kern_proc.c revision 302237
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: stable/10/sys/kern/kern_proc.c 302237 2016-06-27 22:10:07Z bdrewery $");
34
35#include "opt_compat.h"
36#include "opt_ddb.h"
37#include "opt_kdtrace.h"
38#include "opt_ktrace.h"
39#include "opt_kstack_pages.h"
40#include "opt_stack.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/elf.h>
45#include <sys/exec.h>
46#include <sys/kernel.h>
47#include <sys/limits.h>
48#include <sys/lock.h>
49#include <sys/loginclass.h>
50#include <sys/malloc.h>
51#include <sys/mman.h>
52#include <sys/mount.h>
53#include <sys/mutex.h>
54#include <sys/proc.h>
55#include <sys/ptrace.h>
56#include <sys/refcount.h>
57#include <sys/resourcevar.h>
58#include <sys/rwlock.h>
59#include <sys/sbuf.h>
60#include <sys/sysent.h>
61#include <sys/sched.h>
62#include <sys/smp.h>
63#include <sys/stack.h>
64#include <sys/stat.h>
65#include <sys/sysctl.h>
66#include <sys/filedesc.h>
67#include <sys/tty.h>
68#include <sys/signalvar.h>
69#include <sys/sdt.h>
70#include <sys/sx.h>
71#include <sys/user.h>
72#include <sys/jail.h>
73#include <sys/vnode.h>
74#include <sys/eventhandler.h>
75
76#ifdef DDB
77#include <ddb/ddb.h>
78#endif
79
80#include <vm/vm.h>
81#include <vm/vm_param.h>
82#include <vm/vm_extern.h>
83#include <vm/pmap.h>
84#include <vm/vm_map.h>
85#include <vm/vm_object.h>
86#include <vm/vm_page.h>
87#include <vm/uma.h>
88
89#ifdef COMPAT_FREEBSD32
90#include <compat/freebsd32/freebsd32.h>
91#include <compat/freebsd32/freebsd32_util.h>
92#endif
93
94SDT_PROVIDER_DEFINE(proc);
95SDT_PROBE_DEFINE4(proc, , ctor, entry, "struct proc *", "int", "void *",
96    "int");
97SDT_PROBE_DEFINE4(proc, , ctor, return, "struct proc *", "int", "void *",
98    "int");
99SDT_PROBE_DEFINE4(proc, , dtor, entry, "struct proc *", "int", "void *",
100    "struct thread *");
101SDT_PROBE_DEFINE3(proc, , dtor, return, "struct proc *", "int", "void *");
102SDT_PROBE_DEFINE3(proc, , init, entry, "struct proc *", "int", "int");
103SDT_PROBE_DEFINE3(proc, , init, return, "struct proc *", "int", "int");
104
105MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
106MALLOC_DEFINE(M_SESSION, "session", "session header");
107static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
108MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
109
110static void doenterpgrp(struct proc *, struct pgrp *);
111static void orphanpg(struct pgrp *pg);
112static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
113static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
114static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
115    int preferthread);
116static void pgadjustjobc(struct pgrp *pgrp, int entering);
117static void pgdelete(struct pgrp *);
118static int proc_ctor(void *mem, int size, void *arg, int flags);
119static void proc_dtor(void *mem, int size, void *arg);
120static int proc_init(void *mem, int size, int flags);
121static void proc_fini(void *mem, int size);
122static void pargs_free(struct pargs *pa);
123static struct proc *zpfind_locked(pid_t pid);
124
125/*
126 * Other process lists
127 */
128struct pidhashhead *pidhashtbl;
129u_long pidhash;
130struct pgrphashhead *pgrphashtbl;
131u_long pgrphash;
132struct proclist allproc;
133struct proclist zombproc;
134struct sx allproc_lock;
135struct sx proctree_lock;
136struct mtx ppeers_lock;
137uma_zone_t proc_zone;
138
139/*
140 * The offset of various fields in struct proc and struct thread.
141 * These are used by kernel debuggers to enumerate kernel threads and
142 * processes.
143 */
144const int proc_off_p_pid = offsetof(struct proc, p_pid);
145const int proc_off_p_comm = offsetof(struct proc, p_comm);
146const int proc_off_p_list = offsetof(struct proc, p_list);
147const int proc_off_p_threads = offsetof(struct proc, p_threads);
148const int thread_off_td_tid = offsetof(struct thread, td_tid);
149const int thread_off_td_name = offsetof(struct thread, td_name);
150const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu);
151const int thread_off_td_pcb = offsetof(struct thread, td_pcb);
152const int thread_off_td_plist = offsetof(struct thread, td_plist);
153
154int kstack_pages = KSTACK_PAGES;
155SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
156    "Kernel stack size in pages");
157static int vmmap_skip_res_cnt = 0;
158SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
159    &vmmap_skip_res_cnt, 0,
160    "Skip calculation of the pages resident count in kern.proc.vmmap");
161
162CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
163#ifdef COMPAT_FREEBSD32
164CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
165#endif
166
167/*
168 * Initialize global process hashing structures.
169 */
170void
171procinit()
172{
173
174	sx_init(&allproc_lock, "allproc");
175	sx_init(&proctree_lock, "proctree");
176	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
177	LIST_INIT(&allproc);
178	LIST_INIT(&zombproc);
179	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
180	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
181	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
182	    proc_ctor, proc_dtor, proc_init, proc_fini,
183	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
184	uihashinit();
185}
186
187/*
188 * Prepare a proc for use.
189 */
190static int
191proc_ctor(void *mem, int size, void *arg, int flags)
192{
193	struct proc *p;
194
195	p = (struct proc *)mem;
196	SDT_PROBE4(proc, , ctor , entry, p, size, arg, flags);
197	EVENTHANDLER_INVOKE(process_ctor, p);
198	SDT_PROBE4(proc, , ctor , return, p, size, arg, flags);
199	return (0);
200}
201
202/*
203 * Reclaim a proc after use.
204 */
205static void
206proc_dtor(void *mem, int size, void *arg)
207{
208	struct proc *p;
209	struct thread *td;
210
211	/* INVARIANTS checks go here */
212	p = (struct proc *)mem;
213	td = FIRST_THREAD_IN_PROC(p);
214	SDT_PROBE4(proc, , dtor, entry, p, size, arg, td);
215	if (td != NULL) {
216#ifdef INVARIANTS
217		KASSERT((p->p_numthreads == 1),
218		    ("bad number of threads in exiting process"));
219		KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
220#endif
221		/* Free all OSD associated to this thread. */
222		osd_thread_exit(td);
223	}
224	EVENTHANDLER_INVOKE(process_dtor, p);
225	if (p->p_ksi != NULL)
226		KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
227	SDT_PROBE3(proc, , dtor, return, p, size, arg);
228}
229
230/*
231 * Initialize type-stable parts of a proc (when newly created).
232 */
233static int
234proc_init(void *mem, int size, int flags)
235{
236	struct proc *p;
237
238	p = (struct proc *)mem;
239	SDT_PROBE3(proc, , init, entry, p, size, flags);
240	p->p_sched = (struct p_sched *)&p[1];
241	bzero(&p->p_mtx, sizeof(struct mtx));
242	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
243	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE);
244	cv_init(&p->p_pwait, "ppwait");
245	cv_init(&p->p_dbgwait, "dbgwait");
246	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
247	EVENTHANDLER_INVOKE(process_init, p);
248	p->p_stats = pstats_alloc();
249	p->p_pgrp = NULL;
250	SDT_PROBE3(proc, , init, return, p, size, flags);
251	return (0);
252}
253
254/*
255 * UMA should ensure that this function is never called.
256 * Freeing a proc structure would violate type stability.
257 */
258static void
259proc_fini(void *mem, int size)
260{
261#ifdef notnow
262	struct proc *p;
263
264	p = (struct proc *)mem;
265	EVENTHANDLER_INVOKE(process_fini, p);
266	pstats_free(p->p_stats);
267	thread_free(FIRST_THREAD_IN_PROC(p));
268	mtx_destroy(&p->p_mtx);
269	if (p->p_ksi != NULL)
270		ksiginfo_free(p->p_ksi);
271#else
272	panic("proc reclaimed");
273#endif
274}
275
276/*
277 * Is p an inferior of the current process?
