1/*-
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: stable/10/sys/kern/kern_proc.c 328571 2018-01-29 23:43:04Z jhb $");
34
35#include "opt_compat.h"
36#include "opt_ddb.h"
37#include "opt_kdtrace.h"
38#include "opt_ktrace.h"
39#include "opt_kstack_pages.h"
40#include "opt_stack.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/elf.h>
45#include <sys/exec.h>
46#include <sys/kernel.h>
47#include <sys/limits.h>
48#include <sys/lock.h>
49#include <sys/loginclass.h>
50#include <sys/malloc.h>
51#include <sys/mman.h>
52#include <sys/mount.h>
53#include <sys/mutex.h>
54#include <sys/proc.h>
55#include <sys/ptrace.h>
56#include <sys/refcount.h>
57#include <sys/resourcevar.h>
58#include <sys/rwlock.h>
59#include <sys/sbuf.h>
60#include <sys/sysent.h>
61#include <sys/sched.h>
62#include <sys/smp.h>
63#include <sys/stack.h>
64#include <sys/stat.h>
65#include <sys/sysctl.h>
66#include <sys/filedesc.h>
67#include <sys/tty.h>
68#include <sys/signalvar.h>
69#include <sys/sdt.h>
70#include <sys/sx.h>
71#include <sys/user.h>
72#include <sys/jail.h>
73#include <sys/vnode.h>
74#include <sys/eventhandler.h>
75
76#ifdef DDB
77#include <ddb/ddb.h>
78#endif
79
80#include <vm/vm.h>
81#include <vm/vm_param.h>
82#include <vm/vm_extern.h>
83#include <vm/pmap.h>
84#include <vm/vm_map.h>
85#include <vm/vm_object.h>
86#include <vm/vm_page.h>
87#include <vm/uma.h>
88
89#ifdef COMPAT_FREEBSD32
90#include <compat/freebsd32/freebsd32.h>
91#include <compat/freebsd32/freebsd32_util.h>
92#endif
93
94SDT_PROVIDER_DEFINE(proc);
95SDT_PROBE_DEFINE4(proc, , ctor, entry, "struct proc *", "int", "void *",
96    "int");
97SDT_PROBE_DEFINE4(proc, , ctor, return, "struct proc *", "int", "void *",
98    "int");
99SDT_PROBE_DEFINE4(proc, , dtor, entry, "struct proc *", "int", "void *",
100    "struct thread *");
101SDT_PROBE_DEFINE3(proc, , dtor, return, "struct proc *", "int", "void *");
102SDT_PROBE_DEFINE3(proc, , init, entry, "struct proc *", "int", "int");
103SDT_PROBE_DEFINE3(proc, , init, return, "struct proc *", "int", "int");
104
105MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
106MALLOC_DEFINE(M_SESSION, "session", "session header");
107static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
108MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
109
110static void doenterpgrp(struct proc *, struct pgrp *);
111static void orphanpg(struct pgrp *pg);
112static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
113static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
114static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
115    int preferthread);
116static void pgadjustjobc(struct pgrp *pgrp, int entering);
117static void pgdelete(struct pgrp *);
118static int proc_ctor(void *mem, int size, void *arg, int flags);
119static void proc_dtor(void *mem, int size, void *arg);
120static int proc_init(void *mem, int size, int flags);
121static void proc_fini(void *mem, int size);
122static void pargs_free(struct pargs *pa);
123static struct proc *zpfind_locked(pid_t pid);
124
125/*
126 * Other process lists
127 */
128struct pidhashhead *pidhashtbl;
129u_long pidhash;
130struct pgrphashhead *pgrphashtbl;
131u_long pgrphash;
132struct proclist allproc;
133struct proclist zombproc;
134struct sx allproc_lock;
135struct sx proctree_lock;
136struct mtx ppeers_lock;
137uma_zone_t proc_zone;
138
139/*
140 * The offset of various fields in struct proc and struct thread.
141 * These are used by kernel debuggers to enumerate kernel threads and
142 * processes.
143 */
144const int proc_off_p_pid = offsetof(struct proc, p_pid);
145const int proc_off_p_comm = offsetof(struct proc, p_comm);
146const int proc_off_p_list = offsetof(struct proc, p_list);
147const int proc_off_p_threads = offsetof(struct proc, p_threads);
148const int thread_off_td_tid = offsetof(struct thread, td_tid);
149const int thread_off_td_name = offsetof(struct thread, td_name);
150const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu);
151const int thread_off_td_pcb = offsetof(struct thread, td_pcb);
152const int thread_off_td_plist = offsetof(struct thread, td_plist);
153
154int kstack_pages = KSTACK_PAGES;
155SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
156    "Kernel stack size in pages");
157static int vmmap_skip_res_cnt = 0;
158SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
159    &vmmap_skip_res_cnt, 0,
160    "Skip calculation of the pages resident count in kern.proc.vmmap");
161
162CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
163#ifdef COMPAT_FREEBSD32
164CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
165#endif
166
167/*
168 * Initialize global process hashing structures.
169 */
170void
171procinit()
172{
173
174	sx_init(&allproc_lock, "allproc");
175	sx_init(&proctree_lock, "proctree");
176	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
177	LIST_INIT(&allproc);
178	LIST_INIT(&zombproc);
179	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
180	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
181	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
182	    proc_ctor, proc_dtor, proc_init, proc_fini,
183	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
184	uihashinit();
185}
186
187/*
188 * Prepare a proc for use.
189 */
190static int
191proc_ctor(void *mem, int size, void *arg, int flags)
192{
193	struct proc *p;
194	struct thread *td;
195
196	p = (struct proc *)mem;
197	SDT_PROBE4(proc, , ctor , entry, p, size, arg, flags);
198	EVENTHANDLER_INVOKE(process_ctor, p);
199	SDT_PROBE4(proc, , ctor , return, p, size, arg, flags);
200	td = FIRST_THREAD_IN_PROC(p);
201	if (td != NULL) {
202		/* Make sure all thread constructors are executed */
203		EVENTHANDLER_INVOKE(thread_ctor, td);
204	}
205	return (0);
206}
207
208/*
209 * Reclaim a proc after use.
210 */
211static void
212proc_dtor(void *mem, int size, void *arg)
213{
214	struct proc *p;
215	struct thread *td;
216
217	/* INVARIANTS checks go here */
218	p = (struct proc *)mem;
219	td = FIRST_THREAD_IN_PROC(p);
220	SDT_PROBE4(proc, , dtor, entry, p, size, arg, td);
221	if (td != NULL) {
222#ifdef INVARIANTS
223		KASSERT((p->p_numthreads == 1),
224		    ("bad number of threads in exiting process"));
225		KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
226#endif
227		/* Free all OSD associated to this thread. */
228		osd_thread_exit(td);
229
230		/* Make sure all thread destructors are executed */
231		EVENTHANDLER_INVOKE(thread_dtor, td);
232	}
233	EVENTHANDLER_INVOKE(process_dtor, p);
234	if (p->p_ksi != NULL)
235		KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
236	SDT_PROBE3(proc, , dtor, return, p, size, arg);
237}
238
239/*
240 * Initialize type-stable parts of a proc (when newly created).
241 */
242static int
243proc_init(void *mem, int size, int flags)
244{
245	struct proc *p;
246
247	p = (struct proc *)mem;
248	SDT_PROBE3(proc, , init, entry, p, size, flags);
249	p->p_sched = (struct p_sched *)&p[1];
250	bzero(&p->p_mtx, sizeof(struct mtx));
251	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
252	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE);
253	cv_init(&p->p_pwait, "ppwait");
254	cv_init(&p->p_dbgwait, "dbgwait");
255	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
256	EVENTHANDLER_INVOKE(process_init, p);
257	p->p_stats = pstats_alloc();
258	p->p_pgrp = NULL;
259	SDT_PROBE3(proc, , init, return, p, size, flags);
260	return (0);
261}
262
263/*
264 * UMA should ensure that this function is never called.
265 * Freeing a proc structure would violate type stability.
266 */
267static void
268proc_fini(void *mem, int size)
269{
270#ifdef notnow
271	struct proc *p;
272
273	p = (struct proc *)mem;
274	EVENTHANDLER_INVOKE(process_fini, p);
275	pstats_free(p->p_stats);
276	thread_free(FIRST_THREAD_IN_PROC(p));
277	mtx_destroy(&p->p_mtx);
278	if (p->p_ksi != NULL)
279		ksiginfo_free(p->p_ksi);
280#else
281	panic("proc reclaimed");
282#endif
283}
284
285/*
286 * Is p an inferior of the current process?
287 */
288int
289inferior(struct proc *p)
290{
291
292	sx_assert(&proctree_lock, SX_LOCKED);
293	PROC_LOCK_ASSERT(p, MA_OWNED);
294	for (; p != curproc; p = proc_realparent(p)) {
295		if (p->p_pid == 0)
296			return (0);
297	}
298	return (1);
299}
300
301struct proc *
302pfind_locked(pid_t pid)
303{
304	struct proc *p;
305
306	sx_assert(&allproc_lock, SX_LOCKED);
307	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
308		if (p->p_pid == pid) {
309			PROC_LOCK(p);
310			if (p->p_state == PRS_NEW) {
311				PROC_UNLOCK(p);
312				p = NULL;
313			}
314			break;
315		}
316	}
317	return (p);
318}
319
320/*
321 * Locate a process by number; return only "live" processes -- i.e., neither
322 * zombies nor newly born but incompletely initialized processes.  By not
323 * returning processes in the PRS_NEW state, we allow callers to avoid
324 * testing for that condition to avoid dereferencing p_ucred, et al.
325 */
326struct proc *
327pfind(pid_t pid)
328{
329	struct proc *p;
330
331	sx_slock(&allproc_lock);
332	p = pfind_locked(pid);
333	sx_sunlock(&allproc_lock);
334	return (p);
335}
336
337static struct proc *
338pfind_tid_locked(pid_t tid)
339{
340	struct proc *p;
341	struct thread *td;
342
343	sx_assert(&allproc_lock, SX_LOCKED);
344	FOREACH_PROC_IN_SYSTEM(p) {
345		PROC_LOCK(p);
346		if (p->p_state == PRS_NEW) {
347			PROC_UNLOCK(p);
348			continue;
349		}
350		FOREACH_THREAD_IN_PROC(p, td) {
351			if (td->td_tid == tid)
352				goto found;
353		}
354		PROC_UNLOCK(p);
355	}
356found:
357	return (p);
358}
359
360/*
361 * Locate a process group by number.
362 * The caller must hold proctree_lock.
363 */
364struct pgrp *
365pgfind(pgid)
366	register pid_t pgid;
367{
368	register struct pgrp *pgrp;
369
370	sx_assert(&proctree_lock, SX_LOCKED);
371
372	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
373		if (pgrp->pg_id == pgid) {
374			PGRP_LOCK(pgrp);
375			return (pgrp);
376		}
377	}
378	return (NULL);
379}
380
381/*
382 * Locate process and do additional manipulations, depending on flags.
383 */
384int
385pget(pid_t pid, int flags, struct proc **pp)
386{
387	struct proc *p;
388	int error;
389
390	sx_slock(&allproc_lock);
391	if (pid <= PID_MAX) {
392		p = pfind_locked(pid);
393		if (p == NULL && (flags & PGET_NOTWEXIT) == 0)
394			p = zpfind_locked(pid);
395	} else if ((flags & PGET_NOTID) == 0) {
396		p = pfind_tid_locked(pid);
397	} else {
398		p = NULL;
399	}
400	sx_sunlock(&allproc_lock);
401	if (p == NULL)
402		return (ESRCH);
403	if ((flags & PGET_CANSEE) != 0) {
404		error = p_cansee(curthread, p);
405		if (error != 0)
406			goto errout;
407	}
408	if ((flags & PGET_CANDEBUG) != 0) {
409		error = p_candebug(curthread, p);
410		if (error != 0)
411			goto errout;
412	}
413	if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
414		error = EPERM;
415		goto errout;
416	}
417	if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
418		error = ESRCH;
419		goto errout;
420	}
421	if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
422		/*
423		 * XXXRW: Not clear ESRCH is the right error during proc
424		 * execve().
