subr_bus.c revision 279904
1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/10/sys/kern/subr_bus.c 279904 2015-03-12 07:07:41Z scottl $");
29
30#include "opt_bus.h"
31#include "opt_random.h"
32
33#include <sys/param.h>
34#include <sys/conf.h>
35#include <sys/filio.h>
36#include <sys/lock.h>
37#include <sys/kernel.h>
38#include <sys/kobj.h>
39#include <sys/limits.h>
40#include <sys/malloc.h>
41#include <sys/module.h>
42#include <sys/mutex.h>
43#include <sys/poll.h>
44#include <sys/proc.h>
45#include <sys/condvar.h>
46#include <sys/queue.h>
47#include <machine/bus.h>
48#include <sys/random.h>
49#include <sys/rman.h>
50#include <sys/selinfo.h>
51#include <sys/signalvar.h>
52#include <sys/sysctl.h>
53#include <sys/systm.h>
54#include <sys/uio.h>
55#include <sys/bus.h>
56#include <sys/interrupt.h>
57#include <sys/cpuset.h>
58
59#include <net/vnet.h>
60
61#include <machine/cpu.h>
62#include <machine/stdarg.h>
63
64#include <vm/uma.h>
65
66SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
67SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
68
69/*
70 * Used to attach drivers to devclasses.
71 */
72typedef struct driverlink *driverlink_t;
73struct driverlink {
74	kobj_class_t	driver;
75	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
76	int		pass;
77	TAILQ_ENTRY(driverlink) passlink;
78};
79
80/*
81 * Forward declarations
82 */
83typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
84typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
85typedef TAILQ_HEAD(device_list, device) device_list_t;
86
87struct devclass {
88	TAILQ_ENTRY(devclass) link;
89	devclass_t	parent;		/* parent in devclass hierarchy */
90	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
91	char		*name;
92	device_t	*devices;	/* array of devices indexed by unit */
93	int		maxunit;	/* size of devices array */
94	int		flags;
95#define DC_HAS_CHILDREN		1
96
97	struct sysctl_ctx_list sysctl_ctx;
98	struct sysctl_oid *sysctl_tree;
99};
100
101/**
102 * @brief Implementation of device.
103 */
104struct device {
105	/*
106	 * A device is a kernel object. The first field must be the
107	 * current ops table for the object.
108	 */
109	KOBJ_FIELDS;
110
111	/*
112	 * Device hierarchy.
113	 */
114	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
115	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
116	device_t	parent;		/**< parent of this device  */
117	device_list_t	children;	/**< list of child devices */
118
119	/*
120	 * Details of this device.
121	 */
122	driver_t	*driver;	/**< current driver */
123	devclass_t	devclass;	/**< current device class */
124	int		unit;		/**< current unit number */
125	char*		nameunit;	/**< name+unit e.g. foodev0 */
126	char*		desc;		/**< driver specific description */
127	int		busy;		/**< count of calls to device_busy() */
128	device_state_t	state;		/**< current device state  */
129	uint32_t	devflags;	/**< api level flags for device_get_flags() */
130	u_int		flags;		/**< internal device flags  */
131#define	DF_ENABLED	0x01		/* device should be probed/attached */
132#define	DF_FIXEDCLASS	0x02		/* devclass specified at create time */
133#define	DF_WILDCARD	0x04		/* unit was originally wildcard */
134#define	DF_DESCMALLOCED	0x08		/* description was malloced */
135#define	DF_QUIET	0x10		/* don't print verbose attach message */
136#define	DF_DONENOMATCH	0x20		/* don't execute DEVICE_NOMATCH again */
137#define	DF_EXTERNALSOFTC 0x40		/* softc not allocated by us */
138#define	DF_REBID	0x80		/* Can rebid after attach */
139	u_int	order;			/**< order from device_add_child_ordered() */
140	void	*ivars;			/**< instance variables  */
141	void	*softc;			/**< current driver's variables  */
142
143	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
144	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
145};
146
147static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
148static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
149
150#ifdef BUS_DEBUG
151
152static int bus_debug = 1;
153TUNABLE_INT("bus.debug", &bus_debug);
154SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
155    "Debug bus code");
156
157#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
158#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
159#define DRIVERNAME(d)	((d)? d->name : "no driver")
160#define DEVCLANAME(d)	((d)? d->name : "no devclass")
161
162/**
163 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
164 * prevent syslog from deleting initial spaces
165 */
166#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
167
168static void print_device_short(device_t dev, int indent);
169static void print_device(device_t dev, int indent);
170void print_device_tree_short(device_t dev, int indent);
171void print_device_tree(device_t dev, int indent);
172static void print_driver_short(driver_t *driver, int indent);
173static void print_driver(driver_t *driver, int indent);
174static void print_driver_list(driver_list_t drivers, int indent);
175static void print_devclass_short(devclass_t dc, int indent);
176static void print_devclass(devclass_t dc, int indent);
177void print_devclass_list_short(void);
178void print_devclass_list(void);
179
180#else
181/* Make the compiler ignore the function calls */
182#define PDEBUG(a)			/* nop */
183#define DEVICENAME(d)			/* nop */
184#define DRIVERNAME(d)			/* nop */
185#define DEVCLANAME(d)			/* nop */
186
187#define print_device_short(d,i)		/* nop */
188#define print_device(d,i)		/* nop */
189#define print_device_tree_short(d,i)	/* nop */
190#define print_device_tree(d,i)		/* nop */
191#define print_driver_short(d,i)		/* nop */
192#define print_driver(d,i)		/* nop */
193#define print_driver_list(d,i)		/* nop */
194#define print_devclass_short(d,i)	/* nop */
195#define print_devclass(d,i)		/* nop */
196#define print_devclass_list_short()	/* nop */
197#define print_devclass_list()		/* nop */
198#endif
199
200/*
201 * dev sysctl tree
202 */
203
204enum {
205	DEVCLASS_SYSCTL_PARENT,
206};
207
208static int
209devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
210{
211	devclass_t dc = (devclass_t)arg1;
212	const char *value;
213
214	switch (arg2) {
215	case DEVCLASS_SYSCTL_PARENT:
216		value = dc->parent ? dc->parent->name : "";
217		break;
218	default:
219		return (EINVAL);
220	}
221	return (SYSCTL_OUT(req, value, strlen(value)));
222}
223
224static void
225devclass_sysctl_init(devclass_t dc)
226{
227
228	if (dc->sysctl_tree != NULL)
229		return;
230	sysctl_ctx_init(&dc->sysctl_ctx);
231	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
232	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
233	    CTLFLAG_RD, NULL, "");
234	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
235	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
236	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
237	    "parent class");
238}
239
240enum {
241	DEVICE_SYSCTL_DESC,
242	DEVICE_SYSCTL_DRIVER,
243	DEVICE_SYSCTL_LOCATION,
244	DEVICE_SYSCTL_PNPINFO,
245	DEVICE_SYSCTL_PARENT,
246};
247
248static int
249device_sysctl_handler(SYSCTL_HANDLER_ARGS)
250{
251	device_t dev = (device_t)arg1;
252	const char *value;
253	char *buf;
254	int error;
255
256	buf = NULL;
257	switch (arg2) {
258	case DEVICE_SYSCTL_DESC:
259		value = dev->desc ? dev->desc : "";
260		break;
261	case DEVICE_SYSCTL_DRIVER:
262		value = dev->driver ? dev->driver->name : "";
263		break;
264	case DEVICE_SYSCTL_LOCATION:
265		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
266		bus_child_location_str(dev, buf, 1024);
267		break;
268	case DEVICE_SYSCTL_PNPINFO:
269		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
270		bus_child_pnpinfo_str(dev, buf, 1024);
271		break;
272	case DEVICE_SYSCTL_PARENT:
273		value = dev->parent ? dev->parent->nameunit : "";
274		break;
275	default:
276		return (EINVAL);
277	}
278	error = SYSCTL_OUT(req, value, strlen(value));
279	if (buf != NULL)
280		free(buf, M_BUS);
281	return (error);
282}
283
284static void
285device_sysctl_init(device_t dev)
286{
287	devclass_t dc = dev->devclass;
288	int domain;
289
290	if (dev->sysctl_tree != NULL)
291		return;
292	devclass_sysctl_init(dc);
293	sysctl_ctx_init(&dev->sysctl_ctx);
294	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
295	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
296	    dev->nameunit + strlen(dc->name),
297	    CTLFLAG_RD, NULL, "");
298	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
299	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
300	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
301	    "device description");
302	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
303	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
304	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
305	    "device driver name");
306	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
307	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
308	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
309	    "device location relative to parent");
310	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
311	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
312	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
313	    "device identification");
314	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
315	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
316	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
317	    "parent device");
318	if (bus_get_domain(dev, &domain) == 0)
319		SYSCTL_ADD_INT(&dev->sysctl_ctx,
320		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
321		    CTLFLAG_RD, NULL, domain, "NUMA domain");
322}
323
324static void
325device_sysctl_update(device_t dev)
326{
327	devclass_t dc = dev->devclass;
328
329	if (dev->sysctl_tree == NULL)
330		return;
331	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
332}
333
334static void
335device_sysctl_fini(device_t dev)
336{
337	if (dev->sysctl_tree == NULL)
338		return;
339	sysctl_ctx_free(&dev->sysctl_ctx);
340	dev->sysctl_tree = NULL;
341}
342
343/*
344 * /dev/devctl implementation
345 */
346
347/*
348 * This design allows only one reader for /dev/devctl.  This is not desirable
349 * in the long run, but will get a lot of hair out of this implementation.
350 * Maybe we should make this device a clonable device.
351 *
352 * Also note: we specifically do not attach a device to the device_t tree
353 * to avoid potential chicken and egg problems.  One could argue that all
354 * of this belongs to the root node.  One could also further argue that the
355 * sysctl interface that we have not might more properly be an ioctl
356 * interface, but at this stage of the game, I'm not inclined to rock that
357 * boat.
358 *
359 * I'm also not sure that the SIGIO support is done correctly or not, as
360 * I copied it from a driver that had SIGIO support that likely hasn't been
361 * tested since 3.4 or 2.2.8!
362 */
363
364/* Deprecated way to adjust queue length */
365static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
366/* XXX Need to support old-style tunable hw.bus.devctl_disable" */
367SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW |
368    CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I",
369    "devctl disable -- deprecated");
370
371#define DEVCTL_DEFAULT_QUEUE_LEN 1000
372static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
373static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
374TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
375SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW |
376    CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
377
378static d_open_t		devopen;
379static d_close_t	devclose;
380static d_read_t		devread;
381static d_ioctl_t	devioctl;
382static d_poll_t		devpoll;
383static d_kqfilter_t	devkqfilter;
384
385static struct cdevsw dev_cdevsw = {
386	.d_version =	D_VERSION,
387	.d_open =	devopen,
388	.d_close =	devclose,
389	.d_read =	devread,
390	.d_ioctl =	devioctl,
391	.d_poll =	devpoll,
392	.d_kqfilter =	devkqfilter,
393	.d_name =	"devctl",
394};
395
396struct dev_event_info
397{
398	char *dei_data;
399	TAILQ_ENTRY(dev_event_info) dei_link;
400};
401
402TAILQ_HEAD(devq, dev_event_info);
403
404static struct dev_softc
405{
406	int	inuse;
407	int	nonblock;
408	int	queued;
409	int	async;
410	struct mtx mtx;
411	struct cv cv;
412	struct selinfo sel;
413	struct devq devq;
414	struct sigio *sigio;
415} devsoftc;
416
417static void	filt_devctl_detach(struct knote *kn);
418static int	filt_devctl_read(struct knote *kn, long hint);
419
420struct filterops devctl_rfiltops = {
421	.f_isfd = 1,
422	.f_detach = filt_devctl_detach,
423	.f_event = filt_devctl_read,
424};
425
426static struct cdev *devctl_dev;
427
428static void
429devinit(void)
430{
431	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
432	    UID_ROOT, GID_WHEEL, 0600, "devctl");
433	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
434	cv_init(&devsoftc.cv, "dev cv");
435	TAILQ_INIT(&devsoftc.devq);
436	knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx);
437}
438
439static int
440devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
441{
442
443	mtx_lock(&devsoftc.mtx);
444	if (devsoftc.inuse) {
445		mtx_unlock(&devsoftc.mtx);
446		return (EBUSY);
447	}
448	/* move to init */
449	devsoftc.inuse = 1;
450	mtx_unlock(&devsoftc.mtx);
451	return (0);
452}
453
454static int
455devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
456{
457
458	mtx_lock(&devsoftc.mtx);
459	devsoftc.inuse = 0;
460	devsoftc.nonblock = 0;
461	devsoftc.async = 0;
462	cv_broadcast(&devsoftc.cv);
463	funsetown(&devsoftc.sigio);
464	mtx_unlock(&devsoftc.mtx);
465	return (0);
466}
467
468/*
469 * The read channel for this device is used to report changes to
470 * userland in realtime.  We are required to free the data as well as
471 * the n1 object because we allocate them separately.  Also note that
472 * we return one record at a time.  If you try to read this device a
473 * character at a time, you will lose the rest of the data.  Listening
474 * programs are expected to cope.
475 */
476static int
477devread(struct cdev *dev, struct uio *uio, int ioflag)
478{
479	struct dev_event_info *n1;
480	int rv;
481
482	mtx_lock(&devsoftc.mtx);
483	while (TAILQ_EMPTY(&devsoftc.devq)) {
484		if (devsoftc.nonblock) {
485			mtx_unlock(&devsoftc.mtx);
486			return (EAGAIN);
487		}
488		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
489		if (rv) {
490			/*
491			 * Need to translate ERESTART to EINTR here? -- jake
492			 */
493			mtx_unlock(&devsoftc.mtx);
494			return (rv);
495		}
496	}
497	n1 = TAILQ_FIRST(&devsoftc.devq);
498	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
499	devsoftc.queued--;
500	mtx_unlock(&devsoftc.mtx);
501	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
502	free(n1->dei_data, M_BUS);
503	free(n1, M_BUS);
504	return (rv);
505}
506
507static	int
508devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
509{
510	switch (cmd) {
511
512	case FIONBIO:
513		if (*(int*)data)
514			devsoftc.nonblock = 1;
515		else
516			devsoftc.nonblock = 0;
517		return (0);
518	case FIOASYNC:
519		if (*(int*)data)
520			devsoftc.async = 1;
521		else
522			devsoftc.async = 0;
523		return (0);
524	case FIOSETOWN:
525		return fsetown(*(int *)data, &devsoftc.sigio);
526	case FIOGETOWN:
527		*(int *)data = fgetown(&devsoftc.sigio);
528		return (0);
529
530		/* (un)Support for other fcntl() calls. */
531	case FIOCLEX:
532	case FIONCLEX:
533	case FIONREAD:
534	default:
535		break;
536	}
537	return (ENOTTY);
538}
539
540static	int
541devpoll(struct cdev *dev, int events, struct thread *td)
542{
543	int	revents = 0;
544
545	mtx_lock(&devsoftc.mtx);
546	if (events & (POLLIN | POLLRDNORM)) {
547		if (!TAILQ_EMPTY(&devsoftc.devq))
548			revents = events & (POLLIN | POLLRDNORM);
549		else
550			selrecord(td, &devsoftc.sel);
551	}
552	mtx_unlock(&devsoftc.mtx);
553
554	return (revents);
555}
556
557static int
558devkqfilter(struct cdev *dev, struct knote *kn)
559{
560	int error;
561
562	if (kn->kn_filter == EVFILT_READ) {
563		kn->kn_fop = &devctl_rfiltops;
564		knlist_add(&devsoftc.sel.si_note, kn, 0);
565		error = 0;
566	} else
567		error = EINVAL;
568	return (error);
569}
570
571static void
572filt_devctl_detach(struct knote *kn)
573{
574
575	knlist_remove(&devsoftc.sel.si_note, kn, 0);
576}
577
578static int
579filt_devctl_read(struct knote *kn, long hint)
580{
581	kn->kn_data = devsoftc.queued;
582	return (kn->kn_data != 0);
583}
584
585/**
586 * @brief Return whether the userland process is running
587 */
588boolean_t
589devctl_process_running(void)
590{
591	return (devsoftc.inuse == 1);
592}
593
594/**
595 * @brief Queue data to be read from the devctl device
596 *
597 * Generic interface to queue data to the devctl device.  It is
598 * assumed that @p data is properly formatted.  It is further assumed
599 * that @p data is allocated using the M_BUS malloc type.
600 */
601void
602devctl_queue_data_f(char *data, int flags)
603{
604	struct dev_event_info *n1 = NULL, *n2 = NULL;
605
606	if (strlen(data) == 0)
607		goto out;
608	if (devctl_queue_length == 0)
609		goto out;
610	n1 = malloc(sizeof(*n1), M_BUS, flags);
611	if (n1 == NULL)
612		goto out;
613	n1->dei_data = data;
614	mtx_lock(&devsoftc.mtx);
615	if (devctl_queue_length == 0) {
616		mtx_unlock(&devsoftc.mtx);
617		free(n1->dei_data, M_BUS);
618		free(n1, M_BUS);
619		return;
620	}
621	/* Leave at least one spot in the queue... */
622	while (devsoftc.queued > devctl_queue_length - 1) {
623		n2 = TAILQ_FIRST(&devsoftc.devq);
624		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
625		free(n2->dei_data, M_BUS);
626		free(n2, M_BUS);
627		devsoftc.queued--;
628	}
629	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
630	devsoftc.queued++;
631	cv_broadcast(&devsoftc.cv);
632	KNOTE_LOCKED(&devsoftc.sel.si_note, 0);
633	mtx_unlock(&devsoftc.mtx);
634	selwakeup(&devsoftc.sel);
635	if (devsoftc.async && devsoftc.sigio != NULL)
636		pgsigio(&devsoftc.sigio, SIGIO, 0);
637	return;
638out:
639	/*
640	 * We have to free data on all error paths since the caller
641	 * assumes it will be free'd when this item is dequeued.
