kern_proc.c revision 310121
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: stable/10/sys/kern/kern_proc.c 310121 2016-12-15 16:52:17Z vangyzen $");
34
35#include "opt_compat.h"
36#include "opt_ddb.h"
37#include "opt_kdtrace.h"
38#include "opt_ktrace.h"
39#include "opt_kstack_pages.h"
40#include "opt_stack.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/elf.h>
45#include <sys/exec.h>
46#include <sys/kernel.h>
47#include <sys/limits.h>
48#include <sys/lock.h>
49#include <sys/loginclass.h>
50#include <sys/malloc.h>
51#include <sys/mman.h>
52#include <sys/mount.h>
53#include <sys/mutex.h>
54#include <sys/proc.h>
55#include <sys/ptrace.h>
56#include <sys/refcount.h>
57#include <sys/resourcevar.h>
58#include <sys/rwlock.h>
59#include <sys/sbuf.h>
60#include <sys/sysent.h>
61#include <sys/sched.h>
62#include <sys/smp.h>
63#include <sys/stack.h>
64#include <sys/stat.h>
65#include <sys/sysctl.h>
66#include <sys/filedesc.h>
67#include <sys/tty.h>
68#include <sys/signalvar.h>
69#include <sys/sdt.h>
70#include <sys/sx.h>
71#include <sys/user.h>
72#include <sys/jail.h>
73#include <sys/vnode.h>
74#include <sys/eventhandler.h>
75
76#ifdef DDB
77#include <ddb/ddb.h>
78#endif
79
80#include <vm/vm.h>
81#include <vm/vm_param.h>
82#include <vm/vm_extern.h>
83#include <vm/pmap.h>
84#include <vm/vm_map.h>
85#include <vm/vm_object.h>
86#include <vm/vm_page.h>
87#include <vm/uma.h>
88
89#ifdef COMPAT_FREEBSD32
90#include <compat/freebsd32/freebsd32.h>
91#include <compat/freebsd32/freebsd32_util.h>
92#endif
93
94SDT_PROVIDER_DEFINE(proc);
95SDT_PROBE_DEFINE4(proc, , ctor, entry, "struct proc *", "int", "void *",
96    "int");
97SDT_PROBE_DEFINE4(proc, , ctor, return, "struct proc *", "int", "void *",
98    "int");
99SDT_PROBE_DEFINE4(proc, , dtor, entry, "struct proc *", "int", "void *",
100    "struct thread *");
101SDT_PROBE_DEFINE3(proc, , dtor, return, "struct proc *", "int", "void *");
102SDT_PROBE_DEFINE3(proc, , init, entry, "struct proc *", "int", "int");
103SDT_PROBE_DEFINE3(proc, , init, return, "struct proc *", "int", "int");
104
105MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
106MALLOC_DEFINE(M_SESSION, "session", "session header");
107static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
108MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
109
110static void doenterpgrp(struct proc *, struct pgrp *);
111static void orphanpg(struct pgrp *pg);
112static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
113static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
114static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
115    int preferthread);
116static void pgadjustjobc(struct pgrp *pgrp, int entering);
117static void pgdelete(struct pgrp *);
118static int proc_ctor(void *mem, int size, void *arg, int flags);
119static void proc_dtor(void *mem, int size, void *arg);
120static int proc_init(void *mem, int size, int flags);
121static void proc_fini(void *mem, int size);
122static void pargs_free(struct pargs *pa);
123static struct proc *zpfind_locked(pid_t pid);
124
125/*
126 * Other process lists
127 */
128struct pidhashhead *pidhashtbl;
129u_long pidhash;
130struct pgrphashhead *pgrphashtbl;
131u_long pgrphash;
132struct proclist allproc;
133struct proclist zombproc;
134struct sx allproc_lock;
135struct sx proctree_lock;
136struct mtx ppeers_lock;
137uma_zone_t proc_zone;
138
139/*
140 * The offset of various fields in struct proc and struct thread.
141 * These are used by kernel debuggers to enumerate kernel threads and
142 * processes.
143 */
144const int proc_off_p_pid = offsetof(struct proc, p_pid);
145const int proc_off_p_comm = offsetof(struct proc, p_comm);
146const int proc_off_p_list = offsetof(struct proc, p_list);
147const int proc_off_p_threads = offsetof(struct proc, p_threads);
148const int thread_off_td_tid = offsetof(struct thread, td_tid);
149const int thread_off_td_name = offsetof(struct thread, td_name);
150const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu);
151const int thread_off_td_pcb = offsetof(struct thread, td_pcb);
152const int thread_off_td_plist = offsetof(struct thread, td_plist);
153
154int kstack_pages = KSTACK_PAGES;
155SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
156    "Kernel stack size in pages");
157static int vmmap_skip_res_cnt = 0;
158SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
159    &vmmap_skip_res_cnt, 0,
160    "Skip calculation of the pages resident count in kern.proc.vmmap");
161
162CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
163#ifdef COMPAT_FREEBSD32
164CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
165#endif
166
167/*
168 * Initialize global process hashing structures.
169 */
170void
171procinit()
172{
173
174	sx_init(&allproc_lock, "allproc");
175	sx_init(&proctree_lock, "proctree");
176	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
177	LIST_INIT(&allproc);
178	LIST_INIT(&zombproc);
179	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
180	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
181	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
182	    proc_ctor, proc_dtor, proc_init, proc_fini,
183	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
184	uihashinit();
185}
186
187/*
188 * Prepare a proc for use.
189 */
190static int
191proc_ctor(void *mem, int size, void *arg, int flags)
192{
193	struct proc *p;
194
195	p = (struct proc *)mem;
196	SDT_PROBE4(proc, , ctor , entry, p, size, arg, flags);
197	EVENTHANDLER_INVOKE(process_ctor, p);
198	SDT_PROBE4(proc, , ctor , return, p, size, arg, flags);
199	return (0);
200}
201
202/*
203 * Reclaim a proc after use.
204 */
205static void
206proc_dtor(void *mem, int size, void *arg)
207{
208	struct proc *p;
209	struct thread *td;
210
211	/* INVARIANTS checks go here */
212	p = (struct proc *)mem;
213	td = FIRST_THREAD_IN_PROC(p);
214	SDT_PROBE4(proc, , dtor, entry, p, size, arg, td);
215	if (td != NULL) {
216#ifdef INVARIANTS
217		KASSERT((p->p_numthreads == 1),
218		    ("bad number of threads in exiting process"));
219		KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
220#endif
221		/* Free all OSD associated to this thread. */
222		osd_thread_exit(td);
223	}
224	EVENTHANDLER_INVOKE(process_dtor, p);
225	if (p->p_ksi != NULL)
226		KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
227	SDT_PROBE3(proc, , dtor, return, p, size, arg);
228}
229
230/*
231 * Initialize type-stable parts of a proc (when newly created).
232 */
233static int
234proc_init(void *mem, int size, int flags)
235{
236	struct proc *p;
237
238	p = (struct proc *)mem;
239	SDT_PROBE3(proc, , init, entry, p, size, flags);
240	p->p_sched = (struct p_sched *)&p[1];
241	bzero(&p->p_mtx, sizeof(struct mtx));
242	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
243	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE);
244	cv_init(&p->p_pwait, "ppwait");
245	cv_init(&p->p_dbgwait, "dbgwait");
246	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
247	EVENTHANDLER_INVOKE(process_init, p);
248	p->p_stats = pstats_alloc();
249	p->p_pgrp = NULL;
250	SDT_PROBE3(proc, , init, return, p, size, flags);
251	return (0);
252}
253
254/*
255 * UMA should ensure that this function is never called.
256 * Freeing a proc structure would violate type stability.
257 */
258static void
259proc_fini(void *mem, int size)
260{
261#ifdef notnow
262	struct proc *p;
263
264	p = (struct proc *)mem;
265	EVENTHANDLER_INVOKE(process_fini, p);
266	pstats_free(p->p_stats);
267	thread_free(FIRST_THREAD_IN_PROC(p));
268	mtx_destroy(&p->p_mtx);
269	if (p->p_ksi != NULL)
270		ksiginfo_free(p->p_ksi);
271#else
272	panic("proc reclaimed");
273#endif
274}
275
276/*
277 * Is p an inferior of the current process?
278 */
279int
280inferior(struct proc *p)
281{
282
283	sx_assert(&proctree_lock, SX_LOCKED);
284	PROC_LOCK_ASSERT(p, MA_OWNED);
285	for (; p != curproc; p = proc_realparent(p)) {
286		if (p->p_pid == 0)
287			return (0);
288	}
289	return (1);
290}
291
292struct proc *
293pfind_locked(pid_t pid)
294{
295	struct proc *p;
296
297	sx_assert(&allproc_lock, SX_LOCKED);
298	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
299		if (p->p_pid == pid) {
300			PROC_LOCK(p);
301			if (p->p_state == PRS_NEW) {
302				PROC_UNLOCK(p);
303				p = NULL;
304			}
305			break;
306		}
307	}
308	return (p);
309}
310
311/*
312 * Locate a process by number; return only "live" processes -- i.e., neither
313 * zombies nor newly born but incompletely initialized processes.  By not
314 * returning processes in the PRS_NEW state, we allow callers to avoid
315 * testing for that condition to avoid dereferencing p_ucred, et al.
316 */
317struct proc *
318pfind(pid_t pid)
319{
320	struct proc *p;
321
322	sx_slock(&allproc_lock);
323	p = pfind_locked(pid);
324	sx_sunlock(&allproc_lock);
325	return (p);
326}
327
328static struct proc *
329pfind_tid_locked(pid_t tid)
330{
331	struct proc *p;
332	struct thread *td;
333
334	sx_assert(&allproc_lock, SX_LOCKED);
335	FOREACH_PROC_IN_SYSTEM(p) {
336		PROC_LOCK(p);
337		if (p->p_state == PRS_NEW) {
338			PROC_UNLOCK(p);
339			continue;
340		}
341		FOREACH_THREAD_IN_PROC(p, td) {
342			if (td->td_tid == tid)
343				goto found;
344		}
345		PROC_UNLOCK(p);
346	}
347found:
348	return (p);
349}
350
351/*
352 * Locate a process group by number.
353 * The caller must hold proctree_lock.
354 */
355struct pgrp *
356pgfind(pgid)
357	register pid_t pgid;
358{
359	register struct pgrp *pgrp;
360
361	sx_assert(&proctree_lock, SX_LOCKED);
362
363	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
364		if (pgrp->pg_id == pgid) {
365			PGRP_LOCK(pgrp);
366			return (pgrp);
367		}
368	}
369	return (NULL);
370}
371
372/*
373 * Locate process and do additional manipulations, depending on flags.
374 */
375int
376pget(pid_t pid, int flags, struct proc **pp)
377{
378	struct proc *p;
379	int error;
380
381	sx_slock(&allproc_lock);
382	if (pid <= PID_MAX) {
383		p = pfind_locked(pid);
384		if (p == NULL && (flags & PGET_NOTWEXIT) == 0)
385			p = zpfind_locked(pid);
386	} else if ((flags & PGET_NOTID) == 0) {
387		p = pfind_tid_locked(pid);
388	} else {
389		p = NULL;
390	}
391	sx_sunlock(&allproc_lock);
392	if (p == NULL)
393		return (ESRCH);
394	if ((flags & PGET_CANSEE) != 0) {
395		error = p_cansee(curthread, p);
396		if (error != 0)
397			goto errout;
398	}
399	if ((flags & PGET_CANDEBUG) != 0) {
400		error = p_candebug(curthread, p);
401		if (error != 0)
402			goto errout;
403	}
404	if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
405		error = EPERM;
406		goto errout;
407	}
408	if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
409		error = ESRCH;
410		goto errout;
411	}
412	if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
413		/*
414		 * XXXRW: Not clear ESRCH is the right error during proc
415		 * execve().
