1/*-
2 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
3 * Redistribution and use in source and binary forms, with or without
4 * modification, are permitted provided that the following conditions
5 * are met:
6 * 1. Redistributions of source code must retain the above copyright
7 *    notice, this list of conditions and the following disclaimer.
8 * 2. Redistributions in binary form must reproduce the above copyright
9 *    notice, this list of conditions and the following disclaimer in the
10 *    documentation and/or other materials provided with the distribution.
11 * 4. Neither the name of the University nor the names of its contributors
12 *    may be used to endorse or promote products derived from this software
13 *    without specific prior written permission.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
16 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
19 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
21 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
23 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
24 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27/*
28 * BLIST.C -	Bitmap allocator/deallocator, using a radix tree with hinting
29 *
30 *	This module implements a general bitmap allocator/deallocator.  The
31 *	allocator eats around 2 bits per 'block'.  The module does not
32 *	try to interpret the meaning of a 'block' other than to return
33 *	SWAPBLK_NONE on an allocation failure.
34 *
35 *	A radix tree is used to maintain the bitmap.  Two radix constants are
36 *	involved:  One for the bitmaps contained in the leaf nodes (typically
37 *	32), and one for the meta nodes (typically 16).  Both meta and leaf
38 *	nodes have a hint field.  This field gives us a hint as to the largest
39 *	free contiguous range of blocks under the node.  It may contain a
40 *	value that is too high, but will never contain a value that is too
41 *	low.  When the radix tree is searched, allocation failures in subtrees
42 *	update the hint.
43 *
44 *	The radix tree also implements two collapsed states for meta nodes:
45 *	the ALL-ALLOCATED state and the ALL-FREE state.  If a meta node is
46 *	in either of these two states, all information contained underneath
47 *	the node is considered stale.  These states are used to optimize
48 *	allocation and freeing operations.
49 *
50 * 	The hinting greatly increases code efficiency for allocations while
51 *	the general radix structure optimizes both allocations and frees.  The
52 *	radix tree should be able to operate well no matter how much
53 *	fragmentation there is and no matter how large a bitmap is used.
54 *
55 *	The blist code wires all necessary memory at creation time.  Neither
56 *	allocations nor frees require interaction with the memory subsystem.
57 *	The non-blocking features of the blist code are used in the swap code
58 *	(vm/swap_pager.c).
59 *
60 *	LAYOUT: The radix tree is laid out recursively using a
61 *	linear array.  Each meta node is immediately followed (laid out
62 *	sequentially in memory) by BLIST_META_RADIX lower level nodes.  This
63 *	is a recursive structure but one that can be easily scanned through
64 *	a very simple 'skip' calculation.  In order to support large radixes,
65 *	portions of the tree may reside outside our memory allocation.  We
66 *	handle this with an early-termination optimization (when bighint is
67 *	set to -1) on the scan.  The memory allocation is only large enough
68 *	to cover the number of blocks requested at creation time even if it
69 *	must be encompassed in larger root-node radix.
70 *
71 *	NOTE: the allocator cannot currently allocate more than
72 *	BLIST_BMAP_RADIX blocks per call.  It will panic with 'allocation too
73 *	large' if you try.  This is an area that could use improvement.  The
74 *	radix is large enough that this restriction does not effect the swap
75 *	system, though.  Currently only the allocation code is effected by
76 *	this algorithmic unfeature.  The freeing code can handle arbitrary
77 *	ranges.
78 *
79 *	This code can be compiled stand-alone for debugging.