425		 */
426		error = ESRCH;
427		goto errout;
428	}
429	if ((flags & PGET_HOLD) != 0) {
430		_PHOLD(p);
431		PROC_UNLOCK(p);
432	}
433	*pp = p;
434	return (0);
435errout:
436	PROC_UNLOCK(p);
437	return (error);
438}
439
440/*
441 * Create a new process group.
442 * pgid must be equal to the pid of p.
443 * Begin a new session if required.
444 */
445int
446enterpgrp(p, pgid, pgrp, sess)
447	register struct proc *p;
448	pid_t pgid;
449	struct pgrp *pgrp;
450	struct session *sess;
451{
452
453	sx_assert(&proctree_lock, SX_XLOCKED);
454
455	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
456	KASSERT(p->p_pid == pgid,
457	    ("enterpgrp: new pgrp and pid != pgid"));
458	KASSERT(pgfind(pgid) == NULL,
459	    ("enterpgrp: pgrp with pgid exists"));
460	KASSERT(!SESS_LEADER(p),
461	    ("enterpgrp: session leader attempted setpgrp"));
462
463	mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
464
465	if (sess != NULL) {
466		/*
467		 * new session
468		 */
469		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
470		PROC_LOCK(p);
471		p->p_flag &= ~P_CONTROLT;
472		PROC_UNLOCK(p);
473		PGRP_LOCK(pgrp);
474		sess->s_leader = p;
475		sess->s_sid = p->p_pid;
476		refcount_init(&sess->s_count, 1);
477		sess->s_ttyvp = NULL;
478		sess->s_ttydp = NULL;
479		sess->s_ttyp = NULL;
480		bcopy(p->p_session->s_login, sess->s_login,
481			    sizeof(sess->s_login));
482		pgrp->pg_session = sess;
483		KASSERT(p == curproc,
484		    ("enterpgrp: mksession and p != curproc"));
485	} else {
486		pgrp->pg_session = p->p_session;
487		sess_hold(pgrp->pg_session);
488		PGRP_LOCK(pgrp);
489	}
490	pgrp->pg_id = pgid;
491	LIST_INIT(&pgrp->pg_members);
492
493	/*
494	 * As we have an exclusive lock of proctree_lock,
495	 * this should not deadlock.
496	 */
497	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
498	pgrp->pg_jobc = 0;
499	SLIST_INIT(&pgrp->pg_sigiolst);
500	PGRP_UNLOCK(pgrp);
501
502	doenterpgrp(p, pgrp);
503
504	return (0);
505}
506
507/*
508 * Move p to an existing process group
509 */
510int
511enterthispgrp(p, pgrp)
512	register struct proc *p;
513	struct pgrp *pgrp;
514{
515
516	sx_assert(&proctree_lock, SX_XLOCKED);
517	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
518	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
519	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
520	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
521	KASSERT(pgrp->pg_session == p->p_session,
522		("%s: pgrp's session %p, p->p_session %p.\n",
523		__func__,
524		pgrp->pg_session,
525		p->p_session));
526	KASSERT(pgrp != p->p_pgrp,
527		("%s: p belongs to pgrp.", __func__));
528
529	doenterpgrp(p, pgrp);
530
531	return (0);
532}
533
534/*
535 * Move p to a process group
536 */
537static void
538doenterpgrp(p, pgrp)
539	struct proc *p;
540	struct pgrp *pgrp;
541{
542	struct pgrp *savepgrp;
543
544	sx_assert(&proctree_lock, SX_XLOCKED);
545	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
546	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
547	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
548	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
549
550	savepgrp = p->p_pgrp;
551
552	/*
553	 * Adjust eligibility of affected pgrps to participate in job control.
554	 * Increment eligibility counts before decrementing, otherwise we
555	 * could reach 0 spuriously during the first call.
556	 */
557	fixjobc(p, pgrp, 1);
558	fixjobc(p, p->p_pgrp, 0);
559
560	PGRP_LOCK(pgrp);
561	PGRP_LOCK(savepgrp);
562	PROC_LOCK(p);
563	LIST_REMOVE(p, p_pglist);
564	p->p_pgrp = pgrp;
565	PROC_UNLOCK(p);
566	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
567	PGRP_UNLOCK(savepgrp);
568	PGRP_UNLOCK(pgrp);
569	if (LIST_EMPTY(&savepgrp->pg_members))
570		pgdelete(savepgrp);
571}
572
573/*
574 * remove process from process group
575 */
576int
577leavepgrp(p)
578	register struct proc *p;
579{
580	struct pgrp *savepgrp;
581
582	sx_assert(&proctree_lock, SX_XLOCKED);
583	savepgrp = p->p_pgrp;
584	PGRP_LOCK(savepgrp);
585	PROC_LOCK(p);
586	LIST_REMOVE(p, p_pglist);
587	p->p_pgrp = NULL;
588	PROC_UNLOCK(p);
589	PGRP_UNLOCK(savepgrp);
590	if (LIST_EMPTY(&savepgrp->pg_members))
591		pgdelete(savepgrp);
592	return (0);
593}
594
595/*
596 * delete a process group
597 */
598static void
599pgdelete(pgrp)
600	register struct pgrp *pgrp;
601{
602	struct session *savesess;
603	struct tty *tp;
604
605	sx_assert(&proctree_lock, SX_XLOCKED);
606	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
607	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
608
609	/*
610	 * Reset any sigio structures pointing to us as a result of
611	 * F_SETOWN with our pgid.
612	 */
613	funsetownlst(&pgrp->pg_sigiolst);
614
615	PGRP_LOCK(pgrp);
616	tp = pgrp->pg_session->s_ttyp;
617	LIST_REMOVE(pgrp, pg_hash);
618	savesess = pgrp->pg_session;
619	PGRP_UNLOCK(pgrp);
620
621	/* Remove the reference to the pgrp before deallocating it. */
622	if (tp != NULL) {
623		tty_lock(tp);
624		tty_rel_pgrp(tp, pgrp);
625	}
626
627	mtx_destroy(&pgrp->pg_mtx);
628	free(pgrp, M_PGRP);
629	sess_release(savesess);
630}
631
632static void
633pgadjustjobc(pgrp, entering)
634	struct pgrp *pgrp;
635	int entering;
636{
637
638	PGRP_LOCK(pgrp);
639	if (entering)
640		pgrp->pg_jobc++;
641	else {
642		--pgrp->pg_jobc;
643		if (pgrp->pg_jobc == 0)
644			orphanpg(pgrp);
645	}
646	PGRP_UNLOCK(pgrp);
647}
648
649/*
650 * Adjust pgrp jobc counters when specified process changes process group.
651 * We count the number of processes in each process group that "qualify"
652 * the group for terminal job control (those with a parent in a different
653 * process group of the same session).  If that count reaches zero, the
654 * process group becomes orphaned.  Check both the specified process'
655 * process group and that of its children.
656 * entering == 0 => p is leaving specified group.
657 * entering == 1 => p is entering specified group.
658 */
659void
660fixjobc(p, pgrp, entering)
661	register struct proc *p;
662	register struct pgrp *pgrp;
663	int entering;
664{
665	register struct pgrp *hispgrp;
666	register struct session *mysession;
667
668	sx_assert(&proctree_lock, SX_LOCKED);
669	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
670	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
671	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
672
673	/*
674	 * Check p's parent to see whether p qualifies its own process
675	 * group; if so, adjust count for p's process group.
676	 */
677	mysession = pgrp->pg_session;
678	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
679	    hispgrp->pg_session == mysession)
680		pgadjustjobc(pgrp, entering);
681
682	/*
683	 * Check this process' children to see whether they qualify
684	 * their process groups; if so, adjust counts for children's
685	 * process groups.
686	 */
687	LIST_FOREACH(p, &p->p_children, p_sibling) {
688		hispgrp = p->p_pgrp;
689		if (hispgrp == pgrp ||
690		    hispgrp->pg_session != mysession)
691			continue;
692		PROC_LOCK(p);
693		if (p->p_state == PRS_ZOMBIE) {
694			PROC_UNLOCK(p);
695			continue;
696		}
697		PROC_UNLOCK(p);
698		pgadjustjobc(hispgrp, entering);
699	}
700}
701
702/*
703 * A process group has become orphaned;
704 * if there are any stopped processes in the group,
705 * hang-up all process in that group.
706 */
707static void
708orphanpg(pg)
709	struct pgrp *pg;
710{
711	register struct proc *p;
712
713	PGRP_LOCK_ASSERT(pg, MA_OWNED);
714
715	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
716		PROC_LOCK(p);
717		if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
718			PROC_UNLOCK(p);
719			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
720				PROC_LOCK(p);
721				kern_psignal(p, SIGHUP);
722				kern_psignal(p, SIGCONT);
723				PROC_UNLOCK(p);
724			}
725			return;
726		}
727		PROC_UNLOCK(p);
728	}
729}
730
731void
732sess_hold(struct session *s)
733{
734
735	refcount_acquire(&s->s_count);
736}
737
738void
739sess_release(struct session *s)
740{
741
742	if (refcount_release(&s->s_count)) {
743		if (s->s_ttyp != NULL) {
744			tty_lock(s->s_ttyp);
745			tty_rel_sess(s->s_ttyp, s);
746		}
747		mtx_destroy(&s->s_mtx);
748		free(s, M_SESSION);
749	}
750}
751
752#ifdef DDB
753
754DB_SHOW_COMMAND(pgrpdump, pgrpdump)
755{
756	register struct pgrp *pgrp;
757	register struct proc *p;
758	register int i;
759
760	for (i = 0; i <= pgrphash; i++) {
761		if (!LIST_EMPTY(&pgrphashtbl[i])) {
762			printf("\tindx %d\n", i);
763			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
764				printf(
765			"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
766				    (void *)pgrp, (long)pgrp->pg_id,
767				    (void *)pgrp->pg_session,
768				    pgrp->pg_session->s_count,
769				    (void *)LIST_FIRST(&pgrp->pg_members));
770				LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
771					printf("\t\tpid %ld addr %p pgrp %p\n",
772					    (long)p->p_pid, (void *)p,
773					    (void *)p->p_pgrp);
774				}
775			}
776		}
777	}
778}
779#endif /* DDB */
780
781/*
782 * Calculate the kinfo_proc members which contain process-wide
783 * informations.
784 * Must be called with the target process locked.
785 */
786static void
787fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
788{
789	struct thread *td;
790
791	PROC_LOCK_ASSERT(p, MA_OWNED);
792
793	kp->ki_estcpu = 0;
794	kp->ki_pctcpu = 0;
795	FOREACH_THREAD_IN_PROC(p, td) {
796		thread_lock(td);
797		kp->ki_pctcpu += sched_pctcpu(td);
798		kp->ki_estcpu += td->td_estcpu;
799		thread_unlock(td);
800	}
801}
802
803/*
804 * Clear kinfo_proc and fill in any information that is common
805 * to all threads in the process.
806 * Must be called with the target process locked.
