problems.  One could argue that all
357 * of this belongs to the root node.  One could also further argue that the
358 * sysctl interface that we have not might more properly be an ioctl
359 * interface, but at this stage of the game, I'm not inclined to rock that
360 * boat.
361 *
362 * I'm also not sure that the SIGIO support is done correctly or not, as
363 * I copied it from a driver that had SIGIO support that likely hasn't been
364 * tested since 3.4 or 2.2.8!
365 */
366
367/* Deprecated way to adjust queue length */
368static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
369/* XXX Need to support old-style tunable hw.bus.devctl_disable" */
370SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW |
371    CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I",
372    "devctl disable -- deprecated");
373
374#define DEVCTL_DEFAULT_QUEUE_LEN 1000
375static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
376static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
377TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
378SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW |
379    CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
380
381static d_open_t		devopen;
382static d_close_t	devclose;
383static d_read_t		devread;
384static d_ioctl_t	devioctl;
385static d_poll_t		devpoll;
386static d_kqfilter_t	devkqfilter;
387
388static struct cdevsw dev_cdevsw = {
389	.d_version =	D_VERSION,
390	.d_open =	devopen,
391	.d_close =	devclose,
392	.d_read =	devread,
393	.d_ioctl =	devioctl,
394	.d_poll =	devpoll,
395	.d_kqfilter =	devkqfilter,
396	.d_name =	"devctl",
397};
398
399struct dev_event_info
400{
401	char *dei_data;
402	TAILQ_ENTRY(dev_event_info) dei_link;
403};
404
405TAILQ_HEAD(devq, dev_event_info);
406
407static struct dev_softc
408{
409	int	inuse;
410	int	nonblock;
411	int	queued;
412	int	async;
413	struct mtx mtx;
414	struct cv cv;
415	struct selinfo sel;
416	struct devq devq;
417	struct sigio *sigio;
418} devsoftc;
419
420static void	filt_devctl_detach(struct knote *kn);
421static int	filt_devctl_read(struct knote *kn, long hint);
422
423struct filterops devctl_rfiltops = {
424	.f_isfd = 1,
425	.f_detach = filt_devctl_detach,
426	.f_event = filt_devctl_read,
427};
428
429static struct cdev *devctl_dev;
430
431static void
432devinit(void)
433{
434	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
435	    UID_ROOT, GID_WHEEL, 0600, "devctl");
436	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
437	cv_init(&devsoftc.cv, "dev cv");
438	TAILQ_INIT(&devsoftc.devq);
439	knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx);
440	devctl2_init();
441}
442
443static int
444devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
445{
446
447	mtx_lock(&devsoftc.mtx);
448	if (devsoftc.inuse) {
449		mtx_unlock(&devsoftc.mtx);
450		return (EBUSY);
451	}
452	/* move to init */
453	devsoftc.inuse = 1;
454	mtx_unlock(&devsoftc.mtx);
455	return (0);
456}
457
458static int
459devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
460{
461
462	mtx_lock(&devsoftc.mtx);
463	devsoftc.inuse = 0;
464	devsoftc.nonblock = 0;
465	devsoftc.async = 0;
466	cv_broadcast(&devsoftc.cv);
467	funsetown(&devsoftc.sigio);
468	mtx_unlock(&devsoftc.mtx);
469	return (0);
470}
471
472/*
473 * The read channel for this device is used to report changes to
474 * userland in realtime.  We are required to free the data as well as
475 * the n1 object because we allocate them separately.  Also note that
476 * we return one record at a time.  If you try to read this device a
477 * character at a time, you will lose the rest of the data.  Listening
478 * programs are expected to cope.
479 */
480static int
481devread(struct cdev *dev, struct uio *uio, int ioflag)
482{
483	struct dev_event_info *n1;
484	int rv;
485
486	mtx_lock(&devsoftc.mtx);
487	while (TAILQ_EMPTY(&devsoftc.devq)) {
488		if (devsoftc.nonblock) {
489			mtx_unlock(&devsoftc.mtx);
490			return (EAGAIN);
491		}
492		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
493		if (rv) {
494			/*
495			 * Need to translate ERESTART to EINTR here? -- jake
496			 */
497			mtx_unlock(&devsoftc.mtx);
498			return (rv);
499		}
500	}
501	n1 = TAILQ_FIRST(&devsoftc.devq);
502	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
503	devsoftc.queued--;
504	mtx_unlock(&devsoftc.mtx);
505	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
506	free(n1->dei_data, M_BUS);
507	free(n1, M_BUS);
508	return (rv);
509}
510
511static	int
512devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
513{
514	switch (cmd) {
515
516	case FIONBIO:
517		if (*(int*)data)
518			devsoftc.nonblock = 1;
519		else
520			devsoftc.nonblock = 0;
521		return (0);
522	case FIOASYNC:
523		if (*(int*)data)
524			devsoftc.async = 1;
525		else
526			devsoftc.async = 0;
527		return (0);
528	case FIOSETOWN:
529		return fsetown(*(int *)data, &devsoftc.sigio);
530	case FIOGETOWN:
531		*(int *)data = fgetown(&devsoftc.sigio);
532		return (0);
533
534		/* (un)Support for other fcntl() calls. */
535	case FIOCLEX:
536	case FIONCLEX:
537	case FIONREAD:
538	default:
539		break;
540	}
541	return (ENOTTY);
542}
543
544static	int
545devpoll(struct cdev *dev, int events, struct thread *td)
546{
547	int	revents = 0;
548
549	mtx_lock(&devsoftc.mtx);
550	if (events & (POLLIN | POLLRDNORM)) {
551		if (!TAILQ_EMPTY(&devsoftc.devq))
552			revents = events & (POLLIN | POLLRDNORM);
553		else
554			selrecord(td, &devsoftc.sel);
555	}
556	mtx_unlock(&devsoftc.mtx);
557
558	return (revents);
559}
560
561static int
562devkqfilter(struct cdev *dev, struct knote *kn)
563{
564	int error;
565
566	if (kn->kn_filter == EVFILT_READ) {
567		kn->kn_fop = &devctl_rfiltops;
568		knlist_add(&devsoftc.sel.si_note, kn, 0);
569		error = 0;
570	} else
571		error = EINVAL;
572	return (error);
573}
574
575static void
576filt_devctl_detach(struct knote *kn)
577{
578
579	knlist_remove(&devsoftc.sel.si_note, kn, 0);
580}
581
582static int
583filt_devctl_read(struct knote *kn, long hint)
584{
585	kn->kn_data = devsoftc.queued;
586	return (kn->kn_data != 0);
587}
588
589/**
590 * @brief Return whether the userland process is running
591 */
592boolean_t
593devctl_process_running(void)
594{
595	return (devsoftc.inuse == 1);
596}
597
598/**
599 * @brief Queue data to be read from the devctl device
600 *
601 * Generic interface to queue data to the devctl device.  It is
602 * assumed that @p data is properly formatted.  It is further assumed
603 * that @p data is allocated using the M_BUS malloc type.
604 */
605void
606devctl_queue_data_f(char *data, int flags)
607{
608	struct dev_event_info *n1 = NULL, *n2 = NULL;
609
610	if (strlen(data) == 0)
611		goto out;
612	if (devctl_queue_length == 0)
613		goto out;
614	n1 = malloc(sizeof(*n1), M_BUS, flags);
615	if (n1 == NULL)
616		goto out;
617	n1->dei_data = data;
618	mtx_lock(&devsoftc.mtx);
619	if (devctl_queue_length == 0) {
620		mtx_unlock(&devsoftc.mtx);
621		free(n1->dei_data, M_BUS);
622		free(n1, M_BUS);
623		return;
624	}
625	/* Leave at least one spot in the queue... */
626	while (devsoftc.queued > devctl_queue_length - 1) {
627		n2 = TAILQ_FIRST(&devsoftc.devq);
628		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
629		free(n2->dei_data, M_BUS);
630		free(n2, M_BUS);
631		devsoftc.queued--;
632	}
633	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
634	devsoftc.queued++;
635	cv_broadcast(&devsoftc.cv);
636	KNOTE_LOCKED(&devsoftc.sel.si_note, 0);
637	mtx_unlock(&devsoftc.mtx);
638	selwakeup(&devsoftc.sel);
639	if (devsoftc.async && devsoftc.sigio != NULL)
640		pgsigio(&devsoftc.sigio, SIGIO, 0);
641	return;
642out:
643	/*
644	 * We have to free data on all error paths since the caller
645	 * assumes it will be free'd when this item is dequeued.
646	 */
647	free(data, M_BUS);
648	return;
649}
650
651void
652devctl_queue_data(char *data)
653{
654
655	devctl_queue_data_f(data, M_NOWAIT);
656}
657
658/**
659 * @brief Send a 'notification' to userland, using standard ways
660 */
661void
662devctl_notify_f(const char *system, const char *subsystem, const char *type,
663    const char *data, int flags)
664{
665	int len = 0;
666	char *msg;
667
668	if (system == NULL)
669		return;		/* BOGUS!  Must specify system. */
670	if (subsystem == NULL)
671		return;		/* BOGUS!  Must specify subsystem. */
672	if (type == NULL)
673		return;		/* BOGUS!  Must specify type. */
674	len += strlen(" system=") + strlen(system);
675	len += strlen(" subsystem=") + strlen(subsystem);
676	len += strlen(" type=") + strlen(type);
677	/* add in the data message plus newline. */
678	if (data != NULL)
679		len += strlen(data);
680	len += 3;	/* '!', '\n', and NUL */
681	msg = malloc(len, M_BUS, flags);
682	if (msg == NULL)
683		return;		/* Drop it on the floor */
684	if (data != NULL)
685		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
686		    system, subsystem, type, data);
687	else
688		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
689		    system, subsystem, type);
690	devctl_queue_data_f(msg, flags);
691}
692
693void
694devctl_notify(const char *system, const char *subsystem, const char *type,
695    const char *data)
696{
697
698	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
699}
700
701/*
702 * Common routine that tries to make sending messages as easy as possible.
703 * We allocate memory for the data, copy strings into that, but do not
704 * free it unless there's an error.  The dequeue part of the driver should
705 * free the data.  We don't send data when the device is disabled.  We do
706 * send data, even when we have no listeners, because we wish to avoid
707 * races relating to startup and restart of listening applications.
708 *
709 * devaddq is designed to string together the type of event, with the
710 * object of that event, plus the plug and play info and location info
711 * for that event.  This is likely most useful for devices, but less
712 * useful for other consumers of this interface.  Those should use
713 * the devctl_queue_data() interface instead.
714 */
715static void
716devaddq(const char *type, const char *what, device_t dev)
717{
718	char *data = NULL;
719	char *loc = NULL;
720	char *pnp = NULL;
721	const char *parstr;
722
723	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
724		return;
725	data = malloc(1024, M_BUS, M_NOWAIT);
726	if (data == NULL)
727		goto bad;
728
729	/* get the bus specific location of this device */
730	loc = malloc(1024, M_BUS, M_NOWAIT);
731	if (loc == NULL)
732		goto bad;
733	*loc = '\0';
734	bus_child_location_str(dev, loc, 1024);
735
736	/* Get the bus specific pnp info of this device */
737	pnp = malloc(1024, M_BUS, M_NOWAIT);
738	if (pnp == NULL)
739		goto bad;
740	*pnp = '\0';
741	bus_child_pnpinfo_str(dev, pnp, 1024);
742
743	/* Get the parent of this device, or / if high enough in the tree. */
744	if (device_get_parent(dev) == NULL)
745		parstr = ".";	/* Or '/' ? */
746	else
747		parstr = device_get_nameunit(device_get_parent(dev));
748	/* String it all together. */
749	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
750	  parstr);
751	free(loc, M_BUS);
752	free(pnp, M_BUS);
753	devctl_queue_data(data);
754	return;
755bad:
756	free(pnp, M_BUS);
757	free(loc, M_BUS);
758	free(data, M_BUS);
759	return;
760}
761
762/*
763 * A device was added to the tree.  We are called just after it successfully
764 * attaches (that is, probe and attach success for this device).  No call
765 * is made if a device is merely parented into the tree.  See devnomatch
766 * if probe fails.  If attach fails, no notification is sent (but maybe
767 * we should have a different message for this).
768 */
769static void
770devadded(device_t dev)
771{
772	devaddq("+", device_get_nameunit(dev), dev);
773}
774
775/*
776 * A device was removed from the tree.  We are called just before this
777 * happens.
778 */
779static void
780devremoved(device_t dev)
781{
782	devaddq("-", device_get_nameunit(dev), dev);
783}
784
785/*
786 * Called when there's no match for this device.  This is only called
787 * the first time that no match happens, so we don't keep getting this
788 * message.  Should that prove to be undesirable, we can change it.
789 * This is called when all drivers that can attach to a given bus
790 * decline to accept this device.  Other errors may not be detected.
791 */
792static void
793devnomatch(device_t dev)
794{
795	devaddq("?", "", dev);
796}
797
798static int
799sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
800{
801	struct dev_event_info *n1;
802	int dis, error;
803
804	dis = devctl_queue_length == 0;
805	error = sysctl_handle_int(oidp, &dis, 0, req);
806	if (error || !req->newptr)
807		return (error);
808	mtx_lock(&devsoftc.mtx);
809	if (dis) {
810		while (!TAILQ_EMPTY(&devsoftc.devq)) {
811			n1 = TAILQ_FIRST(&devsoftc.devq);
812			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
813			free(n1->dei_data, M_BUS);
814			free(n1, M_BUS);
815		}
816		devsoftc.queued = 0;
817		devctl_queue_length = 0;
818	} else {
819		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
820	}
821	mtx_unlock(&devsoftc.mtx);
822	return (0);
823}
824
825static int
826sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
827{
828	struct dev_event_info *n1;
829	int q, error;
830
831	q = devctl_queue_length;
832	error = sysctl_handle_int(oidp, &q, 0, req);
833	if (error || !req->newptr)
834		return (error);
835	if (q < 0)
836		return (EINVAL);
837	mtx_lock(&devsoftc.mtx);
838	devctl_queue_length = q;
839	while (devsoftc.queued > devctl_queue_length) {
840		n1 = TAILQ_FIRST(&devsoftc.devq);
841		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
842		free(n1->dei_data, M_BUS);
843		free(n1, M_BUS);
844		devsoftc.queued--;
845	}
846	mtx_unlock(&devsoftc.mtx);
847	return (0);
848}
849
850/* End of /dev/devctl code */
851
852static TAILQ_HEAD(,device)	bus_data_devices;
853static int bus_data_generation = 1;
854
855static kobj_method_t null_methods[] = {
856	KOBJMETHOD_END
857};
858
859DEFINE_CLASS(null, null_methods, 0);
860
861/*
862 * Bus pass implementation
863 */
864
865static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
866int bus_current_pass = BUS_PASS_ROOT;
867
868/**
869 * @internal
870 * @brief Register the pass level of a new driver attachment
871 *
872 * Register a new driver attachment's pass level.  If no driver
873 * attachment with the same pass level has been added, then @p new
874 * will be added to the global passes list.
875 *
876 * @param new		the new driver attachment
877 */
878static void
879driver_register_pass(struct driverlink *new)
880{
881	struct driverlink *dl;
882
883	/* We only consider pass numbers during boot. */
884	if (bus_current_pass == BUS_PASS_DEFAULT)
885		return;
886
887	/*
888	 * Walk the passes list.  If we already know about this pass
889	 * then there is nothing to do.  If we don't, then insert this
890	 * driver link into the list.
891	 */
892	TAILQ_FOREACH(dl, &passes, passlink) {
893		if (dl->pass < new->pass)
894			continue;
895		if (dl->pass == new->pass)
896			return;
897		TAILQ_INSERT_BEFORE(dl, new, passlink);
898		return;
899	}
900	TAILQ_INSERT_TAIL(&passes, new, passlink);
901}
902
903/**
904 * @brief Raise the current bus pass
905 *
906 * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
907 * method on the root bus to kick off a new device tree scan for each
908 * new pass level that has at least one driver.
909 */
910void
911bus_set_pass(int pass)
912{
913	struct driverlink *dl;
914
915	if (bus_current_pass > pass)
916		panic("Attempt to lower bus pass level");
917
918	TAILQ_FOREACH(dl, &passes, passlink) {
919		/* Skip pass values below the current pass level. */
920		if (dl->pass <= bus_current_pass)
921			continue;
922
923		/*
924		 * Bail once we hit a driver with a pass level that is
925		 * too high.
926		 */
927		if (dl->pass > pass)
928			break;
929
930		/*
931		 * Raise the pass level to the next level and rescan
932		 * the tree.
933		 */
934		bus_current_pass = dl->pass;
935		BUS_NEW_PASS(root_bus);
936	}
937
938	/*
939	 * If there isn't a driver registered for the requested pass,
940	 * then bus_current_pass might still be less than 'pass'.  Set
941	 * it to 'pass' in that case.