80 */
81
82#include <sys/cdefs.h>
83__FBSDID("$FreeBSD: stable/10/sys/kern/subr_blist.c 321459 2017-07-25 04:13:43Z alc $");
84
85#ifdef _KERNEL
86
87#include <sys/param.h>
88#include <sys/systm.h>
89#include <sys/lock.h>
90#include <sys/kernel.h>
91#include <sys/blist.h>
92#include <sys/malloc.h>
93#include <sys/proc.h>
94#include <sys/mutex.h>
95
96#else
97
98#ifndef BLIST_NO_DEBUG
99#define BLIST_DEBUG
100#endif
101
102#include <sys/types.h>
103#include <sys/malloc.h>
104#include <stdio.h>
105#include <string.h>
106#include <stdlib.h>
107#include <stdarg.h>
108#include <stdbool.h>
109
110#define	bitcount64(x)	__bitcount64((uint64_t)(x))
111#define malloc(a,b,c)	calloc(a, 1)
112#define free(a,b)	free(a)
113
114#include <sys/blist.h>
115
116void panic(const char *ctl, ...);
117
118#endif
119
120/*
121 * static support functions
122 */
123
124static daddr_t	blst_leaf_alloc(blmeta_t *scan, daddr_t blk, int count,
125		    daddr_t cursor);
126static daddr_t	blst_meta_alloc(blmeta_t *scan, daddr_t blk, daddr_t count,
127		    daddr_t radix, daddr_t skip, daddr_t cursor);
128static void blst_leaf_free(blmeta_t *scan, daddr_t relblk, int count);
129static void blst_meta_free(blmeta_t *scan, daddr_t freeBlk, daddr_t count,
130		    daddr_t radix, daddr_t skip, daddr_t blk);
131static void blst_copy(blmeta_t *scan, daddr_t blk, daddr_t radix,
132				daddr_t skip, blist_t dest, daddr_t count);
133static daddr_t blst_leaf_fill(blmeta_t *scan, daddr_t blk, int count);
134static daddr_t blst_meta_fill(blmeta_t *scan, daddr_t allocBlk, daddr_t count,
135		    daddr_t radix, daddr_t skip, daddr_t blk);
136static daddr_t	blst_radix_init(blmeta_t *scan, daddr_t radix, daddr_t skip,
137		    daddr_t count);
138#ifndef _KERNEL
139static void	blst_radix_print(blmeta_t *scan, daddr_t blk, daddr_t radix,
140		    daddr_t skip, int tab);
141#endif
142
143#ifdef _KERNEL
144static MALLOC_DEFINE(M_SWAP, "SWAP", "Swap space");
145#endif
146
147/*
148 * blist_create() - create a blist capable of handling up to the specified
149 *		    number of blocks
150 *
151 *	blocks - must be greater than 0
152 * 	flags  - malloc flags
153 *
154 *	The smallest blist consists of a single leaf node capable of
155 *	managing BLIST_BMAP_RADIX blocks.
156 */
157
158blist_t
159blist_create(daddr_t blocks, int flags)
160{
161	blist_t bl;
162	daddr_t nodes, radix, skip;
163
164	/*
165	 * Calculate radix and skip field used for scanning.
166	 */
167	radix = BLIST_BMAP_RADIX;
168	skip = 0;
169	while (radix < blocks) {
170		radix *= BLIST_META_RADIX;
171		skip = (skip + 1) * BLIST_META_RADIX;
172	}
173	nodes = 1 + blst_radix_init(NULL, radix, skip, blocks);
174
175	bl = malloc(sizeof(struct blist), M_SWAP, flags);
176	if (bl == NULL)
177		return (NULL);
178
179	bl->bl_blocks = blocks;
180	bl->bl_radix = radix;
181	bl->bl_skip = skip;
182	bl->bl_cursor = 0;
183	bl->bl_root = malloc(nodes * sizeof(blmeta_t), M_SWAP, flags);
184	if (bl->bl_root == NULL) {
185		free(bl, M_SWAP);
186		return (NULL);
187	}
188	blst_radix_init(bl->bl_root, radix, skip, blocks);
189
190#if defined(BLIST_DEBUG)
191	printf(
192		"BLIST representing %lld blocks (%lld MB of swap)"
193		", requiring %lldK of ram\n",
194		(long long)bl->bl_blocks,
195		(long long)bl->bl_blocks * 4 / 1024,
196		(long long)(nodes * sizeof(blmeta_t) + 1023) / 1024
197	);
198	printf("BLIST raw radix tree contains %lld records\n",
199	    (long long)nodes);
200#endif
201
202	return (bl);
203}
204
205void
206blist_destroy(blist_t bl)
207{
208	free(bl->bl_root, M_SWAP);
209	free(bl, M_SWAP);
210}
211
212/*
213 * blist_alloc() -   reserve space in the block bitmap.  Return the base
214 *		     of a contiguous region or SWAPBLK_NONE if space could
215 *		     not be allocated.
216 */
217
218daddr_t
219blist_alloc(blist_t bl, daddr_t count)
220{
221	daddr_t blk;
222
223	/*
224	 * This loop iterates at most twice.  An allocation failure in the
225	 * first iteration leads to a second iteration only if the cursor was
226	 * non-zero.  When the cursor is zero, an allocation failure will
227	 * reduce the hint, stopping further iterations.
228	 */
229	while (count <= bl->bl_root->bm_bighint) {
230		if (bl->bl_radix == BLIST_BMAP_RADIX)
231			blk = blst_leaf_alloc(bl->bl_root, 0, count,
232			    bl->bl_cursor);
233		else
234			blk = blst_meta_alloc(bl->bl_root, 0, count,
235			    bl->bl_radix, bl->bl_skip, bl->bl_cursor);
236		if (blk != SWAPBLK_NONE) {
237			bl->bl_cursor = blk + count;
238			return (blk);
239		} else if (bl->bl_cursor != 0)
240			bl->bl_cursor = 0;
241	}
242	return (SWAPBLK_NONE);
243}
244
245/*
246 * blist_avail() -	return the number of free blocks.