278 */
279int
280inferior(struct proc *p)
281{
282
283	sx_assert(&proctree_lock, SX_LOCKED);
284	PROC_LOCK_ASSERT(p, MA_OWNED);
285	for (; p != curproc; p = proc_realparent(p)) {
286		if (p->p_pid == 0)
287			return (0);
288	}
289	return (1);
290}
291
292struct proc *
293pfind_locked(pid_t pid)
294{
295	struct proc *p;
296
297	sx_assert(&allproc_lock, SX_LOCKED);
298	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
299		if (p->p_pid == pid) {
300			PROC_LOCK(p);
301			if (p->p_state == PRS_NEW) {
302				PROC_UNLOCK(p);
303				p = NULL;
304			}
305			break;
306		}
307	}
308	return (p);
309}
310
311/*
312 * Locate a process by number; return only "live" processes -- i.e., neither
313 * zombies nor newly born but incompletely initialized processes.  By not
314 * returning processes in the PRS_NEW state, we allow callers to avoid
315 * testing for that condition to avoid dereferencing p_ucred, et al.
316 */
317struct proc *
318pfind(pid_t pid)
319{
320	struct proc *p;
321
322	sx_slock(&allproc_lock);
323	p = pfind_locked(pid);
324	sx_sunlock(&allproc_lock);
325	return (p);
326}
327
328static struct proc *
329pfind_tid_locked(pid_t tid)
330{
331	struct proc *p;
332	struct thread *td;
333
334	sx_assert(&allproc_lock, SX_LOCKED);
335	FOREACH_PROC_IN_SYSTEM(p) {
336		PROC_LOCK(p);
337		if (p->p_state == PRS_NEW) {
338			PROC_UNLOCK(p);
339			continue;
340		}
341		FOREACH_THREAD_IN_PROC(p, td) {
342			if (td->td_tid == tid)
343				goto found;
344		}
345		PROC_UNLOCK(p);
346	}
347found:
348	return (p);
349}
350
351/*
352 * Locate a process group by number.
353 * The caller must hold proctree_lock.
354 */
355struct pgrp *
356pgfind(pgid)
357	register pid_t pgid;
358{
359	register struct pgrp *pgrp;
360
361	sx_assert(&proctree_lock, SX_LOCKED);
362
363	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
364		if (pgrp->pg_id == pgid) {
365			PGRP_LOCK(pgrp);
366			return (pgrp);
367		}
368	}
369	return (NULL);
370}
371
372/*
373 * Locate process and do additional manipulations, depending on flags.
374 */
375int
376pget(pid_t pid, int flags, struct proc **pp)
377{
378	struct proc *p;
379	int error;
380
381	sx_slock(&allproc_lock);
382	if (pid <= PID_MAX) {
383		p = pfind_locked(pid);
384		if (p == NULL && (flags & PGET_NOTWEXIT) == 0)
385			p = zpfind_locked(pid);
386	} else if ((flags & PGET_NOTID) == 0) {
387		p = pfind_tid_locked(pid);
388	} else {
389		p = NULL;
390	}
391	sx_sunlock(&allproc_lock);
392	if (p == NULL)
393		return (ESRCH);
394	if ((flags & PGET_CANSEE) != 0) {
395		error = p_cansee(curthread, p);
396		if (error != 0)
397			goto errout;
398	}
399	if ((flags & PGET_CANDEBUG) != 0) {
400		error = p_candebug(curthread, p);
401		if (error != 0)
402			goto errout;
403	}
404	if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
405		error = EPERM;
406		goto errout;
407	}
408	if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
409		error = ESRCH;
410		goto errout;
411	}
412	if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
413		/*
414		 * XXXRW: Not clear ESRCH is the right error during proc
415		 * execve().
416		 */
417		error = ESRCH;
418		goto errout;
419	}
420	if ((flags & PGET_HOLD) != 0) {
421		_PHOLD(p);
422		PROC_UNLOCK(p);
423	}
424	*pp = p;
425	return (0);
426errout:
427	PROC_UNLOCK(p);
428	return (error);
429}
430
431/*
432 * Create a new process group.
433 * pgid must be equal to the pid of p.
434 * Begin a new session if required.
435 */
436int
437enterpgrp(p, pgid, pgrp, sess)
438	register struct proc *p;
439	pid_t pgid;
440	struct pgrp *pgrp;
441	struct session *sess;
442{
443
444	sx_assert(&proctree_lock, SX_XLOCKED);
445
446	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
447	KASSERT(p->p_pid == pgid,
448	    ("enterpgrp: new pgrp and pid != pgid"));
449	KASSERT(pgfind(pgid) == NULL,
450	    ("enterpgrp: pgrp with pgid exists"));
451	KASSERT(!SESS_LEADER(p),
452	    ("enterpgrp: session leader attempted setpgrp"));
453
454	mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
455
456	if (sess != NULL) {
457		/*
458		 * new session
459		 */
460		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
461		PROC_LOCK(p);
462		p->p_flag &= ~P_CONTROLT;
463		PROC_UNLOCK(p);
464		PGRP_LOCK(pgrp);
465		sess->s_leader = p;
466		sess->s_sid = p->p_pid;
467		refcount_init(&sess->s_count, 1);
468		sess->s_ttyvp = NULL;
469		sess->s_ttydp = NULL;
470		sess->s_ttyp = NULL;
471		bcopy(p->p_session->s_login, sess->s_login,
472			    sizeof(sess->s_login));
473		pgrp->pg_session = sess;
474		KASSERT(p == curproc,
475		    ("enterpgrp: mksession and p != curproc"));
476	} else {
477		pgrp->pg_session = p->p_session;
478		sess_hold(pgrp->pg_session);
479		PGRP_LOCK(pgrp);
480	}
481	pgrp->pg_id = pgid;
482	LIST_INIT(&pgrp->pg_members);
483
484	/*
485	 * As we have an exclusive lock of proctree_lock,
486	 * this should not deadlock.
487	 */
488	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
489	pgrp->pg_jobc = 0;
490	SLIST_INIT(&pgrp->pg_sigiolst);
491	PGRP_UNLOCK(pgrp);
492
493	doenterpgrp(p, pgrp);
494
495	return (0);
496}
497
498/*
499 * Move p to an existing process group
500 */
501int
502enterthispgrp(p, pgrp)
503	register struct proc *p;
504	struct pgrp *pgrp;
505{
506
507	sx_assert(&proctree_lock, SX_XLOCKED);
508	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
509	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
510	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
511	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
512	KASSERT(pgrp->pg_session == p->p_session,
513		("%s: pgrp's session %p, p->p_session %p.\n",
514		__func__,
515		pgrp->pg_session,
516		p->p_session));
517	KASSERT(pgrp != p->p_pgrp,
518		("%s: p belongs to pgrp.", __func__));
519
520	doenterpgrp(p, pgrp);
521
522	return (0);
523}
524
525/*
526 * Move p to a process group
527 */
528static void
529doenterpgrp(p, pgrp)
530	struct proc *p;
531	struct pgrp *pgrp;
532{
533	struct pgrp *savepgrp;
534
535	sx_assert(&proctree_lock, SX_XLOCKED);
536	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
537	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
538	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
539	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
540
541	savepgrp = p->p_pgrp;
542
543	/*
544	 * Adjust eligibility of affected pgrps to participate in job control.
545	 * Increment eligibility counts before decrementing, otherwise we
546	 * could reach 0 spuriously during the first call.