807 */
808static void
809fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
810{
811	struct thread *td0;
812	struct tty *tp;
813	struct session *sp;
814	struct ucred *cred;
815	struct sigacts *ps;
816
817	PROC_LOCK_ASSERT(p, MA_OWNED);
818	bzero(kp, sizeof(*kp));
819
820	kp->ki_structsize = sizeof(*kp);
821	kp->ki_paddr = p;
822	kp->ki_addr =/* p->p_addr; */0; /* XXX */
823	kp->ki_args = p->p_args;
824	kp->ki_textvp = p->p_textvp;
825#ifdef KTRACE
826	kp->ki_tracep = p->p_tracevp;
827	kp->ki_traceflag = p->p_traceflag;
828#endif
829	kp->ki_fd = p->p_fd;
830	kp->ki_vmspace = p->p_vmspace;
831	kp->ki_flag = p->p_flag;
832	kp->ki_flag2 = p->p_flag2;
833	cred = p->p_ucred;
834	if (cred) {
835		kp->ki_uid = cred->cr_uid;
836		kp->ki_ruid = cred->cr_ruid;
837		kp->ki_svuid = cred->cr_svuid;
838		kp->ki_cr_flags = 0;
839		if (cred->cr_flags & CRED_FLAG_CAPMODE)
840			kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
841		/* XXX bde doesn't like KI_NGROUPS */
842		if (cred->cr_ngroups > KI_NGROUPS) {
843			kp->ki_ngroups = KI_NGROUPS;
844			kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
845		} else
846			kp->ki_ngroups = cred->cr_ngroups;
847		bcopy(cred->cr_groups, kp->ki_groups,
848		    kp->ki_ngroups * sizeof(gid_t));
849		kp->ki_rgid = cred->cr_rgid;
850		kp->ki_svgid = cred->cr_svgid;
851		/* If jailed(cred), emulate the old P_JAILED flag. */
852		if (jailed(cred)) {
853			kp->ki_flag |= P_JAILED;
854			/* If inside the jail, use 0 as a jail ID. */
855			if (cred->cr_prison != curthread->td_ucred->cr_prison)
856				kp->ki_jid = cred->cr_prison->pr_id;
857		}
858		strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
859		    sizeof(kp->ki_loginclass));
860	}
861	ps = p->p_sigacts;
862	if (ps) {
863		mtx_lock(&ps->ps_mtx);
864		kp->ki_sigignore = ps->ps_sigignore;
865		kp->ki_sigcatch = ps->ps_sigcatch;
866		mtx_unlock(&ps->ps_mtx);
867	}
868	if (p->p_state != PRS_NEW &&
869	    p->p_state != PRS_ZOMBIE &&
870	    p->p_vmspace != NULL) {
871		struct vmspace *vm = p->p_vmspace;
872
873		kp->ki_size = vm->vm_map.size;
874		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
875		FOREACH_THREAD_IN_PROC(p, td0) {
876			if (!TD_IS_SWAPPED(td0))
877				kp->ki_rssize += td0->td_kstack_pages;
878		}
879		kp->ki_swrss = vm->vm_swrss;
880		kp->ki_tsize = vm->vm_tsize;
881		kp->ki_dsize = vm->vm_dsize;
882		kp->ki_ssize = vm->vm_ssize;
883	} else if (p->p_state == PRS_ZOMBIE)
884		kp->ki_stat = SZOMB;
885	if (kp->ki_flag & P_INMEM)
886		kp->ki_sflag = PS_INMEM;
887	else
888		kp->ki_sflag = 0;
889	/* Calculate legacy swtime as seconds since 'swtick'. */
890	kp->ki_swtime = (ticks - p->p_swtick) / hz;
891	kp->ki_pid = p->p_pid;
892	kp->ki_nice = p->p_nice;
893	kp->ki_fibnum = p->p_fibnum;
894	kp->ki_start = p->p_stats->p_start;
895	timevaladd(&kp->ki_start, &boottime);
896	PROC_STATLOCK(p);
897	rufetch(p, &kp->ki_rusage);
898	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
899	calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
900	PROC_STATUNLOCK(p);
901	calccru(p, &kp->ki_childutime, &kp->ki_childstime);
902	/* Some callers want child times in a single value. */
903	kp->ki_childtime = kp->ki_childstime;
904	timevaladd(&kp->ki_childtime, &kp->ki_childutime);
905
906	FOREACH_THREAD_IN_PROC(p, td0)
907		kp->ki_cow += td0->td_cow;
908
909	tp = NULL;
910	if (p->p_pgrp) {
911		kp->ki_pgid = p->p_pgrp->pg_id;
912		kp->ki_jobc = p->p_pgrp->pg_jobc;
913		sp = p->p_pgrp->pg_session;
914
915		if (sp != NULL) {
916			kp->ki_sid = sp->s_sid;
917			SESS_LOCK(sp);
918			strlcpy(kp->ki_login, sp->s_login,
919			    sizeof(kp->ki_login));
920			if (sp->s_ttyvp)
921				kp->ki_kiflag |= KI_CTTY;
922			if (SESS_LEADER(p))
923				kp->ki_kiflag |= KI_SLEADER;
924			/* XXX proctree_lock */
925			tp = sp->s_ttyp;
926			SESS_UNLOCK(sp);
927		}
928	}
929	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
930		kp->ki_tdev = tty_udev(tp);
931		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
932		if (tp->t_session)
933			kp->ki_tsid = tp->t_session->s_sid;
934	} else
935		kp->ki_tdev = NODEV;
936	if (p->p_comm[0] != '\0')
937		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
938	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
939	    p->p_sysent->sv_name[0] != '\0')
940		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
941	kp->ki_siglist = p->p_siglist;
942	kp->ki_xstat = p->p_xstat;
943	kp->ki_acflag = p->p_acflag;
944	kp->ki_lock = p->p_lock;
945	if (p->p_pptr)
946		kp->ki_ppid = p->p_pptr->p_pid;
947}
948
949/*
950 * Fill in information that is thread specific.  Must be called with
951 * target process locked.  If 'preferthread' is set, overwrite certain
952 * process-related fields that are maintained for both threads and
953 * processes.
954 */
955static void
956fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
957{
958	struct proc *p;
959
960	p = td->td_proc;
961	kp->ki_tdaddr = td;
962	PROC_LOCK_ASSERT(p, MA_OWNED);
963
964	if (preferthread)
965		PROC_STATLOCK(p);
966	thread_lock(td);
967	if (td->td_wmesg != NULL)
968		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
969	else
970		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
971	if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >=
972	    sizeof(kp->ki_tdname)) {
973		strlcpy(kp->ki_moretdname,
974		    td->td_name + sizeof(kp->ki_tdname) - 1,
975		    sizeof(kp->ki_moretdname));
976	} else {
977		bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname));
978	}
979	if (TD_ON_LOCK(td)) {
980		kp->ki_kiflag |= KI_LOCKBLOCK;
981		strlcpy(kp->ki_lockname, td->td_lockname,
982		    sizeof(kp->ki_lockname));
983	} else {
984		kp->ki_kiflag &= ~KI_LOCKBLOCK;
985		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
986	}
987
988	if (p->p_state == PRS_NORMAL) { /* approximate. */
989		if (TD_ON_RUNQ(td) ||
990		    TD_CAN_RUN(td) ||
991		    TD_IS_RUNNING(td)) {
992			kp->ki_stat = SRUN;
993		} else if (P_SHOULDSTOP(p)) {
994			kp->ki_stat = SSTOP;
995		} else if (TD_IS_SLEEPING(td)) {
996			kp->ki_stat = SSLEEP;
997		} else if (TD_ON_LOCK(td)) {
998			kp->ki_stat = SLOCK;
999		} else {
1000			kp->ki_stat = SWAIT;
1001		}
1002	} else if (p->p_state == PRS_ZOMBIE) {
1003		kp->ki_stat = SZOMB;
1004	} else {
1005		kp->ki_stat = SIDL;
1006	}
1007
1008	/* Things in the thread */
1009	kp->ki_wchan = td->td_wchan;
1010	kp->ki_pri.pri_level = td->td_priority;
1011	kp->ki_pri.pri_native = td->td_base_pri;
1012	kp->ki_lastcpu = td->td_lastcpu;
1013	kp->ki_oncpu = td->td_oncpu;
1014	kp->ki_tdflags = td->td_flags;
1015	kp->ki_tid = td->td_tid;
1016	kp->ki_numthreads = p->p_numthreads;
1017	kp->ki_pcb = td->td_pcb;
1018	kp->ki_kstack = (void *)td->td_kstack;
1019	kp->ki_slptime = (ticks - td->td_slptick) / hz;
1020	kp->ki_pri.pri_class = td->td_pri_class;
1021	kp->ki_pri.pri_user = td->td_user_pri;
1022
1023	if (preferthread) {
1024		rufetchtd(td, &kp->ki_rusage);
1025		kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
1026		kp->ki_pctcpu = sched_pctcpu(td);
1027		kp->ki_estcpu = td->td_estcpu;
1028		kp->ki_cow = td->td_cow;
1029	}
1030
1031	/* We can't get this anymore but ps etc never used it anyway. */
1032	kp->ki_rqindex = 0;
1033
1034	if (preferthread)
1035		kp->ki_siglist = td->td_siglist;
1036	kp->ki_sigmask = td->td_sigmask;
1037	thread_unlock(td);
1038	if (preferthread)
1039		PROC_STATUNLOCK(p);
1040}
1041
1042/*
1043 * Fill in a kinfo_proc structure for the specified process.
1044 * Must be called with the target process locked.
1045 */
1046void
1047fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
1048{
1049
1050	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1051
1052	fill_kinfo_proc_only(p, kp);
1053	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
1054	fill_kinfo_aggregate(p, kp);
1055}
1056
1057struct pstats *
1058pstats_alloc(void)
1059{
1060
1061	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
1062}
1063
1064/*
1065 * Copy parts of p_stats; zero the rest of p_stats (statistics).
1066 */
1067void
1068pstats_fork(struct pstats *src, struct pstats *dst)
1069{
1070
1071	bzero(&dst->pstat_startzero,
1072	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
1073	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
1074	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
1075}
1076
1077void
1078pstats_free(struct pstats *ps)
1079{
1080
1081	free(ps, M_SUBPROC);
1082}
1083
1084static struct proc *
1085zpfind_locked(pid_t pid)
1086{
1087	struct proc *p;
1088
1089	sx_assert(&allproc_lock, SX_LOCKED);
1090	LIST_FOREACH(p, &zombproc, p_list) {
1091		if (p->p_pid == pid) {
1092			PROC_LOCK(p);
1093			break;
1094		}
1095	}
1096	return (p);
1097}
1098
1099/*
1100 * Locate a zombie process by number
1101 */
1102struct proc *
1103zpfind(pid_t pid)
1104{
1105	struct proc *p;
1106
1107	sx_slock(&allproc_lock);
1108	p = zpfind_locked(pid);
1109	sx_sunlock(&allproc_lock);
1110	return (p);
1111}
1112
1113#ifdef COMPAT_FREEBSD32
1114
1115/*
1116 * This function is typically used to copy out the kernel address, so
1117 * it can be replaced by assignment of zero.