247 */
248
249daddr_t
250blist_avail(blist_t bl)
251{
252
253	if (bl->bl_radix == BLIST_BMAP_RADIX)
254		return (bitcount64(bl->bl_root->u.bmu_bitmap));
255	else
256		return (bl->bl_root->u.bmu_avail);
257}
258
259/*
260 * blist_free() -	free up space in the block bitmap.  Return the base
261 *		     	of a contiguous region.  Panic if an inconsistancy is
262 *			found.
263 */
264
265void
266blist_free(blist_t bl, daddr_t blkno, daddr_t count)
267{
268	if (bl) {
269		if (bl->bl_radix == BLIST_BMAP_RADIX)
270			blst_leaf_free(bl->bl_root, blkno, count);
271		else
272			blst_meta_free(bl->bl_root, blkno, count,
273			    bl->bl_radix, bl->bl_skip, 0);
274	}
275}
276
277/*
278 * blist_fill() -	mark a region in the block bitmap as off-limits
279 *			to the allocator (i.e. allocate it), ignoring any
280 *			existing allocations.  Return the number of blocks
281 *			actually filled that were free before the call.
282 */
283
284daddr_t
285blist_fill(blist_t bl, daddr_t blkno, daddr_t count)
286{
287	daddr_t filled;
288
289	if (bl) {
290		if (bl->bl_radix == BLIST_BMAP_RADIX)
291			filled = blst_leaf_fill(bl->bl_root, blkno, count);
292		else
293			filled = blst_meta_fill(bl->bl_root, blkno, count,
294			    bl->bl_radix, bl->bl_skip, 0);
295		return (filled);
296	}
297	return (0);
298}
299
300/*
301 * blist_resize() -	resize an existing radix tree to handle the
302 *			specified number of blocks.  This will reallocate
303 *			the tree and transfer the previous bitmap to the new
304 *			one.  When extending the tree you can specify whether
305 *			the new blocks are to left allocated or freed.
306 */
307
308void
309blist_resize(blist_t *pbl, daddr_t count, int freenew, int flags)
310{
311    blist_t newbl = blist_create(count, flags);
312    blist_t save = *pbl;
313
314    *pbl = newbl;
315    if (count > save->bl_blocks)
316	    count = save->bl_blocks;
317    blst_copy(save->bl_root, 0, save->bl_radix, save->bl_skip, newbl, count);
318
319    /*
320     * If resizing upwards, should we free the new space or not?
321     */
322    if (freenew && count < newbl->bl_blocks) {
323	    blist_free(newbl, count, newbl->bl_blocks - count);
324    }
325    blist_destroy(save);
326}
327
328#ifdef BLIST_DEBUG
329
330/*
331 * blist_print()    - dump radix tree
332 */
333
334void
335blist_print(blist_t bl)
336{
337	printf("BLIST {\n");
338	blst_radix_print(bl->bl_root, 0, bl->bl_radix, bl->bl_skip, 4);
339	printf("}\n");
340}
341
342#endif
343
344/************************************************************************
345 *			  ALLOCATION SUPPORT FUNCTIONS			*
346 ************************************************************************
347 *
348 *	These support functions do all the actual work.  They may seem
349 *	rather longish, but that's because I've commented them up.  The
350 *	actual code is straight forward.
351 *
352 */
353
354/*
355 * blist_leaf_alloc() -	allocate at a leaf in the radix tree (a bitmap).
356 *
357 *	This is the core of the allocator and is optimized for the
358 *	BLIST_BMAP_RADIX block allocation case.  Otherwise, execution
359 *	time is proportional to log2(count) + log2(BLIST_BMAP_RADIX).
360 */
361
362static daddr_t
363blst_leaf_alloc(blmeta_t *scan, daddr_t blk, int count, daddr_t cursor)
364{
365	u_daddr_t mask;
366	int count1, hi, lo, mid, num_shifts, range1, range_ext;
367
368	if (count == BLIST_BMAP_RADIX) {
369		/*
370		 * Optimize allocation of BLIST_BMAP_RADIX bits.  If this wasn't
371		 * a special case, then forming the final value of 'mask' below
372		 * would require special handling to avoid an invalid left shift
373		 * when count equals the number of bits in mask.