642	 */
643	free(data, M_BUS);
644	return;
645}
646
647void
648devctl_queue_data(char *data)
649{
650
651	devctl_queue_data_f(data, M_NOWAIT);
652}
653
654/**
655 * @brief Send a 'notification' to userland, using standard ways
656 */
657void
658devctl_notify_f(const char *system, const char *subsystem, const char *type,
659    const char *data, int flags)
660{
661	int len = 0;
662	char *msg;
663
664	if (system == NULL)
665		return;		/* BOGUS!  Must specify system. */
666	if (subsystem == NULL)
667		return;		/* BOGUS!  Must specify subsystem. */
668	if (type == NULL)
669		return;		/* BOGUS!  Must specify type. */
670	len += strlen(" system=") + strlen(system);
671	len += strlen(" subsystem=") + strlen(subsystem);
672	len += strlen(" type=") + strlen(type);
673	/* add in the data message plus newline. */
674	if (data != NULL)
675		len += strlen(data);
676	len += 3;	/* '!', '\n', and NUL */
677	msg = malloc(len, M_BUS, flags);
678	if (msg == NULL)
679		return;		/* Drop it on the floor */
680	if (data != NULL)
681		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
682		    system, subsystem, type, data);
683	else
684		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
685		    system, subsystem, type);
686	devctl_queue_data_f(msg, flags);
687}
688
689void
690devctl_notify(const char *system, const char *subsystem, const char *type,
691    const char *data)
692{
693
694	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
695}
696
697/*
698 * Common routine that tries to make sending messages as easy as possible.
699 * We allocate memory for the data, copy strings into that, but do not
700 * free it unless there's an error.  The dequeue part of the driver should
701 * free the data.  We don't send data when the device is disabled.  We do
702 * send data, even when we have no listeners, because we wish to avoid
703 * races relating to startup and restart of listening applications.
704 *
705 * devaddq is designed to string together the type of event, with the
706 * object of that event, plus the plug and play info and location info
707 * for that event.  This is likely most useful for devices, but less
708 * useful for other consumers of this interface.  Those should use
709 * the devctl_queue_data() interface instead.
710 */
711static void
712devaddq(const char *type, const char *what, device_t dev)
713{
714	char *data = NULL;
715	char *loc = NULL;
716	char *pnp = NULL;
717	const char *parstr;
718
719	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
720		return;
721	data = malloc(1024, M_BUS, M_NOWAIT);
722	if (data == NULL)
723		goto bad;
724
725	/* get the bus specific location of this device */
726	loc = malloc(1024, M_BUS, M_NOWAIT);
727	if (loc == NULL)
728		goto bad;
729	*loc = '\0';
730	bus_child_location_str(dev, loc, 1024);
731
732	/* Get the bus specific pnp info of this device */
733	pnp = malloc(1024, M_BUS, M_NOWAIT);
734	if (pnp == NULL)
735		goto bad;
736	*pnp = '\0';
737	bus_child_pnpinfo_str(dev, pnp, 1024);
738
739	/* Get the parent of this device, or / if high enough in the tree. */
740	if (device_get_parent(dev) == NULL)
741		parstr = ".";	/* Or '/' ? */
742	else
743		parstr = device_get_nameunit(device_get_parent(dev));
744	/* String it all together. */
745	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
746	  parstr);
747	free(loc, M_BUS);
748	free(pnp, M_BUS);
749	devctl_queue_data(data);
750	return;
751bad:
752	free(pnp, M_BUS);
753	free(loc, M_BUS);
754	free(data, M_BUS);
755	return;
756}
757
758/*
759 * A device was added to the tree.  We are called just after it successfully
760 * attaches (that is, probe and attach success for this device).  No call
761 * is made if a device is merely parented into the tree.  See devnomatch
762 * if probe fails.  If attach fails, no notification is sent (but maybe
763 * we should have a different message for this).
764 */
765static void
766devadded(device_t dev)
767{
768	devaddq("+", device_get_nameunit(dev), dev);
769}
770
771/*
772 * A device was removed from the tree.  We are called just before this
773 * happens.
774 */
775static void
776devremoved(device_t dev)
777{
778	devaddq("-", device_get_nameunit(dev), dev);
779}
780
781/*
782 * Called when there's no match for this device.  This is only called
783 * the first time that no match happens, so we don't keep getting this
784 * message.  Should that prove to be undesirable, we can change it.
785 * This is called when all drivers that can attach to a given bus
786 * decline to accept this device.  Other errors may not be detected.
787 */
788static void
789devnomatch(device_t dev)
790{
791	devaddq("?", "", dev);
792}
793
794static int
795sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
796{
797	struct dev_event_info *n1;
798	int dis, error;
799
800	dis = devctl_queue_length == 0;
801	error = sysctl_handle_int(oidp, &dis, 0, req);
802	if (error || !req->newptr)
803		return (error);
804	mtx_lock(&devsoftc.mtx);
805	if (dis) {
806		while (!TAILQ_EMPTY(&devsoftc.devq)) {
807			n1 = TAILQ_FIRST(&devsoftc.devq);
808			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
809			free(n1->dei_data, M_BUS);
810			free(n1, M_BUS);
811		}
812		devsoftc.queued = 0;
813		devctl_queue_length = 0;
814	} else {
815		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
816	}
817	mtx_unlock(&devsoftc.mtx);
818	return (0);
819}
820
821static int
822sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
823{
824	struct dev_event_info *n1;
825	int q, error;
826
827	q = devctl_queue_length;
828	error = sysctl_handle_int(oidp, &q, 0, req);
829	if (error || !req->newptr)
830		return (error);
831	if (q < 0)
832		return (EINVAL);
833	mtx_lock(&devsoftc.mtx);
834	devctl_queue_length = q;
835	while (devsoftc.queued > devctl_queue_length) {
836		n1 = TAILQ_FIRST(&devsoftc.devq);
837		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
838		free(n1->dei_data, M_BUS);
839		free(n1, M_BUS);
840		devsoftc.queued--;
841	}
842	mtx_unlock(&devsoftc.mtx);
843	return (0);
844}
845
846/* End of /dev/devctl code */
847
848static TAILQ_HEAD(,device)	bus_data_devices;
849static int bus_data_generation = 1;
850
851static kobj_method_t null_methods[] = {
852	KOBJMETHOD_END
853};
854
855DEFINE_CLASS(null, null_methods, 0);
856
857/*
858 * Bus pass implementation
859 */
860
861static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
862int bus_current_pass = BUS_PASS_ROOT;
863
864/**
865 * @internal
866 * @brief Register the pass level of a new driver attachment
867 *
868 * Register a new driver attachment's pass level.  If no driver
869 * attachment with the same pass level has been added, then @p new
870 * will be added to the global passes list.
871 *
872 * @param new		the new driver attachment
873 */
874static void
875driver_register_pass(struct driverlink *new)
876{
877	struct driverlink *dl;
878
879	/* We only consider pass numbers during boot. */
880	if (bus_current_pass == BUS_PASS_DEFAULT)
881		return;
882
883	/*
884	 * Walk the passes list.  If we already know about this pass
885	 * then there is nothing to do.  If we don't, then insert this
886	 * driver link into the list.
887	 */
888	TAILQ_FOREACH(dl, &passes, passlink) {
889		if (dl->pass < new->pass)
890			continue;
891		if (dl->pass == new->pass)
892			return;
893		TAILQ_INSERT_BEFORE(dl, new, passlink);
894		return;
895	}
896	TAILQ_INSERT_TAIL(&passes, new, passlink);
897}
898
899/**
900 * @brief Raise the current bus pass
901 *
902 * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
903 * method on the root bus to kick off a new device tree scan for each
904 * new pass level that has at least one driver.
905 */
906void
907bus_set_pass(int pass)
908{
909	struct driverlink *dl;
910
911	if (bus_current_pass > pass)
912		panic("Attempt to lower bus pass level");
913
914	TAILQ_FOREACH(dl, &passes, passlink) {
915		/* Skip pass values below the current pass level. */
916		if (dl->pass <= bus_current_pass)
917			continue;
918
919		/*
920		 * Bail once we hit a driver with a pass level that is
921		 * too high.
922		 */
923		if (dl->pass > pass)
924			break;
925
926		/*
927		 * Raise the pass level to the next level and rescan
928		 * the tree.
929		 */
930		bus_current_pass = dl->pass;
931		BUS_NEW_PASS(root_bus);
932	}
933
934	/*
935	 * If there isn't a driver registered for the requested pass,
936	 * then bus_current_pass might still be less than 'pass'.  Set
937	 * it to 'pass' in that case.
938	 */
939	if (bus_current_pass < pass)
940		bus_current_pass = pass;
941	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
942}
943
944/*
945 * Devclass implementation
946 */
947
948static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
949
950/**
951 * @internal
952 * @brief Find or create a device class
953 *
954 * If a device class with the name @p classname exists, return it,
955 * otherwise if @p create is non-zero create and return a new device
956 * class.
957 *
958 * If @p parentname is non-NULL, the parent of the devclass is set to
959 * the devclass of that name.
960 *
961 * @param classname	the devclass name to find or create
962 * @param parentname	the parent devclass name or @c NULL
963 * @param create	non-zero to create a devclass
964 */
965static devclass_t
966devclass_find_internal(const char *classname, const char *parentname,
967		       int create)
968{
969	devclass_t dc;
970
971	PDEBUG(("looking for %s", classname));
972	if (!classname)
973		return (NULL);
974
975	TAILQ_FOREACH(dc, &devclasses, link) {
976		if (!strcmp(dc->name, classname))
977			break;
978	}
979
980	if (create && !dc) {
981		PDEBUG(("creating %s", classname));
982		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
983		    M_BUS, M_NOWAIT | M_ZERO);
984		if (!dc)
985			return (NULL);
986		dc->parent = NULL;
987		dc->name = (char*) (dc + 1);
988		strcpy(dc->name, classname);
989		TAILQ_INIT(&dc->drivers);
990		TAILQ_INSERT_TAIL(&devclasses, dc, link);
991
992		bus_data_generation_update();
993	}
994
995	/*
996	 * If a parent class is specified, then set that as our parent so
997	 * that this devclass will support drivers for the parent class as
998	 * well.  If the parent class has the same name don't do this though
999	 * as it creates a cycle that can trigger an infinite loop in
1000	 * device_probe_child() if a device exists for which there is no
1001	 * suitable driver.
1002	 */
1003	if (parentname && dc && !dc->parent &&
1004	    strcmp(classname, parentname) != 0) {
1005		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
1006		dc->parent->flags |= DC_HAS_CHILDREN;
1007	}
1008
1009	return (dc);
1010}
1011
1012/**
1013 * @brief Create a device class
1014 *
1015 * If a device class with the name @p classname exists, return it,
1016 * otherwise create and return a new device class.
1017 *
1018 * @param classname	the devclass name to find or create
1019 */
1020devclass_t
1021devclass_create(const char *classname)
1022{
1023	return (devclass_find_internal(classname, NULL, TRUE));
1024}
1025
1026/**
1027 * @brief Find a device class
1028 *
1029 * If a device class with the name @p classname exists, return it,
1030 * otherwise return @c NULL.
1031 *
1032 * @param classname	the devclass name to find
1033 */
1034devclass_t
1035devclass_find(const char *classname)
1036{
1037	return (devclass_find_internal(classname, NULL, FALSE));
1038}
1039
1040/**
1041 * @brief Register that a device driver has been added to a devclass
1042 *
1043 * Register that a device driver has been added to a devclass.  This
1044 * is called by devclass_add_driver to accomplish the recursive
1045 * notification of all the children classes of dc, as well as dc.
1046 * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1047 * the devclass.
1048 *
1049 * We do a full search here of the devclass list at each iteration
1050 * level to save storing children-lists in the devclass structure.  If
1051 * we ever move beyond a few dozen devices doing this, we may need to
1052 * reevaluate...
1053 *
1054 * @param dc		the devclass to edit
1055 * @param driver	the driver that was just added
1056 */
1057static void
1058devclass_driver_added(devclass_t dc, driver_t *driver)
1059{
1060	devclass_t parent;
1061	int i;
1062
1063	/*
1064	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1065	 */
1066	for (i = 0; i < dc->maxunit; i++)
1067		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1068			BUS_DRIVER_ADDED(dc->devices[i], driver);
1069
1070	/*
1071	 * Walk through the children classes.  Since we only keep a
1072	 * single parent pointer around, we walk the entire list of
1073	 * devclasses looking for children.  We set the
1074	 * DC_HAS_CHILDREN flag when a child devclass is created on
1075	 * the parent, so we only walk the list for those devclasses
1076	 * that have children.
1077	 */
1078	if (!(dc->flags & DC_HAS_CHILDREN))
1079		return;
1080	parent = dc;
1081	TAILQ_FOREACH(dc, &devclasses, link) {
1082		if (dc->parent == parent)
1083			devclass_driver_added(dc, driver);
1084	}
1085}
1086
1087/**
1088 * @brief Add a device driver to a device class
1089 *
1090 * Add a device driver to a devclass. This is normally called
1091 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1092 * all devices in the devclass will be called to allow them to attempt
1093 * to re-probe any unmatched children.
1094 *
1095 * @param dc		the devclass to edit
1096 * @param driver	the driver to register
1097 */
1098int
1099devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1100{
1101	driverlink_t dl;
1102	const char *parentname;
1103
1104	PDEBUG(("%s", DRIVERNAME(driver)));
1105
1106	/* Don't allow invalid pass values. */
1107	if (pass <= BUS_PASS_ROOT)
1108		return (EINVAL);
1109
1110	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1111	if (!dl)
1112		return (ENOMEM);
1113
1114	/*
1115	 * Compile the driver's methods. Also increase the reference count
1116	 * so that the class doesn't get freed when the last instance
1117	 * goes. This means we can safely use static methods and avoids a
1118	 * double-free in devclass_delete_driver.
1119	 */
1120	kobj_class_compile((kobj_class_t) driver);
1121
1122	/*
1123	 * If the driver has any base classes, make the
1124	 * devclass inherit from the devclass of the driver's
1125	 * first base class. This will allow the system to
1126	 * search for drivers in both devclasses for children
1127	 * of a device using this driver.
1128	 */
1129	if (driver->baseclasses)
1130		parentname = driver->baseclasses[0]->name;
1131	else
1132		parentname = NULL;
1133	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1134
1135	dl->driver = driver;
1136	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1137	driver->refs++;		/* XXX: kobj_mtx */
1138	dl->pass = pass;
1139	driver_register_pass(dl);
1140
1141	devclass_driver_added(dc, driver);
1142	bus_data_generation_update();
1143	return (0);
1144}
1145
1146/**
1147 * @brief Register that a device driver has been deleted from a devclass
1148 *
1149 * Register that a device driver has been removed from a devclass.
1150 * This is called by devclass_delete_driver to accomplish the
1151 * recursive notification of all the children classes of busclass, as
1152 * well as busclass.  Each layer will attempt to detach the driver
1153 * from any devices that are children of the bus's devclass.  The function
1154 * will return an error if a device fails to detach.
1155 *
1156 * We do a full search here of the devclass list at each iteration
1157 * level to save storing children-lists in the devclass structure.  If
1158 * we ever move beyond a few dozen devices doing this, we may need to
1159 * reevaluate...
1160 *
1161 * @param busclass	the devclass of the parent bus
1162 * @param dc		the devclass of the driver being deleted
1163 * @param driver	the driver being deleted
1164 */
1165static int
1166devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1167{
1168	devclass_t parent;
1169	device_t dev;
1170	int error, i;
1171
1172	/*
1173	 * Disassociate from any devices.  We iterate through all the
1174	 * devices in the devclass of the driver and detach any which are
1175	 * using the driver and which have a parent in the devclass which
1176	 * we are deleting from.
1177	 *
1178	 * Note that since a driver can be in multiple devclasses, we
1179	 * should not detach devices which are not children of devices in
1180	 * the affected devclass.
1181	 */
1182	for (i = 0; i < dc->maxunit; i++) {
1183		if (dc->devices[i]) {
1184			dev = dc->devices[i];
1185			if (dev->driver == driver && dev->parent &&
1186			    dev->parent->devclass == busclass) {
1187				if ((error = device_detach(dev)) != 0)
1188					return (error);
1189				BUS_PROBE_NOMATCH(dev->parent, dev);
1190				devnomatch(dev);
1191				dev->flags |= DF_DONENOMATCH;
1192			}
1193		}
1194	}
1195
1196	/*
1197	 * Walk through the children classes.  Since we only keep a
1198	 * single parent pointer around, we walk the entire list of
1199	 * devclasses looking for children.  We set the
1200	 * DC_HAS_CHILDREN flag when a child devclass is created on
1201	 * the parent, so we only walk the list for those devclasses
1202	 * that have children.