942	 */
943	if (bus_current_pass < pass)
944		bus_current_pass = pass;
945	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
946}
947
948/*
949 * Devclass implementation
950 */
951
952static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
953
954/**
955 * @internal
956 * @brief Find or create a device class
957 *
958 * If a device class with the name @p classname exists, return it,
959 * otherwise if @p create is non-zero create and return a new device
960 * class.
961 *
962 * If @p parentname is non-NULL, the parent of the devclass is set to
963 * the devclass of that name.
964 *
965 * @param classname	the devclass name to find or create
966 * @param parentname	the parent devclass name or @c NULL
967 * @param create	non-zero to create a devclass
968 */
969static devclass_t
970devclass_find_internal(const char *classname, const char *parentname,
971		       int create)
972{
973	devclass_t dc;
974
975	PDEBUG(("looking for %s", classname));
976	if (!classname)
977		return (NULL);
978
979	TAILQ_FOREACH(dc, &devclasses, link) {
980		if (!strcmp(dc->name, classname))
981			break;
982	}
983
984	if (create && !dc) {
985		PDEBUG(("creating %s", classname));
986		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
987		    M_BUS, M_NOWAIT | M_ZERO);
988		if (!dc)
989			return (NULL);
990		dc->parent = NULL;
991		dc->name = (char*) (dc + 1);
992		strcpy(dc->name, classname);
993		TAILQ_INIT(&dc->drivers);
994		TAILQ_INSERT_TAIL(&devclasses, dc, link);
995
996		bus_data_generation_update();
997	}
998
999	/*
1000	 * If a parent class is specified, then set that as our parent so
1001	 * that this devclass will support drivers for the parent class as
1002	 * well.  If the parent class has the same name don't do this though
1003	 * as it creates a cycle that can trigger an infinite loop in
1004	 * device_probe_child() if a device exists for which there is no
1005	 * suitable driver.
1006	 */
1007	if (parentname && dc && !dc->parent &&
1008	    strcmp(classname, parentname) != 0) {
1009		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
1010		dc->parent->flags |= DC_HAS_CHILDREN;
1011	}
1012
1013	return (dc);
1014}
1015
1016/**
1017 * @brief Create a device class
1018 *
1019 * If a device class with the name @p classname exists, return it,
1020 * otherwise create and return a new device class.
1021 *
1022 * @param classname	the devclass name to find or create
1023 */
1024devclass_t
1025devclass_create(const char *classname)
1026{
1027	return (devclass_find_internal(classname, NULL, TRUE));
1028}
1029
1030/**
1031 * @brief Find a device class
1032 *
1033 * If a device class with the name @p classname exists, return it,
1034 * otherwise return @c NULL.
1035 *
1036 * @param classname	the devclass name to find
1037 */
1038devclass_t
1039devclass_find(const char *classname)
1040{
1041	return (devclass_find_internal(classname, NULL, FALSE));
1042}
1043
1044/**
1045 * @brief Register that a device driver has been added to a devclass
1046 *
1047 * Register that a device driver has been added to a devclass.  This
1048 * is called by devclass_add_driver to accomplish the recursive
1049 * notification of all the children classes of dc, as well as dc.
1050 * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1051 * the devclass.
1052 *
1053 * We do a full search here of the devclass list at each iteration
1054 * level to save storing children-lists in the devclass structure.  If
1055 * we ever move beyond a few dozen devices doing this, we may need to
1056 * reevaluate...
1057 *
1058 * @param dc		the devclass to edit
1059 * @param driver	the driver that was just added
1060 */
1061static void
1062devclass_driver_added(devclass_t dc, driver_t *driver)
1063{
1064	devclass_t parent;
1065	int i;
1066
1067	/*
1068	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1069	 */
1070	for (i = 0; i < dc->maxunit; i++)
1071		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1072			BUS_DRIVER_ADDED(dc->devices[i], driver);
1073
1074	/*
1075	 * Walk through the children classes.  Since we only keep a
1076	 * single parent pointer around, we walk the entire list of
1077	 * devclasses looking for children.  We set the
1078	 * DC_HAS_CHILDREN flag when a child devclass is created on
1079	 * the parent, so we only walk the list for those devclasses
1080	 * that have children.
1081	 */
1082	if (!(dc->flags & DC_HAS_CHILDREN))
1083		return;
1084	parent = dc;
1085	TAILQ_FOREACH(dc, &devclasses, link) {
1086		if (dc->parent == parent)
1087			devclass_driver_added(dc, driver);
1088	}
1089}
1090
1091/**
1092 * @brief Add a device driver to a device class
1093 *
1094 * Add a device driver to a devclass. This is normally called
1095 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1096 * all devices in the devclass will be called to allow them to attempt
1097 * to re-probe any unmatched children.
1098 *
1099 * @param dc		the devclass to edit
1100 * @param driver	the driver to register
1101 */
1102int
1103devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1104{
1105	driverlink_t dl;
1106	const char *parentname;
1107
1108	PDEBUG(("%s", DRIVERNAME(driver)));
1109
1110	/* Don't allow invalid pass values. */
1111	if (pass <= BUS_PASS_ROOT)
1112		return (EINVAL);
1113
1114	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1115	if (!dl)
1116		return (ENOMEM);
1117
1118	/*
1119	 * Compile the driver's methods. Also increase the reference count
1120	 * so that the class doesn't get freed when the last instance
1121	 * goes. This means we can safely use static methods and avoids a
1122	 * double-free in devclass_delete_driver.
1123	 */
1124	kobj_class_compile((kobj_class_t) driver);
1125
1126	/*
1127	 * If the driver has any base classes, make the
1128	 * devclass inherit from the devclass of the driver's
1129	 * first base class. This will allow the system to
1130	 * search for drivers in both devclasses for children
1131	 * of a device using this driver.
1132	 */
1133	if (driver->baseclasses)
1134		parentname = driver->baseclasses[0]->name;
1135	else
1136		parentname = NULL;
1137	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1138
1139	dl->driver = driver;
1140	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1141	driver->refs++;		/* XXX: kobj_mtx */
1142	dl->pass = pass;
1143	driver_register_pass(dl);
1144
1145	devclass_driver_added(dc, driver);
1146	bus_data_generation_update();
1147	return (0);
1148}
1149
1150/**
1151 * @brief Register that a device driver has been deleted from a devclass
1152 *
1153 * Register that a device driver has been removed from a devclass.
1154 * This is called by devclass_delete_driver to accomplish the
1155 * recursive notification of all the children classes of busclass, as
1156 * well as busclass.  Each layer will attempt to detach the driver
1157 * from any devices that are children of the bus's devclass.  The function
1158 * will return an error if a device fails to detach.
1159 *
1160 * We do a full search here of the devclass list at each iteration
1161 * level to save storing children-lists in the devclass structure.  If
1162 * we ever move beyond a few dozen devices doing this, we may need to
1163 * reevaluate...
1164 *
1165 * @param busclass	the devclass of the parent bus
1166 * @param dc		the devclass of the driver being deleted
1167 * @param driver	the driver being deleted
1168 */
1169static int
1170devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1171{
1172	devclass_t parent;
1173	device_t dev;
1174	int error, i;
1175
1176	/*
1177	 * Disassociate from any devices.  We iterate through all the
1178	 * devices in the devclass of the driver and detach any which are
1179	 * using the driver and which have a parent in the devclass which
1180	 * we are deleting from.
1181	 *
1182	 * Note that since a driver can be in multiple devclasses, we
1183	 * should not detach devices which are not children of devices in
1184	 * the affected devclass.
1185	 */
1186	for (i = 0; i < dc->maxunit; i++) {
1187		if (dc->devices[i]) {
1188			dev = dc->devices[i];
1189			if (dev->driver == driver && dev->parent &&
1190			    dev->parent->devclass == busclass) {
1191				if ((error = device_detach(dev)) != 0)
1192					return (error);
1193				BUS_PROBE_NOMATCH(dev->parent, dev);
1194				devnomatch(dev);
1195				dev->flags |= DF_DONENOMATCH;
1196			}
1197		}
1198	}
1199
1200	/*
1201	 * Walk through the children classes.  Since we only keep a
1202	 * single parent pointer around, we walk the entire list of
1203	 * devclasses looking for children.  We set the
1204	 * DC_HAS_CHILDREN flag when a child devclass is created on
1205	 * the parent, so we only walk the list for those devclasses
1206	 * that have children.
1207	 */
1208	if (!(busclass->flags & DC_HAS_CHILDREN))
1209		return (0);
1210	parent = busclass;
1211	TAILQ_FOREACH(busclass, &devclasses, link) {
1212		if (busclass->parent == parent) {
1213			error = devclass_driver_deleted(busclass, dc, driver);
1214			if (error)
1215				return (error);
1216		}
1217	}
1218	return (0);
1219}
1220
1221/**
1222 * @brief Delete a device driver from a device class
1223 *
1224 * Delete a device driver from a devclass. This is normally called
1225 * automatically by DRIVER_MODULE().
1226 *
1227 * If the driver is currently attached to any devices,
1228 * devclass_delete_driver() will first attempt to detach from each
1229 * device. If one of the detach calls fails, the driver will not be
1230 * deleted.
1231 *
1232 * @param dc		the devclass to edit
1233 * @param driver	the driver to unregister
1234 */
1235int
1236devclass_delete_driver(devclass_t busclass, driver_t *driver)
1237{
1238	devclass_t dc = devclass_find(driver->name);
1239	driverlink_t dl;
1240	int error;
1241
1242	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1243
1244	if (!dc)
1245		return (0);
1246
1247	/*
1248	 * Find the link structure in the bus' list of drivers.
1249	 */
1250	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1251		if (dl->driver == driver)
1252			break;
1253	}
1254
1255	if (!dl) {
1256		PDEBUG(("%s not found in %s list", driver->name,
1257		    busclass->name));
1258		return (ENOENT);
1259	}
1260
1261	error = devclass_driver_deleted(busclass, dc, driver);
1262	if (error != 0)
1263		return (error);
1264
1265	TAILQ_REMOVE(&busclass->drivers, dl, link);
1266	free(dl, M_BUS);
1267
1268	/* XXX: kobj_mtx */
1269	driver->refs--;
1270	if (driver->refs == 0)
1271		kobj_class_free((kobj_class_t) driver);
1272
1273	bus_data_generation_update();
1274	return (0);
1275}
1276
1277/**
1278 * @brief Quiesces a set of device drivers from a device class
1279 *
1280 * Quiesce a device driver from a devclass. This is normally called
1281 * automatically by DRIVER_MODULE().
1282 *
1283 * If the driver is currently attached to any devices,
1284 * devclass_quiesece_driver() will first attempt to quiesce each
1285 * device.
1286 *
1287 * @param dc		the devclass to edit
1288 * @param driver	the driver to unregister
1289 */
1290static int
1291devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1292{
1293	devclass_t dc = devclass_find(driver->name);
1294	driverlink_t dl;
1295	device_t dev;
1296	int i;
1297	int error;
1298
1299	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1300
1301	if (!dc)
1302		return (0);
1303
1304	/*
1305	 * Find the link structure in the bus' list of drivers.
1306	 */
1307	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1308		if (dl->driver == driver)
1309			break;
1310	}
1311
1312	if (!dl) {
1313		PDEBUG(("%s not found in %s list", driver->name,
1314		    busclass->name));
1315		return (ENOENT);
1316	}
1317
1318	/*
1319	 * Quiesce all devices.  We iterate through all the devices in
1320	 * the devclass of the driver and quiesce any which are using
1321	 * the driver and which have a parent in the devclass which we
1322	 * are quiescing.
1323	 *
1324	 * Note that since a driver can be in multiple devclasses, we
1325	 * should not quiesce devices which are not children of
1326	 * devices in the affected devclass.
1327	 */
1328	for (i = 0; i < dc->maxunit; i++) {
1329		if (dc->devices[i]) {
1330			dev = dc->devices[i];
1331			if (dev->driver == driver && dev->parent &&
1332			    dev->parent->devclass == busclass) {
1333				if ((error = device_quiesce(dev)) != 0)
1334					return (error);
1335			}
1336		}
1337	}
1338
1339	return (0);
1340}
1341
1342/**
1343 * @internal
1344 */
1345static driverlink_t
1346devclass_find_driver_internal(devclass_t dc, const char *classname)
1347{
1348	driverlink_t dl;
1349
1350	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1351
1352	TAILQ_FOREACH(dl, &dc->drivers, link) {
1353		if (!strcmp(dl->driver->name, classname))
1354			return (dl);
1355	}
1356
1357	PDEBUG(("not found"));
1358	return (NULL);
1359}
1360
1361/**
1362 * @brief Return the name of the devclass
1363 */
1364const char *
1365devclass_get_name(devclass_t dc)
1366{
1367	return (dc->name);
1368}
1369
1370/**
1371 * @brief Find a device given a unit number
1372 *
1373 * @param dc		the devclass to search
1374 * @param unit		the unit number to search for
1375 *
1376 * @returns		the device with the given unit number or @c
1377 *			NULL if there is no such device
1378 */
1379device_t
1380devclass_get_device(devclass_t dc, int unit)
1381{
1382	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1383		return (NULL);
1384	return (dc->devices[unit]);
1385}
1386
1387/**
1388 * @brief Find the softc field of a device given a unit number
1389 *
1390 * @param dc		the devclass to search
1391 * @param unit		the unit number to search for
1392 *
1393 * @returns		the softc field of the device with the given
1394 *			unit number or @c NULL if there is no such
1395 *			device
1396 */
1397void *
1398devclass_get_softc(devclass_t dc, int unit)
1399{
1400	device_t dev;
1401
1402	dev = devclass_get_device(dc, unit);
1403	if (!dev)
1404		return (NULL);
1405
1406	return (device_get_softc(dev));
1407}
1408
1409/**
1410 * @brief Get a list of devices in the devclass
1411 *
1412 * An array containing a list of all the devices in the given devclass
1413 * is allocated and returned in @p *devlistp. The number of devices
1414 * in the array is returned in @p *devcountp. The caller should free
1415 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1416 *
1417 * @param dc		the devclass to examine
1418 * @param devlistp	points at location for array pointer return
1419 *			value
1420 * @param devcountp	points at location for array size return value
1421 *
1422 * @retval 0		success
1423 * @retval ENOMEM	the array allocation failed
1424 */
1425int
1426devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1427{
1428	int count, i;
1429	device_t *list;
1430
1431	count = devclass_get_count(dc);
1432	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1433	if (!list)
1434		return (ENOMEM);
1435
1436	count = 0;
1437	for (i = 0; i < dc->maxunit; i++) {
1438		if (dc->devices[i]) {
1439			list[count] = dc->devices[i];
1440			count++;
1441		}
1442	}
1443
1444	*devlistp = list;
1445	*devcountp = count;
1446
1447	return (0);
1448}
1449
1450/**
1451 * @brief Get a list of drivers in the devclass
1452 *
1453 * An array containing a list of pointers to all the drivers in the
1454 * given devclass is allocated and returned in @p *listp.  The number
1455 * of drivers in the array is returned in @p *countp. The caller should
1456 * free the array using @c free(p, M_TEMP).
1457 *
1458 * @param dc		the devclass to examine
1459 * @param listp		gives location for array pointer return value
1460 * @param countp	gives location for number of array elements
1461 *			return value
1462 *
1463 * @retval 0		success
1464 * @retval ENOMEM	the array allocation failed
1465 */
1466int
1467devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1468{
1469	driverlink_t dl;
1470	driver_t **list;
1471	int count;
1472
1473	count = 0;
1474	TAILQ_FOREACH(dl, &dc->drivers, link)
1475		count++;
1476	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1477	if (list == NULL)
1478		return (ENOMEM);
1479
1480	count = 0;
1481	TAILQ_FOREACH(dl, &dc->drivers, link) {
1482		list[count] = dl->driver;
1483		count++;
1484	}
1485	*listp = list;
1486	*countp = count;
1487
1488	return (0);
1489}
1490
1491/**
1492 * @brief Get the number of devices in a devclass
1493 *
1494 * @param dc		the devclass to examine
1495 */
1496int
1497devclass_get_count(devclass_t dc)
1498{
1499	int count, i;
1500
1501	count = 0;
1502	for (i = 0; i < dc->maxunit; i++)
1503		if (dc->devices[i])
1504			count++;
1505	return (count);
1506}
1507
1508/**
1509 * @brief Get the maximum unit number used in a devclass
1510 *
1511 * Note that this is one greater than the highest currently-allocated
1512 * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1513 * that not even the devclass has been allocated yet.
1514 *
1515 * @param dc		the devclass to examine
1516 */
1517int
1518devclass_get_maxunit(devclass_t dc)
1519{
1520	if (dc == NULL)
1521		return (-1);
1522	return (dc->maxunit);
1523}
1524
1525/**
1526 * @brief Find a free unit number in a devclass
1527 *
1528 * This function searches for the first unused unit number greater
1529 * that or equal to @p unit.
1530 *
1531 * @param dc		the devclass to examine
1532 * @param unit		the first unit number to check
1533 */
1534int
1535devclass_find_free_unit(devclass_t dc, int unit)
1536{
1537	if (dc == NULL)
1538		return (unit);
1539	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1540		unit++;
1541	return (unit);
1542}
1543
1544/**
1545 * @brief Set the parent of a devclass
1546 *
1547 * The parent class is normally initialised automatically by
1548 * DRIVER_MODULE().