547	 */
548	fixjobc(p, pgrp, 1);
549	fixjobc(p, p->p_pgrp, 0);
550
551	PGRP_LOCK(pgrp);
552	PGRP_LOCK(savepgrp);
553	PROC_LOCK(p);
554	LIST_REMOVE(p, p_pglist);
555	p->p_pgrp = pgrp;
556	PROC_UNLOCK(p);
557	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
558	PGRP_UNLOCK(savepgrp);
559	PGRP_UNLOCK(pgrp);
560	if (LIST_EMPTY(&savepgrp->pg_members))
561		pgdelete(savepgrp);
562}
563
564/*
565 * remove process from process group
566 */
567int
568leavepgrp(p)
569	register struct proc *p;
570{
571	struct pgrp *savepgrp;
572
573	sx_assert(&proctree_lock, SX_XLOCKED);
574	savepgrp = p->p_pgrp;
575	PGRP_LOCK(savepgrp);
576	PROC_LOCK(p);
577	LIST_REMOVE(p, p_pglist);
578	p->p_pgrp = NULL;
579	PROC_UNLOCK(p);
580	PGRP_UNLOCK(savepgrp);
581	if (LIST_EMPTY(&savepgrp->pg_members))
582		pgdelete(savepgrp);
583	return (0);
584}
585
586/*
587 * delete a process group
588 */
589static void
590pgdelete(pgrp)
591	register struct pgrp *pgrp;
592{
593	struct session *savesess;
594	struct tty *tp;
595
596	sx_assert(&proctree_lock, SX_XLOCKED);
597	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
598	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
599
600	/*
601	 * Reset any sigio structures pointing to us as a result of
602	 * F_SETOWN with our pgid.
603	 */
604	funsetownlst(&pgrp->pg_sigiolst);
605
606	PGRP_LOCK(pgrp);
607	tp = pgrp->pg_session->s_ttyp;
608	LIST_REMOVE(pgrp, pg_hash);
609	savesess = pgrp->pg_session;
610	PGRP_UNLOCK(pgrp);
611
612	/* Remove the reference to the pgrp before deallocating it. */
613	if (tp != NULL) {
614		tty_lock(tp);
615		tty_rel_pgrp(tp, pgrp);
616	}
617
618	mtx_destroy(&pgrp->pg_mtx);
619	free(pgrp, M_PGRP);
620	sess_release(savesess);
621}
622
623static void
624pgadjustjobc(pgrp, entering)
625	struct pgrp *pgrp;
626	int entering;
627{
628
629	PGRP_LOCK(pgrp);
630	if (entering)
631		pgrp->pg_jobc++;
632	else {
633		--pgrp->pg_jobc;
634		if (pgrp->pg_jobc == 0)
635			orphanpg(pgrp);
636	}
637	PGRP_UNLOCK(pgrp);
638}
639
640/*
641 * Adjust pgrp jobc counters when specified process changes process group.
642 * We count the number of processes in each process group that "qualify"
643 * the group for terminal job control (those with a parent in a different
644 * process group of the same session).  If that count reaches zero, the
645 * process group becomes orphaned.  Check both the specified process'
646 * process group and that of its children.
647 * entering == 0 => p is leaving specified group.
648 * entering == 1 => p is entering specified group.
649 */
650void
651fixjobc(p, pgrp, entering)
652	register struct proc *p;
653	register struct pgrp *pgrp;
654	int entering;
655{
656	register struct pgrp *hispgrp;
657	register struct session *mysession;
658
659	sx_assert(&proctree_lock, SX_LOCKED);
660	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
661	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
662	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
663
664	/*
665	 * Check p's parent to see whether p qualifies its own process
666	 * group; if so, adjust count for p's process group.
667	 */
668	mysession = pgrp->pg_session;
669	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
670	    hispgrp->pg_session == mysession)
671		pgadjustjobc(pgrp, entering);
672
673	/*
674	 * Check this process' children to see whether they qualify
675	 * their process groups; if so, adjust counts for children's
676	 * process groups.
677	 */
678	LIST_FOREACH(p, &p->p_children, p_sibling) {
679		hispgrp = p->p_pgrp;
680		if (hispgrp == pgrp ||
681		    hispgrp->pg_session != mysession)
682			continue;
683		PROC_LOCK(p);
684		if (p->p_state == PRS_ZOMBIE) {
685			PROC_UNLOCK(p);
686			continue;
687		}
688		PROC_UNLOCK(p);
689		pgadjustjobc(hispgrp, entering);
690	}
691}
692
693/*
694 * A process group has become orphaned;
695 * if there are any stopped processes in the group,
696 * hang-up all process in that group.
697 */
698static void
699orphanpg(pg)
700	struct pgrp *pg;
701{
702	register struct proc *p;
703
704	PGRP_LOCK_ASSERT(pg, MA_OWNED);
705
706	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
707		PROC_LOCK(p);
708		if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
709			PROC_UNLOCK(p);
710			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
711				PROC_LOCK(p);
712				kern_psignal(p, SIGHUP);
713				kern_psignal(p, SIGCONT);
714				PROC_UNLOCK(p);
715			}
716			return;
717		}
718		PROC_UNLOCK(p);
719	}
720}
721
722void
723sess_hold(struct session *s)
724{
725
726	refcount_acquire(&s->s_count);
727}
728
729void
730sess_release(struct session *s)
731{
732
733	if (refcount_release(&s->s_count)) {
734		if (s->s_ttyp != NULL) {
735			tty_lock(s->s_ttyp);
736			tty_rel_sess(s->s_ttyp, s);
737		}
738		mtx_destroy(&s->s_mtx);
739		free(s, M_SESSION);
740	}
741}
742
743#ifdef DDB
744
745DB_SHOW_COMMAND(pgrpdump, pgrpdump)
746{
747	register struct pgrp *pgrp;
748	register struct proc *p;
749	register int i;
750
751	for (i = 0; i <= pgrphash; i++) {
752		if (!LIST_EMPTY(&pgrphashtbl[i])) {
753			printf("\tindx %d\n", i);
754			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
755				printf(
756			"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
757				    (void *)pgrp, (long)pgrp->pg_id,
758				    (void *)pgrp->pg_session,
759				    pgrp->pg_session->s_count,
760				    (void *)LIST_FIRST(&pgrp->pg_members));
761				LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
762					printf("\t\tpid %ld addr %p pgrp %p\n",
763					    (long)p->p_pid, (void *)p,
764					    (void *)p->p_pgrp);
765				}
766			}
767		}
768	}
769}
770#endif /* DDB */
771
772/*
773 * Calculate the kinfo_proc members which contain process-wide
774 * informations.
775 * Must be called with the target process locked.
776 */
777static void
778fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
779{
780	struct thread *td;
781
782	PROC_LOCK_ASSERT(p, MA_OWNED);
783
784	kp->ki_estcpu = 0;
785	kp->ki_pctcpu = 0;
786	FOREACH_THREAD_IN_PROC(p, td) {
787		thread_lock(td);
788		kp->ki_pctcpu += sched_pctcpu(td);
789		kp->ki_estcpu += td->td_estcpu;
790		thread_unlock(td);
791	}
792}
793
794/*
795 * Clear kinfo_proc and fill in any information that is common
796 * to all threads in the process.
797 * Must be called with the target process locked.