1203	 */
1204	if (!(busclass->flags & DC_HAS_CHILDREN))
1205		return (0);
1206	parent = busclass;
1207	TAILQ_FOREACH(busclass, &devclasses, link) {
1208		if (busclass->parent == parent) {
1209			error = devclass_driver_deleted(busclass, dc, driver);
1210			if (error)
1211				return (error);
1212		}
1213	}
1214	return (0);
1215}
1216
1217/**
1218 * @brief Delete a device driver from a device class
1219 *
1220 * Delete a device driver from a devclass. This is normally called
1221 * automatically by DRIVER_MODULE().
1222 *
1223 * If the driver is currently attached to any devices,
1224 * devclass_delete_driver() will first attempt to detach from each
1225 * device. If one of the detach calls fails, the driver will not be
1226 * deleted.
1227 *
1228 * @param dc		the devclass to edit
1229 * @param driver	the driver to unregister
1230 */
1231int
1232devclass_delete_driver(devclass_t busclass, driver_t *driver)
1233{
1234	devclass_t dc = devclass_find(driver->name);
1235	driverlink_t dl;
1236	int error;
1237
1238	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1239
1240	if (!dc)
1241		return (0);
1242
1243	/*
1244	 * Find the link structure in the bus' list of drivers.
1245	 */
1246	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1247		if (dl->driver == driver)
1248			break;
1249	}
1250
1251	if (!dl) {
1252		PDEBUG(("%s not found in %s list", driver->name,
1253		    busclass->name));
1254		return (ENOENT);
1255	}
1256
1257	error = devclass_driver_deleted(busclass, dc, driver);
1258	if (error != 0)
1259		return (error);
1260
1261	TAILQ_REMOVE(&busclass->drivers, dl, link);
1262	free(dl, M_BUS);
1263
1264	/* XXX: kobj_mtx */
1265	driver->refs--;
1266	if (driver->refs == 0)
1267		kobj_class_free((kobj_class_t) driver);
1268
1269	bus_data_generation_update();
1270	return (0);
1271}
1272
1273/**
1274 * @brief Quiesces a set of device drivers from a device class
1275 *
1276 * Quiesce a device driver from a devclass. This is normally called
1277 * automatically by DRIVER_MODULE().
1278 *
1279 * If the driver is currently attached to any devices,
1280 * devclass_quiesece_driver() will first attempt to quiesce each
1281 * device.
1282 *
1283 * @param dc		the devclass to edit
1284 * @param driver	the driver to unregister
1285 */
1286static int
1287devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1288{
1289	devclass_t dc = devclass_find(driver->name);
1290	driverlink_t dl;
1291	device_t dev;
1292	int i;
1293	int error;
1294
1295	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1296
1297	if (!dc)
1298		return (0);
1299
1300	/*
1301	 * Find the link structure in the bus' list of drivers.
1302	 */
1303	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1304		if (dl->driver == driver)
1305			break;
1306	}
1307
1308	if (!dl) {
1309		PDEBUG(("%s not found in %s list", driver->name,
1310		    busclass->name));
1311		return (ENOENT);
1312	}
1313
1314	/*
1315	 * Quiesce all devices.  We iterate through all the devices in
1316	 * the devclass of the driver and quiesce any which are using
1317	 * the driver and which have a parent in the devclass which we
1318	 * are quiescing.
1319	 *
1320	 * Note that since a driver can be in multiple devclasses, we
1321	 * should not quiesce devices which are not children of
1322	 * devices in the affected devclass.
1323	 */
1324	for (i = 0; i < dc->maxunit; i++) {
1325		if (dc->devices[i]) {
1326			dev = dc->devices[i];
1327			if (dev->driver == driver && dev->parent &&
1328			    dev->parent->devclass == busclass) {
1329				if ((error = device_quiesce(dev)) != 0)
1330					return (error);
1331			}
1332		}
1333	}
1334
1335	return (0);
1336}
1337
1338/**
1339 * @internal
1340 */
1341static driverlink_t
1342devclass_find_driver_internal(devclass_t dc, const char *classname)
1343{
1344	driverlink_t dl;
1345
1346	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1347
1348	TAILQ_FOREACH(dl, &dc->drivers, link) {
1349		if (!strcmp(dl->driver->name, classname))
1350			return (dl);
1351	}
1352
1353	PDEBUG(("not found"));
1354	return (NULL);
1355}
1356
1357/**
1358 * @brief Return the name of the devclass
1359 */
1360const char *
1361devclass_get_name(devclass_t dc)
1362{
1363	return (dc->name);
1364}
1365
1366/**
1367 * @brief Find a device given a unit number
1368 *
1369 * @param dc		the devclass to search
1370 * @param unit		the unit number to search for
1371 *
1372 * @returns		the device with the given unit number or @c
1373 *			NULL if there is no such device
1374 */
1375device_t
1376devclass_get_device(devclass_t dc, int unit)
1377{
1378	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1379		return (NULL);
1380	return (dc->devices[unit]);
1381}
1382
1383/**
1384 * @brief Find the softc field of a device given a unit number
1385 *
1386 * @param dc		the devclass to search
1387 * @param unit		the unit number to search for
1388 *
1389 * @returns		the softc field of the device with the given
1390 *			unit number or @c NULL if there is no such
1391 *			device
1392 */
1393void *
1394devclass_get_softc(devclass_t dc, int unit)
1395{
1396	device_t dev;
1397
1398	dev = devclass_get_device(dc, unit);
1399	if (!dev)
1400		return (NULL);
1401
1402	return (device_get_softc(dev));
1403}
1404
1405/**
1406 * @brief Get a list of devices in the devclass
1407 *
1408 * An array containing a list of all the devices in the given devclass
1409 * is allocated and returned in @p *devlistp. The number of devices
1410 * in the array is returned in @p *devcountp. The caller should free
1411 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1412 *
1413 * @param dc		the devclass to examine
1414 * @param devlistp	points at location for array pointer return
1415 *			value
1416 * @param devcountp	points at location for array size return value
1417 *
1418 * @retval 0		success
1419 * @retval ENOMEM	the array allocation failed
1420 */
1421int
1422devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1423{
1424	int count, i;
1425	device_t *list;
1426
1427	count = devclass_get_count(dc);
1428	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1429	if (!list)
1430		return (ENOMEM);
1431
1432	count = 0;
1433	for (i = 0; i < dc->maxunit; i++) {
1434		if (dc->devices[i]) {
1435			list[count] = dc->devices[i];
1436			count++;
1437		}
1438	}
1439
1440	*devlistp = list;
1441	*devcountp = count;
1442
1443	return (0);
1444}
1445
1446/**
1447 * @brief Get a list of drivers in the devclass
1448 *
1449 * An array containing a list of pointers to all the drivers in the
1450 * given devclass is allocated and returned in @p *listp.  The number
1451 * of drivers in the array is returned in @p *countp. The caller should
1452 * free the array using @c free(p, M_TEMP).
1453 *
1454 * @param dc		the devclass to examine
1455 * @param listp		gives location for array pointer return value
1456 * @param countp	gives location for number of array elements
1457 *			return value
1458 *
1459 * @retval 0		success
1460 * @retval ENOMEM	the array allocation failed
1461 */
1462int
1463devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1464{
1465	driverlink_t dl;
1466	driver_t **list;
1467	int count;
1468
1469	count = 0;
1470	TAILQ_FOREACH(dl, &dc->drivers, link)
1471		count++;
1472	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1473	if (list == NULL)
1474		return (ENOMEM);
1475
1476	count = 0;
1477	TAILQ_FOREACH(dl, &dc->drivers, link) {
1478		list[count] = dl->driver;
1479		count++;
1480	}
1481	*listp = list;
1482	*countp = count;
1483
1484	return (0);
1485}
1486
1487/**
1488 * @brief Get the number of devices in a devclass
1489 *
1490 * @param dc		the devclass to examine
1491 */
1492int
1493devclass_get_count(devclass_t dc)
1494{
1495	int count, i;
1496
1497	count = 0;
1498	for (i = 0; i < dc->maxunit; i++)
1499		if (dc->devices[i])
1500			count++;
1501	return (count);
1502}
1503
1504/**
1505 * @brief Get the maximum unit number used in a devclass
1506 *
1507 * Note that this is one greater than the highest currently-allocated
1508 * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1509 * that not even the devclass has been allocated yet.
1510 *
1511 * @param dc		the devclass to examine
1512 */
1513int
1514devclass_get_maxunit(devclass_t dc)
1515{
1516	if (dc == NULL)
1517		return (-1);
1518	return (dc->maxunit);
1519}
1520
1521/**
1522 * @brief Find a free unit number in a devclass
1523 *
1524 * This function searches for the first unused unit number greater
1525 * that or equal to @p unit.
1526 *
1527 * @param dc		the devclass to examine
1528 * @param unit		the first unit number to check
1529 */
1530int
1531devclass_find_free_unit(devclass_t dc, int unit)
1532{
1533	if (dc == NULL)
1534		return (unit);
1535	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1536		unit++;
1537	return (unit);
1538}
1539
1540/**
1541 * @brief Set the parent of a devclass
1542 *
1543 * The parent class is normally initialised automatically by
1544 * DRIVER_MODULE().
1545 *
1546 * @param dc		the devclass to edit
1547 * @param pdc		the new parent devclass
1548 */
1549void
1550devclass_set_parent(devclass_t dc, devclass_t pdc)
1551{
1552	dc->parent = pdc;
1553}
1554
1555/**
1556 * @brief Get the parent of a devclass
1557 *
1558 * @param dc		the devclass to examine
1559 */
1560devclass_t
1561devclass_get_parent(devclass_t dc)
1562{
1563	return (dc->parent);
1564}
1565
1566struct sysctl_ctx_list *
1567devclass_get_sysctl_ctx(devclass_t dc)
1568{
1569	return (&dc->sysctl_ctx);
1570}
1571
1572struct sysctl_oid *
1573devclass_get_sysctl_tree(devclass_t dc)
1574{
1575	return (dc->sysctl_tree);
1576}
1577
1578/**
1579 * @internal
1580 * @brief Allocate a unit number
1581 *
1582 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1583 * will do). The allocated unit number is returned in @p *unitp.
1584
1585 * @param dc		the devclass to allocate from
1586 * @param unitp		points at the location for the allocated unit
1587 *			number
1588 *
1589 * @retval 0		success
1590 * @retval EEXIST	the requested unit number is already allocated
1591 * @retval ENOMEM	memory allocation failure
1592 */
1593static int
1594devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1595{
1596	const char *s;
1597	int unit = *unitp;
1598
1599	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1600
1601	/* Ask the parent bus if it wants to wire this device. */
1602	if (unit == -1)
1603		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1604		    &unit);
1605
1606	/* If we were given a wired unit number, check for existing device */
1607	/* XXX imp XXX */
1608	if (unit != -1) {
1609		if (unit >= 0 && unit < dc->maxunit &&
1610		    dc->devices[unit] != NULL) {
1611			if (bootverbose)
1612				printf("%s: %s%d already exists; skipping it\n",
1613				    dc->name, dc->name, *unitp);
1614			return (EEXIST);
1615		}
1616	} else {
1617		/* Unwired device, find the next available slot for it */
1618		unit = 0;
1619		for (unit = 0;; unit++) {
1620			/* If there is an "at" hint for a unit then skip it. */
1621			if (resource_string_value(dc->name, unit, "at", &s) ==
1622			    0)
1623				continue;
1624
1625			/* If this device slot is already in use, skip it. */
1626			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1627				continue;
1628
1629			break;
1630		}
1631	}
1632
1633	/*
1634	 * We've selected a unit beyond the length of the table, so let's
1635	 * extend the table to make room for all units up to and including
1636	 * this one.
1637	 */
1638	if (unit >= dc->maxunit) {
1639		device_t *newlist, *oldlist;
1640		int newsize;
1641
1642		oldlist = dc->devices;
1643		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1644		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1645		if (!newlist)
1646			return (ENOMEM);
1647		if (oldlist != NULL)
1648			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1649		bzero(newlist + dc->maxunit,
1650		    sizeof(device_t) * (newsize - dc->maxunit));
1651		dc->devices = newlist;
1652		dc->maxunit = newsize;
1653		if (oldlist != NULL)
1654			free(oldlist, M_BUS);
1655	}
1656	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1657
1658	*unitp = unit;
1659	return (0);
1660}
1661
1662/**
1663 * @internal
1664 * @brief Add a device to a devclass
1665 *
1666 * A unit number is allocated for the device (using the device's
1667 * preferred unit number if any) and the device is registered in the
1668 * devclass. This allows the device to be looked up by its unit
1669 * number, e.g. by decoding a dev_t minor number.
1670 *
1671 * @param dc		the devclass to add to
1672 * @param dev		the device to add
1673 *
1674 * @retval 0		success
1675 * @retval EEXIST	the requested unit number is already allocated
1676 * @retval ENOMEM	memory allocation failure
1677 */
1678static int
1679devclass_add_device(devclass_t dc, device_t dev)
1680{
1681	int buflen, error;
1682
1683	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1684
1685	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1686	if (buflen < 0)
1687		return (ENOMEM);
1688	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1689	if (!dev->nameunit)
1690		return (ENOMEM);
1691
1692	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1693		free(dev->nameunit, M_BUS);
1694		dev->nameunit = NULL;
1695		return (error);
1696	}
1697	dc->devices[dev->unit] = dev;
1698	dev->devclass = dc;
1699	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1700
1701	return (0);
1702}
1703
1704/**
1705 * @internal
1706 * @brief Delete a device from a devclass
1707 *
1708 * The device is removed from the devclass's device list and its unit
1709 * number is freed.
1710
1711 * @param dc		the devclass to delete from
1712 * @param dev		the device to delete
1713 *
1714 * @retval 0		success
1715 */
1716static int
1717devclass_delete_device(devclass_t dc, device_t dev)
1718{
1719	if (!dc || !dev)
1720		return (0);
1721
1722	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1723
1724	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1725		panic("devclass_delete_device: inconsistent device class");
1726	dc->devices[dev->unit] = NULL;
1727	if (dev->flags & DF_WILDCARD)
1728		dev->unit = -1;
1729	dev->devclass = NULL;
1730	free(dev->nameunit, M_BUS);
1731	dev->nameunit = NULL;
1732
1733	return (0);
1734}
1735
1736/**
1737 * @internal
1738 * @brief Make a new device and add it as a child of @p parent
1739 *
1740 * @param parent	the parent of the new device
1741 * @param name		the devclass name of the new device or @c NULL
1742 *			to leave the devclass unspecified
1743 * @parem unit		the unit number of the new device of @c -1 to
1744 *			leave the unit number unspecified
1745 *
1746 * @returns the new device
1747 */
1748static device_t
1749make_device(device_t parent, const char *name, int unit)
1750{
1751	device_t dev;
1752	devclass_t dc;
1753
1754	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1755
1756	if (name) {
1757		dc = devclass_find_internal(name, NULL, TRUE);
1758		if (!dc) {
1759			printf("make_device: can't find device class %s\n",
1760			    name);
1761			return (NULL);
1762		}
1763	} else {
1764		dc = NULL;
1765	}
1766
1767	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1768	if (!dev)
1769		return (NULL);
1770
1771	dev->parent = parent;
1772	TAILQ_INIT(&dev->children);
1773	kobj_init((kobj_t) dev, &null_class);
1774	dev->driver = NULL;
1775	dev->devclass = NULL;
1776	dev->unit = unit;
1777	dev->nameunit = NULL;
1778	dev->desc = NULL;
1779	dev->busy = 0;
1780	dev->devflags = 0;
1781	dev->flags = DF_ENABLED;
1782	dev->order = 0;
1783	if (unit == -1)
1784		dev->flags |= DF_WILDCARD;
1785	if (name) {
1786		dev->flags |= DF_FIXEDCLASS;
1787		if (devclass_add_device(dc, dev)) {
1788			kobj_delete((kobj_t) dev, M_BUS);
1789			return (NULL);
1790		}
1791	}
1792	dev->ivars = NULL;
1793	dev->softc = NULL;
1794
1795	dev->state = DS_NOTPRESENT;
1796
1797	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1798	bus_data_generation_update();
1799
1800	return (dev);
1801}
1802
1803/**
1804 * @internal
1805 * @brief Print a description of a device.
1806 */
1807static int
1808device_print_child(device_t dev, device_t child)
1809{
1810	int retval = 0;
1811
1812	if (device_is_alive(child))
1813		retval += BUS_PRINT_CHILD(dev, child);
1814	else
1815		retval += device_printf(child, " not found\n");
1816
1817	return (retval);
1818}
1819
1820/**
1821 * @brief Create a new device
1822 *
1823 * This creates a new device and adds it as a child of an existing
1824 * parent device. The new device will be added after the last existing
1825 * child with order zero.
1826 *
1827 * @param dev		the device which will be the parent of the
1828 *			new child device
1829 * @param name		devclass name for new device or @c NULL if not
1830 *			specified
1831 * @param unit		unit number for new device or @c -1 if not
1832 *			specified
1833 *
1834 * @returns		the new device
1835 */
1836device_t
1837device_add_child(device_t dev, const char *name, int unit)
1838{
1839	return (device_add_child_ordered(dev, 0, name, unit));
1840}
1841
1842/**
1843 * @brief Create a new device
1844 *
1845 * This creates a new device and adds it as a child of an existing
1846 * parent device. The new device will be added after the last existing
1847 * child with the same order.