1118 */
1119static inline uint32_t
1120ptr32_trim(void *ptr)
1121{
1122	uintptr_t uptr;
1123
1124	uptr = (uintptr_t)ptr;
1125	return ((uptr > UINT_MAX) ? 0 : uptr);
1126}
1127
1128#define PTRTRIM_CP(src,dst,fld) \
1129	do { (dst).fld = ptr32_trim((src).fld); } while (0)
1130
1131static void
1132freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
1133{
1134	int i;
1135
1136	bzero(ki32, sizeof(struct kinfo_proc32));
1137	ki32->ki_structsize = sizeof(struct kinfo_proc32);
1138	CP(*ki, *ki32, ki_layout);
1139	PTRTRIM_CP(*ki, *ki32, ki_args);
1140	PTRTRIM_CP(*ki, *ki32, ki_paddr);
1141	PTRTRIM_CP(*ki, *ki32, ki_addr);
1142	PTRTRIM_CP(*ki, *ki32, ki_tracep);
1143	PTRTRIM_CP(*ki, *ki32, ki_textvp);
1144	PTRTRIM_CP(*ki, *ki32, ki_fd);
1145	PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1146	PTRTRIM_CP(*ki, *ki32, ki_wchan);
1147	CP(*ki, *ki32, ki_pid);
1148	CP(*ki, *ki32, ki_ppid);
1149	CP(*ki, *ki32, ki_pgid);
1150	CP(*ki, *ki32, ki_tpgid);
1151	CP(*ki, *ki32, ki_sid);
1152	CP(*ki, *ki32, ki_tsid);
1153	CP(*ki, *ki32, ki_jobc);
1154	CP(*ki, *ki32, ki_tdev);
1155	CP(*ki, *ki32, ki_siglist);
1156	CP(*ki, *ki32, ki_sigmask);
1157	CP(*ki, *ki32, ki_sigignore);
1158	CP(*ki, *ki32, ki_sigcatch);
1159	CP(*ki, *ki32, ki_uid);
1160	CP(*ki, *ki32, ki_ruid);
1161	CP(*ki, *ki32, ki_svuid);
1162	CP(*ki, *ki32, ki_rgid);
1163	CP(*ki, *ki32, ki_svgid);
1164	CP(*ki, *ki32, ki_ngroups);
1165	for (i = 0; i < KI_NGROUPS; i++)
1166		CP(*ki, *ki32, ki_groups[i]);
1167	CP(*ki, *ki32, ki_size);
1168	CP(*ki, *ki32, ki_rssize);
1169	CP(*ki, *ki32, ki_swrss);
1170	CP(*ki, *ki32, ki_tsize);
1171	CP(*ki, *ki32, ki_dsize);
1172	CP(*ki, *ki32, ki_ssize);
1173	CP(*ki, *ki32, ki_xstat);
1174	CP(*ki, *ki32, ki_acflag);
1175	CP(*ki, *ki32, ki_pctcpu);
1176	CP(*ki, *ki32, ki_estcpu);
1177	CP(*ki, *ki32, ki_slptime);
1178	CP(*ki, *ki32, ki_swtime);
1179	CP(*ki, *ki32, ki_cow);
1180	CP(*ki, *ki32, ki_runtime);
1181	TV_CP(*ki, *ki32, ki_start);
1182	TV_CP(*ki, *ki32, ki_childtime);
1183	CP(*ki, *ki32, ki_flag);
1184	CP(*ki, *ki32, ki_kiflag);
1185	CP(*ki, *ki32, ki_traceflag);
1186	CP(*ki, *ki32, ki_stat);
1187	CP(*ki, *ki32, ki_nice);
1188	CP(*ki, *ki32, ki_lock);
1189	CP(*ki, *ki32, ki_rqindex);
1190	CP(*ki, *ki32, ki_oncpu);
1191	CP(*ki, *ki32, ki_lastcpu);
1192	bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
1193	bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1194	bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1195	bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1196	bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1197	bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1198	bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
1199	bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1);
1200	CP(*ki, *ki32, ki_flag2);
1201	CP(*ki, *ki32, ki_fibnum);
1202	CP(*ki, *ki32, ki_cr_flags);
1203	CP(*ki, *ki32, ki_jid);
1204	CP(*ki, *ki32, ki_numthreads);
1205	CP(*ki, *ki32, ki_tid);
1206	CP(*ki, *ki32, ki_pri);
1207	freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1208	freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1209	PTRTRIM_CP(*ki, *ki32, ki_pcb);
1210	PTRTRIM_CP(*ki, *ki32, ki_kstack);
1211	PTRTRIM_CP(*ki, *ki32, ki_udata);
1212	PTRTRIM_CP(*ki, *ki32, ki_tdaddr);
1213	CP(*ki, *ki32, ki_sflag);
1214	CP(*ki, *ki32, ki_tdflags);
1215}
1216#endif
1217
1218int
1219kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
1220{
1221	struct thread *td;
1222	struct kinfo_proc ki;
1223#ifdef COMPAT_FREEBSD32
1224	struct kinfo_proc32 ki32;
1225#endif
1226	int error;
1227
1228	PROC_LOCK_ASSERT(p, MA_OWNED);
1229	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1230
1231	error = 0;
1232	fill_kinfo_proc(p, &ki);
1233	if ((flags & KERN_PROC_NOTHREADS) != 0) {
1234#ifdef COMPAT_FREEBSD32
1235		if ((flags & KERN_PROC_MASK32) != 0) {
1236			freebsd32_kinfo_proc_out(&ki, &ki32);
1237			if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1238				error = ENOMEM;
1239		} else
1240#endif
1241			if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1242				error = ENOMEM;
1243	} else {
1244		FOREACH_THREAD_IN_PROC(p, td) {
1245			fill_kinfo_thread(td, &ki, 1);
1246#ifdef COMPAT_FREEBSD32
1247			if ((flags & KERN_PROC_MASK32) != 0) {
1248				freebsd32_kinfo_proc_out(&ki, &ki32);
1249				if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1250					error = ENOMEM;
1251			} else
1252#endif
1253				if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1254					error = ENOMEM;
1255			if (error != 0)
1256				break;
1257		}
1258	}
1259	PROC_UNLOCK(p);
1260	return (error);
1261}
1262
1263static int
1264sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags,
1265    int doingzomb)
1266{
1267	struct sbuf sb;
1268	struct kinfo_proc ki;
1269	struct proc *np;
1270	int error, error2;
1271	pid_t pid;
1272
1273	pid = p->p_pid;
1274	sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
1275	error = kern_proc_out(p, &sb, flags);
1276	error2 = sbuf_finish(&sb);
1277	sbuf_delete(&sb);
1278	if (error != 0)
1279		return (error);
1280	else if (error2 != 0)
1281		return (error2);
1282	if (doingzomb)
1283		np = zpfind(pid);
1284	else {
1285		if (pid == 0)
1286			return (0);
1287		np = pfind(pid);
1288	}
1289	if (np == NULL)
1290		return (ESRCH);
1291	if (np != p) {
1292		PROC_UNLOCK(np);
1293		return (ESRCH);
1294	}
1295	PROC_UNLOCK(np);
1296	return (0);
1297}
1298
1299static int
1300sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1301{
1302	int *name = (int *)arg1;
1303	u_int namelen = arg2;
1304	struct proc *p;
1305	int flags, doingzomb, oid_number;
1306	int error = 0;
1307
1308	oid_number = oidp->oid_number;
1309	if (oid_number != KERN_PROC_ALL &&
1310	    (oid_number & KERN_PROC_INC_THREAD) == 0)
1311		flags = KERN_PROC_NOTHREADS;
1312	else {
1313		flags = 0;
1314		oid_number &= ~KERN_PROC_INC_THREAD;
1315	}
1316#ifdef COMPAT_FREEBSD32
1317	if (req->flags & SCTL_MASK32)
1318		flags |= KERN_PROC_MASK32;
1319#endif
1320	if (oid_number == KERN_PROC_PID) {
1321		if (namelen != 1)
1322			return (EINVAL);
1323		error = sysctl_wire_old_buffer(req, 0);
1324		if (error)
1325			return (error);
1326		error = pget((pid_t)name[0], PGET_CANSEE, &p);
1327		if (error != 0)
1328			return (error);
1329		error = sysctl_out_proc(p, req, flags, 0);
1330		return (error);
1331	}
1332
1333	switch (oid_number) {
1334	case KERN_PROC_ALL:
1335		if (namelen != 0)
1336			return (EINVAL);
1337		break;
1338	case KERN_PROC_PROC:
1339		if (namelen != 0 && namelen != 1)
1340			return (EINVAL);
1341		break;
1342	default:
1343		if (namelen != 1)
1344			return (EINVAL);
1345		break;
1346	}
1347
1348	if (!req->oldptr) {
1349		/* overestimate by 5 procs */
1350		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1351		if (error)
1352			return (error);
1353	}
1354	error = sysctl_wire_old_buffer(req, 0);
1355	if (error != 0)
1356		return (error);
1357	sx_slock(&allproc_lock);
1358	for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
1359		if (!doingzomb)
1360			p = LIST_FIRST(&allproc);
1361		else
1362			p = LIST_FIRST(&zombproc);
1363		for (; p != 0; p = LIST_NEXT(p, p_list)) {
1364			/*
1365			 * Skip embryonic processes.
1366			 */
1367			PROC_LOCK(p);
1368			if (p->p_state == PRS_NEW) {
1369				PROC_UNLOCK(p);
1370				continue;
1371			}
1372			KASSERT(p->p_ucred != NULL,
1373			    ("process credential is NULL for non-NEW proc"));
1374			/*
1375			 * Show a user only appropriate processes.
1376			 */
1377			if (p_cansee(curthread, p)) {
1378				PROC_UNLOCK(p);
1379				continue;
1380			}
1381			/*
1382			 * TODO - make more efficient (see notes below).
1383			 * do by session.
1384			 */
1385			switch (oid_number) {
1386
1387			case KERN_PROC_GID:
1388				if (p->p_ucred->cr_gid != (gid_t)name[0]) {
1389					PROC_UNLOCK(p);
1390					continue;
1391				}
1392				break;
1393
1394			case KERN_PROC_PGRP:
1395				/* could do this by traversing pgrp */
1396				if (p->p_pgrp == NULL ||
1397				    p->p_pgrp->pg_id != (pid_t)name[0]) {
1398					PROC_UNLOCK(p);
1399					continue;
1400				}
1401				break;
1402
1403			case KERN_PROC_RGID:
1404				if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
1405					PROC_UNLOCK(p);
1406					continue;
1407				}
1408				break;
1409
1410			case KERN_PROC_SESSION:
1411				if (p->p_session == NULL ||
1412				    p->p_session->s_sid != (pid_t)name[0]) {
1413					PROC_UNLOCK(p);
1414					continue;
1415				}
1416				break;
1417
1418			case KERN_PROC_TTY:
1419				if ((p->p_flag & P_CONTROLT) == 0 ||
1420				    p->p_session == NULL) {
1421					PROC_UNLOCK(p);
1422					continue;
1423				}
1424				/* XXX proctree_lock */
1425				SESS_LOCK(p->p_session);
1426				if (p->p_session->s_ttyp == NULL ||
1427				    tty_udev(p->p_session->s_ttyp) !=
1428				    (dev_t)name[0]) {
1429					SESS_UNLOCK(p->p_session);
1430					PROC_UNLOCK(p);
1431					continue;
1432				}
1433				SESS_UNLOCK(p->p_session);
1434				break;
1435
1436			case KERN_PROC_UID:
1437				if (p->p_ucred->cr_uid != (uid_t)name[0]) {
1438					PROC_UNLOCK(p);
1439					continue;
1440				}
1441				break;
1442
1443			case KERN_PROC_RUID:
1444				if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
1445					PROC_UNLOCK(p);
1446					continue;
1447				}
1448				break;
1449
1450			case KERN_PROC_PROC:
1451				break;
1452
1453			default:
1454				break;
1455
1456			}
1457
1458			error = sysctl_out_proc(p, req, flags, doingzomb);
1459			if (error) {
1460				sx_sunlock(&allproc_lock);
1461				return (error);
1462			}
1463		}
1464	}
1465	sx_sunlock(&allproc_lock);
1466	return (0);
1467}
1468
1469struct pargs *
1470pargs_alloc(int len)
1471{
1472	struct pargs *pa;
1473
1474	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1475		M_WAITOK);
1476	refcount_init(&pa->ar_ref, 1);
1477	pa->ar_length = len;
1478	return (pa);
1479}
1480
1481static void
1482pargs_free(struct pargs *pa)
1483{
1484
1485	free(pa, M_PARGS);
1486}
1487
1488void
1489pargs_hold(struct pargs *pa)
1490{
1491
1492	if (pa == NULL)
1493		return;
1494	refcount_acquire(&pa->ar_ref);
1495}
1496
1497void
1498pargs_drop(struct pargs *pa)
1499{
1500
1501	if (pa == NULL)
1502		return;
1503	if (refcount_release(&pa->ar_ref))
1504		pargs_free(pa);
1505}
1506
1507static int
1508proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf,
1509    size_t len)
1510{
1511	struct iovec iov;
1512	struct uio uio;
1513
1514	iov.iov_base = (caddr_t)buf;
1515	iov.iov_len = len;
1516	uio.uio_iov = &iov;
1517	uio.uio_iovcnt = 1;
1518	uio.uio_offset = offset;
1519	uio.uio_resid = (ssize_t)len;
1520	uio.uio_segflg = UIO_SYSSPACE;
1521	uio.uio_rw = UIO_READ;
1522	uio.uio_td = td;
1523
1524	return (proc_rwmem(p, &uio));
1525}
1526
1527static int
1528proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
1529    size_t len)
1530{
1531	size_t i;
1532	int error;
1533
1534	error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len);
1535	/*
1536	 * Reading the chunk may validly return EFAULT if the string is shorter
1537	 * than the chunk and is aligned at the end of the page, assuming the
1538	 * next page is not mapped.  So if EFAULT is returned do a fallback to
1539	 * one byte read loop.