798 */
799static void
800fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
801{
802	struct thread *td0;
803	struct tty *tp;
804	struct session *sp;
805	struct ucred *cred;
806	struct sigacts *ps;
807
808	PROC_LOCK_ASSERT(p, MA_OWNED);
809	bzero(kp, sizeof(*kp));
810
811	kp->ki_structsize = sizeof(*kp);
812	kp->ki_paddr = p;
813	kp->ki_addr =/* p->p_addr; */0; /* XXX */
814	kp->ki_args = p->p_args;
815	kp->ki_textvp = p->p_textvp;
816#ifdef KTRACE
817	kp->ki_tracep = p->p_tracevp;
818	kp->ki_traceflag = p->p_traceflag;
819#endif
820	kp->ki_fd = p->p_fd;
821	kp->ki_vmspace = p->p_vmspace;
822	kp->ki_flag = p->p_flag;
823	kp->ki_flag2 = p->p_flag2;
824	cred = p->p_ucred;
825	if (cred) {
826		kp->ki_uid = cred->cr_uid;
827		kp->ki_ruid = cred->cr_ruid;
828		kp->ki_svuid = cred->cr_svuid;
829		kp->ki_cr_flags = 0;
830		if (cred->cr_flags & CRED_FLAG_CAPMODE)
831			kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
832		/* XXX bde doesn't like KI_NGROUPS */
833		if (cred->cr_ngroups > KI_NGROUPS) {
834			kp->ki_ngroups = KI_NGROUPS;
835			kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
836		} else
837			kp->ki_ngroups = cred->cr_ngroups;
838		bcopy(cred->cr_groups, kp->ki_groups,
839		    kp->ki_ngroups * sizeof(gid_t));
840		kp->ki_rgid = cred->cr_rgid;
841		kp->ki_svgid = cred->cr_svgid;
842		/* If jailed(cred), emulate the old P_JAILED flag. */
843		if (jailed(cred)) {
844			kp->ki_flag |= P_JAILED;
845			/* If inside the jail, use 0 as a jail ID. */
846			if (cred->cr_prison != curthread->td_ucred->cr_prison)
847				kp->ki_jid = cred->cr_prison->pr_id;
848		}
849		strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
850		    sizeof(kp->ki_loginclass));
851	}
852	ps = p->p_sigacts;
853	if (ps) {
854		mtx_lock(&ps->ps_mtx);
855		kp->ki_sigignore = ps->ps_sigignore;
856		kp->ki_sigcatch = ps->ps_sigcatch;
857		mtx_unlock(&ps->ps_mtx);
858	}
859	if (p->p_state != PRS_NEW &&
860	    p->p_state != PRS_ZOMBIE &&
861	    p->p_vmspace != NULL) {
862		struct vmspace *vm = p->p_vmspace;
863
864		kp->ki_size = vm->vm_map.size;
865		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
866		FOREACH_THREAD_IN_PROC(p, td0) {
867			if (!TD_IS_SWAPPED(td0))
868				kp->ki_rssize += td0->td_kstack_pages;
869		}
870		kp->ki_swrss = vm->vm_swrss;
871		kp->ki_tsize = vm->vm_tsize;
872		kp->ki_dsize = vm->vm_dsize;
873		kp->ki_ssize = vm->vm_ssize;
874	} else if (p->p_state == PRS_ZOMBIE)
875		kp->ki_stat = SZOMB;
876	if (kp->ki_flag & P_INMEM)
877		kp->ki_sflag = PS_INMEM;
878	else
879		kp->ki_sflag = 0;
880	/* Calculate legacy swtime as seconds since 'swtick'. */
881	kp->ki_swtime = (ticks - p->p_swtick) / hz;
882	kp->ki_pid = p->p_pid;
883	kp->ki_nice = p->p_nice;
884	kp->ki_fibnum = p->p_fibnum;
885	kp->ki_start = p->p_stats->p_start;
886	timevaladd(&kp->ki_start, &boottime);
887	PROC_STATLOCK(p);
888	rufetch(p, &kp->ki_rusage);
889	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
890	calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
891	PROC_STATUNLOCK(p);
892	calccru(p, &kp->ki_childutime, &kp->ki_childstime);
893	/* Some callers want child times in a single value. */
894	kp->ki_childtime = kp->ki_childstime;
895	timevaladd(&kp->ki_childtime, &kp->ki_childutime);
896
897	FOREACH_THREAD_IN_PROC(p, td0)
898		kp->ki_cow += td0->td_cow;
899
900	tp = NULL;
901	if (p->p_pgrp) {
902		kp->ki_pgid = p->p_pgrp->pg_id;
903		kp->ki_jobc = p->p_pgrp->pg_jobc;
904		sp = p->p_pgrp->pg_session;
905
906		if (sp != NULL) {
907			kp->ki_sid = sp->s_sid;
908			SESS_LOCK(sp);
909			strlcpy(kp->ki_login, sp->s_login,
910			    sizeof(kp->ki_login));
911			if (sp->s_ttyvp)
912				kp->ki_kiflag |= KI_CTTY;
913			if (SESS_LEADER(p))
914				kp->ki_kiflag |= KI_SLEADER;
915			/* XXX proctree_lock */
916			tp = sp->s_ttyp;
917			SESS_UNLOCK(sp);
918		}
919	}
920	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
921		kp->ki_tdev = tty_udev(tp);
922		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
923		if (tp->t_session)
924			kp->ki_tsid = tp->t_session->s_sid;
925	} else
926		kp->ki_tdev = NODEV;
927	if (p->p_comm[0] != '\0')
928		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
929	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
930	    p->p_sysent->sv_name[0] != '\0')
931		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
932	kp->ki_siglist = p->p_siglist;
933	kp->ki_xstat = p->p_xstat;
934	kp->ki_acflag = p->p_acflag;
935	kp->ki_lock = p->p_lock;
936	if (p->p_pptr)
937		kp->ki_ppid = p->p_pptr->p_pid;
938}
939
940/*
941 * Fill in information that is thread specific.  Must be called with
942 * target process locked.  If 'preferthread' is set, overwrite certain
943 * process-related fields that are maintained for both threads and
944 * processes.
945 */
946static void
947fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
948{
949	struct proc *p;
950
951	p = td->td_proc;
952	kp->ki_tdaddr = td;
953	PROC_LOCK_ASSERT(p, MA_OWNED);
954
955	if (preferthread)
956		PROC_STATLOCK(p);
957	thread_lock(td);
958	if (td->td_wmesg != NULL)
959		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
960	else
961		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
962	strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname));
963	if (TD_ON_LOCK(td)) {
964		kp->ki_kiflag |= KI_LOCKBLOCK;
965		strlcpy(kp->ki_lockname, td->td_lockname,
966		    sizeof(kp->ki_lockname));
967	} else {
968		kp->ki_kiflag &= ~KI_LOCKBLOCK;
969		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
970	}
971
972	if (p->p_state == PRS_NORMAL) { /* approximate. */
973		if (TD_ON_RUNQ(td) ||
974		    TD_CAN_RUN(td) ||
975		    TD_IS_RUNNING(td)) {
976			kp->ki_stat = SRUN;
977		} else if (P_SHOULDSTOP(p)) {
978			kp->ki_stat = SSTOP;
979		} else if (TD_IS_SLEEPING(td)) {
980			kp->ki_stat = SSLEEP;
981		} else if (TD_ON_LOCK(td)) {
982			kp->ki_stat = SLOCK;
983		} else {
984			kp->ki_stat = SWAIT;
985		}
986	} else if (p->p_state == PRS_ZOMBIE) {
987		kp->ki_stat = SZOMB;
988	} else {
989		kp->ki_stat = SIDL;
990	}
991
992	/* Things in the thread */
993	kp->ki_wchan = td->td_wchan;
994	kp->ki_pri.pri_level = td->td_priority;
995	kp->ki_pri.pri_native = td->td_base_pri;
996	kp->ki_lastcpu = td->td_lastcpu;
997	kp->ki_oncpu = td->td_oncpu;
998	kp->ki_tdflags = td->td_flags;
999	kp->ki_tid = td->td_tid;
1000	kp->ki_numthreads = p->p_numthreads;
1001	kp->ki_pcb = td->td_pcb;
1002	kp->ki_kstack = (void *)td->td_kstack;
1003	kp->ki_slptime = (ticks - td->td_slptick) / hz;
1004	kp->ki_pri.pri_class = td->td_pri_class;
1005	kp->ki_pri.pri_user = td->td_user_pri;
1006
1007	if (preferthread) {
1008		rufetchtd(td, &kp->ki_rusage);
1009		kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
1010		kp->ki_pctcpu = sched_pctcpu(td);
1011		kp->ki_estcpu = td->td_estcpu;
1012		kp->ki_cow = td->td_cow;
1013	}
1014
1015	/* We can't get this anymore but ps etc never used it anyway. */
1016	kp->ki_rqindex = 0;
1017
1018	if (preferthread)
1019		kp->ki_siglist = td->td_siglist;
1020	kp->ki_sigmask = td->td_sigmask;
1021	thread_unlock(td);
1022	if (preferthread)
1023		PROC_STATUNLOCK(p);
1024}
1025
1026/*
1027 * Fill in a kinfo_proc structure for the specified process.
1028 * Must be called with the target process locked.