1848 *
1849 * @param dev		the device which will be the parent of the
1850 *			new child device
1851 * @param order		a value which is used to partially sort the
1852 *			children of @p dev - devices created using
1853 *			lower values of @p order appear first in @p
1854 *			dev's list of children
1855 * @param name		devclass name for new device or @c NULL if not
1856 *			specified
1857 * @param unit		unit number for new device or @c -1 if not
1858 *			specified
1859 *
1860 * @returns		the new device
1861 */
1862device_t
1863device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1864{
1865	device_t child;
1866	device_t place;
1867
1868	PDEBUG(("%s at %s with order %u as unit %d",
1869	    name, DEVICENAME(dev), order, unit));
1870	KASSERT(name != NULL || unit == -1,
1871	    ("child device with wildcard name and specific unit number"));
1872
1873	child = make_device(dev, name, unit);
1874	if (child == NULL)
1875		return (child);
1876	child->order = order;
1877
1878	TAILQ_FOREACH(place, &dev->children, link) {
1879		if (place->order > order)
1880			break;
1881	}
1882
1883	if (place) {
1884		/*
1885		 * The device 'place' is the first device whose order is
1886		 * greater than the new child.
1887		 */
1888		TAILQ_INSERT_BEFORE(place, child, link);
1889	} else {
1890		/*
1891		 * The new child's order is greater or equal to the order of
1892		 * any existing device. Add the child to the tail of the list.
1893		 */
1894		TAILQ_INSERT_TAIL(&dev->children, child, link);
1895	}
1896
1897	bus_data_generation_update();
1898	return (child);
1899}
1900
1901/**
1902 * @brief Delete a device
1903 *
1904 * This function deletes a device along with all of its children. If
1905 * the device currently has a driver attached to it, the device is
1906 * detached first using device_detach().
1907 *
1908 * @param dev		the parent device
1909 * @param child		the device to delete
1910 *
1911 * @retval 0		success
1912 * @retval non-zero	a unit error code describing the error
1913 */
1914int
1915device_delete_child(device_t dev, device_t child)
1916{
1917	int error;
1918	device_t grandchild;
1919
1920	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1921
1922	/* remove children first */
1923	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1924		error = device_delete_child(child, grandchild);
1925		if (error)
1926			return (error);
1927	}
1928
1929	if ((error = device_detach(child)) != 0)
1930		return (error);
1931	if (child->devclass)
1932		devclass_delete_device(child->devclass, child);
1933	if (child->parent)
1934		BUS_CHILD_DELETED(dev, child);
1935	TAILQ_REMOVE(&dev->children, child, link);
1936	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1937	kobj_delete((kobj_t) child, M_BUS);
1938
1939	bus_data_generation_update();
1940	return (0);
1941}
1942
1943/**
1944 * @brief Delete all children devices of the given device, if any.
1945 *
1946 * This function deletes all children devices of the given device, if
1947 * any, using the device_delete_child() function for each device it
1948 * finds. If a child device cannot be deleted, this function will
1949 * return an error code.
1950 *
1951 * @param dev		the parent device
1952 *
1953 * @retval 0		success
1954 * @retval non-zero	a device would not detach
1955 */
1956int
1957device_delete_children(device_t dev)
1958{
1959	device_t child;
1960	int error;
1961
1962	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1963
1964	error = 0;
1965
1966	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1967		error = device_delete_child(dev, child);
1968		if (error) {
1969			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1970			break;
1971		}
1972	}
1973	return (error);
1974}
1975
1976/**
1977 * @brief Find a device given a unit number
1978 *
1979 * This is similar to devclass_get_devices() but only searches for
1980 * devices which have @p dev as a parent.
1981 *
1982 * @param dev		the parent device to search
1983 * @param unit		the unit number to search for.  If the unit is -1,
1984 *			return the first child of @p dev which has name
1985 *			@p classname (that is, the one with the lowest unit.)
1986 *
1987 * @returns		the device with the given unit number or @c
1988 *			NULL if there is no such device
1989 */
1990device_t
1991device_find_child(device_t dev, const char *classname, int unit)
1992{
1993	devclass_t dc;
1994	device_t child;
1995
1996	dc = devclass_find(classname);
1997	if (!dc)
1998		return (NULL);
1999
2000	if (unit != -1) {
2001		child = devclass_get_device(dc, unit);
2002		if (child && child->parent == dev)
2003			return (child);
2004	} else {
2005		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
2006			child = devclass_get_device(dc, unit);
2007			if (child && child->parent == dev)
2008				return (child);
2009		}
2010	}
2011	return (NULL);
2012}
2013
2014/**
2015 * @internal
2016 */
2017static driverlink_t
2018first_matching_driver(devclass_t dc, device_t dev)
2019{
2020	if (dev->devclass)
2021		return (devclass_find_driver_internal(dc, dev->devclass->name));
2022	return (TAILQ_FIRST(&dc->drivers));
2023}
2024
2025/**
2026 * @internal
2027 */
2028static driverlink_t
2029next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
2030{
2031	if (dev->devclass) {
2032		driverlink_t dl;
2033		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
2034			if (!strcmp(dev->devclass->name, dl->driver->name))
2035				return (dl);
2036		return (NULL);
2037	}
2038	return (TAILQ_NEXT(last, link));
2039}
2040
2041/**
2042 * @internal
2043 */
2044int
2045device_probe_child(device_t dev, device_t child)
2046{
2047	devclass_t dc;
2048	driverlink_t best = NULL;
2049	driverlink_t dl;
2050	int result, pri = 0;
2051	int hasclass = (child->devclass != NULL);
2052
2053	GIANT_REQUIRED;
2054
2055	dc = dev->devclass;
2056	if (!dc)
2057		panic("device_probe_child: parent device has no devclass");
2058
2059	/*
2060	 * If the state is already probed, then return.  However, don't
2061	 * return if we can rebid this object.
2062	 */
2063	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2064		return (0);
2065
2066	for (; dc; dc = dc->parent) {
2067		for (dl = first_matching_driver(dc, child);
2068		     dl;
2069		     dl = next_matching_driver(dc, child, dl)) {
2070			/* If this driver's pass is too high, then ignore it. */
2071			if (dl->pass > bus_current_pass)
2072				continue;
2073
2074			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2075			result = device_set_driver(child, dl->driver);
2076			if (result == ENOMEM)
2077				return (result);
2078			else if (result != 0)
2079				continue;
2080			if (!hasclass) {
2081				if (device_set_devclass(child,
2082				    dl->driver->name) != 0) {
2083					char const * devname =
2084					    device_get_name(child);
2085					if (devname == NULL)
2086						devname = "(unknown)";
2087					printf("driver bug: Unable to set "
2088					    "devclass (class: %s "
2089					    "devname: %s)\n",
2090					    dl->driver->name,
2091					    devname);
2092					(void)device_set_driver(child, NULL);
2093					continue;
2094				}
2095			}
2096
2097			/* Fetch any flags for the device before probing. */
2098			resource_int_value(dl->driver->name, child->unit,
2099			    "flags", &child->devflags);
2100
2101			result = DEVICE_PROBE(child);
2102
2103			/* Reset flags and devclass before the next probe. */
2104			child->devflags = 0;
2105			if (!hasclass)
2106				(void)device_set_devclass(child, NULL);
2107
2108			/*
2109			 * If the driver returns SUCCESS, there can be
2110			 * no higher match for this device.
2111			 */
2112			if (result == 0) {
2113				best = dl;
2114				pri = 0;
2115				break;
2116			}
2117
2118			/*
2119			 * The driver returned an error so it
2120			 * certainly doesn't match.
2121			 */
2122			if (result > 0) {
2123				(void)device_set_driver(child, NULL);
2124				continue;
2125			}
2126
2127			/*
2128			 * A priority lower than SUCCESS, remember the
2129			 * best matching driver. Initialise the value
2130			 * of pri for the first match.
2131			 */
2132			if (best == NULL || result > pri) {
2133				/*
2134				 * Probes that return BUS_PROBE_NOWILDCARD
2135				 * or lower only match on devices whose
2136				 * driver was explicitly specified.
2137				 */
2138				if (result <= BUS_PROBE_NOWILDCARD &&
2139				    !(child->flags & DF_FIXEDCLASS))
2140					continue;
2141				best = dl;
2142				pri = result;
2143				continue;
2144			}
2145		}
2146		/*
2147		 * If we have an unambiguous match in this devclass,
2148		 * don't look in the parent.
2149		 */
2150		if (best && pri == 0)
2151			break;
2152	}
2153
2154	/*
2155	 * If we found a driver, change state and initialise the devclass.
2156	 */
2157	/* XXX What happens if we rebid and got no best? */
2158	if (best) {
2159		/*
2160		 * If this device was attached, and we were asked to
2161		 * rescan, and it is a different driver, then we have
2162		 * to detach the old driver and reattach this new one.
2163		 * Note, we don't have to check for DF_REBID here
2164		 * because if the state is > DS_ALIVE, we know it must
2165		 * be.
2166		 *
2167		 * This assumes that all DF_REBID drivers can have
2168		 * their probe routine called at any time and that
2169		 * they are idempotent as well as completely benign in
2170		 * normal operations.
2171		 *
2172		 * We also have to make sure that the detach
2173		 * succeeded, otherwise we fail the operation (or
2174		 * maybe it should just fail silently?  I'm torn).
2175		 */
2176		if (child->state > DS_ALIVE && best->driver != child->driver)
2177			if ((result = device_detach(dev)) != 0)
2178				return (result);
2179
2180		/* Set the winning driver, devclass, and flags. */
2181		if (!child->devclass) {
2182			result = device_set_devclass(child, best->driver->name);
2183			if (result != 0)
2184				return (result);
2185		}
2186		result = device_set_driver(child, best->driver);
2187		if (result != 0)
2188			return (result);
2189		resource_int_value(best->driver->name, child->unit,
2190		    "flags", &child->devflags);
2191
2192		if (pri < 0) {
2193			/*
2194			 * A bit bogus. Call the probe method again to make
2195			 * sure that we have the right description.
2196			 */
2197			DEVICE_PROBE(child);
2198#if 0
2199			child->flags |= DF_REBID;
2200#endif
2201		} else
2202			child->flags &= ~DF_REBID;
2203		child->state = DS_ALIVE;
2204
2205		bus_data_generation_update();
2206		return (0);
2207	}
2208
2209	return (ENXIO);
2210}
2211
2212/**
2213 * @brief Return the parent of a device
2214 */
2215device_t
2216device_get_parent(device_t dev)
2217{
2218	return (dev->parent);
2219}
2220
2221/**
2222 * @brief Get a list of children of a device
2223 *
2224 * An array containing a list of all the children of the given device
2225 * is allocated and returned in @p *devlistp. The number of devices
2226 * in the array is returned in @p *devcountp. The caller should free
2227 * the array using @c free(p, M_TEMP).
2228 *
2229 * @param dev		the device to examine
2230 * @param devlistp	points at location for array pointer return
2231 *			value
2232 * @param devcountp	points at location for array size return value
2233 *
2234 * @retval 0		success
2235 * @retval ENOMEM	the array allocation failed
2236 */
2237int
2238device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2239{
2240	int count;
2241	device_t child;
2242	device_t *list;
2243
2244	count = 0;
2245	TAILQ_FOREACH(child, &dev->children, link) {
2246		count++;
2247	}
2248	if (count == 0) {
2249		*devlistp = NULL;
2250		*devcountp = 0;
2251		return (0);
2252	}
2253
2254	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2255	if (!list)
2256		return (ENOMEM);
2257
2258	count = 0;
2259	TAILQ_FOREACH(child, &dev->children, link) {
2260		list[count] = child;
2261		count++;
2262	}
2263
2264	*devlistp = list;
2265	*devcountp = count;
2266
2267	return (0);
2268}
2269
2270/**
2271 * @brief Return the current driver for the device or @c NULL if there
2272 * is no driver currently attached
2273 */
2274driver_t *
2275device_get_driver(device_t dev)
2276{
2277	return (dev->driver);
2278}
2279
2280/**
2281 * @brief Return the current devclass for the device or @c NULL if
2282 * there is none.
2283 */
2284devclass_t
2285device_get_devclass(device_t dev)
2286{
2287	return (dev->devclass);
2288}
2289
2290/**
2291 * @brief Return the name of the device's devclass or @c NULL if there
2292 * is none.
2293 */
2294const char *
2295device_get_name(device_t dev)
2296{
2297	if (dev != NULL && dev->devclass)
2298		return (devclass_get_name(dev->devclass));
2299	return (NULL);
2300}
2301
2302/**
2303 * @brief Return a string containing the device's devclass name
2304 * followed by an ascii representation of the device's unit number
2305 * (e.g. @c "foo2").
2306 */
2307const char *
2308device_get_nameunit(device_t dev)
2309{
2310	return (dev->nameunit);
2311}
2312
2313/**
2314 * @brief Return the device's unit number.
2315 */
2316int
2317device_get_unit(device_t dev)
2318{
2319	return (dev->unit);
2320}
2321
2322/**
2323 * @brief Return the device's description string
2324 */
2325const char *
2326device_get_desc(device_t dev)
2327{
2328	return (dev->desc);
2329}
2330
2331/**
2332 * @brief Return the device's flags
2333 */
2334uint32_t
2335device_get_flags(device_t dev)
2336{
2337	return (dev->devflags);
2338}
2339
2340struct sysctl_ctx_list *
2341device_get_sysctl_ctx(device_t dev)
2342{
2343	return (&dev->sysctl_ctx);
2344}
2345
2346struct sysctl_oid *
2347device_get_sysctl_tree(device_t dev)
2348{
2349	return (dev->sysctl_tree);
2350}
2351
2352/**
2353 * @brief Print the name of the device followed by a colon and a space
2354 *
2355 * @returns the number of characters printed
2356 */
2357int
2358device_print_prettyname(device_t dev)
2359{
2360	const char *name = device_get_name(dev);
2361
2362	if (name == NULL)
2363		return (printf("unknown: "));
2364	return (printf("%s%d: ", name, device_get_unit(dev)));
2365}
2366
2367/**
2368 * @brief Print the name of the device followed by a colon, a space
2369 * and the result of calling vprintf() with the value of @p fmt and
2370 * the following arguments.
2371 *
2372 * @returns the number of characters printed
2373 */
2374int
2375device_printf(device_t dev, const char * fmt, ...)
2376{
2377	va_list ap;
2378	int retval;
2379
2380	retval = device_print_prettyname(dev);
2381	va_start(ap, fmt);
2382	retval += vprintf(fmt, ap);
2383	va_end(ap);
2384	return (retval);
2385}
2386
2387/**
2388 * @internal
2389 */
2390static void
2391device_set_desc_internal(device_t dev, const char* desc, int copy)
2392{
2393	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2394		free(dev->desc, M_BUS);
2395		dev->flags &= ~DF_DESCMALLOCED;
2396		dev->desc = NULL;
2397	}
2398
2399	if (copy && desc) {
2400		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2401		if (dev->desc) {
2402			strcpy(dev->desc, desc);
2403			dev->flags |= DF_DESCMALLOCED;
2404		}
2405	} else {
2406		/* Avoid a -Wcast-qual warning */
2407		dev->desc = (char *)(uintptr_t) desc;
2408	}
2409
2410	bus_data_generation_update();
2411}
2412
2413/**
2414 * @brief Set the device's description
2415 *
2416 * The value of @c desc should be a string constant that will not
2417 * change (at least until the description is changed in a subsequent
2418 * call to device_set_desc() or device_set_desc_copy()).
2419 */
2420void
2421device_set_desc(device_t dev, const char* desc)
2422{
2423	device_set_desc_internal(dev, desc, FALSE);
2424}
2425
2426/**
2427 * @brief Set the device's description
2428 *
2429 * The string pointed to by @c desc is copied. Use this function if
2430 * the device description is generated, (e.g. with sprintf()).
2431 */
2432void
2433device_set_desc_copy(device_t dev, const char* desc)
2434{
2435	device_set_desc_internal(dev, desc, TRUE);
2436}
2437
2438/**
2439 * @brief Set the device's flags
2440 */
2441void
2442device_set_flags(device_t dev, uint32_t flags)
2443{
2444	dev->devflags = flags;
2445}
2446
2447/**
2448 * @brief Return the device's softc field
2449 *
2450 * The softc is allocated and zeroed when a driver is attached, based
2451 * on the size field of the driver.
2452 */
2453void *
2454device_get_softc(device_t dev)
2455{
2456	return (dev->softc);
2457}
2458
2459/**
2460 * @brief Set the device's softc field
2461 *
2462 * Most drivers do not need to use this since the softc is allocated
2463 * automatically when the driver is attached.
2464 */
2465void
2466device_set_softc(device_t dev, void *softc)
2467{
2468	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2469		free(dev->softc, M_BUS_SC);
2470	dev->softc = softc;
2471	if (dev->softc)
2472		dev->flags |= DF_EXTERNALSOFTC;
2473	else
2474		dev->flags &= ~DF_EXTERNALSOFTC;
2475}
2476
2477/**
2478 * @brief Free claimed softc
2479 *
2480 * Most drivers do not need to use this since the softc is freed
2481 * automatically when the driver is detached.
