subr_bus.c revision 256381
1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/10/sys/kern/subr_bus.c 256381 2013-10-12 15:31:36Z markm $");
29
30#include "opt_bus.h"
31#include "opt_random.h"
32
33#include <sys/param.h>
34#include <sys/conf.h>
35#include <sys/filio.h>
36#include <sys/lock.h>
37#include <sys/kernel.h>
38#include <sys/kobj.h>
39#include <sys/limits.h>
40#include <sys/malloc.h>
41#include <sys/module.h>
42#include <sys/mutex.h>
43#include <sys/poll.h>
44#include <sys/proc.h>
45#include <sys/condvar.h>
46#include <sys/queue.h>
47#include <machine/bus.h>
48#include <sys/random.h>
49#include <sys/rman.h>
50#include <sys/selinfo.h>
51#include <sys/signalvar.h>
52#include <sys/sysctl.h>
53#include <sys/systm.h>
54#include <sys/uio.h>
55#include <sys/bus.h>
56#include <sys/interrupt.h>
57
58#include <net/vnet.h>
59
60#include <machine/cpu.h>
61#include <machine/stdarg.h>
62
63#include <vm/uma.h>
64
65SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
66SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
67
68/*
69 * Used to attach drivers to devclasses.
70 */
71typedef struct driverlink *driverlink_t;
72struct driverlink {
73	kobj_class_t	driver;
74	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
75	int		pass;
76	TAILQ_ENTRY(driverlink) passlink;
77};
78
79/*
80 * Forward declarations
81 */
82typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
83typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
84typedef TAILQ_HEAD(device_list, device) device_list_t;
85
86struct devclass {
87	TAILQ_ENTRY(devclass) link;
88	devclass_t	parent;		/* parent in devclass hierarchy */
89	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
90	char		*name;
91	device_t	*devices;	/* array of devices indexed by unit */
92	int		maxunit;	/* size of devices array */
93	int		flags;
94#define DC_HAS_CHILDREN		1
95
96	struct sysctl_ctx_list sysctl_ctx;
97	struct sysctl_oid *sysctl_tree;
98};
99
100/**
101 * @brief Implementation of device.
102 */
103struct device {
104	/*
105	 * A device is a kernel object. The first field must be the
106	 * current ops table for the object.
107	 */
108	KOBJ_FIELDS;
109
110	/*
111	 * Device hierarchy.
112	 */
113	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
114	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
115	device_t	parent;		/**< parent of this device  */
116	device_list_t	children;	/**< list of child devices */
117
118	/*
119	 * Details of this device.
120	 */
121	driver_t	*driver;	/**< current driver */
122	devclass_t	devclass;	/**< current device class */
123	int		unit;		/**< current unit number */
124	char*		nameunit;	/**< name+unit e.g. foodev0 */
125	char*		desc;		/**< driver specific description */
126	int		busy;		/**< count of calls to device_busy() */
127	device_state_t	state;		/**< current device state  */
128	uint32_t	devflags;	/**< api level flags for device_get_flags() */
129	u_int		flags;		/**< internal device flags  */
130#define	DF_ENABLED	0x01		/* device should be probed/attached */
131#define	DF_FIXEDCLASS	0x02		/* devclass specified at create time */
132#define	DF_WILDCARD	0x04		/* unit was originally wildcard */
133#define	DF_DESCMALLOCED	0x08		/* description was malloced */
134#define	DF_QUIET	0x10		/* don't print verbose attach message */
135#define	DF_DONENOMATCH	0x20		/* don't execute DEVICE_NOMATCH again */
136#define	DF_EXTERNALSOFTC 0x40		/* softc not allocated by us */
137#define	DF_REBID	0x80		/* Can rebid after attach */
138	u_int	order;			/**< order from device_add_child_ordered() */
139	void	*ivars;			/**< instance variables  */
140	void	*softc;			/**< current driver's variables  */
141
142	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
143	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
144};
145
146static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
147static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
148
149#ifdef BUS_DEBUG
150
151static int bus_debug = 1;
152TUNABLE_INT("bus.debug", &bus_debug);
153SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
154    "Debug bus code");
155
156#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
157#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
158#define DRIVERNAME(d)	((d)? d->name : "no driver")
159#define DEVCLANAME(d)	((d)? d->name : "no devclass")
160
161/**
162 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
163 * prevent syslog from deleting initial spaces
164 */
165#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
166
167static void print_device_short(device_t dev, int indent);
168static void print_device(device_t dev, int indent);
169void print_device_tree_short(device_t dev, int indent);
170void print_device_tree(device_t dev, int indent);
171static void print_driver_short(driver_t *driver, int indent);
172static void print_driver(driver_t *driver, int indent);
173static void print_driver_list(driver_list_t drivers, int indent);
174static void print_devclass_short(devclass_t dc, int indent);
175static void print_devclass(devclass_t dc, int indent);
176void print_devclass_list_short(void);
177void print_devclass_list(void);
178
179#else
180/* Make the compiler ignore the function calls */
181#define PDEBUG(a)			/* nop */
182#define DEVICENAME(d)			/* nop */
183#define DRIVERNAME(d)			/* nop */
184#define DEVCLANAME(d)			/* nop */
185
186#define print_device_short(d,i)		/* nop */
187#define print_device(d,i)		/* nop */
188#define print_device_tree_short(d,i)	/* nop */
189#define print_device_tree(d,i)		/* nop */
190#define print_driver_short(d,i)		/* nop */
191#define print_driver(d,i)		/* nop */
192#define print_driver_list(d,i)		/* nop */
193#define print_devclass_short(d,i)	/* nop */
194#define print_devclass(d,i)		/* nop */
195#define print_devclass_list_short()	/* nop */
196#define print_devclass_list()		/* nop */
197#endif
198
199/*
200 * dev sysctl tree
201 */
202
203enum {
204	DEVCLASS_SYSCTL_PARENT,
205};
206
207static int
208devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
209{
210	devclass_t dc = (devclass_t)arg1;
211	const char *value;
212
213	switch (arg2) {
214	case DEVCLASS_SYSCTL_PARENT:
215		value = dc->parent ? dc->parent->name : "";
216		break;
217	default:
218		return (EINVAL);
219	}
220	return (SYSCTL_OUT(req, value, strlen(value)));
221}
222
223static void
224devclass_sysctl_init(devclass_t dc)
225{
226
227	if (dc->sysctl_tree != NULL)
228		return;
229	sysctl_ctx_init(&dc->sysctl_ctx);
230	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
231	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
232	    CTLFLAG_RD, NULL, "");
233	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
234	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
235	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
236	    "parent class");
237}
238
239enum {
240	DEVICE_SYSCTL_DESC,
241	DEVICE_SYSCTL_DRIVER,
242	DEVICE_SYSCTL_LOCATION,
243	DEVICE_SYSCTL_PNPINFO,
244	DEVICE_SYSCTL_PARENT,
245};
246
247static int
248device_sysctl_handler(SYSCTL_HANDLER_ARGS)
249{
250	device_t dev = (device_t)arg1;
251	const char *value;
252	char *buf;
253	int error;
254
255	buf = NULL;
256	switch (arg2) {
257	case DEVICE_SYSCTL_DESC:
258		value = dev->desc ? dev->desc : "";
259		break;
260	case DEVICE_SYSCTL_DRIVER:
261		value = dev->driver ? dev->driver->name : "";
262		break;
263	case DEVICE_SYSCTL_LOCATION:
264		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
265		bus_child_location_str(dev, buf, 1024);
266		break;
267	case DEVICE_SYSCTL_PNPINFO:
268		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
269		bus_child_pnpinfo_str(dev, buf, 1024);
270		break;
271	case DEVICE_SYSCTL_PARENT:
272		value = dev->parent ? dev->parent->nameunit : "";
273		break;
274	default:
275		return (EINVAL);
276	}
277	error = SYSCTL_OUT(req, value, strlen(value));
278	if (buf != NULL)
279		free(buf, M_BUS);
280	return (error);
281}
282
283static void
284device_sysctl_init(device_t dev)
285{
286	devclass_t dc = dev->devclass;
287
288	if (dev->sysctl_tree != NULL)
289		return;
290	devclass_sysctl_init(dc);
291	sysctl_ctx_init(&dev->sysctl_ctx);
292	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
293	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
294	    dev->nameunit + strlen(dc->name),
295	    CTLFLAG_RD, NULL, "");
296	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
297	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
298	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
299	    "device description");
300	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
301	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
302	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
303	    "device driver name");
304	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
305	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
306	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
307	    "device location relative to parent");
308	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
309	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
310	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
311	    "device identification");
312	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
313	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
314	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
315	    "parent device");
316}
317
318static void
319device_sysctl_update(device_t dev)
320{
321	devclass_t dc = dev->devclass;
322
323	if (dev->sysctl_tree == NULL)
324		return;
325	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
326}
327
328static void
329device_sysctl_fini(device_t dev)
330{
331	if (dev->sysctl_tree == NULL)
332		return;
333	sysctl_ctx_free(&dev->sysctl_ctx);
334	dev->sysctl_tree = NULL;
335}
336
337/*
338 * /dev/devctl implementation
339 */
340
341/*
342 * This design allows only one reader for /dev/devctl.  This is not desirable
343 * in the long run, but will get a lot of hair out of this implementation.
344 * Maybe we should make this device a clonable device.
345 *
346 * Also note: we specifically do not attach a device to the device_t tree
347 * to avoid potential chicken and egg problems.  One could argue that all
348 * of this belongs to the root node.  One could also further argue that the
349 * sysctl interface that we have not might more properly be an ioctl
350 * interface, but at this stage of the game, I'm not inclined to rock that
351 * boat.
352 *
353 * I'm also not sure that the SIGIO support is done correctly or not, as
354 * I copied it from a driver that had SIGIO support that likely hasn't been
355 * tested since 3.4 or 2.2.8!
356 */
357
358/* Deprecated way to adjust queue length */
359static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
360/* XXX Need to support old-style tunable hw.bus.devctl_disable" */
361SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL,
362    0, sysctl_devctl_disable, "I", "devctl disable -- deprecated");
363
364#define DEVCTL_DEFAULT_QUEUE_LEN 1000
365static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
366static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
367TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
368SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL,
369    0, sysctl_devctl_queue, "I", "devctl queue length");
370
371static d_open_t		devopen;
372static d_close_t	devclose;
373static d_read_t		devread;
374static d_ioctl_t	devioctl;
375static d_poll_t		devpoll;
376
377static struct cdevsw dev_cdevsw = {
378	.d_version =	D_VERSION,
379	.d_flags =	D_NEEDGIANT,
380	.d_open =	devopen,
381	.d_close =	devclose,
382	.d_read =	devread,
383	.d_ioctl =	devioctl,
384	.d_poll =	devpoll,
385	.d_name =	"devctl",
386};
387
388struct dev_event_info
389{
390	char *dei_data;
391	TAILQ_ENTRY(dev_event_info) dei_link;
392};
393
394TAILQ_HEAD(devq, dev_event_info);
395
396static struct dev_softc
397{
398	int	inuse;
399	int	nonblock;
400	int	queued;
401	struct mtx mtx;
402	struct cv cv;
403	struct selinfo sel;
404	struct devq devq;
405	struct proc *async_proc;
406} devsoftc;
407
408static struct cdev *devctl_dev;
409
410static void
411devinit(void)
412{
413	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
414	    UID_ROOT, GID_WHEEL, 0600, "devctl");
415	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
416	cv_init(&devsoftc.cv, "dev cv");
417	TAILQ_INIT(&devsoftc.devq);
418}
419
420static int
421devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
422{
423	if (devsoftc.inuse)
424		return (EBUSY);
425	/* move to init */
426	devsoftc.inuse = 1;
427	devsoftc.nonblock = 0;
428	devsoftc.async_proc = NULL;
429	return (0);
430}
431
432static int
433devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
434{
435	devsoftc.inuse = 0;
436	mtx_lock(&devsoftc.mtx);
437	cv_broadcast(&devsoftc.cv);
438	mtx_unlock(&devsoftc.mtx);
439	devsoftc.async_proc = NULL;
440	return (0);
441}
442
443/*
444 * The read channel for this device is used to report changes to
445 * userland in realtime.  We are required to free the data as well as
446 * the n1 object because we allocate them separately.  Also note that
447 * we return one record at a time.  If you try to read this device a
448 * character at a time, you will lose the rest of the data.  Listening
449 * programs are expected to cope.
450 */
451static int
452devread(struct cdev *dev, struct uio *uio, int ioflag)
453{
454	struct dev_event_info *n1;
455	int rv;
456
457	mtx_lock(&devsoftc.mtx);
458	while (TAILQ_EMPTY(&devsoftc.devq)) {
459		if (devsoftc.nonblock) {
460			mtx_unlock(&devsoftc.mtx);
461			return (EAGAIN);
462		}
463		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
464		if (rv) {
465			/*
466			 * Need to translate ERESTART to EINTR here? -- jake
467			 */
468			mtx_unlock(&devsoftc.mtx);
469			return (rv);
470		}
471	}
472	n1 = TAILQ_FIRST(&devsoftc.devq);
473	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
474	devsoftc.queued--;
475	mtx_unlock(&devsoftc.mtx);
476	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
477	free(n1->dei_data, M_BUS);
478	free(n1, M_BUS);
479	return (rv);
480}
481
482static	int
483devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
484{
485	switch (cmd) {
486
487	case FIONBIO:
488		if (*(int*)data)
489			devsoftc.nonblock = 1;
490		else
491			devsoftc.nonblock = 0;
492		return (0);
493	case FIOASYNC:
494		if (*(int*)data)
495			devsoftc.async_proc = td->td_proc;
496		else
497			devsoftc.async_proc = NULL;
498		return (0);
499
500		/* (un)Support for other fcntl() calls. */
501	case FIOCLEX:
502	case FIONCLEX:
503	case FIONREAD:
504	case FIOSETOWN:
505	case FIOGETOWN:
506	default:
507		break;
508	}
509	return (ENOTTY);
510}
511
512static	int
513devpoll(struct cdev *dev, int events, struct thread *td)
514{
515	int	revents = 0;
516
517	mtx_lock(&devsoftc.mtx);
518	if (events & (POLLIN | POLLRDNORM)) {
519		if (!TAILQ_EMPTY(&devsoftc.devq))
520			revents = events & (POLLIN | POLLRDNORM);
521		else
522			selrecord(td, &devsoftc.sel);
523	}
524	mtx_unlock(&devsoftc.mtx);
525
526	return (revents);
527}
528
529/**
530 * @brief Return whether the userland process is running
531 */
532boolean_t
533devctl_process_running(void)
534{
535	return (devsoftc.inuse == 1);
536}
537
538/**
539 * @brief Queue data to be read from the devctl device
540 *
541 * Generic interface to queue data to the devctl device.  It is
542 * assumed that @p data is properly formatted.  It is further assumed
543 * that @p data is allocated using the M_BUS malloc type.
544 */
545void
546devctl_queue_data_f(char *data, int flags)
547{
548	struct dev_event_info *n1 = NULL, *n2 = NULL;
549	struct proc *p;
550
551	if (strlen(data) == 0)
552		goto out;
553	if (devctl_queue_length == 0)
554		goto out;
555	n1 = malloc(sizeof(*n1), M_BUS, flags);
556	if (n1 == NULL)
557		goto out;
558	n1->dei_data = data;
559	mtx_lock(&devsoftc.mtx);
560	if (devctl_queue_length == 0) {
561		mtx_unlock(&devsoftc.mtx);
562		free(n1->dei_data, M_BUS);
563		free(n1, M_BUS);
564		return;
565	}
566	/* Leave at least one spot in the queue... */
567	while (devsoftc.queued > devctl_queue_length - 1) {
568		n2 = TAILQ_FIRST(&devsoftc.devq);
569		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
570		free(n2->dei_data, M_BUS);
571		free(n2, M_BUS);
572		devsoftc.queued--;
573	}
574	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
575	devsoftc.queued++;
576	cv_broadcast(&devsoftc.cv);
577	mtx_unlock(&devsoftc.mtx);
578	selwakeup(&devsoftc.sel);
579	p = devsoftc.async_proc;
580	if (p != NULL) {
581		PROC_LOCK(p);
582		kern_psignal(p, SIGIO);
583		PROC_UNLOCK(p);
584	}
585	return;
586out:
587	/*
588	 * We have to free data on all error paths since the caller
589	 * assumes it will be free'd when this item is dequeued.