1540	 */
1541	if (error == EFAULT) {
1542		for (i = 0; i < len; i++, buf++, sptr++) {
1543			error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1);
1544			if (error != 0)
1545				return (error);
1546			if (*buf == '\0')
1547				break;
1548		}
1549		error = 0;
1550	}
1551	return (error);
1552}
1553
1554#define PROC_AUXV_MAX	256	/* Safety limit on auxv size. */
1555
1556enum proc_vector_type {
1557	PROC_ARG,
1558	PROC_ENV,
1559	PROC_AUX,
1560};
1561
1562#ifdef COMPAT_FREEBSD32
1563static int
1564get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
1565    size_t *vsizep, enum proc_vector_type type)
1566{
1567	struct freebsd32_ps_strings pss;
1568	Elf32_Auxinfo aux;
1569	vm_offset_t vptr, ptr;
1570	uint32_t *proc_vector32;
1571	char **proc_vector;
1572	size_t vsize, size;
1573	int i, error;
1574
1575	error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
1576	    &pss, sizeof(pss));
1577	if (error != 0)
1578		return (error);
1579	switch (type) {
1580	case PROC_ARG:
1581		vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
1582		vsize = pss.ps_nargvstr;
1583		if (vsize > ARG_MAX)
1584			return (ENOEXEC);
1585		size = vsize * sizeof(int32_t);
1586		break;
1587	case PROC_ENV:
1588		vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
1589		vsize = pss.ps_nenvstr;
1590		if (vsize > ARG_MAX)
1591			return (ENOEXEC);
1592		size = vsize * sizeof(int32_t);
1593		break;
1594	case PROC_AUX:
1595		vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
1596		    (pss.ps_nenvstr + 1) * sizeof(int32_t);
1597		if (vptr % 4 != 0)
1598			return (ENOEXEC);
1599		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1600			error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
1601			if (error != 0)
1602				return (error);
1603			if (aux.a_type == AT_NULL)
1604				break;
1605			ptr += sizeof(aux);
1606		}
1607		if (aux.a_type != AT_NULL)
1608			return (ENOEXEC);
1609		vsize = i + 1;
1610		size = vsize * sizeof(aux);
1611		break;
1612	default:
1613		KASSERT(0, ("Wrong proc vector type: %d", type));
1614		return (EINVAL);
1615	}
1616	proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
1617	error = proc_read_mem(td, p, vptr, proc_vector32, size);
1618	if (error != 0)
1619		goto done;
1620	if (type == PROC_AUX) {
1621		*proc_vectorp = (char **)proc_vector32;
1622		*vsizep = vsize;
1623		return (0);
1624	}
1625	proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
1626	for (i = 0; i < (int)vsize; i++)
1627		proc_vector[i] = PTRIN(proc_vector32[i]);
1628	*proc_vectorp = proc_vector;
1629	*vsizep = vsize;
1630done:
1631	free(proc_vector32, M_TEMP);
1632	return (error);
1633}
1634#endif
1635
1636static int
1637get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
1638    size_t *vsizep, enum proc_vector_type type)
1639{
1640	struct ps_strings pss;
1641	Elf_Auxinfo aux;
1642	vm_offset_t vptr, ptr;
1643	char **proc_vector;
1644	size_t vsize, size;
1645	int error, i;
1646
1647#ifdef COMPAT_FREEBSD32
1648	if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1649		return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
1650#endif
1651	error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
1652	    &pss, sizeof(pss));
1653	if (error != 0)
1654		return (error);
1655	switch (type) {
1656	case PROC_ARG:
1657		vptr = (vm_offset_t)pss.ps_argvstr;
1658		vsize = pss.ps_nargvstr;
1659		if (vsize > ARG_MAX)
1660			return (ENOEXEC);
1661		size = vsize * sizeof(char *);
1662		break;
1663	case PROC_ENV:
1664		vptr = (vm_offset_t)pss.ps_envstr;
1665		vsize = pss.ps_nenvstr;
1666		if (vsize > ARG_MAX)
1667			return (ENOEXEC);
1668		size = vsize * sizeof(char *);
1669		break;
1670	case PROC_AUX:
1671		/*
1672		 * The aux array is just above env array on the stack. Check
1673		 * that the address is naturally aligned.
1674		 */
1675		vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
1676		    * sizeof(char *);
1677#if __ELF_WORD_SIZE == 64
1678		if (vptr % sizeof(uint64_t) != 0)
1679#else
1680		if (vptr % sizeof(uint32_t) != 0)
1681#endif
1682			return (ENOEXEC);
1683		/*
1684		 * We count the array size reading the aux vectors from the
1685		 * stack until AT_NULL vector is returned.  So (to keep the code
1686		 * simple) we read the process stack twice: the first time here
1687		 * to find the size and the second time when copying the vectors
1688		 * to the allocated proc_vector.
1689		 */
1690		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1691			error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
1692			if (error != 0)
1693				return (error);
1694			if (aux.a_type == AT_NULL)
1695				break;
1696			ptr += sizeof(aux);
1697		}
1698		/*
1699		 * If the PROC_AUXV_MAX entries are iterated over, and we have
1700		 * not reached AT_NULL, it is most likely we are reading wrong
1701		 * data: either the process doesn't have auxv array or data has
1702		 * been modified. Return the error in this case.
1703		 */
1704		if (aux.a_type != AT_NULL)
1705			return (ENOEXEC);
1706		vsize = i + 1;
1707		size = vsize * sizeof(aux);
1708		break;
1709	default:
1710		KASSERT(0, ("Wrong proc vector type: %d", type));
1711		return (EINVAL); /* In case we are built without INVARIANTS. */
1712	}
1713	proc_vector = malloc(size, M_TEMP, M_WAITOK);
1714	if (proc_vector == NULL)
1715		return (ENOMEM);
1716	error = proc_read_mem(td, p, vptr, proc_vector, size);
1717	if (error != 0) {
1718		free(proc_vector, M_TEMP);
1719		return (error);
1720	}
1721	*proc_vectorp = proc_vector;
1722	*vsizep = vsize;
1723
1724	return (0);
1725}
1726
1727#define GET_PS_STRINGS_CHUNK_SZ	256	/* Chunk size (bytes) for ps_strings operations. */
1728
1729static int
1730get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
1731    enum proc_vector_type type)
1732{
1733	size_t done, len, nchr, vsize;
1734	int error, i;
1735	char **proc_vector, *sptr;
1736	char pss_string[GET_PS_STRINGS_CHUNK_SZ];
1737
1738	PROC_ASSERT_HELD(p);
1739
1740	/*
1741	 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
1742	 */
1743	nchr = 2 * (PATH_MAX + ARG_MAX);
1744
1745	error = get_proc_vector(td, p, &proc_vector, &vsize, type);
1746	if (error != 0)
1747		return (error);
1748	for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
1749		/*
1750		 * The program may have scribbled into its argv array, e.g. to
1751		 * remove some arguments.  If that has happened, break out
1752		 * before trying to read from NULL.
1753		 */
1754		if (proc_vector[i] == NULL)
1755			break;
1756		for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
1757			error = proc_read_string(td, p, sptr, pss_string,
1758			    sizeof(pss_string));
1759			if (error != 0)
1760				goto done;
1761			len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
1762			if (done + len >= nchr)
1763				len = nchr - done - 1;
1764			sbuf_bcat(sb, pss_string, len);
1765			if (len != GET_PS_STRINGS_CHUNK_SZ)
1766				break;
1767			done += GET_PS_STRINGS_CHUNK_SZ;
1768		}
1769		sbuf_bcat(sb, "", 1);
1770		done += len + 1;
1771	}
1772done:
1773	free(proc_vector, M_TEMP);
1774	return (error);
1775}
1776
1777int
1778proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
1779{
1780
1781	return (get_ps_strings(curthread, p, sb, PROC_ARG));
1782}
1783
1784int
1785proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
1786{
1787
1788	return (get_ps_strings(curthread, p, sb, PROC_ENV));
1789}
1790
1791int
1792proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
1793{
1794	size_t vsize, size;
1795	char **auxv;
1796	int error;
1797
1798	error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
1799	if (error == 0) {
1800#ifdef COMPAT_FREEBSD32
1801		if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1802			size = vsize * sizeof(Elf32_Auxinfo);
1803		else
1804#endif
1805			size = vsize * sizeof(Elf_Auxinfo);
1806		if (sbuf_bcat(sb, auxv, size) != 0)
1807			error = ENOMEM;
1808		free(auxv, M_TEMP);
1809	}
1810	return (error);
1811}
1812
1813/*
1814 * This sysctl allows a process to retrieve the argument list or process
1815 * title for another process without groping around in the address space
1816 * of the other process.  It also allow a process to set its own "process
1817 * title to a string of its own choice.
1818 */
1819static int
1820sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1821{
1822	int *name = (int *)arg1;
1823	u_int namelen = arg2;
1824	struct pargs *newpa, *pa;
1825	struct proc *p;
1826	struct sbuf sb;
1827	int flags, error = 0, error2;
1828
1829	if (namelen != 1)
1830		return (EINVAL);
1831
1832	flags = PGET_CANSEE;
1833	if (req->newptr != NULL)
1834		flags |= PGET_ISCURRENT;
1835	error = pget((pid_t)name[0], flags, &p);
1836	if (error)
1837		return (error);
1838
1839	pa = p->p_args;
1840	if (pa != NULL) {
1841		pargs_hold(pa);
1842		PROC_UNLOCK(p);
1843		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1844		pargs_drop(pa);
1845	} else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
1846		_PHOLD(p);
1847		PROC_UNLOCK(p);
1848		sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1849		error = proc_getargv(curthread, p, &sb);
1850		error2 = sbuf_finish(&sb);
1851		PRELE(p);
1852		sbuf_delete(&sb);
1853		if (error == 0 && error2 != 0)
1854			error = error2;
1855	} else {
1856		PROC_UNLOCK(p);
1857	}
1858	if (error != 0 || req->newptr == NULL)
1859		return (error);
1860
1861	if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs))
1862		return (ENOMEM);
1863	newpa = pargs_alloc(req->newlen);
1864	error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
1865	if (error != 0) {
1866		pargs_free(newpa);
1867		return (error);
1868	}
1869	PROC_LOCK(p);
1870	pa = p->p_args;
1871	p->p_args = newpa;
1872	PROC_UNLOCK(p);
1873	pargs_drop(pa);
1874	return (0);
1875}
1876
1877/*
1878 * This sysctl allows a process to retrieve environment of another process.
1879 */
1880static int
1881sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
1882{
1883	int *name = (int *)arg1;
1884	u_int namelen = arg2;
1885	struct proc *p;
1886	struct sbuf sb;
1887	int error, error2;
1888
1889	if (namelen != 1)
1890		return (EINVAL);
1891
1892	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1893	if (error != 0)
1894		return (error);
1895	if ((p->p_flag & P_SYSTEM) != 0) {
1896		PRELE(p);
1897		return (0);
1898	}
1899
1900	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1901	error = proc_getenvv(curthread, p, &sb);
1902	error2 = sbuf_finish(&sb);
1903	PRELE(p);
1904	sbuf_delete(&sb);
1905	return (error != 0 ? error : error2);
1906}
1907
1908/*
1909 * This sysctl allows a process to retrieve ELF auxiliary vector of
1910 * another process.