1029 */
1030void
1031fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
1032{
1033
1034	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1035
1036	fill_kinfo_proc_only(p, kp);
1037	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
1038	fill_kinfo_aggregate(p, kp);
1039}
1040
1041struct pstats *
1042pstats_alloc(void)
1043{
1044
1045	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
1046}
1047
1048/*
1049 * Copy parts of p_stats; zero the rest of p_stats (statistics).
1050 */
1051void
1052pstats_fork(struct pstats *src, struct pstats *dst)
1053{
1054
1055	bzero(&dst->pstat_startzero,
1056	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
1057	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
1058	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
1059}
1060
1061void
1062pstats_free(struct pstats *ps)
1063{
1064
1065	free(ps, M_SUBPROC);
1066}
1067
1068static struct proc *
1069zpfind_locked(pid_t pid)
1070{
1071	struct proc *p;
1072
1073	sx_assert(&allproc_lock, SX_LOCKED);
1074	LIST_FOREACH(p, &zombproc, p_list) {
1075		if (p->p_pid == pid) {
1076			PROC_LOCK(p);
1077			break;
1078		}
1079	}
1080	return (p);
1081}
1082
1083/*
1084 * Locate a zombie process by number
1085 */
1086struct proc *
1087zpfind(pid_t pid)
1088{
1089	struct proc *p;
1090
1091	sx_slock(&allproc_lock);
1092	p = zpfind_locked(pid);
1093	sx_sunlock(&allproc_lock);
1094	return (p);
1095}
1096
1097#ifdef COMPAT_FREEBSD32
1098
1099/*
1100 * This function is typically used to copy out the kernel address, so
1101 * it can be replaced by assignment of zero.
1102 */
1103static inline uint32_t
1104ptr32_trim(void *ptr)
1105{
1106	uintptr_t uptr;
1107
1108	uptr = (uintptr_t)ptr;
1109	return ((uptr > UINT_MAX) ? 0 : uptr);
1110}
1111
1112#define PTRTRIM_CP(src,dst,fld) \
1113	do { (dst).fld = ptr32_trim((src).fld); } while (0)
1114
1115static void
1116freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
1117{
1118	int i;
1119
1120	bzero(ki32, sizeof(struct kinfo_proc32));
1121	ki32->ki_structsize = sizeof(struct kinfo_proc32);
1122	CP(*ki, *ki32, ki_layout);
1123	PTRTRIM_CP(*ki, *ki32, ki_args);
1124	PTRTRIM_CP(*ki, *ki32, ki_paddr);
1125	PTRTRIM_CP(*ki, *ki32, ki_addr);
1126	PTRTRIM_CP(*ki, *ki32, ki_tracep);
1127	PTRTRIM_CP(*ki, *ki32, ki_textvp);
1128	PTRTRIM_CP(*ki, *ki32, ki_fd);
1129	PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1130	PTRTRIM_CP(*ki, *ki32, ki_wchan);
1131	CP(*ki, *ki32, ki_pid);
1132	CP(*ki, *ki32, ki_ppid);
1133	CP(*ki, *ki32, ki_pgid);
1134	CP(*ki, *ki32, ki_tpgid);
1135	CP(*ki, *ki32, ki_sid);
1136	CP(*ki, *ki32, ki_tsid);
1137	CP(*ki, *ki32, ki_jobc);
1138	CP(*ki, *ki32, ki_tdev);
1139	CP(*ki, *ki32, ki_siglist);
1140	CP(*ki, *ki32, ki_sigmask);
1141	CP(*ki, *ki32, ki_sigignore);
1142	CP(*ki, *ki32, ki_sigcatch);
1143	CP(*ki, *ki32, ki_uid);
1144	CP(*ki, *ki32, ki_ruid);
1145	CP(*ki, *ki32, ki_svuid);
1146	CP(*ki, *ki32, ki_rgid);
1147	CP(*ki, *ki32, ki_svgid);
1148	CP(*ki, *ki32, ki_ngroups);
1149	for (i = 0; i < KI_NGROUPS; i++)
1150		CP(*ki, *ki32, ki_groups[i]);
1151	CP(*ki, *ki32, ki_size);
1152	CP(*ki, *ki32, ki_rssize);
1153	CP(*ki, *ki32, ki_swrss);
1154	CP(*ki, *ki32, ki_tsize);
1155	CP(*ki, *ki32, ki_dsize);
1156	CP(*ki, *ki32, ki_ssize);
1157	CP(*ki, *ki32, ki_xstat);
1158	CP(*ki, *ki32, ki_acflag);
1159	CP(*ki, *ki32, ki_pctcpu);
1160	CP(*ki, *ki32, ki_estcpu);
1161	CP(*ki, *ki32, ki_slptime);
1162	CP(*ki, *ki32, ki_swtime);
1163	CP(*ki, *ki32, ki_cow);
1164	CP(*ki, *ki32, ki_runtime);
1165	TV_CP(*ki, *ki32, ki_start);
1166	TV_CP(*ki, *ki32, ki_childtime);
1167	CP(*ki, *ki32, ki_flag);
1168	CP(*ki, *ki32, ki_kiflag);
1169	CP(*ki, *ki32, ki_traceflag);
1170	CP(*ki, *ki32, ki_stat);
1171	CP(*ki, *ki32, ki_nice);
1172	CP(*ki, *ki32, ki_lock);
1173	CP(*ki, *ki32, ki_rqindex);
1174	CP(*ki, *ki32, ki_oncpu);
1175	CP(*ki, *ki32, ki_lastcpu);
1176	bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
1177	bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1178	bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1179	bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1180	bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1181	bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1182	bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
1183	CP(*ki, *ki32, ki_flag2);
1184	CP(*ki, *ki32, ki_fibnum);
1185	CP(*ki, *ki32, ki_cr_flags);
1186	CP(*ki, *ki32, ki_jid);
1187	CP(*ki, *ki32, ki_numthreads);
1188	CP(*ki, *ki32, ki_tid);
1189	CP(*ki, *ki32, ki_pri);
1190	freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1191	freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1192	PTRTRIM_CP(*ki, *ki32, ki_pcb);
1193	PTRTRIM_CP(*ki, *ki32, ki_kstack);
1194	PTRTRIM_CP(*ki, *ki32, ki_udata);
1195	CP(*ki, *ki32, ki_sflag);
1196	CP(*ki, *ki32, ki_tdflags);
1197}
1198#endif
1199
1200int
1201kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
1202{
1203	struct thread *td;
1204	struct kinfo_proc ki;
1205#ifdef COMPAT_FREEBSD32
1206	struct kinfo_proc32 ki32;
1207#endif
1208	int error;
1209
1210	PROC_LOCK_ASSERT(p, MA_OWNED);
1211	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1212
1213	error = 0;
1214	fill_kinfo_proc(p, &ki);
1215	if ((flags & KERN_PROC_NOTHREADS) != 0) {
1216#ifdef COMPAT_FREEBSD32
1217		if ((flags & KERN_PROC_MASK32) != 0) {
1218			freebsd32_kinfo_proc_out(&ki, &ki32);
1219			if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1220				error = ENOMEM;
1221		} else
1222#endif
1223			if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1224				error = ENOMEM;
1225	} else {
1226		FOREACH_THREAD_IN_PROC(p, td) {
1227			fill_kinfo_thread(td, &ki, 1);
1228#ifdef COMPAT_FREEBSD32
1229			if ((flags & KERN_PROC_MASK32) != 0) {
1230				freebsd32_kinfo_proc_out(&ki, &ki32);
1231				if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1232					error = ENOMEM;
1233			} else
1234#endif
1235				if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1236					error = ENOMEM;
1237			if (error != 0)
1238				break;
1239		}
1240	}
1241	PROC_UNLOCK(p);
1242	return (error);
1243}
1244
1245static int
1246sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags,
1247    int doingzomb)
1248{
1249	struct sbuf sb;
1250	struct kinfo_proc ki;
1251	struct proc *np;
1252	int error, error2;
1253	pid_t pid;
1254
1255	pid = p->p_pid;