374		 */
375		if (~scan->u.bmu_bitmap != 0) {
376			scan->bm_bighint = BLIST_BMAP_RADIX - 1;
377			return (SWAPBLK_NONE);
378		}
379		if (cursor != blk)
380			return (SWAPBLK_NONE);
381		scan->u.bmu_bitmap = 0;
382		scan->bm_bighint = 0;
383		return (blk);
384	}
385	range1 = 0;
386	count1 = count - 1;
387	num_shifts = fls(count1);
388	mask = scan->u.bmu_bitmap;
389	while (mask != 0 && num_shifts > 0) {
390		/*
391		 * If bit i is set in mask, then bits in [i, i+range1] are set
392		 * in scan->u.bmu_bitmap.  The value of range1 is equal to
393		 * count1 >> num_shifts.  Grow range and reduce num_shifts to 0,
394		 * while preserving these invariants.  The updates to mask leave
395		 * fewer bits set, but each bit that remains set represents a
396		 * longer string of consecutive bits set in scan->u.bmu_bitmap.
397		 */
398		num_shifts--;
399		range_ext = range1 + ((count1 >> num_shifts) & 1);
400		mask &= mask >> range_ext;
401		range1 += range_ext;
402	}
403	if (mask == 0) {
404		/*
405		 * Update bighint.  There is no allocation bigger than range1
406		 * available in this leaf.
407		 */
408		scan->bm_bighint = range1;
409		return (SWAPBLK_NONE);
410	}
411
412	/*
413	 * Discard any candidates that appear before the cursor.
414	 */
415	lo = cursor - blk;
416	mask &= ~(u_daddr_t)0 << lo;
417
418	if (mask == 0)
419		return (SWAPBLK_NONE);
420
421	/*
422	 * The least significant set bit in mask marks the start of the first
423	 * available range of sufficient size.  Clear all the bits but that one,
424	 * and then perform a binary search to find its position.
425	 */
426	mask &= -mask;
427	hi = BLIST_BMAP_RADIX - count1;
428	while (lo + 1 < hi) {
429		mid = (lo + hi) >> 1;
430		if ((mask >> mid) != 0)
431			lo = mid;
432		else
433			hi = mid;
434	}
435
436	/*
437	 * Set in mask exactly the bits being allocated, and clear them from
438	 * the set of available bits.
439	 */
440	mask = (mask << count) - mask;
441	scan->u.bmu_bitmap &= ~mask;
442	return (blk + lo);
443}
444
445/*
446 * blist_meta_alloc() -	allocate at a meta in the radix tree.
447 *
448 *	Attempt to allocate at a meta node.  If we can't, we update
449 *	bighint and return a failure.  Updating bighint optimize future
450 *	calls that hit this node.  We have to check for our collapse cases
451 *	and we have a few optimizations strewn in as well.
452 */
453
454static daddr_t
455blst_meta_alloc(blmeta_t *scan, daddr_t blk, daddr_t count, daddr_t radix,
456    daddr_t skip, daddr_t cursor)
457{
458	daddr_t i, next_skip, r;
459	int child;
460	bool scan_from_start;
461
462	if (scan->u.bmu_avail < count) {
463		/*
464		 * The meta node's hint must be too large if the allocation
465		 * exceeds the number of free blocks.  Reduce the hint, and
466		 * return failure.
467		 */
468		scan->bm_bighint = scan->u.bmu_avail;
469		return (SWAPBLK_NONE);
470	}
471	next_skip = skip / BLIST_META_RADIX;
472
473	/*
474	 * An ALL-FREE meta node requires special handling before allocating
475	 * any of its blocks.
476	 */
477	if (scan->u.bmu_avail == radix) {
478		radix /= BLIST_META_RADIX;
479
480		/*
481		 * Reinitialize each of the meta node's children.  An ALL-FREE
482		 * meta node cannot have a terminator in any subtree.
483		 */
484		for (i = 1; i <= skip; i += next_skip) {
485			if (next_skip == 1)
486				scan[i].u.bmu_bitmap = (u_daddr_t)-1;
487			else
488				scan[i].u.bmu_avail = radix;
489			scan[i].bm_bighint = radix;
490		}
491	} else {
492		radix /= BLIST_META_RADIX;
493	}
494
495	if (count > radix) {
496		/*
497		 * The allocation exceeds the number of blocks that are
498		 * managed by a subtree of this meta node.
499		 */
500		panic("allocation too large");
501	}
502	scan_from_start = cursor == blk;
503	child = (cursor - blk) / radix;
504	blk += child * radix;
505	for (i = 1 + child * next_skip; i <= skip; i += next_skip) {
506		if (count <= scan[i].bm_bighint) {
507			/*
508			 * The allocation might fit in the i'th subtree.