2482 */
2483void
2484device_free_softc(void *softc)
2485{
2486	free(softc, M_BUS_SC);
2487}
2488
2489/**
2490 * @brief Claim softc
2491 *
2492 * This function can be used to let the driver free the automatically
2493 * allocated softc using "device_free_softc()". This function is
2494 * useful when the driver is refcounting the softc and the softc
2495 * cannot be freed when the "device_detach" method is called.
2496 */
2497void
2498device_claim_softc(device_t dev)
2499{
2500	if (dev->softc)
2501		dev->flags |= DF_EXTERNALSOFTC;
2502	else
2503		dev->flags &= ~DF_EXTERNALSOFTC;
2504}
2505
2506/**
2507 * @brief Get the device's ivars field
2508 *
2509 * The ivars field is used by the parent device to store per-device
2510 * state (e.g. the physical location of the device or a list of
2511 * resources).
2512 */
2513void *
2514device_get_ivars(device_t dev)
2515{
2516
2517	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2518	return (dev->ivars);
2519}
2520
2521/**
2522 * @brief Set the device's ivars field
2523 */
2524void
2525device_set_ivars(device_t dev, void * ivars)
2526{
2527
2528	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2529	dev->ivars = ivars;
2530}
2531
2532/**
2533 * @brief Return the device's state
2534 */
2535device_state_t
2536device_get_state(device_t dev)
2537{
2538	return (dev->state);
2539}
2540
2541/**
2542 * @brief Set the DF_ENABLED flag for the device
2543 */
2544void
2545device_enable(device_t dev)
2546{
2547	dev->flags |= DF_ENABLED;
2548}
2549
2550/**
2551 * @brief Clear the DF_ENABLED flag for the device
2552 */
2553void
2554device_disable(device_t dev)
2555{
2556	dev->flags &= ~DF_ENABLED;
2557}
2558
2559/**
2560 * @brief Increment the busy counter for the device
2561 */
2562void
2563device_busy(device_t dev)
2564{
2565	if (dev->state < DS_ATTACHING)
2566		panic("device_busy: called for unattached device");
2567	if (dev->busy == 0 && dev->parent)
2568		device_busy(dev->parent);
2569	dev->busy++;
2570	if (dev->state == DS_ATTACHED)
2571		dev->state = DS_BUSY;
2572}
2573
2574/**
2575 * @brief Decrement the busy counter for the device
2576 */
2577void
2578device_unbusy(device_t dev)
2579{
2580	if (dev->busy != 0 && dev->state != DS_BUSY &&
2581	    dev->state != DS_ATTACHING)
2582		panic("device_unbusy: called for non-busy device %s",
2583		    device_get_nameunit(dev));
2584	dev->busy--;
2585	if (dev->busy == 0) {
2586		if (dev->parent)
2587			device_unbusy(dev->parent);
2588		if (dev->state == DS_BUSY)
2589			dev->state = DS_ATTACHED;
2590	}
2591}
2592
2593/**
2594 * @brief Set the DF_QUIET flag for the device
2595 */
2596void
2597device_quiet(device_t dev)
2598{
2599	dev->flags |= DF_QUIET;
2600}
2601
2602/**
2603 * @brief Clear the DF_QUIET flag for the device
2604 */
2605void
2606device_verbose(device_t dev)
2607{
2608	dev->flags &= ~DF_QUIET;
2609}
2610
2611/**
2612 * @brief Return non-zero if the DF_QUIET flag is set on the device
2613 */
2614int
2615device_is_quiet(device_t dev)
2616{
2617	return ((dev->flags & DF_QUIET) != 0);
2618}
2619
2620/**
2621 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2622 */
2623int
2624device_is_enabled(device_t dev)
2625{
2626	return ((dev->flags & DF_ENABLED) != 0);
2627}
2628
2629/**
2630 * @brief Return non-zero if the device was successfully probed
2631 */
2632int
2633device_is_alive(device_t dev)
2634{
2635	return (dev->state >= DS_ALIVE);
2636}
2637
2638/**
2639 * @brief Return non-zero if the device currently has a driver
2640 * attached to it
2641 */
2642int
2643device_is_attached(device_t dev)
2644{
2645	return (dev->state >= DS_ATTACHED);
2646}
2647
2648/**
2649 * @brief Set the devclass of a device
2650 * @see devclass_add_device().
2651 */
2652int
2653device_set_devclass(device_t dev, const char *classname)
2654{
2655	devclass_t dc;
2656	int error;
2657
2658	if (!classname) {
2659		if (dev->devclass)
2660			devclass_delete_device(dev->devclass, dev);
2661		return (0);
2662	}
2663
2664	if (dev->devclass) {
2665		printf("device_set_devclass: device class already set\n");
2666		return (EINVAL);
2667	}
2668
2669	dc = devclass_find_internal(classname, NULL, TRUE);
2670	if (!dc)
2671		return (ENOMEM);
2672
2673	error = devclass_add_device(dc, dev);
2674
2675	bus_data_generation_update();
2676	return (error);
2677}
2678
2679/**
2680 * @brief Set the driver of a device
2681 *
2682 * @retval 0		success
2683 * @retval EBUSY	the device already has a driver attached
2684 * @retval ENOMEM	a memory allocation failure occurred
2685 */
2686int
2687device_set_driver(device_t dev, driver_t *driver)
2688{
2689	if (dev->state >= DS_ATTACHED)
2690		return (EBUSY);
2691
2692	if (dev->driver == driver)
2693		return (0);
2694
2695	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2696		free(dev->softc, M_BUS_SC);
2697		dev->softc = NULL;
2698	}
2699	device_set_desc(dev, NULL);
2700	kobj_delete((kobj_t) dev, NULL);
2701	dev->driver = driver;
2702	if (driver) {
2703		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2704		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2705			dev->softc = malloc(driver->size, M_BUS_SC,
2706			    M_NOWAIT | M_ZERO);
2707			if (!dev->softc) {
2708				kobj_delete((kobj_t) dev, NULL);
2709				kobj_init((kobj_t) dev, &null_class);
2710				dev->driver = NULL;
2711				return (ENOMEM);
2712			}
2713		}
2714	} else {
2715		kobj_init((kobj_t) dev, &null_class);
2716	}
2717
2718	bus_data_generation_update();
2719	return (0);
2720}
2721
2722/**
2723 * @brief Probe a device, and return this status.
2724 *
2725 * This function is the core of the device autoconfiguration
2726 * system. Its purpose is to select a suitable driver for a device and
2727 * then call that driver to initialise the hardware appropriately. The
2728 * driver is selected by calling the DEVICE_PROBE() method of a set of
2729 * candidate drivers and then choosing the driver which returned the
2730 * best value. This driver is then attached to the device using
2731 * device_attach().
2732 *
2733 * The set of suitable drivers is taken from the list of drivers in
2734 * the parent device's devclass. If the device was originally created
2735 * with a specific class name (see device_add_child()), only drivers
2736 * with that name are probed, otherwise all drivers in the devclass
2737 * are probed. If no drivers return successful probe values in the
2738 * parent devclass, the search continues in the parent of that
2739 * devclass (see devclass_get_parent()) if any.
2740 *
2741 * @param dev		the device to initialise
2742 *
2743 * @retval 0		success
2744 * @retval ENXIO	no driver was found
2745 * @retval ENOMEM	memory allocation failure
2746 * @retval non-zero	some other unix error code
2747 * @retval -1		Device already attached
2748 */
2749int
2750device_probe(device_t dev)
2751{
2752	int error;
2753
2754	GIANT_REQUIRED;
2755
2756	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2757		return (-1);
2758
2759	if (!(dev->flags & DF_ENABLED)) {
2760		if (bootverbose && device_get_name(dev) != NULL) {
2761			device_print_prettyname(dev);
2762			printf("not probed (disabled)\n");
2763		}
2764		return (-1);
2765	}
2766	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2767		if (bus_current_pass == BUS_PASS_DEFAULT &&
2768		    !(dev->flags & DF_DONENOMATCH)) {
2769			BUS_PROBE_NOMATCH(dev->parent, dev);
2770			devnomatch(dev);
2771			dev->flags |= DF_DONENOMATCH;
2772		}
2773		return (error);
2774	}
2775	return (0);
2776}
2777
2778/**
2779 * @brief Probe a device and attach a driver if possible
2780 *
2781 * calls device_probe() and attaches if that was successful.
2782 */
2783int
2784device_probe_and_attach(device_t dev)
2785{
2786	int error;
2787
2788	GIANT_REQUIRED;
2789
2790	error = device_probe(dev);
2791	if (error == -1)
2792		return (0);
2793	else if (error != 0)
2794		return (error);
2795
2796	CURVNET_SET_QUIET(vnet0);
2797	error = device_attach(dev);
2798	CURVNET_RESTORE();
2799	return error;
2800}
2801
2802/**
2803 * @brief Attach a device driver to a device
2804 *
2805 * This function is a wrapper around the DEVICE_ATTACH() driver
2806 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2807 * device's sysctl tree, optionally prints a description of the device
2808 * and queues a notification event for user-based device management
2809 * services.
2810 *
2811 * Normally this function is only called internally from
2812 * device_probe_and_attach().
2813 *
2814 * @param dev		the device to initialise
2815 *
2816 * @retval 0		success
2817 * @retval ENXIO	no driver was found
2818 * @retval ENOMEM	memory allocation failure
2819 * @retval non-zero	some other unix error code
2820 */
2821int
2822device_attach(device_t dev)
2823{
2824	uint64_t attachtime;
2825	int error;
2826
2827	if (resource_disabled(dev->driver->name, dev->unit)) {
2828		device_disable(dev);
2829		if (bootverbose)
2830			 device_printf(dev, "disabled via hints entry\n");
2831		return (ENXIO);
2832	}
2833
2834	device_sysctl_init(dev);
2835	if (!device_is_quiet(dev))
2836		device_print_child(dev->parent, dev);
2837	attachtime = get_cyclecount();
2838	dev->state = DS_ATTACHING;
2839	if ((error = DEVICE_ATTACH(dev)) != 0) {
2840		printf("device_attach: %s%d attach returned %d\n",
2841		    dev->driver->name, dev->unit, error);
2842		if (!(dev->flags & DF_FIXEDCLASS))
2843			devclass_delete_device(dev->devclass, dev);
2844		(void)device_set_driver(dev, NULL);
2845		device_sysctl_fini(dev);
2846		KASSERT(dev->busy == 0, ("attach failed but busy"));
2847		dev->state = DS_NOTPRESENT;
2848		return (error);
2849	}
2850	attachtime = get_cyclecount() - attachtime;
2851	/*
2852	 * 4 bits per device is a reasonable value for desktop and server
2853	 * hardware with good get_cyclecount() implementations, but may
2854	 * need to be adjusted on other platforms.
2855	 */
2856#ifdef RANDOM_DEBUG
2857	printf("%s(): feeding %d bit(s) of entropy from %s%d\n",
2858	    __func__, 4, dev->driver->name, dev->unit);
2859#endif
2860	random_harvest(&attachtime, sizeof(attachtime), 4, RANDOM_ATTACH);
2861	device_sysctl_update(dev);
2862	if (dev->busy)
2863		dev->state = DS_BUSY;
2864	else
2865		dev->state = DS_ATTACHED;
2866	dev->flags &= ~DF_DONENOMATCH;
2867	devadded(dev);
2868	return (0);
2869}
2870
2871/**
2872 * @brief Detach a driver from a device
2873 *
2874 * This function is a wrapper around the DEVICE_DETACH() driver
2875 * method. If the call to DEVICE_DETACH() succeeds, it calls
2876 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2877 * notification event for user-based device management services and
2878 * cleans up the device's sysctl tree.
2879 *
2880 * @param dev		the device to un-initialise
2881 *
2882 * @retval 0		success
2883 * @retval ENXIO	no driver was found
2884 * @retval ENOMEM	memory allocation failure
2885 * @retval non-zero	some other unix error code
2886 */
2887int
2888device_detach(device_t dev)
2889{
2890	int error;
2891
2892	GIANT_REQUIRED;
2893
2894	PDEBUG(("%s", DEVICENAME(dev)));
2895	if (dev->state == DS_BUSY)
2896		return (EBUSY);
2897	if (dev->state != DS_ATTACHED)
2898		return (0);
2899
2900	if ((error = DEVICE_DETACH(dev)) != 0)
2901		return (error);
2902	devremoved(dev);
2903	if (!device_is_quiet(dev))
2904		device_printf(dev, "detached\n");
2905	if (dev->parent)
2906		BUS_CHILD_DETACHED(dev->parent, dev);
2907
2908	if (!(dev->flags & DF_FIXEDCLASS))
2909		devclass_delete_device(dev->devclass, dev);
2910
2911	dev->state = DS_NOTPRESENT;
2912	(void)device_set_driver(dev, NULL);
2913	device_sysctl_fini(dev);
2914
2915	return (0);
2916}
2917
2918/**
2919 * @brief Tells a driver to quiesce itself.
2920 *
2921 * This function is a wrapper around the DEVICE_QUIESCE() driver
2922 * method. If the call to DEVICE_QUIESCE() succeeds.
2923 *
2924 * @param dev		the device to quiesce
2925 *
2926 * @retval 0		success
2927 * @retval ENXIO	no driver was found
2928 * @retval ENOMEM	memory allocation failure
2929 * @retval non-zero	some other unix error code
2930 */
2931int
2932device_quiesce(device_t dev)
2933{
2934
2935	PDEBUG(("%s", DEVICENAME(dev)));
2936	if (dev->state == DS_BUSY)
2937		return (EBUSY);
2938	if (dev->state != DS_ATTACHED)
2939		return (0);
2940
2941	return (DEVICE_QUIESCE(dev));
2942}
2943
2944/**
2945 * @brief Notify a device of system shutdown
2946 *
2947 * This function calls the DEVICE_SHUTDOWN() driver method if the
2948 * device currently has an attached driver.
2949 *
2950 * @returns the value returned by DEVICE_SHUTDOWN()
2951 */
2952int
2953device_shutdown(device_t dev)
2954{
2955	if (dev->state < DS_ATTACHED)
2956		return (0);
2957	return (DEVICE_SHUTDOWN(dev));
2958}
2959
2960/**
2961 * @brief Set the unit number of a device
2962 *
2963 * This function can be used to override the unit number used for a
2964 * device (e.g. to wire a device to a pre-configured unit number).
2965 */
2966int
2967device_set_unit(device_t dev, int unit)
2968{
2969	devclass_t dc;
2970	int err;
2971
2972	dc = device_get_devclass(dev);
2973	if (unit < dc->maxunit && dc->devices[unit])
2974		return (EBUSY);
2975	err = devclass_delete_device(dc, dev);
2976	if (err)
2977		return (err);
2978	dev->unit = unit;
2979	err = devclass_add_device(dc, dev);
2980	if (err)
2981		return (err);
2982
2983	bus_data_generation_update();
2984	return (0);
2985}
2986
2987/*======================================*/
2988/*
2989 * Some useful method implementations to make life easier for bus drivers.
2990 */
2991
2992/**
2993 * @brief Initialise a resource list.
2994 *
2995 * @param rl		the resource list to initialise
2996 */
2997void
2998resource_list_init(struct resource_list *rl)
2999{
3000	STAILQ_INIT(rl);
3001}
3002
3003/**
3004 * @brief Reclaim memory used by a resource list.
3005 *
3006 * This function frees the memory for all resource entries on the list
3007 * (if any).
3008 *
3009 * @param rl		the resource list to free
3010 */
3011void
3012resource_list_free(struct resource_list *rl)
3013{
3014	struct resource_list_entry *rle;
3015
3016	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3017		if (rle->res)
3018			panic("resource_list_free: resource entry is busy");
3019		STAILQ_REMOVE_HEAD(rl, link);
3020		free(rle, M_BUS);
3021	}
3022}
3023
3024/**
3025 * @brief Add a resource entry.
3026 *
3027 * This function adds a resource entry using the given @p type, @p
3028 * start, @p end and @p count values. A rid value is chosen by
3029 * searching sequentially for the first unused rid starting at zero.
3030 *
3031 * @param rl		the resource list to edit
3032 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3033 * @param start		the start address of the resource
3034 * @param end		the end address of the resource
3035 * @param count		XXX end-start+1
3036 */
3037int
3038resource_list_add_next(struct resource_list *rl, int type, u_long start,
3039    u_long end, u_long count)
3040{
3041	int rid;
3042
3043	rid = 0;
3044	while (resource_list_find(rl, type, rid) != NULL)
3045		rid++;
3046	resource_list_add(rl, type, rid, start, end, count);
3047	return (rid);
3048}
3049
3050/**
3051 * @brief Add or modify a resource entry.
3052 *
3053 * If an existing entry exists with the same type and rid, it will be
3054 * modified using the given values of @p start, @p end and @p
3055 * count. If no entry exists, a new one will be created using the
3056 * given values.  The resource list entry that matches is then returned.