590	 */
591	free(data, M_BUS);
592	return;
593}
594
595void
596devctl_queue_data(char *data)
597{
598
599	devctl_queue_data_f(data, M_NOWAIT);
600}
601
602/**
603 * @brief Send a 'notification' to userland, using standard ways
604 */
605void
606devctl_notify_f(const char *system, const char *subsystem, const char *type,
607    const char *data, int flags)
608{
609	int len = 0;
610	char *msg;
611
612	if (system == NULL)
613		return;		/* BOGUS!  Must specify system. */
614	if (subsystem == NULL)
615		return;		/* BOGUS!  Must specify subsystem. */
616	if (type == NULL)
617		return;		/* BOGUS!  Must specify type. */
618	len += strlen(" system=") + strlen(system);
619	len += strlen(" subsystem=") + strlen(subsystem);
620	len += strlen(" type=") + strlen(type);
621	/* add in the data message plus newline. */
622	if (data != NULL)
623		len += strlen(data);
624	len += 3;	/* '!', '\n', and NUL */
625	msg = malloc(len, M_BUS, flags);
626	if (msg == NULL)
627		return;		/* Drop it on the floor */
628	if (data != NULL)
629		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
630		    system, subsystem, type, data);
631	else
632		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
633		    system, subsystem, type);
634	devctl_queue_data_f(msg, flags);
635}
636
637void
638devctl_notify(const char *system, const char *subsystem, const char *type,
639    const char *data)
640{
641
642	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
643}
644
645/*
646 * Common routine that tries to make sending messages as easy as possible.
647 * We allocate memory for the data, copy strings into that, but do not
648 * free it unless there's an error.  The dequeue part of the driver should
649 * free the data.  We don't send data when the device is disabled.  We do
650 * send data, even when we have no listeners, because we wish to avoid
651 * races relating to startup and restart of listening applications.
652 *
653 * devaddq is designed to string together the type of event, with the
654 * object of that event, plus the plug and play info and location info
655 * for that event.  This is likely most useful for devices, but less
656 * useful for other consumers of this interface.  Those should use
657 * the devctl_queue_data() interface instead.
658 */
659static void
660devaddq(const char *type, const char *what, device_t dev)
661{
662	char *data = NULL;
663	char *loc = NULL;
664	char *pnp = NULL;
665	const char *parstr;
666
667	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
668		return;
669	data = malloc(1024, M_BUS, M_NOWAIT);
670	if (data == NULL)
671		goto bad;
672
673	/* get the bus specific location of this device */
674	loc = malloc(1024, M_BUS, M_NOWAIT);
675	if (loc == NULL)
676		goto bad;
677	*loc = '\0';
678	bus_child_location_str(dev, loc, 1024);
679
680	/* Get the bus specific pnp info of this device */
681	pnp = malloc(1024, M_BUS, M_NOWAIT);
682	if (pnp == NULL)
683		goto bad;
684	*pnp = '\0';
685	bus_child_pnpinfo_str(dev, pnp, 1024);
686
687	/* Get the parent of this device, or / if high enough in the tree. */
688	if (device_get_parent(dev) == NULL)
689		parstr = ".";	/* Or '/' ? */
690	else
691		parstr = device_get_nameunit(device_get_parent(dev));
692	/* String it all together. */
693	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
694	  parstr);
695	free(loc, M_BUS);
696	free(pnp, M_BUS);
697	devctl_queue_data(data);
698	return;
699bad:
700	free(pnp, M_BUS);
701	free(loc, M_BUS);
702	free(data, M_BUS);
703	return;
704}
705
706/*
707 * A device was added to the tree.  We are called just after it successfully
708 * attaches (that is, probe and attach success for this device).  No call
709 * is made if a device is merely parented into the tree.  See devnomatch
710 * if probe fails.  If attach fails, no notification is sent (but maybe
711 * we should have a different message for this).
712 */
713static void
714devadded(device_t dev)
715{
716	devaddq("+", device_get_nameunit(dev), dev);
717}
718
719/*
720 * A device was removed from the tree.  We are called just before this
721 * happens.
722 */
723static void
724devremoved(device_t dev)
725{
726	devaddq("-", device_get_nameunit(dev), dev);
727}
728
729/*
730 * Called when there's no match for this device.  This is only called
731 * the first time that no match happens, so we don't keep getting this
732 * message.  Should that prove to be undesirable, we can change it.
733 * This is called when all drivers that can attach to a given bus
734 * decline to accept this device.  Other errors may not be detected.
735 */
736static void
737devnomatch(device_t dev)
738{
739	devaddq("?", "", dev);
740}
741
742static int
743sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
744{
745	struct dev_event_info *n1;
746	int dis, error;
747
748	dis = devctl_queue_length == 0;
749	error = sysctl_handle_int(oidp, &dis, 0, req);
750	if (error || !req->newptr)
751		return (error);
752	mtx_lock(&devsoftc.mtx);
753	if (dis) {
754		while (!TAILQ_EMPTY(&devsoftc.devq)) {
755			n1 = TAILQ_FIRST(&devsoftc.devq);
756			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
757			free(n1->dei_data, M_BUS);
758			free(n1, M_BUS);
759		}
760		devsoftc.queued = 0;
761		devctl_queue_length = 0;
762	} else {
763		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
764	}
765	mtx_unlock(&devsoftc.mtx);
766	return (0);
767}
768
769static int
770sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
771{
772	struct dev_event_info *n1;
773	int q, error;
774
775	q = devctl_queue_length;
776	error = sysctl_handle_int(oidp, &q, 0, req);
777	if (error || !req->newptr)
778		return (error);
779	if (q < 0)
780		return (EINVAL);
781	mtx_lock(&devsoftc.mtx);
782	devctl_queue_length = q;
783	while (devsoftc.queued > devctl_queue_length) {
784		n1 = TAILQ_FIRST(&devsoftc.devq);
785		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
786		free(n1->dei_data, M_BUS);
787		free(n1, M_BUS);
788		devsoftc.queued--;
789	}
790	mtx_unlock(&devsoftc.mtx);
791	return (0);
792}
793
794/* End of /dev/devctl code */
795
796static TAILQ_HEAD(,device)	bus_data_devices;
797static int bus_data_generation = 1;
798
799static kobj_method_t null_methods[] = {
800	KOBJMETHOD_END
801};
802
803DEFINE_CLASS(null, null_methods, 0);
804
805/*
806 * Bus pass implementation
807 */
808
809static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
810int bus_current_pass = BUS_PASS_ROOT;
811
812/**
813 * @internal
814 * @brief Register the pass level of a new driver attachment
815 *
816 * Register a new driver attachment's pass level.  If no driver
817 * attachment with the same pass level has been added, then @p new
818 * will be added to the global passes list.
819 *
820 * @param new		the new driver attachment
821 */
822static void
823driver_register_pass(struct driverlink *new)
824{
825	struct driverlink *dl;
826
827	/* We only consider pass numbers during boot. */
828	if (bus_current_pass == BUS_PASS_DEFAULT)
829		return;
830
831	/*
832	 * Walk the passes list.  If we already know about this pass
833	 * then there is nothing to do.  If we don't, then insert this
834	 * driver link into the list.
835	 */
836	TAILQ_FOREACH(dl, &passes, passlink) {
837		if (dl->pass < new->pass)
838			continue;
839		if (dl->pass == new->pass)
840			return;
841		TAILQ_INSERT_BEFORE(dl, new, passlink);
842		return;
843	}
844	TAILQ_INSERT_TAIL(&passes, new, passlink);
845}
846
847/**
848 * @brief Raise the current bus pass
849 *
850 * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
851 * method on the root bus to kick off a new device tree scan for each
852 * new pass level that has at least one driver.
853 */
854void
855bus_set_pass(int pass)
856{
857	struct driverlink *dl;
858
859	if (bus_current_pass > pass)
860		panic("Attempt to lower bus pass level");
861
862	TAILQ_FOREACH(dl, &passes, passlink) {
863		/* Skip pass values below the current pass level. */
864		if (dl->pass <= bus_current_pass)
865			continue;
866
867		/*
868		 * Bail once we hit a driver with a pass level that is
869		 * too high.
870		 */
871		if (dl->pass > pass)
872			break;
873
874		/*
875		 * Raise the pass level to the next level and rescan
876		 * the tree.
877		 */
878		bus_current_pass = dl->pass;
879		BUS_NEW_PASS(root_bus);
880	}
881
882	/*
883	 * If there isn't a driver registered for the requested pass,
884	 * then bus_current_pass might still be less than 'pass'.  Set
885	 * it to 'pass' in that case.
886	 */
887	if (bus_current_pass < pass)
888		bus_current_pass = pass;
889	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
890}
891
892/*
893 * Devclass implementation
894 */
895
896static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
897
898/**
899 * @internal
900 * @brief Find or create a device class
901 *
902 * If a device class with the name @p classname exists, return it,
903 * otherwise if @p create is non-zero create and return a new device
904 * class.
905 *
906 * If @p parentname is non-NULL, the parent of the devclass is set to
907 * the devclass of that name.
908 *
909 * @param classname	the devclass name to find or create
910 * @param parentname	the parent devclass name or @c NULL
911 * @param create	non-zero to create a devclass
912 */
913static devclass_t
914devclass_find_internal(const char *classname, const char *parentname,
915		       int create)
916{
917	devclass_t dc;
918
919	PDEBUG(("looking for %s", classname));
920	if (!classname)
921		return (NULL);
922
923	TAILQ_FOREACH(dc, &devclasses, link) {
924		if (!strcmp(dc->name, classname))
925			break;
926	}
927
928	if (create && !dc) {
929		PDEBUG(("creating %s", classname));
930		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
931		    M_BUS, M_NOWAIT | M_ZERO);
932		if (!dc)
933			return (NULL);
934		dc->parent = NULL;
935		dc->name = (char*) (dc + 1);
936		strcpy(dc->name, classname);
937		TAILQ_INIT(&dc->drivers);
938		TAILQ_INSERT_TAIL(&devclasses, dc, link);
939
940		bus_data_generation_update();
941	}
942
943	/*
944	 * If a parent class is specified, then set that as our parent so
945	 * that this devclass will support drivers for the parent class as
946	 * well.  If the parent class has the same name don't do this though
947	 * as it creates a cycle that can trigger an infinite loop in
948	 * device_probe_child() if a device exists for which there is no
949	 * suitable driver.
950	 */
951	if (parentname && dc && !dc->parent &&
952	    strcmp(classname, parentname) != 0) {
953		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
954		dc->parent->flags |= DC_HAS_CHILDREN;
955	}
956
957	return (dc);
958}
959
960/**
961 * @brief Create a device class
962 *
963 * If a device class with the name @p classname exists, return it,
964 * otherwise create and return a new device class.
965 *
966 * @param classname	the devclass name to find or create
967 */
968devclass_t
969devclass_create(const char *classname)
970{
971	return (devclass_find_internal(classname, NULL, TRUE));
972}
973
974/**
975 * @brief Find a device class
976 *
977 * If a device class with the name @p classname exists, return it,
978 * otherwise return @c NULL.
979 *
980 * @param classname	the devclass name to find
981 */
982devclass_t
983devclass_find(const char *classname)
984{
985	return (devclass_find_internal(classname, NULL, FALSE));
986}
987
988/**
989 * @brief Register that a device driver has been added to a devclass
990 *
991 * Register that a device driver has been added to a devclass.  This
992 * is called by devclass_add_driver to accomplish the recursive
993 * notification of all the children classes of dc, as well as dc.
994 * Each layer will have BUS_DRIVER_ADDED() called for all instances of
995 * the devclass.
996 *
997 * We do a full search here of the devclass list at each iteration
998 * level to save storing children-lists in the devclass structure.  If
999 * we ever move beyond a few dozen devices doing this, we may need to
1000 * reevaluate...
1001 *
1002 * @param dc		the devclass to edit
1003 * @param driver	the driver that was just added
1004 */
1005static void
1006devclass_driver_added(devclass_t dc, driver_t *driver)
1007{
1008	devclass_t parent;
1009	int i;
1010
1011	/*
1012	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1013	 */
1014	for (i = 0; i < dc->maxunit; i++)
1015		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1016			BUS_DRIVER_ADDED(dc->devices[i], driver);
1017
1018	/*
1019	 * Walk through the children classes.  Since we only keep a
1020	 * single parent pointer around, we walk the entire list of
1021	 * devclasses looking for children.  We set the
1022	 * DC_HAS_CHILDREN flag when a child devclass is created on
1023	 * the parent, so we only walk the list for those devclasses
1024	 * that have children.
1025	 */
1026	if (!(dc->flags & DC_HAS_CHILDREN))
1027		return;
1028	parent = dc;
1029	TAILQ_FOREACH(dc, &devclasses, link) {
1030		if (dc->parent == parent)
1031			devclass_driver_added(dc, driver);
1032	}
1033}
1034
1035/**
1036 * @brief Add a device driver to a device class
1037 *
1038 * Add a device driver to a devclass. This is normally called
1039 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1040 * all devices in the devclass will be called to allow them to attempt
1041 * to re-probe any unmatched children.
1042 *
1043 * @param dc		the devclass to edit
1044 * @param driver	the driver to register
1045 */
1046int
1047devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1048{
1049	driverlink_t dl;
1050	const char *parentname;
1051
1052	PDEBUG(("%s", DRIVERNAME(driver)));
1053
1054	/* Don't allow invalid pass values. */
1055	if (pass <= BUS_PASS_ROOT)
1056		return (EINVAL);
1057
1058	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1059	if (!dl)
1060		return (ENOMEM);
1061
1062	/*
1063	 * Compile the driver's methods. Also increase the reference count
1064	 * so that the class doesn't get freed when the last instance
1065	 * goes. This means we can safely use static methods and avoids a
1066	 * double-free in devclass_delete_driver.
1067	 */
1068	kobj_class_compile((kobj_class_t) driver);
1069
1070	/*
1071	 * If the driver has any base classes, make the
1072	 * devclass inherit from the devclass of the driver's
1073	 * first base class. This will allow the system to
1074	 * search for drivers in both devclasses for children
1075	 * of a device using this driver.
1076	 */
1077	if (driver->baseclasses)
1078		parentname = driver->baseclasses[0]->name;
1079	else
1080		parentname = NULL;
1081	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1082
1083	dl->driver = driver;
1084	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1085	driver->refs++;		/* XXX: kobj_mtx */
1086	dl->pass = pass;
1087	driver_register_pass(dl);
1088
1089	devclass_driver_added(dc, driver);
1090	bus_data_generation_update();
1091	return (0);
1092}
1093
1094/**
1095 * @brief Register that a device driver has been deleted from a devclass
1096 *
1097 * Register that a device driver has been removed from a devclass.
1098 * This is called by devclass_delete_driver to accomplish the
1099 * recursive notification of all the children classes of busclass, as
1100 * well as busclass.  Each layer will attempt to detach the driver
1101 * from any devices that are children of the bus's devclass.  The function
1102 * will return an error if a device fails to detach.
1103 *
1104 * We do a full search here of the devclass list at each iteration
1105 * level to save storing children-lists in the devclass structure.  If
1106 * we ever move beyond a few dozen devices doing this, we may need to
1107 * reevaluate...
1108 *
1109 * @param busclass	the devclass of the parent bus
1110 * @param dc		the devclass of the driver being deleted
1111 * @param driver	the driver being deleted
1112 */
1113static int
1114devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1115{
1116	devclass_t parent;
1117	device_t dev;
1118	int error, i;
1119
1120	/*
1121	 * Disassociate from any devices.  We iterate through all the
1122	 * devices in the devclass of the driver and detach any which are
1123	 * using the driver and which have a parent in the devclass which
1124	 * we are deleting from.
1125	 *
1126	 * Note that since a driver can be in multiple devclasses, we
1127	 * should not detach devices which are not children of devices in
1128	 * the affected devclass.
1129	 */
1130	for (i = 0; i < dc->maxunit; i++) {
1131		if (dc->devices[i]) {
1132			dev = dc->devices[i];
1133			if (dev->driver == driver && dev->parent &&
1134			    dev->parent->devclass == busclass) {
1135				if ((error = device_detach(dev)) != 0)
1136					return (error);
1137				BUS_PROBE_NOMATCH(dev->parent, dev);
1138				devnomatch(dev);
1139				dev->flags |= DF_DONENOMATCH;
1140			}
1141		}
1142	}
1143
1144	/*
1145	 * Walk through the children classes.  Since we only keep a
1146	 * single parent pointer around, we walk the entire list of
1147	 * devclasses looking for children.  We set the
1148	 * DC_HAS_CHILDREN flag when a child devclass is created on
1149	 * the parent, so we only walk the list for those devclasses
1150	 * that have children.
1151	 */
1152	if (!(busclass->flags & DC_HAS_CHILDREN))
1153		return (0);
1154	parent = busclass;
1155	TAILQ_FOREACH(busclass, &devclasses, link) {
1156		if (busclass->parent == parent) {
1157			error = devclass_driver_deleted(busclass, dc, driver);
1158			if (error)
1159				return (error);
1160		}
1161	}
1162	return (0);
1163}
1164
1165/**
1166 * @brief Delete a device driver from a device class
1167 *
1168 * Delete a device driver from a devclass. This is normally called
1169 * automatically by DRIVER_MODULE().
1170 *
1171 * If the driver is currently attached to any devices,
1172 * devclass_delete_driver() will first attempt to detach from each
1173 * device. If one of the detach calls fails, the driver will not be
1174 * deleted.
