subr_blist.c revision 319965
1/*-
2 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
3 * Redistribution and use in source and binary forms, with or without
4 * modification, are permitted provided that the following conditions
5 * are met:
6 * 1. Redistributions of source code must retain the above copyright
7 *    notice, this list of conditions and the following disclaimer.
8 * 2. Redistributions in binary form must reproduce the above copyright
9 *    notice, this list of conditions and the following disclaimer in the
10 *    documentation and/or other materials provided with the distribution.
11 * 4. Neither the name of the University nor the names of its contributors
12 *    may be used to endorse or promote products derived from this software
13 *    without specific prior written permission.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
16 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
19 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
21 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
23 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
24 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27/*
28 * BLIST.C -	Bitmap allocator/deallocator, using a radix tree with hinting
29 *
30 *	This module implements a general bitmap allocator/deallocator.  The
31 *	allocator eats around 2 bits per 'block'.  The module does not
32 *	try to interpret the meaning of a 'block' other than to return
33 *	SWAPBLK_NONE on an allocation failure.
34 *
35 *	A radix tree is used to maintain the bitmap.  Two radix constants are
36 *	involved:  One for the bitmaps contained in the leaf nodes (typically
37 *	32), and one for the meta nodes (typically 16).  Both meta and leaf
38 *	nodes have a hint field.  This field gives us a hint as to the largest
39 *	free contiguous range of blocks under the node.  It may contain a
40 *	value that is too high, but will never contain a value that is too
41 *	low.  When the radix tree is searched, allocation failures in subtrees
42 *	update the hint.
43 *
44 *	The radix tree also implements two collapsed states for meta nodes:
45 *	the ALL-ALLOCATED state and the ALL-FREE state.  If a meta node is
46 *	in either of these two states, all information contained underneath
47 *	the node is considered stale.  These states are used to optimize
48 *	allocation and freeing operations.
49 *
50 * 	The hinting greatly increases code efficiency for allocations while
51 *	the general radix structure optimizes both allocations and frees.  The
52 *	radix tree should be able to operate well no matter how much
53 *	fragmentation there is and no matter how large a bitmap is used.
54 *
55 *	The blist code wires all necessary memory at creation time.  Neither
56 *	allocations nor frees require interaction with the memory subsystem.
57 *	The non-blocking features of the blist code are used in the swap code
58 *	(vm/swap_pager.c).
59 *
60 *	LAYOUT: The radix tree is laid out recursively using a
61 *	linear array.  Each meta node is immediately followed (laid out
62 *	sequentially in memory) by BLIST_META_RADIX lower level nodes.  This
63 *	is a recursive structure but one that can be easily scanned through
64 *	a very simple 'skip' calculation.  In order to support large radixes,
65 *	portions of the tree may reside outside our memory allocation.  We
66 *	handle this with an early-termination optimization (when bighint is
67 *	set to -1) on the scan.  The memory allocation is only large enough
68 *	to cover the number of blocks requested at creation time even if it
69 *	must be encompassed in larger root-node radix.
70 *
71 *	NOTE: the allocator cannot currently allocate more than
72 *	BLIST_BMAP_RADIX blocks per call.  It will panic with 'allocation too
73 *	large' if you try.  This is an area that could use improvement.  The
74 *	radix is large enough that this restriction does not effect the swap
75 *	system, though.  Currently only the allocation code is effected by
76 *	this algorithmic unfeature.  The freeing code can handle arbitrary
77 *	ranges.
78 *
79 *	This code can be compiled stand-alone for debugging.