3057 *
3058 * @param rl		the resource list to edit
3059 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3060 * @param rid		the resource identifier
3061 * @param start		the start address of the resource
3062 * @param end		the end address of the resource
3063 * @param count		XXX end-start+1
3064 */
3065struct resource_list_entry *
3066resource_list_add(struct resource_list *rl, int type, int rid,
3067    u_long start, u_long end, u_long count)
3068{
3069	struct resource_list_entry *rle;
3070
3071	rle = resource_list_find(rl, type, rid);
3072	if (!rle) {
3073		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
3074		    M_NOWAIT);
3075		if (!rle)
3076			panic("resource_list_add: can't record entry");
3077		STAILQ_INSERT_TAIL(rl, rle, link);
3078		rle->type = type;
3079		rle->rid = rid;
3080		rle->res = NULL;
3081		rle->flags = 0;
3082	}
3083
3084	if (rle->res)
3085		panic("resource_list_add: resource entry is busy");
3086
3087	rle->start = start;
3088	rle->end = end;
3089	rle->count = count;
3090	return (rle);
3091}
3092
3093/**
3094 * @brief Determine if a resource entry is busy.
3095 *
3096 * Returns true if a resource entry is busy meaning that it has an
3097 * associated resource that is not an unallocated "reserved" resource.
3098 *
3099 * @param rl		the resource list to search
3100 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3101 * @param rid		the resource identifier
3102 *
3103 * @returns Non-zero if the entry is busy, zero otherwise.
3104 */
3105int
3106resource_list_busy(struct resource_list *rl, int type, int rid)
3107{
3108	struct resource_list_entry *rle;
3109
3110	rle = resource_list_find(rl, type, rid);
3111	if (rle == NULL || rle->res == NULL)
3112		return (0);
3113	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3114		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3115		    ("reserved resource is active"));
3116		return (0);
3117	}
3118	return (1);
3119}
3120
3121/**
3122 * @brief Determine if a resource entry is reserved.
3123 *
3124 * Returns true if a resource entry is reserved meaning that it has an
3125 * associated "reserved" resource.  The resource can either be
3126 * allocated or unallocated.
3127 *
3128 * @param rl		the resource list to search
3129 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3130 * @param rid		the resource identifier
3131 *
3132 * @returns Non-zero if the entry is reserved, zero otherwise.
3133 */
3134int
3135resource_list_reserved(struct resource_list *rl, int type, int rid)
3136{
3137	struct resource_list_entry *rle;
3138
3139	rle = resource_list_find(rl, type, rid);
3140	if (rle != NULL && rle->flags & RLE_RESERVED)
3141		return (1);
3142	return (0);
3143}
3144
3145/**
3146 * @brief Find a resource entry by type and rid.
3147 *
3148 * @param rl		the resource list to search
3149 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3150 * @param rid		the resource identifier
3151 *
3152 * @returns the resource entry pointer or NULL if there is no such
3153 * entry.
3154 */
3155struct resource_list_entry *
3156resource_list_find(struct resource_list *rl, int type, int rid)
3157{
3158	struct resource_list_entry *rle;
3159
3160	STAILQ_FOREACH(rle, rl, link) {
3161		if (rle->type == type && rle->rid == rid)
3162			return (rle);
3163	}
3164	return (NULL);
3165}
3166
3167/**
3168 * @brief Delete a resource entry.
3169 *
3170 * @param rl		the resource list to edit
3171 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3172 * @param rid		the resource identifier
3173 */
3174void
3175resource_list_delete(struct resource_list *rl, int type, int rid)
3176{
3177	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3178
3179	if (rle) {
3180		if (rle->res != NULL)
3181			panic("resource_list_delete: resource has not been released");
3182		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3183		free(rle, M_BUS);
3184	}
3185}
3186
3187/**
3188 * @brief Allocate a reserved resource
3189 *
3190 * This can be used by busses to force the allocation of resources
3191 * that are always active in the system even if they are not allocated
3192 * by a driver (e.g. PCI BARs).  This function is usually called when
3193 * adding a new child to the bus.  The resource is allocated from the
3194 * parent bus when it is reserved.  The resource list entry is marked
3195 * with RLE_RESERVED to note that it is a reserved resource.
3196 *
3197 * Subsequent attempts to allocate the resource with
3198 * resource_list_alloc() will succeed the first time and will set
3199 * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3200 * resource that has been allocated is released with
3201 * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3202 * the actual resource remains allocated.  The resource can be released to
3203 * the parent bus by calling resource_list_unreserve().
3204 *
3205 * @param rl		the resource list to allocate from
3206 * @param bus		the parent device of @p child
3207 * @param child		the device for which the resource is being reserved
3208 * @param type		the type of resource to allocate
3209 * @param rid		a pointer to the resource identifier
3210 * @param start		hint at the start of the resource range - pass
3211 *			@c 0UL for any start address
3212 * @param end		hint at the end of the resource range - pass
3213 *			@c ~0UL for any end address
3214 * @param count		hint at the size of range required - pass @c 1
3215 *			for any size
3216 * @param flags		any extra flags to control the resource
3217 *			allocation - see @c RF_XXX flags in
3218 *			<sys/rman.h> for details
3219 *
3220 * @returns		the resource which was allocated or @c NULL if no
3221 *			resource could be allocated
3222 */
3223struct resource *
3224resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3225    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3226{
3227	struct resource_list_entry *rle = NULL;
3228	int passthrough = (device_get_parent(child) != bus);
3229	struct resource *r;
3230
3231	if (passthrough)
3232		panic(
3233    "resource_list_reserve() should only be called for direct children");
3234	if (flags & RF_ACTIVE)
3235		panic(
3236    "resource_list_reserve() should only reserve inactive resources");
3237
3238	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3239	    flags);
3240	if (r != NULL) {
3241		rle = resource_list_find(rl, type, *rid);
3242		rle->flags |= RLE_RESERVED;
3243	}
3244	return (r);
3245}
3246
3247/**
3248 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3249 *
3250 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3251 * and passing the allocation up to the parent of @p bus. This assumes
3252 * that the first entry of @c device_get_ivars(child) is a struct
3253 * resource_list. This also handles 'passthrough' allocations where a
3254 * child is a remote descendant of bus by passing the allocation up to
3255 * the parent of bus.
3256 *
3257 * Typically, a bus driver would store a list of child resources
3258 * somewhere in the child device's ivars (see device_get_ivars()) and
3259 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3260 * then call resource_list_alloc() to perform the allocation.
3261 *
3262 * @param rl		the resource list to allocate from
3263 * @param bus		the parent device of @p child
3264 * @param child		the device which is requesting an allocation
3265 * @param type		the type of resource to allocate
3266 * @param rid		a pointer to the resource identifier
3267 * @param start		hint at the start of the resource range - pass
3268 *			@c 0UL for any start address
3269 * @param end		hint at the end of the resource range - pass
3270 *			@c ~0UL for any end address
3271 * @param count		hint at the size of range required - pass @c 1
3272 *			for any size
3273 * @param flags		any extra flags to control the resource
3274 *			allocation - see @c RF_XXX flags in
3275 *			<sys/rman.h> for details
3276 *
3277 * @returns		the resource which was allocated or @c NULL if no
3278 *			resource could be allocated
3279 */
3280struct resource *
3281resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3282    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3283{
3284	struct resource_list_entry *rle = NULL;
3285	int passthrough = (device_get_parent(child) != bus);
3286	int isdefault = (start == 0UL && end == ~0UL);
3287
3288	if (passthrough) {
3289		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3290		    type, rid, start, end, count, flags));
3291	}
3292
3293	rle = resource_list_find(rl, type, *rid);
3294
3295	if (!rle)
3296		return (NULL);		/* no resource of that type/rid */
3297
3298	if (rle->res) {
3299		if (rle->flags & RLE_RESERVED) {
3300			if (rle->flags & RLE_ALLOCATED)
3301				return (NULL);
3302			if ((flags & RF_ACTIVE) &&
3303			    bus_activate_resource(child, type, *rid,
3304			    rle->res) != 0)
3305				return (NULL);
3306			rle->flags |= RLE_ALLOCATED;
3307			return (rle->res);
3308		}
3309		device_printf(bus,
3310		    "resource entry %#x type %d for child %s is busy\n", *rid,
3311		    type, device_get_nameunit(child));
3312		return (NULL);
3313	}
3314
3315	if (isdefault) {
3316		start = rle->start;
3317		count = ulmax(count, rle->count);
3318		end = ulmax(rle->end, start + count - 1);
3319	}
3320
3321	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3322	    type, rid, start, end, count, flags);
3323
3324	/*
3325	 * Record the new range.
3326	 */
3327	if (rle->res) {
3328		rle->start = rman_get_start(rle->res);
3329		rle->end = rman_get_end(rle->res);
3330		rle->count = count;
3331	}
3332
3333	return (rle->res);
3334}
3335
3336/**
3337 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3338 *
3339 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3340 * used with resource_list_alloc().
3341 *
3342 * @param rl		the resource list which was allocated from
3343 * @param bus		the parent device of @p child
3344 * @param child		the device which is requesting a release
3345 * @param type		the type of resource to release
3346 * @param rid		the resource identifier
3347 * @param res		the resource to release
3348 *
3349 * @retval 0		success
3350 * @retval non-zero	a standard unix error code indicating what
3351 *			error condition prevented the operation
3352 */
3353int
3354resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3355    int type, int rid, struct resource *res)
3356{
3357	struct resource_list_entry *rle = NULL;
3358	int passthrough = (device_get_parent(child) != bus);
3359	int error;
3360
3361	if (passthrough) {
3362		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3363		    type, rid, res));
3364	}
3365
3366	rle = resource_list_find(rl, type, rid);
3367
3368	if (!rle)
3369		panic("resource_list_release: can't find resource");
3370	if (!rle->res)
3371		panic("resource_list_release: resource entry is not busy");
3372	if (rle->flags & RLE_RESERVED) {
3373		if (rle->flags & RLE_ALLOCATED) {
3374			if (rman_get_flags(res) & RF_ACTIVE) {
3375				error = bus_deactivate_resource(child, type,
3376				    rid, res);
3377				if (error)
3378					return (error);
3379			}
3380			rle->flags &= ~RLE_ALLOCATED;
3381			return (0);
3382		}
3383		return (EINVAL);
3384	}
3385
3386	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3387	    type, rid, res);
3388	if (error)
3389		return (error);
3390
3391	rle->res = NULL;
3392	return (0);
3393}
3394
3395/**
3396 * @brief Release all active resources of a given type
3397 *
3398 * Release all active resources of a specified type.  This is intended
3399 * to be used to cleanup resources leaked by a driver after detach or
3400 * a failed attach.
3401 *
3402 * @param rl		the resource list which was allocated from
3403 * @param bus		the parent device of @p child
3404 * @param child		the device whose active resources are being released
3405 * @param type		the type of resources to release
3406 *
3407 * @retval 0		success
3408 * @retval EBUSY	at least one resource was active
3409 */
3410int
3411resource_list_release_active(struct resource_list *rl, device_t bus,
3412    device_t child, int type)
3413{
3414	struct resource_list_entry *rle;
3415	int error, retval;
3416
3417	retval = 0;
3418	STAILQ_FOREACH(rle, rl, link) {
3419		if (rle->type != type)
3420			continue;
3421		if (rle->res == NULL)
3422			continue;
3423		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3424		    RLE_RESERVED)
3425			continue;
3426		retval = EBUSY;
3427		error = resource_list_release(rl, bus, child, type,
3428		    rman_get_rid(rle->res), rle->res);
3429		if (error != 0)
3430			device_printf(bus,
3431			    "Failed to release active resource: %d\n", error);
3432	}
3433	return (retval);
3434}
3435
3436
3437/**
3438 * @brief Fully release a reserved resource
3439 *
3440 * Fully releases a resource reserved via resource_list_reserve().
3441 *
3442 * @param rl		the resource list which was allocated from
3443 * @param bus		the parent device of @p child
3444 * @param child		the device whose reserved resource is being released
3445 * @param type		the type of resource to release
3446 * @param rid		the resource identifier
3447 * @param res		the resource to release
3448 *
3449 * @retval 0		success
3450 * @retval non-zero	a standard unix error code indicating what
3451 *			error condition prevented the operation
3452 */
3453int
3454resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3455    int type, int rid)
3456{
3457	struct resource_list_entry *rle = NULL;
3458	int passthrough = (device_get_parent(child) != bus);
3459
3460	if (passthrough)
3461		panic(
3462    "resource_list_unreserve() should only be called for direct children");
3463
3464	rle = resource_list_find(rl, type, rid);
3465
3466	if (!rle)
3467		panic("resource_list_unreserve: can't find resource");
3468	if (!(rle->flags & RLE_RESERVED))
3469		return (EINVAL);
3470	if (rle->flags & RLE_ALLOCATED)
3471		return (EBUSY);
3472	rle->flags &= ~RLE_RESERVED;
3473	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3474}
3475
3476/**
3477 * @brief Print a description of resources in a resource list
3478 *
3479 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3480 * The name is printed if at least one resource of the given type is available.
3481 * The format is used to print resource start and end.
3482 *
3483 * @param rl		the resource list to print
3484 * @param name		the name of @p type, e.g. @c "memory"
3485 * @param type		type type of resource entry to print
3486 * @param format	printf(9) format string to print resource
3487 *			start and end values
3488 *
3489 * @returns		the number of characters printed
3490 */
3491int
3492resource_list_print_type(struct resource_list *rl, const char *name, int type,
3493    const char *format)
3494{
3495	struct resource_list_entry *rle;
3496	int printed, retval;
3497
3498	printed = 0;
3499	retval = 0;
3500	/* Yes, this is kinda cheating */
3501	STAILQ_FOREACH(rle, rl, link) {
3502		if (rle->type == type) {
3503			if (printed == 0)
3504				retval += printf(" %s ", name);
3505			else
3506				retval += printf(",");
3507			printed++;
3508			retval += printf(format, rle->start);
3509			if (rle->count > 1) {
3510				retval += printf("-");
3511				retval += printf(format, rle->start +
3512						 rle->count - 1);
3513			}
3514		}
3515	}
3516	return (retval);
3517}
3518
3519/**
3520 * @brief Releases all the resources in a list.
3521 *
3522 * @param rl		The resource list to purge.
3523 *
3524 * @returns		nothing
3525 */
3526void
3527resource_list_purge(struct resource_list *rl)
3528{
3529	struct resource_list_entry *rle;
3530
3531	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3532		if (rle->res)
3533			bus_release_resource(rman_get_device(rle->res),
3534			    rle->type, rle->rid, rle->res);
3535		STAILQ_REMOVE_HEAD(rl, link);
3536		free(rle, M_BUS);
3537	}
3538}
3539
3540device_t
3541bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3542{
3543
3544	return (device_add_child_ordered(dev, order, name, unit));
3545}
3546
3547/**
3548 * @brief Helper function for implementing DEVICE_PROBE()
3549 *
3550 * This function can be used to help implement the DEVICE_PROBE() for
3551 * a bus (i.e. a device which has other devices attached to it). It
3552 * calls the DEVICE_IDENTIFY() method of each driver in the device's
3553 * devclass.
3554 */
3555int
3556bus_generic_probe(device_t dev)
3557{
3558	devclass_t dc = dev->devclass;
3559	driverlink_t dl;
3560
3561	TAILQ_FOREACH(dl, &dc->drivers, link) {
3562		/*
3563		 * If this driver's pass is too high, then ignore it.
3564		 * For most drivers in the default pass, this will
3565		 * never be true.  For early-pass drivers they will
3566		 * only call the identify routines of eligible drivers
3567		 * when this routine is called.  Drivers for later
3568		 * passes should have their identify routines called
3569		 * on early-pass busses during BUS_NEW_PASS().
3570		 */
3571		if (dl->pass > bus_current_pass)
3572			continue;
3573		DEVICE_IDENTIFY(dl->driver, dev);
3574	}
3575
3576	return (0);
3577}
3578
3579/**
3580 * @brief Helper function for implementing DEVICE_ATTACH()
3581 *
3582 * This function can be used to help implement the DEVICE_ATTACH() for
3583 * a bus. It calls device_probe_and_attach() for each of the device's
3584 * children.
3585 */
3586int
3587bus_generic_attach(device_t dev)
3588{
3589	device_t child;
3590
3591	TAILQ_FOREACH(child, &dev->children, link) {
3592		device_probe_and_attach(child);
3593	}
3594
3595	return (0);
3596}
3597
3598/**
3599 * @brief Helper function for implementing DEVICE_DETACH()
3600 *
3601 * This function can be used to help implement the DEVICE_DETACH() for
3602 * a bus. It calls device_detach() for each of the device's
3603 * children.
3604 */
3605int
3606bus_generic_detach(device_t dev)
3607{
3608	device_t child;
3609	int error;
3610
3611	if (dev->state != DS_ATTACHED)
3612		return (EBUSY);
3613
3614	TAILQ_FOREACH(child, &dev->children, link) {
3615		if ((error = device_detach(child)) != 0)
3616			return (error);
3617	}
3618
3619	return (0);
3620}
3621
3622/**
3623 * @brief Helper function for implementing DEVICE_SHUTDOWN()
3624 *
3625 * This function can be used to help implement the DEVICE_SHUTDOWN()
3626 * for a bus. It calls device_shutdown() for each of the device's
3627 * children.
3628 */
3629int
3630bus_generic_shutdown(device_t dev)
3631{
3632	device_t child;
3633
3634	TAILQ_FOREACH(child, &dev->children, link) {
3635		device_shutdown(child);
3636	}
3637
3638	return (0);
3639}
3640
3641/**
3642 * @brief Helper function for implementing DEVICE_SUSPEND()
3643 *
3644 * This function can be used to help implement the DEVICE_SUSPEND()
3645 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3646 * children. If any call to DEVICE_SUSPEND() fails, the suspend
3647 * operation is aborted and any devices which were suspended are
3648 * resumed immediately by calling their DEVICE_RESUME() methods.