416		 */
417		error = ESRCH;
418		goto errout;
419	}
420	if ((flags & PGET_HOLD) != 0) {
421		_PHOLD(p);
422		PROC_UNLOCK(p);
423	}
424	*pp = p;
425	return (0);
426errout:
427	PROC_UNLOCK(p);
428	return (error);
429}
430
431/*
432 * Create a new process group.
433 * pgid must be equal to the pid of p.
434 * Begin a new session if required.
435 */
436int
437enterpgrp(p, pgid, pgrp, sess)
438	register struct proc *p;
439	pid_t pgid;
440	struct pgrp *pgrp;
441	struct session *sess;
442{
443
444	sx_assert(&proctree_lock, SX_XLOCKED);
445
446	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
447	KASSERT(p->p_pid == pgid,
448	    ("enterpgrp: new pgrp and pid != pgid"));
449	KASSERT(pgfind(pgid) == NULL,
450	    ("enterpgrp: pgrp with pgid exists"));
451	KASSERT(!SESS_LEADER(p),
452	    ("enterpgrp: session leader attempted setpgrp"));
453
454	mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
455
456	if (sess != NULL) {
457		/*
458		 * new session
459		 */
460		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
461		PROC_LOCK(p);
462		p->p_flag &= ~P_CONTROLT;
463		PROC_UNLOCK(p);
464		PGRP_LOCK(pgrp);
465		sess->s_leader = p;
466		sess->s_sid = p->p_pid;
467		refcount_init(&sess->s_count, 1);
468		sess->s_ttyvp = NULL;
469		sess->s_ttydp = NULL;
470		sess->s_ttyp = NULL;
471		bcopy(p->p_session->s_login, sess->s_login,
472			    sizeof(sess->s_login));
473		pgrp->pg_session = sess;
474		KASSERT(p == curproc,
475		    ("enterpgrp: mksession and p != curproc"));
476	} else {
477		pgrp->pg_session = p->p_session;
478		sess_hold(pgrp->pg_session);
479		PGRP_LOCK(pgrp);
480	}
481	pgrp->pg_id = pgid;
482	LIST_INIT(&pgrp->pg_members);
483
484	/*
485	 * As we have an exclusive lock of proctree_lock,
486	 * this should not deadlock.
487	 */
488	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
489	pgrp->pg_jobc = 0;
490	SLIST_INIT(&pgrp->pg_sigiolst);
491	PGRP_UNLOCK(pgrp);
492
493	doenterpgrp(p, pgrp);
494
495	return (0);
496}
497
498/*
499 * Move p to an existing process group
500 */
501int
502enterthispgrp(p, pgrp)
503	register struct proc *p;
504	struct pgrp *pgrp;
505{
506
507	sx_assert(&proctree_lock, SX_XLOCKED);
508	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
509	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
510	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
511	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
512	KASSERT(pgrp->pg_session == p->p_session,
513		("%s: pgrp's session %p, p->p_session %p.\n",
514		__func__,
515		pgrp->pg_session,
516		p->p_session));
517	KASSERT(pgrp != p->p_pgrp,
518		("%s: p belongs to pgrp.", __func__));
519
520	doenterpgrp(p, pgrp);
521
522	return (0);
523}
524
525/*
526 * Move p to a process group
527 */
528static void
529doenterpgrp(p, pgrp)
530	struct proc *p;
531	struct pgrp *pgrp;
532{
533	struct pgrp *savepgrp;
534
535	sx_assert(&proctree_lock, SX_XLOCKED);
536	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
537	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
538	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
539	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
540
541	savepgrp = p->p_pgrp;
542
543	/*
544	 * Adjust eligibility of affected pgrps to participate in job control.
545	 * Increment eligibility counts before decrementing, otherwise we
546	 * could reach 0 spuriously during the first call.
547	 */
548	fixjobc(p, pgrp, 1);
549	fixjobc(p, p->p_pgrp, 0);
550
551	PGRP_LOCK(pgrp);
552	PGRP_LOCK(savepgrp);
553	PROC_LOCK(p);
554	LIST_REMOVE(p, p_pglist);
555	p->p_pgrp = pgrp;
556	PROC_UNLOCK(p);
557	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
558	PGRP_UNLOCK(savepgrp);
559	PGRP_UNLOCK(pgrp);
560	if (LIST_EMPTY(&savepgrp->pg_members))
561		pgdelete(savepgrp);
562}
563
564/*
565 * remove process from process group
566 */
567int
568leavepgrp(p)
569	register struct proc *p;
570{
571	struct pgrp *savepgrp;
572
573	sx_assert(&proctree_lock, SX_XLOCKED);
574	savepgrp = p->p_pgrp;
575	PGRP_LOCK(savepgrp);
576	PROC_LOCK(p);
577	LIST_REMOVE(p, p_pglist);
578	p->p_pgrp = NULL;
579	PROC_UNLOCK(p);
580	PGRP_UNLOCK(savepgrp);
581	if (LIST_EMPTY(&savepgrp->pg_members))
582		pgdelete(savepgrp);
583	return (0);
584}
585
586/*
587 * delete a process group
588 */
589static void
590pgdelete(pgrp)
591	register struct pgrp *pgrp;
592{
593	struct session *savesess;
594	struct tty *tp;
595
596	sx_assert(&proctree_lock, SX_XLOCKED);
597	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
598	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
599
600	/*
601	 * Reset any sigio structures pointing to us as a result of
602	 * F_SETOWN with our pgid.
603	 */
604	funsetownlst(&pgrp->pg_sigiolst);
605
606	PGRP_LOCK(pgrp);
607	tp = pgrp->pg_session->s_ttyp;
608	LIST_REMOVE(pgrp, pg_hash);
609	savesess = pgrp->pg_session;
610	PGRP_UNLOCK(pgrp);
611
612	/* Remove the reference to the pgrp before deallocating it. */
613	if (tp != NULL) {
614		tty_lock(tp);
615		tty_rel_pgrp(tp, pgrp);
616	}
617
618	mtx_destroy(&pgrp->pg_mtx);
619	free(pgrp, M_PGRP);
620	sess_release(savesess);
621}
622
623static void
624pgadjustjobc(pgrp, entering)
625	struct pgrp *pgrp;
626	int entering;
627{
628
629	PGRP_LOCK(pgrp);
630	if (entering)
631		pgrp->pg_jobc++;
632	else {
633		--pgrp->pg_jobc;
634		if (pgrp->pg_jobc == 0)
635			orphanpg(pgrp);
636	}
637	PGRP_UNLOCK(pgrp);
638}
639
640/*
641 * Adjust pgrp jobc counters when specified process changes process group.
642 * We count the number of processes in each process group that "qualify"
643 * the group for terminal job control (those with a parent in a different
644 * process group of the same session).  If that count reaches zero, the
645 * process group becomes orphaned.  Check both the specified process'
646 * process group and that of its children.
647 * entering == 0 => p is leaving specified group.
648 * entering == 1 => p is entering specified group.
649 */
650void
651fixjobc(p, pgrp, entering)
652	register struct proc *p;
653	register struct pgrp *pgrp;
654	int entering;
655{
656	register struct pgrp *hispgrp;
657	register struct session *mysession;
658
659	sx_assert(&proctree_lock, SX_LOCKED);
660	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
661	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
662	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
663
664	/*
665	 * Check p's parent to see whether p qualifies its own process
666	 * group; if so, adjust count for p's process group.
667	 */
668	mysession = pgrp->pg_session;
669	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
670	    hispgrp->pg_session == mysession)
671		pgadjustjobc(pgrp, entering);
672
673	/*
674	 * Check this process' children to see whether they qualify
675	 * their process groups; if so, adjust counts for children's
676	 * process groups.
677	 */
678	LIST_FOREACH(p, &p->p_children, p_sibling) {
679		hispgrp = p->p_pgrp;
680		if (hispgrp == pgrp ||
681		    hispgrp->pg_session != mysession)
682			continue;
683		PROC_LOCK(p);
684		if (p->p_state == PRS_ZOMBIE) {
685			PROC_UNLOCK(p);
686			continue;
687		}
688		PROC_UNLOCK(p);
689		pgadjustjobc(hispgrp, entering);
690	}
691}
692
693/*
694 * A process group has become orphaned;
695 * if there are any stopped processes in the group,
696 * hang-up all process in that group.
697 */
698static void
699orphanpg(pg)
700	struct pgrp *pg;
701{
702	register struct proc *p;
703
704	PGRP_LOCK_ASSERT(pg, MA_OWNED);
705
706	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
707		PROC_LOCK(p);
708		if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
709			PROC_UNLOCK(p);
710			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
711				PROC_LOCK(p);
712				kern_psignal(p, SIGHUP);
713				kern_psignal(p, SIGCONT);
714				PROC_UNLOCK(p);
715			}
716			return;
717		}
718		PROC_UNLOCK(p);
719	}
720}
721
722void
723sess_hold(struct session *s)
724{
725
726	refcount_acquire(&s->s_count);
727}
728
729void
730sess_release(struct session *s)
731{
732
733	if (refcount_release(&s->s_count)) {
734		if (s->s_ttyp != NULL) {
735			tty_lock(s->s_ttyp);
736			tty_rel_sess(s->s_ttyp, s);
737		}
738		mtx_destroy(&s->s_mtx);
739		free(s, M_SESSION);
740	}
741}
742
743#ifdef DDB
744
745DB_SHOW_COMMAND(pgrpdump, pgrpdump)
746{
747	register struct pgrp *pgrp;
748	register struct proc *p;
749	register int i;
750
751	for (i = 0; i <= pgrphash; i++) {
752		if (!LIST_EMPTY(&pgrphashtbl[i])) {
753			printf("\tindx %d\n", i);
754			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
755				printf(
756			"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
757				    (void *)pgrp, (long)pgrp->pg_id,
758				    (void *)pgrp->pg_session,
759				    pgrp->pg_session->s_count,
760				    (void *)LIST_FIRST(&pgrp->pg_members));
761				LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
762					printf("\t\tpid %ld addr %p pgrp %p\n",
763					    (long)p->p_pid, (void *)p,
764					    (void *)p->p_pgrp);
765				}
766			}
767		}
768	}
769}
770#endif /* DDB */
771
772/*
773 * Calculate the kinfo_proc members which contain process-wide
774 * informations.
775 * Must be called with the target process locked.
776 */
777static void
778fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
779{
780	struct thread *td;
781
782	PROC_LOCK_ASSERT(p, MA_OWNED);
783
784	kp->ki_estcpu = 0;
785	kp->ki_pctcpu = 0;
786	FOREACH_THREAD_IN_PROC(p, td) {
787		thread_lock(td);
788		kp->ki_pctcpu += sched_pctcpu(td);
789		kp->ki_estcpu += td->td_estcpu;
790		thread_unlock(td);
791	}
792}
793
794/*
795 * Clear kinfo_proc and fill in any information that is common
796 * to all threads in the process.
797 * Must be called with the target process locked.