80 */
81
82#include <sys/cdefs.h>
83__FBSDID("$FreeBSD: stable/10/sys/kern/subr_blist.c 319965 2017-06-15 03:58:23Z alc $");
84
85#ifdef _KERNEL
86
87#include <sys/param.h>
88#include <sys/systm.h>
89#include <sys/lock.h>
90#include <sys/kernel.h>
91#include <sys/blist.h>
92#include <sys/malloc.h>
93#include <sys/proc.h>
94#include <sys/mutex.h>
95
96#else
97
98#ifndef BLIST_NO_DEBUG
99#define BLIST_DEBUG
100#endif
101
102#include <sys/types.h>
103#include <sys/malloc.h>
104#include <stdio.h>
105#include <string.h>
106#include <stdlib.h>
107#include <stdarg.h>
108
109#define malloc(a,b,c)	calloc(a, 1)
110#define free(a,b)	free(a)
111
112#include <sys/blist.h>
113
114void panic(const char *ctl, ...);
115
116#endif
117
118/*
119 * static support functions
120 */
121
122static daddr_t blst_leaf_alloc(blmeta_t *scan, daddr_t blk, int count);
123static daddr_t blst_meta_alloc(blmeta_t *scan, daddr_t blk,
124				daddr_t count, daddr_t radix, int skip);
125static void blst_leaf_free(blmeta_t *scan, daddr_t relblk, int count);
126static void blst_meta_free(blmeta_t *scan, daddr_t freeBlk, daddr_t count,
127					daddr_t radix, int skip, daddr_t blk);
128static void blst_copy(blmeta_t *scan, daddr_t blk, daddr_t radix,
129				daddr_t skip, blist_t dest, daddr_t count);
130static int blst_leaf_fill(blmeta_t *scan, daddr_t blk, int count);
131static int blst_meta_fill(blmeta_t *scan, daddr_t allocBlk, daddr_t count,
132				daddr_t radix, int skip, daddr_t blk);
133static daddr_t	blst_radix_init(blmeta_t *scan, daddr_t radix,
134						int skip, daddr_t count);
135#ifndef _KERNEL
136static void	blst_radix_print(blmeta_t *scan, daddr_t blk,
137					daddr_t radix, int skip, int tab);
138#endif
139
140#ifdef _KERNEL
141static MALLOC_DEFINE(M_SWAP, "SWAP", "Swap space");
142#endif
143
144/*
145 * blist_create() - create a blist capable of handling up to the specified
146 *		    number of blocks
147 *
148 *	blocks - must be greater than 0
149 * 	flags  - malloc flags
150 *
151 *	The smallest blist consists of a single leaf node capable of
152 *	managing BLIST_BMAP_RADIX blocks.
153 */
154
155blist_t
156blist_create(daddr_t blocks, int flags)
157{
158	blist_t bl;
159	int radix;
160	int skip = 0;
161
162	/*
163	 * Calculate radix and skip field used for scanning.
164	 */
165	radix = BLIST_BMAP_RADIX;
166
167	while (radix < blocks) {
168		radix *= BLIST_META_RADIX;
169		skip = (skip + 1) * BLIST_META_RADIX;
170	}
171
172	bl = malloc(sizeof(struct blist), M_SWAP, flags | M_ZERO);
173
174	bl->bl_blocks = blocks;
175	bl->bl_radix = radix;
176	bl->bl_skip = skip;
177	bl->bl_rootblks = 1 +
178	    blst_radix_init(NULL, bl->bl_radix, bl->bl_skip, blocks);
179	bl->bl_root = malloc(sizeof(blmeta_t) * bl->bl_rootblks, M_SWAP, flags);
180
181#if defined(BLIST_DEBUG)
182	printf(
183		"BLIST representing %lld blocks (%lld MB of swap)"
184		", requiring %lldK of ram\n",
185		(long long)bl->bl_blocks,
186		(long long)bl->bl_blocks * 4 / 1024,
187		(long long)(bl->bl_rootblks * sizeof(blmeta_t) + 1023) / 1024
188	);
189	printf("BLIST raw radix tree contains %lld records\n",
190	    (long long)bl->bl_rootblks);
191#endif
192	blst_radix_init(bl->bl_root, bl->bl_radix, bl->bl_skip, blocks);
193
194	return(bl);
195}
196
197void
198blist_destroy(blist_t bl)
199{
200	free(bl->bl_root, M_SWAP);
201	free(bl, M_SWAP);
202}
203
204/*
205 * blist_alloc() - reserve space in the block bitmap.  Return the base
206 *		     of a contiguous region or SWAPBLK_NONE if space could
207 *		     not be allocated.
208 */
209
210daddr_t
211blist_alloc(blist_t bl, daddr_t count)
212{
213	daddr_t blk = SWAPBLK_NONE;
214
215	if (bl) {
216		if (bl->bl_radix == BLIST_BMAP_RADIX)
217			blk = blst_leaf_alloc(bl->bl_root, 0, count);
218		else
219			blk = blst_meta_alloc(bl->bl_root, 0, count, bl->bl_radix, bl->bl_skip);
220		if (blk != SWAPBLK_NONE)
221			bl->bl_free -= count;
222	}
223	return(blk);
224}
225
226/*
227 * blist_free() -	free up space in the block bitmap.  Return the base
228 *		     	of a contiguous region.  Panic if an inconsistancy is
229 *			found.