1175 *
1176 * @param dc		the devclass to edit
1177 * @param driver	the driver to unregister
1178 */
1179int
1180devclass_delete_driver(devclass_t busclass, driver_t *driver)
1181{
1182	devclass_t dc = devclass_find(driver->name);
1183	driverlink_t dl;
1184	int error;
1185
1186	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1187
1188	if (!dc)
1189		return (0);
1190
1191	/*
1192	 * Find the link structure in the bus' list of drivers.
1193	 */
1194	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1195		if (dl->driver == driver)
1196			break;
1197	}
1198
1199	if (!dl) {
1200		PDEBUG(("%s not found in %s list", driver->name,
1201		    busclass->name));
1202		return (ENOENT);
1203	}
1204
1205	error = devclass_driver_deleted(busclass, dc, driver);
1206	if (error != 0)
1207		return (error);
1208
1209	TAILQ_REMOVE(&busclass->drivers, dl, link);
1210	free(dl, M_BUS);
1211
1212	/* XXX: kobj_mtx */
1213	driver->refs--;
1214	if (driver->refs == 0)
1215		kobj_class_free((kobj_class_t) driver);
1216
1217	bus_data_generation_update();
1218	return (0);
1219}
1220
1221/**
1222 * @brief Quiesces a set of device drivers from a device class
1223 *
1224 * Quiesce a device driver from a devclass. This is normally called
1225 * automatically by DRIVER_MODULE().
1226 *
1227 * If the driver is currently attached to any devices,
1228 * devclass_quiesece_driver() will first attempt to quiesce each
1229 * device.
1230 *
1231 * @param dc		the devclass to edit
1232 * @param driver	the driver to unregister
1233 */
1234static int
1235devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1236{
1237	devclass_t dc = devclass_find(driver->name);
1238	driverlink_t dl;
1239	device_t dev;
1240	int i;
1241	int error;
1242
1243	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1244
1245	if (!dc)
1246		return (0);
1247
1248	/*
1249	 * Find the link structure in the bus' list of drivers.
1250	 */
1251	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1252		if (dl->driver == driver)
1253			break;
1254	}
1255
1256	if (!dl) {
1257		PDEBUG(("%s not found in %s list", driver->name,
1258		    busclass->name));
1259		return (ENOENT);
1260	}
1261
1262	/*
1263	 * Quiesce all devices.  We iterate through all the devices in
1264	 * the devclass of the driver and quiesce any which are using
1265	 * the driver and which have a parent in the devclass which we
1266	 * are quiescing.
1267	 *
1268	 * Note that since a driver can be in multiple devclasses, we
1269	 * should not quiesce devices which are not children of
1270	 * devices in the affected devclass.
1271	 */
1272	for (i = 0; i < dc->maxunit; i++) {
1273		if (dc->devices[i]) {
1274			dev = dc->devices[i];
1275			if (dev->driver == driver && dev->parent &&
1276			    dev->parent->devclass == busclass) {
1277				if ((error = device_quiesce(dev)) != 0)
1278					return (error);
1279			}
1280		}
1281	}
1282
1283	return (0);
1284}
1285
1286/**
1287 * @internal
1288 */
1289static driverlink_t
1290devclass_find_driver_internal(devclass_t dc, const char *classname)
1291{
1292	driverlink_t dl;
1293
1294	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1295
1296	TAILQ_FOREACH(dl, &dc->drivers, link) {
1297		if (!strcmp(dl->driver->name, classname))
1298			return (dl);
1299	}
1300
1301	PDEBUG(("not found"));
1302	return (NULL);
1303}
1304
1305/**
1306 * @brief Return the name of the devclass
1307 */
1308const char *
1309devclass_get_name(devclass_t dc)
1310{
1311	return (dc->name);
1312}
1313
1314/**
1315 * @brief Find a device given a unit number
1316 *
1317 * @param dc		the devclass to search
1318 * @param unit		the unit number to search for
1319 *
1320 * @returns		the device with the given unit number or @c
1321 *			NULL if there is no such device
1322 */
1323device_t
1324devclass_get_device(devclass_t dc, int unit)
1325{
1326	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1327		return (NULL);
1328	return (dc->devices[unit]);
1329}
1330
1331/**
1332 * @brief Find the softc field of a device given a unit number
1333 *
1334 * @param dc		the devclass to search
1335 * @param unit		the unit number to search for
1336 *
1337 * @returns		the softc field of the device with the given
1338 *			unit number or @c NULL if there is no such
1339 *			device
1340 */
1341void *
1342devclass_get_softc(devclass_t dc, int unit)
1343{
1344	device_t dev;
1345
1346	dev = devclass_get_device(dc, unit);
1347	if (!dev)
1348		return (NULL);
1349
1350	return (device_get_softc(dev));
1351}
1352
1353/**
1354 * @brief Get a list of devices in the devclass
1355 *
1356 * An array containing a list of all the devices in the given devclass
1357 * is allocated and returned in @p *devlistp. The number of devices
1358 * in the array is returned in @p *devcountp. The caller should free
1359 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1360 *
1361 * @param dc		the devclass to examine
1362 * @param devlistp	points at location for array pointer return
1363 *			value
1364 * @param devcountp	points at location for array size return value
1365 *
1366 * @retval 0		success
1367 * @retval ENOMEM	the array allocation failed
1368 */
1369int
1370devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1371{
1372	int count, i;
1373	device_t *list;
1374
1375	count = devclass_get_count(dc);
1376	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1377	if (!list)
1378		return (ENOMEM);
1379
1380	count = 0;
1381	for (i = 0; i < dc->maxunit; i++) {
1382		if (dc->devices[i]) {
1383			list[count] = dc->devices[i];
1384			count++;
1385		}
1386	}
1387
1388	*devlistp = list;
1389	*devcountp = count;
1390
1391	return (0);
1392}
1393
1394/**
1395 * @brief Get a list of drivers in the devclass
1396 *
1397 * An array containing a list of pointers to all the drivers in the
1398 * given devclass is allocated and returned in @p *listp.  The number
1399 * of drivers in the array is returned in @p *countp. The caller should
1400 * free the array using @c free(p, M_TEMP).
1401 *
1402 * @param dc		the devclass to examine
1403 * @param listp		gives location for array pointer return value
1404 * @param countp	gives location for number of array elements
1405 *			return value
1406 *
1407 * @retval 0		success
1408 * @retval ENOMEM	the array allocation failed
1409 */
1410int
1411devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1412{
1413	driverlink_t dl;
1414	driver_t **list;
1415	int count;
1416
1417	count = 0;
1418	TAILQ_FOREACH(dl, &dc->drivers, link)
1419		count++;
1420	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1421	if (list == NULL)
1422		return (ENOMEM);
1423
1424	count = 0;
1425	TAILQ_FOREACH(dl, &dc->drivers, link) {
1426		list[count] = dl->driver;
1427		count++;
1428	}
1429	*listp = list;
1430	*countp = count;
1431
1432	return (0);
1433}
1434
1435/**
1436 * @brief Get the number of devices in a devclass
1437 *
1438 * @param dc		the devclass to examine
1439 */
1440int
1441devclass_get_count(devclass_t dc)
1442{
1443	int count, i;
1444
1445	count = 0;
1446	for (i = 0; i < dc->maxunit; i++)
1447		if (dc->devices[i])
1448			count++;
1449	return (count);
1450}
1451
1452/**
1453 * @brief Get the maximum unit number used in a devclass
1454 *
1455 * Note that this is one greater than the highest currently-allocated
1456 * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1457 * that not even the devclass has been allocated yet.
1458 *
1459 * @param dc		the devclass to examine
1460 */
1461int
1462devclass_get_maxunit(devclass_t dc)
1463{
1464	if (dc == NULL)
1465		return (-1);
1466	return (dc->maxunit);
1467}
1468
1469/**
1470 * @brief Find a free unit number in a devclass
1471 *
1472 * This function searches for the first unused unit number greater
1473 * that or equal to @p unit.
1474 *
1475 * @param dc		the devclass to examine
1476 * @param unit		the first unit number to check
1477 */
1478int
1479devclass_find_free_unit(devclass_t dc, int unit)
1480{
1481	if (dc == NULL)
1482		return (unit);
1483	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1484		unit++;
1485	return (unit);
1486}
1487
1488/**
1489 * @brief Set the parent of a devclass
1490 *
1491 * The parent class is normally initialised automatically by
1492 * DRIVER_MODULE().
1493 *
1494 * @param dc		the devclass to edit
1495 * @param pdc		the new parent devclass
1496 */
1497void
1498devclass_set_parent(devclass_t dc, devclass_t pdc)
1499{
1500	dc->parent = pdc;
1501}
1502
1503/**
1504 * @brief Get the parent of a devclass
1505 *
1506 * @param dc		the devclass to examine
1507 */
1508devclass_t
1509devclass_get_parent(devclass_t dc)
1510{
1511	return (dc->parent);
1512}
1513
1514struct sysctl_ctx_list *
1515devclass_get_sysctl_ctx(devclass_t dc)
1516{
1517	return (&dc->sysctl_ctx);
1518}
1519
1520struct sysctl_oid *
1521devclass_get_sysctl_tree(devclass_t dc)
1522{
1523	return (dc->sysctl_tree);
1524}
1525
1526/**
1527 * @internal
1528 * @brief Allocate a unit number
1529 *
1530 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1531 * will do). The allocated unit number is returned in @p *unitp.
1532
1533 * @param dc		the devclass to allocate from
1534 * @param unitp		points at the location for the allocated unit
1535 *			number
1536 *
1537 * @retval 0		success
1538 * @retval EEXIST	the requested unit number is already allocated
1539 * @retval ENOMEM	memory allocation failure
1540 */
1541static int
1542devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1543{
1544	const char *s;
1545	int unit = *unitp;
1546
1547	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1548
1549	/* Ask the parent bus if it wants to wire this device. */
1550	if (unit == -1)
1551		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1552		    &unit);
1553
1554	/* If we were given a wired unit number, check for existing device */
1555	/* XXX imp XXX */
1556	if (unit != -1) {
1557		if (unit >= 0 && unit < dc->maxunit &&
1558		    dc->devices[unit] != NULL) {
1559			if (bootverbose)
1560				printf("%s: %s%d already exists; skipping it\n",
1561				    dc->name, dc->name, *unitp);
1562			return (EEXIST);
1563		}
1564	} else {
1565		/* Unwired device, find the next available slot for it */
1566		unit = 0;
1567		for (unit = 0;; unit++) {
1568			/* If there is an "at" hint for a unit then skip it. */
1569			if (resource_string_value(dc->name, unit, "at", &s) ==
1570			    0)
1571				continue;
1572
1573			/* If this device slot is already in use, skip it. */
1574			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1575				continue;
1576
1577			break;
1578		}
1579	}
1580
1581	/*
1582	 * We've selected a unit beyond the length of the table, so let's
1583	 * extend the table to make room for all units up to and including
1584	 * this one.
1585	 */
1586	if (unit >= dc->maxunit) {
1587		device_t *newlist, *oldlist;
1588		int newsize;
1589
1590		oldlist = dc->devices;
1591		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1592		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1593		if (!newlist)
1594			return (ENOMEM);
1595		if (oldlist != NULL)
1596			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1597		bzero(newlist + dc->maxunit,
1598		    sizeof(device_t) * (newsize - dc->maxunit));
1599		dc->devices = newlist;
1600		dc->maxunit = newsize;
1601		if (oldlist != NULL)
1602			free(oldlist, M_BUS);
1603	}
1604	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1605
1606	*unitp = unit;
1607	return (0);
1608}
1609
1610/**
1611 * @internal
1612 * @brief Add a device to a devclass
1613 *
1614 * A unit number is allocated for the device (using the device's
1615 * preferred unit number if any) and the device is registered in the
1616 * devclass. This allows the device to be looked up by its unit
1617 * number, e.g. by decoding a dev_t minor number.
1618 *
1619 * @param dc		the devclass to add to
1620 * @param dev		the device to add
1621 *
1622 * @retval 0		success
1623 * @retval EEXIST	the requested unit number is already allocated
1624 * @retval ENOMEM	memory allocation failure
1625 */
1626static int
1627devclass_add_device(devclass_t dc, device_t dev)
1628{
1629	int buflen, error;
1630
1631	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1632
1633	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1634	if (buflen < 0)
1635		return (ENOMEM);
1636	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1637	if (!dev->nameunit)
1638		return (ENOMEM);
1639
1640	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1641		free(dev->nameunit, M_BUS);
1642		dev->nameunit = NULL;
1643		return (error);
1644	}
1645	dc->devices[dev->unit] = dev;
1646	dev->devclass = dc;
1647	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1648
1649	return (0);
1650}
1651
1652/**
1653 * @internal
1654 * @brief Delete a device from a devclass
1655 *
1656 * The device is removed from the devclass's device list and its unit
1657 * number is freed.
1658
1659 * @param dc		the devclass to delete from
1660 * @param dev		the device to delete
1661 *
1662 * @retval 0		success
1663 */
1664static int
1665devclass_delete_device(devclass_t dc, device_t dev)
1666{
1667	if (!dc || !dev)
1668		return (0);
1669
1670	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1671
1672	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1673		panic("devclass_delete_device: inconsistent device class");
1674	dc->devices[dev->unit] = NULL;
1675	if (dev->flags & DF_WILDCARD)
1676		dev->unit = -1;
1677	dev->devclass = NULL;
1678	free(dev->nameunit, M_BUS);
1679	dev->nameunit = NULL;
1680
1681	return (0);
1682}
1683
1684/**
1685 * @internal
1686 * @brief Make a new device and add it as a child of @p parent
1687 *
1688 * @param parent	the parent of the new device
1689 * @param name		the devclass name of the new device or @c NULL
1690 *			to leave the devclass unspecified
1691 * @parem unit		the unit number of the new device of @c -1 to
1692 *			leave the unit number unspecified
1693 *
1694 * @returns the new device
1695 */
1696static device_t
1697make_device(device_t parent, const char *name, int unit)
1698{
1699	device_t dev;
1700	devclass_t dc;
1701
1702	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1703
1704	if (name) {
1705		dc = devclass_find_internal(name, NULL, TRUE);
1706		if (!dc) {
1707			printf("make_device: can't find device class %s\n",
1708			    name);
1709			return (NULL);
1710		}
1711	} else {
1712		dc = NULL;
1713	}
1714
1715	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1716	if (!dev)
1717		return (NULL);
1718
1719	dev->parent = parent;
1720	TAILQ_INIT(&dev->children);
1721	kobj_init((kobj_t) dev, &null_class);
1722	dev->driver = NULL;
1723	dev->devclass = NULL;
1724	dev->unit = unit;
1725	dev->nameunit = NULL;
1726	dev->desc = NULL;
1727	dev->busy = 0;
1728	dev->devflags = 0;
1729	dev->flags = DF_ENABLED;
1730	dev->order = 0;
1731	if (unit == -1)
1732		dev->flags |= DF_WILDCARD;
1733	if (name) {
1734		dev->flags |= DF_FIXEDCLASS;
1735		if (devclass_add_device(dc, dev)) {
1736			kobj_delete((kobj_t) dev, M_BUS);
1737			return (NULL);
1738		}
1739	}
1740	dev->ivars = NULL;
1741	dev->softc = NULL;
1742
1743	dev->state = DS_NOTPRESENT;
1744
1745	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1746	bus_data_generation_update();
1747
1748	return (dev);
1749}
1750
1751/**
1752 * @internal
1753 * @brief Print a description of a device.
1754 */
1755static int
1756device_print_child(device_t dev, device_t child)
1757{
1758	int retval = 0;
1759
1760	if (device_is_alive(child))
1761		retval += BUS_PRINT_CHILD(dev, child);
1762	else
1763		retval += device_printf(child, " not found\n");
1764
1765	return (retval);
1766}
1767
1768/**
1769 * @brief Create a new device
1770 *
1771 * This creates a new device and adds it as a child of an existing
1772 * parent device. The new device will be added after the last existing
1773 * child with order zero.
1774 *
1775 * @param dev		the device which will be the parent of the
1776 *			new child device
1777 * @param name		devclass name for new device or @c NULL if not
1778 *			specified
1779 * @param unit		unit number for new device or @c -1 if not
1780 *			specified
1781 *
1782 * @returns		the new device
1783 */
1784device_t
1785device_add_child(device_t dev, const char *name, int unit)
1786{
1787	return (device_add_child_ordered(dev, 0, name, unit));
1788}
1789
1790/**
1791 * @brief Create a new device
1792 *
1793 * This creates a new device and adds it as a child of an existing
1794 * parent device. The new device will be added after the last existing
1795 * child with the same order.