798 */
799static void
800fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
801{
802	struct thread *td0;
803	struct tty *tp;
804	struct session *sp;
805	struct ucred *cred;
806	struct sigacts *ps;
807
808	PROC_LOCK_ASSERT(p, MA_OWNED);
809	bzero(kp, sizeof(*kp));
810
811	kp->ki_structsize = sizeof(*kp);
812	kp->ki_paddr = p;
813	kp->ki_addr =/* p->p_addr; */0; /* XXX */
814	kp->ki_args = p->p_args;
815	kp->ki_textvp = p->p_textvp;
816#ifdef KTRACE
817	kp->ki_tracep = p->p_tracevp;
818	kp->ki_traceflag = p->p_traceflag;
819#endif
820	kp->ki_fd = p->p_fd;
821	kp->ki_vmspace = p->p_vmspace;
822	kp->ki_flag = p->p_flag;
823	kp->ki_flag2 = p->p_flag2;
824	cred = p->p_ucred;
825	if (cred) {
826		kp->ki_uid = cred->cr_uid;
827		kp->ki_ruid = cred->cr_ruid;
828		kp->ki_svuid = cred->cr_svuid;
829		kp->ki_cr_flags = 0;
830		if (cred->cr_flags & CRED_FLAG_CAPMODE)
831			kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
832		/* XXX bde doesn't like KI_NGROUPS */
833		if (cred->cr_ngroups > KI_NGROUPS) {
834			kp->ki_ngroups = KI_NGROUPS;
835			kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
836		} else
837			kp->ki_ngroups = cred->cr_ngroups;
838		bcopy(cred->cr_groups, kp->ki_groups,
839		    kp->ki_ngroups * sizeof(gid_t));
840		kp->ki_rgid = cred->cr_rgid;
841		kp->ki_svgid = cred->cr_svgid;
842		/* If jailed(cred), emulate the old P_JAILED flag. */
843		if (jailed(cred)) {
844			kp->ki_flag |= P_JAILED;
845			/* If inside the jail, use 0 as a jail ID. */
846			if (cred->cr_prison != curthread->td_ucred->cr_prison)
847				kp->ki_jid = cred->cr_prison->pr_id;
848		}
849		strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
850		    sizeof(kp->ki_loginclass));
851	}
852	ps = p->p_sigacts;
853	if (ps) {
854		mtx_lock(&ps->ps_mtx);
855		kp->ki_sigignore = ps->ps_sigignore;
856		kp->ki_sigcatch = ps->ps_sigcatch;
857		mtx_unlock(&ps->ps_mtx);
858	}
859	if (p->p_state != PRS_NEW &&
860	    p->p_state != PRS_ZOMBIE &&
861	    p->p_vmspace != NULL) {
862		struct vmspace *vm = p->p_vmspace;
863
864		kp->ki_size = vm->vm_map.size;
865		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
866		FOREACH_THREAD_IN_PROC(p, td0) {
867			if (!TD_IS_SWAPPED(td0))
868				kp->ki_rssize += td0->td_kstack_pages;
869		}
870		kp->ki_swrss = vm->vm_swrss;
871		kp->ki_tsize = vm->vm_tsize;
872		kp->ki_dsize = vm->vm_dsize;
873		kp->ki_ssize = vm->vm_ssize;
874	} else if (p->p_state == PRS_ZOMBIE)
875		kp->ki_stat = SZOMB;
876	if (kp->ki_flag & P_INMEM)
877		kp->ki_sflag = PS_INMEM;
878	else
879		kp->ki_sflag = 0;
880	/* Calculate legacy swtime as seconds since 'swtick'. */
881	kp->ki_swtime = (ticks - p->p_swtick) / hz;
882	kp->ki_pid = p->p_pid;
883	kp->ki_nice = p->p_nice;
884	kp->ki_fibnum = p->p_fibnum;
885	kp->ki_start = p->p_stats->p_start;
886	timevaladd(&kp->ki_start, &boottime);
887	PROC_STATLOCK(p);
888	rufetch(p, &kp->ki_rusage);
889	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
890	calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
891	PROC_STATUNLOCK(p);
892	calccru(p, &kp->ki_childutime, &kp->ki_childstime);
893	/* Some callers want child times in a single value. */
894	kp->ki_childtime = kp->ki_childstime;
895	timevaladd(&kp->ki_childtime, &kp->ki_childutime);
896
897	FOREACH_THREAD_IN_PROC(p, td0)
898		kp->ki_cow += td0->td_cow;
899
900	tp = NULL;
901	if (p->p_pgrp) {
902		kp->ki_pgid = p->p_pgrp->pg_id;
903		kp->ki_jobc = p->p_pgrp->pg_jobc;
904		sp = p->p_pgrp->pg_session;
905
906		if (sp != NULL) {
907			kp->ki_sid = sp->s_sid;
908			SESS_LOCK(sp);
909			strlcpy(kp->ki_login, sp->s_login,
910			    sizeof(kp->ki_login));
911			if (sp->s_ttyvp)
912				kp->ki_kiflag |= KI_CTTY;
913			if (SESS_LEADER(p))
914				kp->ki_kiflag |= KI_SLEADER;
915			/* XXX proctree_lock */
916			tp = sp->s_ttyp;
917			SESS_UNLOCK(sp);
918		}
919	}
920	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
921		kp->ki_tdev = tty_udev(tp);
922		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
923		if (tp->t_session)
924			kp->ki_tsid = tp->t_session->s_sid;
925	} else
926		kp->ki_tdev = NODEV;
927	if (p->p_comm[0] != '\0')
928		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
929	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
930	    p->p_sysent->sv_name[0] != '\0')
931		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
932	kp->ki_siglist = p->p_siglist;
933	kp->ki_xstat = p->p_xstat;
934	kp->ki_acflag = p->p_acflag;
935	kp->ki_lock = p->p_lock;
936	if (p->p_pptr)
937		kp->ki_ppid = p->p_pptr->p_pid;
938}
939
940/*
941 * Fill in information that is thread specific.  Must be called with
942 * target process locked.  If 'preferthread' is set, overwrite certain
943 * process-related fields that are maintained for both threads and
944 * processes.
945 */
946static void
947fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
948{
949	struct proc *p;
950
951	p = td->td_proc;
952	kp->ki_tdaddr = td;
953	PROC_LOCK_ASSERT(p, MA_OWNED);
954
955	if (preferthread)
956		PROC_STATLOCK(p);
957	thread_lock(td);
958	if (td->td_wmesg != NULL)
959		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
960	else
961		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
962	if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >=
963	    sizeof(kp->ki_tdname)) {
964		strlcpy(kp->ki_moretdname,
965		    td->td_name + sizeof(kp->ki_tdname) - 1,
966		    sizeof(kp->ki_moretdname));
967	} else {
968		bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname));
969	}
970	if (TD_ON_LOCK(td)) {
971		kp->ki_kiflag |= KI_LOCKBLOCK;
972		strlcpy(kp->ki_lockname, td->td_lockname,
973		    sizeof(kp->ki_lockname));
974	} else {
975		kp->ki_kiflag &= ~KI_LOCKBLOCK;
976		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
977	}
978
979	if (p->p_state == PRS_NORMAL) { /* approximate. */
980		if (TD_ON_RUNQ(td) ||
981		    TD_CAN_RUN(td) ||
982		    TD_IS_RUNNING(td)) {
983			kp->ki_stat = SRUN;
984		} else if (P_SHOULDSTOP(p)) {
985			kp->ki_stat = SSTOP;
986		} else if (TD_IS_SLEEPING(td)) {
987			kp->ki_stat = SSLEEP;
988		} else if (TD_ON_LOCK(td)) {
989			kp->ki_stat = SLOCK;
990		} else {
991			kp->ki_stat = SWAIT;
992		}
993	} else if (p->p_state == PRS_ZOMBIE) {
994		kp->ki_stat = SZOMB;
995	} else {
996		kp->ki_stat = SIDL;
997	}
998
999	/* Things in the thread */
1000	kp->ki_wchan = td->td_wchan;
1001	kp->ki_pri.pri_level = td->td_priority;
1002	kp->ki_pri.pri_native = td->td_base_pri;
1003	kp->ki_lastcpu = td->td_lastcpu;
1004	kp->ki_oncpu = td->td_oncpu;
1005	kp->ki_tdflags = td->td_flags;
1006	kp->ki_tid = td->td_tid;
1007	kp->ki_numthreads = p->p_numthreads;
1008	kp->ki_pcb = td->td_pcb;
1009	kp->ki_kstack = (void *)td->td_kstack;
1010	kp->ki_slptime = (ticks - td->td_slptick) / hz;
1011	kp->ki_pri.pri_class = td->td_pri_class;
1012	kp->ki_pri.pri_user = td->td_user_pri;
1013
1014	if (preferthread) {
1015		rufetchtd(td, &kp->ki_rusage);
1016		kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
1017		kp->ki_pctcpu = sched_pctcpu(td);
1018		kp->ki_estcpu = td->td_estcpu;
1019		kp->ki_cow = td->td_cow;
1020	}
1021
1022	/* We can't get this anymore but ps etc never used it anyway. */
1023	kp->ki_rqindex = 0;
1024
1025	if (preferthread)
1026		kp->ki_siglist = td->td_siglist;
1027	kp->ki_sigmask = td->td_sigmask;
1028	thread_unlock(td);
1029	if (preferthread)
1030		PROC_STATUNLOCK(p);
1031}
1032
1033/*
1034 * Fill in a kinfo_proc structure for the specified process.
1035 * Must be called with the target process locked.
1036 */
1037void
1038fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
1039{
1040
1041	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1042
1043	fill_kinfo_proc_only(p, kp);
1044	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
1045	fill_kinfo_aggregate(p, kp);
1046}
1047
1048struct pstats *
1049pstats_alloc(void)
1050{
1051
1052	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
1053}
1054
1055/*
1056 * Copy parts of p_stats; zero the rest of p_stats (statistics).
1057 */
1058void
1059pstats_fork(struct pstats *src, struct pstats *dst)
1060{
1061
1062	bzero(&dst->pstat_startzero,
1063	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
1064	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
1065	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
1066}
1067
1068void
1069pstats_free(struct pstats *ps)
1070{
1071
1072	free(ps, M_SUBPROC);
1073}
1074
1075static struct proc *
1076zpfind_locked(pid_t pid)
1077{
1078	struct proc *p;
1079
1080	sx_assert(&allproc_lock, SX_LOCKED);
1081	LIST_FOREACH(p, &zombproc, p_list) {
1082		if (p->p_pid == pid) {
1083			PROC_LOCK(p);
1084			break;
1085		}
1086	}
1087	return (p);
1088}
1089
1090/*
1091 * Locate a zombie process by number
1092 */
1093struct proc *
1094zpfind(pid_t pid)
1095{
1096	struct proc *p;
1097
1098	sx_slock(&allproc_lock);
1099	p = zpfind_locked(pid);
1100	sx_sunlock(&allproc_lock);
1101	return (p);
1102}
1103
1104#ifdef COMPAT_FREEBSD32
1105
1106/*
1107 * This function is typically used to copy out the kernel address, so
1108 * it can be replaced by assignment of zero.