230 */
231
232void
233blist_free(blist_t bl, daddr_t blkno, daddr_t count)
234{
235	if (bl) {
236		if (bl->bl_radix == BLIST_BMAP_RADIX)
237			blst_leaf_free(bl->bl_root, blkno, count);
238		else
239			blst_meta_free(bl->bl_root, blkno, count, bl->bl_radix, bl->bl_skip, 0);
240		bl->bl_free += count;
241	}
242}
243
244/*
245 * blist_fill() -	mark a region in the block bitmap as off-limits
246 *			to the allocator (i.e. allocate it), ignoring any
247 *			existing allocations.  Return the number of blocks
248 *			actually filled that were free before the call.
249 */
250
251int
252blist_fill(blist_t bl, daddr_t blkno, daddr_t count)
253{
254	int filled;
255
256	if (bl) {
257		if (bl->bl_radix == BLIST_BMAP_RADIX)
258			filled = blst_leaf_fill(bl->bl_root, blkno, count);
259		else
260			filled = blst_meta_fill(bl->bl_root, blkno, count,
261			    bl->bl_radix, bl->bl_skip, 0);
262		bl->bl_free -= filled;
263		return filled;
264	} else
265		return 0;
266}
267
268/*
269 * blist_resize() -	resize an existing radix tree to handle the
270 *			specified number of blocks.  This will reallocate
271 *			the tree and transfer the previous bitmap to the new
272 *			one.  When extending the tree you can specify whether
273 *			the new blocks are to left allocated or freed.
274 */
275
276void
277blist_resize(blist_t *pbl, daddr_t count, int freenew, int flags)
278{
279    blist_t newbl = blist_create(count, flags);
280    blist_t save = *pbl;
281
282    *pbl = newbl;
283    if (count > save->bl_blocks)
284	    count = save->bl_blocks;
285    blst_copy(save->bl_root, 0, save->bl_radix, save->bl_skip, newbl, count);
286
287    /*
288     * If resizing upwards, should we free the new space or not?
289     */
290    if (freenew && count < newbl->bl_blocks) {
291	    blist_free(newbl, count, newbl->bl_blocks - count);
292    }
293    blist_destroy(save);
294}
295
296#ifdef BLIST_DEBUG
297
298/*
299 * blist_print()    - dump radix tree
300 */
301
302void
303blist_print(blist_t bl)
304{
305	printf("BLIST {\n");
306	blst_radix_print(bl->bl_root, 0, bl->bl_radix, bl->bl_skip, 4);
307	printf("}\n");
308}
309
310#endif
311
312/************************************************************************
313 *			  ALLOCATION SUPPORT FUNCTIONS			*
314 ************************************************************************
315 *
316 *	These support functions do all the actual work.  They may seem
317 *	rather longish, but that's because I've commented them up.  The
318 *	actual code is straight forward.
319 *
320 */
321
322/*
323 * blist_leaf_alloc() -	allocate at a leaf in the radix tree (a bitmap).
324 *
325 *	This is the core of the allocator and is optimized for the 1 block
326 *	and the BLIST_BMAP_RADIX block allocation cases.  Other cases are
327 *	somewhat slower.  The 1 block allocation case is log2 and extremely
328 *	quick.
329 */
330
331static daddr_t
332blst_leaf_alloc(
333	blmeta_t *scan,
334	daddr_t blk,
335	int count
336) {
337	u_daddr_t orig = scan->u.bmu_bitmap;
338
339	if (orig == 0) {
340		/*
341		 * Optimize bitmap all-allocated case.  Also, count = 1
342		 * case assumes at least 1 bit is free in the bitmap, so
343		 * we have to take care of this case here.