1549 *
1550 * @param dc		the devclass to edit
1551 * @param pdc		the new parent devclass
1552 */
1553void
1554devclass_set_parent(devclass_t dc, devclass_t pdc)
1555{
1556	dc->parent = pdc;
1557}
1558
1559/**
1560 * @brief Get the parent of a devclass
1561 *
1562 * @param dc		the devclass to examine
1563 */
1564devclass_t
1565devclass_get_parent(devclass_t dc)
1566{
1567	return (dc->parent);
1568}
1569
1570struct sysctl_ctx_list *
1571devclass_get_sysctl_ctx(devclass_t dc)
1572{
1573	return (&dc->sysctl_ctx);
1574}
1575
1576struct sysctl_oid *
1577devclass_get_sysctl_tree(devclass_t dc)
1578{
1579	return (dc->sysctl_tree);
1580}
1581
1582/**
1583 * @internal
1584 * @brief Allocate a unit number
1585 *
1586 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1587 * will do). The allocated unit number is returned in @p *unitp.
1588
1589 * @param dc		the devclass to allocate from
1590 * @param unitp		points at the location for the allocated unit
1591 *			number
1592 *
1593 * @retval 0		success
1594 * @retval EEXIST	the requested unit number is already allocated
1595 * @retval ENOMEM	memory allocation failure
1596 */
1597static int
1598devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1599{
1600	const char *s;
1601	int unit = *unitp;
1602
1603	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1604
1605	/* Ask the parent bus if it wants to wire this device. */
1606	if (unit == -1)
1607		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1608		    &unit);
1609
1610	/* If we were given a wired unit number, check for existing device */
1611	/* XXX imp XXX */
1612	if (unit != -1) {
1613		if (unit >= 0 && unit < dc->maxunit &&
1614		    dc->devices[unit] != NULL) {
1615			if (bootverbose)
1616				printf("%s: %s%d already exists; skipping it\n",
1617				    dc->name, dc->name, *unitp);
1618			return (EEXIST);
1619		}
1620	} else {
1621		/* Unwired device, find the next available slot for it */
1622		unit = 0;
1623		for (unit = 0;; unit++) {
1624			/* If there is an "at" hint for a unit then skip it. */
1625			if (resource_string_value(dc->name, unit, "at", &s) ==
1626			    0)
1627				continue;
1628
1629			/* If this device slot is already in use, skip it. */
1630			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1631				continue;
1632
1633			break;
1634		}
1635	}
1636
1637	/*
1638	 * We've selected a unit beyond the length of the table, so let's
1639	 * extend the table to make room for all units up to and including
1640	 * this one.
1641	 */
1642	if (unit >= dc->maxunit) {
1643		device_t *newlist, *oldlist;
1644		int newsize;
1645
1646		oldlist = dc->devices;
1647		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1648		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1649		if (!newlist)
1650			return (ENOMEM);
1651		if (oldlist != NULL)
1652			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1653		bzero(newlist + dc->maxunit,
1654		    sizeof(device_t) * (newsize - dc->maxunit));
1655		dc->devices = newlist;
1656		dc->maxunit = newsize;
1657		if (oldlist != NULL)
1658			free(oldlist, M_BUS);
1659	}
1660	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1661
1662	*unitp = unit;
1663	return (0);
1664}
1665
1666/**
1667 * @internal
1668 * @brief Add a device to a devclass
1669 *
1670 * A unit number is allocated for the device (using the device's
1671 * preferred unit number if any) and the device is registered in the
1672 * devclass. This allows the device to be looked up by its unit
1673 * number, e.g. by decoding a dev_t minor number.
1674 *
1675 * @param dc		the devclass to add to
1676 * @param dev		the device to add
1677 *
1678 * @retval 0		success
1679 * @retval EEXIST	the requested unit number is already allocated
1680 * @retval ENOMEM	memory allocation failure
1681 */
1682static int
1683devclass_add_device(devclass_t dc, device_t dev)
1684{
1685	int buflen, error;
1686
1687	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1688
1689	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1690	if (buflen < 0)
1691		return (ENOMEM);
1692	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1693	if (!dev->nameunit)
1694		return (ENOMEM);
1695
1696	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1697		free(dev->nameunit, M_BUS);
1698		dev->nameunit = NULL;
1699		return (error);
1700	}
1701	dc->devices[dev->unit] = dev;
1702	dev->devclass = dc;
1703	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1704
1705	return (0);
1706}
1707
1708/**
1709 * @internal
1710 * @brief Delete a device from a devclass
1711 *
1712 * The device is removed from the devclass's device list and its unit
1713 * number is freed.
1714
1715 * @param dc		the devclass to delete from
1716 * @param dev		the device to delete
1717 *
1718 * @retval 0		success
1719 */
1720static int
1721devclass_delete_device(devclass_t dc, device_t dev)
1722{
1723	if (!dc || !dev)
1724		return (0);
1725
1726	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1727
1728	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1729		panic("devclass_delete_device: inconsistent device class");
1730	dc->devices[dev->unit] = NULL;
1731	if (dev->flags & DF_WILDCARD)
1732		dev->unit = -1;
1733	dev->devclass = NULL;
1734	free(dev->nameunit, M_BUS);
1735	dev->nameunit = NULL;
1736
1737	return (0);
1738}
1739
1740/**
1741 * @internal
1742 * @brief Make a new device and add it as a child of @p parent
1743 *
1744 * @param parent	the parent of the new device
1745 * @param name		the devclass name of the new device or @c NULL
1746 *			to leave the devclass unspecified
1747 * @parem unit		the unit number of the new device of @c -1 to
1748 *			leave the unit number unspecified
1749 *
1750 * @returns the new device
1751 */
1752static device_t
1753make_device(device_t parent, const char *name, int unit)
1754{
1755	device_t dev;
1756	devclass_t dc;
1757
1758	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1759
1760	if (name) {
1761		dc = devclass_find_internal(name, NULL, TRUE);
1762		if (!dc) {
1763			printf("make_device: can't find device class %s\n",
1764			    name);
1765			return (NULL);
1766		}
1767	} else {
1768		dc = NULL;
1769	}
1770
1771	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1772	if (!dev)
1773		return (NULL);
1774
1775	dev->parent = parent;
1776	TAILQ_INIT(&dev->children);
1777	kobj_init((kobj_t) dev, &null_class);
1778	dev->driver = NULL;
1779	dev->devclass = NULL;
1780	dev->unit = unit;
1781	dev->nameunit = NULL;
1782	dev->desc = NULL;
1783	dev->busy = 0;
1784	dev->devflags = 0;
1785	dev->flags = DF_ENABLED;
1786	dev->order = 0;
1787	if (unit == -1)
1788		dev->flags |= DF_WILDCARD;
1789	if (name) {
1790		dev->flags |= DF_FIXEDCLASS;
1791		if (devclass_add_device(dc, dev)) {
1792			kobj_delete((kobj_t) dev, M_BUS);
1793			return (NULL);
1794		}
1795	}
1796	dev->ivars = NULL;
1797	dev->softc = NULL;
1798
1799	dev->state = DS_NOTPRESENT;
1800
1801	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1802	bus_data_generation_update();
1803
1804	return (dev);
1805}
1806
1807/**
1808 * @internal
1809 * @brief Print a description of a device.
1810 */
1811static int
1812device_print_child(device_t dev, device_t child)
1813{
1814	int retval = 0;
1815
1816	if (device_is_alive(child))
1817		retval += BUS_PRINT_CHILD(dev, child);
1818	else
1819		retval += device_printf(child, " not found\n");
1820
1821	return (retval);
1822}
1823
1824/**
1825 * @brief Create a new device
1826 *
1827 * This creates a new device and adds it as a child of an existing
1828 * parent device. The new device will be added after the last existing
1829 * child with order zero.
1830 *
1831 * @param dev		the device which will be the parent of the
1832 *			new child device
1833 * @param name		devclass name for new device or @c NULL if not
1834 *			specified
1835 * @param unit		unit number for new device or @c -1 if not
1836 *			specified
1837 *
1838 * @returns		the new device
1839 */
1840device_t
1841device_add_child(device_t dev, const char *name, int unit)
1842{
1843	return (device_add_child_ordered(dev, 0, name, unit));
1844}
1845
1846/**
1847 * @brief Create a new device
1848 *
1849 * This creates a new device and adds it as a child of an existing
1850 * parent device. The new device will be added after the last existing
1851 * child with the same order.
1852 *
1853 * @param dev		the device which will be the parent of the
1854 *			new child device
1855 * @param order		a value which is used to partially sort the
1856 *			children of @p dev - devices created using
1857 *			lower values of @p order appear first in @p
1858 *			dev's list of children
1859 * @param name		devclass name for new device or @c NULL if not
1860 *			specified
1861 * @param unit		unit number for new device or @c -1 if not
1862 *			specified
1863 *
1864 * @returns		the new device
1865 */
1866device_t
1867device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1868{
1869	device_t child;
1870	device_t place;
1871
1872	PDEBUG(("%s at %s with order %u as unit %d",
1873	    name, DEVICENAME(dev), order, unit));
1874	KASSERT(name != NULL || unit == -1,
1875	    ("child device with wildcard name and specific unit number"));
1876
1877	child = make_device(dev, name, unit);
1878	if (child == NULL)
1879		return (child);
1880	child->order = order;
1881
1882	TAILQ_FOREACH(place, &dev->children, link) {
1883		if (place->order > order)
1884			break;
1885	}
1886
1887	if (place) {
1888		/*
1889		 * The device 'place' is the first device whose order is
1890		 * greater than the new child.
1891		 */
1892		TAILQ_INSERT_BEFORE(place, child, link);
1893	} else {
1894		/*
1895		 * The new child's order is greater or equal to the order of
1896		 * any existing device. Add the child to the tail of the list.
1897		 */
1898		TAILQ_INSERT_TAIL(&dev->children, child, link);
1899	}
1900
1901	bus_data_generation_update();
1902	return (child);
1903}
1904
1905/**
1906 * @brief Delete a device
1907 *
1908 * This function deletes a device along with all of its children. If
1909 * the device currently has a driver attached to it, the device is
1910 * detached first using device_detach().
1911 *
1912 * @param dev		the parent device
1913 * @param child		the device to delete
1914 *
1915 * @retval 0		success
1916 * @retval non-zero	a unit error code describing the error
1917 */
1918int
1919device_delete_child(device_t dev, device_t child)
1920{
1921	int error;
1922	device_t grandchild;
1923
1924	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1925
1926	/* detach parent before deleting children, if any */
1927	if ((error = device_detach(child)) != 0)
1928		return (error);
1929
1930	/* remove children second */
1931	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1932		error = device_delete_child(child, grandchild);
1933		if (error)
1934			return (error);
1935	}
1936
1937	if (child->devclass)
1938		devclass_delete_device(child->devclass, child);
1939	if (child->parent)
1940		BUS_CHILD_DELETED(dev, child);
1941	TAILQ_REMOVE(&dev->children, child, link);
1942	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1943	kobj_delete((kobj_t) child, M_BUS);
1944
1945	bus_data_generation_update();
1946	return (0);
1947}
1948
1949/**
1950 * @brief Delete all children devices of the given device, if any.
1951 *
1952 * This function deletes all children devices of the given device, if
1953 * any, using the device_delete_child() function for each device it
1954 * finds. If a child device cannot be deleted, this function will
1955 * return an error code.
1956 *
1957 * @param dev		the parent device
1958 *
1959 * @retval 0		success
1960 * @retval non-zero	a device would not detach
1961 */
1962int
1963device_delete_children(device_t dev)
1964{
1965	device_t child;
1966	int error;
1967
1968	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1969
1970	error = 0;
1971
1972	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1973		error = device_delete_child(dev, child);
1974		if (error) {
1975			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1976			break;
1977		}
1978	}
1979	return (error);
1980}
1981
1982/**
1983 * @brief Find a device given a unit number
1984 *
1985 * This is similar to devclass_get_devices() but only searches for
1986 * devices which have @p dev as a parent.
1987 *
1988 * @param dev		the parent device to search
1989 * @param unit		the unit number to search for.  If the unit is -1,
1990 *			return the first child of @p dev which has name
1991 *			@p classname (that is, the one with the lowest unit.)
1992 *
1993 * @returns		the device with the given unit number or @c
1994 *			NULL if there is no such device
1995 */
1996device_t
1997device_find_child(device_t dev, const char *classname, int unit)
1998{
1999	devclass_t dc;
2000	device_t child;
2001
2002	dc = devclass_find(classname);
2003	if (!dc)
2004		return (NULL);
2005
2006	if (unit != -1) {
2007		child = devclass_get_device(dc, unit);
2008		if (child && child->parent == dev)
2009			return (child);
2010	} else {
2011		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
2012			child = devclass_get_device(dc, unit);
2013			if (child && child->parent == dev)
2014				return (child);
2015		}
2016	}
2017	return (NULL);
2018}
2019
2020/**
2021 * @internal
2022 */
2023static driverlink_t
2024first_matching_driver(devclass_t dc, device_t dev)
2025{
2026	if (dev->devclass)
2027		return (devclass_find_driver_internal(dc, dev->devclass->name));
2028	return (TAILQ_FIRST(&dc->drivers));
2029}
2030
2031/**
2032 * @internal
2033 */
2034static driverlink_t
2035next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
2036{
2037	if (dev->devclass) {
2038		driverlink_t dl;
2039		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
2040			if (!strcmp(dev->devclass->name, dl->driver->name))
2041				return (dl);
2042		return (NULL);
2043	}
2044	return (TAILQ_NEXT(last, link));
2045}
2046
2047/**
2048 * @internal
2049 */
2050int
2051device_probe_child(device_t dev, device_t child)
2052{
2053	devclass_t dc;
2054	driverlink_t best = NULL;
2055	driverlink_t dl;
2056	int result, pri = 0;
2057	int hasclass = (child->devclass != NULL);
2058
2059	GIANT_REQUIRED;
2060
2061	dc = dev->devclass;
2062	if (!dc)
2063		panic("device_probe_child: parent device has no devclass");
2064
2065	/*
2066	 * If the state is already probed, then return.  However, don't
2067	 * return if we can rebid this object.
2068	 */
2069	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2070		return (0);
2071
2072	for (; dc; dc = dc->parent) {
2073		for (dl = first_matching_driver(dc, child);
2074		     dl;
2075		     dl = next_matching_driver(dc, child, dl)) {
2076			/* If this driver's pass is too high, then ignore it. */
2077			if (dl->pass > bus_current_pass)
2078				continue;
2079
2080			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2081			result = device_set_driver(child, dl->driver);
2082			if (result == ENOMEM)
2083				return (result);
2084			else if (result != 0)
2085				continue;
2086			if (!hasclass) {
2087				if (device_set_devclass(child,
2088				    dl->driver->name) != 0) {
2089					char const * devname =
2090					    device_get_name(child);
2091					if (devname == NULL)
2092						devname = "(unknown)";
2093					printf("driver bug: Unable to set "
2094					    "devclass (class: %s "
2095					    "devname: %s)\n",
2096					    dl->driver->name,
2097					    devname);
2098					(void)device_set_driver(child, NULL);
2099					continue;
2100				}
2101			}
2102
2103			/* Fetch any flags for the device before probing. */
2104			resource_int_value(dl->driver->name, child->unit,
2105			    "flags", &child->devflags);
2106
2107			result = DEVICE_PROBE(child);
2108
2109			/* Reset flags and devclass before the next probe. */
2110			child->devflags = 0;
2111			if (!hasclass)
2112				(void)device_set_devclass(child, NULL);
2113
2114			/*
2115			 * If the driver returns SUCCESS, there can be
2116			 * no higher match for this device.
2117			 */
2118			if (result == 0) {
2119				best = dl;
2120				pri = 0;
2121				break;
2122			}
2123
2124			/*
2125			 * Probes that return BUS_PROBE_NOWILDCARD or lower
2126			 * only match on devices whose driver was explicitly
2127			 * specified.
2128			 */
2129			if (result <= BUS_PROBE_NOWILDCARD &&
2130			    !(child->flags & DF_FIXEDCLASS)) {
2131				result = ENXIO;
2132			}
2133
2134			/*
2135			 * The driver returned an error so it
2136			 * certainly doesn't match.
2137			 */
2138			if (result > 0) {
2139				(void)device_set_driver(child, NULL);
2140				continue;
2141			}
2142
2143			/*
2144			 * A priority lower than SUCCESS, remember the
2145			 * best matching driver. Initialise the value
2146			 * of pri for the first match.
2147			 */
2148			if (best == NULL || result > pri) {
2149				best = dl;
2150				pri = result;
2151				continue;
2152			}
2153		}
2154		/*
2155		 * If we have an unambiguous match in this devclass,
2156		 * don't look in the parent.
2157		 */
2158		if (best && pri == 0)
2159			break;
2160	}
2161
2162	/*
2163	 * If we found a driver, change state and initialise the devclass.