1109 */
1110static inline uint32_t
1111ptr32_trim(void *ptr)
1112{
1113	uintptr_t uptr;
1114
1115	uptr = (uintptr_t)ptr;
1116	return ((uptr > UINT_MAX) ? 0 : uptr);
1117}
1118
1119#define PTRTRIM_CP(src,dst,fld) \
1120	do { (dst).fld = ptr32_trim((src).fld); } while (0)
1121
1122static void
1123freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
1124{
1125	int i;
1126
1127	bzero(ki32, sizeof(struct kinfo_proc32));
1128	ki32->ki_structsize = sizeof(struct kinfo_proc32);
1129	CP(*ki, *ki32, ki_layout);
1130	PTRTRIM_CP(*ki, *ki32, ki_args);
1131	PTRTRIM_CP(*ki, *ki32, ki_paddr);
1132	PTRTRIM_CP(*ki, *ki32, ki_addr);
1133	PTRTRIM_CP(*ki, *ki32, ki_tracep);
1134	PTRTRIM_CP(*ki, *ki32, ki_textvp);
1135	PTRTRIM_CP(*ki, *ki32, ki_fd);
1136	PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1137	PTRTRIM_CP(*ki, *ki32, ki_wchan);
1138	CP(*ki, *ki32, ki_pid);
1139	CP(*ki, *ki32, ki_ppid);
1140	CP(*ki, *ki32, ki_pgid);
1141	CP(*ki, *ki32, ki_tpgid);
1142	CP(*ki, *ki32, ki_sid);
1143	CP(*ki, *ki32, ki_tsid);
1144	CP(*ki, *ki32, ki_jobc);
1145	CP(*ki, *ki32, ki_tdev);
1146	CP(*ki, *ki32, ki_siglist);
1147	CP(*ki, *ki32, ki_sigmask);
1148	CP(*ki, *ki32, ki_sigignore);
1149	CP(*ki, *ki32, ki_sigcatch);
1150	CP(*ki, *ki32, ki_uid);
1151	CP(*ki, *ki32, ki_ruid);
1152	CP(*ki, *ki32, ki_svuid);
1153	CP(*ki, *ki32, ki_rgid);
1154	CP(*ki, *ki32, ki_svgid);
1155	CP(*ki, *ki32, ki_ngroups);
1156	for (i = 0; i < KI_NGROUPS; i++)
1157		CP(*ki, *ki32, ki_groups[i]);
1158	CP(*ki, *ki32, ki_size);
1159	CP(*ki, *ki32, ki_rssize);
1160	CP(*ki, *ki32, ki_swrss);
1161	CP(*ki, *ki32, ki_tsize);
1162	CP(*ki, *ki32, ki_dsize);
1163	CP(*ki, *ki32, ki_ssize);
1164	CP(*ki, *ki32, ki_xstat);
1165	CP(*ki, *ki32, ki_acflag);
1166	CP(*ki, *ki32, ki_pctcpu);
1167	CP(*ki, *ki32, ki_estcpu);
1168	CP(*ki, *ki32, ki_slptime);
1169	CP(*ki, *ki32, ki_swtime);
1170	CP(*ki, *ki32, ki_cow);
1171	CP(*ki, *ki32, ki_runtime);
1172	TV_CP(*ki, *ki32, ki_start);
1173	TV_CP(*ki, *ki32, ki_childtime);
1174	CP(*ki, *ki32, ki_flag);
1175	CP(*ki, *ki32, ki_kiflag);
1176	CP(*ki, *ki32, ki_traceflag);
1177	CP(*ki, *ki32, ki_stat);
1178	CP(*ki, *ki32, ki_nice);
1179	CP(*ki, *ki32, ki_lock);
1180	CP(*ki, *ki32, ki_rqindex);
1181	CP(*ki, *ki32, ki_oncpu);
1182	CP(*ki, *ki32, ki_lastcpu);
1183	bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
1184	bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1185	bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1186	bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1187	bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1188	bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1189	bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
1190	bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1);
1191	CP(*ki, *ki32, ki_flag2);
1192	CP(*ki, *ki32, ki_fibnum);
1193	CP(*ki, *ki32, ki_cr_flags);
1194	CP(*ki, *ki32, ki_jid);
1195	CP(*ki, *ki32, ki_numthreads);
1196	CP(*ki, *ki32, ki_tid);
1197	CP(*ki, *ki32, ki_pri);
1198	freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1199	freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1200	PTRTRIM_CP(*ki, *ki32, ki_pcb);
1201	PTRTRIM_CP(*ki, *ki32, ki_kstack);
1202	PTRTRIM_CP(*ki, *ki32, ki_udata);
1203	CP(*ki, *ki32, ki_sflag);
1204	CP(*ki, *ki32, ki_tdflags);
1205}
1206#endif
1207
1208int
1209kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
1210{
1211	struct thread *td;
1212	struct kinfo_proc ki;
1213#ifdef COMPAT_FREEBSD32
1214	struct kinfo_proc32 ki32;
1215#endif
1216	int error;
1217
1218	PROC_LOCK_ASSERT(p, MA_OWNED);
1219	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1220
1221	error = 0;
1222	fill_kinfo_proc(p, &ki);
1223	if ((flags & KERN_PROC_NOTHREADS) != 0) {
1224#ifdef COMPAT_FREEBSD32
1225		if ((flags & KERN_PROC_MASK32) != 0) {
1226			freebsd32_kinfo_proc_out(&ki, &ki32);
1227			if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1228				error = ENOMEM;
1229		} else
1230#endif
1231			if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1232				error = ENOMEM;
1233	} else {
1234		FOREACH_THREAD_IN_PROC(p, td) {
1235			fill_kinfo_thread(td, &ki, 1);
1236#ifdef COMPAT_FREEBSD32
1237			if ((flags & KERN_PROC_MASK32) != 0) {
1238				freebsd32_kinfo_proc_out(&ki, &ki32);
1239				if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1240					error = ENOMEM;
1241			} else
1242#endif
1243				if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1244					error = ENOMEM;
1245			if (error != 0)
1246				break;
1247		}
1248	}
1249	PROC_UNLOCK(p);
1250	return (error);
1251}
1252
1253static int
1254sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags,
1255    int doingzomb)
1256{
1257	struct sbuf sb;
1258	struct kinfo_proc ki;
1259	struct proc *np;
1260	int error, error2;
1261	pid_t pid;
1262
1263	pid = p->p_pid;
1264	sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
1265	error = kern_proc_out(p, &sb, flags);
1266	error2 = sbuf_finish(&sb);
1267	sbuf_delete(&sb);
1268	if (error != 0)
1269		return (error);
1270	else if (error2 != 0)
1271		return (error2);
1272	if (doingzomb)
1273		np = zpfind(pid);
1274	else {
1275		if (pid == 0)
1276			return (0);
1277		np = pfind(pid);
1278	}
1279	if (np == NULL)
1280		return (ESRCH);
1281	if (np != p) {
1282		PROC_UNLOCK(np);
1283		return (ESRCH);
1284	}
1285	PROC_UNLOCK(np);
1286	return (0);
1287}
1288
1289static int
1290sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1291{
1292	int *name = (int *)arg1;
1293	u_int namelen = arg2;
1294	struct proc *p;
1295	int flags, doingzomb, oid_number;
1296	int error = 0;
1297
1298	oid_number = oidp->oid_number;
1299	if (oid_number != KERN_PROC_ALL &&
1300	    (oid_number & KERN_PROC_INC_THREAD) == 0)
1301		flags = KERN_PROC_NOTHREADS;
1302	else {
1303		flags = 0;
1304		oid_number &= ~KERN_PROC_INC_THREAD;
1305	}
1306#ifdef COMPAT_FREEBSD32
1307	if (req->flags & SCTL_MASK32)
1308		flags |= KERN_PROC_MASK32;
1309#endif
1310	if (oid_number == KERN_PROC_PID) {
1311		if (namelen != 1)
1312			return (EINVAL);
1313		error = sysctl_wire_old_buffer(req, 0);
1314		if (error)
1315			return (error);
1316		error = pget((pid_t)name[0], PGET_CANSEE, &p);
1317		if (error != 0)
1318			return (error);
1319		error = sysctl_out_proc(p, req, flags, 0);
1320		return (error);
1321	}
1322
1323	switch (oid_number) {
1324	case KERN_PROC_ALL:
1325		if (namelen != 0)
1326			return (EINVAL);
1327		break;
1328	case KERN_PROC_PROC:
1329		if (namelen != 0 && namelen != 1)
1330			return (EINVAL);
1331		break;
1332	default:
1333		if (namelen != 1)
1334			return (EINVAL);
1335		break;
1336	}
1337
1338	if (!req->oldptr) {
1339		/* overestimate by 5 procs */
1340		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1341		if (error)
1342			return (error);
1343	}
1344	error = sysctl_wire_old_buffer(req, 0);
1345	if (error != 0)
1346		return (error);
1347	sx_slock(&allproc_lock);
1348	for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
1349		if (!doingzomb)
1350			p = LIST_FIRST(&allproc);
1351		else
1352			p = LIST_FIRST(&zombproc);
1353		for (; p != 0; p = LIST_NEXT(p, p_list)) {
1354			/*
1355			 * Skip embryonic processes.
1356			 */
1357			PROC_LOCK(p);
1358			if (p->p_state == PRS_NEW) {
1359				PROC_UNLOCK(p);
1360				continue;
1361			}
1362			KASSERT(p->p_ucred != NULL,
1363			    ("process credential is NULL for non-NEW proc"));
1364			/*
1365			 * Show a user only appropriate processes.
1366			 */
1367			if (p_cansee(curthread, p)) {
1368				PROC_UNLOCK(p);
1369				continue;
1370			}
1371			/*
1372			 * TODO - make more efficient (see notes below).
1373			 * do by session.
1374			 */
1375			switch (oid_number) {
1376
1377			case KERN_PROC_GID:
1378				if (p->p_ucred->cr_gid != (gid_t)name[0]) {
1379					PROC_UNLOCK(p);
1380					continue;
1381				}
1382				break;
1383
1384			case KERN_PROC_PGRP:
1385				/* could do this by traversing pgrp */
1386				if (p->p_pgrp == NULL ||
1387				    p->p_pgrp->pg_id != (pid_t)name[0]) {
1388					PROC_UNLOCK(p);
1389					continue;
1390				}
1391				break;
1392
1393			case KERN_PROC_RGID:
1394				if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
1395					PROC_UNLOCK(p);
1396					continue;
1397				}
1398				break;
1399
1400			case KERN_PROC_SESSION:
1401				if (p->p_session == NULL ||
1402				    p->p_session->s_sid != (pid_t)name[0]) {
1403					PROC_UNLOCK(p);
1404					continue;
1405				}
1406				break;
1407
1408			case KERN_PROC_TTY:
1409				if ((p->p_flag & P_CONTROLT) == 0 ||
1410				    p->p_session == NULL) {
1411					PROC_UNLOCK(p);
1412					continue;
1413				}
1414				/* XXX proctree_lock */
1415				SESS_LOCK(p->p_session);
1416				if (p->p_session->s_ttyp == NULL ||
1417				    tty_udev(p->p_session->s_ttyp) !=
1418				    (dev_t)name[0]) {
1419					SESS_UNLOCK(p->p_session);
1420					PROC_UNLOCK(p);
1421					continue;
1422				}
1423				SESS_UNLOCK(p->p_session);
1424				break;
1425
1426			case KERN_PROC_UID:
1427				if (p->p_ucred->cr_uid != (uid_t)name[0]) {
1428					PROC_UNLOCK(p);
1429					continue;
1430				}
1431				break;
1432
1433			case KERN_PROC_RUID:
1434				if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
1435					PROC_UNLOCK(p);
1436					continue;
1437				}
1438				break;
1439
1440			case KERN_PROC_PROC:
1441				break;
1442
1443			default:
1444				break;
1445
1446			}
1447
1448			error = sysctl_out_proc(p, req, flags, doingzomb);
1449			if (error) {
1450				sx_sunlock(&allproc_lock);
1451				return (error);
1452			}
1453		}
1454	}
1455	sx_sunlock(&allproc_lock);
1456	return (0);
1457}
1458
1459struct pargs *
1460pargs_alloc(int len)
1461{
1462	struct pargs *pa;
1463
1464	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1465		M_WAITOK);
1466	refcount_init(&pa->ar_ref, 1);
1467	pa->ar_length = len;
1468	return (pa);
1469}
1470
1471static void
1472pargs_free(struct pargs *pa)
1473{
1474
1475	free(pa, M_PARGS);
1476}
1477
1478void
1479pargs_hold(struct pargs *pa)
1480{
1481
1482	if (pa == NULL)
1483		return;
1484	refcount_acquire(&pa->ar_ref);
1485}
1486
1487void
1488pargs_drop(struct pargs *pa)
1489{
1490
1491	if (pa == NULL)
1492		return;
1493	if (refcount_release(&pa->ar_ref))
1494		pargs_free(pa);
1495}
1496
1497static int
1498proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf,
1499    size_t len)
1500{
1501	struct iovec iov;
1502	struct uio uio;
1503
1504	iov.iov_base = (caddr_t)buf;
1505	iov.iov_len = len;
1506	uio.uio_iov = &iov;
1507	uio.uio_iovcnt = 1;
1508	uio.uio_offset = offset;
1509	uio.uio_resid = (ssize_t)len;
1510	uio.uio_segflg = UIO_SYSSPACE;
1511	uio.uio_rw = UIO_READ;
1512	uio.uio_td = td;
1513
1514	return (proc_rwmem(p, &uio));
1515}
1516
1517static int
1518proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
1519    size_t len)
1520{
1521	size_t i;
1522	int error;
1523
1524	error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len);
1525	/*
1526	 * Reading the chunk may validly return EFAULT if the string is shorter
1527	 * than the chunk and is aligned at the end of the page, assuming the
1528	 * next page is not mapped.  So if EFAULT is returned do a fallback to
1529	 * one byte read loop.