344		 */
345		scan->bm_bighint = 0;
346		return(SWAPBLK_NONE);
347	}
348	if (count == 1) {
349		/*
350		 * Optimized code to allocate one bit out of the bitmap
351		 */
352		u_daddr_t mask;
353		int j = BLIST_BMAP_RADIX/2;
354		int r = 0;
355
356		mask = (u_daddr_t)-1 >> (BLIST_BMAP_RADIX/2);
357
358		while (j) {
359			if ((orig & mask) == 0) {
360			    r += j;
361			    orig >>= j;
362			}
363			j >>= 1;
364			mask >>= j;
365		}
366		scan->u.bmu_bitmap &= ~((u_daddr_t)1 << r);
367		return(blk + r);
368	}
369	if (count <= BLIST_BMAP_RADIX) {
370		/*
371		 * non-optimized code to allocate N bits out of the bitmap.
372		 * The more bits, the faster the code runs.  It will run
373		 * the slowest allocating 2 bits, but since there aren't any
374		 * memory ops in the core loop (or shouldn't be, anyway),
375		 * you probably won't notice the difference.
376		 */
377		int j;
378		int n = BLIST_BMAP_RADIX - count;
379		u_daddr_t mask;
380
381		mask = (u_daddr_t)-1 >> n;
382
383		for (j = 0; j <= n; ++j) {
384			if ((orig & mask) == mask) {
385				scan->u.bmu_bitmap &= ~mask;
386				return(blk + j);
387			}
388			mask = (mask << 1);
389		}
390	}
391	/*
392	 * We couldn't allocate count in this subtree, update bighint.
393	 */
394	scan->bm_bighint = count - 1;
395	return(SWAPBLK_NONE);
396}
397
398/*
399 * blist_meta_alloc() -	allocate at a meta in the radix tree.
400 *
401 *	Attempt to allocate at a meta node.  If we can't, we update
402 *	bighint and return a failure.  Updating bighint optimize future
403 *	calls that hit this node.  We have to check for our collapse cases
404 *	and we have a few optimizations strewn in as well.
405 */
406
407static daddr_t
408blst_meta_alloc(
409	blmeta_t *scan,
410	daddr_t blk,
411	daddr_t count,
412	daddr_t radix,
413	int skip
414) {
415	int i;
416	int next_skip = ((u_int)skip / BLIST_META_RADIX);
417
418	if (scan->u.bmu_avail == 0)  {
419		/*
420		 * ALL-ALLOCATED special case
421		 */
422		scan->bm_bighint = count;
423		return(SWAPBLK_NONE);
424	}
425
426	if (scan->u.bmu_avail == radix) {
427		radix /= BLIST_META_RADIX;
428
429		/*
430		 * ALL-FREE special case, initialize uninitialize
431		 * sublevel.
432		 */
433		for (i = 1; i <= skip; i += next_skip) {
434			if (scan[i].bm_bighint == (daddr_t)-1)
435				break;
436			if (next_skip == 1) {
437				scan[i].u.bmu_bitmap = (u_daddr_t)-1;
438				scan[i].bm_bighint = BLIST_BMAP_RADIX;
439			} else {
440				scan[i].bm_bighint = radix;
441				scan[i].u.bmu_avail = radix;
442			}
443		}
444	} else {
445		radix /= BLIST_META_RADIX;
446	}
447
448	for (i = 1; i <= skip; i += next_skip) {
449		if (count <= scan[i].bm_bighint) {
450			/*
451			 * count fits in object
452			 */
453			daddr_t r;
454			if (next_skip == 1) {
455				r = blst_leaf_alloc(&scan[i], blk, count);
456			} else {
457				r = blst_meta_alloc(&scan[i], blk, count, radix, next_skip - 1);
458			}
459			if (r != SWAPBLK_NONE) {
460				scan->u.bmu_avail -= count;
461				if (scan->bm_bighint > scan->u.bmu_avail)
462					scan->bm_bighint = scan->u.bmu_avail;
463				return(r);
464			}
465		} else if (scan[i].bm_bighint == (daddr_t)-1) {
466			/*
467			 * Terminator
468			 */
469			break;
470		} else if (count > radix) {
471			/*
472			 * count does not fit in object even if it were
473			 * complete free.
474			 */
475			panic("blist_meta_alloc: allocation too large");
476		}
477		blk += radix;
478	}
479
480	/*
481	 * We couldn't allocate count in this subtree, update bighint.
482	 */
483	if (scan->bm_bighint >= count)
484		scan->bm_bighint = count - 1;
485	return(SWAPBLK_NONE);
486}
487
488/*
489 * BLST_LEAF_FREE() -	free allocated block from leaf bitmap
490 *
491 */
492
493static void
494blst_leaf_free(
495	blmeta_t *scan,
496	daddr_t blk,
497	int count
498) {
499	/*
500	 * free some data in this bitmap
501	 *
502	 * e.g.