1256	sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
1257	error = kern_proc_out(p, &sb, flags);
1258	error2 = sbuf_finish(&sb);
1259	sbuf_delete(&sb);
1260	if (error != 0)
1261		return (error);
1262	else if (error2 != 0)
1263		return (error2);
1264	if (doingzomb)
1265		np = zpfind(pid);
1266	else {
1267		if (pid == 0)
1268			return (0);
1269		np = pfind(pid);
1270	}
1271	if (np == NULL)
1272		return (ESRCH);
1273	if (np != p) {
1274		PROC_UNLOCK(np);
1275		return (ESRCH);
1276	}
1277	PROC_UNLOCK(np);
1278	return (0);
1279}
1280
1281static int
1282sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1283{
1284	int *name = (int *)arg1;
1285	u_int namelen = arg2;
1286	struct proc *p;
1287	int flags, doingzomb, oid_number;
1288	int error = 0;
1289
1290	oid_number = oidp->oid_number;
1291	if (oid_number != KERN_PROC_ALL &&
1292	    (oid_number & KERN_PROC_INC_THREAD) == 0)
1293		flags = KERN_PROC_NOTHREADS;
1294	else {
1295		flags = 0;
1296		oid_number &= ~KERN_PROC_INC_THREAD;
1297	}
1298#ifdef COMPAT_FREEBSD32
1299	if (req->flags & SCTL_MASK32)
1300		flags |= KERN_PROC_MASK32;
1301#endif
1302	if (oid_number == KERN_PROC_PID) {
1303		if (namelen != 1)
1304			return (EINVAL);
1305		error = sysctl_wire_old_buffer(req, 0);
1306		if (error)
1307			return (error);
1308		error = pget((pid_t)name[0], PGET_CANSEE, &p);
1309		if (error != 0)
1310			return (error);
1311		error = sysctl_out_proc(p, req, flags, 0);
1312		return (error);
1313	}
1314
1315	switch (oid_number) {
1316	case KERN_PROC_ALL:
1317		if (namelen != 0)
1318			return (EINVAL);
1319		break;
1320	case KERN_PROC_PROC:
1321		if (namelen != 0 && namelen != 1)
1322			return (EINVAL);
1323		break;
1324	default:
1325		if (namelen != 1)
1326			return (EINVAL);
1327		break;
1328	}
1329
1330	if (!req->oldptr) {
1331		/* overestimate by 5 procs */
1332		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1333		if (error)
1334			return (error);
1335	}
1336	error = sysctl_wire_old_buffer(req, 0);
1337	if (error != 0)
1338		return (error);
1339	sx_slock(&allproc_lock);
1340	for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
1341		if (!doingzomb)
1342			p = LIST_FIRST(&allproc);
1343		else
1344			p = LIST_FIRST(&zombproc);
1345		for (; p != 0; p = LIST_NEXT(p, p_list)) {
1346			/*
1347			 * Skip embryonic processes.
1348			 */
1349			PROC_LOCK(p);
1350			if (p->p_state == PRS_NEW) {
1351				PROC_UNLOCK(p);
1352				continue;
1353			}
1354			KASSERT(p->p_ucred != NULL,
1355			    ("process credential is NULL for non-NEW proc"));
1356			/*
1357			 * Show a user only appropriate processes.
1358			 */
1359			if (p_cansee(curthread, p)) {
1360				PROC_UNLOCK(p);
1361				continue;
1362			}
1363			/*
1364			 * TODO - make more efficient (see notes below).
1365			 * do by session.
1366			 */
1367			switch (oid_number) {
1368
1369			case KERN_PROC_GID:
1370				if (p->p_ucred->cr_gid != (gid_t)name[0]) {
1371					PROC_UNLOCK(p);
1372					continue;
1373				}
1374				break;
1375
1376			case KERN_PROC_PGRP:
1377				/* could do this by traversing pgrp */
1378				if (p->p_pgrp == NULL ||
1379				    p->p_pgrp->pg_id != (pid_t)name[0]) {
1380					PROC_UNLOCK(p);
1381					continue;
1382				}
1383				break;
1384
1385			case KERN_PROC_RGID:
1386				if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
1387					PROC_UNLOCK(p);
1388					continue;
1389				}
1390				break;
1391
1392			case KERN_PROC_SESSION:
1393				if (p->p_session == NULL ||
1394				    p->p_session->s_sid != (pid_t)name[0]) {
1395					PROC_UNLOCK(p);
1396					continue;
1397				}
1398				break;
1399
1400			case KERN_PROC_TTY:
1401				if ((p->p_flag & P_CONTROLT) == 0 ||
1402				    p->p_session == NULL) {
1403					PROC_UNLOCK(p);
1404					continue;
1405				}
1406				/* XXX proctree_lock */
1407				SESS_LOCK(p->p_session);
1408				if (p->p_session->s_ttyp == NULL ||
1409				    tty_udev(p->p_session->s_ttyp) !=
1410				    (dev_t)name[0]) {
1411					SESS_UNLOCK(p->p_session);
1412					PROC_UNLOCK(p);
1413					continue;
1414				}
1415				SESS_UNLOCK(p->p_session);
1416				break;
1417
1418			case KERN_PROC_UID:
1419				if (p->p_ucred->cr_uid != (uid_t)name[0]) {
1420					PROC_UNLOCK(p);
1421					continue;
1422				}
1423				break;
1424
1425			case KERN_PROC_RUID:
1426				if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
1427					PROC_UNLOCK(p);
1428					continue;
1429				}
1430				break;
1431
1432			case KERN_PROC_PROC:
1433				break;
1434
1435			default:
1436				break;
1437
1438			}
1439
1440			error = sysctl_out_proc(p, req, flags, doingzomb);
1441			if (error) {
1442				sx_sunlock(&allproc_lock);
1443				return (error);
1444			}
1445		}
1446	}
1447	sx_sunlock(&allproc_lock);
1448	return (0);
1449}
1450
1451struct pargs *
1452pargs_alloc(int len)
1453{
1454	struct pargs *pa;
1455
1456	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1457		M_WAITOK);
1458	refcount_init(&pa->ar_ref, 1);
1459	pa->ar_length = len;
1460	return (pa);
1461}
1462
1463static void
1464pargs_free(struct pargs *pa)
1465{
1466
1467	free(pa, M_PARGS);
1468}
1469
1470void
1471pargs_hold(struct pargs *pa)
1472{
1473
1474	if (pa == NULL)
1475		return;
1476	refcount_acquire(&pa->ar_ref);
1477}
1478
1479void
1480pargs_drop(struct pargs *pa)
1481{
1482
1483	if (pa == NULL)
1484		return;
1485	if (refcount_release(&pa->ar_ref))
1486		pargs_free(pa);
1487}
1488
1489static int
1490proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf,
1491    size_t len)
1492{
1493	struct iovec iov;
1494	struct uio uio;
1495
1496	iov.iov_base = (caddr_t)buf;
1497	iov.iov_len = len;
1498	uio.uio_iov = &iov;
1499	uio.uio_iovcnt = 1;
1500	uio.uio_offset = offset;
1501	uio.uio_resid = (ssize_t)len;
1502	uio.uio_segflg = UIO_SYSSPACE;
1503	uio.uio_rw = UIO_READ;
1504	uio.uio_td = td;
1505
1506	return (proc_rwmem(p, &uio));
1507}
1508
1509static int
1510proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
1511    size_t len)
1512{
1513	size_t i;
1514	int error;
1515
1516	error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len);
1517	/*
1518	 * Reading the chunk may validly return EFAULT if the string is shorter
1519	 * than the chunk and is aligned at the end of the page, assuming the
1520	 * next page is not mapped.  So if EFAULT is returned do a fallback to
1521	 * one byte read loop.