2164	 */
2165	/* XXX What happens if we rebid and got no best? */
2166	if (best) {
2167		/*
2168		 * If this device was attached, and we were asked to
2169		 * rescan, and it is a different driver, then we have
2170		 * to detach the old driver and reattach this new one.
2171		 * Note, we don't have to check for DF_REBID here
2172		 * because if the state is > DS_ALIVE, we know it must
2173		 * be.
2174		 *
2175		 * This assumes that all DF_REBID drivers can have
2176		 * their probe routine called at any time and that
2177		 * they are idempotent as well as completely benign in
2178		 * normal operations.
2179		 *
2180		 * We also have to make sure that the detach
2181		 * succeeded, otherwise we fail the operation (or
2182		 * maybe it should just fail silently?  I'm torn).
2183		 */
2184		if (child->state > DS_ALIVE && best->driver != child->driver)
2185			if ((result = device_detach(dev)) != 0)
2186				return (result);
2187
2188		/* Set the winning driver, devclass, and flags. */
2189		if (!child->devclass) {
2190			result = device_set_devclass(child, best->driver->name);
2191			if (result != 0)
2192				return (result);
2193		}
2194		result = device_set_driver(child, best->driver);
2195		if (result != 0)
2196			return (result);
2197		resource_int_value(best->driver->name, child->unit,
2198		    "flags", &child->devflags);
2199
2200		if (pri < 0) {
2201			/*
2202			 * A bit bogus. Call the probe method again to make
2203			 * sure that we have the right description.
2204			 */
2205			DEVICE_PROBE(child);
2206#if 0
2207			child->flags |= DF_REBID;
2208#endif
2209		} else
2210			child->flags &= ~DF_REBID;
2211		child->state = DS_ALIVE;
2212
2213		bus_data_generation_update();
2214		return (0);
2215	}
2216
2217	return (ENXIO);
2218}
2219
2220/**
2221 * @brief Return the parent of a device
2222 */
2223device_t
2224device_get_parent(device_t dev)
2225{
2226	return (dev->parent);
2227}
2228
2229/**
2230 * @brief Get a list of children of a device
2231 *
2232 * An array containing a list of all the children of the given device
2233 * is allocated and returned in @p *devlistp. The number of devices
2234 * in the array is returned in @p *devcountp. The caller should free
2235 * the array using @c free(p, M_TEMP).
2236 *
2237 * @param dev		the device to examine
2238 * @param devlistp	points at location for array pointer return
2239 *			value
2240 * @param devcountp	points at location for array size return value
2241 *
2242 * @retval 0		success
2243 * @retval ENOMEM	the array allocation failed
2244 */
2245int
2246device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2247{
2248	int count;
2249	device_t child;
2250	device_t *list;
2251
2252	count = 0;
2253	TAILQ_FOREACH(child, &dev->children, link) {
2254		count++;
2255	}
2256	if (count == 0) {
2257		*devlistp = NULL;
2258		*devcountp = 0;
2259		return (0);
2260	}
2261
2262	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2263	if (!list)
2264		return (ENOMEM);
2265
2266	count = 0;
2267	TAILQ_FOREACH(child, &dev->children, link) {
2268		list[count] = child;
2269		count++;
2270	}
2271
2272	*devlistp = list;
2273	*devcountp = count;
2274
2275	return (0);
2276}
2277
2278/**
2279 * @brief Return the current driver for the device or @c NULL if there
2280 * is no driver currently attached
2281 */
2282driver_t *
2283device_get_driver(device_t dev)
2284{
2285	return (dev->driver);
2286}
2287
2288/**
2289 * @brief Return the current devclass for the device or @c NULL if
2290 * there is none.
2291 */
2292devclass_t
2293device_get_devclass(device_t dev)
2294{
2295	return (dev->devclass);
2296}
2297
2298/**
2299 * @brief Return the name of the device's devclass or @c NULL if there
2300 * is none.
2301 */
2302const char *
2303device_get_name(device_t dev)
2304{
2305	if (dev != NULL && dev->devclass)
2306		return (devclass_get_name(dev->devclass));
2307	return (NULL);
2308}
2309
2310/**
2311 * @brief Return a string containing the device's devclass name
2312 * followed by an ascii representation of the device's unit number
2313 * (e.g. @c "foo2").
2314 */
2315const char *
2316device_get_nameunit(device_t dev)
2317{
2318	return (dev->nameunit);
2319}
2320
2321/**
2322 * @brief Return the device's unit number.
2323 */
2324int
2325device_get_unit(device_t dev)
2326{
2327	return (dev->unit);
2328}
2329
2330/**
2331 * @brief Return the device's description string
2332 */
2333const char *
2334device_get_desc(device_t dev)
2335{
2336	return (dev->desc);
2337}
2338
2339/**
2340 * @brief Return the device's flags
2341 */
2342uint32_t
2343device_get_flags(device_t dev)
2344{
2345	return (dev->devflags);
2346}
2347
2348struct sysctl_ctx_list *
2349device_get_sysctl_ctx(device_t dev)
2350{
2351	return (&dev->sysctl_ctx);
2352}
2353
2354struct sysctl_oid *
2355device_get_sysctl_tree(device_t dev)
2356{
2357	return (dev->sysctl_tree);
2358}
2359
2360/**
2361 * @brief Print the name of the device followed by a colon and a space
2362 *
2363 * @returns the number of characters printed
2364 */
2365int
2366device_print_prettyname(device_t dev)
2367{
2368	const char *name = device_get_name(dev);
2369
2370	if (name == NULL)
2371		return (printf("unknown: "));
2372	return (printf("%s%d: ", name, device_get_unit(dev)));
2373}
2374
2375/**
2376 * @brief Print the name of the device followed by a colon, a space
2377 * and the result of calling vprintf() with the value of @p fmt and
2378 * the following arguments.
2379 *
2380 * @returns the number of characters printed
2381 */
2382int
2383device_printf(device_t dev, const char * fmt, ...)
2384{
2385	va_list ap;
2386	int retval;
2387
2388	retval = device_print_prettyname(dev);
2389	va_start(ap, fmt);
2390	retval += vprintf(fmt, ap);
2391	va_end(ap);
2392	return (retval);
2393}
2394
2395/**
2396 * @internal
2397 */
2398static void
2399device_set_desc_internal(device_t dev, const char* desc, int copy)
2400{
2401	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2402		free(dev->desc, M_BUS);
2403		dev->flags &= ~DF_DESCMALLOCED;
2404		dev->desc = NULL;
2405	}
2406
2407	if (copy && desc) {
2408		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2409		if (dev->desc) {
2410			strcpy(dev->desc, desc);
2411			dev->flags |= DF_DESCMALLOCED;
2412		}
2413	} else {
2414		/* Avoid a -Wcast-qual warning */
2415		dev->desc = (char *)(uintptr_t) desc;
2416	}
2417
2418	bus_data_generation_update();
2419}
2420
2421/**
2422 * @brief Set the device's description
2423 *
2424 * The value of @c desc should be a string constant that will not
2425 * change (at least until the description is changed in a subsequent
2426 * call to device_set_desc() or device_set_desc_copy()).
2427 */
2428void
2429device_set_desc(device_t dev, const char* desc)
2430{
2431	device_set_desc_internal(dev, desc, FALSE);
2432}
2433
2434/**
2435 * @brief Set the device's description
2436 *
2437 * The string pointed to by @c desc is copied. Use this function if
2438 * the device description is generated, (e.g. with sprintf()).
2439 */
2440void
2441device_set_desc_copy(device_t dev, const char* desc)
2442{
2443	device_set_desc_internal(dev, desc, TRUE);
2444}
2445
2446/**
2447 * @brief Set the device's flags
2448 */
2449void
2450device_set_flags(device_t dev, uint32_t flags)
2451{
2452	dev->devflags = flags;
2453}
2454
2455/**
2456 * @brief Return the device's softc field
2457 *
2458 * The softc is allocated and zeroed when a driver is attached, based
2459 * on the size field of the driver.
2460 */
2461void *
2462device_get_softc(device_t dev)
2463{
2464	return (dev->softc);
2465}
2466
2467/**
2468 * @brief Set the device's softc field
2469 *
2470 * Most drivers do not need to use this since the softc is allocated
2471 * automatically when the driver is attached.
2472 */
2473void
2474device_set_softc(device_t dev, void *softc)
2475{
2476	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2477		free(dev->softc, M_BUS_SC);
2478	dev->softc = softc;
2479	if (dev->softc)
2480		dev->flags |= DF_EXTERNALSOFTC;
2481	else
2482		dev->flags &= ~DF_EXTERNALSOFTC;
2483}
2484
2485/**
2486 * @brief Free claimed softc
2487 *
2488 * Most drivers do not need to use this since the softc is freed
2489 * automatically when the driver is detached.
2490 */
2491void
2492device_free_softc(void *softc)
2493{
2494	free(softc, M_BUS_SC);
2495}
2496
2497/**
2498 * @brief Claim softc
2499 *
2500 * This function can be used to let the driver free the automatically
2501 * allocated softc using "device_free_softc()". This function is
2502 * useful when the driver is refcounting the softc and the softc
2503 * cannot be freed when the "device_detach" method is called.
2504 */
2505void
2506device_claim_softc(device_t dev)
2507{
2508	if (dev->softc)
2509		dev->flags |= DF_EXTERNALSOFTC;
2510	else
2511		dev->flags &= ~DF_EXTERNALSOFTC;
2512}
2513
2514/**
2515 * @brief Get the device's ivars field
2516 *
2517 * The ivars field is used by the parent device to store per-device
2518 * state (e.g. the physical location of the device or a list of
2519 * resources).
2520 */
2521void *
2522device_get_ivars(device_t dev)
2523{
2524
2525	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2526	return (dev->ivars);
2527}
2528
2529/**
2530 * @brief Set the device's ivars field
2531 */
2532void
2533device_set_ivars(device_t dev, void * ivars)
2534{
2535
2536	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2537	dev->ivars = ivars;
2538}
2539
2540/**
2541 * @brief Return the device's state
2542 */
2543device_state_t
2544device_get_state(device_t dev)
2545{
2546	return (dev->state);
2547}
2548
2549/**
2550 * @brief Set the DF_ENABLED flag for the device
2551 */
2552void
2553device_enable(device_t dev)
2554{
2555	dev->flags |= DF_ENABLED;
2556}
2557
2558/**
2559 * @brief Clear the DF_ENABLED flag for the device
2560 */
2561void
2562device_disable(device_t dev)
2563{
2564	dev->flags &= ~DF_ENABLED;
2565}
2566
2567/**
2568 * @brief Increment the busy counter for the device
2569 */
2570void
2571device_busy(device_t dev)
2572{
2573	if (dev->state < DS_ATTACHING)
2574		panic("device_busy: called for unattached device");
2575	if (dev->busy == 0 && dev->parent)
2576		device_busy(dev->parent);
2577	dev->busy++;
2578	if (dev->state == DS_ATTACHED)
2579		dev->state = DS_BUSY;
2580}
2581
2582/**
2583 * @brief Decrement the busy counter for the device
2584 */
2585void
2586device_unbusy(device_t dev)
2587{
2588	if (dev->busy != 0 && dev->state != DS_BUSY &&
2589	    dev->state != DS_ATTACHING)
2590		panic("device_unbusy: called for non-busy device %s",
2591		    device_get_nameunit(dev));
2592	dev->busy--;
2593	if (dev->busy == 0) {
2594		if (dev->parent)
2595			device_unbusy(dev->parent);
2596		if (dev->state == DS_BUSY)
2597			dev->state = DS_ATTACHED;
2598	}
2599}
2600
2601/**
2602 * @brief Set the DF_QUIET flag for the device
2603 */
2604void
2605device_quiet(device_t dev)
2606{
2607	dev->flags |= DF_QUIET;
2608}
2609
2610/**
2611 * @brief Clear the DF_QUIET flag for the device
2612 */
2613void
2614device_verbose(device_t dev)
2615{
2616	dev->flags &= ~DF_QUIET;
2617}
2618
2619/**
2620 * @brief Return non-zero if the DF_QUIET flag is set on the device
2621 */
2622int
2623device_is_quiet(device_t dev)
2624{
2625	return ((dev->flags & DF_QUIET) != 0);
2626}
2627
2628/**
2629 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2630 */
2631int
2632device_is_enabled(device_t dev)
2633{
2634	return ((dev->flags & DF_ENABLED) != 0);
2635}
2636
2637/**
2638 * @brief Return non-zero if the device was successfully probed
2639 */
2640int
2641device_is_alive(device_t dev)
2642{
2643	return (dev->state >= DS_ALIVE);
2644}
2645
2646/**
2647 * @brief Return non-zero if the device currently has a driver
2648 * attached to it
2649 */
2650int
2651device_is_attached(device_t dev)
2652{
2653	return (dev->state >= DS_ATTACHED);
2654}
2655
2656/**
2657 * @brief Set the devclass of a device
2658 * @see devclass_add_device().
2659 */
2660int
2661device_set_devclass(device_t dev, const char *classname)
2662{
2663	devclass_t dc;
2664	int error;
2665
2666	if (!classname) {
2667		if (dev->devclass)
2668			devclass_delete_device(dev->devclass, dev);
2669		return (0);
2670	}
2671
2672	if (dev->devclass) {
2673		printf("device_set_devclass: device class already set\n");
2674		return (EINVAL);
2675	}
2676
2677	dc = devclass_find_internal(classname, NULL, TRUE);
2678	if (!dc)
2679		return (ENOMEM);
2680
2681	error = devclass_add_device(dc, dev);
2682
2683	bus_data_generation_update();
2684	return (error);
2685}
2686
2687/**
2688 * @brief Set the driver of a device
2689 *
2690 * @retval 0		success
2691 * @retval EBUSY	the device already has a driver attached
2692 * @retval ENOMEM	a memory allocation failure occurred
2693 */
2694int
2695device_set_driver(device_t dev, driver_t *driver)
2696{
2697	if (dev->state >= DS_ATTACHED)
2698		return (EBUSY);
2699
2700	if (dev->driver == driver)
2701		return (0);
2702
2703	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2704		free(dev->softc, M_BUS_SC);
2705		dev->softc = NULL;
2706	}
2707	device_set_desc(dev, NULL);
2708	kobj_delete((kobj_t) dev, NULL);
2709	dev->driver = driver;
2710	if (driver) {
2711		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2712		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2713			dev->softc = malloc(driver->size, M_BUS_SC,
2714			    M_NOWAIT | M_ZERO);
2715			if (!dev->softc) {
2716				kobj_delete((kobj_t) dev, NULL);
2717				kobj_init((kobj_t) dev, &null_class);
2718				dev->driver = NULL;
2719				return (ENOMEM);
2720			}
2721		}
2722	} else {
2723		kobj_init((kobj_t) dev, &null_class);
2724	}
2725
2726	bus_data_generation_update();
2727	return (0);
2728}
2729
2730/**
2731 * @brief Probe a device, and return this status.
2732 *
2733 * This function is the core of the device autoconfiguration
2734 * system. Its purpose is to select a suitable driver for a device and
2735 * then call that driver to initialise the hardware appropriately. The
2736 * driver is selected by calling the DEVICE_PROBE() method of a set of
2737 * candidate drivers and then choosing the driver which returned the
2738 * best value. This driver is then attached to the device using
2739 * device_attach().
2740 *
2741 * The set of suitable drivers is taken from the list of drivers in
2742 * the parent device's devclass. If the device was originally created
2743 * with a specific class name (see device_add_child()), only drivers
2744 * with that name are probed, otherwise all drivers in the devclass
2745 * are probed. If no drivers return successful probe values in the
2746 * parent devclass, the search continues in the parent of that
2747 * devclass (see devclass_get_parent()) if any.
2748 *
2749 * @param dev		the device to initialise
2750 *
2751 * @retval 0		success
2752 * @retval ENXIO	no driver was found
2753 * @retval ENOMEM	memory allocation failure
2754 * @retval non-zero	some other unix error code
2755 * @retval -1		Device already attached
2756 */
2757int
2758device_probe(device_t dev)
2759{
2760	int error;
2761
2762	GIANT_REQUIRED;
2763
2764	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2765		return (-1);
2766
2767	if (!(dev->flags & DF_ENABLED)) {
2768		if (bootverbose && device_get_name(dev) != NULL) {
2769			device_print_prettyname(dev);
2770			printf("not probed (disabled)\n");
2771		}
2772		return (-1);
2773	}
2774	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2775		if (bus_current_pass == BUS_PASS_DEFAULT &&
2776		    !(dev->flags & DF_DONENOMATCH)) {
2777			BUS_PROBE_NOMATCH(dev->parent, dev);
2778			devnomatch(dev);
2779			dev->flags |= DF_DONENOMATCH;
2780		}
2781		return (error);
2782	}
2783	return (0);
2784}
2785
2786/**
2787 * @brief Probe a device and attach a driver if possible
2788 *
2789 * calls device_probe() and attaches if that was successful.