1911 */
1912static int
1913sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
1914{
1915	int *name = (int *)arg1;
1916	u_int namelen = arg2;
1917	struct proc *p;
1918	struct sbuf sb;
1919	int error, error2;
1920
1921	if (namelen != 1)
1922		return (EINVAL);
1923
1924	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1925	if (error != 0)
1926		return (error);
1927	if ((p->p_flag & P_SYSTEM) != 0) {
1928		PRELE(p);
1929		return (0);
1930	}
1931	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1932	error = proc_getauxv(curthread, p, &sb);
1933	error2 = sbuf_finish(&sb);
1934	PRELE(p);
1935	sbuf_delete(&sb);
1936	return (error != 0 ? error : error2);
1937}
1938
1939/*
1940 * This sysctl allows a process to retrieve the path of the executable for
1941 * itself or another process.
1942 */
1943static int
1944sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
1945{
1946	pid_t *pidp = (pid_t *)arg1;
1947	unsigned int arglen = arg2;
1948	struct proc *p;
1949	struct vnode *vp;
1950	char *retbuf, *freebuf;
1951	int error;
1952
1953	if (arglen != 1)
1954		return (EINVAL);
1955	if (*pidp == -1) {	/* -1 means this process */
1956		p = req->td->td_proc;
1957	} else {
1958		error = pget(*pidp, PGET_CANSEE, &p);
1959		if (error != 0)
1960			return (error);
1961	}
1962
1963	vp = p->p_textvp;
1964	if (vp == NULL) {
1965		if (*pidp != -1)
1966			PROC_UNLOCK(p);
1967		return (0);
1968	}
1969	vref(vp);
1970	if (*pidp != -1)
1971		PROC_UNLOCK(p);
1972	error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
1973	vrele(vp);
1974	if (error)
1975		return (error);
1976	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
1977	free(freebuf, M_TEMP);
1978	return (error);
1979}
1980
1981static int
1982sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
1983{
1984	struct proc *p;
1985	char *sv_name;
1986	int *name;
1987	int namelen;
1988	int error;
1989
1990	namelen = arg2;
1991	if (namelen != 1)
1992		return (EINVAL);
1993
1994	name = (int *)arg1;
1995	error = pget((pid_t)name[0], PGET_CANSEE, &p);
1996	if (error != 0)
1997		return (error);
1998	sv_name = p->p_sysent->sv_name;
1999	PROC_UNLOCK(p);
2000	return (sysctl_handle_string(oidp, sv_name, 0, req));
2001}
2002
2003#ifdef KINFO_OVMENTRY_SIZE
2004CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
2005#endif
2006
2007#ifdef COMPAT_FREEBSD7
2008static int
2009sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
2010{
2011	vm_map_entry_t entry, tmp_entry;
2012	unsigned int last_timestamp;
2013	char *fullpath, *freepath;
2014	struct kinfo_ovmentry *kve;
2015	struct vattr va;
2016	struct ucred *cred;
2017	int error, *name;
2018	struct vnode *vp;
2019	struct proc *p;
2020	vm_map_t map;
2021	struct vmspace *vm;
2022
2023	name = (int *)arg1;
2024	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2025	if (error != 0)
2026		return (error);
2027	vm = vmspace_acquire_ref(p);
2028	if (vm == NULL) {
2029		PRELE(p);
2030		return (ESRCH);
2031	}
2032	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
2033
2034	map = &vm->vm_map;
2035	vm_map_lock_read(map);
2036	for (entry = map->header.next; entry != &map->header;
2037	    entry = entry->next) {
2038		vm_object_t obj, tobj, lobj;
2039		vm_offset_t addr;
2040
2041		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2042			continue;
2043
2044		bzero(kve, sizeof(*kve));
2045		kve->kve_structsize = sizeof(*kve);
2046
2047		kve->kve_private_resident = 0;
2048		obj = entry->object.vm_object;
2049		if (obj != NULL) {
2050			VM_OBJECT_RLOCK(obj);
2051			if (obj->shadow_count == 1)
2052				kve->kve_private_resident =
2053				    obj->resident_page_count;
2054		}
2055		kve->kve_resident = 0;
2056		addr = entry->start;
2057		while (addr < entry->end) {
2058			if (pmap_extract(map->pmap, addr))
2059				kve->kve_resident++;
2060			addr += PAGE_SIZE;
2061		}
2062
2063		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
2064			if (tobj != obj) {
2065				VM_OBJECT_RLOCK(tobj);
2066				kve->kve_offset += tobj->backing_object_offset;
2067			}
2068			if (lobj != obj)
2069				VM_OBJECT_RUNLOCK(lobj);
2070			lobj = tobj;
2071		}
2072
2073		kve->kve_start = (void*)entry->start;
2074		kve->kve_end = (void*)entry->end;
2075		kve->kve_offset += (off_t)entry->offset;
2076
2077		if (entry->protection & VM_PROT_READ)
2078			kve->kve_protection |= KVME_PROT_READ;
2079		if (entry->protection & VM_PROT_WRITE)
2080			kve->kve_protection |= KVME_PROT_WRITE;
2081		if (entry->protection & VM_PROT_EXECUTE)
2082			kve->kve_protection |= KVME_PROT_EXEC;
2083
2084		if (entry->eflags & MAP_ENTRY_COW)
2085			kve->kve_flags |= KVME_FLAG_COW;
2086		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2087			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2088		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2089			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2090
2091		last_timestamp = map->timestamp;
2092		vm_map_unlock_read(map);
2093
2094		kve->kve_fileid = 0;
2095		kve->kve_fsid = 0;
2096		freepath = NULL;
2097		fullpath = "";
2098		if (lobj) {
2099			vp = NULL;
2100			switch (lobj->type) {
2101			case OBJT_DEFAULT:
2102				kve->kve_type = KVME_TYPE_DEFAULT;
2103				break;
2104			case OBJT_VNODE:
2105				kve->kve_type = KVME_TYPE_VNODE;
2106				vp = lobj->handle;
2107				vref(vp);
2108				break;
2109			case OBJT_SWAP:
2110				if ((lobj->flags & OBJ_TMPFS_NODE) != 0) {
2111					kve->kve_type = KVME_TYPE_VNODE;
2112					if ((lobj->flags & OBJ_TMPFS) != 0) {
2113						vp = lobj->un_pager.swp.swp_tmpfs;
2114						vref(vp);
2115					}
2116				} else {
2117					kve->kve_type = KVME_TYPE_SWAP;
2118				}
2119				break;
2120			case OBJT_DEVICE:
2121				kve->kve_type = KVME_TYPE_DEVICE;
2122				break;
2123			case OBJT_PHYS:
2124				kve->kve_type = KVME_TYPE_PHYS;
2125				break;
2126			case OBJT_DEAD:
2127				kve->kve_type = KVME_TYPE_DEAD;
2128				break;
2129			case OBJT_SG:
2130				kve->kve_type = KVME_TYPE_SG;
2131				break;
2132			default:
2133				kve->kve_type = KVME_TYPE_UNKNOWN;
2134				break;
2135			}
2136			if (lobj != obj)
2137				VM_OBJECT_RUNLOCK(lobj);
2138
2139			kve->kve_ref_count = obj->ref_count;
2140			kve->kve_shadow_count = obj->shadow_count;
2141			VM_OBJECT_RUNLOCK(obj);
2142			if (vp != NULL) {
2143				vn_fullpath(curthread, vp, &fullpath,
2144				    &freepath);
2145				cred = curthread->td_ucred;
2146				vn_lock(vp, LK_SHARED | LK_RETRY);
2147				if (VOP_GETATTR(vp, &va, cred) == 0) {
2148					kve->kve_fileid = va.va_fileid;
2149					kve->kve_fsid = va.va_fsid;
2150				}
2151				vput(vp);
2152			}
2153		} else {
2154			kve->kve_type = KVME_TYPE_NONE;
2155			kve->kve_ref_count = 0;
2156			kve->kve_shadow_count = 0;
2157		}
2158
2159		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2160		if (freepath != NULL)
2161			free(freepath, M_TEMP);
2162
2163		error = SYSCTL_OUT(req, kve, sizeof(*kve));
2164		vm_map_lock_read(map);
2165		if (error)
2166			break;
2167		if (last_timestamp != map->timestamp) {
2168			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2169			entry = tmp_entry;
2170		}
2171	}
2172	vm_map_unlock_read(map);
2173	vmspace_free(vm);
2174	PRELE(p);
2175	free(kve, M_TEMP);
2176	return (error);
2177}
2178#endif	/* COMPAT_FREEBSD7 */
2179
2180#ifdef KINFO_VMENTRY_SIZE
2181CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2182#endif
2183
2184static void
2185kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
2186    struct kinfo_vmentry *kve)
2187{
2188	vm_object_t obj, tobj;
2189	vm_page_t m, m_adv;
2190	vm_offset_t addr;
2191	vm_paddr_t locked_pa;
2192	vm_pindex_t pi, pi_adv, pindex;
2193
2194	locked_pa = 0;
2195	obj = entry->object.vm_object;
2196	addr = entry->start;
2197	m_adv = NULL;
2198	pi = OFF_TO_IDX(entry->offset);
2199	for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
2200		if (m_adv != NULL) {
2201			m = m_adv;
2202		} else {
2203			pi_adv = OFF_TO_IDX(entry->end - addr);
2204			pindex = pi;
2205			for (tobj = obj;; tobj = tobj->backing_object) {
2206				m = vm_page_find_least(tobj, pindex);
2207				if (m != NULL) {
2208					if (m->pindex == pindex)
2209						break;
2210					if (pi_adv > m->pindex - pindex) {
2211						pi_adv = m->pindex - pindex;
2212						m_adv = m;
2213					}
2214				}
2215				if (tobj->backing_object == NULL)
2216					goto next;
2217				pindex += OFF_TO_IDX(tobj->
2218				    backing_object_offset);
2219			}
2220		}
2221		m_adv = NULL;
2222		if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
2223		    (addr & (pagesizes[1] - 1)) == 0 &&
2224		    (pmap_mincore(map->pmap, addr, &locked_pa) &
2225		    MINCORE_SUPER) != 0) {
2226			kve->kve_flags |= KVME_FLAG_SUPER;
2227			pi_adv = OFF_TO_IDX(pagesizes[1]);
2228		} else {
2229			/*
2230			 * We do not test the found page on validity.
2231			 * Either the page is busy and being paged in,
2232			 * or it was invalidated.  The first case
2233			 * should be counted as resident, the second
2234			 * is not so clear; we do account both.
2235			 */
2236			pi_adv = 1;
2237		}
2238		kve->kve_resident += pi_adv;
2239next:;
2240	}
2241	PA_UNLOCK_COND(locked_pa);
2242}
2243
2244/*
2245 * Must be called with the process locked and will return unlocked.