509			 */
510			if (next_skip == 1) {
511				r = blst_leaf_alloc(&scan[i], blk, count,
512				    cursor > blk ? cursor : blk);
513			} else {
514				r = blst_meta_alloc(&scan[i], blk, count,
515				    radix, next_skip - 1, cursor > blk ?
516				    cursor : blk);
517			}
518			if (r != SWAPBLK_NONE) {
519				scan->u.bmu_avail -= count;
520				return (r);
521			}
522		} else if (scan[i].bm_bighint == (daddr_t)-1) {
523			/*
524			 * Terminator
525			 */
526			break;
527		}
528		blk += radix;
529	}
530
531	/*
532	 * We couldn't allocate count in this subtree, update bighint.
533	 */
534	if (scan_from_start && scan->bm_bighint >= count)
535		scan->bm_bighint = count - 1;
536
537	return (SWAPBLK_NONE);
538}
539
540/*
541 * BLST_LEAF_FREE() -	free allocated block from leaf bitmap
542 *
543 */
544
545static void
546blst_leaf_free(
547	blmeta_t *scan,
548	daddr_t blk,
549	int count
550) {
551	/*
552	 * free some data in this bitmap
553	 *
554	 * e.g.
555	 *	0000111111111110000
556	 *          \_________/\__/
557	 *		v        n
558	 */
559	int n = blk & (BLIST_BMAP_RADIX - 1);
560	u_daddr_t mask;
561
562	mask = ((u_daddr_t)-1 << n) &
563	    ((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - count - n));
564
565	if (scan->u.bmu_bitmap & mask)
566		panic("blst_radix_free: freeing free block");
567	scan->u.bmu_bitmap |= mask;
568
569	/*
570	 * We could probably do a better job here.  We are required to make
571	 * bighint at least as large as the biggest contiguous block of
572	 * data.  If we just shoehorn it, a little extra overhead will
573	 * be incured on the next allocation (but only that one typically).
574	 */
575	scan->bm_bighint = BLIST_BMAP_RADIX;
576}
577
578/*
579 * BLST_META_FREE() - free allocated blocks from radix tree meta info
580 *
581 *	This support routine frees a range of blocks from the bitmap.
582 *	The range must be entirely enclosed by this radix node.  If a
583 *	meta node, we break the range down recursively to free blocks
584 *	in subnodes (which means that this code can free an arbitrary
585 *	range whereas the allocation code cannot allocate an arbitrary
586 *	range).
587 */
588
589static void
590blst_meta_free(blmeta_t *scan, daddr_t freeBlk, daddr_t count, daddr_t radix,
591    daddr_t skip, daddr_t blk)
592{
593	daddr_t i, next_skip, v;
594	int child;
595
596#if 0
597	printf("free (%llx,%lld) FROM (%llx,%lld)\n",
598	    (long long)freeBlk, (long long)count,
599	    (long long)blk, (long long)radix
600	);
601#endif
602	next_skip = skip / BLIST_META_RADIX;
603
604	if (scan->u.bmu_avail == 0) {
605		/*
606		 * ALL-ALLOCATED special case, with possible
607		 * shortcut to ALL-FREE special case.
608		 */
609		scan->u.bmu_avail = count;
610		scan->bm_bighint = count;
611
612		if (count != radix)  {
613			for (i = 1; i <= skip; i += next_skip) {
614				if (scan[i].bm_bighint == (daddr_t)-1)
615					break;
616				scan[i].bm_bighint = 0;
617				if (next_skip == 1) {
618					scan[i].u.bmu_bitmap = 0;
619				} else {
620					scan[i].u.bmu_avail = 0;
621				}
622			}
623			/* fall through */
624		}
625	} else {
626		scan->u.bmu_avail += count;
627		/* scan->bm_bighint = radix; */
628	}
629
630	/*
631	 * ALL-FREE special case.