1522	 */
1523	if (error == EFAULT) {
1524		for (i = 0; i < len; i++, buf++, sptr++) {
1525			error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1);
1526			if (error != 0)
1527				return (error);
1528			if (*buf == '\0')
1529				break;
1530		}
1531		error = 0;
1532	}
1533	return (error);
1534}
1535
1536#define PROC_AUXV_MAX	256	/* Safety limit on auxv size. */
1537
1538enum proc_vector_type {
1539	PROC_ARG,
1540	PROC_ENV,
1541	PROC_AUX,
1542};
1543
1544#ifdef COMPAT_FREEBSD32
1545static int
1546get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
1547    size_t *vsizep, enum proc_vector_type type)
1548{
1549	struct freebsd32_ps_strings pss;
1550	Elf32_Auxinfo aux;
1551	vm_offset_t vptr, ptr;
1552	uint32_t *proc_vector32;
1553	char **proc_vector;
1554	size_t vsize, size;
1555	int i, error;
1556
1557	error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
1558	    &pss, sizeof(pss));
1559	if (error != 0)
1560		return (error);
1561	switch (type) {
1562	case PROC_ARG:
1563		vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
1564		vsize = pss.ps_nargvstr;
1565		if (vsize > ARG_MAX)
1566			return (ENOEXEC);
1567		size = vsize * sizeof(int32_t);
1568		break;
1569	case PROC_ENV:
1570		vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
1571		vsize = pss.ps_nenvstr;
1572		if (vsize > ARG_MAX)
1573			return (ENOEXEC);
1574		size = vsize * sizeof(int32_t);
1575		break;
1576	case PROC_AUX:
1577		vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
1578		    (pss.ps_nenvstr + 1) * sizeof(int32_t);
1579		if (vptr % 4 != 0)
1580			return (ENOEXEC);
1581		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1582			error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
1583			if (error != 0)
1584				return (error);
1585			if (aux.a_type == AT_NULL)
1586				break;
1587			ptr += sizeof(aux);
1588		}
1589		if (aux.a_type != AT_NULL)
1590			return (ENOEXEC);
1591		vsize = i + 1;
1592		size = vsize * sizeof(aux);
1593		break;
1594	default:
1595		KASSERT(0, ("Wrong proc vector type: %d", type));
1596		return (EINVAL);
1597	}
1598	proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
1599	error = proc_read_mem(td, p, vptr, proc_vector32, size);
1600	if (error != 0)
1601		goto done;
1602	if (type == PROC_AUX) {
1603		*proc_vectorp = (char **)proc_vector32;
1604		*vsizep = vsize;
1605		return (0);
1606	}
1607	proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
1608	for (i = 0; i < (int)vsize; i++)
1609		proc_vector[i] = PTRIN(proc_vector32[i]);
1610	*proc_vectorp = proc_vector;
1611	*vsizep = vsize;
1612done:
1613	free(proc_vector32, M_TEMP);
1614	return (error);
1615}
1616#endif
1617
1618static int
1619get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
1620    size_t *vsizep, enum proc_vector_type type)
1621{
1622	struct ps_strings pss;
1623	Elf_Auxinfo aux;
1624	vm_offset_t vptr, ptr;
1625	char **proc_vector;
1626	size_t vsize, size;
1627	int error, i;
1628
1629#ifdef COMPAT_FREEBSD32
1630	if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1631		return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
1632#endif
1633	error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
1634	    &pss, sizeof(pss));
1635	if (error != 0)
1636		return (error);
1637	switch (type) {
1638	case PROC_ARG:
1639		vptr = (vm_offset_t)pss.ps_argvstr;
1640		vsize = pss.ps_nargvstr;
1641		if (vsize > ARG_MAX)
1642			return (ENOEXEC);
1643		size = vsize * sizeof(char *);
1644		break;
1645	case PROC_ENV:
1646		vptr = (vm_offset_t)pss.ps_envstr;
1647		vsize = pss.ps_nenvstr;
1648		if (vsize > ARG_MAX)
1649			return (ENOEXEC);
1650		size = vsize * sizeof(char *);
1651		break;
1652	case PROC_AUX:
1653		/*
1654		 * The aux array is just above env array on the stack. Check
1655		 * that the address is naturally aligned.
1656		 */
1657		vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
1658		    * sizeof(char *);
1659#if __ELF_WORD_SIZE == 64
1660		if (vptr % sizeof(uint64_t) != 0)
1661#else
1662		if (vptr % sizeof(uint32_t) != 0)
1663#endif
1664			return (ENOEXEC);
1665		/*
1666		 * We count the array size reading the aux vectors from the
1667		 * stack until AT_NULL vector is returned.  So (to keep the code
1668		 * simple) we read the process stack twice: the first time here
1669		 * to find the size and the second time when copying the vectors
1670		 * to the allocated proc_vector.
1671		 */
1672		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1673			error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
1674			if (error != 0)
1675				return (error);
1676			if (aux.a_type == AT_NULL)
1677				break;
1678			ptr += sizeof(aux);
1679		}
1680		/*
1681		 * If the PROC_AUXV_MAX entries are iterated over, and we have
1682		 * not reached AT_NULL, it is most likely we are reading wrong
1683		 * data: either the process doesn't have auxv array or data has
1684		 * been modified. Return the error in this case.
1685		 */
1686		if (aux.a_type != AT_NULL)
1687			return (ENOEXEC);
1688		vsize = i + 1;
1689		size = vsize * sizeof(aux);
1690		break;
1691	default:
1692		KASSERT(0, ("Wrong proc vector type: %d", type));
1693		return (EINVAL); /* In case we are built without INVARIANTS. */
1694	}
1695	proc_vector = malloc(size, M_TEMP, M_WAITOK);
1696	if (proc_vector == NULL)
1697		return (ENOMEM);
1698	error = proc_read_mem(td, p, vptr, proc_vector, size);
1699	if (error != 0) {
1700		free(proc_vector, M_TEMP);
1701		return (error);
1702	}
1703	*proc_vectorp = proc_vector;
1704	*vsizep = vsize;
1705
1706	return (0);
1707}
1708
1709#define GET_PS_STRINGS_CHUNK_SZ	256	/* Chunk size (bytes) for ps_strings operations. */
1710
1711static int
1712get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
1713    enum proc_vector_type type)
1714{
1715	size_t done, len, nchr, vsize;
1716	int error, i;
1717	char **proc_vector, *sptr;
1718	char pss_string[GET_PS_STRINGS_CHUNK_SZ];
1719
1720	PROC_ASSERT_HELD(p);
1721
1722	/*
1723	 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
1724	 */
1725	nchr = 2 * (PATH_MAX + ARG_MAX);
1726
1727	error = get_proc_vector(td, p, &proc_vector, &vsize, type);
1728	if (error != 0)
1729		return (error);
1730	for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
1731		/*
1732		 * The program may have scribbled into its argv array, e.g. to
1733		 * remove some arguments.  If that has happened, break out
1734		 * before trying to read from NULL.
1735		 */
1736		if (proc_vector[i] == NULL)
1737			break;
1738		for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
1739			error = proc_read_string(td, p, sptr, pss_string,
1740			    sizeof(pss_string));
1741			if (error != 0)
1742				goto done;
1743			len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
1744			if (done + len >= nchr)
1745				len = nchr - done - 1;
1746			sbuf_bcat(sb, pss_string, len);
1747			if (len != GET_PS_STRINGS_CHUNK_SZ)
1748				break;
1749			done += GET_PS_STRINGS_CHUNK_SZ;
1750		}
1751		sbuf_bcat(sb, "", 1);
1752		done += len + 1;
1753	}
1754done:
1755	free(proc_vector, M_TEMP);
1756	return (error);
1757}
1758
1759int
1760proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
1761{
1762
1763	return (get_ps_strings(curthread, p, sb, PROC_ARG));
1764}
1765
1766int
1767proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
1768{
1769
1770	return (get_ps_strings(curthread, p, sb, PROC_ENV));
1771}
1772
1773int
1774proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
1775{
1776	size_t vsize, size;
1777	char **auxv;
1778	int error;
1779
1780	error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
1781	if (error == 0) {
1782#ifdef COMPAT_FREEBSD32
1783		if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1784			size = vsize * sizeof(Elf32_Auxinfo);
1785		else
1786#endif
1787			size = vsize * sizeof(Elf_Auxinfo);
1788		if (sbuf_bcat(sb, auxv, size) != 0)
1789			error = ENOMEM;
1790		free(auxv, M_TEMP);
1791	}
1792	return (error);
1793}
1794
1795/*
1796 * This sysctl allows a process to retrieve the argument list or process
1797 * title for another process without groping around in the address space
1798 * of the other process.  It also allow a process to set its own "process
1799 * title to a string of its own choice.