3649 */
3650int
3651bus_generic_suspend(device_t dev)
3652{
3653	int		error;
3654	device_t	child, child2;
3655
3656	TAILQ_FOREACH(child, &dev->children, link) {
3657		error = DEVICE_SUSPEND(child);
3658		if (error) {
3659			for (child2 = TAILQ_FIRST(&dev->children);
3660			     child2 && child2 != child;
3661			     child2 = TAILQ_NEXT(child2, link))
3662				DEVICE_RESUME(child2);
3663			return (error);
3664		}
3665	}
3666	return (0);
3667}
3668
3669/**
3670 * @brief Helper function for implementing DEVICE_RESUME()
3671 *
3672 * This function can be used to help implement the DEVICE_RESUME() for
3673 * a bus. It calls DEVICE_RESUME() on each of the device's children.
3674 */
3675int
3676bus_generic_resume(device_t dev)
3677{
3678	device_t	child;
3679
3680	TAILQ_FOREACH(child, &dev->children, link) {
3681		DEVICE_RESUME(child);
3682		/* if resume fails, there's nothing we can usefully do... */
3683	}
3684	return (0);
3685}
3686
3687/**
3688 * @brief Helper function for implementing BUS_PRINT_CHILD().
3689 *
3690 * This function prints the first part of the ascii representation of
3691 * @p child, including its name, unit and description (if any - see
3692 * device_set_desc()).
3693 *
3694 * @returns the number of characters printed
3695 */
3696int
3697bus_print_child_header(device_t dev, device_t child)
3698{
3699	int	retval = 0;
3700
3701	if (device_get_desc(child)) {
3702		retval += device_printf(child, "<%s>", device_get_desc(child));
3703	} else {
3704		retval += printf("%s", device_get_nameunit(child));
3705	}
3706
3707	return (retval);
3708}
3709
3710/**
3711 * @brief Helper function for implementing BUS_PRINT_CHILD().
3712 *
3713 * This function prints the last part of the ascii representation of
3714 * @p child, which consists of the string @c " on " followed by the
3715 * name and unit of the @p dev.
3716 *
3717 * @returns the number of characters printed
3718 */
3719int
3720bus_print_child_footer(device_t dev, device_t child)
3721{
3722	return (printf(" on %s\n", device_get_nameunit(dev)));
3723}
3724
3725/**
3726 * @brief Helper function for implementing BUS_PRINT_CHILD().
3727 *
3728 * This function prints out the VM domain for the given device.
3729 *
3730 * @returns the number of characters printed
3731 */
3732int
3733bus_print_child_domain(device_t dev, device_t child)
3734{
3735	int domain;
3736
3737	/* No domain? Don't print anything */
3738	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
3739		return (0);
3740
3741	return (printf(" numa-domain %d", domain));
3742}
3743
3744/**
3745 * @brief Helper function for implementing BUS_PRINT_CHILD().
3746 *
3747 * This function simply calls bus_print_child_header() followed by
3748 * bus_print_child_footer().
3749 *
3750 * @returns the number of characters printed
3751 */
3752int
3753bus_generic_print_child(device_t dev, device_t child)
3754{
3755	int	retval = 0;
3756
3757	retval += bus_print_child_header(dev, child);
3758	retval += bus_print_child_domain(dev, child);
3759	retval += bus_print_child_footer(dev, child);
3760
3761	return (retval);
3762}
3763
3764/**
3765 * @brief Stub function for implementing BUS_READ_IVAR().
3766 *
3767 * @returns ENOENT
3768 */
3769int
3770bus_generic_read_ivar(device_t dev, device_t child, int index,
3771    uintptr_t * result)
3772{
3773	return (ENOENT);
3774}
3775
3776/**
3777 * @brief Stub function for implementing BUS_WRITE_IVAR().
3778 *
3779 * @returns ENOENT
3780 */
3781int
3782bus_generic_write_ivar(device_t dev, device_t child, int index,
3783    uintptr_t value)
3784{
3785	return (ENOENT);
3786}
3787
3788/**
3789 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3790 *
3791 * @returns NULL
3792 */
3793struct resource_list *
3794bus_generic_get_resource_list(device_t dev, device_t child)
3795{
3796	return (NULL);
3797}
3798
3799/**
3800 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3801 *
3802 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3803 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3804 * and then calls device_probe_and_attach() for each unattached child.
3805 */
3806void
3807bus_generic_driver_added(device_t dev, driver_t *driver)
3808{
3809	device_t child;
3810
3811	DEVICE_IDENTIFY(driver, dev);
3812	TAILQ_FOREACH(child, &dev->children, link) {
3813		if (child->state == DS_NOTPRESENT ||
3814		    (child->flags & DF_REBID))
3815			device_probe_and_attach(child);
3816	}
3817}
3818
3819/**
3820 * @brief Helper function for implementing BUS_NEW_PASS().
3821 *
3822 * This implementing of BUS_NEW_PASS() first calls the identify
3823 * routines for any drivers that probe at the current pass.  Then it
3824 * walks the list of devices for this bus.  If a device is already
3825 * attached, then it calls BUS_NEW_PASS() on that device.  If the
3826 * device is not already attached, it attempts to attach a driver to
3827 * it.
3828 */
3829void
3830bus_generic_new_pass(device_t dev)
3831{
3832	driverlink_t dl;
3833	devclass_t dc;
3834	device_t child;
3835
3836	dc = dev->devclass;
3837	TAILQ_FOREACH(dl, &dc->drivers, link) {
3838		if (dl->pass == bus_current_pass)
3839			DEVICE_IDENTIFY(dl->driver, dev);
3840	}
3841	TAILQ_FOREACH(child, &dev->children, link) {
3842		if (child->state >= DS_ATTACHED)
3843			BUS_NEW_PASS(child);
3844		else if (child->state == DS_NOTPRESENT)
3845			device_probe_and_attach(child);
3846	}
3847}
3848
3849/**
3850 * @brief Helper function for implementing BUS_SETUP_INTR().
3851 *
3852 * This simple implementation of BUS_SETUP_INTR() simply calls the
3853 * BUS_SETUP_INTR() method of the parent of @p dev.
3854 */
3855int
3856bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3857    int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3858    void **cookiep)
3859{
3860	/* Propagate up the bus hierarchy until someone handles it. */
3861	if (dev->parent)
3862		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3863		    filter, intr, arg, cookiep));
3864	return (EINVAL);
3865}
3866
3867/**
3868 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3869 *
3870 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3871 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3872 */
3873int
3874bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3875    void *cookie)
3876{
3877	/* Propagate up the bus hierarchy until someone handles it. */
3878	if (dev->parent)
3879		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3880	return (EINVAL);
3881}
3882
3883/**
3884 * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3885 *
3886 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3887 * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3888 */
3889int
3890bus_generic_adjust_resource(device_t dev, device_t child, int type,
3891    struct resource *r, u_long start, u_long end)
3892{
3893	/* Propagate up the bus hierarchy until someone handles it. */
3894	if (dev->parent)
3895		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
3896		    end));
3897	return (EINVAL);
3898}
3899
3900/**
3901 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3902 *
3903 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3904 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3905 */
3906struct resource *
3907bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3908    u_long start, u_long end, u_long count, u_int flags)
3909{
3910	/* Propagate up the bus hierarchy until someone handles it. */
3911	if (dev->parent)
3912		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3913		    start, end, count, flags));
3914	return (NULL);
3915}
3916
3917/**
3918 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3919 *
3920 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3921 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3922 */
3923int
3924bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3925    struct resource *r)
3926{
3927	/* Propagate up the bus hierarchy until someone handles it. */
3928	if (dev->parent)
3929		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3930		    r));
3931	return (EINVAL);
3932}
3933
3934/**
3935 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3936 *
3937 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3938 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3939 */
3940int
3941bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3942    struct resource *r)
3943{
3944	/* Propagate up the bus hierarchy until someone handles it. */
3945	if (dev->parent)
3946		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3947		    r));
3948	return (EINVAL);
3949}
3950
3951/**
3952 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3953 *
3954 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3955 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3956 */
3957int
3958bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3959    int rid, struct resource *r)
3960{
3961	/* Propagate up the bus hierarchy until someone handles it. */
3962	if (dev->parent)
3963		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3964		    r));
3965	return (EINVAL);
3966}
3967
3968/**
3969 * @brief Helper function for implementing BUS_BIND_INTR().
3970 *
3971 * This simple implementation of BUS_BIND_INTR() simply calls the
3972 * BUS_BIND_INTR() method of the parent of @p dev.
3973 */
3974int
3975bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3976    int cpu)
3977{
3978
3979	/* Propagate up the bus hierarchy until someone handles it. */
3980	if (dev->parent)
3981		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3982	return (EINVAL);
3983}
3984
3985/**
3986 * @brief Helper function for implementing BUS_CONFIG_INTR().
3987 *
3988 * This simple implementation of BUS_CONFIG_INTR() simply calls the
3989 * BUS_CONFIG_INTR() method of the parent of @p dev.
3990 */
3991int
3992bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3993    enum intr_polarity pol)
3994{
3995
3996	/* Propagate up the bus hierarchy until someone handles it. */
3997	if (dev->parent)
3998		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3999	return (EINVAL);
4000}
4001
4002/**
4003 * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4004 *
4005 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4006 * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4007 */
4008int
4009bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4010    void *cookie, const char *descr)
4011{
4012
4013	/* Propagate up the bus hierarchy until someone handles it. */
4014	if (dev->parent)
4015		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4016		    descr));
4017	return (EINVAL);
4018}
4019
4020/**
4021 * @brief Helper function for implementing BUS_GET_DMA_TAG().
4022 *
4023 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4024 * BUS_GET_DMA_TAG() method of the parent of @p dev.
4025 */
4026bus_dma_tag_t
4027bus_generic_get_dma_tag(device_t dev, device_t child)
4028{
4029
4030	/* Propagate up the bus hierarchy until someone handles it. */
4031	if (dev->parent != NULL)
4032		return (BUS_GET_DMA_TAG(dev->parent, child));
4033	return (NULL);
4034}
4035
4036/**
4037 * @brief Helper function for implementing BUS_GET_RESOURCE().
4038 *
4039 * This implementation of BUS_GET_RESOURCE() uses the
4040 * resource_list_find() function to do most of the work. It calls
4041 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4042 * search.
4043 */
4044int
4045bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4046    u_long *startp, u_long *countp)
4047{
4048	struct resource_list *		rl = NULL;
4049	struct resource_list_entry *	rle = NULL;
4050
4051	rl = BUS_GET_RESOURCE_LIST(dev, child);
4052	if (!rl)
4053		return (EINVAL);
4054
4055	rle = resource_list_find(rl, type, rid);
4056	if (!rle)
4057		return (ENOENT);
4058
4059	if (startp)
4060		*startp = rle->start;
4061	if (countp)
4062		*countp = rle->count;
4063
4064	return (0);
4065}
4066
4067/**
4068 * @brief Helper function for implementing BUS_SET_RESOURCE().
4069 *
4070 * This implementation of BUS_SET_RESOURCE() uses the
4071 * resource_list_add() function to do most of the work. It calls
4072 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4073 * edit.
4074 */
4075int
4076bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4077    u_long start, u_long count)
4078{
4079	struct resource_list *		rl = NULL;
4080
4081	rl = BUS_GET_RESOURCE_LIST(dev, child);
4082	if (!rl)
4083		return (EINVAL);
4084
4085	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4086
4087	return (0);
4088}
4089
4090/**
4091 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4092 *
4093 * This implementation of BUS_DELETE_RESOURCE() uses the
4094 * resource_list_delete() function to do most of the work. It calls
4095 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4096 * edit.
4097 */
4098void
4099bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4100{
4101	struct resource_list *		rl = NULL;
4102
4103	rl = BUS_GET_RESOURCE_LIST(dev, child);
4104	if (!rl)
4105		return;
4106
4107	resource_list_delete(rl, type, rid);
4108
4109	return;
4110}
4111
4112/**
4113 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4114 *
4115 * This implementation of BUS_RELEASE_RESOURCE() uses the
4116 * resource_list_release() function to do most of the work. It calls
4117 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4118 */
4119int
4120bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4121    int rid, struct resource *r)
4122{
4123	struct resource_list *		rl = NULL;
4124
4125	if (device_get_parent(child) != dev)
4126		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4127		    type, rid, r));
4128
4129	rl = BUS_GET_RESOURCE_LIST(dev, child);
4130	if (!rl)
4131		return (EINVAL);
4132
4133	return (resource_list_release(rl, dev, child, type, rid, r));
4134}
4135
4136/**
4137 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4138 *
4139 * This implementation of BUS_ALLOC_RESOURCE() uses the
4140 * resource_list_alloc() function to do most of the work. It calls
4141 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4142 */
4143struct resource *
4144bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4145    int *rid, u_long start, u_long end, u_long count, u_int flags)
4146{
4147	struct resource_list *		rl = NULL;
4148
4149	if (device_get_parent(child) != dev)
4150		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4151		    type, rid, start, end, count, flags));
4152
4153	rl = BUS_GET_RESOURCE_LIST(dev, child);
4154	if (!rl)
4155		return (NULL);
4156
4157	return (resource_list_alloc(rl, dev, child, type, rid,
4158	    start, end, count, flags));
4159}
4160
4161/**
4162 * @brief Helper function for implementing BUS_CHILD_PRESENT().
4163 *
4164 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4165 * BUS_CHILD_PRESENT() method of the parent of @p dev.
4166 */
4167int
4168bus_generic_child_present(device_t dev, device_t child)
4169{
4170	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4171}
4172
4173int
4174bus_generic_get_domain(device_t dev, device_t child, int *domain)
4175{
4176
4177	if (dev->parent)
4178		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4179
4180	return (ENOENT);
4181}
4182
4183/*
4184 * Some convenience functions to make it easier for drivers to use the
4185 * resource-management functions.  All these really do is hide the
4186 * indirection through the parent's method table, making for slightly
4187 * less-wordy code.  In the future, it might make sense for this code
4188 * to maintain some sort of a list of resources allocated by each device.
4189 */
4190
4191int
4192bus_alloc_resources(device_t dev, struct resource_spec *rs,
4193    struct resource **res)
4194{
4195	int i;
4196
4197	for (i = 0; rs[i].type != -1; i++)
4198		res[i] = NULL;
4199	for (i = 0; rs[i].type != -1; i++) {
4200		res[i] = bus_alloc_resource_any(dev,
4201		    rs[i].type, &rs[i].rid, rs[i].flags);
4202		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4203			bus_release_resources(dev, rs, res);
4204			return (ENXIO);
4205		}
4206	}
4207	return (0);
4208}
4209
4210void
4211bus_release_resources(device_t dev, const struct resource_spec *rs,
4212    struct resource **res)
4213{
4214	int i;
4215
4216	for (i = 0; rs[i].type != -1; i++)
4217		if (res[i] != NULL) {
4218			bus_release_resource(
4219			    dev, rs[i].type, rs[i].rid, res[i]);
4220			res[i] = NULL;
4221		}
4222}
4223
4224/**
4225 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4226 *
4227 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4228 * parent of @p dev.
4229 */
4230struct resource *
4231bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
4232    u_long count, u_int flags)
4233{
4234	if (dev->parent == NULL)
4235		return (NULL);
4236	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4237	    count, flags));
4238}
4239
4240/**
4241 * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4242 *
4243 * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4244 * parent of @p dev.
4245 */
4246int
4247bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start,
4248    u_long end)
4249{
4250	if (dev->parent == NULL)
4251		return (EINVAL);
4252	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4253}
4254
4255/**
4256 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4257 *
4258 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4259 * parent of @p dev.
4260 */
4261int
4262bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4263{
4264	if (dev->parent == NULL)
4265		return (EINVAL);
4266	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4267}
4268
4269/**
4270 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4271 *
4272 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4273 * parent of @p dev.
4274 */
4275int
4276bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4277{
4278	if (dev->parent == NULL)
4279		return (EINVAL);
4280	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4281}
4282
4283/**
4284 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4285 *
4286 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4287 * parent of @p dev.
4288 */
4289int
4290bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4291{
4292	if (dev->parent == NULL)
4293		return (EINVAL);
4294	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
4295}
4296
4297/**
4298 * @brief Wrapper function for BUS_SETUP_INTR().
4299 *
4300 * This function simply calls the BUS_SETUP_INTR() method of the
4301 * parent of @p dev.
4302 */
4303int
4304bus_setup_intr(device_t dev, struct resource *r, int flags,
4305    driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4306{
4307	int error;
4308
4309	if (dev->parent == NULL)
4310		return (EINVAL);
4311	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4312	    arg, cookiep);
4313	if (error != 0)
4314		return (error);
4315	if (handler != NULL && !(flags & INTR_MPSAFE))
4316		device_printf(dev, "[GIANT-LOCKED]\n");
4317	return (0);
4318}
4319
4320/**
4321 * @brief Wrapper function for BUS_TEARDOWN_INTR().
4322 *
4323 * This function simply calls the BUS_TEARDOWN_INTR() method of the
4324 * parent of @p dev.
4325 */
4326int
4327bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4328{
4329	if (dev->parent == NULL)
4330		return (EINVAL);
4331	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4332}
4333
4334/**
4335 * @brief Wrapper function for BUS_BIND_INTR().