1796 *
1797 * @param dev		the device which will be the parent of the
1798 *			new child device
1799 * @param order		a value which is used to partially sort the
1800 *			children of @p dev - devices created using
1801 *			lower values of @p order appear first in @p
1802 *			dev's list of children
1803 * @param name		devclass name for new device or @c NULL if not
1804 *			specified
1805 * @param unit		unit number for new device or @c -1 if not
1806 *			specified
1807 *
1808 * @returns		the new device
1809 */
1810device_t
1811device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1812{
1813	device_t child;
1814	device_t place;
1815
1816	PDEBUG(("%s at %s with order %u as unit %d",
1817	    name, DEVICENAME(dev), order, unit));
1818	KASSERT(name != NULL || unit == -1,
1819	    ("child device with wildcard name and specific unit number"));
1820
1821	child = make_device(dev, name, unit);
1822	if (child == NULL)
1823		return (child);
1824	child->order = order;
1825
1826	TAILQ_FOREACH(place, &dev->children, link) {
1827		if (place->order > order)
1828			break;
1829	}
1830
1831	if (place) {
1832		/*
1833		 * The device 'place' is the first device whose order is
1834		 * greater than the new child.
1835		 */
1836		TAILQ_INSERT_BEFORE(place, child, link);
1837	} else {
1838		/*
1839		 * The new child's order is greater or equal to the order of
1840		 * any existing device. Add the child to the tail of the list.
1841		 */
1842		TAILQ_INSERT_TAIL(&dev->children, child, link);
1843	}
1844
1845	bus_data_generation_update();
1846	return (child);
1847}
1848
1849/**
1850 * @brief Delete a device
1851 *
1852 * This function deletes a device along with all of its children. If
1853 * the device currently has a driver attached to it, the device is
1854 * detached first using device_detach().
1855 *
1856 * @param dev		the parent device
1857 * @param child		the device to delete
1858 *
1859 * @retval 0		success
1860 * @retval non-zero	a unit error code describing the error
1861 */
1862int
1863device_delete_child(device_t dev, device_t child)
1864{
1865	int error;
1866	device_t grandchild;
1867
1868	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1869
1870	/* remove children first */
1871	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1872		error = device_delete_child(child, grandchild);
1873		if (error)
1874			return (error);
1875	}
1876
1877	if ((error = device_detach(child)) != 0)
1878		return (error);
1879	if (child->devclass)
1880		devclass_delete_device(child->devclass, child);
1881	if (child->parent)
1882		BUS_CHILD_DELETED(dev, child);
1883	TAILQ_REMOVE(&dev->children, child, link);
1884	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1885	kobj_delete((kobj_t) child, M_BUS);
1886
1887	bus_data_generation_update();
1888	return (0);
1889}
1890
1891/**
1892 * @brief Delete all children devices of the given device, if any.
1893 *
1894 * This function deletes all children devices of the given device, if
1895 * any, using the device_delete_child() function for each device it
1896 * finds. If a child device cannot be deleted, this function will
1897 * return an error code.
1898 *
1899 * @param dev		the parent device
1900 *
1901 * @retval 0		success
1902 * @retval non-zero	a device would not detach
1903 */
1904int
1905device_delete_children(device_t dev)
1906{
1907	device_t child;
1908	int error;
1909
1910	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1911
1912	error = 0;
1913
1914	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1915		error = device_delete_child(dev, child);
1916		if (error) {
1917			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1918			break;
1919		}
1920	}
1921	return (error);
1922}
1923
1924/**
1925 * @brief Find a device given a unit number
1926 *
1927 * This is similar to devclass_get_devices() but only searches for
1928 * devices which have @p dev as a parent.
1929 *
1930 * @param dev		the parent device to search
1931 * @param unit		the unit number to search for.  If the unit is -1,
1932 *			return the first child of @p dev which has name
1933 *			@p classname (that is, the one with the lowest unit.)
1934 *
1935 * @returns		the device with the given unit number or @c
1936 *			NULL if there is no such device
1937 */
1938device_t
1939device_find_child(device_t dev, const char *classname, int unit)
1940{
1941	devclass_t dc;
1942	device_t child;
1943
1944	dc = devclass_find(classname);
1945	if (!dc)
1946		return (NULL);
1947
1948	if (unit != -1) {
1949		child = devclass_get_device(dc, unit);
1950		if (child && child->parent == dev)
1951			return (child);
1952	} else {
1953		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1954			child = devclass_get_device(dc, unit);
1955			if (child && child->parent == dev)
1956				return (child);
1957		}
1958	}
1959	return (NULL);
1960}
1961
1962/**
1963 * @internal
1964 */
1965static driverlink_t
1966first_matching_driver(devclass_t dc, device_t dev)
1967{
1968	if (dev->devclass)
1969		return (devclass_find_driver_internal(dc, dev->devclass->name));
1970	return (TAILQ_FIRST(&dc->drivers));
1971}
1972
1973/**
1974 * @internal
1975 */
1976static driverlink_t
1977next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1978{
1979	if (dev->devclass) {
1980		driverlink_t dl;
1981		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1982			if (!strcmp(dev->devclass->name, dl->driver->name))
1983				return (dl);
1984		return (NULL);
1985	}
1986	return (TAILQ_NEXT(last, link));
1987}
1988
1989/**
1990 * @internal
1991 */
1992int
1993device_probe_child(device_t dev, device_t child)
1994{
1995	devclass_t dc;
1996	driverlink_t best = NULL;
1997	driverlink_t dl;
1998	int result, pri = 0;
1999	int hasclass = (child->devclass != NULL);
2000
2001	GIANT_REQUIRED;
2002
2003	dc = dev->devclass;
2004	if (!dc)
2005		panic("device_probe_child: parent device has no devclass");
2006
2007	/*
2008	 * If the state is already probed, then return.  However, don't
2009	 * return if we can rebid this object.
2010	 */
2011	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2012		return (0);
2013
2014	for (; dc; dc = dc->parent) {
2015		for (dl = first_matching_driver(dc, child);
2016		     dl;
2017		     dl = next_matching_driver(dc, child, dl)) {
2018			/* If this driver's pass is too high, then ignore it. */
2019			if (dl->pass > bus_current_pass)
2020				continue;
2021
2022			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2023			result = device_set_driver(child, dl->driver);
2024			if (result == ENOMEM)
2025				return (result);
2026			else if (result != 0)
2027				continue;
2028			if (!hasclass) {
2029				if (device_set_devclass(child,
2030				    dl->driver->name) != 0) {
2031					char const * devname =
2032					    device_get_name(child);
2033					if (devname == NULL)
2034						devname = "(unknown)";
2035					printf("driver bug: Unable to set "
2036					    "devclass (class: %s "
2037					    "devname: %s)\n",
2038					    dl->driver->name,
2039					    devname);
2040					(void)device_set_driver(child, NULL);
2041					continue;
2042				}
2043			}
2044
2045			/* Fetch any flags for the device before probing. */
2046			resource_int_value(dl->driver->name, child->unit,
2047			    "flags", &child->devflags);
2048
2049			result = DEVICE_PROBE(child);
2050
2051			/* Reset flags and devclass before the next probe. */
2052			child->devflags = 0;
2053			if (!hasclass)
2054				(void)device_set_devclass(child, NULL);
2055
2056			/*
2057			 * If the driver returns SUCCESS, there can be
2058			 * no higher match for this device.
2059			 */
2060			if (result == 0) {
2061				best = dl;
2062				pri = 0;
2063				break;
2064			}
2065
2066			/*
2067			 * The driver returned an error so it
2068			 * certainly doesn't match.
2069			 */
2070			if (result > 0) {
2071				(void)device_set_driver(child, NULL);
2072				continue;
2073			}
2074
2075			/*
2076			 * A priority lower than SUCCESS, remember the
2077			 * best matching driver. Initialise the value
2078			 * of pri for the first match.
2079			 */
2080			if (best == NULL || result > pri) {
2081				/*
2082				 * Probes that return BUS_PROBE_NOWILDCARD
2083				 * or lower only match on devices whose
2084				 * driver was explicitly specified.
2085				 */
2086				if (result <= BUS_PROBE_NOWILDCARD &&
2087				    !(child->flags & DF_FIXEDCLASS))
2088					continue;
2089				best = dl;
2090				pri = result;
2091				continue;
2092			}
2093		}
2094		/*
2095		 * If we have an unambiguous match in this devclass,
2096		 * don't look in the parent.
2097		 */
2098		if (best && pri == 0)
2099			break;
2100	}
2101
2102	/*
2103	 * If we found a driver, change state and initialise the devclass.
2104	 */
2105	/* XXX What happens if we rebid and got no best? */
2106	if (best) {
2107		/*
2108		 * If this device was attached, and we were asked to
2109		 * rescan, and it is a different driver, then we have
2110		 * to detach the old driver and reattach this new one.
2111		 * Note, we don't have to check for DF_REBID here
2112		 * because if the state is > DS_ALIVE, we know it must
2113		 * be.
2114		 *
2115		 * This assumes that all DF_REBID drivers can have
2116		 * their probe routine called at any time and that
2117		 * they are idempotent as well as completely benign in
2118		 * normal operations.
2119		 *
2120		 * We also have to make sure that the detach
2121		 * succeeded, otherwise we fail the operation (or
2122		 * maybe it should just fail silently?  I'm torn).
2123		 */
2124		if (child->state > DS_ALIVE && best->driver != child->driver)
2125			if ((result = device_detach(dev)) != 0)
2126				return (result);
2127
2128		/* Set the winning driver, devclass, and flags. */
2129		if (!child->devclass) {
2130			result = device_set_devclass(child, best->driver->name);
2131			if (result != 0)
2132				return (result);
2133		}
2134		result = device_set_driver(child, best->driver);
2135		if (result != 0)
2136			return (result);
2137		resource_int_value(best->driver->name, child->unit,
2138		    "flags", &child->devflags);
2139
2140		if (pri < 0) {
2141			/*
2142			 * A bit bogus. Call the probe method again to make
2143			 * sure that we have the right description.
2144			 */
2145			DEVICE_PROBE(child);
2146#if 0
2147			child->flags |= DF_REBID;
2148#endif
2149		} else
2150			child->flags &= ~DF_REBID;
2151		child->state = DS_ALIVE;
2152
2153		bus_data_generation_update();
2154		return (0);
2155	}
2156
2157	return (ENXIO);
2158}
2159
2160/**
2161 * @brief Return the parent of a device
2162 */
2163device_t
2164device_get_parent(device_t dev)
2165{
2166	return (dev->parent);
2167}
2168
2169/**
2170 * @brief Get a list of children of a device
2171 *
2172 * An array containing a list of all the children of the given device
2173 * is allocated and returned in @p *devlistp. The number of devices
2174 * in the array is returned in @p *devcountp. The caller should free
2175 * the array using @c free(p, M_TEMP).
2176 *
2177 * @param dev		the device to examine
2178 * @param devlistp	points at location for array pointer return
2179 *			value
2180 * @param devcountp	points at location for array size return value
2181 *
2182 * @retval 0		success
2183 * @retval ENOMEM	the array allocation failed
2184 */
2185int
2186device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2187{
2188	int count;
2189	device_t child;
2190	device_t *list;
2191
2192	count = 0;
2193	TAILQ_FOREACH(child, &dev->children, link) {
2194		count++;
2195	}
2196	if (count == 0) {
2197		*devlistp = NULL;
2198		*devcountp = 0;
2199		return (0);
2200	}
2201
2202	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2203	if (!list)
2204		return (ENOMEM);
2205
2206	count = 0;
2207	TAILQ_FOREACH(child, &dev->children, link) {
2208		list[count] = child;
2209		count++;
2210	}
2211
2212	*devlistp = list;
2213	*devcountp = count;
2214
2215	return (0);
2216}
2217
2218/**
2219 * @brief Return the current driver for the device or @c NULL if there
2220 * is no driver currently attached
2221 */
2222driver_t *
2223device_get_driver(device_t dev)
2224{
2225	return (dev->driver);
2226}
2227
2228/**
2229 * @brief Return the current devclass for the device or @c NULL if
2230 * there is none.
2231 */
2232devclass_t
2233device_get_devclass(device_t dev)
2234{
2235	return (dev->devclass);
2236}
2237
2238/**
2239 * @brief Return the name of the device's devclass or @c NULL if there
2240 * is none.
2241 */
2242const char *
2243device_get_name(device_t dev)
2244{
2245	if (dev != NULL && dev->devclass)
2246		return (devclass_get_name(dev->devclass));
2247	return (NULL);
2248}
2249
2250/**
2251 * @brief Return a string containing the device's devclass name
2252 * followed by an ascii representation of the device's unit number
2253 * (e.g. @c "foo2").
2254 */
2255const char *
2256device_get_nameunit(device_t dev)
2257{
2258	return (dev->nameunit);
2259}
2260
2261/**
2262 * @brief Return the device's unit number.
2263 */
2264int
2265device_get_unit(device_t dev)
2266{
2267	return (dev->unit);
2268}
2269
2270/**
2271 * @brief Return the device's description string
2272 */
2273const char *
2274device_get_desc(device_t dev)
2275{
2276	return (dev->desc);
2277}
2278
2279/**
2280 * @brief Return the device's flags
2281 */
2282uint32_t
2283device_get_flags(device_t dev)
2284{
2285	return (dev->devflags);
2286}
2287
2288struct sysctl_ctx_list *
2289device_get_sysctl_ctx(device_t dev)
2290{
2291	return (&dev->sysctl_ctx);
2292}
2293
2294struct sysctl_oid *
2295device_get_sysctl_tree(device_t dev)
2296{
2297	return (dev->sysctl_tree);
2298}
2299
2300/**
2301 * @brief Print the name of the device followed by a colon and a space
2302 *
2303 * @returns the number of characters printed
2304 */
2305int
2306device_print_prettyname(device_t dev)
2307{
2308	const char *name = device_get_name(dev);
2309
2310	if (name == NULL)
2311		return (printf("unknown: "));
2312	return (printf("%s%d: ", name, device_get_unit(dev)));
2313}
2314
2315/**
2316 * @brief Print the name of the device followed by a colon, a space
2317 * and the result of calling vprintf() with the value of @p fmt and
2318 * the following arguments.
2319 *
2320 * @returns the number of characters printed
2321 */
2322int
2323device_printf(device_t dev, const char * fmt, ...)
2324{
2325	va_list ap;
2326	int retval;
2327
2328	retval = device_print_prettyname(dev);
2329	va_start(ap, fmt);
2330	retval += vprintf(fmt, ap);
2331	va_end(ap);
2332	return (retval);
2333}
2334
2335/**
2336 * @internal
2337 */
2338static void
2339device_set_desc_internal(device_t dev, const char* desc, int copy)
2340{
2341	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2342		free(dev->desc, M_BUS);
2343		dev->flags &= ~DF_DESCMALLOCED;
2344		dev->desc = NULL;
2345	}
2346
2347	if (copy && desc) {
2348		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2349		if (dev->desc) {
2350			strcpy(dev->desc, desc);
2351			dev->flags |= DF_DESCMALLOCED;
2352		}
2353	} else {
2354		/* Avoid a -Wcast-qual warning */
2355		dev->desc = (char *)(uintptr_t) desc;
2356	}
2357
2358	bus_data_generation_update();
2359}
2360
2361/**
2362 * @brief Set the device's description
2363 *
2364 * The value of @c desc should be a string constant that will not
2365 * change (at least until the description is changed in a subsequent
2366 * call to device_set_desc() or device_set_desc_copy()).
2367 */
2368void
2369device_set_desc(device_t dev, const char* desc)
2370{
2371	device_set_desc_internal(dev, desc, FALSE);
2372}
2373
2374/**
2375 * @brief Set the device's description
2376 *
2377 * The string pointed to by @c desc is copied. Use this function if
2378 * the device description is generated, (e.g. with sprintf()).
2379 */
2380void
2381device_set_desc_copy(device_t dev, const char* desc)
2382{
2383	device_set_desc_internal(dev, desc, TRUE);
2384}
2385
2386/**
2387 * @brief Set the device's flags
2388 */
2389void
2390device_set_flags(device_t dev, uint32_t flags)
2391{
2392	dev->devflags = flags;
2393}
2394
2395/**
2396 * @brief Return the device's softc field
2397 *
2398 * The softc is allocated and zeroed when a driver is attached, based
2399 * on the size field of the driver.
2400 */
2401void *
2402device_get_softc(device_t dev)
2403{
2404	return (dev->softc);
2405}
2406
2407/**
2408 * @brief Set the device's softc field
2409 *
2410 * Most drivers do not need to use this since the softc is allocated
2411 * automatically when the driver is attached.
2412 */
2413void
2414device_set_softc(device_t dev, void *softc)
2415{
2416	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2417		free(dev->softc, M_BUS_SC);
2418	dev->softc = softc;
2419	if (dev->softc)
2420		dev->flags |= DF_EXTERNALSOFTC;
2421	else
2422		dev->flags &= ~DF_EXTERNALSOFTC;
2423}
2424
2425/**
2426 * @brief Free claimed softc
2427 *
2428 * Most drivers do not need to use this since the softc is freed
2429 * automatically when the driver is detached.
2430 */
2431void
2432device_free_softc(void *softc)
2433{
2434	free(softc, M_BUS_SC);
2435}
2436
2437/**
2438 * @brief Claim softc
2439 *
2440 * This function can be used to let the driver free the automatically
2441 * allocated softc using "device_free_softc()". This function is
2442 * useful when the driver is refcounting the softc and the softc
2443 * cannot be freed when the "device_detach" method is called.