1530	 */
1531	if (error == EFAULT) {
1532		for (i = 0; i < len; i++, buf++, sptr++) {
1533			error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1);
1534			if (error != 0)
1535				return (error);
1536			if (*buf == '\0')
1537				break;
1538		}
1539		error = 0;
1540	}
1541	return (error);
1542}
1543
1544#define PROC_AUXV_MAX	256	/* Safety limit on auxv size. */
1545
1546enum proc_vector_type {
1547	PROC_ARG,
1548	PROC_ENV,
1549	PROC_AUX,
1550};
1551
1552#ifdef COMPAT_FREEBSD32
1553static int
1554get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
1555    size_t *vsizep, enum proc_vector_type type)
1556{
1557	struct freebsd32_ps_strings pss;
1558	Elf32_Auxinfo aux;
1559	vm_offset_t vptr, ptr;
1560	uint32_t *proc_vector32;
1561	char **proc_vector;
1562	size_t vsize, size;
1563	int i, error;
1564
1565	error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
1566	    &pss, sizeof(pss));
1567	if (error != 0)
1568		return (error);
1569	switch (type) {
1570	case PROC_ARG:
1571		vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
1572		vsize = pss.ps_nargvstr;
1573		if (vsize > ARG_MAX)
1574			return (ENOEXEC);
1575		size = vsize * sizeof(int32_t);
1576		break;
1577	case PROC_ENV:
1578		vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
1579		vsize = pss.ps_nenvstr;
1580		if (vsize > ARG_MAX)
1581			return (ENOEXEC);
1582		size = vsize * sizeof(int32_t);
1583		break;
1584	case PROC_AUX:
1585		vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
1586		    (pss.ps_nenvstr + 1) * sizeof(int32_t);
1587		if (vptr % 4 != 0)
1588			return (ENOEXEC);
1589		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1590			error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
1591			if (error != 0)
1592				return (error);
1593			if (aux.a_type == AT_NULL)
1594				break;
1595			ptr += sizeof(aux);
1596		}
1597		if (aux.a_type != AT_NULL)
1598			return (ENOEXEC);
1599		vsize = i + 1;
1600		size = vsize * sizeof(aux);
1601		break;
1602	default:
1603		KASSERT(0, ("Wrong proc vector type: %d", type));
1604		return (EINVAL);
1605	}
1606	proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
1607	error = proc_read_mem(td, p, vptr, proc_vector32, size);
1608	if (error != 0)
1609		goto done;
1610	if (type == PROC_AUX) {
1611		*proc_vectorp = (char **)proc_vector32;
1612		*vsizep = vsize;
1613		return (0);
1614	}
1615	proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
1616	for (i = 0; i < (int)vsize; i++)
1617		proc_vector[i] = PTRIN(proc_vector32[i]);
1618	*proc_vectorp = proc_vector;
1619	*vsizep = vsize;
1620done:
1621	free(proc_vector32, M_TEMP);
1622	return (error);
1623}
1624#endif
1625
1626static int
1627get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
1628    size_t *vsizep, enum proc_vector_type type)
1629{
1630	struct ps_strings pss;
1631	Elf_Auxinfo aux;
1632	vm_offset_t vptr, ptr;
1633	char **proc_vector;
1634	size_t vsize, size;
1635	int error, i;
1636
1637#ifdef COMPAT_FREEBSD32
1638	if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1639		return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
1640#endif
1641	error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
1642	    &pss, sizeof(pss));
1643	if (error != 0)
1644		return (error);
1645	switch (type) {
1646	case PROC_ARG:
1647		vptr = (vm_offset_t)pss.ps_argvstr;
1648		vsize = pss.ps_nargvstr;
1649		if (vsize > ARG_MAX)
1650			return (ENOEXEC);
1651		size = vsize * sizeof(char *);
1652		break;
1653	case PROC_ENV:
1654		vptr = (vm_offset_t)pss.ps_envstr;
1655		vsize = pss.ps_nenvstr;
1656		if (vsize > ARG_MAX)
1657			return (ENOEXEC);
1658		size = vsize * sizeof(char *);
1659		break;
1660	case PROC_AUX:
1661		/*
1662		 * The aux array is just above env array on the stack. Check
1663		 * that the address is naturally aligned.
1664		 */
1665		vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
1666		    * sizeof(char *);
1667#if __ELF_WORD_SIZE == 64
1668		if (vptr % sizeof(uint64_t) != 0)
1669#else
1670		if (vptr % sizeof(uint32_t) != 0)
1671#endif
1672			return (ENOEXEC);
1673		/*
1674		 * We count the array size reading the aux vectors from the
1675		 * stack until AT_NULL vector is returned.  So (to keep the code
1676		 * simple) we read the process stack twice: the first time here
1677		 * to find the size and the second time when copying the vectors
1678		 * to the allocated proc_vector.
1679		 */
1680		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1681			error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
1682			if (error != 0)
1683				return (error);
1684			if (aux.a_type == AT_NULL)
1685				break;
1686			ptr += sizeof(aux);
1687		}
1688		/*
1689		 * If the PROC_AUXV_MAX entries are iterated over, and we have
1690		 * not reached AT_NULL, it is most likely we are reading wrong
1691		 * data: either the process doesn't have auxv array or data has
1692		 * been modified. Return the error in this case.
1693		 */
1694		if (aux.a_type != AT_NULL)
1695			return (ENOEXEC);
1696		vsize = i + 1;
1697		size = vsize * sizeof(aux);
1698		break;
1699	default:
1700		KASSERT(0, ("Wrong proc vector type: %d", type));
1701		return (EINVAL); /* In case we are built without INVARIANTS. */
1702	}
1703	proc_vector = malloc(size, M_TEMP, M_WAITOK);
1704	if (proc_vector == NULL)
1705		return (ENOMEM);
1706	error = proc_read_mem(td, p, vptr, proc_vector, size);
1707	if (error != 0) {
1708		free(proc_vector, M_TEMP);
1709		return (error);
1710	}
1711	*proc_vectorp = proc_vector;
1712	*vsizep = vsize;
1713
1714	return (0);
1715}
1716
1717#define GET_PS_STRINGS_CHUNK_SZ	256	/* Chunk size (bytes) for ps_strings operations. */
1718
1719static int
1720get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
1721    enum proc_vector_type type)
1722{
1723	size_t done, len, nchr, vsize;
1724	int error, i;
1725	char **proc_vector, *sptr;
1726	char pss_string[GET_PS_STRINGS_CHUNK_SZ];
1727
1728	PROC_ASSERT_HELD(p);
1729
1730	/*
1731	 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
1732	 */
1733	nchr = 2 * (PATH_MAX + ARG_MAX);
1734
1735	error = get_proc_vector(td, p, &proc_vector, &vsize, type);
1736	if (error != 0)
1737		return (error);
1738	for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
1739		/*
1740		 * The program may have scribbled into its argv array, e.g. to
1741		 * remove some arguments.  If that has happened, break out
1742		 * before trying to read from NULL.
1743		 */
1744		if (proc_vector[i] == NULL)
1745			break;
1746		for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
1747			error = proc_read_string(td, p, sptr, pss_string,
1748			    sizeof(pss_string));
1749			if (error != 0)
1750				goto done;
1751			len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
1752			if (done + len >= nchr)
1753				len = nchr - done - 1;
1754			sbuf_bcat(sb, pss_string, len);
1755			if (len != GET_PS_STRINGS_CHUNK_SZ)
1756				break;
1757			done += GET_PS_STRINGS_CHUNK_SZ;
1758		}
1759		sbuf_bcat(sb, "", 1);
1760		done += len + 1;
1761	}
1762done:
1763	free(proc_vector, M_TEMP);
1764	return (error);
1765}
1766
1767int
1768proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
1769{
1770
1771	return (get_ps_strings(curthread, p, sb, PROC_ARG));
1772}
1773
1774int
1775proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
1776{
1777
1778	return (get_ps_strings(curthread, p, sb, PROC_ENV));
1779}
1780
1781int
1782proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
1783{
1784	size_t vsize, size;
1785	char **auxv;
1786	int error;
1787
1788	error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
1789	if (error == 0) {
1790#ifdef COMPAT_FREEBSD32
1791		if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1792			size = vsize * sizeof(Elf32_Auxinfo);
1793		else
1794#endif
1795			size = vsize * sizeof(Elf_Auxinfo);
1796		if (sbuf_bcat(sb, auxv, size) != 0)
1797			error = ENOMEM;
1798		free(auxv, M_TEMP);
1799	}
1800	return (error);
1801}
1802
1803/*
1804 * This sysctl allows a process to retrieve the argument list or process
1805 * title for another process without groping around in the address space
1806 * of the other process.  It also allow a process to set its own "process
1807 * title to a string of its own choice.
1808 */
1809static int
1810sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1811{
1812	int *name = (int *)arg1;
1813	u_int namelen = arg2;
1814	struct pargs *newpa, *pa;
1815	struct proc *p;
1816	struct sbuf sb;
1817	int flags, error = 0, error2;
1818
1819	if (namelen != 1)
1820		return (EINVAL);
1821
1822	flags = PGET_CANSEE;
1823	if (req->newptr != NULL)
1824		flags |= PGET_ISCURRENT;
1825	error = pget((pid_t)name[0], flags, &p);
1826	if (error)
1827		return (error);
1828
1829	pa = p->p_args;
1830	if (pa != NULL) {
1831		pargs_hold(pa);
1832		PROC_UNLOCK(p);
1833		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1834		pargs_drop(pa);
1835	} else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
1836		_PHOLD(p);
1837		PROC_UNLOCK(p);
1838		sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1839		error = proc_getargv(curthread, p, &sb);
1840		error2 = sbuf_finish(&sb);
1841		PRELE(p);
1842		sbuf_delete(&sb);
1843		if (error == 0 && error2 != 0)
1844			error = error2;
1845	} else {
1846		PROC_UNLOCK(p);
1847	}
1848	if (error != 0 || req->newptr == NULL)
1849		return (error);
1850
1851	if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
1852		return (ENOMEM);
1853	newpa = pargs_alloc(req->newlen);
1854	error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
1855	if (error != 0) {
1856		pargs_free(newpa);
1857		return (error);
1858	}
1859	PROC_LOCK(p);
1860	pa = p->p_args;
1861	p->p_args = newpa;
1862	PROC_UNLOCK(p);
1863	pargs_drop(pa);
1864	return (0);
1865}
1866
1867/*
1868 * This sysctl allows a process to retrieve environment of another process.
1869 */
1870static int
1871sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
1872{
1873	int *name = (int *)arg1;
1874	u_int namelen = arg2;
1875	struct proc *p;
1876	struct sbuf sb;
1877	int error, error2;
1878
1879	if (namelen != 1)
1880		return (EINVAL);
1881
1882	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1883	if (error != 0)
1884		return (error);
1885	if ((p->p_flag & P_SYSTEM) != 0) {
1886		PRELE(p);
1887		return (0);
1888	}
1889
1890	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1891	error = proc_getenvv(curthread, p, &sb);
1892	error2 = sbuf_finish(&sb);
1893	PRELE(p);
1894	sbuf_delete(&sb);
1895	return (error != 0 ? error : error2);
1896}
1897
1898/*
1899 * This sysctl allows a process to retrieve ELF auxiliary vector of
1900 * another process.