632	 */
633
634	if (scan->u.bmu_avail == radix)
635		return;
636	if (scan->u.bmu_avail > radix)
637		panic("blst_meta_free: freeing already free blocks (%lld) %lld/%lld",
638		    (long long)count, (long long)scan->u.bmu_avail,
639		    (long long)radix);
640
641	/*
642	 * Break the free down into its components
643	 */
644
645	radix /= BLIST_META_RADIX;
646
647	child = (freeBlk - blk) / radix;
648	blk += child * radix;
649	i = 1 + child * next_skip;
650	while (i <= skip && blk < freeBlk + count) {
651		v = blk + radix - freeBlk;
652		if (v > count)
653			v = count;
654
655		if (scan->bm_bighint == (daddr_t)-1)
656			panic("blst_meta_free: freeing unexpected range");
657
658		if (next_skip == 1) {
659			blst_leaf_free(&scan[i], freeBlk, v);
660		} else {
661			blst_meta_free(&scan[i], freeBlk, v, radix, next_skip - 1, blk);
662		}
663		if (scan->bm_bighint < scan[i].bm_bighint)
664		    scan->bm_bighint = scan[i].bm_bighint;
665		count -= v;
666		freeBlk += v;
667		blk += radix;
668		i += next_skip;
669	}
670}
671
672/*
673 * BLIST_RADIX_COPY() - copy one radix tree to another
674 *
675 *	Locates free space in the source tree and frees it in the destination
676 *	tree.  The space may not already be free in the destination.
677 */
678
679static void blst_copy(
680	blmeta_t *scan,
681	daddr_t blk,
682	daddr_t radix,
683	daddr_t skip,
684	blist_t dest,
685	daddr_t count
686) {
687	daddr_t i, next_skip;
688
689	/*
690	 * Leaf node
691	 */
692
693	if (radix == BLIST_BMAP_RADIX) {
694		u_daddr_t v = scan->u.bmu_bitmap;
695
696		if (v == (u_daddr_t)-1) {
697			blist_free(dest, blk, count);
698		} else if (v != 0) {
699			int i;
700
701			for (i = 0; i < BLIST_BMAP_RADIX && i < count; ++i) {
702				if (v & ((u_daddr_t)1 << i))
703					blist_free(dest, blk + i, 1);
704			}
705		}
706		return;
707	}
708
709	/*
710	 * Meta node
711	 */
712
713	if (scan->u.bmu_avail == 0) {
714		/*
715		 * Source all allocated, leave dest allocated
716		 */
717		return;
718	}
719	if (scan->u.bmu_avail == radix) {
720		/*
721		 * Source all free, free entire dest
722		 */
723		if (count < radix)
724			blist_free(dest, blk, count);
725		else
726			blist_free(dest, blk, radix);
727		return;
728	}
729
730
731	radix /= BLIST_META_RADIX;
732	next_skip = skip / BLIST_META_RADIX;
733
734	for (i = 1; count && i <= skip; i += next_skip) {
735		if (scan[i].bm_bighint == (daddr_t)-1)
736			break;
737
738		if (count >= radix) {
739			blst_copy(
740			    &scan[i],
741			    blk,
742			    radix,
743			    next_skip - 1,
744			    dest,
745			    radix
746			);
747			count -= radix;
748		} else {
749			if (count) {
750				blst_copy(
751				    &scan[i],
752				    blk,
753				    radix,
754				    next_skip - 1,
755				    dest,
756				    count
757				);
758			}
759			count = 0;
760		}
761		blk += radix;
762	}
763}
764
765/*
766 * BLST_LEAF_FILL() -	allocate specific blocks in leaf bitmap
767 *
768 *	This routine allocates all blocks in the specified range
769 *	regardless of any existing allocations in that range.  Returns
770 *	the number of blocks allocated by the call.
771 */
772
773static daddr_t
774blst_leaf_fill(blmeta_t *scan, daddr_t blk, int count)
775{
776	int n = blk & (BLIST_BMAP_RADIX - 1);
777	daddr_t nblks;
778	u_daddr_t mask;
779
780	mask = ((u_daddr_t)-1 << n) &
781	    ((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - count - n));
782
783	/* Count the number of blocks that we are allocating. */
784	nblks = bitcount64(scan->u.bmu_bitmap & mask);
785
786	scan->u.bmu_bitmap &= ~mask;
787	return (nblks);
788}
789
790/*
791 * BLIST_META_FILL() -	allocate specific blocks at a meta node
792 *
793 *	This routine allocates the specified range of blocks,
794 *	regardless of any existing allocations in the range.  The
795 *	range must be within the extent of this node.  Returns the
796 *	number of blocks allocated by the call.
797 */
798static daddr_t
799blst_meta_fill(blmeta_t *scan, daddr_t allocBlk, daddr_t count, daddr_t radix,
800    daddr_t skip, daddr_t blk)
801{
802	daddr_t i, nblks, next_skip, v;
803	int child;
804
805	if (count > radix) {
806		/*
807		 * The allocation exceeds the number of blocks that are
808		 * managed by this meta node.
809		 */
810		panic("allocation too large");
811	}
812	if (count == radix || scan->u.bmu_avail == 0)  {
813		/*
814		 * ALL-ALLOCATED special case
815		 */
816		nblks = scan->u.bmu_avail;
817		scan->u.bmu_avail = 0;
818		scan->bm_bighint = 0;
819		return nblks;
820	}
821	next_skip = skip / BLIST_META_RADIX;
822
823	/*
824	 * An ALL-FREE meta node requires special handling before allocating
825	 * any of its blocks.