2790 */
2791int
2792device_probe_and_attach(device_t dev)
2793{
2794	int error;
2795
2796	GIANT_REQUIRED;
2797
2798	error = device_probe(dev);
2799	if (error == -1)
2800		return (0);
2801	else if (error != 0)
2802		return (error);
2803
2804	CURVNET_SET_QUIET(vnet0);
2805	error = device_attach(dev);
2806	CURVNET_RESTORE();
2807	return error;
2808}
2809
2810/**
2811 * @brief Attach a device driver to a device
2812 *
2813 * This function is a wrapper around the DEVICE_ATTACH() driver
2814 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2815 * device's sysctl tree, optionally prints a description of the device
2816 * and queues a notification event for user-based device management
2817 * services.
2818 *
2819 * Normally this function is only called internally from
2820 * device_probe_and_attach().
2821 *
2822 * @param dev		the device to initialise
2823 *
2824 * @retval 0		success
2825 * @retval ENXIO	no driver was found
2826 * @retval ENOMEM	memory allocation failure
2827 * @retval non-zero	some other unix error code
2828 */
2829int
2830device_attach(device_t dev)
2831{
2832	uint64_t attachtime;
2833	int error;
2834
2835	if (resource_disabled(dev->driver->name, dev->unit)) {
2836		device_disable(dev);
2837		if (bootverbose)
2838			 device_printf(dev, "disabled via hints entry\n");
2839		return (ENXIO);
2840	}
2841
2842	device_sysctl_init(dev);
2843	if (!device_is_quiet(dev))
2844		device_print_child(dev->parent, dev);
2845	attachtime = get_cyclecount();
2846	dev->state = DS_ATTACHING;
2847	if ((error = DEVICE_ATTACH(dev)) != 0) {
2848		printf("device_attach: %s%d attach returned %d\n",
2849		    dev->driver->name, dev->unit, error);
2850		if (!(dev->flags & DF_FIXEDCLASS))
2851			devclass_delete_device(dev->devclass, dev);
2852		(void)device_set_driver(dev, NULL);
2853		device_sysctl_fini(dev);
2854		KASSERT(dev->busy == 0, ("attach failed but busy"));
2855		dev->state = DS_NOTPRESENT;
2856		return (error);
2857	}
2858	attachtime = get_cyclecount() - attachtime;
2859	/*
2860	 * 4 bits per device is a reasonable value for desktop and server
2861	 * hardware with good get_cyclecount() implementations, but may
2862	 * need to be adjusted on other platforms.
2863	 */
2864#ifdef RANDOM_DEBUG
2865	printf("%s(): feeding %d bit(s) of entropy from %s%d\n",
2866	    __func__, 4, dev->driver->name, dev->unit);
2867#endif
2868	random_harvest(&attachtime, sizeof(attachtime), 4, RANDOM_ATTACH);
2869	device_sysctl_update(dev);
2870	if (dev->busy)
2871		dev->state = DS_BUSY;
2872	else
2873		dev->state = DS_ATTACHED;
2874	dev->flags &= ~DF_DONENOMATCH;
2875	devadded(dev);
2876	return (0);
2877}
2878
2879/**
2880 * @brief Detach a driver from a device
2881 *
2882 * This function is a wrapper around the DEVICE_DETACH() driver
2883 * method. If the call to DEVICE_DETACH() succeeds, it calls
2884 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2885 * notification event for user-based device management services and
2886 * cleans up the device's sysctl tree.
2887 *
2888 * @param dev		the device to un-initialise
2889 *
2890 * @retval 0		success
2891 * @retval ENXIO	no driver was found
2892 * @retval ENOMEM	memory allocation failure
2893 * @retval non-zero	some other unix error code
2894 */
2895int
2896device_detach(device_t dev)
2897{
2898	int error;
2899
2900	GIANT_REQUIRED;
2901
2902	PDEBUG(("%s", DEVICENAME(dev)));
2903	if (dev->state == DS_BUSY)
2904		return (EBUSY);
2905	if (dev->state != DS_ATTACHED)
2906		return (0);
2907
2908	if ((error = DEVICE_DETACH(dev)) != 0)
2909		return (error);
2910	devremoved(dev);
2911	if (!device_is_quiet(dev))
2912		device_printf(dev, "detached\n");
2913	if (dev->parent)
2914		BUS_CHILD_DETACHED(dev->parent, dev);
2915
2916	if (!(dev->flags & DF_FIXEDCLASS))
2917		devclass_delete_device(dev->devclass, dev);
2918
2919	dev->state = DS_NOTPRESENT;
2920	(void)device_set_driver(dev, NULL);
2921	device_sysctl_fini(dev);
2922
2923	return (0);
2924}
2925
2926/**
2927 * @brief Tells a driver to quiesce itself.
2928 *
2929 * This function is a wrapper around the DEVICE_QUIESCE() driver
2930 * method. If the call to DEVICE_QUIESCE() succeeds.
2931 *
2932 * @param dev		the device to quiesce
2933 *
2934 * @retval 0		success
2935 * @retval ENXIO	no driver was found
2936 * @retval ENOMEM	memory allocation failure
2937 * @retval non-zero	some other unix error code
2938 */
2939int
2940device_quiesce(device_t dev)
2941{
2942
2943	PDEBUG(("%s", DEVICENAME(dev)));
2944	if (dev->state == DS_BUSY)
2945		return (EBUSY);
2946	if (dev->state != DS_ATTACHED)
2947		return (0);
2948
2949	return (DEVICE_QUIESCE(dev));
2950}
2951
2952/**
2953 * @brief Notify a device of system shutdown
2954 *
2955 * This function calls the DEVICE_SHUTDOWN() driver method if the
2956 * device currently has an attached driver.
2957 *
2958 * @returns the value returned by DEVICE_SHUTDOWN()
2959 */
2960int
2961device_shutdown(device_t dev)
2962{
2963	if (dev->state < DS_ATTACHED)
2964		return (0);
2965	return (DEVICE_SHUTDOWN(dev));
2966}
2967
2968/**
2969 * @brief Set the unit number of a device
2970 *
2971 * This function can be used to override the unit number used for a
2972 * device (e.g. to wire a device to a pre-configured unit number).
2973 */
2974int
2975device_set_unit(device_t dev, int unit)
2976{
2977	devclass_t dc;
2978	int err;
2979
2980	dc = device_get_devclass(dev);
2981	if (unit < dc->maxunit && dc->devices[unit])
2982		return (EBUSY);
2983	err = devclass_delete_device(dc, dev);
2984	if (err)
2985		return (err);
2986	dev->unit = unit;
2987	err = devclass_add_device(dc, dev);
2988	if (err)
2989		return (err);
2990
2991	bus_data_generation_update();
2992	return (0);
2993}
2994
2995/*======================================*/
2996/*
2997 * Some useful method implementations to make life easier for bus drivers.
2998 */
2999
3000/**
3001 * @brief Initialise a resource list.
3002 *
3003 * @param rl		the resource list to initialise
3004 */
3005void
3006resource_list_init(struct resource_list *rl)
3007{
3008	STAILQ_INIT(rl);
3009}
3010
3011/**
3012 * @brief Reclaim memory used by a resource list.
3013 *
3014 * This function frees the memory for all resource entries on the list
3015 * (if any).
3016 *
3017 * @param rl		the resource list to free
3018 */
3019void
3020resource_list_free(struct resource_list *rl)
3021{
3022	struct resource_list_entry *rle;
3023
3024	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3025		if (rle->res)
3026			panic("resource_list_free: resource entry is busy");
3027		STAILQ_REMOVE_HEAD(rl, link);
3028		free(rle, M_BUS);
3029	}
3030}
3031
3032/**
3033 * @brief Add a resource entry.
3034 *
3035 * This function adds a resource entry using the given @p type, @p
3036 * start, @p end and @p count values. A rid value is chosen by
3037 * searching sequentially for the first unused rid starting at zero.
3038 *
3039 * @param rl		the resource list to edit
3040 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3041 * @param start		the start address of the resource
3042 * @param end		the end address of the resource
3043 * @param count		XXX end-start+1
3044 */
3045int
3046resource_list_add_next(struct resource_list *rl, int type, u_long start,
3047    u_long end, u_long count)
3048{
3049	int rid;
3050
3051	rid = 0;
3052	while (resource_list_find(rl, type, rid) != NULL)
3053		rid++;
3054	resource_list_add(rl, type, rid, start, end, count);
3055	return (rid);
3056}
3057
3058/**
3059 * @brief Add or modify a resource entry.
3060 *
3061 * If an existing entry exists with the same type and rid, it will be
3062 * modified using the given values of @p start, @p end and @p
3063 * count. If no entry exists, a new one will be created using the
3064 * given values.  The resource list entry that matches is then returned.
3065 *
3066 * @param rl		the resource list to edit
3067 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3068 * @param rid		the resource identifier
3069 * @param start		the start address of the resource
3070 * @param end		the end address of the resource
3071 * @param count		XXX end-start+1
3072 */
3073struct resource_list_entry *
3074resource_list_add(struct resource_list *rl, int type, int rid,
3075    u_long start, u_long end, u_long count)
3076{
3077	struct resource_list_entry *rle;
3078
3079	rle = resource_list_find(rl, type, rid);
3080	if (!rle) {
3081		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
3082		    M_NOWAIT);
3083		if (!rle)
3084			panic("resource_list_add: can't record entry");
3085		STAILQ_INSERT_TAIL(rl, rle, link);
3086		rle->type = type;
3087		rle->rid = rid;
3088		rle->res = NULL;
3089		rle->flags = 0;
3090	}
3091
3092	if (rle->res)
3093		panic("resource_list_add: resource entry is busy");
3094
3095	rle->start = start;
3096	rle->end = end;
3097	rle->count = count;
3098	return (rle);
3099}
3100
3101/**
3102 * @brief Determine if a resource entry is busy.
3103 *
3104 * Returns true if a resource entry is busy meaning that it has an
3105 * associated resource that is not an unallocated "reserved" resource.
3106 *
3107 * @param rl		the resource list to search
3108 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3109 * @param rid		the resource identifier
3110 *
3111 * @returns Non-zero if the entry is busy, zero otherwise.
3112 */
3113int
3114resource_list_busy(struct resource_list *rl, int type, int rid)
3115{
3116	struct resource_list_entry *rle;
3117
3118	rle = resource_list_find(rl, type, rid);
3119	if (rle == NULL || rle->res == NULL)
3120		return (0);
3121	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3122		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3123		    ("reserved resource is active"));
3124		return (0);
3125	}
3126	return (1);
3127}
3128
3129/**
3130 * @brief Determine if a resource entry is reserved.
3131 *
3132 * Returns true if a resource entry is reserved meaning that it has an
3133 * associated "reserved" resource.  The resource can either be
3134 * allocated or unallocated.
3135 *
3136 * @param rl		the resource list to search
3137 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3138 * @param rid		the resource identifier
3139 *
3140 * @returns Non-zero if the entry is reserved, zero otherwise.
3141 */
3142int
3143resource_list_reserved(struct resource_list *rl, int type, int rid)
3144{
3145	struct resource_list_entry *rle;
3146
3147	rle = resource_list_find(rl, type, rid);
3148	if (rle != NULL && rle->flags & RLE_RESERVED)
3149		return (1);
3150	return (0);
3151}
3152
3153/**
3154 * @brief Find a resource entry by type and rid.
3155 *
3156 * @param rl		the resource list to search
3157 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3158 * @param rid		the resource identifier
3159 *
3160 * @returns the resource entry pointer or NULL if there is no such
3161 * entry.
3162 */
3163struct resource_list_entry *
3164resource_list_find(struct resource_list *rl, int type, int rid)
3165{
3166	struct resource_list_entry *rle;
3167
3168	STAILQ_FOREACH(rle, rl, link) {
3169		if (rle->type == type && rle->rid == rid)
3170			return (rle);
3171	}
3172	return (NULL);
3173}
3174
3175/**
3176 * @brief Delete a resource entry.
3177 *
3178 * @param rl		the resource list to edit
3179 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3180 * @param rid		the resource identifier
3181 */
3182void
3183resource_list_delete(struct resource_list *rl, int type, int rid)
3184{
3185	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3186
3187	if (rle) {
3188		if (rle->res != NULL)
3189			panic("resource_list_delete: resource has not been released");
3190		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3191		free(rle, M_BUS);
3192	}
3193}
3194
3195/**
3196 * @brief Allocate a reserved resource
3197 *
3198 * This can be used by busses to force the allocation of resources
3199 * that are always active in the system even if they are not allocated
3200 * by a driver (e.g. PCI BARs).  This function is usually called when
3201 * adding a new child to the bus.  The resource is allocated from the
3202 * parent bus when it is reserved.  The resource list entry is marked
3203 * with RLE_RESERVED to note that it is a reserved resource.
3204 *
3205 * Subsequent attempts to allocate the resource with
3206 * resource_list_alloc() will succeed the first time and will set
3207 * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3208 * resource that has been allocated is released with
3209 * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3210 * the actual resource remains allocated.  The resource can be released to
3211 * the parent bus by calling resource_list_unreserve().
3212 *
3213 * @param rl		the resource list to allocate from
3214 * @param bus		the parent device of @p child
3215 * @param child		the device for which the resource is being reserved
3216 * @param type		the type of resource to allocate
3217 * @param rid		a pointer to the resource identifier
3218 * @param start		hint at the start of the resource range - pass
3219 *			@c 0UL for any start address
3220 * @param end		hint at the end of the resource range - pass
3221 *			@c ~0UL for any end address
3222 * @param count		hint at the size of range required - pass @c 1
3223 *			for any size
3224 * @param flags		any extra flags to control the resource
3225 *			allocation - see @c RF_XXX flags in
3226 *			<sys/rman.h> for details
3227 *
3228 * @returns		the resource which was allocated or @c NULL if no
3229 *			resource could be allocated
3230 */
3231struct resource *
3232resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3233    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3234{
3235	struct resource_list_entry *rle = NULL;
3236	int passthrough = (device_get_parent(child) != bus);
3237	struct resource *r;
3238
3239	if (passthrough)
3240		panic(
3241    "resource_list_reserve() should only be called for direct children");
3242	if (flags & RF_ACTIVE)
3243		panic(
3244    "resource_list_reserve() should only reserve inactive resources");
3245
3246	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3247	    flags);
3248	if (r != NULL) {
3249		rle = resource_list_find(rl, type, *rid);
3250		rle->flags |= RLE_RESERVED;
3251	}
3252	return (r);
3253}
3254
3255/**
3256 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3257 *
3258 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3259 * and passing the allocation up to the parent of @p bus. This assumes
3260 * that the first entry of @c device_get_ivars(child) is a struct
3261 * resource_list. This also handles 'passthrough' allocations where a
3262 * child is a remote descendant of bus by passing the allocation up to
3263 * the parent of bus.
3264 *
3265 * Typically, a bus driver would store a list of child resources
3266 * somewhere in the child device's ivars (see device_get_ivars()) and
3267 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3268 * then call resource_list_alloc() to perform the allocation.
3269 *
3270 * @param rl		the resource list to allocate from
3271 * @param bus		the parent device of @p child
3272 * @param child		the device which is requesting an allocation
3273 * @param type		the type of resource to allocate
3274 * @param rid		a pointer to the resource identifier
3275 * @param start		hint at the start of the resource range - pass
3276 *			@c 0UL for any start address
3277 * @param end		hint at the end of the resource range - pass
3278 *			@c ~0UL for any end address
3279 * @param count		hint at the size of range required - pass @c 1
3280 *			for any size
3281 * @param flags		any extra flags to control the resource
3282 *			allocation - see @c RF_XXX flags in
3283 *			<sys/rman.h> for details
3284 *
3285 * @returns		the resource which was allocated or @c NULL if no
3286 *			resource could be allocated
3287 */
3288struct resource *
3289resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3290    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3291{
3292	struct resource_list_entry *rle = NULL;
3293	int passthrough = (device_get_parent(child) != bus);
3294	int isdefault = (start == 0UL && end == ~0UL);
3295
3296	if (passthrough) {
3297		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3298		    type, rid, start, end, count, flags));
3299	}
3300
3301	rle = resource_list_find(rl, type, *rid);
3302
3303	if (!rle)
3304		return (NULL);		/* no resource of that type/rid */
3305
3306	if (rle->res) {
3307		if (rle->flags & RLE_RESERVED) {
3308			if (rle->flags & RLE_ALLOCATED)
3309				return (NULL);
3310			if ((flags & RF_ACTIVE) &&
3311			    bus_activate_resource(child, type, *rid,
3312			    rle->res) != 0)
3313				return (NULL);
3314			rle->flags |= RLE_ALLOCATED;
3315			return (rle->res);
3316		}
3317		device_printf(bus,
3318		    "resource entry %#x type %d for child %s is busy\n", *rid,
3319		    type, device_get_nameunit(child));
3320		return (NULL);
3321	}
3322
3323	if (isdefault) {
3324		start = rle->start;
3325		count = ulmax(count, rle->count);
3326		end = ulmax(rle->end, start + count - 1);
3327	}
3328
3329	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3330	    type, rid, start, end, count, flags);
3331
3332	/*
3333	 * Record the new range.