503	 *	0000111111111110000
504	 *          \_________/\__/
505	 *		v        n
506	 */
507	int n = blk & (BLIST_BMAP_RADIX - 1);
508	u_daddr_t mask;
509
510	mask = ((u_daddr_t)-1 << n) &
511	    ((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - count - n));
512
513	if (scan->u.bmu_bitmap & mask)
514		panic("blst_radix_free: freeing free block");
515	scan->u.bmu_bitmap |= mask;
516
517	/*
518	 * We could probably do a better job here.  We are required to make
519	 * bighint at least as large as the biggest contiguous block of
520	 * data.  If we just shoehorn it, a little extra overhead will
521	 * be incured on the next allocation (but only that one typically).
522	 */
523	scan->bm_bighint = BLIST_BMAP_RADIX;
524}
525
526/*
527 * BLST_META_FREE() - free allocated blocks from radix tree meta info
528 *
529 *	This support routine frees a range of blocks from the bitmap.
530 *	The range must be entirely enclosed by this radix node.  If a
531 *	meta node, we break the range down recursively to free blocks
532 *	in subnodes (which means that this code can free an arbitrary
533 *	range whereas the allocation code cannot allocate an arbitrary
534 *	range).
535 */
536
537static void
538blst_meta_free(
539	blmeta_t *scan,
540	daddr_t freeBlk,
541	daddr_t count,
542	daddr_t radix,
543	int skip,
544	daddr_t blk
545) {
546	int i;
547	int next_skip = ((u_int)skip / BLIST_META_RADIX);
548
549#if 0
550	printf("free (%llx,%lld) FROM (%llx,%lld)\n",
551	    (long long)freeBlk, (long long)count,
552	    (long long)blk, (long long)radix
553	);
554#endif
555
556	if (scan->u.bmu_avail == 0) {
557		/*
558		 * ALL-ALLOCATED special case, with possible
559		 * shortcut to ALL-FREE special case.
560		 */
561		scan->u.bmu_avail = count;
562		scan->bm_bighint = count;
563
564		if (count != radix)  {
565			for (i = 1; i <= skip; i += next_skip) {
566				if (scan[i].bm_bighint == (daddr_t)-1)
567					break;
568				scan[i].bm_bighint = 0;
569				if (next_skip == 1) {
570					scan[i].u.bmu_bitmap = 0;
571				} else {
572					scan[i].u.bmu_avail = 0;
573				}
574			}
575			/* fall through */
576		}
577	} else {
578		scan->u.bmu_avail += count;
579		/* scan->bm_bighint = radix; */
580	}
581
582	/*
583	 * ALL-FREE special case.
584	 */
585
586	if (scan->u.bmu_avail == radix)
587		return;
588	if (scan->u.bmu_avail > radix)
589		panic("blst_meta_free: freeing already free blocks (%lld) %lld/%lld",
590		    (long long)count, (long long)scan->u.bmu_avail,
591		    (long long)radix);
592
593	/*
594	 * Break the free down into its components
595	 */
596
597	radix /= BLIST_META_RADIX;
598
599	i = (freeBlk - blk) / radix;
600	blk += i * radix;
601	i = i * next_skip + 1;
602
603	while (i <= skip && blk < freeBlk + count) {
604		daddr_t v;
605
606		v = blk + radix - freeBlk;
607		if (v > count)
608			v = count;
609
610		if (scan->bm_bighint == (daddr_t)-1)
611			panic("blst_meta_free: freeing unexpected range");
612
613		if (next_skip == 1) {
614			blst_leaf_free(&scan[i], freeBlk, v);
615		} else {
616			blst_meta_free(&scan[i], freeBlk, v, radix, next_skip - 1, blk);
617		}
618		if (scan->bm_bighint < scan[i].bm_bighint)
619		    scan->bm_bighint = scan[i].bm_bighint;
620		count -= v;
621		freeBlk += v;
622		blk += radix;
623		i += next_skip;
624	}
625}
626
627/*
628 * BLIST_RADIX_COPY() - copy one radix tree to another
629 *
630 *	Locates free space in the source tree and frees it in the destination
631 *	tree.  The space may not already be free in the destination.