2246 */
2247int
2248kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
2249{
2250	vm_map_entry_t entry, tmp_entry;
2251	struct vattr va;
2252	vm_map_t map;
2253	vm_object_t obj, tobj, lobj;
2254	char *fullpath, *freepath;
2255	struct kinfo_vmentry *kve;
2256	struct ucred *cred;
2257	struct vnode *vp;
2258	struct vmspace *vm;
2259	vm_offset_t addr;
2260	unsigned int last_timestamp;
2261	int error;
2262
2263	PROC_LOCK_ASSERT(p, MA_OWNED);
2264
2265	_PHOLD(p);
2266	PROC_UNLOCK(p);
2267	vm = vmspace_acquire_ref(p);
2268	if (vm == NULL) {
2269		PRELE(p);
2270		return (ESRCH);
2271	}
2272	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO);
2273
2274	error = 0;
2275	map = &vm->vm_map;
2276	vm_map_lock_read(map);
2277	for (entry = map->header.next; entry != &map->header;
2278	    entry = entry->next) {
2279		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2280			continue;
2281
2282		addr = entry->end;
2283		bzero(kve, sizeof(*kve));
2284		obj = entry->object.vm_object;
2285		if (obj != NULL) {
2286			for (tobj = obj; tobj != NULL;
2287			    tobj = tobj->backing_object) {
2288				VM_OBJECT_RLOCK(tobj);
2289				kve->kve_offset += tobj->backing_object_offset;
2290				lobj = tobj;
2291			}
2292			if (obj->backing_object == NULL)
2293				kve->kve_private_resident =
2294				    obj->resident_page_count;
2295			if (!vmmap_skip_res_cnt)
2296				kern_proc_vmmap_resident(map, entry, kve);
2297			for (tobj = obj; tobj != NULL;
2298			    tobj = tobj->backing_object) {
2299				if (tobj != obj && tobj != lobj)
2300					VM_OBJECT_RUNLOCK(tobj);
2301			}
2302		} else {
2303			lobj = NULL;
2304		}
2305
2306		kve->kve_start = entry->start;
2307		kve->kve_end = entry->end;
2308		kve->kve_offset += entry->offset;
2309
2310		if (entry->protection & VM_PROT_READ)
2311			kve->kve_protection |= KVME_PROT_READ;
2312		if (entry->protection & VM_PROT_WRITE)
2313			kve->kve_protection |= KVME_PROT_WRITE;
2314		if (entry->protection & VM_PROT_EXECUTE)
2315			kve->kve_protection |= KVME_PROT_EXEC;
2316
2317		if (entry->eflags & MAP_ENTRY_COW)
2318			kve->kve_flags |= KVME_FLAG_COW;
2319		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2320			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2321		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2322			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2323		if (entry->eflags & MAP_ENTRY_GROWS_UP)
2324			kve->kve_flags |= KVME_FLAG_GROWS_UP;
2325		if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
2326			kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
2327
2328		last_timestamp = map->timestamp;
2329		vm_map_unlock_read(map);
2330
2331		freepath = NULL;
2332		fullpath = "";
2333		if (lobj != NULL) {
2334			vp = NULL;
2335			switch (lobj->type) {
2336			case OBJT_DEFAULT:
2337				kve->kve_type = KVME_TYPE_DEFAULT;
2338				break;
2339			case OBJT_VNODE:
2340				kve->kve_type = KVME_TYPE_VNODE;
2341				vp = lobj->handle;
2342				vref(vp);
2343				break;
2344			case OBJT_SWAP:
2345				if ((lobj->flags & OBJ_TMPFS_NODE) != 0) {
2346					kve->kve_type = KVME_TYPE_VNODE;
2347					if ((lobj->flags & OBJ_TMPFS) != 0) {
2348						vp = lobj->un_pager.swp.swp_tmpfs;
2349						vref(vp);
2350					}
2351				} else {
2352					kve->kve_type = KVME_TYPE_SWAP;
2353				}
2354				break;
2355			case OBJT_DEVICE:
2356				kve->kve_type = KVME_TYPE_DEVICE;
2357				break;
2358			case OBJT_PHYS:
2359				kve->kve_type = KVME_TYPE_PHYS;
2360				break;
2361			case OBJT_DEAD:
2362				kve->kve_type = KVME_TYPE_DEAD;
2363				break;
2364			case OBJT_SG:
2365				kve->kve_type = KVME_TYPE_SG;
2366				break;
2367			case OBJT_MGTDEVICE:
2368				kve->kve_type = KVME_TYPE_MGTDEVICE;
2369				break;
2370			default:
2371				kve->kve_type = KVME_TYPE_UNKNOWN;
2372				break;
2373			}
2374			if (lobj != obj)
2375				VM_OBJECT_RUNLOCK(lobj);
2376
2377			kve->kve_ref_count = obj->ref_count;
2378			kve->kve_shadow_count = obj->shadow_count;
2379			VM_OBJECT_RUNLOCK(obj);
2380			if (vp != NULL) {
2381				vn_fullpath(curthread, vp, &fullpath,
2382				    &freepath);
2383				kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
2384				cred = curthread->td_ucred;
2385				vn_lock(vp, LK_SHARED | LK_RETRY);
2386				if (VOP_GETATTR(vp, &va, cred) == 0) {
2387					kve->kve_vn_fileid = va.va_fileid;
2388					kve->kve_vn_fsid = va.va_fsid;
2389					kve->kve_vn_mode =
2390					    MAKEIMODE(va.va_type, va.va_mode);
2391					kve->kve_vn_size = va.va_size;
2392					kve->kve_vn_rdev = va.va_rdev;
2393					kve->kve_status = KF_ATTR_VALID;
2394				}
2395				vput(vp);
2396			}
2397		} else {
2398			kve->kve_type = KVME_TYPE_NONE;
2399			kve->kve_ref_count = 0;
2400			kve->kve_shadow_count = 0;
2401		}
2402
2403		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2404		if (freepath != NULL)
2405			free(freepath, M_TEMP);
2406
2407		/* Pack record size down */
2408		if ((flags & KERN_VMMAP_PACK_KINFO) != 0)
2409			kve->kve_structsize =
2410			    offsetof(struct kinfo_vmentry, kve_path) +
2411			    strlen(kve->kve_path) + 1;
2412		else
2413			kve->kve_structsize = sizeof(*kve);
2414		kve->kve_structsize = roundup(kve->kve_structsize,
2415		    sizeof(uint64_t));
2416
2417		/* Halt filling and truncate rather than exceeding maxlen */
2418		if (maxlen != -1 && maxlen < kve->kve_structsize) {
2419			error = 0;
2420			vm_map_lock_read(map);
2421			break;
2422		} else if (maxlen != -1)
2423			maxlen -= kve->kve_structsize;
2424
2425		if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
2426			error = ENOMEM;
2427		vm_map_lock_read(map);
2428		if (error != 0)
2429			break;
2430		if (last_timestamp != map->timestamp) {
2431			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2432			entry = tmp_entry;
2433		}
2434	}
2435	vm_map_unlock_read(map);
2436	vmspace_free(vm);
2437	PRELE(p);
2438	free(kve, M_TEMP);
2439	return (error);
2440}
2441
2442static int
2443sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
2444{
2445	struct proc *p;
2446	struct sbuf sb;
2447	int error, error2, *name;
2448
2449	name = (int *)arg1;
2450	sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
2451	error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
2452	if (error != 0) {
2453		sbuf_delete(&sb);
2454		return (error);
2455	}
2456	error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO);
2457	error2 = sbuf_finish(&sb);
2458	sbuf_delete(&sb);
2459	return (error != 0 ? error : error2);
2460}
2461
2462#if defined(STACK) || defined(DDB)
2463static int
2464sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
2465{
2466	struct kinfo_kstack *kkstp;
2467	int error, i, *name, numthreads;
2468	lwpid_t *lwpidarray;
2469	struct thread *td;
2470	struct stack *st;
2471	struct sbuf sb;
2472	struct proc *p;
2473
2474	name = (int *)arg1;
2475	error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
2476	if (error != 0)
2477		return (error);
2478
2479	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
2480	st = stack_create();
2481
2482	lwpidarray = NULL;
2483	PROC_LOCK(p);
2484	do {
2485		if (lwpidarray != NULL) {
2486			free(lwpidarray, M_TEMP);
2487			lwpidarray = NULL;
2488		}
2489		numthreads = p->p_numthreads;
2490		PROC_UNLOCK(p);
2491		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
2492		    M_WAITOK | M_ZERO);
2493		PROC_LOCK(p);
2494	} while (numthreads < p->p_numthreads);
2495
2496	/*
2497	 * XXXRW: During the below loop, execve(2) and countless other sorts
2498	 * of changes could have taken place.  Should we check to see if the
2499	 * vmspace has been replaced, or the like, in order to prevent
2500	 * giving a snapshot that spans, say, execve(2), with some threads
2501	 * before and some after?  Among other things, the credentials could
2502	 * have changed, in which case the right to extract debug info might
2503	 * no longer be assured.
2504	 */
2505	i = 0;
2506	FOREACH_THREAD_IN_PROC(p, td) {
2507		KASSERT(i < numthreads,
2508		    ("sysctl_kern_proc_kstack: numthreads"));
2509		lwpidarray[i] = td->td_tid;
2510		i++;
2511	}
2512	numthreads = i;
2513	for (i = 0; i < numthreads; i++) {
2514		td = thread_find(p, lwpidarray[i]);
2515		if (td == NULL) {
2516			continue;
2517		}
2518		bzero(kkstp, sizeof(*kkstp));
2519		(void)sbuf_new(&sb, kkstp->kkst_trace,
2520		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
2521		thread_lock(td);
2522		kkstp->kkst_tid = td->td_tid;
2523		if (TD_IS_SWAPPED(td))
2524			kkstp->kkst_state = KKST_STATE_SWAPPED;
2525		else if (TD_IS_RUNNING(td))
2526			kkstp->kkst_state = KKST_STATE_RUNNING;
2527		else {
2528			kkstp->kkst_state = KKST_STATE_STACKOK;
2529			stack_save_td(st, td);
2530		}
2531		thread_unlock(td);
2532		PROC_UNLOCK(p);
2533		stack_sbuf_print(&sb, st);
2534		sbuf_finish(&sb);
2535		sbuf_delete(&sb);
2536		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
2537		PROC_LOCK(p);
2538		if (error)
2539			break;
2540	}
2541	_PRELE(p);
2542	PROC_UNLOCK(p);
2543	if (lwpidarray != NULL)
2544		free(lwpidarray, M_TEMP);
2545	stack_destroy(st);
2546	free(kkstp, M_TEMP);
2547	return (error);
2548}
2549#endif
2550
2551/*
2552 * This sysctl allows a process to retrieve the full list of groups from
2553 * itself or another process.
2554 */
2555static int
2556sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
2557{
2558	pid_t *pidp = (pid_t *)arg1;
2559	unsigned int arglen = arg2;
2560	struct proc *p;
2561	struct ucred *cred;
2562	int error;
2563
2564	if (arglen != 1)
2565		return (EINVAL);
2566	if (*pidp == -1) {	/* -1 means this process */
2567		p = req->td->td_proc;
2568	} else {
2569		error = pget(*pidp, PGET_CANSEE, &p);
2570		if (error != 0)
2571			return (error);
2572	}
2573
2574	cred = crhold(p->p_ucred);
2575	if (*pidp != -1)
2576		PROC_UNLOCK(p);
2577
2578	error = SYSCTL_OUT(req, cred->cr_groups,
2579	    cred->cr_ngroups * sizeof(gid_t));
2580	crfree(cred);
2581	return (error);
2582}
2583
2584/*
2585 * This sysctl allows a process to retrieve or/and set the resource limit for
2586 * another process.
2587 */
2588static int
2589sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
2590{
2591	int *name = (int *)arg1;
2592	u_int namelen = arg2;
2593	struct rlimit rlim;
2594	struct proc *p;
2595	u_int which;
2596	int flags, error;
2597
2598	if (namelen != 2)
2599		return (EINVAL);
2600
2601	which = (u_int)name[1];
2602	if (which >= RLIM_NLIMITS)
2603		return (EINVAL);
2604
2605	if (req->newptr != NULL && req->newlen != sizeof(rlim))
2606		return (EINVAL);
2607
2608	flags = PGET_HOLD | PGET_NOTWEXIT;
2609	if (req->newptr != NULL)
2610		flags |= PGET_CANDEBUG;
2611	else
2612		flags |= PGET_CANSEE;
2613	error = pget((pid_t)name[0], flags, &p);
2614	if (error != 0)
2615		return (error);
2616
2617	/*
2618	 * Retrieve limit.
2619	 */
2620	if (req->oldptr != NULL) {
2621		PROC_LOCK(p);
2622		lim_rlimit(p, which, &rlim);
2623		PROC_UNLOCK(p);
2624	}
2625	error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
2626	if (error != 0)
2627		goto errout;
2628
2629	/*
2630	 * Set limit.