2444 */
2445void
2446device_claim_softc(device_t dev)
2447{
2448	if (dev->softc)
2449		dev->flags |= DF_EXTERNALSOFTC;
2450	else
2451		dev->flags &= ~DF_EXTERNALSOFTC;
2452}
2453
2454/**
2455 * @brief Get the device's ivars field
2456 *
2457 * The ivars field is used by the parent device to store per-device
2458 * state (e.g. the physical location of the device or a list of
2459 * resources).
2460 */
2461void *
2462device_get_ivars(device_t dev)
2463{
2464
2465	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2466	return (dev->ivars);
2467}
2468
2469/**
2470 * @brief Set the device's ivars field
2471 */
2472void
2473device_set_ivars(device_t dev, void * ivars)
2474{
2475
2476	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2477	dev->ivars = ivars;
2478}
2479
2480/**
2481 * @brief Return the device's state
2482 */
2483device_state_t
2484device_get_state(device_t dev)
2485{
2486	return (dev->state);
2487}
2488
2489/**
2490 * @brief Set the DF_ENABLED flag for the device
2491 */
2492void
2493device_enable(device_t dev)
2494{
2495	dev->flags |= DF_ENABLED;
2496}
2497
2498/**
2499 * @brief Clear the DF_ENABLED flag for the device
2500 */
2501void
2502device_disable(device_t dev)
2503{
2504	dev->flags &= ~DF_ENABLED;
2505}
2506
2507/**
2508 * @brief Increment the busy counter for the device
2509 */
2510void
2511device_busy(device_t dev)
2512{
2513	if (dev->state < DS_ATTACHING)
2514		panic("device_busy: called for unattached device");
2515	if (dev->busy == 0 && dev->parent)
2516		device_busy(dev->parent);
2517	dev->busy++;
2518	if (dev->state == DS_ATTACHED)
2519		dev->state = DS_BUSY;
2520}
2521
2522/**
2523 * @brief Decrement the busy counter for the device
2524 */
2525void
2526device_unbusy(device_t dev)
2527{
2528	if (dev->busy != 0 && dev->state != DS_BUSY &&
2529	    dev->state != DS_ATTACHING)
2530		panic("device_unbusy: called for non-busy device %s",
2531		    device_get_nameunit(dev));
2532	dev->busy--;
2533	if (dev->busy == 0) {
2534		if (dev->parent)
2535			device_unbusy(dev->parent);
2536		if (dev->state == DS_BUSY)
2537			dev->state = DS_ATTACHED;
2538	}
2539}
2540
2541/**
2542 * @brief Set the DF_QUIET flag for the device
2543 */
2544void
2545device_quiet(device_t dev)
2546{
2547	dev->flags |= DF_QUIET;
2548}
2549
2550/**
2551 * @brief Clear the DF_QUIET flag for the device
2552 */
2553void
2554device_verbose(device_t dev)
2555{
2556	dev->flags &= ~DF_QUIET;
2557}
2558
2559/**
2560 * @brief Return non-zero if the DF_QUIET flag is set on the device
2561 */
2562int
2563device_is_quiet(device_t dev)
2564{
2565	return ((dev->flags & DF_QUIET) != 0);
2566}
2567
2568/**
2569 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2570 */
2571int
2572device_is_enabled(device_t dev)
2573{
2574	return ((dev->flags & DF_ENABLED) != 0);
2575}
2576
2577/**
2578 * @brief Return non-zero if the device was successfully probed
2579 */
2580int
2581device_is_alive(device_t dev)
2582{
2583	return (dev->state >= DS_ALIVE);
2584}
2585
2586/**
2587 * @brief Return non-zero if the device currently has a driver
2588 * attached to it
2589 */
2590int
2591device_is_attached(device_t dev)
2592{
2593	return (dev->state >= DS_ATTACHED);
2594}
2595
2596/**
2597 * @brief Set the devclass of a device
2598 * @see devclass_add_device().
2599 */
2600int
2601device_set_devclass(device_t dev, const char *classname)
2602{
2603	devclass_t dc;
2604	int error;
2605
2606	if (!classname) {
2607		if (dev->devclass)
2608			devclass_delete_device(dev->devclass, dev);
2609		return (0);
2610	}
2611
2612	if (dev->devclass) {
2613		printf("device_set_devclass: device class already set\n");
2614		return (EINVAL);
2615	}
2616
2617	dc = devclass_find_internal(classname, NULL, TRUE);
2618	if (!dc)
2619		return (ENOMEM);
2620
2621	error = devclass_add_device(dc, dev);
2622
2623	bus_data_generation_update();
2624	return (error);
2625}
2626
2627/**
2628 * @brief Set the driver of a device
2629 *
2630 * @retval 0		success
2631 * @retval EBUSY	the device already has a driver attached
2632 * @retval ENOMEM	a memory allocation failure occurred
2633 */
2634int
2635device_set_driver(device_t dev, driver_t *driver)
2636{
2637	if (dev->state >= DS_ATTACHED)
2638		return (EBUSY);
2639
2640	if (dev->driver == driver)
2641		return (0);
2642
2643	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2644		free(dev->softc, M_BUS_SC);
2645		dev->softc = NULL;
2646	}
2647	device_set_desc(dev, NULL);
2648	kobj_delete((kobj_t) dev, NULL);
2649	dev->driver = driver;
2650	if (driver) {
2651		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2652		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2653			dev->softc = malloc(driver->size, M_BUS_SC,
2654			    M_NOWAIT | M_ZERO);
2655			if (!dev->softc) {
2656				kobj_delete((kobj_t) dev, NULL);
2657				kobj_init((kobj_t) dev, &null_class);
2658				dev->driver = NULL;
2659				return (ENOMEM);
2660			}
2661		}
2662	} else {
2663		kobj_init((kobj_t) dev, &null_class);
2664	}
2665
2666	bus_data_generation_update();
2667	return (0);
2668}
2669
2670/**
2671 * @brief Probe a device, and return this status.
2672 *
2673 * This function is the core of the device autoconfiguration
2674 * system. Its purpose is to select a suitable driver for a device and
2675 * then call that driver to initialise the hardware appropriately. The
2676 * driver is selected by calling the DEVICE_PROBE() method of a set of
2677 * candidate drivers and then choosing the driver which returned the
2678 * best value. This driver is then attached to the device using
2679 * device_attach().
2680 *
2681 * The set of suitable drivers is taken from the list of drivers in
2682 * the parent device's devclass. If the device was originally created
2683 * with a specific class name (see device_add_child()), only drivers
2684 * with that name are probed, otherwise all drivers in the devclass
2685 * are probed. If no drivers return successful probe values in the
2686 * parent devclass, the search continues in the parent of that
2687 * devclass (see devclass_get_parent()) if any.
2688 *
2689 * @param dev		the device to initialise
2690 *
2691 * @retval 0		success
2692 * @retval ENXIO	no driver was found
2693 * @retval ENOMEM	memory allocation failure
2694 * @retval non-zero	some other unix error code
2695 * @retval -1		Device already attached
2696 */
2697int
2698device_probe(device_t dev)
2699{
2700	int error;
2701
2702	GIANT_REQUIRED;
2703
2704	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2705		return (-1);
2706
2707	if (!(dev->flags & DF_ENABLED)) {
2708		if (bootverbose && device_get_name(dev) != NULL) {
2709			device_print_prettyname(dev);
2710			printf("not probed (disabled)\n");
2711		}
2712		return (-1);
2713	}
2714	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2715		if (bus_current_pass == BUS_PASS_DEFAULT &&
2716		    !(dev->flags & DF_DONENOMATCH)) {
2717			BUS_PROBE_NOMATCH(dev->parent, dev);
2718			devnomatch(dev);
2719			dev->flags |= DF_DONENOMATCH;
2720		}
2721		return (error);
2722	}
2723	return (0);
2724}
2725
2726/**
2727 * @brief Probe a device and attach a driver if possible
2728 *
2729 * calls device_probe() and attaches if that was successful.
2730 */
2731int
2732device_probe_and_attach(device_t dev)
2733{
2734	int error;
2735
2736	GIANT_REQUIRED;
2737
2738	error = device_probe(dev);
2739	if (error == -1)
2740		return (0);
2741	else if (error != 0)
2742		return (error);
2743
2744	CURVNET_SET_QUIET(vnet0);
2745	error = device_attach(dev);
2746	CURVNET_RESTORE();
2747	return error;
2748}
2749
2750/**
2751 * @brief Attach a device driver to a device
2752 *
2753 * This function is a wrapper around the DEVICE_ATTACH() driver
2754 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2755 * device's sysctl tree, optionally prints a description of the device
2756 * and queues a notification event for user-based device management
2757 * services.
2758 *
2759 * Normally this function is only called internally from
2760 * device_probe_and_attach().
2761 *
2762 * @param dev		the device to initialise
2763 *
2764 * @retval 0		success
2765 * @retval ENXIO	no driver was found
2766 * @retval ENOMEM	memory allocation failure
2767 * @retval non-zero	some other unix error code
2768 */
2769int
2770device_attach(device_t dev)
2771{
2772	uint64_t attachtime;
2773	int error;
2774
2775	if (resource_disabled(dev->driver->name, dev->unit)) {
2776		device_disable(dev);
2777		if (bootverbose)
2778			 device_printf(dev, "disabled via hints entry\n");
2779		return (ENXIO);
2780	}
2781
2782	device_sysctl_init(dev);
2783	if (!device_is_quiet(dev))
2784		device_print_child(dev->parent, dev);
2785	attachtime = get_cyclecount();
2786	dev->state = DS_ATTACHING;
2787	if ((error = DEVICE_ATTACH(dev)) != 0) {
2788		printf("device_attach: %s%d attach returned %d\n",
2789		    dev->driver->name, dev->unit, error);
2790		if (!(dev->flags & DF_FIXEDCLASS))
2791			devclass_delete_device(dev->devclass, dev);
2792		(void)device_set_driver(dev, NULL);
2793		device_sysctl_fini(dev);
2794		KASSERT(dev->busy == 0, ("attach failed but busy"));
2795		dev->state = DS_NOTPRESENT;
2796		return (error);
2797	}
2798	attachtime = get_cyclecount() - attachtime;
2799	/*
2800	 * 4 bits per device is a reasonable value for desktop and server
2801	 * hardware with good get_cyclecount() implementations, but may
2802	 * need to be adjusted on other platforms.
2803	 */
2804#ifdef RANDOM_DEBUG
2805	printf("%s(): feeding %d bit(s) of entropy from %s%d\n",
2806	    __func__, 4, dev->driver->name, dev->unit);
2807#endif
2808	random_harvest(&attachtime, sizeof(attachtime), 4, RANDOM_ATTACH);
2809	device_sysctl_update(dev);
2810	if (dev->busy)
2811		dev->state = DS_BUSY;
2812	else
2813		dev->state = DS_ATTACHED;
2814	dev->flags &= ~DF_DONENOMATCH;
2815	devadded(dev);
2816	return (0);
2817}
2818
2819/**
2820 * @brief Detach a driver from a device
2821 *
2822 * This function is a wrapper around the DEVICE_DETACH() driver
2823 * method. If the call to DEVICE_DETACH() succeeds, it calls
2824 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2825 * notification event for user-based device management services and
2826 * cleans up the device's sysctl tree.
2827 *
2828 * @param dev		the device to un-initialise
2829 *
2830 * @retval 0		success
2831 * @retval ENXIO	no driver was found
2832 * @retval ENOMEM	memory allocation failure
2833 * @retval non-zero	some other unix error code
2834 */
2835int
2836device_detach(device_t dev)
2837{
2838	int error;
2839
2840	GIANT_REQUIRED;
2841
2842	PDEBUG(("%s", DEVICENAME(dev)));
2843	if (dev->state == DS_BUSY)
2844		return (EBUSY);
2845	if (dev->state != DS_ATTACHED)
2846		return (0);
2847
2848	if ((error = DEVICE_DETACH(dev)) != 0)
2849		return (error);
2850	devremoved(dev);
2851	if (!device_is_quiet(dev))
2852		device_printf(dev, "detached\n");
2853	if (dev->parent)
2854		BUS_CHILD_DETACHED(dev->parent, dev);
2855
2856	if (!(dev->flags & DF_FIXEDCLASS))
2857		devclass_delete_device(dev->devclass, dev);
2858
2859	dev->state = DS_NOTPRESENT;
2860	(void)device_set_driver(dev, NULL);
2861	device_sysctl_fini(dev);
2862
2863	return (0);
2864}
2865
2866/**
2867 * @brief Tells a driver to quiesce itself.
2868 *
2869 * This function is a wrapper around the DEVICE_QUIESCE() driver
2870 * method. If the call to DEVICE_QUIESCE() succeeds.
2871 *
2872 * @param dev		the device to quiesce
2873 *
2874 * @retval 0		success
2875 * @retval ENXIO	no driver was found
2876 * @retval ENOMEM	memory allocation failure
2877 * @retval non-zero	some other unix error code
2878 */
2879int
2880device_quiesce(device_t dev)
2881{
2882
2883	PDEBUG(("%s", DEVICENAME(dev)));
2884	if (dev->state == DS_BUSY)
2885		return (EBUSY);
2886	if (dev->state != DS_ATTACHED)
2887		return (0);
2888
2889	return (DEVICE_QUIESCE(dev));
2890}
2891
2892/**
2893 * @brief Notify a device of system shutdown
2894 *
2895 * This function calls the DEVICE_SHUTDOWN() driver method if the
2896 * device currently has an attached driver.
2897 *
2898 * @returns the value returned by DEVICE_SHUTDOWN()
2899 */
2900int
2901device_shutdown(device_t dev)
2902{
2903	if (dev->state < DS_ATTACHED)
2904		return (0);
2905	return (DEVICE_SHUTDOWN(dev));
2906}
2907
2908/**
2909 * @brief Set the unit number of a device
2910 *
2911 * This function can be used to override the unit number used for a
2912 * device (e.g. to wire a device to a pre-configured unit number).
2913 */
2914int
2915device_set_unit(device_t dev, int unit)
2916{
2917	devclass_t dc;
2918	int err;
2919
2920	dc = device_get_devclass(dev);
2921	if (unit < dc->maxunit && dc->devices[unit])
2922		return (EBUSY);
2923	err = devclass_delete_device(dc, dev);
2924	if (err)
2925		return (err);
2926	dev->unit = unit;
2927	err = devclass_add_device(dc, dev);
2928	if (err)
2929		return (err);
2930
2931	bus_data_generation_update();
2932	return (0);
2933}
2934
2935/*======================================*/
2936/*
2937 * Some useful method implementations to make life easier for bus drivers.
2938 */
2939
2940/**
2941 * @brief Initialise a resource list.
2942 *
2943 * @param rl		the resource list to initialise
2944 */
2945void
2946resource_list_init(struct resource_list *rl)
2947{
2948	STAILQ_INIT(rl);
2949}
2950
2951/**
2952 * @brief Reclaim memory used by a resource list.
2953 *
2954 * This function frees the memory for all resource entries on the list
2955 * (if any).
2956 *
2957 * @param rl		the resource list to free
2958 */
2959void
2960resource_list_free(struct resource_list *rl)
2961{
2962	struct resource_list_entry *rle;
2963
2964	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2965		if (rle->res)
2966			panic("resource_list_free: resource entry is busy");
2967		STAILQ_REMOVE_HEAD(rl, link);
2968		free(rle, M_BUS);
2969	}
2970}
2971
2972/**
2973 * @brief Add a resource entry.
2974 *
2975 * This function adds a resource entry using the given @p type, @p
2976 * start, @p end and @p count values. A rid value is chosen by
2977 * searching sequentially for the first unused rid starting at zero.
2978 *
2979 * @param rl		the resource list to edit
2980 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2981 * @param start		the start address of the resource
2982 * @param end		the end address of the resource
2983 * @param count		XXX end-start+1
2984 */
2985int
2986resource_list_add_next(struct resource_list *rl, int type, u_long start,
2987    u_long end, u_long count)
2988{
2989	int rid;
2990
2991	rid = 0;
2992	while (resource_list_find(rl, type, rid) != NULL)
2993		rid++;
2994	resource_list_add(rl, type, rid, start, end, count);
2995	return (rid);
2996}
2997
2998/**
2999 * @brief Add or modify a resource entry.
3000 *
3001 * If an existing entry exists with the same type and rid, it will be
3002 * modified using the given values of @p start, @p end and @p
3003 * count. If no entry exists, a new one will be created using the
3004 * given values.  The resource list entry that matches is then returned.