4336 *
4337 * This function simply calls the BUS_BIND_INTR() method of the
4338 * parent of @p dev.
4339 */
4340int
4341bus_bind_intr(device_t dev, struct resource *r, int cpu)
4342{
4343	if (dev->parent == NULL)
4344		return (EINVAL);
4345	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4346}
4347
4348/**
4349 * @brief Wrapper function for BUS_DESCRIBE_INTR().
4350 *
4351 * This function first formats the requested description into a
4352 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4353 * the parent of @p dev.
4354 */
4355int
4356bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4357    const char *fmt, ...)
4358{
4359	va_list ap;
4360	char descr[MAXCOMLEN + 1];
4361
4362	if (dev->parent == NULL)
4363		return (EINVAL);
4364	va_start(ap, fmt);
4365	vsnprintf(descr, sizeof(descr), fmt, ap);
4366	va_end(ap);
4367	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4368}
4369
4370/**
4371 * @brief Wrapper function for BUS_SET_RESOURCE().
4372 *
4373 * This function simply calls the BUS_SET_RESOURCE() method of the
4374 * parent of @p dev.
4375 */
4376int
4377bus_set_resource(device_t dev, int type, int rid,
4378    u_long start, u_long count)
4379{
4380	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4381	    start, count));
4382}
4383
4384/**
4385 * @brief Wrapper function for BUS_GET_RESOURCE().
4386 *
4387 * This function simply calls the BUS_GET_RESOURCE() method of the
4388 * parent of @p dev.
4389 */
4390int
4391bus_get_resource(device_t dev, int type, int rid,
4392    u_long *startp, u_long *countp)
4393{
4394	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4395	    startp, countp));
4396}
4397
4398/**
4399 * @brief Wrapper function for BUS_GET_RESOURCE().
4400 *
4401 * This function simply calls the BUS_GET_RESOURCE() method of the
4402 * parent of @p dev and returns the start value.
4403 */
4404u_long
4405bus_get_resource_start(device_t dev, int type, int rid)
4406{
4407	u_long start, count;
4408	int error;
4409
4410	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4411	    &start, &count);
4412	if (error)
4413		return (0);
4414	return (start);
4415}
4416
4417/**
4418 * @brief Wrapper function for BUS_GET_RESOURCE().
4419 *
4420 * This function simply calls the BUS_GET_RESOURCE() method of the
4421 * parent of @p dev and returns the count value.
4422 */
4423u_long
4424bus_get_resource_count(device_t dev, int type, int rid)
4425{
4426	u_long start, count;
4427	int error;
4428
4429	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4430	    &start, &count);
4431	if (error)
4432		return (0);
4433	return (count);
4434}
4435
4436/**
4437 * @brief Wrapper function for BUS_DELETE_RESOURCE().
4438 *
4439 * This function simply calls the BUS_DELETE_RESOURCE() method of the
4440 * parent of @p dev.
4441 */
4442void
4443bus_delete_resource(device_t dev, int type, int rid)
4444{
4445	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4446}
4447
4448/**
4449 * @brief Wrapper function for BUS_CHILD_PRESENT().
4450 *
4451 * This function simply calls the BUS_CHILD_PRESENT() method of the
4452 * parent of @p dev.
4453 */
4454int
4455bus_child_present(device_t child)
4456{
4457	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4458}
4459
4460/**
4461 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4462 *
4463 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4464 * parent of @p dev.
4465 */
4466int
4467bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4468{
4469	device_t parent;
4470
4471	parent = device_get_parent(child);
4472	if (parent == NULL) {
4473		*buf = '\0';
4474		return (0);
4475	}
4476	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4477}
4478
4479/**
4480 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4481 *
4482 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4483 * parent of @p dev.
4484 */
4485int
4486bus_child_location_str(device_t child, char *buf, size_t buflen)
4487{
4488	device_t parent;
4489
4490	parent = device_get_parent(child);
4491	if (parent == NULL) {
4492		*buf = '\0';
4493		return (0);
4494	}
4495	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4496}
4497
4498/**
4499 * @brief Wrapper function for BUS_GET_DMA_TAG().
4500 *
4501 * This function simply calls the BUS_GET_DMA_TAG() method of the
4502 * parent of @p dev.
4503 */
4504bus_dma_tag_t
4505bus_get_dma_tag(device_t dev)
4506{
4507	device_t parent;
4508
4509	parent = device_get_parent(dev);
4510	if (parent == NULL)
4511		return (NULL);
4512	return (BUS_GET_DMA_TAG(parent, dev));
4513}
4514
4515/**
4516 * @brief Wrapper function for BUS_GET_DOMAIN().
4517 *
4518 * This function simply calls the BUS_GET_DOMAIN() method of the
4519 * parent of @p dev.
4520 */
4521int
4522bus_get_domain(device_t dev, int *domain)
4523{
4524	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
4525}
4526
4527/* Resume all devices and then notify userland that we're up again. */
4528static int
4529root_resume(device_t dev)
4530{
4531	int error;
4532
4533	error = bus_generic_resume(dev);
4534	if (error == 0)
4535		devctl_notify("kern", "power", "resume", NULL);
4536	return (error);
4537}
4538
4539static int
4540root_print_child(device_t dev, device_t child)
4541{
4542	int	retval = 0;
4543
4544	retval += bus_print_child_header(dev, child);
4545	retval += printf("\n");
4546
4547	return (retval);
4548}
4549
4550static int
4551root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4552    driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4553{
4554	/*
4555	 * If an interrupt mapping gets to here something bad has happened.
4556	 */
4557	panic("root_setup_intr");
4558}
4559
4560/*
4561 * If we get here, assume that the device is permanant and really is
4562 * present in the system.  Removable bus drivers are expected to intercept
4563 * this call long before it gets here.  We return -1 so that drivers that
4564 * really care can check vs -1 or some ERRNO returned higher in the food
4565 * chain.
4566 */
4567static int
4568root_child_present(device_t dev, device_t child)
4569{
4570	return (-1);
4571}
4572
4573static kobj_method_t root_methods[] = {
4574	/* Device interface */
4575	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4576	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4577	KOBJMETHOD(device_resume,	root_resume),
4578
4579	/* Bus interface */
4580	KOBJMETHOD(bus_print_child,	root_print_child),
4581	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4582	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4583	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4584	KOBJMETHOD(bus_child_present,	root_child_present),
4585
4586	KOBJMETHOD_END
4587};
4588
4589static driver_t root_driver = {
4590	"root",
4591	root_methods,
4592	1,			/* no softc */
4593};
4594
4595device_t	root_bus;
4596devclass_t	root_devclass;
4597
4598static int
4599root_bus_module_handler(module_t mod, int what, void* arg)
4600{
4601	switch (what) {
4602	case MOD_LOAD:
4603		TAILQ_INIT(&bus_data_devices);
4604		kobj_class_compile((kobj_class_t) &root_driver);
4605		root_bus = make_device(NULL, "root", 0);
4606		root_bus->desc = "System root bus";
4607		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4608		root_bus->driver = &root_driver;
4609		root_bus->state = DS_ATTACHED;
4610		root_devclass = devclass_find_internal("root", NULL, FALSE);
4611		devinit();
4612		return (0);
4613
4614	case MOD_SHUTDOWN:
4615		device_shutdown(root_bus);
4616		return (0);
4617	default:
4618		return (EOPNOTSUPP);
4619	}
4620
4621	return (0);
4622}
4623
4624static moduledata_t root_bus_mod = {
4625	"rootbus",
4626	root_bus_module_handler,
4627	NULL
4628};
4629DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4630
4631/**
4632 * @brief Automatically configure devices
4633 *
4634 * This function begins the autoconfiguration process by calling
4635 * device_probe_and_attach() for each child of the @c root0 device.
4636 */
4637void
4638root_bus_configure(void)
4639{
4640
4641	PDEBUG(("."));
4642
4643	/* Eventually this will be split up, but this is sufficient for now. */
4644	bus_set_pass(BUS_PASS_DEFAULT);
4645}
4646
4647/**
4648 * @brief Module handler for registering device drivers
4649 *
4650 * This module handler is used to automatically register device
4651 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4652 * devclass_add_driver() for the driver described by the
4653 * driver_module_data structure pointed to by @p arg
4654 */
4655int
4656driver_module_handler(module_t mod, int what, void *arg)
4657{
4658	struct driver_module_data *dmd;
4659	devclass_t bus_devclass;
4660	kobj_class_t driver;
4661	int error, pass;
4662
4663	dmd = (struct driver_module_data *)arg;
4664	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4665	error = 0;
4666
4667	switch (what) {
4668	case MOD_LOAD:
4669		if (dmd->dmd_chainevh)
4670			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4671
4672		pass = dmd->dmd_pass;
4673		driver = dmd->dmd_driver;
4674		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4675		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4676		error = devclass_add_driver(bus_devclass, driver, pass,
4677		    dmd->dmd_devclass);
4678		break;
4679
4680	case MOD_UNLOAD:
4681		PDEBUG(("Unloading module: driver %s from bus %s",
4682		    DRIVERNAME(dmd->dmd_driver),
4683		    dmd->dmd_busname));
4684		error = devclass_delete_driver(bus_devclass,
4685		    dmd->dmd_driver);
4686
4687		if (!error && dmd->dmd_chainevh)
4688			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4689		break;
4690	case MOD_QUIESCE:
4691		PDEBUG(("Quiesce module: driver %s from bus %s",
4692		    DRIVERNAME(dmd->dmd_driver),
4693		    dmd->dmd_busname));
4694		error = devclass_quiesce_driver(bus_devclass,
4695		    dmd->dmd_driver);
4696
4697		if (!error && dmd->dmd_chainevh)
4698			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4699		break;
4700	default:
4701		error = EOPNOTSUPP;
4702		break;
4703	}
4704
4705	return (error);
4706}
4707
4708/**
4709 * @brief Enumerate all hinted devices for this bus.
4710 *
4711 * Walks through the hints for this bus and calls the bus_hinted_child
4712 * routine for each one it fines.  It searches first for the specific
4713 * bus that's being probed for hinted children (eg isa0), and then for
4714 * generic children (eg isa).
4715 *
4716 * @param	dev	bus device to enumerate
4717 */
4718void
4719bus_enumerate_hinted_children(device_t bus)
4720{
4721	int i;
4722	const char *dname, *busname;
4723	int dunit;
4724
4725	/*
4726	 * enumerate all devices on the specific bus
4727	 */
4728	busname = device_get_nameunit(bus);
4729	i = 0;
4730	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4731		BUS_HINTED_CHILD(bus, dname, dunit);
4732
4733	/*
4734	 * and all the generic ones.
4735	 */
4736	busname = device_get_name(bus);
4737	i = 0;
4738	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4739		BUS_HINTED_CHILD(bus, dname, dunit);
4740}
4741
4742#ifdef BUS_DEBUG
4743
4744/* the _short versions avoid iteration by not calling anything that prints
4745 * more than oneliners. I love oneliners.
4746 */
4747
4748static void
4749print_device_short(device_t dev, int indent)
4750{
4751	if (!dev)
4752		return;
4753
4754	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4755	    dev->unit, dev->desc,
4756	    (dev->parent? "":"no "),
4757	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4758	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4759	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4760	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4761	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4762	    (dev->flags&DF_REBID? "rebiddable,":""),
4763	    (dev->ivars? "":"no "),
4764	    (dev->softc? "":"no "),
4765	    dev->busy));
4766}
4767
4768static void
4769print_device(device_t dev, int indent)
4770{
4771	if (!dev)
4772		return;
4773
4774	print_device_short(dev, indent);
4775
4776	indentprintf(("Parent:\n"));
4777	print_device_short(dev->parent, indent+1);
4778	indentprintf(("Driver:\n"));
4779	print_driver_short(dev->driver, indent+1);
4780	indentprintf(("Devclass:\n"));
4781	print_devclass_short(dev->devclass, indent+1);
4782}
4783
4784void
4785print_device_tree_short(device_t dev, int indent)
4786/* print the device and all its children (indented) */
4787{
4788	device_t child;
4789
4790	if (!dev)
4791		return;
4792
4793	print_device_short(dev, indent);
4794
4795	TAILQ_FOREACH(child, &dev->children, link) {
4796		print_device_tree_short(child, indent+1);
4797	}
4798}
4799
4800void
4801print_device_tree(device_t dev, int indent)
4802/* print the device and all its children (indented) */
4803{
4804	device_t child;
4805
4806	if (!dev)
4807		return;
4808
4809	print_device(dev, indent);
4810
4811	TAILQ_FOREACH(child, &dev->children, link) {
4812		print_device_tree(child, indent+1);
4813	}
4814}
4815
4816static void
4817print_driver_short(driver_t *driver, int indent)
4818{
4819	if (!driver)
4820		return;
4821
4822	indentprintf(("driver %s: softc size = %zd\n",
4823	    driver->name, driver->size));
4824}
4825
4826static void
4827print_driver(driver_t *driver, int indent)
4828{
4829	if (!driver)
4830		return;
4831
4832	print_driver_short(driver, indent);
4833}
4834
4835static void
4836print_driver_list(driver_list_t drivers, int indent)
4837{
4838	driverlink_t driver;
4839
4840	TAILQ_FOREACH(driver, &drivers, link) {
4841		print_driver(driver->driver, indent);
4842	}
4843}
4844
4845static void
4846print_devclass_short(devclass_t dc, int indent)
4847{
4848	if ( !dc )
4849		return;
4850
4851	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4852}
4853
4854static void
4855print_devclass(devclass_t dc, int indent)
4856{
4857	int i;
4858
4859	if ( !dc )
4860		return;
4861
4862	print_devclass_short(dc, indent);
4863	indentprintf(("Drivers:\n"));
4864	print_driver_list(dc->drivers, indent+1);
4865
4866	indentprintf(("Devices:\n"));
4867	for (i = 0; i < dc->maxunit; i++)
4868		if (dc->devices[i])
4869			print_device(dc->devices[i], indent+1);
4870}
4871
4872void
4873print_devclass_list_short(void)
4874{
4875	devclass_t dc;
4876
4877	printf("Short listing of devclasses, drivers & devices:\n");
4878	TAILQ_FOREACH(dc, &devclasses, link) {
4879		print_devclass_short(dc, 0);
4880	}
4881}
4882
4883void
4884print_devclass_list(void)
4885{
4886	devclass_t dc;
4887
4888	printf("Full listing of devclasses, drivers & devices:\n");
4889	TAILQ_FOREACH(dc, &devclasses, link) {
4890		print_devclass(dc, 0);
4891	}
4892}
4893
4894#endif
4895
4896/*
4897 * User-space access to the device tree.
4898 *
4899 * We implement a small set of nodes:
4900 *
4901 * hw.bus			Single integer read method to obtain the
4902 *				current generation count.
4903 * hw.bus.devices		Reads the entire device tree in flat space.
4904 * hw.bus.rman			Resource manager interface
4905 *
4906 * We might like to add the ability to scan devclasses and/or drivers to
4907 * determine what else is currently loaded/available.
4908 */
4909
4910static int
4911sysctl_bus(SYSCTL_HANDLER_ARGS)
4912{
4913	struct u_businfo	ubus;
4914
4915	ubus.ub_version = BUS_USER_VERSION;
4916	ubus.ub_generation = bus_data_generation;
4917
4918	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4919}
4920SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4921    "bus-related data");
4922
4923static int
4924sysctl_devices(SYSCTL_HANDLER_ARGS)
4925{
4926	int			*name = (int *)arg1;
4927	u_int			namelen = arg2;
4928	int			index;
4929	struct device		*dev;
4930	struct u_device		udev;	/* XXX this is a bit big */
4931	int			error;
4932
4933	if (namelen != 2)
4934		return (EINVAL);
4935
4936	if (bus_data_generation_check(name[0]))
4937		return (EINVAL);
4938
4939	index = name[1];
4940
4941	/*
4942	 * Scan the list of devices, looking for the requested index.
4943	 */
4944	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4945		if (index-- == 0)
4946			break;
4947	}
4948	if (dev == NULL)
4949		return (ENOENT);
4950
4951	/*
4952	 * Populate the return array.
4953	 */
4954	bzero(&udev, sizeof(udev));
4955	udev.dv_handle = (uintptr_t)dev;
4956	udev.dv_parent = (uintptr_t)dev->parent;
4957	if (dev->nameunit != NULL)
4958		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4959	if (dev->desc != NULL)
4960		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4961	if (dev->driver != NULL && dev->driver->name != NULL)
4962		strlcpy(udev.dv_drivername, dev->driver->name,
4963		    sizeof(udev.dv_drivername));
4964	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4965	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4966	udev.dv_devflags = dev->devflags;
4967	udev.dv_flags = dev->flags;
4968	udev.dv_state = dev->state;
4969	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4970	return (error);
4971}
4972
4973SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4974    "system device tree");
4975
4976int
4977bus_data_generation_check(int generation)
4978{
4979	if (generation != bus_data_generation)
4980		return (1);
4981
4982	/* XXX generate optimised lists here? */
4983	return (0);
4984}
4985
4986void
4987bus_data_generation_update(void)
4988{
4989	bus_data_generation++;
4990}
4991
4992int
4993bus_free_resource(device_t dev, int type, struct resource *r)
4994{
4995	if (r == NULL)
4996		return (0);
4997	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4998}
4999