3334	 */
3335	if (rle->res) {
3336		rle->start = rman_get_start(rle->res);
3337		rle->end = rman_get_end(rle->res);
3338		rle->count = count;
3339	}
3340
3341	return (rle->res);
3342}
3343
3344/**
3345 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3346 *
3347 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3348 * used with resource_list_alloc().
3349 *
3350 * @param rl		the resource list which was allocated from
3351 * @param bus		the parent device of @p child
3352 * @param child		the device which is requesting a release
3353 * @param type		the type of resource to release
3354 * @param rid		the resource identifier
3355 * @param res		the resource to release
3356 *
3357 * @retval 0		success
3358 * @retval non-zero	a standard unix error code indicating what
3359 *			error condition prevented the operation
3360 */
3361int
3362resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3363    int type, int rid, struct resource *res)
3364{
3365	struct resource_list_entry *rle = NULL;
3366	int passthrough = (device_get_parent(child) != bus);
3367	int error;
3368
3369	if (passthrough) {
3370		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3371		    type, rid, res));
3372	}
3373
3374	rle = resource_list_find(rl, type, rid);
3375
3376	if (!rle)
3377		panic("resource_list_release: can't find resource");
3378	if (!rle->res)
3379		panic("resource_list_release: resource entry is not busy");
3380	if (rle->flags & RLE_RESERVED) {
3381		if (rle->flags & RLE_ALLOCATED) {
3382			if (rman_get_flags(res) & RF_ACTIVE) {
3383				error = bus_deactivate_resource(child, type,
3384				    rid, res);
3385				if (error)
3386					return (error);
3387			}
3388			rle->flags &= ~RLE_ALLOCATED;
3389			return (0);
3390		}
3391		return (EINVAL);
3392	}
3393
3394	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3395	    type, rid, res);
3396	if (error)
3397		return (error);
3398
3399	rle->res = NULL;
3400	return (0);
3401}
3402
3403/**
3404 * @brief Release all active resources of a given type
3405 *
3406 * Release all active resources of a specified type.  This is intended
3407 * to be used to cleanup resources leaked by a driver after detach or
3408 * a failed attach.
3409 *
3410 * @param rl		the resource list which was allocated from
3411 * @param bus		the parent device of @p child
3412 * @param child		the device whose active resources are being released
3413 * @param type		the type of resources to release
3414 *
3415 * @retval 0		success
3416 * @retval EBUSY	at least one resource was active
3417 */
3418int
3419resource_list_release_active(struct resource_list *rl, device_t bus,
3420    device_t child, int type)
3421{
3422	struct resource_list_entry *rle;
3423	int error, retval;
3424
3425	retval = 0;
3426	STAILQ_FOREACH(rle, rl, link) {
3427		if (rle->type != type)
3428			continue;
3429		if (rle->res == NULL)
3430			continue;
3431		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3432		    RLE_RESERVED)
3433			continue;
3434		retval = EBUSY;
3435		error = resource_list_release(rl, bus, child, type,
3436		    rman_get_rid(rle->res), rle->res);
3437		if (error != 0)
3438			device_printf(bus,
3439			    "Failed to release active resource: %d\n", error);
3440	}
3441	return (retval);
3442}
3443
3444
3445/**
3446 * @brief Fully release a reserved resource
3447 *
3448 * Fully releases a resource reserved via resource_list_reserve().
3449 *
3450 * @param rl		the resource list which was allocated from
3451 * @param bus		the parent device of @p child
3452 * @param child		the device whose reserved resource is being released
3453 * @param type		the type of resource to release
3454 * @param rid		the resource identifier
3455 * @param res		the resource to release
3456 *
3457 * @retval 0		success
3458 * @retval non-zero	a standard unix error code indicating what
3459 *			error condition prevented the operation
3460 */
3461int
3462resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3463    int type, int rid)
3464{
3465	struct resource_list_entry *rle = NULL;
3466	int passthrough = (device_get_parent(child) != bus);
3467
3468	if (passthrough)
3469		panic(
3470    "resource_list_unreserve() should only be called for direct children");
3471
3472	rle = resource_list_find(rl, type, rid);
3473
3474	if (!rle)
3475		panic("resource_list_unreserve: can't find resource");
3476	if (!(rle->flags & RLE_RESERVED))
3477		return (EINVAL);
3478	if (rle->flags & RLE_ALLOCATED)
3479		return (EBUSY);
3480	rle->flags &= ~RLE_RESERVED;
3481	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3482}
3483
3484/**
3485 * @brief Print a description of resources in a resource list
3486 *
3487 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3488 * The name is printed if at least one resource of the given type is available.
3489 * The format is used to print resource start and end.
3490 *
3491 * @param rl		the resource list to print
3492 * @param name		the name of @p type, e.g. @c "memory"
3493 * @param type		type type of resource entry to print
3494 * @param format	printf(9) format string to print resource
3495 *			start and end values
3496 *
3497 * @returns		the number of characters printed
3498 */
3499int
3500resource_list_print_type(struct resource_list *rl, const char *name, int type,
3501    const char *format)
3502{
3503	struct resource_list_entry *rle;
3504	int printed, retval;
3505
3506	printed = 0;
3507	retval = 0;
3508	/* Yes, this is kinda cheating */
3509	STAILQ_FOREACH(rle, rl, link) {
3510		if (rle->type == type) {
3511			if (printed == 0)
3512				retval += printf(" %s ", name);
3513			else
3514				retval += printf(",");
3515			printed++;
3516			retval += printf(format, rle->start);
3517			if (rle->count > 1) {
3518				retval += printf("-");
3519				retval += printf(format, rle->start +
3520						 rle->count - 1);
3521			}
3522		}
3523	}
3524	return (retval);
3525}
3526
3527/**
3528 * @brief Releases all the resources in a list.
3529 *
3530 * @param rl		The resource list to purge.
3531 *
3532 * @returns		nothing
3533 */
3534void
3535resource_list_purge(struct resource_list *rl)
3536{
3537	struct resource_list_entry *rle;
3538
3539	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3540		if (rle->res)
3541			bus_release_resource(rman_get_device(rle->res),
3542			    rle->type, rle->rid, rle->res);
3543		STAILQ_REMOVE_HEAD(rl, link);
3544		free(rle, M_BUS);
3545	}
3546}
3547
3548device_t
3549bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3550{
3551
3552	return (device_add_child_ordered(dev, order, name, unit));
3553}
3554
3555/**
3556 * @brief Helper function for implementing DEVICE_PROBE()
3557 *
3558 * This function can be used to help implement the DEVICE_PROBE() for
3559 * a bus (i.e. a device which has other devices attached to it). It
3560 * calls the DEVICE_IDENTIFY() method of each driver in the device's
3561 * devclass.
3562 */
3563int
3564bus_generic_probe(device_t dev)
3565{
3566	devclass_t dc = dev->devclass;
3567	driverlink_t dl;
3568
3569	TAILQ_FOREACH(dl, &dc->drivers, link) {
3570		/*
3571		 * If this driver's pass is too high, then ignore it.
3572		 * For most drivers in the default pass, this will
3573		 * never be true.  For early-pass drivers they will
3574		 * only call the identify routines of eligible drivers
3575		 * when this routine is called.  Drivers for later
3576		 * passes should have their identify routines called
3577		 * on early-pass busses during BUS_NEW_PASS().
3578		 */
3579		if (dl->pass > bus_current_pass)
3580			continue;
3581		DEVICE_IDENTIFY(dl->driver, dev);
3582	}
3583
3584	return (0);
3585}
3586
3587/**
3588 * @brief Helper function for implementing DEVICE_ATTACH()
3589 *
3590 * This function can be used to help implement the DEVICE_ATTACH() for
3591 * a bus. It calls device_probe_and_attach() for each of the device's
3592 * children.
3593 */
3594int
3595bus_generic_attach(device_t dev)
3596{
3597	device_t child;
3598
3599	TAILQ_FOREACH(child, &dev->children, link) {
3600		device_probe_and_attach(child);
3601	}
3602
3603	return (0);
3604}
3605
3606/**
3607 * @brief Helper function for implementing DEVICE_DETACH()
3608 *
3609 * This function can be used to help implement the DEVICE_DETACH() for
3610 * a bus. It calls device_detach() for each of the device's
3611 * children.
3612 */
3613int
3614bus_generic_detach(device_t dev)
3615{
3616	device_t child;
3617	int error;
3618
3619	if (dev->state != DS_ATTACHED)
3620		return (EBUSY);
3621
3622	TAILQ_FOREACH(child, &dev->children, link) {
3623		if ((error = device_detach(child)) != 0)
3624			return (error);
3625	}
3626
3627	return (0);
3628}
3629
3630/**
3631 * @brief Helper function for implementing DEVICE_SHUTDOWN()
3632 *
3633 * This function can be used to help implement the DEVICE_SHUTDOWN()
3634 * for a bus. It calls device_shutdown() for each of the device's
3635 * children.
3636 */
3637int
3638bus_generic_shutdown(device_t dev)
3639{
3640	device_t child;
3641
3642	TAILQ_FOREACH(child, &dev->children, link) {
3643		device_shutdown(child);
3644	}
3645
3646	return (0);
3647}
3648
3649/**
3650 * @brief Helper function for implementing DEVICE_SUSPEND()
3651 *
3652 * This function can be used to help implement the DEVICE_SUSPEND()
3653 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3654 * children. If any call to DEVICE_SUSPEND() fails, the suspend
3655 * operation is aborted and any devices which were suspended are
3656 * resumed immediately by calling their DEVICE_RESUME() methods.
3657 */
3658int
3659bus_generic_suspend(device_t dev)
3660{
3661	int		error;
3662	device_t	child, child2;
3663
3664	TAILQ_FOREACH(child, &dev->children, link) {
3665		error = DEVICE_SUSPEND(child);
3666		if (error) {
3667			for (child2 = TAILQ_FIRST(&dev->children);
3668			     child2 && child2 != child;
3669			     child2 = TAILQ_NEXT(child2, link))
3670				DEVICE_RESUME(child2);
3671			return (error);
3672		}
3673	}
3674	return (0);
3675}
3676
3677/**
3678 * @brief Helper function for implementing DEVICE_RESUME()
3679 *
3680 * This function can be used to help implement the DEVICE_RESUME() for
3681 * a bus. It calls DEVICE_RESUME() on each of the device's children.
3682 */
3683int
3684bus_generic_resume(device_t dev)
3685{
3686	device_t	child;
3687
3688	TAILQ_FOREACH(child, &dev->children, link) {
3689		DEVICE_RESUME(child);
3690		/* if resume fails, there's nothing we can usefully do... */
3691	}
3692	return (0);
3693}
3694
3695/**
3696 * @brief Helper function for implementing BUS_PRINT_CHILD().
3697 *
3698 * This function prints the first part of the ascii representation of
3699 * @p child, including its name, unit and description (if any - see
3700 * device_set_desc()).
3701 *
3702 * @returns the number of characters printed
3703 */
3704int
3705bus_print_child_header(device_t dev, device_t child)
3706{
3707	int	retval = 0;
3708
3709	if (device_get_desc(child)) {
3710		retval += device_printf(child, "<%s>", device_get_desc(child));
3711	} else {
3712		retval += printf("%s", device_get_nameunit(child));
3713	}
3714
3715	return (retval);
3716}
3717
3718/**
3719 * @brief Helper function for implementing BUS_PRINT_CHILD().
3720 *
3721 * This function prints the last part of the ascii representation of
3722 * @p child, which consists of the string @c " on " followed by the
3723 * name and unit of the @p dev.
3724 *
3725 * @returns the number of characters printed
3726 */
3727int
3728bus_print_child_footer(device_t dev, device_t child)
3729{
3730	return (printf(" on %s\n", device_get_nameunit(dev)));
3731}
3732
3733/**
3734 * @brief Helper function for implementing BUS_PRINT_CHILD().
3735 *
3736 * This function prints out the VM domain for the given device.
3737 *
3738 * @returns the number of characters printed
3739 */
3740int
3741bus_print_child_domain(device_t dev, device_t child)
3742{
3743	int domain;
3744
3745	/* No domain? Don't print anything */
3746	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
3747		return (0);
3748
3749	return (printf(" numa-domain %d", domain));
3750}
3751
3752/**
3753 * @brief Helper function for implementing BUS_PRINT_CHILD().
3754 *
3755 * This function simply calls bus_print_child_header() followed by
3756 * bus_print_child_footer().
3757 *
3758 * @returns the number of characters printed
3759 */
3760int
3761bus_generic_print_child(device_t dev, device_t child)
3762{
3763	int	retval = 0;
3764
3765	retval += bus_print_child_header(dev, child);
3766	retval += bus_print_child_domain(dev, child);
3767	retval += bus_print_child_footer(dev, child);
3768
3769	return (retval);
3770}
3771
3772/**
3773 * @brief Stub function for implementing BUS_READ_IVAR().
3774 *
3775 * @returns ENOENT
3776 */
3777int
3778bus_generic_read_ivar(device_t dev, device_t child, int index,
3779    uintptr_t * result)
3780{
3781	return (ENOENT);
3782}
3783
3784/**
3785 * @brief Stub function for implementing BUS_WRITE_IVAR().
3786 *
3787 * @returns ENOENT
3788 */
3789int
3790bus_generic_write_ivar(device_t dev, device_t child, int index,
3791    uintptr_t value)
3792{
3793	return (ENOENT);
3794}
3795
3796/**
3797 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3798 *
3799 * @returns NULL
3800 */
3801struct resource_list *
3802bus_generic_get_resource_list(device_t dev, device_t child)
3803{
3804	return (NULL);
3805}
3806
3807/**
3808 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3809 *
3810 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3811 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3812 * and then calls device_probe_and_attach() for each unattached child.
3813 */
3814void
3815bus_generic_driver_added(device_t dev, driver_t *driver)
3816{
3817	device_t child;
3818
3819	DEVICE_IDENTIFY(driver, dev);
3820	TAILQ_FOREACH(child, &dev->children, link) {
3821		if (child->state == DS_NOTPRESENT ||
3822		    (child->flags & DF_REBID))
3823			device_probe_and_attach(child);
3824	}
3825}
3826
3827/**
3828 * @brief Helper function for implementing BUS_NEW_PASS().
3829 *
3830 * This implementing of BUS_NEW_PASS() first calls the identify
3831 * routines for any drivers that probe at the current pass.  Then it
3832 * walks the list of devices for this bus.  If a device is already
3833 * attached, then it calls BUS_NEW_PASS() on that device.  If the
3834 * device is not already attached, it attempts to attach a driver to
3835 * it.
3836 */
3837void
3838bus_generic_new_pass(device_t dev)
3839{
3840	driverlink_t dl;
3841	devclass_t dc;
3842	device_t child;
3843
3844	dc = dev->devclass;
3845	TAILQ_FOREACH(dl, &dc->drivers, link) {
3846		if (dl->pass == bus_current_pass)
3847			DEVICE_IDENTIFY(dl->driver, dev);
3848	}
3849	TAILQ_FOREACH(child, &dev->children, link) {
3850		if (child->state >= DS_ATTACHED)
3851			BUS_NEW_PASS(child);
3852		else if (child->state == DS_NOTPRESENT)
3853			device_probe_and_attach(child);
3854	}
3855}
3856
3857/**
3858 * @brief Helper function for implementing BUS_SETUP_INTR().
3859 *
3860 * This simple implementation of BUS_SETUP_INTR() simply calls the
3861 * BUS_SETUP_INTR() method of the parent of @p dev.
3862 */
3863int
3864bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3865    int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3866    void **cookiep)
3867{
3868	/* Propagate up the bus hierarchy until someone handles it. */
3869	if (dev->parent)
3870		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3871		    filter, intr, arg, cookiep));
3872	return (EINVAL);
3873}
3874
3875/**
3876 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3877 *
3878 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3879 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3880 */
3881int
3882bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3883    void *cookie)
3884{
3885	/* Propagate up the bus hierarchy until someone handles it. */
3886	if (dev->parent)
3887		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3888	return (EINVAL);
3889}
3890
3891/**
3892 * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3893 *
3894 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3895 * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3896 */
3897int
3898bus_generic_adjust_resource(device_t dev, device_t child, int type,
3899    struct resource *r, u_long start, u_long end)
3900{
3901	/* Propagate up the bus hierarchy until someone handles it. */
3902	if (dev->parent)
3903		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
3904		    end));
3905	return (EINVAL);
3906}
3907
3908/**
3909 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3910 *
3911 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3912 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3913 */
3914struct resource *
3915bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3916    u_long start, u_long end, u_long count, u_int flags)
3917{
3918	/* Propagate up the bus hierarchy until someone handles it. */
3919	if (dev->parent)
3920		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3921		    start, end, count, flags));
3922	return (NULL);
3923}
3924
3925/**
3926 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3927 *
3928 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3929 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3930 */
3931int
3932bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3933    struct resource *r)
3934{
3935	/* Propagate up the bus hierarchy until someone handles it. */
3936	if (dev->parent)
3937		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3938		    r));
3939	return (EINVAL);
3940}
3941
3942/**
3943 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3944 *
3945 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3946 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3947 */
3948int
3949bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3950    struct resource *r)
3951{
3952	/* Propagate up the bus hierarchy until someone handles it. */
3953	if (dev->parent)
3954		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3955		    r));
3956	return (EINVAL);
3957}
3958
3959/**
3960 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3961 *
3962 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3963 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3964 */
3965int
3966bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3967    int rid, struct resource *r)
3968{
3969	/* Propagate up the bus hierarchy until someone handles it. */
3970	if (dev->parent)
3971		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3972		    r));
3973	return (EINVAL);
3974}
3975
3976/**
3977 * @brief Helper function for implementing BUS_BIND_INTR().