632 */
633
634static void blst_copy(
635	blmeta_t *scan,
636	daddr_t blk,
637	daddr_t radix,
638	daddr_t skip,
639	blist_t dest,
640	daddr_t count
641) {
642	int next_skip;
643	int i;
644
645	/*
646	 * Leaf node
647	 */
648
649	if (radix == BLIST_BMAP_RADIX) {
650		u_daddr_t v = scan->u.bmu_bitmap;
651
652		if (v == (u_daddr_t)-1) {
653			blist_free(dest, blk, count);
654		} else if (v != 0) {
655			int i;
656
657			for (i = 0; i < BLIST_BMAP_RADIX && i < count; ++i) {
658				if (v & ((u_daddr_t)1 << i))
659					blist_free(dest, blk + i, 1);
660			}
661		}
662		return;
663	}
664
665	/*
666	 * Meta node
667	 */
668
669	if (scan->u.bmu_avail == 0) {
670		/*
671		 * Source all allocated, leave dest allocated
672		 */
673		return;
674	}
675	if (scan->u.bmu_avail == radix) {
676		/*
677		 * Source all free, free entire dest
678		 */
679		if (count < radix)
680			blist_free(dest, blk, count);
681		else
682			blist_free(dest, blk, radix);
683		return;
684	}
685
686
687	radix /= BLIST_META_RADIX;
688	next_skip = ((u_int)skip / BLIST_META_RADIX);
689
690	for (i = 1; count && i <= skip; i += next_skip) {
691		if (scan[i].bm_bighint == (daddr_t)-1)
692			break;
693
694		if (count >= radix) {
695			blst_copy(
696			    &scan[i],
697			    blk,
698			    radix,
699			    next_skip - 1,
700			    dest,
701			    radix
702			);
703			count -= radix;
704		} else {
705			if (count) {
706				blst_copy(
707				    &scan[i],
708				    blk,
709				    radix,
710				    next_skip - 1,
711				    dest,
712				    count
713				);
714			}
715			count = 0;
716		}
717		blk += radix;
718	}
719}
720
721/*
722 * BLST_LEAF_FILL() -	allocate specific blocks in leaf bitmap
723 *
724 *	This routine allocates all blocks in the specified range
725 *	regardless of any existing allocations in that range.  Returns
726 *	the number of blocks allocated by the call.
727 */
728
729static int
730blst_leaf_fill(blmeta_t *scan, daddr_t blk, int count)
731{
732	int n = blk & (BLIST_BMAP_RADIX - 1);
733	int nblks;
734	u_daddr_t mask, bitmap;
735
736	mask = ((u_daddr_t)-1 << n) &
737	    ((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - count - n));
738
739	/* Count the number of blocks we're about to allocate */
740	bitmap = scan->u.bmu_bitmap & mask;
741	for (nblks = 0; bitmap != 0; nblks++)
742		bitmap &= bitmap - 1;
743
744	scan->u.bmu_bitmap &= ~mask;
745	return nblks;
746}
747
748/*
749 * BLIST_META_FILL() -	allocate specific blocks at a meta node
750 *
751 *	This routine allocates the specified range of blocks,
752 *	regardless of any existing allocations in the range.  The
753 *	range must be within the extent of this node.  Returns the
754 *	number of blocks allocated by the call.