3005 *
3006 * @param rl		the resource list to edit
3007 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3008 * @param rid		the resource identifier
3009 * @param start		the start address of the resource
3010 * @param end		the end address of the resource
3011 * @param count		XXX end-start+1
3012 */
3013struct resource_list_entry *
3014resource_list_add(struct resource_list *rl, int type, int rid,
3015    u_long start, u_long end, u_long count)
3016{
3017	struct resource_list_entry *rle;
3018
3019	rle = resource_list_find(rl, type, rid);
3020	if (!rle) {
3021		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
3022		    M_NOWAIT);
3023		if (!rle)
3024			panic("resource_list_add: can't record entry");
3025		STAILQ_INSERT_TAIL(rl, rle, link);
3026		rle->type = type;
3027		rle->rid = rid;
3028		rle->res = NULL;
3029		rle->flags = 0;
3030	}
3031
3032	if (rle->res)
3033		panic("resource_list_add: resource entry is busy");
3034
3035	rle->start = start;
3036	rle->end = end;
3037	rle->count = count;
3038	return (rle);
3039}
3040
3041/**
3042 * @brief Determine if a resource entry is busy.
3043 *
3044 * Returns true if a resource entry is busy meaning that it has an
3045 * associated resource that is not an unallocated "reserved" resource.
3046 *
3047 * @param rl		the resource list to search
3048 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3049 * @param rid		the resource identifier
3050 *
3051 * @returns Non-zero if the entry is busy, zero otherwise.
3052 */
3053int
3054resource_list_busy(struct resource_list *rl, int type, int rid)
3055{
3056	struct resource_list_entry *rle;
3057
3058	rle = resource_list_find(rl, type, rid);
3059	if (rle == NULL || rle->res == NULL)
3060		return (0);
3061	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3062		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3063		    ("reserved resource is active"));
3064		return (0);
3065	}
3066	return (1);
3067}
3068
3069/**
3070 * @brief Determine if a resource entry is reserved.
3071 *
3072 * Returns true if a resource entry is reserved meaning that it has an
3073 * associated "reserved" resource.  The resource can either be
3074 * allocated or unallocated.
3075 *
3076 * @param rl		the resource list to search
3077 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3078 * @param rid		the resource identifier
3079 *
3080 * @returns Non-zero if the entry is reserved, zero otherwise.
3081 */
3082int
3083resource_list_reserved(struct resource_list *rl, int type, int rid)
3084{
3085	struct resource_list_entry *rle;
3086
3087	rle = resource_list_find(rl, type, rid);
3088	if (rle != NULL && rle->flags & RLE_RESERVED)
3089		return (1);
3090	return (0);
3091}
3092
3093/**
3094 * @brief Find a resource entry by type and rid.
3095 *
3096 * @param rl		the resource list to search
3097 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3098 * @param rid		the resource identifier
3099 *
3100 * @returns the resource entry pointer or NULL if there is no such
3101 * entry.
3102 */
3103struct resource_list_entry *
3104resource_list_find(struct resource_list *rl, int type, int rid)
3105{
3106	struct resource_list_entry *rle;
3107
3108	STAILQ_FOREACH(rle, rl, link) {
3109		if (rle->type == type && rle->rid == rid)
3110			return (rle);
3111	}
3112	return (NULL);
3113}
3114
3115/**
3116 * @brief Delete a resource entry.
3117 *
3118 * @param rl		the resource list to edit
3119 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3120 * @param rid		the resource identifier
3121 */
3122void
3123resource_list_delete(struct resource_list *rl, int type, int rid)
3124{
3125	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3126
3127	if (rle) {
3128		if (rle->res != NULL)
3129			panic("resource_list_delete: resource has not been released");
3130		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3131		free(rle, M_BUS);
3132	}
3133}
3134
3135/**
3136 * @brief Allocate a reserved resource
3137 *
3138 * This can be used by busses to force the allocation of resources
3139 * that are always active in the system even if they are not allocated
3140 * by a driver (e.g. PCI BARs).  This function is usually called when
3141 * adding a new child to the bus.  The resource is allocated from the
3142 * parent bus when it is reserved.  The resource list entry is marked
3143 * with RLE_RESERVED to note that it is a reserved resource.
3144 *
3145 * Subsequent attempts to allocate the resource with
3146 * resource_list_alloc() will succeed the first time and will set
3147 * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3148 * resource that has been allocated is released with
3149 * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3150 * the actual resource remains allocated.  The resource can be released to
3151 * the parent bus by calling resource_list_unreserve().
3152 *
3153 * @param rl		the resource list to allocate from
3154 * @param bus		the parent device of @p child
3155 * @param child		the device for which the resource is being reserved
3156 * @param type		the type of resource to allocate
3157 * @param rid		a pointer to the resource identifier
3158 * @param start		hint at the start of the resource range - pass
3159 *			@c 0UL for any start address
3160 * @param end		hint at the end of the resource range - pass
3161 *			@c ~0UL for any end address
3162 * @param count		hint at the size of range required - pass @c 1
3163 *			for any size
3164 * @param flags		any extra flags to control the resource
3165 *			allocation - see @c RF_XXX flags in
3166 *			<sys/rman.h> for details
3167 *
3168 * @returns		the resource which was allocated or @c NULL if no
3169 *			resource could be allocated
3170 */
3171struct resource *
3172resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3173    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3174{
3175	struct resource_list_entry *rle = NULL;
3176	int passthrough = (device_get_parent(child) != bus);
3177	struct resource *r;
3178
3179	if (passthrough)
3180		panic(
3181    "resource_list_reserve() should only be called for direct children");
3182	if (flags & RF_ACTIVE)
3183		panic(
3184    "resource_list_reserve() should only reserve inactive resources");
3185
3186	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3187	    flags);
3188	if (r != NULL) {
3189		rle = resource_list_find(rl, type, *rid);
3190		rle->flags |= RLE_RESERVED;
3191	}
3192	return (r);
3193}
3194
3195/**
3196 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3197 *
3198 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3199 * and passing the allocation up to the parent of @p bus. This assumes
3200 * that the first entry of @c device_get_ivars(child) is a struct
3201 * resource_list. This also handles 'passthrough' allocations where a
3202 * child is a remote descendant of bus by passing the allocation up to
3203 * the parent of bus.
3204 *
3205 * Typically, a bus driver would store a list of child resources
3206 * somewhere in the child device's ivars (see device_get_ivars()) and
3207 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3208 * then call resource_list_alloc() to perform the allocation.
3209 *
3210 * @param rl		the resource list to allocate from
3211 * @param bus		the parent device of @p child
3212 * @param child		the device which is requesting an allocation
3213 * @param type		the type of resource to allocate
3214 * @param rid		a pointer to the resource identifier
3215 * @param start		hint at the start of the resource range - pass
3216 *			@c 0UL for any start address
3217 * @param end		hint at the end of the resource range - pass
3218 *			@c ~0UL for any end address
3219 * @param count		hint at the size of range required - pass @c 1
3220 *			for any size
3221 * @param flags		any extra flags to control the resource
3222 *			allocation - see @c RF_XXX flags in
3223 *			<sys/rman.h> for details
3224 *
3225 * @returns		the resource which was allocated or @c NULL if no
3226 *			resource could be allocated
3227 */
3228struct resource *
3229resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3230    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3231{
3232	struct resource_list_entry *rle = NULL;
3233	int passthrough = (device_get_parent(child) != bus);
3234	int isdefault = (start == 0UL && end == ~0UL);
3235
3236	if (passthrough) {
3237		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3238		    type, rid, start, end, count, flags));
3239	}
3240
3241	rle = resource_list_find(rl, type, *rid);
3242
3243	if (!rle)
3244		return (NULL);		/* no resource of that type/rid */
3245
3246	if (rle->res) {
3247		if (rle->flags & RLE_RESERVED) {
3248			if (rle->flags & RLE_ALLOCATED)
3249				return (NULL);
3250			if ((flags & RF_ACTIVE) &&
3251			    bus_activate_resource(child, type, *rid,
3252			    rle->res) != 0)
3253				return (NULL);
3254			rle->flags |= RLE_ALLOCATED;
3255			return (rle->res);
3256		}
3257		panic("resource_list_alloc: resource entry is busy");
3258	}
3259
3260	if (isdefault) {
3261		start = rle->start;
3262		count = ulmax(count, rle->count);
3263		end = ulmax(rle->end, start + count - 1);
3264	}
3265
3266	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3267	    type, rid, start, end, count, flags);
3268
3269	/*
3270	 * Record the new range.
3271	 */
3272	if (rle->res) {
3273		rle->start = rman_get_start(rle->res);
3274		rle->end = rman_get_end(rle->res);
3275		rle->count = count;
3276	}
3277
3278	return (rle->res);
3279}
3280
3281/**
3282 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3283 *
3284 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3285 * used with resource_list_alloc().
3286 *
3287 * @param rl		the resource list which was allocated from
3288 * @param bus		the parent device of @p child
3289 * @param child		the device which is requesting a release
3290 * @param type		the type of resource to release
3291 * @param rid		the resource identifier
3292 * @param res		the resource to release
3293 *
3294 * @retval 0		success
3295 * @retval non-zero	a standard unix error code indicating what
3296 *			error condition prevented the operation
3297 */
3298int
3299resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3300    int type, int rid, struct resource *res)
3301{
3302	struct resource_list_entry *rle = NULL;
3303	int passthrough = (device_get_parent(child) != bus);
3304	int error;
3305
3306	if (passthrough) {
3307		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3308		    type, rid, res));
3309	}
3310
3311	rle = resource_list_find(rl, type, rid);
3312
3313	if (!rle)
3314		panic("resource_list_release: can't find resource");
3315	if (!rle->res)
3316		panic("resource_list_release: resource entry is not busy");
3317	if (rle->flags & RLE_RESERVED) {
3318		if (rle->flags & RLE_ALLOCATED) {
3319			if (rman_get_flags(res) & RF_ACTIVE) {
3320				error = bus_deactivate_resource(child, type,
3321				    rid, res);
3322				if (error)
3323					return (error);
3324			}
3325			rle->flags &= ~RLE_ALLOCATED;
3326			return (0);
3327		}
3328		return (EINVAL);
3329	}
3330
3331	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3332	    type, rid, res);
3333	if (error)
3334		return (error);
3335
3336	rle->res = NULL;
3337	return (0);
3338}
3339
3340/**
3341 * @brief Release all active resources of a given type
3342 *
3343 * Release all active resources of a specified type.  This is intended
3344 * to be used to cleanup resources leaked by a driver after detach or
3345 * a failed attach.
3346 *
3347 * @param rl		the resource list which was allocated from
3348 * @param bus		the parent device of @p child
3349 * @param child		the device whose active resources are being released
3350 * @param type		the type of resources to release
3351 *
3352 * @retval 0		success
3353 * @retval EBUSY	at least one resource was active
3354 */
3355int
3356resource_list_release_active(struct resource_list *rl, device_t bus,
3357    device_t child, int type)
3358{
3359	struct resource_list_entry *rle;
3360	int error, retval;
3361
3362	retval = 0;
3363	STAILQ_FOREACH(rle, rl, link) {
3364		if (rle->type != type)
3365			continue;
3366		if (rle->res == NULL)
3367			continue;
3368		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3369		    RLE_RESERVED)
3370			continue;
3371		retval = EBUSY;
3372		error = resource_list_release(rl, bus, child, type,
3373		    rman_get_rid(rle->res), rle->res);
3374		if (error != 0)
3375			device_printf(bus,
3376			    "Failed to release active resource: %d\n", error);
3377	}
3378	return (retval);
3379}
3380
3381
3382/**
3383 * @brief Fully release a reserved resource
3384 *
3385 * Fully releases a resource reserved via resource_list_reserve().
3386 *
3387 * @param rl		the resource list which was allocated from
3388 * @param bus		the parent device of @p child
3389 * @param child		the device whose reserved resource is being released
3390 * @param type		the type of resource to release
3391 * @param rid		the resource identifier
3392 * @param res		the resource to release
3393 *
3394 * @retval 0		success
3395 * @retval non-zero	a standard unix error code indicating what
3396 *			error condition prevented the operation
3397 */
3398int
3399resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3400    int type, int rid)
3401{
3402	struct resource_list_entry *rle = NULL;
3403	int passthrough = (device_get_parent(child) != bus);
3404
3405	if (passthrough)
3406		panic(
3407    "resource_list_unreserve() should only be called for direct children");
3408
3409	rle = resource_list_find(rl, type, rid);
3410
3411	if (!rle)
3412		panic("resource_list_unreserve: can't find resource");
3413	if (!(rle->flags & RLE_RESERVED))
3414		return (EINVAL);
3415	if (rle->flags & RLE_ALLOCATED)
3416		return (EBUSY);
3417	rle->flags &= ~RLE_RESERVED;
3418	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3419}
3420
3421/**
3422 * @brief Print a description of resources in a resource list
3423 *
3424 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3425 * The name is printed if at least one resource of the given type is available.
3426 * The format is used to print resource start and end.
3427 *
3428 * @param rl		the resource list to print
3429 * @param name		the name of @p type, e.g. @c "memory"
3430 * @param type		type type of resource entry to print
3431 * @param format	printf(9) format string to print resource
3432 *			start and end values
3433 *
3434 * @returns		the number of characters printed
3435 */
3436int
3437resource_list_print_type(struct resource_list *rl, const char *name, int type,
3438    const char *format)
3439{
3440	struct resource_list_entry *rle;
3441	int printed, retval;
3442
3443	printed = 0;
3444	retval = 0;
3445	/* Yes, this is kinda cheating */
3446	STAILQ_FOREACH(rle, rl, link) {
3447		if (rle->type == type) {
3448			if (printed == 0)
3449				retval += printf(" %s ", name);
3450			else
3451				retval += printf(",");
3452			printed++;
3453			retval += printf(format, rle->start);
3454			if (rle->count > 1) {
3455				retval += printf("-");
3456				retval += printf(format, rle->start +
3457						 rle->count - 1);
3458			}
3459		}
3460	}
3461	return (retval);
3462}
3463
3464/**
3465 * @brief Releases all the resources in a list.
3466 *
3467 * @param rl		The resource list to purge.
3468 *
3469 * @returns		nothing
3470 */
3471void
3472resource_list_purge(struct resource_list *rl)
3473{
3474	struct resource_list_entry *rle;
3475
3476	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3477		if (rle->res)
3478			bus_release_resource(rman_get_device(rle->res),
3479			    rle->type, rle->rid, rle->res);
3480		STAILQ_REMOVE_HEAD(rl, link);
3481		free(rle, M_BUS);
3482	}
3483}
3484
3485device_t
3486bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3487{
3488
3489	return (device_add_child_ordered(dev, order, name, unit));
3490}
3491
3492/**
3493 * @brief Helper function for implementing DEVICE_PROBE()
3494 *
3495 * This function can be used to help implement the DEVICE_PROBE() for
3496 * a bus (i.e. a device which has other devices attached to it). It
3497 * calls the DEVICE_IDENTIFY() method of each driver in the device's
3498 * devclass.
3499 */
3500int
3501bus_generic_probe(device_t dev)
3502{
3503	devclass_t dc = dev->devclass;
3504	driverlink_t dl;
3505
3506	TAILQ_FOREACH(dl, &dc->drivers, link) {
3507		/*
3508		 * If this driver's pass is too high, then ignore it.
3509		 * For most drivers in the default pass, this will
3510		 * never be true.  For early-pass drivers they will
3511		 * only call the identify routines of eligible drivers
3512		 * when this routine is called.  Drivers for later
3513		 * passes should have their identify routines called
3514		 * on early-pass busses during BUS_NEW_PASS().
3515		 */
3516		if (dl->pass > bus_current_pass)
3517			continue;
3518		DEVICE_IDENTIFY(dl->driver, dev);
3519	}
3520
3521	return (0);
3522}
3523
3524/**
3525 * @brief Helper function for implementing DEVICE_ATTACH()
3526 *
3527 * This function can be used to help implement the DEVICE_ATTACH() for
3528 * a bus. It calls device_probe_and_attach() for each of the device's
3529 * children.
3530 */
3531int
3532bus_generic_attach(device_t dev)
3533{
3534	device_t child;
3535
3536	TAILQ_FOREACH(child, &dev->children, link) {
3537		device_probe_and_attach(child);
3538	}
3539
3540	return (0);
3541}
3542
3543/**
3544 * @brief Helper function for implementing DEVICE_DETACH()
3545 *
3546 * This function can be used to help implement the DEVICE_DETACH() for
3547 * a bus. It calls device_detach() for each of the device's
3548 * children.
3549 */
3550int
3551bus_generic_detach(device_t dev)
3552{
3553	device_t child;
3554	int error;
3555
3556	if (dev->state != DS_ATTACHED)
3557		return (EBUSY);
3558
3559	TAILQ_FOREACH(child, &dev->children, link) {
3560		if ((error = device_detach(child)) != 0)
3561			return (error);
3562	}
3563
3564	return (0);
3565}
3566
3567/**
3568 * @brief Helper function for implementing DEVICE_SHUTDOWN()
3569 *
3570 * This function can be used to help implement the DEVICE_SHUTDOWN()
3571 * for a bus. It calls device_shutdown() for each of the device's
3572 * children.