1901 */
1902static int
1903sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
1904{
1905	int *name = (int *)arg1;
1906	u_int namelen = arg2;
1907	struct proc *p;
1908	struct sbuf sb;
1909	int error, error2;
1910
1911	if (namelen != 1)
1912		return (EINVAL);
1913
1914	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1915	if (error != 0)
1916		return (error);
1917	if ((p->p_flag & P_SYSTEM) != 0) {
1918		PRELE(p);
1919		return (0);
1920	}
1921	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1922	error = proc_getauxv(curthread, p, &sb);
1923	error2 = sbuf_finish(&sb);
1924	PRELE(p);
1925	sbuf_delete(&sb);
1926	return (error != 0 ? error : error2);
1927}
1928
1929/*
1930 * This sysctl allows a process to retrieve the path of the executable for
1931 * itself or another process.
1932 */
1933static int
1934sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
1935{
1936	pid_t *pidp = (pid_t *)arg1;
1937	unsigned int arglen = arg2;
1938	struct proc *p;
1939	struct vnode *vp;
1940	char *retbuf, *freebuf;
1941	int error;
1942
1943	if (arglen != 1)
1944		return (EINVAL);
1945	if (*pidp == -1) {	/* -1 means this process */
1946		p = req->td->td_proc;
1947	} else {
1948		error = pget(*pidp, PGET_CANSEE, &p);
1949		if (error != 0)
1950			return (error);
1951	}
1952
1953	vp = p->p_textvp;
1954	if (vp == NULL) {
1955		if (*pidp != -1)
1956			PROC_UNLOCK(p);
1957		return (0);
1958	}
1959	vref(vp);
1960	if (*pidp != -1)
1961		PROC_UNLOCK(p);
1962	error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
1963	vrele(vp);
1964	if (error)
1965		return (error);
1966	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
1967	free(freebuf, M_TEMP);
1968	return (error);
1969}
1970
1971static int
1972sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
1973{
1974	struct proc *p;
1975	char *sv_name;
1976	int *name;
1977	int namelen;
1978	int error;
1979
1980	namelen = arg2;
1981	if (namelen != 1)
1982		return (EINVAL);
1983
1984	name = (int *)arg1;
1985	error = pget((pid_t)name[0], PGET_CANSEE, &p);
1986	if (error != 0)
1987		return (error);
1988	sv_name = p->p_sysent->sv_name;
1989	PROC_UNLOCK(p);
1990	return (sysctl_handle_string(oidp, sv_name, 0, req));
1991}
1992
1993#ifdef KINFO_OVMENTRY_SIZE
1994CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
1995#endif
1996
1997#ifdef COMPAT_FREEBSD7
1998static int
1999sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
2000{
2001	vm_map_entry_t entry, tmp_entry;
2002	unsigned int last_timestamp;
2003	char *fullpath, *freepath;
2004	struct kinfo_ovmentry *kve;
2005	struct vattr va;
2006	struct ucred *cred;
2007	int error, *name;
2008	struct vnode *vp;
2009	struct proc *p;
2010	vm_map_t map;
2011	struct vmspace *vm;
2012
2013	name = (int *)arg1;
2014	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2015	if (error != 0)
2016		return (error);
2017	vm = vmspace_acquire_ref(p);
2018	if (vm == NULL) {
2019		PRELE(p);
2020		return (ESRCH);
2021	}
2022	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
2023
2024	map = &vm->vm_map;
2025	vm_map_lock_read(map);
2026	for (entry = map->header.next; entry != &map->header;
2027	    entry = entry->next) {
2028		vm_object_t obj, tobj, lobj;
2029		vm_offset_t addr;
2030
2031		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2032			continue;
2033
2034		bzero(kve, sizeof(*kve));
2035		kve->kve_structsize = sizeof(*kve);
2036
2037		kve->kve_private_resident = 0;
2038		obj = entry->object.vm_object;
2039		if (obj != NULL) {
2040			VM_OBJECT_RLOCK(obj);
2041			if (obj->shadow_count == 1)
2042				kve->kve_private_resident =
2043				    obj->resident_page_count;
2044		}
2045		kve->kve_resident = 0;
2046		addr = entry->start;
2047		while (addr < entry->end) {
2048			if (pmap_extract(map->pmap, addr))
2049				kve->kve_resident++;
2050			addr += PAGE_SIZE;
2051		}
2052
2053		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
2054			if (tobj != obj)
2055				VM_OBJECT_RLOCK(tobj);
2056			if (lobj != obj)
2057				VM_OBJECT_RUNLOCK(lobj);
2058			lobj = tobj;
2059		}
2060
2061		kve->kve_start = (void*)entry->start;
2062		kve->kve_end = (void*)entry->end;
2063		kve->kve_offset = (off_t)entry->offset;
2064
2065		if (entry->protection & VM_PROT_READ)
2066			kve->kve_protection |= KVME_PROT_READ;
2067		if (entry->protection & VM_PROT_WRITE)
2068			kve->kve_protection |= KVME_PROT_WRITE;
2069		if (entry->protection & VM_PROT_EXECUTE)
2070			kve->kve_protection |= KVME_PROT_EXEC;
2071
2072		if (entry->eflags & MAP_ENTRY_COW)
2073			kve->kve_flags |= KVME_FLAG_COW;
2074		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2075			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2076		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2077			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2078
2079		last_timestamp = map->timestamp;
2080		vm_map_unlock_read(map);
2081
2082		kve->kve_fileid = 0;
2083		kve->kve_fsid = 0;
2084		freepath = NULL;
2085		fullpath = "";
2086		if (lobj) {
2087			vp = NULL;
2088			switch (lobj->type) {
2089			case OBJT_DEFAULT:
2090				kve->kve_type = KVME_TYPE_DEFAULT;
2091				break;
2092			case OBJT_VNODE:
2093				kve->kve_type = KVME_TYPE_VNODE;
2094				vp = lobj->handle;
2095				vref(vp);
2096				break;
2097			case OBJT_SWAP:
2098				if ((lobj->flags & OBJ_TMPFS_NODE) != 0) {
2099					kve->kve_type = KVME_TYPE_VNODE;
2100					if ((lobj->flags & OBJ_TMPFS) != 0) {
2101						vp = lobj->un_pager.swp.swp_tmpfs;
2102						vref(vp);
2103					}
2104				} else {
2105					kve->kve_type = KVME_TYPE_SWAP;
2106				}
2107				break;
2108			case OBJT_DEVICE:
2109				kve->kve_type = KVME_TYPE_DEVICE;
2110				break;
2111			case OBJT_PHYS:
2112				kve->kve_type = KVME_TYPE_PHYS;
2113				break;
2114			case OBJT_DEAD:
2115				kve->kve_type = KVME_TYPE_DEAD;
2116				break;
2117			case OBJT_SG:
2118				kve->kve_type = KVME_TYPE_SG;
2119				break;
2120			default:
2121				kve->kve_type = KVME_TYPE_UNKNOWN;
2122				break;
2123			}
2124			if (lobj != obj)
2125				VM_OBJECT_RUNLOCK(lobj);
2126
2127			kve->kve_ref_count = obj->ref_count;
2128			kve->kve_shadow_count = obj->shadow_count;
2129			VM_OBJECT_RUNLOCK(obj);
2130			if (vp != NULL) {
2131				vn_fullpath(curthread, vp, &fullpath,
2132				    &freepath);
2133				cred = curthread->td_ucred;
2134				vn_lock(vp, LK_SHARED | LK_RETRY);
2135				if (VOP_GETATTR(vp, &va, cred) == 0) {
2136					kve->kve_fileid = va.va_fileid;
2137					kve->kve_fsid = va.va_fsid;
2138				}
2139				vput(vp);
2140			}
2141		} else {
2142			kve->kve_type = KVME_TYPE_NONE;
2143			kve->kve_ref_count = 0;
2144			kve->kve_shadow_count = 0;
2145		}
2146
2147		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2148		if (freepath != NULL)
2149			free(freepath, M_TEMP);
2150
2151		error = SYSCTL_OUT(req, kve, sizeof(*kve));
2152		vm_map_lock_read(map);
2153		if (error)
2154			break;
2155		if (last_timestamp != map->timestamp) {
2156			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2157			entry = tmp_entry;
2158		}
2159	}
2160	vm_map_unlock_read(map);
2161	vmspace_free(vm);
2162	PRELE(p);
2163	free(kve, M_TEMP);
2164	return (error);
2165}
2166#endif	/* COMPAT_FREEBSD7 */
2167
2168#ifdef KINFO_VMENTRY_SIZE
2169CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2170#endif
2171
2172static void
2173kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
2174    struct kinfo_vmentry *kve)
2175{
2176	vm_object_t obj, tobj;
2177	vm_page_t m, m_adv;
2178	vm_offset_t addr;
2179	vm_paddr_t locked_pa;
2180	vm_pindex_t pi, pi_adv, pindex;
2181
2182	locked_pa = 0;
2183	obj = entry->object.vm_object;
2184	addr = entry->start;
2185	m_adv = NULL;
2186	pi = OFF_TO_IDX(entry->offset);
2187	for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
2188		if (m_adv != NULL) {
2189			m = m_adv;
2190		} else {
2191			pi_adv = OFF_TO_IDX(entry->end - addr);
2192			pindex = pi;
2193			for (tobj = obj;; tobj = tobj->backing_object) {
2194				m = vm_page_find_least(tobj, pindex);
2195				if (m != NULL) {
2196					if (m->pindex == pindex)
2197						break;
2198					if (pi_adv > m->pindex - pindex) {
2199						pi_adv = m->pindex - pindex;
2200						m_adv = m;
2201					}
2202				}
2203				if (tobj->backing_object == NULL)
2204					goto next;
2205				pindex += OFF_TO_IDX(tobj->
2206				    backing_object_offset);
2207			}
2208		}
2209		m_adv = NULL;
2210		if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
2211		    (addr & (pagesizes[1] - 1)) == 0 &&
2212		    (pmap_mincore(map->pmap, addr, &locked_pa) &
2213		    MINCORE_SUPER) != 0) {
2214			kve->kve_flags |= KVME_FLAG_SUPER;
2215			pi_adv = OFF_TO_IDX(pagesizes[1]);
2216		} else {
2217			/*
2218			 * We do not test the found page on validity.
2219			 * Either the page is busy and being paged in,
2220			 * or it was invalidated.  The first case
2221			 * should be counted as resident, the second
2222			 * is not so clear; we do account both.
2223			 */
2224			pi_adv = 1;
2225		}
2226		kve->kve_resident += pi_adv;
2227next:;
2228	}
2229	PA_UNLOCK_COND(locked_pa);
2230}
2231
2232/*
2233 * Must be called with the process locked and will return unlocked.