826	 */
827	if (scan->u.bmu_avail == radix) {
828		radix /= BLIST_META_RADIX;
829
830		/*
831		 * Reinitialize each of the meta node's children.  An ALL-FREE
832		 * meta node cannot have a terminator in any subtree.
833		 */
834		for (i = 1; i <= skip; i += next_skip) {
835			if (next_skip == 1) {
836				scan[i].u.bmu_bitmap = (u_daddr_t)-1;
837				scan[i].bm_bighint = BLIST_BMAP_RADIX;
838			} else {
839				scan[i].bm_bighint = radix;
840				scan[i].u.bmu_avail = radix;
841			}
842		}
843	} else {
844		radix /= BLIST_META_RADIX;
845	}
846
847	nblks = 0;
848	child = (allocBlk - blk) / radix;
849	blk += child * radix;
850	i = 1 + child * next_skip;
851	while (i <= skip && blk < allocBlk + count) {
852		v = blk + radix - allocBlk;
853		if (v > count)
854			v = count;
855
856		if (scan->bm_bighint == (daddr_t)-1)
857			panic("blst_meta_fill: filling unexpected range");
858
859		if (next_skip == 1) {
860			nblks += blst_leaf_fill(&scan[i], allocBlk, v);
861		} else {
862			nblks += blst_meta_fill(&scan[i], allocBlk, v,
863			    radix, next_skip - 1, blk);
864		}
865		count -= v;
866		allocBlk += v;
867		blk += radix;
868		i += next_skip;
869	}
870	scan->u.bmu_avail -= nblks;
871	return nblks;
872}
873
874/*
875 * BLST_RADIX_INIT() - initialize radix tree
876 *
877 *	Initialize our meta structures and bitmaps and calculate the exact
878 *	amount of space required to manage 'count' blocks - this space may
879 *	be considerably less than the calculated radix due to the large
880 *	RADIX values we use.
881 */
882
883static daddr_t
884blst_radix_init(blmeta_t *scan, daddr_t radix, daddr_t skip, daddr_t count)
885{
886	daddr_t i, memindex, next_skip;
887
888	memindex = 0;
889
890	/*
891	 * Leaf node
892	 */
893
894	if (radix == BLIST_BMAP_RADIX) {
895		if (scan) {
896			scan->bm_bighint = 0;
897			scan->u.bmu_bitmap = 0;
898		}
899		return(memindex);
900	}
901
902	/*
903	 * Meta node.  If allocating the entire object we can special
904	 * case it.  However, we need to figure out how much memory
905	 * is required to manage 'count' blocks, so we continue on anyway.
906	 */
907
908	if (scan) {
909		scan->bm_bighint = 0;
910		scan->u.bmu_avail = 0;
911	}
912
913	radix /= BLIST_META_RADIX;
914	next_skip = skip / BLIST_META_RADIX;
915
916	for (i = 1; i <= skip; i += next_skip) {
917		if (count >= radix) {
918			/*
919			 * Allocate the entire object
920			 */
921			memindex = i + blst_radix_init(
922			    ((scan) ? &scan[i] : NULL),
923			    radix,
924			    next_skip - 1,
925			    radix
926			);
927			count -= radix;
928		} else if (count > 0) {
929			/*
930			 * Allocate a partial object
931			 */
932			memindex = i + blst_radix_init(
933			    ((scan) ? &scan[i] : NULL),
934			    radix,
935			    next_skip - 1,
936			    count
937			);
938			count = 0;
939		} else {
940			/*
941			 * Add terminator and break out
942			 */
943			if (scan)
944				scan[i].bm_bighint = (daddr_t)-1;
945			break;
946		}
947	}
948	if (memindex < i)
949		memindex = i;
950	return(memindex);
951}
952
953#ifdef BLIST_DEBUG
954
955static void
956blst_radix_print(blmeta_t *scan, daddr_t blk, daddr_t radix, daddr_t skip,
957    int tab)
958{
959	daddr_t i, next_skip;
960
961	if (radix == BLIST_BMAP_RADIX) {
962		printf(
963		    "%*.*s(%08llx,%lld): bitmap %016llx big=%lld\n",
964		    tab, tab, "",
965		    (long long)blk, (long long)radix,
966		    (long long)scan->u.bmu_bitmap,
967		    (long long)scan->bm_bighint