3573 */
3574int
3575bus_generic_shutdown(device_t dev)
3576{
3577	device_t child;
3578
3579	TAILQ_FOREACH(child, &dev->children, link) {
3580		device_shutdown(child);
3581	}
3582
3583	return (0);
3584}
3585
3586/**
3587 * @brief Helper function for implementing DEVICE_SUSPEND()
3588 *
3589 * This function can be used to help implement the DEVICE_SUSPEND()
3590 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3591 * children. If any call to DEVICE_SUSPEND() fails, the suspend
3592 * operation is aborted and any devices which were suspended are
3593 * resumed immediately by calling their DEVICE_RESUME() methods.
3594 */
3595int
3596bus_generic_suspend(device_t dev)
3597{
3598	int		error;
3599	device_t	child, child2;
3600
3601	TAILQ_FOREACH(child, &dev->children, link) {
3602		error = DEVICE_SUSPEND(child);
3603		if (error) {
3604			for (child2 = TAILQ_FIRST(&dev->children);
3605			     child2 && child2 != child;
3606			     child2 = TAILQ_NEXT(child2, link))
3607				DEVICE_RESUME(child2);
3608			return (error);
3609		}
3610	}
3611	return (0);
3612}
3613
3614/**
3615 * @brief Helper function for implementing DEVICE_RESUME()
3616 *
3617 * This function can be used to help implement the DEVICE_RESUME() for
3618 * a bus. It calls DEVICE_RESUME() on each of the device's children.
3619 */
3620int
3621bus_generic_resume(device_t dev)
3622{
3623	device_t	child;
3624
3625	TAILQ_FOREACH(child, &dev->children, link) {
3626		DEVICE_RESUME(child);
3627		/* if resume fails, there's nothing we can usefully do... */
3628	}
3629	return (0);
3630}
3631
3632/**
3633 * @brief Helper function for implementing BUS_PRINT_CHILD().
3634 *
3635 * This function prints the first part of the ascii representation of
3636 * @p child, including its name, unit and description (if any - see
3637 * device_set_desc()).
3638 *
3639 * @returns the number of characters printed
3640 */
3641int
3642bus_print_child_header(device_t dev, device_t child)
3643{
3644	int	retval = 0;
3645
3646	if (device_get_desc(child)) {
3647		retval += device_printf(child, "<%s>", device_get_desc(child));
3648	} else {
3649		retval += printf("%s", device_get_nameunit(child));
3650	}
3651
3652	return (retval);
3653}
3654
3655/**
3656 * @brief Helper function for implementing BUS_PRINT_CHILD().
3657 *
3658 * This function prints the last part of the ascii representation of
3659 * @p child, which consists of the string @c " on " followed by the
3660 * name and unit of the @p dev.
3661 *
3662 * @returns the number of characters printed
3663 */
3664int
3665bus_print_child_footer(device_t dev, device_t child)
3666{
3667	return (printf(" on %s\n", device_get_nameunit(dev)));
3668}
3669
3670/**
3671 * @brief Helper function for implementing BUS_PRINT_CHILD().
3672 *
3673 * This function simply calls bus_print_child_header() followed by
3674 * bus_print_child_footer().
3675 *
3676 * @returns the number of characters printed
3677 */
3678int
3679bus_generic_print_child(device_t dev, device_t child)
3680{
3681	int	retval = 0;
3682
3683	retval += bus_print_child_header(dev, child);
3684	retval += bus_print_child_footer(dev, child);
3685
3686	return (retval);
3687}
3688
3689/**
3690 * @brief Stub function for implementing BUS_READ_IVAR().
3691 *
3692 * @returns ENOENT
3693 */
3694int
3695bus_generic_read_ivar(device_t dev, device_t child, int index,
3696    uintptr_t * result)
3697{
3698	return (ENOENT);
3699}
3700
3701/**
3702 * @brief Stub function for implementing BUS_WRITE_IVAR().
3703 *
3704 * @returns ENOENT
3705 */
3706int
3707bus_generic_write_ivar(device_t dev, device_t child, int index,
3708    uintptr_t value)
3709{
3710	return (ENOENT);
3711}
3712
3713/**
3714 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3715 *
3716 * @returns NULL
3717 */
3718struct resource_list *
3719bus_generic_get_resource_list(device_t dev, device_t child)
3720{
3721	return (NULL);
3722}
3723
3724/**
3725 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3726 *
3727 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3728 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3729 * and then calls device_probe_and_attach() for each unattached child.
3730 */
3731void
3732bus_generic_driver_added(device_t dev, driver_t *driver)
3733{
3734	device_t child;
3735
3736	DEVICE_IDENTIFY(driver, dev);
3737	TAILQ_FOREACH(child, &dev->children, link) {
3738		if (child->state == DS_NOTPRESENT ||
3739		    (child->flags & DF_REBID))
3740			device_probe_and_attach(child);
3741	}
3742}
3743
3744/**
3745 * @brief Helper function for implementing BUS_NEW_PASS().
3746 *
3747 * This implementing of BUS_NEW_PASS() first calls the identify
3748 * routines for any drivers that probe at the current pass.  Then it
3749 * walks the list of devices for this bus.  If a device is already
3750 * attached, then it calls BUS_NEW_PASS() on that device.  If the
3751 * device is not already attached, it attempts to attach a driver to
3752 * it.
3753 */
3754void
3755bus_generic_new_pass(device_t dev)
3756{
3757	driverlink_t dl;
3758	devclass_t dc;
3759	device_t child;
3760
3761	dc = dev->devclass;
3762	TAILQ_FOREACH(dl, &dc->drivers, link) {
3763		if (dl->pass == bus_current_pass)
3764			DEVICE_IDENTIFY(dl->driver, dev);
3765	}
3766	TAILQ_FOREACH(child, &dev->children, link) {
3767		if (child->state >= DS_ATTACHED)
3768			BUS_NEW_PASS(child);
3769		else if (child->state == DS_NOTPRESENT)
3770			device_probe_and_attach(child);
3771	}
3772}
3773
3774/**
3775 * @brief Helper function for implementing BUS_SETUP_INTR().
3776 *
3777 * This simple implementation of BUS_SETUP_INTR() simply calls the
3778 * BUS_SETUP_INTR() method of the parent of @p dev.
3779 */
3780int
3781bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3782    int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3783    void **cookiep)
3784{
3785	/* Propagate up the bus hierarchy until someone handles it. */
3786	if (dev->parent)
3787		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3788		    filter, intr, arg, cookiep));
3789	return (EINVAL);
3790}
3791
3792/**
3793 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3794 *
3795 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3796 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3797 */
3798int
3799bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3800    void *cookie)
3801{
3802	/* Propagate up the bus hierarchy until someone handles it. */
3803	if (dev->parent)
3804		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3805	return (EINVAL);
3806}
3807
3808/**
3809 * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3810 *
3811 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3812 * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3813 */
3814int
3815bus_generic_adjust_resource(device_t dev, device_t child, int type,
3816    struct resource *r, u_long start, u_long end)
3817{
3818	/* Propagate up the bus hierarchy until someone handles it. */
3819	if (dev->parent)
3820		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
3821		    end));
3822	return (EINVAL);
3823}
3824
3825/**
3826 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3827 *
3828 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3829 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3830 */
3831struct resource *
3832bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3833    u_long start, u_long end, u_long count, u_int flags)
3834{
3835	/* Propagate up the bus hierarchy until someone handles it. */
3836	if (dev->parent)
3837		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3838		    start, end, count, flags));
3839	return (NULL);
3840}
3841
3842/**
3843 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3844 *
3845 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3846 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3847 */
3848int
3849bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3850    struct resource *r)
3851{
3852	/* Propagate up the bus hierarchy until someone handles it. */
3853	if (dev->parent)
3854		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3855		    r));
3856	return (EINVAL);
3857}
3858
3859/**
3860 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3861 *
3862 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3863 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3864 */
3865int
3866bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3867    struct resource *r)
3868{
3869	/* Propagate up the bus hierarchy until someone handles it. */
3870	if (dev->parent)
3871		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3872		    r));
3873	return (EINVAL);
3874}
3875
3876/**
3877 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3878 *
3879 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3880 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3881 */
3882int
3883bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3884    int rid, struct resource *r)
3885{
3886	/* Propagate up the bus hierarchy until someone handles it. */
3887	if (dev->parent)
3888		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3889		    r));
3890	return (EINVAL);
3891}
3892
3893/**
3894 * @brief Helper function for implementing BUS_BIND_INTR().
3895 *
3896 * This simple implementation of BUS_BIND_INTR() simply calls the
3897 * BUS_BIND_INTR() method of the parent of @p dev.
3898 */
3899int
3900bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3901    int cpu)
3902{
3903
3904	/* Propagate up the bus hierarchy until someone handles it. */
3905	if (dev->parent)
3906		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3907	return (EINVAL);
3908}
3909
3910/**
3911 * @brief Helper function for implementing BUS_CONFIG_INTR().
3912 *
3913 * This simple implementation of BUS_CONFIG_INTR() simply calls the
3914 * BUS_CONFIG_INTR() method of the parent of @p dev.
3915 */
3916int
3917bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3918    enum intr_polarity pol)
3919{
3920
3921	/* Propagate up the bus hierarchy until someone handles it. */
3922	if (dev->parent)
3923		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3924	return (EINVAL);
3925}
3926
3927/**
3928 * @brief Helper function for implementing BUS_DESCRIBE_INTR().
3929 *
3930 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
3931 * BUS_DESCRIBE_INTR() method of the parent of @p dev.
3932 */
3933int
3934bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
3935    void *cookie, const char *descr)
3936{
3937
3938	/* Propagate up the bus hierarchy until someone handles it. */
3939	if (dev->parent)
3940		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
3941		    descr));
3942	return (EINVAL);
3943}
3944
3945/**
3946 * @brief Helper function for implementing BUS_GET_DMA_TAG().
3947 *
3948 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3949 * BUS_GET_DMA_TAG() method of the parent of @p dev.
3950 */
3951bus_dma_tag_t
3952bus_generic_get_dma_tag(device_t dev, device_t child)
3953{
3954
3955	/* Propagate up the bus hierarchy until someone handles it. */
3956	if (dev->parent != NULL)
3957		return (BUS_GET_DMA_TAG(dev->parent, child));
3958	return (NULL);
3959}
3960
3961/**
3962 * @brief Helper function for implementing BUS_GET_RESOURCE().
3963 *
3964 * This implementation of BUS_GET_RESOURCE() uses the
3965 * resource_list_find() function to do most of the work. It calls
3966 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3967 * search.
3968 */
3969int
3970bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3971    u_long *startp, u_long *countp)
3972{
3973	struct resource_list *		rl = NULL;
3974	struct resource_list_entry *	rle = NULL;
3975
3976	rl = BUS_GET_RESOURCE_LIST(dev, child);
3977	if (!rl)
3978		return (EINVAL);
3979
3980	rle = resource_list_find(rl, type, rid);
3981	if (!rle)
3982		return (ENOENT);
3983
3984	if (startp)
3985		*startp = rle->start;
3986	if (countp)
3987		*countp = rle->count;
3988
3989	return (0);
3990}
3991
3992/**
3993 * @brief Helper function for implementing BUS_SET_RESOURCE().
3994 *
3995 * This implementation of BUS_SET_RESOURCE() uses the
3996 * resource_list_add() function to do most of the work. It calls
3997 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3998 * edit.
3999 */
4000int
4001bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4002    u_long start, u_long count)
4003{
4004	struct resource_list *		rl = NULL;
4005
4006	rl = BUS_GET_RESOURCE_LIST(dev, child);
4007	if (!rl)
4008		return (EINVAL);
4009
4010	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4011
4012	return (0);
4013}
4014
4015/**
4016 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4017 *
4018 * This implementation of BUS_DELETE_RESOURCE() uses the
4019 * resource_list_delete() function to do most of the work. It calls
4020 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4021 * edit.
4022 */
4023void
4024bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4025{
4026	struct resource_list *		rl = NULL;
4027
4028	rl = BUS_GET_RESOURCE_LIST(dev, child);
4029	if (!rl)
4030		return;
4031
4032	resource_list_delete(rl, type, rid);
4033
4034	return;
4035}
4036
4037/**
4038 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4039 *
4040 * This implementation of BUS_RELEASE_RESOURCE() uses the
4041 * resource_list_release() function to do most of the work. It calls
4042 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4043 */
4044int
4045bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4046    int rid, struct resource *r)
4047{
4048	struct resource_list *		rl = NULL;
4049
4050	if (device_get_parent(child) != dev)
4051		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4052		    type, rid, r));
4053
4054	rl = BUS_GET_RESOURCE_LIST(dev, child);
4055	if (!rl)
4056		return (EINVAL);
4057
4058	return (resource_list_release(rl, dev, child, type, rid, r));
4059}
4060
4061/**
4062 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4063 *
4064 * This implementation of BUS_ALLOC_RESOURCE() uses the
4065 * resource_list_alloc() function to do most of the work. It calls
4066 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4067 */
4068struct resource *
4069bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4070    int *rid, u_long start, u_long end, u_long count, u_int flags)
4071{
4072	struct resource_list *		rl = NULL;
4073
4074	if (device_get_parent(child) != dev)
4075		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4076		    type, rid, start, end, count, flags));
4077
4078	rl = BUS_GET_RESOURCE_LIST(dev, child);
4079	if (!rl)
4080		return (NULL);
4081
4082	return (resource_list_alloc(rl, dev, child, type, rid,
4083	    start, end, count, flags));
4084}
4085
4086/**
4087 * @brief Helper function for implementing BUS_CHILD_PRESENT().
4088 *
4089 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4090 * BUS_CHILD_PRESENT() method of the parent of @p dev.
4091 */
4092int
4093bus_generic_child_present(device_t dev, device_t child)
4094{
4095	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4096}
4097
4098/*
4099 * Some convenience functions to make it easier for drivers to use the
4100 * resource-management functions.  All these really do is hide the
4101 * indirection through the parent's method table, making for slightly
4102 * less-wordy code.  In the future, it might make sense for this code
4103 * to maintain some sort of a list of resources allocated by each device.
4104 */
4105
4106int
4107bus_alloc_resources(device_t dev, struct resource_spec *rs,
4108    struct resource **res)
4109{
4110	int i;
4111
4112	for (i = 0; rs[i].type != -1; i++)
4113		res[i] = NULL;
4114	for (i = 0; rs[i].type != -1; i++) {
4115		res[i] = bus_alloc_resource_any(dev,
4116		    rs[i].type, &rs[i].rid, rs[i].flags);
4117		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4118			bus_release_resources(dev, rs, res);
4119			return (ENXIO);
4120		}
4121	}
4122	return (0);
4123}
4124
4125void
4126bus_release_resources(device_t dev, const struct resource_spec *rs,
4127    struct resource **res)
4128{
4129	int i;
4130
4131	for (i = 0; rs[i].type != -1; i++)
4132		if (res[i] != NULL) {
4133			bus_release_resource(
4134			    dev, rs[i].type, rs[i].rid, res[i]);
4135			res[i] = NULL;
4136		}
4137}
4138
4139/**
4140 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4141 *
4142 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4143 * parent of @p dev.
4144 */
4145struct resource *
4146bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
4147    u_long count, u_int flags)
4148{
4149	if (dev->parent == NULL)
4150		return (NULL);
4151	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4152	    count, flags));
4153}
4154
4155/**
4156 * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4157 *
4158 * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4159 * parent of @p dev.
4160 */
4161int
4162bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start,
4163    u_long end)
4164{
4165	if (dev->parent == NULL)
4166		return (EINVAL);
4167	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4168}
4169
4170/**
4171 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4172 *
4173 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4174 * parent of @p dev.
4175 */
4176int
4177bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4178{
4179	if (dev->parent == NULL)
4180		return (EINVAL);
4181	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4182}
4183
4184/**
4185 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4186 *
4187 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4188 * parent of @p dev.
4189 */
4190int
4191bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4192{
4193	if (dev->parent == NULL)
4194		return (EINVAL);
4195	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4196}
4197
4198/**
4199 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4200 *
4201 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4202 * parent of @p dev.
4203 */
4204int
4205bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4206{
4207	if (dev->parent == NULL)
4208		return (EINVAL);
4209	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
4210}
4211
4212/**
4213 * @brief Wrapper function for BUS_SETUP_INTR().
4214 *
4215 * This function simply calls the BUS_SETUP_INTR() method of the
4216 * parent of @p dev.
4217 */
4218int
4219bus_setup_intr(device_t dev, struct resource *r, int flags,
4220    driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4221{
4222	int error;
4223
4224	if (dev->parent == NULL)
4225		return (EINVAL);
4226	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4227	    arg, cookiep);
4228	if (error != 0)
4229		return (error);
4230	if (handler != NULL && !(flags & INTR_MPSAFE))
4231		device_printf(dev, "[GIANT-LOCKED]\n");
4232	return (0);
4233}
4234
4235/**
4236 * @brief Wrapper function for BUS_TEARDOWN_INTR().
4237 *
4238 * This function simply calls the BUS_TEARDOWN_INTR() method of the
4239 * parent of @p dev.
4240 */
4241int
4242bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4243{
4244	if (dev->parent == NULL)
4245		return (EINVAL);
4246	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4247}
4248
4249/**
4250 * @brief Wrapper function for BUS_BIND_INTR().