2234 */
2235int
2236kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
2237{
2238	vm_map_entry_t entry, tmp_entry;
2239	struct vattr va;
2240	vm_map_t map;
2241	vm_object_t obj, tobj, lobj;
2242	char *fullpath, *freepath;
2243	struct kinfo_vmentry *kve;
2244	struct ucred *cred;
2245	struct vnode *vp;
2246	struct vmspace *vm;
2247	vm_offset_t addr;
2248	unsigned int last_timestamp;
2249	int error;
2250
2251	PROC_LOCK_ASSERT(p, MA_OWNED);
2252
2253	_PHOLD(p);
2254	PROC_UNLOCK(p);
2255	vm = vmspace_acquire_ref(p);
2256	if (vm == NULL) {
2257		PRELE(p);
2258		return (ESRCH);
2259	}
2260	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO);
2261
2262	error = 0;
2263	map = &vm->vm_map;
2264	vm_map_lock_read(map);
2265	for (entry = map->header.next; entry != &map->header;
2266	    entry = entry->next) {
2267		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2268			continue;
2269
2270		addr = entry->end;
2271		bzero(kve, sizeof(*kve));
2272		obj = entry->object.vm_object;
2273		if (obj != NULL) {
2274			for (tobj = obj; tobj != NULL;
2275			    tobj = tobj->backing_object) {
2276				VM_OBJECT_RLOCK(tobj);
2277				lobj = tobj;
2278			}
2279			if (obj->backing_object == NULL)
2280				kve->kve_private_resident =
2281				    obj->resident_page_count;
2282			if (!vmmap_skip_res_cnt)
2283				kern_proc_vmmap_resident(map, entry, kve);
2284			for (tobj = obj; tobj != NULL;
2285			    tobj = tobj->backing_object) {
2286				if (tobj != obj && tobj != lobj)
2287					VM_OBJECT_RUNLOCK(tobj);
2288			}
2289		} else {
2290			lobj = NULL;
2291		}
2292
2293		kve->kve_start = entry->start;
2294		kve->kve_end = entry->end;
2295		kve->kve_offset = entry->offset;
2296
2297		if (entry->protection & VM_PROT_READ)
2298			kve->kve_protection |= KVME_PROT_READ;
2299		if (entry->protection & VM_PROT_WRITE)
2300			kve->kve_protection |= KVME_PROT_WRITE;
2301		if (entry->protection & VM_PROT_EXECUTE)
2302			kve->kve_protection |= KVME_PROT_EXEC;
2303
2304		if (entry->eflags & MAP_ENTRY_COW)
2305			kve->kve_flags |= KVME_FLAG_COW;
2306		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2307			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2308		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2309			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2310		if (entry->eflags & MAP_ENTRY_GROWS_UP)
2311			kve->kve_flags |= KVME_FLAG_GROWS_UP;
2312		if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
2313			kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
2314
2315		last_timestamp = map->timestamp;
2316		vm_map_unlock_read(map);
2317
2318		freepath = NULL;
2319		fullpath = "";
2320		if (lobj != NULL) {
2321			vp = NULL;
2322			switch (lobj->type) {
2323			case OBJT_DEFAULT:
2324				kve->kve_type = KVME_TYPE_DEFAULT;
2325				break;
2326			case OBJT_VNODE:
2327				kve->kve_type = KVME_TYPE_VNODE;
2328				vp = lobj->handle;
2329				vref(vp);
2330				break;
2331			case OBJT_SWAP:
2332				if ((lobj->flags & OBJ_TMPFS_NODE) != 0) {
2333					kve->kve_type = KVME_TYPE_VNODE;
2334					if ((lobj->flags & OBJ_TMPFS) != 0) {
2335						vp = lobj->un_pager.swp.swp_tmpfs;
2336						vref(vp);
2337					}
2338				} else {
2339					kve->kve_type = KVME_TYPE_SWAP;
2340				}
2341				break;
2342			case OBJT_DEVICE:
2343				kve->kve_type = KVME_TYPE_DEVICE;
2344				break;
2345			case OBJT_PHYS:
2346				kve->kve_type = KVME_TYPE_PHYS;
2347				break;
2348			case OBJT_DEAD:
2349				kve->kve_type = KVME_TYPE_DEAD;
2350				break;
2351			case OBJT_SG:
2352				kve->kve_type = KVME_TYPE_SG;
2353				break;
2354			case OBJT_MGTDEVICE:
2355				kve->kve_type = KVME_TYPE_MGTDEVICE;
2356				break;
2357			default:
2358				kve->kve_type = KVME_TYPE_UNKNOWN;
2359				break;
2360			}
2361			if (lobj != obj)
2362				VM_OBJECT_RUNLOCK(lobj);
2363
2364			kve->kve_ref_count = obj->ref_count;
2365			kve->kve_shadow_count = obj->shadow_count;
2366			VM_OBJECT_RUNLOCK(obj);
2367			if (vp != NULL) {
2368				vn_fullpath(curthread, vp, &fullpath,
2369				    &freepath);
2370				kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
2371				cred = curthread->td_ucred;
2372				vn_lock(vp, LK_SHARED | LK_RETRY);
2373				if (VOP_GETATTR(vp, &va, cred) == 0) {
2374					kve->kve_vn_fileid = va.va_fileid;
2375					kve->kve_vn_fsid = va.va_fsid;
2376					kve->kve_vn_mode =
2377					    MAKEIMODE(va.va_type, va.va_mode);
2378					kve->kve_vn_size = va.va_size;
2379					kve->kve_vn_rdev = va.va_rdev;
2380					kve->kve_status = KF_ATTR_VALID;
2381				}
2382				vput(vp);
2383			}
2384		} else {
2385			kve->kve_type = KVME_TYPE_NONE;
2386			kve->kve_ref_count = 0;
2387			kve->kve_shadow_count = 0;
2388		}
2389
2390		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2391		if (freepath != NULL)
2392			free(freepath, M_TEMP);
2393
2394		/* Pack record size down */
2395		if ((flags & KERN_VMMAP_PACK_KINFO) != 0)
2396			kve->kve_structsize =
2397			    offsetof(struct kinfo_vmentry, kve_path) +
2398			    strlen(kve->kve_path) + 1;
2399		else
2400			kve->kve_structsize = sizeof(*kve);
2401		kve->kve_structsize = roundup(kve->kve_structsize,
2402		    sizeof(uint64_t));
2403
2404		/* Halt filling and truncate rather than exceeding maxlen */
2405		if (maxlen != -1 && maxlen < kve->kve_structsize) {
2406			error = 0;
2407			vm_map_lock_read(map);
2408			break;
2409		} else if (maxlen != -1)
2410			maxlen -= kve->kve_structsize;
2411
2412		if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
2413			error = ENOMEM;
2414		vm_map_lock_read(map);
2415		if (error != 0)
2416			break;
2417		if (last_timestamp != map->timestamp) {
2418			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2419			entry = tmp_entry;
2420		}
2421	}
2422	vm_map_unlock_read(map);
2423	vmspace_free(vm);
2424	PRELE(p);
2425	free(kve, M_TEMP);
2426	return (error);
2427}
2428
2429static int
2430sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
2431{
2432	struct proc *p;
2433	struct sbuf sb;
2434	int error, error2, *name;
2435
2436	name = (int *)arg1;
2437	sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
2438	error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
2439	if (error != 0) {
2440		sbuf_delete(&sb);
2441		return (error);
2442	}
2443	error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO);
2444	error2 = sbuf_finish(&sb);
2445	sbuf_delete(&sb);
2446	return (error != 0 ? error : error2);
2447}
2448
2449#if defined(STACK) || defined(DDB)
2450static int
2451sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
2452{
2453	struct kinfo_kstack *kkstp;
2454	int error, i, *name, numthreads;
2455	lwpid_t *lwpidarray;
2456	struct thread *td;
2457	struct stack *st;
2458	struct sbuf sb;
2459	struct proc *p;
2460
2461	name = (int *)arg1;
2462	error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
2463	if (error != 0)
2464		return (error);
2465
2466	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
2467	st = stack_create();
2468
2469	lwpidarray = NULL;
2470	PROC_LOCK(p);
2471	do {
2472		if (lwpidarray != NULL) {
2473			free(lwpidarray, M_TEMP);
2474			lwpidarray = NULL;
2475		}
2476		numthreads = p->p_numthreads;
2477		PROC_UNLOCK(p);
2478		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
2479		    M_WAITOK | M_ZERO);
2480		PROC_LOCK(p);
2481	} while (numthreads < p->p_numthreads);
2482
2483	/*
2484	 * XXXRW: During the below loop, execve(2) and countless other sorts
2485	 * of changes could have taken place.  Should we check to see if the
2486	 * vmspace has been replaced, or the like, in order to prevent
2487	 * giving a snapshot that spans, say, execve(2), with some threads
2488	 * before and some after?  Among other things, the credentials could
2489	 * have changed, in which case the right to extract debug info might
2490	 * no longer be assured.
2491	 */
2492	i = 0;
2493	FOREACH_THREAD_IN_PROC(p, td) {
2494		KASSERT(i < numthreads,
2495		    ("sysctl_kern_proc_kstack: numthreads"));
2496		lwpidarray[i] = td->td_tid;
2497		i++;
2498	}
2499	numthreads = i;
2500	for (i = 0; i < numthreads; i++) {
2501		td = thread_find(p, lwpidarray[i]);
2502		if (td == NULL) {
2503			continue;
2504		}
2505		bzero(kkstp, sizeof(*kkstp));
2506		(void)sbuf_new(&sb, kkstp->kkst_trace,
2507		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
2508		thread_lock(td);
2509		kkstp->kkst_tid = td->td_tid;
2510		if (TD_IS_SWAPPED(td))
2511			kkstp->kkst_state = KKST_STATE_SWAPPED;
2512		else if (TD_IS_RUNNING(td))
2513			kkstp->kkst_state = KKST_STATE_RUNNING;
2514		else {
2515			kkstp->kkst_state = KKST_STATE_STACKOK;
2516			stack_save_td(st, td);
2517		}
2518		thread_unlock(td);
2519		PROC_UNLOCK(p);
2520		stack_sbuf_print(&sb, st);
2521		sbuf_finish(&sb);
2522		sbuf_delete(&sb);
2523		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
2524		PROC_LOCK(p);
2525		if (error)
2526			break;
2527	}
2528	_PRELE(p);
2529	PROC_UNLOCK(p);
2530	if (lwpidarray != NULL)
2531		free(lwpidarray, M_TEMP);
2532	stack_destroy(st);
2533	free(kkstp, M_TEMP);
2534	return (error);
2535}
2536#endif
2537
2538/*
2539 * This sysctl allows a process to retrieve the full list of groups from
2540 * itself or another process.
2541 */
2542static int
2543sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
2544{
2545	pid_t *pidp = (pid_t *)arg1;
2546	unsigned int arglen = arg2;
2547	struct proc *p;
2548	struct ucred *cred;
2549	int error;
2550
2551	if (arglen != 1)
2552		return (EINVAL);
2553	if (*pidp == -1) {	/* -1 means this process */
2554		p = req->td->td_proc;
2555	} else {
2556		error = pget(*pidp, PGET_CANSEE, &p);
2557		if (error != 0)
2558			return (error);
2559	}
2560
2561	cred = crhold(p->p_ucred);
2562	if (*pidp != -1)
2563		PROC_UNLOCK(p);
2564
2565	error = SYSCTL_OUT(req, cred->cr_groups,
2566	    cred->cr_ngroups * sizeof(gid_t));
2567	crfree(cred);
2568	return (error);
2569}
2570
2571/*
2572 * This sysctl allows a process to retrieve or/and set the resource limit for
2573 * another process.
2574 */
2575static int
2576sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
2577{
2578	int *name = (int *)arg1;
2579	u_int namelen = arg2;
2580	struct rlimit rlim;
2581	struct proc *p;
2582	u_int which;
2583	int flags, error;
2584
2585	if (namelen != 2)
2586		return (EINVAL);
2587
2588	which = (u_int)name[1];
2589	if (which >= RLIM_NLIMITS)
2590		return (EINVAL);
2591
2592	if (req->newptr != NULL && req->newlen != sizeof(rlim))
2593		return (EINVAL);
2594
2595	flags = PGET_HOLD | PGET_NOTWEXIT;
2596	if (req->newptr != NULL)
2597		flags |= PGET_CANDEBUG;
2598	else
2599		flags |= PGET_CANSEE;
2600	error = pget((pid_t)name[0], flags, &p);
2601	if (error != 0)
2602		return (error);
2603
2604	/*
2605	 * Retrieve limit.
2606	 */
2607	if (req->oldptr != NULL) {
2608		PROC_LOCK(p);
2609		lim_rlimit(p, which, &rlim);
2610		PROC_UNLOCK(p);
2611	}
2612	error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
2613	if (error != 0)
2614		goto errout;
2615
2616	/*
2617	 * Set limit.