3978 *
3979 * This simple implementation of BUS_BIND_INTR() simply calls the
3980 * BUS_BIND_INTR() method of the parent of @p dev.
3981 */
3982int
3983bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3984    int cpu)
3985{
3986
3987	/* Propagate up the bus hierarchy until someone handles it. */
3988	if (dev->parent)
3989		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3990	return (EINVAL);
3991}
3992
3993/**
3994 * @brief Helper function for implementing BUS_CONFIG_INTR().
3995 *
3996 * This simple implementation of BUS_CONFIG_INTR() simply calls the
3997 * BUS_CONFIG_INTR() method of the parent of @p dev.
3998 */
3999int
4000bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4001    enum intr_polarity pol)
4002{
4003
4004	/* Propagate up the bus hierarchy until someone handles it. */
4005	if (dev->parent)
4006		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4007	return (EINVAL);
4008}
4009
4010/**
4011 * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4012 *
4013 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4014 * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4015 */
4016int
4017bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4018    void *cookie, const char *descr)
4019{
4020
4021	/* Propagate up the bus hierarchy until someone handles it. */
4022	if (dev->parent)
4023		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4024		    descr));
4025	return (EINVAL);
4026}
4027
4028/**
4029 * @brief Helper function for implementing BUS_GET_DMA_TAG().
4030 *
4031 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4032 * BUS_GET_DMA_TAG() method of the parent of @p dev.
4033 */
4034bus_dma_tag_t
4035bus_generic_get_dma_tag(device_t dev, device_t child)
4036{
4037
4038	/* Propagate up the bus hierarchy until someone handles it. */
4039	if (dev->parent != NULL)
4040		return (BUS_GET_DMA_TAG(dev->parent, child));
4041	return (NULL);
4042}
4043
4044/**
4045 * @brief Helper function for implementing BUS_GET_RESOURCE().
4046 *
4047 * This implementation of BUS_GET_RESOURCE() uses the
4048 * resource_list_find() function to do most of the work. It calls
4049 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4050 * search.
4051 */
4052int
4053bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4054    u_long *startp, u_long *countp)
4055{
4056	struct resource_list *		rl = NULL;
4057	struct resource_list_entry *	rle = NULL;
4058
4059	rl = BUS_GET_RESOURCE_LIST(dev, child);
4060	if (!rl)
4061		return (EINVAL);
4062
4063	rle = resource_list_find(rl, type, rid);
4064	if (!rle)
4065		return (ENOENT);
4066
4067	if (startp)
4068		*startp = rle->start;
4069	if (countp)
4070		*countp = rle->count;
4071
4072	return (0);
4073}
4074
4075/**
4076 * @brief Helper function for implementing BUS_SET_RESOURCE().
4077 *
4078 * This implementation of BUS_SET_RESOURCE() uses the
4079 * resource_list_add() function to do most of the work. It calls
4080 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4081 * edit.
4082 */
4083int
4084bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4085    u_long start, u_long count)
4086{
4087	struct resource_list *		rl = NULL;
4088
4089	rl = BUS_GET_RESOURCE_LIST(dev, child);
4090	if (!rl)
4091		return (EINVAL);
4092
4093	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4094
4095	return (0);
4096}
4097
4098/**
4099 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4100 *
4101 * This implementation of BUS_DELETE_RESOURCE() uses the
4102 * resource_list_delete() function to do most of the work. It calls
4103 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4104 * edit.
4105 */
4106void
4107bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4108{
4109	struct resource_list *		rl = NULL;
4110
4111	rl = BUS_GET_RESOURCE_LIST(dev, child);
4112	if (!rl)
4113		return;
4114
4115	resource_list_delete(rl, type, rid);
4116
4117	return;
4118}
4119
4120/**
4121 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4122 *
4123 * This implementation of BUS_RELEASE_RESOURCE() uses the
4124 * resource_list_release() function to do most of the work. It calls
4125 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4126 */
4127int
4128bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4129    int rid, struct resource *r)
4130{
4131	struct resource_list *		rl = NULL;
4132
4133	if (device_get_parent(child) != dev)
4134		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4135		    type, rid, r));
4136
4137	rl = BUS_GET_RESOURCE_LIST(dev, child);
4138	if (!rl)
4139		return (EINVAL);
4140
4141	return (resource_list_release(rl, dev, child, type, rid, r));
4142}
4143
4144/**
4145 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4146 *
4147 * This implementation of BUS_ALLOC_RESOURCE() uses the
4148 * resource_list_alloc() function to do most of the work. It calls
4149 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4150 */
4151struct resource *
4152bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4153    int *rid, u_long start, u_long end, u_long count, u_int flags)
4154{
4155	struct resource_list *		rl = NULL;
4156
4157	if (device_get_parent(child) != dev)
4158		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4159		    type, rid, start, end, count, flags));
4160
4161	rl = BUS_GET_RESOURCE_LIST(dev, child);
4162	if (!rl)
4163		return (NULL);
4164
4165	return (resource_list_alloc(rl, dev, child, type, rid,
4166	    start, end, count, flags));
4167}
4168
4169/**
4170 * @brief Helper function for implementing BUS_CHILD_PRESENT().
4171 *
4172 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4173 * BUS_CHILD_PRESENT() method of the parent of @p dev.
4174 */
4175int
4176bus_generic_child_present(device_t dev, device_t child)
4177{
4178	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4179}
4180
4181int
4182bus_generic_get_domain(device_t dev, device_t child, int *domain)
4183{
4184
4185	if (dev->parent)
4186		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4187
4188	return (ENOENT);
4189}
4190
4191/*
4192 * Some convenience functions to make it easier for drivers to use the
4193 * resource-management functions.  All these really do is hide the
4194 * indirection through the parent's method table, making for slightly
4195 * less-wordy code.  In the future, it might make sense for this code
4196 * to maintain some sort of a list of resources allocated by each device.
4197 */
4198
4199int
4200bus_alloc_resources(device_t dev, struct resource_spec *rs,
4201    struct resource **res)
4202{
4203	int i;
4204
4205	for (i = 0; rs[i].type != -1; i++)
4206		res[i] = NULL;
4207	for (i = 0; rs[i].type != -1; i++) {
4208		res[i] = bus_alloc_resource_any(dev,
4209		    rs[i].type, &rs[i].rid, rs[i].flags);
4210		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4211			bus_release_resources(dev, rs, res);
4212			return (ENXIO);
4213		}
4214	}
4215	return (0);
4216}
4217
4218void
4219bus_release_resources(device_t dev, const struct resource_spec *rs,
4220    struct resource **res)
4221{
4222	int i;
4223
4224	for (i = 0; rs[i].type != -1; i++)
4225		if (res[i] != NULL) {
4226			bus_release_resource(
4227			    dev, rs[i].type, rs[i].rid, res[i]);
4228			res[i] = NULL;
4229		}
4230}
4231
4232/**
4233 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4234 *
4235 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4236 * parent of @p dev.
4237 */
4238struct resource *
4239bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
4240    u_long count, u_int flags)
4241{
4242	if (dev->parent == NULL)
4243		return (NULL);
4244	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4245	    count, flags));
4246}
4247
4248/**
4249 * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4250 *
4251 * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4252 * parent of @p dev.
4253 */
4254int
4255bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start,
4256    u_long end)
4257{
4258	if (dev->parent == NULL)
4259		return (EINVAL);
4260	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4261}
4262
4263/**
4264 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4265 *
4266 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4267 * parent of @p dev.
4268 */
4269int
4270bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4271{
4272	if (dev->parent == NULL)
4273		return (EINVAL);
4274	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4275}
4276
4277/**
4278 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4279 *
4280 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4281 * parent of @p dev.
4282 */
4283int
4284bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4285{
4286	if (dev->parent == NULL)
4287		return (EINVAL);
4288	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4289}
4290
4291/**
4292 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4293 *
4294 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4295 * parent of @p dev.
4296 */
4297int
4298bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4299{
4300	if (dev->parent == NULL)
4301		return (EINVAL);
4302	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
4303}
4304
4305/**
4306 * @brief Wrapper function for BUS_SETUP_INTR().
4307 *
4308 * This function simply calls the BUS_SETUP_INTR() method of the
4309 * parent of @p dev.
4310 */
4311int
4312bus_setup_intr(device_t dev, struct resource *r, int flags,
4313    driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4314{
4315	int error;
4316
4317	if (dev->parent == NULL)
4318		return (EINVAL);
4319	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4320	    arg, cookiep);
4321	if (error != 0)
4322		return (error);
4323	if (handler != NULL && !(flags & INTR_MPSAFE))
4324		device_printf(dev, "[GIANT-LOCKED]\n");
4325	return (0);
4326}
4327
4328/**
4329 * @brief Wrapper function for BUS_TEARDOWN_INTR().
4330 *
4331 * This function simply calls the BUS_TEARDOWN_INTR() method of the
4332 * parent of @p dev.
4333 */
4334int
4335bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4336{
4337	if (dev->parent == NULL)
4338		return (EINVAL);
4339	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4340}
4341
4342/**
4343 * @brief Wrapper function for BUS_BIND_INTR().
4344 *
4345 * This function simply calls the BUS_BIND_INTR() method of the
4346 * parent of @p dev.
4347 */
4348int
4349bus_bind_intr(device_t dev, struct resource *r, int cpu)
4350{
4351	if (dev->parent == NULL)
4352		return (EINVAL);
4353	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4354}
4355
4356/**
4357 * @brief Wrapper function for BUS_DESCRIBE_INTR().
4358 *
4359 * This function first formats the requested description into a
4360 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4361 * the parent of @p dev.
4362 */
4363int
4364bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4365    const char *fmt, ...)
4366{
4367	va_list ap;
4368	char descr[MAXCOMLEN + 1];
4369
4370	if (dev->parent == NULL)
4371		return (EINVAL);
4372	va_start(ap, fmt);
4373	vsnprintf(descr, sizeof(descr), fmt, ap);
4374	va_end(ap);
4375	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4376}
4377
4378/**
4379 * @brief Wrapper function for BUS_SET_RESOURCE().
4380 *
4381 * This function simply calls the BUS_SET_RESOURCE() method of the
4382 * parent of @p dev.
4383 */
4384int
4385bus_set_resource(device_t dev, int type, int rid,
4386    u_long start, u_long count)
4387{
4388	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4389	    start, count));
4390}
4391
4392/**
4393 * @brief Wrapper function for BUS_GET_RESOURCE().
4394 *
4395 * This function simply calls the BUS_GET_RESOURCE() method of the
4396 * parent of @p dev.
4397 */
4398int
4399bus_get_resource(device_t dev, int type, int rid,
4400    u_long *startp, u_long *countp)
4401{
4402	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4403	    startp, countp));
4404}
4405
4406/**
4407 * @brief Wrapper function for BUS_GET_RESOURCE().
4408 *
4409 * This function simply calls the BUS_GET_RESOURCE() method of the
4410 * parent of @p dev and returns the start value.
4411 */
4412u_long
4413bus_get_resource_start(device_t dev, int type, int rid)
4414{
4415	u_long start, count;
4416	int error;
4417
4418	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4419	    &start, &count);
4420	if (error)
4421		return (0);
4422	return (start);
4423}
4424
4425/**
4426 * @brief Wrapper function for BUS_GET_RESOURCE().
4427 *
4428 * This function simply calls the BUS_GET_RESOURCE() method of the
4429 * parent of @p dev and returns the count value.
4430 */
4431u_long
4432bus_get_resource_count(device_t dev, int type, int rid)
4433{
4434	u_long start, count;
4435	int error;
4436
4437	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4438	    &start, &count);
4439	if (error)
4440		return (0);
4441	return (count);
4442}
4443
4444/**
4445 * @brief Wrapper function for BUS_DELETE_RESOURCE().
4446 *
4447 * This function simply calls the BUS_DELETE_RESOURCE() method of the
4448 * parent of @p dev.
4449 */
4450void
4451bus_delete_resource(device_t dev, int type, int rid)
4452{
4453	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4454}
4455
4456/**
4457 * @brief Wrapper function for BUS_CHILD_PRESENT().
4458 *
4459 * This function simply calls the BUS_CHILD_PRESENT() method of the
4460 * parent of @p dev.
4461 */
4462int
4463bus_child_present(device_t child)
4464{
4465	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4466}
4467
4468/**
4469 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4470 *
4471 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4472 * parent of @p dev.
4473 */
4474int
4475bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4476{
4477	device_t parent;
4478
4479	parent = device_get_parent(child);
4480	if (parent == NULL) {
4481		*buf = '\0';
4482		return (0);
4483	}
4484	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4485}
4486
4487/**
4488 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4489 *
4490 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4491 * parent of @p dev.
4492 */
4493int
4494bus_child_location_str(device_t child, char *buf, size_t buflen)
4495{
4496	device_t parent;
4497
4498	parent = device_get_parent(child);
4499	if (parent == NULL) {
4500		*buf = '\0';
4501		return (0);
4502	}
4503	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4504}
4505
4506/**
4507 * @brief Wrapper function for BUS_GET_DMA_TAG().
4508 *
4509 * This function simply calls the BUS_GET_DMA_TAG() method of the
4510 * parent of @p dev.
4511 */
4512bus_dma_tag_t
4513bus_get_dma_tag(device_t dev)
4514{
4515	device_t parent;
4516
4517	parent = device_get_parent(dev);
4518	if (parent == NULL)
4519		return (NULL);
4520	return (BUS_GET_DMA_TAG(parent, dev));
4521}
4522
4523/**
4524 * @brief Wrapper function for BUS_GET_DOMAIN().
4525 *
4526 * This function simply calls the BUS_GET_DOMAIN() method of the
4527 * parent of @p dev.
4528 */
4529int
4530bus_get_domain(device_t dev, int *domain)
4531{
4532	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
4533}
4534
4535/* Resume all devices and then notify userland that we're up again. */
4536static int
4537root_resume(device_t dev)
4538{
4539	int error;
4540
4541	error = bus_generic_resume(dev);
4542	if (error == 0)
4543		devctl_notify("kern", "power", "resume", NULL);
4544	return (error);
4545}
4546
4547static int
4548root_print_child(device_t dev, device_t child)
4549{
4550	int	retval = 0;
4551
4552	retval += bus_print_child_header(dev, child);
4553	retval += printf("\n");
4554
4555	return (retval);
4556}
4557
4558static int
4559root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4560    driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4561{
4562	/*
4563	 * If an interrupt mapping gets to here something bad has happened.
4564	 */
4565	panic("root_setup_intr");
4566}
4567
4568/*
4569 * If we get here, assume that the device is permanent and really is
4570 * present in the system.  Removable bus drivers are expected to intercept
4571 * this call long before it gets here.  We return -1 so that drivers that
4572 * really care can check vs -1 or some ERRNO returned higher in the food
4573 * chain.
4574 */
4575static int
4576root_child_present(device_t dev, device_t child)
4577{
4578	return (-1);
4579}
4580
4581static kobj_method_t root_methods[] = {
4582	/* Device interface */
4583	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4584	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4585	KOBJMETHOD(device_resume,	root_resume),
4586
4587	/* Bus interface */
4588	KOBJMETHOD(bus_print_child,	root_print_child),
4589	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4590	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4591	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4592	KOBJMETHOD(bus_child_present,	root_child_present),
4593
4594	KOBJMETHOD_END
4595};
4596
4597static driver_t root_driver = {
4598	"root",
4599	root_methods,
4600	1,			/* no softc */
4601};
4602
4603device_t	root_bus;
4604devclass_t	root_devclass;
4605
4606static int
4607root_bus_module_handler(module_t mod, int what, void* arg)
4608{
4609	switch (what) {
4610	case MOD_LOAD:
4611		TAILQ_INIT(&bus_data_devices);
4612		kobj_class_compile((kobj_class_t) &root_driver);
4613		root_bus = make_device(NULL, "root", 0);
4614		root_bus->desc = "System root bus";
4615		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4616		root_bus->driver = &root_driver;
4617		root_bus->state = DS_ATTACHED;
4618		root_devclass = devclass_find_internal("root", NULL, FALSE);
4619		devinit();
4620		return (0);
4621
4622	case MOD_SHUTDOWN:
4623		device_shutdown(root_bus);
4624		return (0);
4625	default:
4626		return (EOPNOTSUPP);
4627	}
4628
4629	return (0);
4630}
4631
4632static moduledata_t root_bus_mod = {
4633	"rootbus",
4634	root_bus_module_handler,
4635	NULL
4636};
4637DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4638
4639/**
4640 * @brief Automatically configure devices
4641 *
4642 * This function begins the autoconfiguration process by calling
4643 * device_probe_and_attach() for each child of the @c root0 device.