968		);
969		return;
970	}
971
972	if (scan->u.bmu_avail == 0) {
973		printf(
974		    "%*.*s(%08llx,%lld) ALL ALLOCATED\n",
975		    tab, tab, "",
976		    (long long)blk,
977		    (long long)radix
978		);
979		return;
980	}
981	if (scan->u.bmu_avail == radix) {
982		printf(
983		    "%*.*s(%08llx,%lld) ALL FREE\n",
984		    tab, tab, "",
985		    (long long)blk,
986		    (long long)radix
987		);
988		return;
989	}
990
991	printf(
992	    "%*.*s(%08llx,%lld): subtree (%lld/%lld) big=%lld {\n",
993	    tab, tab, "",
994	    (long long)blk, (long long)radix,
995	    (long long)scan->u.bmu_avail,
996	    (long long)radix,
997	    (long long)scan->bm_bighint
998	);
999
1000	radix /= BLIST_META_RADIX;
1001	next_skip = skip / BLIST_META_RADIX;
1002	tab += 4;
1003
1004	for (i = 1; i <= skip; i += next_skip) {
1005		if (scan[i].bm_bighint == (daddr_t)-1) {
1006			printf(
1007			    "%*.*s(%08llx,%lld): Terminator\n",
1008			    tab, tab, "",
1009			    (long long)blk, (long long)radix
1010			);
1011			break;
1012		}
1013		blst_radix_print(
1014		    &scan[i],
1015		    blk,
1016		    radix,
1017		    next_skip - 1,
1018		    tab
1019		);
1020		blk += radix;
1021	}
1022	tab -= 4;
1023
1024	printf(
1025	    "%*.*s}\n",
1026	    tab, tab, ""
1027	);
1028}
1029
1030#endif
1031
1032#ifdef BLIST_DEBUG
1033
1034int
1035main(int ac, char **av)
1036{
1037	int size = 1024;
1038	int i;
1039	blist_t bl;
1040
1041	for (i = 1; i < ac; ++i) {
1042		const char *ptr = av[i];
1043		if (*ptr != '-') {
1044			size = strtol(ptr, NULL, 0);
1045			continue;
1046		}
1047		ptr += 2;
1048		fprintf(stderr, "Bad option: %s\n", ptr - 2);
1049		exit(1);
1050	}
1051	bl = blist_create(size, M_WAITOK);
1052	blist_free(bl, 0, size);
1053
1054	for (;;) {
1055		char buf[1024];
1056		long long da = 0;
1057		long long count = 0;
1058
1059		printf("%lld/%lld/%lld> ", (long long)blist_avail(bl),
1060		    (long long)size, (long long)bl->bl_radix);
1061		fflush(stdout);
1062		if (fgets(buf, sizeof(buf), stdin) == NULL)
1063			break;
1064		switch(buf[0]) {
1065		case 'r':
1066			if (sscanf(buf + 1, "%lld", &count) == 1) {
1067				blist_resize(&bl, count, 1, M_WAITOK);
1068			} else {
1069				printf("?\n");
1070			}
1071		case 'p':
1072			blist_print(bl);
1073			break;
1074		case 'a':
1075			if (sscanf(buf + 1, "%lld", &count) == 1) {
1076				daddr_t blk = blist_alloc(bl, count);
1077				printf("    R=%08llx\n", (long long)blk);
1078			} else {
1079				printf("?\n");
1080			}
1081			break;
1082		case 'f':
1083			if (sscanf(buf + 1, "%llx %lld", &da, &count) == 2) {
1084				blist_free(bl, da, count);
1085			} else {
1086				printf("?\n");
1087			}
1088			break;
1089		case 'l':
1090			if (sscanf(buf + 1, "%llx %lld", &da, &count) == 2) {
1091				printf("    n=%jd\n",
1092				    (intmax_t)blist_fill(bl, da, count));
1093			} else {
1094				printf("?\n");
1095			}
1096			break;
1097		case '?':
1098		case 'h':
1099			puts(
1100			    "p          -print\n"
1101			    "a %d       -allocate\n"
1102			    "f %x %d    -free\n"
1103			    "l %x %d    -fill\n"
1104			    "r %d       -resize\n"
1105			    "h/?        -help"
1106			);
1107			break;
1108		default:
1109			printf("?\n");
1110			break;
1111		}
1112	}
1113	return(0);
1114}
1115
1116void
1117panic(const char *ctl, ...)
1118{
1119	va_list va;
1120
1121	va_start(va, ctl);
1122	vfprintf(stderr, ctl, va);
1123	fprintf(stderr, "\n");
1124	va_end(va);
1125	exit(1);
1126}
1127
1128#endif
1129
1130