755 */
756static int
757blst_meta_fill(
758	blmeta_t *scan,
759	daddr_t allocBlk,
760	daddr_t count,
761	daddr_t radix,
762	int skip,
763	daddr_t blk
764) {
765	int i;
766	int next_skip = ((u_int)skip / BLIST_META_RADIX);
767	int nblks = 0;
768
769	if (count > radix)
770		panic("blist_meta_fill: allocation too large");
771	if (count == radix || scan->u.bmu_avail == 0)  {
772		/*
773		 * ALL-ALLOCATED special case
774		 */
775		nblks = scan->u.bmu_avail;
776		scan->u.bmu_avail = 0;
777		scan->bm_bighint = count;
778		return nblks;
779	}
780
781	if (scan->u.bmu_avail == radix) {
782		radix /= BLIST_META_RADIX;
783
784		/*
785		 * ALL-FREE special case, initialize sublevel
786		 */
787		for (i = 1; i <= skip; i += next_skip) {
788			if (scan[i].bm_bighint == (daddr_t)-1)
789				break;
790			if (next_skip == 1) {
791				scan[i].u.bmu_bitmap = (u_daddr_t)-1;
792				scan[i].bm_bighint = BLIST_BMAP_RADIX;
793			} else {
794				scan[i].bm_bighint = radix;
795				scan[i].u.bmu_avail = radix;
796			}
797		}
798	} else {
799		radix /= BLIST_META_RADIX;
800	}
801
802	i = (allocBlk - blk) / radix;
803	blk += i * radix;
804	i = i * next_skip + 1;
805
806	while (i <= skip && blk < allocBlk + count) {
807		daddr_t v;
808
809		v = blk + radix - allocBlk;
810		if (v > count)
811			v = count;
812
813		if (scan->bm_bighint == (daddr_t)-1)
814			panic("blst_meta_fill: filling unexpected range");
815
816		if (next_skip == 1) {
817			nblks += blst_leaf_fill(&scan[i], allocBlk, v);
818		} else {
819			nblks += blst_meta_fill(&scan[i], allocBlk, v,
820			    radix, next_skip - 1, blk);
821		}
822		count -= v;
823		allocBlk += v;
824		blk += radix;
825		i += next_skip;
826	}
827	scan->u.bmu_avail -= nblks;
828	return nblks;
829}
830
831/*
832 * BLST_RADIX_INIT() - initialize radix tree
833 *
834 *	Initialize our meta structures and bitmaps and calculate the exact
835 *	amount of space required to manage 'count' blocks - this space may
836 *	be considerably less than the calculated radix due to the large
837 *	RADIX values we use.
838 */
839
840static daddr_t
841blst_radix_init(blmeta_t *scan, daddr_t radix, int skip, daddr_t count)
842{
843	int i;
844	int next_skip;
845	daddr_t memindex = 0;
846
847	/*
848	 * Leaf node
849	 */
850
851	if (radix == BLIST_BMAP_RADIX) {
852		if (scan) {
853			scan->bm_bighint = 0;
854			scan->u.bmu_bitmap = 0;
855		}
856		return(memindex);
857	}
858
859	/*
860	 * Meta node.  If allocating the entire object we can special
861	 * case it.  However, we need to figure out how much memory
862	 * is required to manage 'count' blocks, so we continue on anyway.
863	 */
864
865	if (scan) {
866		scan->bm_bighint = 0;
867		scan->u.bmu_avail = 0;
868	}
869
870	radix /= BLIST_META_RADIX;
871	next_skip = ((u_int)skip / BLIST_META_RADIX);
872
873	for (i = 1; i <= skip; i += next_skip) {
874		if (count >= radix) {
875			/*
876			 * Allocate the entire object
877			 */
878			memindex = i + blst_radix_init(
879			    ((scan) ? &scan[i] : NULL),
880			    radix,
881			    next_skip - 1,
882			    radix
883			);
884			count -= radix;
885		} else if (count > 0) {
886			/*
887			 * Allocate a partial object
888			 */
889			memindex = i + blst_radix_init(
890			    ((scan) ? &scan[i] : NULL),
891			    radix,
892			    next_skip - 1,
893			    count
894			);
895			count = 0;
896		} else {
897			/*
898			 * Add terminator and break out
899			 */
900			if (scan)
901				scan[i].bm_bighint = (daddr_t)-1;
902			break;
903		}
904	}
905	if (memindex < i)
906		memindex = i;
907	return(memindex);
908}
909
910#ifdef BLIST_DEBUG
911
912static void
913blst_radix_print(blmeta_t *scan, daddr_t blk, daddr_t radix, int skip, int tab)
914{
915	int i;
916	int next_skip;