4644 */
4645void
4646root_bus_configure(void)
4647{
4648
4649	PDEBUG(("."));
4650
4651	/* Eventually this will be split up, but this is sufficient for now. */
4652	bus_set_pass(BUS_PASS_DEFAULT);
4653}
4654
4655/**
4656 * @brief Module handler for registering device drivers
4657 *
4658 * This module handler is used to automatically register device
4659 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4660 * devclass_add_driver() for the driver described by the
4661 * driver_module_data structure pointed to by @p arg
4662 */
4663int
4664driver_module_handler(module_t mod, int what, void *arg)
4665{
4666	struct driver_module_data *dmd;
4667	devclass_t bus_devclass;
4668	kobj_class_t driver;
4669	int error, pass;
4670
4671	dmd = (struct driver_module_data *)arg;
4672	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4673	error = 0;
4674
4675	switch (what) {
4676	case MOD_LOAD:
4677		if (dmd->dmd_chainevh)
4678			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4679
4680		pass = dmd->dmd_pass;
4681		driver = dmd->dmd_driver;
4682		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4683		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4684		error = devclass_add_driver(bus_devclass, driver, pass,
4685		    dmd->dmd_devclass);
4686		break;
4687
4688	case MOD_UNLOAD:
4689		PDEBUG(("Unloading module: driver %s from bus %s",
4690		    DRIVERNAME(dmd->dmd_driver),
4691		    dmd->dmd_busname));
4692		error = devclass_delete_driver(bus_devclass,
4693		    dmd->dmd_driver);
4694
4695		if (!error && dmd->dmd_chainevh)
4696			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4697		break;
4698	case MOD_QUIESCE:
4699		PDEBUG(("Quiesce module: driver %s from bus %s",
4700		    DRIVERNAME(dmd->dmd_driver),
4701		    dmd->dmd_busname));
4702		error = devclass_quiesce_driver(bus_devclass,
4703		    dmd->dmd_driver);
4704
4705		if (!error && dmd->dmd_chainevh)
4706			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4707		break;
4708	default:
4709		error = EOPNOTSUPP;
4710		break;
4711	}
4712
4713	return (error);
4714}
4715
4716/**
4717 * @brief Enumerate all hinted devices for this bus.
4718 *
4719 * Walks through the hints for this bus and calls the bus_hinted_child
4720 * routine for each one it fines.  It searches first for the specific
4721 * bus that's being probed for hinted children (eg isa0), and then for
4722 * generic children (eg isa).
4723 *
4724 * @param	dev	bus device to enumerate
4725 */
4726void
4727bus_enumerate_hinted_children(device_t bus)
4728{
4729	int i;
4730	const char *dname, *busname;
4731	int dunit;
4732
4733	/*
4734	 * enumerate all devices on the specific bus
4735	 */
4736	busname = device_get_nameunit(bus);
4737	i = 0;
4738	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4739		BUS_HINTED_CHILD(bus, dname, dunit);
4740
4741	/*
4742	 * and all the generic ones.
4743	 */
4744	busname = device_get_name(bus);
4745	i = 0;
4746	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4747		BUS_HINTED_CHILD(bus, dname, dunit);
4748}
4749
4750#ifdef BUS_DEBUG
4751
4752/* the _short versions avoid iteration by not calling anything that prints
4753 * more than oneliners. I love oneliners.
4754 */
4755
4756static void
4757print_device_short(device_t dev, int indent)
4758{
4759	if (!dev)
4760		return;
4761
4762	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4763	    dev->unit, dev->desc,
4764	    (dev->parent? "":"no "),
4765	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4766	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4767	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4768	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4769	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4770	    (dev->flags&DF_REBID? "rebiddable,":""),
4771	    (dev->ivars? "":"no "),
4772	    (dev->softc? "":"no "),
4773	    dev->busy));
4774}
4775
4776static void
4777print_device(device_t dev, int indent)
4778{
4779	if (!dev)
4780		return;
4781
4782	print_device_short(dev, indent);
4783
4784	indentprintf(("Parent:\n"));
4785	print_device_short(dev->parent, indent+1);
4786	indentprintf(("Driver:\n"));
4787	print_driver_short(dev->driver, indent+1);
4788	indentprintf(("Devclass:\n"));
4789	print_devclass_short(dev->devclass, indent+1);
4790}
4791
4792void
4793print_device_tree_short(device_t dev, int indent)
4794/* print the device and all its children (indented) */
4795{
4796	device_t child;
4797
4798	if (!dev)
4799		return;
4800
4801	print_device_short(dev, indent);
4802
4803	TAILQ_FOREACH(child, &dev->children, link) {
4804		print_device_tree_short(child, indent+1);
4805	}
4806}
4807
4808void
4809print_device_tree(device_t dev, int indent)
4810/* print the device and all its children (indented) */
4811{
4812	device_t child;
4813
4814	if (!dev)
4815		return;
4816
4817	print_device(dev, indent);
4818
4819	TAILQ_FOREACH(child, &dev->children, link) {
4820		print_device_tree(child, indent+1);
4821	}
4822}
4823
4824static void
4825print_driver_short(driver_t *driver, int indent)
4826{
4827	if (!driver)
4828		return;
4829
4830	indentprintf(("driver %s: softc size = %zd\n",
4831	    driver->name, driver->size));
4832}
4833
4834static void
4835print_driver(driver_t *driver, int indent)
4836{
4837	if (!driver)
4838		return;
4839
4840	print_driver_short(driver, indent);
4841}
4842
4843static void
4844print_driver_list(driver_list_t drivers, int indent)
4845{
4846	driverlink_t driver;
4847
4848	TAILQ_FOREACH(driver, &drivers, link) {
4849		print_driver(driver->driver, indent);
4850	}
4851}
4852
4853static void
4854print_devclass_short(devclass_t dc, int indent)
4855{
4856	if ( !dc )
4857		return;
4858
4859	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4860}
4861
4862static void
4863print_devclass(devclass_t dc, int indent)
4864{
4865	int i;
4866
4867	if ( !dc )
4868		return;
4869
4870	print_devclass_short(dc, indent);
4871	indentprintf(("Drivers:\n"));
4872	print_driver_list(dc->drivers, indent+1);
4873
4874	indentprintf(("Devices:\n"));
4875	for (i = 0; i < dc->maxunit; i++)
4876		if (dc->devices[i])
4877			print_device(dc->devices[i], indent+1);
4878}
4879
4880void
4881print_devclass_list_short(void)
4882{
4883	devclass_t dc;
4884
4885	printf("Short listing of devclasses, drivers & devices:\n");
4886	TAILQ_FOREACH(dc, &devclasses, link) {
4887		print_devclass_short(dc, 0);
4888	}
4889}
4890
4891void
4892print_devclass_list(void)
4893{
4894	devclass_t dc;
4895
4896	printf("Full listing of devclasses, drivers & devices:\n");
4897	TAILQ_FOREACH(dc, &devclasses, link) {
4898		print_devclass(dc, 0);
4899	}
4900}
4901
4902#endif
4903
4904/*
4905 * User-space access to the device tree.
4906 *
4907 * We implement a small set of nodes:
4908 *
4909 * hw.bus			Single integer read method to obtain the
4910 *				current generation count.
4911 * hw.bus.devices		Reads the entire device tree in flat space.
4912 * hw.bus.rman			Resource manager interface
4913 *
4914 * We might like to add the ability to scan devclasses and/or drivers to
4915 * determine what else is currently loaded/available.
4916 */
4917
4918static int
4919sysctl_bus(SYSCTL_HANDLER_ARGS)
4920{
4921	struct u_businfo	ubus;
4922
4923	ubus.ub_version = BUS_USER_VERSION;
4924	ubus.ub_generation = bus_data_generation;
4925
4926	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4927}
4928SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4929    "bus-related data");
4930
4931static int
4932sysctl_devices(SYSCTL_HANDLER_ARGS)
4933{
4934	int			*name = (int *)arg1;
4935	u_int			namelen = arg2;
4936	int			index;
4937	struct device		*dev;
4938	struct u_device		udev;	/* XXX this is a bit big */
4939	int			error;
4940
4941	if (namelen != 2)
4942		return (EINVAL);
4943
4944	if (bus_data_generation_check(name[0]))
4945		return (EINVAL);
4946
4947	index = name[1];
4948
4949	/*
4950	 * Scan the list of devices, looking for the requested index.
4951	 */
4952	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4953		if (index-- == 0)
4954			break;
4955	}
4956	if (dev == NULL)
4957		return (ENOENT);
4958
4959	/*
4960	 * Populate the return array.
4961	 */
4962	bzero(&udev, sizeof(udev));
4963	udev.dv_handle = (uintptr_t)dev;
4964	udev.dv_parent = (uintptr_t)dev->parent;
4965	if (dev->nameunit != NULL)
4966		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4967	if (dev->desc != NULL)
4968		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4969	if (dev->driver != NULL && dev->driver->name != NULL)
4970		strlcpy(udev.dv_drivername, dev->driver->name,
4971		    sizeof(udev.dv_drivername));
4972	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4973	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4974	udev.dv_devflags = dev->devflags;
4975	udev.dv_flags = dev->flags;
4976	udev.dv_state = dev->state;
4977	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4978	return (error);
4979}
4980
4981SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4982    "system device tree");
4983
4984int
4985bus_data_generation_check(int generation)
4986{
4987	if (generation != bus_data_generation)
4988		return (1);
4989
4990	/* XXX generate optimised lists here? */
4991	return (0);
4992}
4993
4994void
4995bus_data_generation_update(void)
4996{
4997	bus_data_generation++;
4998}
4999
5000int
5001bus_free_resource(device_t dev, int type, struct resource *r)
5002{
5003	if (r == NULL)
5004		return (0);
5005	return (bus_release_resource(dev, type, rman_get_rid(r), r));
5006}
5007
5008device_t
5009device_lookup_by_name(const char *name)
5010{
5011	device_t dev;
5012
5013	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5014		if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
5015			return (dev);
5016	}
5017	return (NULL);
5018}
5019
5020/*
5021 * /dev/devctl2 implementation.  The existing /dev/devctl device has
5022 * implicit semantics on open, so it could not be reused for this.
5023 * Another option would be to call this /dev/bus?
5024 */
5025static int
5026find_device(struct devreq *req, device_t *devp)
5027{
5028	device_t dev;
5029
5030	/*
5031	 * First, ensure that the name is nul terminated.
5032	 */
5033	if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5034		return (EINVAL);
5035
5036	/*
5037	 * Second, try to find an attached device whose name matches
5038	 * 'name'.
5039	 */
5040	dev = device_lookup_by_name(req->dr_name);
5041	if (dev != NULL) {
5042		*devp = dev;
5043		return (0);
5044	}
5045
5046	/* Finally, give device enumerators a chance. */
5047	dev = NULL;
5048	EVENTHANDLER_INVOKE(dev_lookup, req->dr_name, &dev);
5049	if (dev == NULL)
5050		return (ENOENT);
5051	*devp = dev;
5052	return (0);
5053}
5054
5055static bool
5056driver_exists(struct device *bus, const char *driver)
5057{
5058	devclass_t dc;
5059
5060	for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5061		if (devclass_find_driver_internal(dc, driver) != NULL)
5062			return (true);
5063	}
5064	return (false);
5065}
5066
5067static int
5068devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5069    struct thread *td)
5070{
5071	struct devreq *req;
5072	device_t dev;
5073	int error, old;
5074
5075	/* Locate the device to control. */
5076	mtx_lock(&Giant);
5077	req = (struct devreq *)data;
5078	switch (cmd) {
5079	case DEV_ATTACH:
5080	case DEV_DETACH:
5081	case DEV_ENABLE:
5082	case DEV_DISABLE:
5083	case DEV_SET_DRIVER:
5084	case DEV_CLEAR_DRIVER:
5085		error = priv_check(td, PRIV_DRIVER);
5086		if (error == 0)
5087			error = find_device(req, &dev);
5088		break;
5089	default:
5090		error = ENOTTY;
5091		break;
5092	}
5093	if (error) {
5094		mtx_unlock(&Giant);
5095		return (error);
5096	}
5097
5098	/* Perform the requested operation. */
5099	switch (cmd) {
5100	case DEV_ATTACH:
5101		if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0)
5102			error = EBUSY;
5103		else if (!device_is_enabled(dev))
5104			error = ENXIO;
5105		else
5106			error = device_probe_and_attach(dev);
5107		break;
5108	case DEV_DETACH:
5109		if (!device_is_attached(dev)) {
5110			error = ENXIO;
5111			break;
5112		}
5113		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5114			error = device_quiesce(dev);
5115			if (error)
5116				break;
5117		}
5118		error = device_detach(dev);
5119		break;
5120	case DEV_ENABLE:
5121		if (device_is_enabled(dev)) {
5122			error = EBUSY;
5123			break;
5124		}
5125
5126		/*
5127		 * If the device has been probed but not attached (e.g.
5128		 * when it has been disabled by a loader hint), just
5129		 * attach the device rather than doing a full probe.
5130		 */
5131		device_enable(dev);
5132		if (device_is_alive(dev)) {
5133			/*
5134			 * If the device was disabled via a hint, clear
5135			 * the hint.
5136			 */
5137			if (resource_disabled(dev->driver->name, dev->unit))
5138				resource_unset_value(dev->driver->name,
5139				    dev->unit, "disabled");
5140			error = device_attach(dev);
5141		} else
5142			error = device_probe_and_attach(dev);
5143		break;
5144	case DEV_DISABLE:
5145		if (!device_is_enabled(dev)) {
5146			error = ENXIO;
5147			break;
5148		}
5149
5150		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5151			error = device_quiesce(dev);
5152			if (error)
5153				break;
5154		}
5155
5156		/*
5157		 * Force DF_FIXEDCLASS on around detach to preserve
5158		 * the existing name.
5159		 */
5160		old = dev->flags;
5161		dev->flags |= DF_FIXEDCLASS;
5162		error = device_detach(dev);
5163		if (!(old & DF_FIXEDCLASS))
5164			dev->flags &= ~DF_FIXEDCLASS;
5165		if (error == 0)
5166			device_disable(dev);
5167		break;
5168	case DEV_SET_DRIVER: {
5169		devclass_t dc;
5170		char driver[128];
5171
5172		error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5173		if (error)
5174			break;
5175		if (driver[0] == '\0') {
5176			error = EINVAL;
5177			break;
5178		}
5179		if (dev->devclass != NULL &&
5180		    strcmp(driver, dev->devclass->name) == 0)
5181			/* XXX: Could possibly force DF_FIXEDCLASS on? */
5182			break;
5183
5184		/*
5185		 * Scan drivers for this device's bus looking for at
5186		 * least one matching driver.
5187		 */
5188		if (dev->parent == NULL) {
5189			error = EINVAL;
5190			break;
5191		}
5192		if (!driver_exists(dev->parent, driver)) {
5193			error = ENOENT;
5194			break;
5195		}
5196		dc = devclass_create(driver);
5197		if (dc == NULL) {
5198			error = ENOMEM;
5199			break;
5200		}
5201
5202		/* Detach device if necessary. */
5203		if (device_is_attached(dev)) {
5204			if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5205				error = device_detach(dev);
5206			else
5207				error = EBUSY;
5208			if (error)
5209				break;
5210		}
5211
5212		/* Clear any previously-fixed device class and unit. */
5213		if (dev->flags & DF_FIXEDCLASS)
5214			devclass_delete_device(dev->devclass, dev);
5215		dev->flags |= DF_WILDCARD;
5216		dev->unit = -1;
5217
5218		/* Force the new device class. */
5219		error = devclass_add_device(dc, dev);
5220		if (error)
5221			break;
5222		dev->flags |= DF_FIXEDCLASS;
5223		error = device_probe_and_attach(dev);
5224		break;
5225	}
5226	case DEV_CLEAR_DRIVER:
5227		if (!(dev->flags & DF_FIXEDCLASS)) {
5228			error = 0;
5229			break;
5230		}
5231		if (device_is_attached(dev)) {
5232			if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH)
5233				error = device_detach(dev);
5234			else
5235				error = EBUSY;
5236			if (error)
5237				break;
5238		}
5239
5240		dev->flags &= ~DF_FIXEDCLASS;
5241		dev->flags |= DF_WILDCARD;
5242		devclass_delete_device(dev->devclass, dev);
5243		error = device_probe_and_attach(dev);
5244		break;
5245	}
5246	mtx_unlock(&Giant);
5247	return (error);
5248}
5249
5250static struct cdevsw devctl2_cdevsw = {
5251	.d_version =	D_VERSION,
5252	.d_ioctl =	devctl2_ioctl,
5253	.d_name =	"devctl2",
5254};
5255
5256static void
5257devctl2_init(void)
5258{
5259
5260	make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
5261	    UID_ROOT, GID_WHEEL, 0600, "devctl2");
5262}
5263