2631	 */
2632	if (req->newptr != NULL) {
2633		error = SYSCTL_IN(req, &rlim, sizeof(rlim));
2634		if (error == 0)
2635			error = kern_proc_setrlimit(curthread, p, which, &rlim);
2636	}
2637
2638errout:
2639	PRELE(p);
2640	return (error);
2641}
2642
2643/*
2644 * This sysctl allows a process to retrieve ps_strings structure location of
2645 * another process.
2646 */
2647static int
2648sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
2649{
2650	int *name = (int *)arg1;
2651	u_int namelen = arg2;
2652	struct proc *p;
2653	vm_offset_t ps_strings;
2654	int error;
2655#ifdef COMPAT_FREEBSD32
2656	uint32_t ps_strings32;
2657#endif
2658
2659	if (namelen != 1)
2660		return (EINVAL);
2661
2662	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2663	if (error != 0)
2664		return (error);
2665#ifdef COMPAT_FREEBSD32
2666	if ((req->flags & SCTL_MASK32) != 0) {
2667		/*
2668		 * We return 0 if the 32 bit emulation request is for a 64 bit
2669		 * process.
2670		 */
2671		ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
2672		    PTROUT(p->p_sysent->sv_psstrings) : 0;
2673		PROC_UNLOCK(p);
2674		error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
2675		return (error);
2676	}
2677#endif
2678	ps_strings = p->p_sysent->sv_psstrings;
2679	PROC_UNLOCK(p);
2680	error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
2681	return (error);
2682}
2683
2684/*
2685 * This sysctl allows a process to retrieve umask of another process.
2686 */
2687static int
2688sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
2689{
2690	int *name = (int *)arg1;
2691	u_int namelen = arg2;
2692	struct proc *p;
2693	int error;
2694	u_short fd_cmask;
2695
2696	if (namelen != 1)
2697		return (EINVAL);
2698
2699	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2700	if (error != 0)
2701		return (error);
2702
2703	FILEDESC_SLOCK(p->p_fd);
2704	fd_cmask = p->p_fd->fd_cmask;
2705	FILEDESC_SUNLOCK(p->p_fd);
2706	PRELE(p);
2707	error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask));
2708	return (error);
2709}
2710
2711/*
2712 * This sysctl allows a process to set and retrieve binary osreldate of
2713 * another process.
2714 */
2715static int
2716sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
2717{
2718	int *name = (int *)arg1;
2719	u_int namelen = arg2;
2720	struct proc *p;
2721	int flags, error, osrel;
2722
2723	if (namelen != 1)
2724		return (EINVAL);
2725
2726	if (req->newptr != NULL && req->newlen != sizeof(osrel))
2727		return (EINVAL);
2728
2729	flags = PGET_HOLD | PGET_NOTWEXIT;
2730	if (req->newptr != NULL)
2731		flags |= PGET_CANDEBUG;
2732	else
2733		flags |= PGET_CANSEE;
2734	error = pget((pid_t)name[0], flags, &p);
2735	if (error != 0)
2736		return (error);
2737
2738	error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
2739	if (error != 0)
2740		goto errout;
2741
2742	if (req->newptr != NULL) {
2743		error = SYSCTL_IN(req, &osrel, sizeof(osrel));
2744		if (error != 0)
2745			goto errout;
2746		if (osrel < 0) {
2747			error = EINVAL;
2748			goto errout;
2749		}
2750		p->p_osrel = osrel;
2751	}
2752errout:
2753	PRELE(p);
2754	return (error);
2755}
2756
2757static int
2758sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
2759{
2760	int *name = (int *)arg1;
2761	u_int namelen = arg2;
2762	struct proc *p;
2763	struct kinfo_sigtramp kst;
2764	const struct sysentvec *sv;
2765	int error;
2766#ifdef COMPAT_FREEBSD32
2767	struct kinfo_sigtramp32 kst32;
2768#endif
2769
2770	if (namelen != 1)
2771		return (EINVAL);
2772
2773	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2774	if (error != 0)
2775		return (error);
2776	sv = p->p_sysent;
2777#ifdef COMPAT_FREEBSD32
2778	if ((req->flags & SCTL_MASK32) != 0) {
2779		bzero(&kst32, sizeof(kst32));
2780		if (SV_PROC_FLAG(p, SV_ILP32)) {
2781			if (sv->sv_sigcode_base != 0) {
2782				kst32.ksigtramp_start = sv->sv_sigcode_base;
2783				kst32.ksigtramp_end = sv->sv_sigcode_base +
2784				    *sv->sv_szsigcode;
2785			} else {
2786				kst32.ksigtramp_start = sv->sv_psstrings -
2787				    *sv->sv_szsigcode;
2788				kst32.ksigtramp_end = sv->sv_psstrings;
2789			}
2790		}
2791		PROC_UNLOCK(p);
2792		error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
2793		return (error);
2794	}
2795#endif
2796	bzero(&kst, sizeof(kst));
2797	if (sv->sv_sigcode_base != 0) {
2798		kst.ksigtramp_start = (char *)sv->sv_sigcode_base;
2799		kst.ksigtramp_end = (char *)sv->sv_sigcode_base +
2800		    *sv->sv_szsigcode;
2801	} else {
2802		kst.ksigtramp_start = (char *)sv->sv_psstrings -
2803		    *sv->sv_szsigcode;
2804		kst.ksigtramp_end = (char *)sv->sv_psstrings;
2805	}
2806	PROC_UNLOCK(p);
2807	error = SYSCTL_OUT(req, &kst, sizeof(kst));
2808	return (error);
2809}
2810
2811SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
2812
2813SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
2814	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
2815	"Return entire process table");
2816
2817static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2818	sysctl_kern_proc, "Process table");
2819
2820static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
2821	sysctl_kern_proc, "Process table");
2822
2823static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2824	sysctl_kern_proc, "Process table");
2825
2826static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
2827	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2828
2829static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
2830	sysctl_kern_proc, "Process table");
2831
2832static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2833	sysctl_kern_proc, "Process table");
2834
2835static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2836	sysctl_kern_proc, "Process table");
2837
2838static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2839	sysctl_kern_proc, "Process table");
2840
2841static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
2842	sysctl_kern_proc, "Return process table, no threads");
2843
2844static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
2845	CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
2846	sysctl_kern_proc_args, "Process argument list");
2847
2848static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
2849	sysctl_kern_proc_env, "Process environment");
2850
2851static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
2852	CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
2853
2854static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
2855	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
2856
2857static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
2858	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
2859	"Process syscall vector name (ABI type)");
2860
2861static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
2862	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2863
2864static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
2865	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2866
2867static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
2868	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2869
2870static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
2871	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2872
2873static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
2874	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2875
2876static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
2877	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2878
2879static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
2880	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2881
2882static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
2883	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2884
2885static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
2886	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
2887	"Return process table, no threads");
2888
2889#ifdef COMPAT_FREEBSD7
2890static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
2891	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
2892#endif
2893
2894static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
2895	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
2896
2897#if defined(STACK) || defined(DDB)
2898static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
2899	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
2900#endif
2901
2902static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
2903	CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
2904
2905static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
2906	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
2907	"Process resource limits");
2908
2909static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
2910	CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
2911	"Process ps_strings location");
2912
2913static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
2914	CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
2915
2916static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
2917	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
2918	"Process binary osreldate");
2919
2920static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
2921	CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
2922	"Process signal trampoline location");
2923
2924int allproc_gen;
2925
2926/*
2927 * stop_all_proc() purpose is to stop all process which have usermode,
2928 * except current process for obvious reasons.  This makes it somewhat
2929 * unreliable when invoked from multithreaded process.  The service
2930 * must not be user-callable anyway.
2931 */
2932void
2933stop_all_proc(void)
2934{
2935	struct proc *cp, *p;
2936	int r, gen;
2937	bool restart, seen_stopped, seen_exiting, stopped_some;
2938
2939	cp = curproc;
2940allproc_loop:
2941	sx_xlock(&allproc_lock);
2942	gen = allproc_gen;
2943	seen_exiting = seen_stopped = stopped_some = restart = false;
2944	LIST_REMOVE(cp, p_list);
2945	LIST_INSERT_HEAD(&allproc, cp, p_list);
2946	for (;;) {
2947		p = LIST_NEXT(cp, p_list);
2948		if (p == NULL)
2949			break;
2950		LIST_REMOVE(cp, p_list);
2951		LIST_INSERT_AFTER(p, cp, p_list);
2952		PROC_LOCK(p);
2953		if ((p->p_flag & (P_KTHREAD | P_SYSTEM |
2954		    P_TOTAL_STOP)) != 0) {
2955			PROC_UNLOCK(p);
2956			continue;
2957		}
2958		if ((p->p_flag & P_WEXIT) != 0) {
2959			seen_exiting = true;
2960			PROC_UNLOCK(p);
2961			continue;
2962		}
2963		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
2964			/*
2965			 * Stopped processes are tolerated when there
2966			 * are no other processes which might continue
2967			 * them.  P_STOPPED_SINGLE but not
2968			 * P_TOTAL_STOP process still has at least one
2969			 * thread running.
2970			 */
2971			seen_stopped = true;
2972			PROC_UNLOCK(p);
2973			continue;
2974		}
2975		_PHOLD(p);
2976		sx_xunlock(&allproc_lock);
2977		r = thread_single(p, SINGLE_ALLPROC);
2978		if (r != 0)
2979			restart = true;
2980		else
2981			stopped_some = true;
2982		_PRELE(p);
2983		PROC_UNLOCK(p);
2984		sx_xlock(&allproc_lock);
2985	}
2986	/* Catch forked children we did not see in iteration. */
2987	if (gen != allproc_gen)
2988		restart = true;
2989	sx_xunlock(&allproc_lock);
2990	if (restart || stopped_some || seen_exiting || seen_stopped) {
2991		kern_yield(PRI_USER);
2992		goto allproc_loop;
2993	}
2994}
2995
2996void
2997resume_all_proc(void)
2998{
2999	struct proc *cp, *p;
3000
3001	cp = curproc;
3002	sx_xlock(&allproc_lock);
3003	LIST_REMOVE(cp, p_list);
3004	LIST_INSERT_HEAD(&allproc, cp, p_list);
3005	for (;;) {
3006		p = LIST_NEXT(cp, p_list);
3007		if (p == NULL)
3008			break;
3009		LIST_REMOVE(cp, p_list);
3010		LIST_INSERT_AFTER(p, cp, p_list);
3011		PROC_LOCK(p);
3012		if ((p->p_flag & P_TOTAL_STOP) != 0) {
3013			sx_xunlock(&allproc_lock);
3014			_PHOLD(p);
3015			thread_single_end(p, SINGLE_ALLPROC);
3016			_PRELE(p);
3017			PROC_UNLOCK(p);
3018			sx_xlock(&allproc_lock);
3019		} else {
3020			PROC_UNLOCK(p);
3021		}
3022	}
3023	sx_xunlock(&allproc_lock);
3024}
3025
3026/* #define	TOTAL_STOP_DEBUG	1 */
3027#ifdef TOTAL_STOP_DEBUG
3028volatile static int ap_resume;
3029#include <sys/mount.h>
3030
3031static int
3032sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
3033{
3034	int error, val;
3035
3036	val = 0;
3037	ap_resume = 0;
3038	error = sysctl_handle_int(oidp, &val, 0, req);
3039	if (error != 0 || req->newptr == NULL)
3040		return (error);
3041	if (val != 0) {
3042		stop_all_proc();
3043		syncer_suspend();
3044		while (ap_resume == 0)
3045			;
3046		syncer_resume();
3047		resume_all_proc();
3048	}
3049	return (0);
3050}
3051
3052SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
3053    CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
3054    sysctl_debug_stop_all_proc, "I",
3055    "");
3056#endif
3057