2618	 */
2619	if (req->newptr != NULL) {
2620		error = SYSCTL_IN(req, &rlim, sizeof(rlim));
2621		if (error == 0)
2622			error = kern_proc_setrlimit(curthread, p, which, &rlim);
2623	}
2624
2625errout:
2626	PRELE(p);
2627	return (error);
2628}
2629
2630/*
2631 * This sysctl allows a process to retrieve ps_strings structure location of
2632 * another process.
2633 */
2634static int
2635sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
2636{
2637	int *name = (int *)arg1;
2638	u_int namelen = arg2;
2639	struct proc *p;
2640	vm_offset_t ps_strings;
2641	int error;
2642#ifdef COMPAT_FREEBSD32
2643	uint32_t ps_strings32;
2644#endif
2645
2646	if (namelen != 1)
2647		return (EINVAL);
2648
2649	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2650	if (error != 0)
2651		return (error);
2652#ifdef COMPAT_FREEBSD32
2653	if ((req->flags & SCTL_MASK32) != 0) {
2654		/*
2655		 * We return 0 if the 32 bit emulation request is for a 64 bit
2656		 * process.
2657		 */
2658		ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
2659		    PTROUT(p->p_sysent->sv_psstrings) : 0;
2660		PROC_UNLOCK(p);
2661		error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
2662		return (error);
2663	}
2664#endif
2665	ps_strings = p->p_sysent->sv_psstrings;
2666	PROC_UNLOCK(p);
2667	error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
2668	return (error);
2669}
2670
2671/*
2672 * This sysctl allows a process to retrieve umask of another process.
2673 */
2674static int
2675sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
2676{
2677	int *name = (int *)arg1;
2678	u_int namelen = arg2;
2679	struct proc *p;
2680	int error;
2681	u_short fd_cmask;
2682
2683	if (namelen != 1)
2684		return (EINVAL);
2685
2686	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2687	if (error != 0)
2688		return (error);
2689
2690	FILEDESC_SLOCK(p->p_fd);
2691	fd_cmask = p->p_fd->fd_cmask;
2692	FILEDESC_SUNLOCK(p->p_fd);
2693	PRELE(p);
2694	error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask));
2695	return (error);
2696}
2697
2698/*
2699 * This sysctl allows a process to set and retrieve binary osreldate of
2700 * another process.
2701 */
2702static int
2703sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
2704{
2705	int *name = (int *)arg1;
2706	u_int namelen = arg2;
2707	struct proc *p;
2708	int flags, error, osrel;
2709
2710	if (namelen != 1)
2711		return (EINVAL);
2712
2713	if (req->newptr != NULL && req->newlen != sizeof(osrel))
2714		return (EINVAL);
2715
2716	flags = PGET_HOLD | PGET_NOTWEXIT;
2717	if (req->newptr != NULL)
2718		flags |= PGET_CANDEBUG;
2719	else
2720		flags |= PGET_CANSEE;
2721	error = pget((pid_t)name[0], flags, &p);
2722	if (error != 0)
2723		return (error);
2724
2725	error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
2726	if (error != 0)
2727		goto errout;
2728
2729	if (req->newptr != NULL) {
2730		error = SYSCTL_IN(req, &osrel, sizeof(osrel));
2731		if (error != 0)
2732			goto errout;
2733		if (osrel < 0) {
2734			error = EINVAL;
2735			goto errout;
2736		}
2737		p->p_osrel = osrel;
2738	}
2739errout:
2740	PRELE(p);
2741	return (error);
2742}
2743
2744static int
2745sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
2746{
2747	int *name = (int *)arg1;
2748	u_int namelen = arg2;
2749	struct proc *p;
2750	struct kinfo_sigtramp kst;
2751	const struct sysentvec *sv;
2752	int error;
2753#ifdef COMPAT_FREEBSD32
2754	struct kinfo_sigtramp32 kst32;
2755#endif
2756
2757	if (namelen != 1)
2758		return (EINVAL);
2759
2760	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2761	if (error != 0)
2762		return (error);
2763	sv = p->p_sysent;
2764#ifdef COMPAT_FREEBSD32
2765	if ((req->flags & SCTL_MASK32) != 0) {
2766		bzero(&kst32, sizeof(kst32));
2767		if (SV_PROC_FLAG(p, SV_ILP32)) {
2768			if (sv->sv_sigcode_base != 0) {
2769				kst32.ksigtramp_start = sv->sv_sigcode_base;
2770				kst32.ksigtramp_end = sv->sv_sigcode_base +
2771				    *sv->sv_szsigcode;
2772			} else {
2773				kst32.ksigtramp_start = sv->sv_psstrings -
2774				    *sv->sv_szsigcode;
2775				kst32.ksigtramp_end = sv->sv_psstrings;
2776			}
2777		}
2778		PROC_UNLOCK(p);
2779		error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
2780		return (error);
2781	}
2782#endif
2783	bzero(&kst, sizeof(kst));
2784	if (sv->sv_sigcode_base != 0) {
2785		kst.ksigtramp_start = (char *)sv->sv_sigcode_base;
2786		kst.ksigtramp_end = (char *)sv->sv_sigcode_base +
2787		    *sv->sv_szsigcode;
2788	} else {
2789		kst.ksigtramp_start = (char *)sv->sv_psstrings -
2790		    *sv->sv_szsigcode;
2791		kst.ksigtramp_end = (char *)sv->sv_psstrings;
2792	}
2793	PROC_UNLOCK(p);
2794	error = SYSCTL_OUT(req, &kst, sizeof(kst));
2795	return (error);
2796}
2797
2798SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
2799
2800SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
2801	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
2802	"Return entire process table");
2803
2804static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2805	sysctl_kern_proc, "Process table");
2806
2807static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
2808	sysctl_kern_proc, "Process table");
2809
2810static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2811	sysctl_kern_proc, "Process table");
2812
2813static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
2814	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2815
2816static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
2817	sysctl_kern_proc, "Process table");
2818
2819static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2820	sysctl_kern_proc, "Process table");
2821
2822static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2823	sysctl_kern_proc, "Process table");
2824
2825static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2826	sysctl_kern_proc, "Process table");
2827
2828static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
2829	sysctl_kern_proc, "Return process table, no threads");
2830
2831static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
2832	CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
2833	sysctl_kern_proc_args, "Process argument list");
2834
2835static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
2836	sysctl_kern_proc_env, "Process environment");
2837
2838static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
2839	CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
2840
2841static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
2842	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
2843
2844static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
2845	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
2846	"Process syscall vector name (ABI type)");
2847
2848static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
2849	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2850
2851static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
2852	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2853
2854static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
2855	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2856
2857static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
2858	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2859
2860static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
2861	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2862
2863static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
2864	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2865
2866static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
2867	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2868
2869static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
2870	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2871
2872static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
2873	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
2874	"Return process table, no threads");
2875
2876#ifdef COMPAT_FREEBSD7
2877static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
2878	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
2879#endif
2880
2881static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
2882	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
2883
2884#if defined(STACK) || defined(DDB)
2885static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
2886	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
2887#endif
2888
2889static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
2890	CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
2891
2892static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
2893	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
2894	"Process resource limits");
2895
2896static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
2897	CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
2898	"Process ps_strings location");
2899
2900static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
2901	CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
2902
2903static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
2904	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
2905	"Process binary osreldate");
2906
2907static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
2908	CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
2909	"Process signal trampoline location");
2910
2911int allproc_gen;
2912
2913/*
2914 * stop_all_proc() purpose is to stop all process which have usermode,
2915 * except current process for obvious reasons.  This makes it somewhat
2916 * unreliable when invoked from multithreaded process.  The service
2917 * must not be user-callable anyway.
2918 */
2919void
2920stop_all_proc(void)
2921{
2922	struct proc *cp, *p;
2923	int r, gen;
2924	bool restart, seen_stopped, seen_exiting, stopped_some;
2925
2926	cp = curproc;
2927allproc_loop:
2928	sx_xlock(&allproc_lock);
2929	gen = allproc_gen;
2930	seen_exiting = seen_stopped = stopped_some = restart = false;
2931	LIST_REMOVE(cp, p_list);
2932	LIST_INSERT_HEAD(&allproc, cp, p_list);
2933	for (;;) {
2934		p = LIST_NEXT(cp, p_list);
2935		if (p == NULL)
2936			break;
2937		LIST_REMOVE(cp, p_list);
2938		LIST_INSERT_AFTER(p, cp, p_list);
2939		PROC_LOCK(p);
2940		if ((p->p_flag & (P_KTHREAD | P_SYSTEM |
2941		    P_TOTAL_STOP)) != 0) {
2942			PROC_UNLOCK(p);
2943			continue;
2944		}
2945		if ((p->p_flag & P_WEXIT) != 0) {
2946			seen_exiting = true;
2947			PROC_UNLOCK(p);
2948			continue;
2949		}
2950		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
2951			/*
2952			 * Stopped processes are tolerated when there
2953			 * are no other processes which might continue
2954			 * them.  P_STOPPED_SINGLE but not
2955			 * P_TOTAL_STOP process still has at least one
2956			 * thread running.
2957			 */
2958			seen_stopped = true;
2959			PROC_UNLOCK(p);
2960			continue;
2961		}
2962		_PHOLD(p);
2963		sx_xunlock(&allproc_lock);
2964		r = thread_single(p, SINGLE_ALLPROC);
2965		if (r != 0)
2966			restart = true;
2967		else
2968			stopped_some = true;
2969		_PRELE(p);
2970		PROC_UNLOCK(p);
2971		sx_xlock(&allproc_lock);
2972	}
2973	/* Catch forked children we did not see in iteration. */
2974	if (gen != allproc_gen)
2975		restart = true;
2976	sx_xunlock(&allproc_lock);
2977	if (restart || stopped_some || seen_exiting || seen_stopped) {
2978		kern_yield(PRI_USER);
2979		goto allproc_loop;
2980	}
2981}
2982
2983void
2984resume_all_proc(void)
2985{
2986	struct proc *cp, *p;
2987
2988	cp = curproc;
2989	sx_xlock(&allproc_lock);
2990	LIST_REMOVE(cp, p_list);
2991	LIST_INSERT_HEAD(&allproc, cp, p_list);
2992	for (;;) {
2993		p = LIST_NEXT(cp, p_list);
2994		if (p == NULL)
2995			break;
2996		LIST_REMOVE(cp, p_list);
2997		LIST_INSERT_AFTER(p, cp, p_list);
2998		PROC_LOCK(p);
2999		if ((p->p_flag & P_TOTAL_STOP) != 0) {
3000			sx_xunlock(&allproc_lock);
3001			_PHOLD(p);
3002			thread_single_end(p, SINGLE_ALLPROC);
3003			_PRELE(p);
3004			PROC_UNLOCK(p);
3005			sx_xlock(&allproc_lock);
3006		} else {
3007			PROC_UNLOCK(p);
3008		}
3009	}
3010	sx_xunlock(&allproc_lock);
3011}
3012
3013/* #define	TOTAL_STOP_DEBUG	1 */
3014#ifdef TOTAL_STOP_DEBUG
3015volatile static int ap_resume;
3016#include <sys/mount.h>
3017
3018static int
3019sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
3020{
3021	int error, val;
3022
3023	val = 0;
3024	ap_resume = 0;
3025	error = sysctl_handle_int(oidp, &val, 0, req);
3026	if (error != 0 || req->newptr == NULL)
3027		return (error);
3028	if (val != 0) {
3029		stop_all_proc();
3030		syncer_suspend();
3031		while (ap_resume == 0)
3032			;
3033		syncer_resume();
3034		resume_all_proc();
3035	}
3036	return (0);
3037}
3038
3039SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
3040    CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
3041    sysctl_debug_stop_all_proc, "I",
3042    "");
3043#endif
3044