4251 *
4252 * This function simply calls the BUS_BIND_INTR() method of the
4253 * parent of @p dev.
4254 */
4255int
4256bus_bind_intr(device_t dev, struct resource *r, int cpu)
4257{
4258	if (dev->parent == NULL)
4259		return (EINVAL);
4260	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4261}
4262
4263/**
4264 * @brief Wrapper function for BUS_DESCRIBE_INTR().
4265 *
4266 * This function first formats the requested description into a
4267 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4268 * the parent of @p dev.
4269 */
4270int
4271bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4272    const char *fmt, ...)
4273{
4274	va_list ap;
4275	char descr[MAXCOMLEN + 1];
4276
4277	if (dev->parent == NULL)
4278		return (EINVAL);
4279	va_start(ap, fmt);
4280	vsnprintf(descr, sizeof(descr), fmt, ap);
4281	va_end(ap);
4282	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4283}
4284
4285/**
4286 * @brief Wrapper function for BUS_SET_RESOURCE().
4287 *
4288 * This function simply calls the BUS_SET_RESOURCE() method of the
4289 * parent of @p dev.
4290 */
4291int
4292bus_set_resource(device_t dev, int type, int rid,
4293    u_long start, u_long count)
4294{
4295	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4296	    start, count));
4297}
4298
4299/**
4300 * @brief Wrapper function for BUS_GET_RESOURCE().
4301 *
4302 * This function simply calls the BUS_GET_RESOURCE() method of the
4303 * parent of @p dev.
4304 */
4305int
4306bus_get_resource(device_t dev, int type, int rid,
4307    u_long *startp, u_long *countp)
4308{
4309	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4310	    startp, countp));
4311}
4312
4313/**
4314 * @brief Wrapper function for BUS_GET_RESOURCE().
4315 *
4316 * This function simply calls the BUS_GET_RESOURCE() method of the
4317 * parent of @p dev and returns the start value.
4318 */
4319u_long
4320bus_get_resource_start(device_t dev, int type, int rid)
4321{
4322	u_long start, count;
4323	int error;
4324
4325	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4326	    &start, &count);
4327	if (error)
4328		return (0);
4329	return (start);
4330}
4331
4332/**
4333 * @brief Wrapper function for BUS_GET_RESOURCE().
4334 *
4335 * This function simply calls the BUS_GET_RESOURCE() method of the
4336 * parent of @p dev and returns the count value.
4337 */
4338u_long
4339bus_get_resource_count(device_t dev, int type, int rid)
4340{
4341	u_long start, count;
4342	int error;
4343
4344	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4345	    &start, &count);
4346	if (error)
4347		return (0);
4348	return (count);
4349}
4350
4351/**
4352 * @brief Wrapper function for BUS_DELETE_RESOURCE().
4353 *
4354 * This function simply calls the BUS_DELETE_RESOURCE() method of the
4355 * parent of @p dev.
4356 */
4357void
4358bus_delete_resource(device_t dev, int type, int rid)
4359{
4360	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4361}
4362
4363/**
4364 * @brief Wrapper function for BUS_CHILD_PRESENT().
4365 *
4366 * This function simply calls the BUS_CHILD_PRESENT() method of the
4367 * parent of @p dev.
4368 */
4369int
4370bus_child_present(device_t child)
4371{
4372	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4373}
4374
4375/**
4376 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4377 *
4378 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4379 * parent of @p dev.
4380 */
4381int
4382bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4383{
4384	device_t parent;
4385
4386	parent = device_get_parent(child);
4387	if (parent == NULL) {
4388		*buf = '\0';
4389		return (0);
4390	}
4391	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4392}
4393
4394/**
4395 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4396 *
4397 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4398 * parent of @p dev.
4399 */
4400int
4401bus_child_location_str(device_t child, char *buf, size_t buflen)
4402{
4403	device_t parent;
4404
4405	parent = device_get_parent(child);
4406	if (parent == NULL) {
4407		*buf = '\0';
4408		return (0);
4409	}
4410	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4411}
4412
4413/**
4414 * @brief Wrapper function for BUS_GET_DMA_TAG().
4415 *
4416 * This function simply calls the BUS_GET_DMA_TAG() method of the
4417 * parent of @p dev.
4418 */
4419bus_dma_tag_t
4420bus_get_dma_tag(device_t dev)
4421{
4422	device_t parent;
4423
4424	parent = device_get_parent(dev);
4425	if (parent == NULL)
4426		return (NULL);
4427	return (BUS_GET_DMA_TAG(parent, dev));
4428}
4429
4430/* Resume all devices and then notify userland that we're up again. */
4431static int
4432root_resume(device_t dev)
4433{
4434	int error;
4435
4436	error = bus_generic_resume(dev);
4437	if (error == 0)
4438		devctl_notify("kern", "power", "resume", NULL);
4439	return (error);
4440}
4441
4442static int
4443root_print_child(device_t dev, device_t child)
4444{
4445	int	retval = 0;
4446
4447	retval += bus_print_child_header(dev, child);
4448	retval += printf("\n");
4449
4450	return (retval);
4451}
4452
4453static int
4454root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4455    driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4456{
4457	/*
4458	 * If an interrupt mapping gets to here something bad has happened.
4459	 */
4460	panic("root_setup_intr");
4461}
4462
4463/*
4464 * If we get here, assume that the device is permanant and really is
4465 * present in the system.  Removable bus drivers are expected to intercept
4466 * this call long before it gets here.  We return -1 so that drivers that
4467 * really care can check vs -1 or some ERRNO returned higher in the food
4468 * chain.
4469 */
4470static int
4471root_child_present(device_t dev, device_t child)
4472{
4473	return (-1);
4474}
4475
4476static kobj_method_t root_methods[] = {
4477	/* Device interface */
4478	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4479	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4480	KOBJMETHOD(device_resume,	root_resume),
4481
4482	/* Bus interface */
4483	KOBJMETHOD(bus_print_child,	root_print_child),
4484	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4485	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4486	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4487	KOBJMETHOD(bus_child_present,	root_child_present),
4488
4489	KOBJMETHOD_END
4490};
4491
4492static driver_t root_driver = {
4493	"root",
4494	root_methods,
4495	1,			/* no softc */
4496};
4497
4498device_t	root_bus;
4499devclass_t	root_devclass;
4500
4501static int
4502root_bus_module_handler(module_t mod, int what, void* arg)
4503{
4504	switch (what) {
4505	case MOD_LOAD:
4506		TAILQ_INIT(&bus_data_devices);
4507		kobj_class_compile((kobj_class_t) &root_driver);
4508		root_bus = make_device(NULL, "root", 0);
4509		root_bus->desc = "System root bus";
4510		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4511		root_bus->driver = &root_driver;
4512		root_bus->state = DS_ATTACHED;
4513		root_devclass = devclass_find_internal("root", NULL, FALSE);
4514		devinit();
4515		return (0);
4516
4517	case MOD_SHUTDOWN:
4518		device_shutdown(root_bus);
4519		return (0);
4520	default:
4521		return (EOPNOTSUPP);
4522	}
4523
4524	return (0);
4525}
4526
4527static moduledata_t root_bus_mod = {
4528	"rootbus",
4529	root_bus_module_handler,
4530	NULL
4531};
4532DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4533
4534/**
4535 * @brief Automatically configure devices
4536 *
4537 * This function begins the autoconfiguration process by calling
4538 * device_probe_and_attach() for each child of the @c root0 device.
4539 */
4540void
4541root_bus_configure(void)
4542{
4543
4544	PDEBUG(("."));
4545
4546	/* Eventually this will be split up, but this is sufficient for now. */
4547	bus_set_pass(BUS_PASS_DEFAULT);
4548}
4549
4550/**
4551 * @brief Module handler for registering device drivers
4552 *
4553 * This module handler is used to automatically register device
4554 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4555 * devclass_add_driver() for the driver described by the
4556 * driver_module_data structure pointed to by @p arg
4557 */
4558int
4559driver_module_handler(module_t mod, int what, void *arg)
4560{
4561	struct driver_module_data *dmd;
4562	devclass_t bus_devclass;
4563	kobj_class_t driver;
4564	int error, pass;
4565
4566	dmd = (struct driver_module_data *)arg;
4567	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4568	error = 0;
4569
4570	switch (what) {
4571	case MOD_LOAD:
4572		if (dmd->dmd_chainevh)
4573			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4574
4575		pass = dmd->dmd_pass;
4576		driver = dmd->dmd_driver;
4577		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4578		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4579		error = devclass_add_driver(bus_devclass, driver, pass,
4580		    dmd->dmd_devclass);
4581		break;
4582
4583	case MOD_UNLOAD:
4584		PDEBUG(("Unloading module: driver %s from bus %s",
4585		    DRIVERNAME(dmd->dmd_driver),
4586		    dmd->dmd_busname));
4587		error = devclass_delete_driver(bus_devclass,
4588		    dmd->dmd_driver);
4589
4590		if (!error && dmd->dmd_chainevh)
4591			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4592		break;
4593	case MOD_QUIESCE:
4594		PDEBUG(("Quiesce module: driver %s from bus %s",
4595		    DRIVERNAME(dmd->dmd_driver),
4596		    dmd->dmd_busname));
4597		error = devclass_quiesce_driver(bus_devclass,
4598		    dmd->dmd_driver);
4599
4600		if (!error && dmd->dmd_chainevh)
4601			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4602		break;
4603	default:
4604		error = EOPNOTSUPP;
4605		break;
4606	}
4607
4608	return (error);
4609}
4610
4611/**
4612 * @brief Enumerate all hinted devices for this bus.
4613 *
4614 * Walks through the hints for this bus and calls the bus_hinted_child
4615 * routine for each one it fines.  It searches first for the specific
4616 * bus that's being probed for hinted children (eg isa0), and then for
4617 * generic children (eg isa).
4618 *
4619 * @param	dev	bus device to enumerate
4620 */
4621void
4622bus_enumerate_hinted_children(device_t bus)
4623{
4624	int i;
4625	const char *dname, *busname;
4626	int dunit;
4627
4628	/*
4629	 * enumerate all devices on the specific bus
4630	 */
4631	busname = device_get_nameunit(bus);
4632	i = 0;
4633	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4634		BUS_HINTED_CHILD(bus, dname, dunit);
4635
4636	/*
4637	 * and all the generic ones.
4638	 */
4639	busname = device_get_name(bus);
4640	i = 0;
4641	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4642		BUS_HINTED_CHILD(bus, dname, dunit);
4643}
4644
4645#ifdef BUS_DEBUG
4646
4647/* the _short versions avoid iteration by not calling anything that prints
4648 * more than oneliners. I love oneliners.
4649 */
4650
4651static void
4652print_device_short(device_t dev, int indent)
4653{
4654	if (!dev)
4655		return;
4656
4657	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4658	    dev->unit, dev->desc,
4659	    (dev->parent? "":"no "),
4660	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4661	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4662	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4663	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4664	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4665	    (dev->flags&DF_REBID? "rebiddable,":""),
4666	    (dev->ivars? "":"no "),
4667	    (dev->softc? "":"no "),
4668	    dev->busy));
4669}
4670
4671static void
4672print_device(device_t dev, int indent)
4673{
4674	if (!dev)
4675		return;
4676
4677	print_device_short(dev, indent);
4678
4679	indentprintf(("Parent:\n"));
4680	print_device_short(dev->parent, indent+1);
4681	indentprintf(("Driver:\n"));
4682	print_driver_short(dev->driver, indent+1);
4683	indentprintf(("Devclass:\n"));
4684	print_devclass_short(dev->devclass, indent+1);
4685}
4686
4687void
4688print_device_tree_short(device_t dev, int indent)
4689/* print the device and all its children (indented) */
4690{
4691	device_t child;
4692
4693	if (!dev)
4694		return;
4695
4696	print_device_short(dev, indent);
4697
4698	TAILQ_FOREACH(child, &dev->children, link) {
4699		print_device_tree_short(child, indent+1);
4700	}
4701}
4702
4703void
4704print_device_tree(device_t dev, int indent)
4705/* print the device and all its children (indented) */
4706{
4707	device_t child;
4708
4709	if (!dev)
4710		return;
4711
4712	print_device(dev, indent);
4713
4714	TAILQ_FOREACH(child, &dev->children, link) {
4715		print_device_tree(child, indent+1);
4716	}
4717}
4718
4719static void
4720print_driver_short(driver_t *driver, int indent)
4721{
4722	if (!driver)
4723		return;
4724
4725	indentprintf(("driver %s: softc size = %zd\n",
4726	    driver->name, driver->size));
4727}
4728
4729static void
4730print_driver(driver_t *driver, int indent)
4731{
4732	if (!driver)
4733		return;
4734
4735	print_driver_short(driver, indent);
4736}
4737
4738static void
4739print_driver_list(driver_list_t drivers, int indent)
4740{
4741	driverlink_t driver;
4742
4743	TAILQ_FOREACH(driver, &drivers, link) {
4744		print_driver(driver->driver, indent);
4745	}
4746}
4747
4748static void
4749print_devclass_short(devclass_t dc, int indent)
4750{
4751	if ( !dc )
4752		return;
4753
4754	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4755}
4756
4757static void
4758print_devclass(devclass_t dc, int indent)
4759{
4760	int i;
4761
4762	if ( !dc )
4763		return;
4764
4765	print_devclass_short(dc, indent);
4766	indentprintf(("Drivers:\n"));
4767	print_driver_list(dc->drivers, indent+1);
4768
4769	indentprintf(("Devices:\n"));
4770	for (i = 0; i < dc->maxunit; i++)
4771		if (dc->devices[i])
4772			print_device(dc->devices[i], indent+1);
4773}
4774
4775void
4776print_devclass_list_short(void)
4777{
4778	devclass_t dc;
4779
4780	printf("Short listing of devclasses, drivers & devices:\n");
4781	TAILQ_FOREACH(dc, &devclasses, link) {
4782		print_devclass_short(dc, 0);
4783	}
4784}
4785
4786void
4787print_devclass_list(void)
4788{
4789	devclass_t dc;
4790
4791	printf("Full listing of devclasses, drivers & devices:\n");
4792	TAILQ_FOREACH(dc, &devclasses, link) {
4793		print_devclass(dc, 0);
4794	}
4795}
4796
4797#endif
4798
4799/*
4800 * User-space access to the device tree.
4801 *
4802 * We implement a small set of nodes:
4803 *
4804 * hw.bus			Single integer read method to obtain the
4805 *				current generation count.
4806 * hw.bus.devices		Reads the entire device tree in flat space.
4807 * hw.bus.rman			Resource manager interface
4808 *
4809 * We might like to add the ability to scan devclasses and/or drivers to
4810 * determine what else is currently loaded/available.
4811 */
4812
4813static int
4814sysctl_bus(SYSCTL_HANDLER_ARGS)
4815{
4816	struct u_businfo	ubus;
4817
4818	ubus.ub_version = BUS_USER_VERSION;
4819	ubus.ub_generation = bus_data_generation;
4820
4821	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4822}
4823SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4824    "bus-related data");
4825
4826static int
4827sysctl_devices(SYSCTL_HANDLER_ARGS)
4828{
4829	int			*name = (int *)arg1;
4830	u_int			namelen = arg2;
4831	int			index;
4832	struct device		*dev;
4833	struct u_device		udev;	/* XXX this is a bit big */
4834	int			error;
4835
4836	if (namelen != 2)
4837		return (EINVAL);
4838
4839	if (bus_data_generation_check(name[0]))
4840		return (EINVAL);
4841
4842	index = name[1];
4843
4844	/*
4845	 * Scan the list of devices, looking for the requested index.
4846	 */
4847	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4848		if (index-- == 0)
4849			break;
4850	}
4851	if (dev == NULL)
4852		return (ENOENT);
4853
4854	/*
4855	 * Populate the return array.
4856	 */
4857	bzero(&udev, sizeof(udev));
4858	udev.dv_handle = (uintptr_t)dev;
4859	udev.dv_parent = (uintptr_t)dev->parent;
4860	if (dev->nameunit != NULL)
4861		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4862	if (dev->desc != NULL)
4863		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4864	if (dev->driver != NULL && dev->driver->name != NULL)
4865		strlcpy(udev.dv_drivername, dev->driver->name,
4866		    sizeof(udev.dv_drivername));
4867	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4868	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4869	udev.dv_devflags = dev->devflags;
4870	udev.dv_flags = dev->flags;
4871	udev.dv_state = dev->state;
4872	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4873	return (error);
4874}
4875
4876SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4877    "system device tree");
4878
4879int
4880bus_data_generation_check(int generation)
4881{
4882	if (generation != bus_data_generation)
4883		return (1);
4884
4885	/* XXX generate optimised lists here? */
4886	return (0);
4887}
4888
4889void
4890bus_data_generation_update(void)
4891{
4892	bus_data_generation++;
4893}
4894
4895int
4896bus_free_resource(device_t dev, int type, struct resource *r)
4897{
4898	if (r == NULL)
4899		return (0);
4900	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4901}
4902