917	int lastState = 0;
918
919	if (radix == BLIST_BMAP_RADIX) {
920		printf(
921		    "%*.*s(%08llx,%lld): bitmap %016llx big=%lld\n",
922		    tab, tab, "",
923		    (long long)blk, (long long)radix,
924		    (long long)scan->u.bmu_bitmap,
925		    (long long)scan->bm_bighint
926		);
927		return;
928	}
929
930	if (scan->u.bmu_avail == 0) {
931		printf(
932		    "%*.*s(%08llx,%lld) ALL ALLOCATED\n",
933		    tab, tab, "",
934		    (long long)blk,
935		    (long long)radix
936		);
937		return;
938	}
939	if (scan->u.bmu_avail == radix) {
940		printf(
941		    "%*.*s(%08llx,%lld) ALL FREE\n",
942		    tab, tab, "",
943		    (long long)blk,
944		    (long long)radix
945		);
946		return;
947	}
948
949	printf(
950	    "%*.*s(%08llx,%lld): subtree (%lld/%lld) big=%lld {\n",
951	    tab, tab, "",
952	    (long long)blk, (long long)radix,
953	    (long long)scan->u.bmu_avail,
954	    (long long)radix,
955	    (long long)scan->bm_bighint
956	);
957
958	radix /= BLIST_META_RADIX;
959	next_skip = ((u_int)skip / BLIST_META_RADIX);
960	tab += 4;
961
962	for (i = 1; i <= skip; i += next_skip) {
963		if (scan[i].bm_bighint == (daddr_t)-1) {
964			printf(
965			    "%*.*s(%08llx,%lld): Terminator\n",
966			    tab, tab, "",
967			    (long long)blk, (long long)radix
968			);
969			lastState = 0;
970			break;
971		}
972		blst_radix_print(
973		    &scan[i],
974		    blk,
975		    radix,
976		    next_skip - 1,
977		    tab
978		);
979		blk += radix;
980	}
981	tab -= 4;
982
983	printf(
984	    "%*.*s}\n",
985	    tab, tab, ""
986	);
987}
988
989#endif
990
991#ifdef BLIST_DEBUG
992
993int
994main(int ac, char **av)
995{
996	int size = 1024;
997	int i;
998	blist_t bl;
999
1000	for (i = 1; i < ac; ++i) {
1001		const char *ptr = av[i];
1002		if (*ptr != '-') {
1003			size = strtol(ptr, NULL, 0);
1004			continue;
1005		}
1006		ptr += 2;
1007		fprintf(stderr, "Bad option: %s\n", ptr - 2);
1008		exit(1);
1009	}
1010	bl = blist_create(size, M_WAITOK);
1011	blist_free(bl, 0, size);
1012
1013	for (;;) {
1014		char buf[1024];
1015		long long da = 0;
1016		long long count = 0;
1017
1018		printf("%lld/%lld/%lld> ", (long long)bl->bl_free,
1019		    (long long)size, (long long)bl->bl_radix);
1020		fflush(stdout);
1021		if (fgets(buf, sizeof(buf), stdin) == NULL)
1022			break;
1023		switch(buf[0]) {
1024		case 'r':
1025			if (sscanf(buf + 1, "%lld", &count) == 1) {
1026				blist_resize(&bl, count, 1, M_WAITOK);
1027			} else {
1028				printf("?\n");
1029			}
1030		case 'p':
1031			blist_print(bl);
1032			break;
1033		case 'a':
1034			if (sscanf(buf + 1, "%lld", &count) == 1) {
1035				daddr_t blk = blist_alloc(bl, count);
1036				printf("    R=%08llx\n", (long long)blk);
1037			} else {
1038				printf("?\n");
1039			}
1040			break;
1041		case 'f':
1042			if (sscanf(buf + 1, "%llx %lld", &da, &count) == 2) {
1043				blist_free(bl, da, count);
1044			} else {
1045				printf("?\n");
1046			}
1047			break;
1048		case 'l':
1049			if (sscanf(buf + 1, "%llx %lld", &da, &count) == 2) {
1050				printf("    n=%d\n",
1051				    blist_fill(bl, da, count));
1052			} else {
1053				printf("?\n");
1054			}
1055			break;
1056		case '?':
1057		case 'h':
1058			puts(
1059			    "p          -print\n"
1060			    "a %d       -allocate\n"
1061			    "f %x %d    -free\n"
1062			    "l %x %d    -fill\n"
1063			    "r %d       -resize\n"
1064			    "h/?        -help"
1065			);
1066			break;
1067		default:
1068			printf("?\n");
1069			break;
1070		}
1071	}
1072	return(0);
1073}
1074
1075void
1076panic(const char *ctl, ...)
1077{
1078	va_list va;
1079
1080	va_start(va, ctl);
1081	vfprintf(stderr, ctl, va);
1082	fprintf(stderr, "\n");
1083	va_end(va);
1084	exit(1);
1085}
1086
1087#endif
1088
1089