1800 */
1801static int
1802sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1803{
1804	int *name = (int *)arg1;
1805	u_int namelen = arg2;
1806	struct pargs *newpa, *pa;
1807	struct proc *p;
1808	struct sbuf sb;
1809	int flags, error = 0, error2;
1810
1811	if (namelen != 1)
1812		return (EINVAL);
1813
1814	flags = PGET_CANSEE;
1815	if (req->newptr != NULL)
1816		flags |= PGET_ISCURRENT;
1817	error = pget((pid_t)name[0], flags, &p);
1818	if (error)
1819		return (error);
1820
1821	pa = p->p_args;
1822	if (pa != NULL) {
1823		pargs_hold(pa);
1824		PROC_UNLOCK(p);
1825		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1826		pargs_drop(pa);
1827	} else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
1828		_PHOLD(p);
1829		PROC_UNLOCK(p);
1830		sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1831		error = proc_getargv(curthread, p, &sb);
1832		error2 = sbuf_finish(&sb);
1833		PRELE(p);
1834		sbuf_delete(&sb);
1835		if (error == 0 && error2 != 0)
1836			error = error2;
1837	} else {
1838		PROC_UNLOCK(p);
1839	}
1840	if (error != 0 || req->newptr == NULL)
1841		return (error);
1842
1843	if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
1844		return (ENOMEM);
1845	newpa = pargs_alloc(req->newlen);
1846	error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
1847	if (error != 0) {
1848		pargs_free(newpa);
1849		return (error);
1850	}
1851	PROC_LOCK(p);
1852	pa = p->p_args;
1853	p->p_args = newpa;
1854	PROC_UNLOCK(p);
1855	pargs_drop(pa);
1856	return (0);
1857}
1858
1859/*
1860 * This sysctl allows a process to retrieve environment of another process.
1861 */
1862static int
1863sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
1864{
1865	int *name = (int *)arg1;
1866	u_int namelen = arg2;
1867	struct proc *p;
1868	struct sbuf sb;
1869	int error, error2;
1870
1871	if (namelen != 1)
1872		return (EINVAL);
1873
1874	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1875	if (error != 0)
1876		return (error);
1877	if ((p->p_flag & P_SYSTEM) != 0) {
1878		PRELE(p);
1879		return (0);
1880	}
1881
1882	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1883	error = proc_getenvv(curthread, p, &sb);
1884	error2 = sbuf_finish(&sb);
1885	PRELE(p);
1886	sbuf_delete(&sb);
1887	return (error != 0 ? error : error2);
1888}
1889
1890/*
1891 * This sysctl allows a process to retrieve ELF auxiliary vector of
1892 * another process.
1893 */
1894static int
1895sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
1896{
1897	int *name = (int *)arg1;
1898	u_int namelen = arg2;
1899	struct proc *p;
1900	struct sbuf sb;
1901	int error, error2;
1902
1903	if (namelen != 1)
1904		return (EINVAL);
1905
1906	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1907	if (error != 0)
1908		return (error);
1909	if ((p->p_flag & P_SYSTEM) != 0) {
1910		PRELE(p);
1911		return (0);
1912	}
1913	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1914	error = proc_getauxv(curthread, p, &sb);
1915	error2 = sbuf_finish(&sb);
1916	PRELE(p);
1917	sbuf_delete(&sb);
1918	return (error != 0 ? error : error2);
1919}
1920
1921/*
1922 * This sysctl allows a process to retrieve the path of the executable for
1923 * itself or another process.
1924 */
1925static int
1926sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
1927{
1928	pid_t *pidp = (pid_t *)arg1;
1929	unsigned int arglen = arg2;
1930	struct proc *p;
1931	struct vnode *vp;
1932	char *retbuf, *freebuf;
1933	int error;
1934
1935	if (arglen != 1)
1936		return (EINVAL);
1937	if (*pidp == -1) {	/* -1 means this process */
1938		p = req->td->td_proc;
1939	} else {
1940		error = pget(*pidp, PGET_CANSEE, &p);
1941		if (error != 0)
1942			return (error);
1943	}
1944
1945	vp = p->p_textvp;
1946	if (vp == NULL) {
1947		if (*pidp != -1)
1948			PROC_UNLOCK(p);
1949		return (0);
1950	}
1951	vref(vp);
1952	if (*pidp != -1)
1953		PROC_UNLOCK(p);
1954	error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
1955	vrele(vp);
1956	if (error)
1957		return (error);
1958	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
1959	free(freebuf, M_TEMP);
1960	return (error);
1961}
1962
1963static int
1964sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
1965{
1966	struct proc *p;
1967	char *sv_name;
1968	int *name;
1969	int namelen;
1970	int error;
1971
1972	namelen = arg2;
1973	if (namelen != 1)
1974		return (EINVAL);
1975
1976	name = (int *)arg1;
1977	error = pget((pid_t)name[0], PGET_CANSEE, &p);
1978	if (error != 0)
1979		return (error);
1980	sv_name = p->p_sysent->sv_name;
1981	PROC_UNLOCK(p);
1982	return (sysctl_handle_string(oidp, sv_name, 0, req));
1983}
1984
1985#ifdef KINFO_OVMENTRY_SIZE
1986CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
1987#endif
1988
1989#ifdef COMPAT_FREEBSD7
1990static int
1991sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
1992{
1993	vm_map_entry_t entry, tmp_entry;
1994	unsigned int last_timestamp;
1995	char *fullpath, *freepath;
1996	struct kinfo_ovmentry *kve;
1997	struct vattr va;
1998	struct ucred *cred;
1999	int error, *name;
2000	struct vnode *vp;
2001	struct proc *p;
2002	vm_map_t map;
2003	struct vmspace *vm;
2004
2005	name = (int *)arg1;
2006	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2007	if (error != 0)
2008		return (error);
2009	vm = vmspace_acquire_ref(p);
2010	if (vm == NULL) {
2011		PRELE(p);
2012		return (ESRCH);
2013	}
2014	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
2015
2016	map = &vm->vm_map;
2017	vm_map_lock_read(map);
2018	for (entry = map->header.next; entry != &map->header;
2019	    entry = entry->next) {
2020		vm_object_t obj, tobj, lobj;
2021		vm_offset_t addr;
2022
2023		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2024			continue;
2025
2026		bzero(kve, sizeof(*kve));
2027		kve->kve_structsize = sizeof(*kve);
2028
2029		kve->kve_private_resident = 0;
2030		obj = entry->object.vm_object;
2031		if (obj != NULL) {
2032			VM_OBJECT_RLOCK(obj);
2033			if (obj->shadow_count == 1)
2034				kve->kve_private_resident =
2035				    obj->resident_page_count;
2036		}
2037		kve->kve_resident = 0;
2038		addr = entry->start;
2039		while (addr < entry->end) {
2040			if (pmap_extract(map->pmap, addr))
2041				kve->kve_resident++;
2042			addr += PAGE_SIZE;
2043		}
2044
2045		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
2046			if (tobj != obj)
2047				VM_OBJECT_RLOCK(tobj);
2048			if (lobj != obj)
2049				VM_OBJECT_RUNLOCK(lobj);
2050			lobj = tobj;
2051		}
2052
2053		kve->kve_start = (void*)entry->start;
2054		kve->kve_end = (void*)entry->end;
2055		kve->kve_offset = (off_t)entry->offset;
2056
2057		if (entry->protection & VM_PROT_READ)
2058			kve->kve_protection |= KVME_PROT_READ;
2059		if (entry->protection & VM_PROT_WRITE)
2060			kve->kve_protection |= KVME_PROT_WRITE;
2061		if (entry->protection & VM_PROT_EXECUTE)
2062			kve->kve_protection |= KVME_PROT_EXEC;
2063
2064		if (entry->eflags & MAP_ENTRY_COW)
2065			kve->kve_flags |= KVME_FLAG_COW;
2066		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2067			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2068		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2069			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2070
2071		last_timestamp = map->timestamp;
2072		vm_map_unlock_read(map);
2073
2074		kve->kve_fileid = 0;
2075		kve->kve_fsid = 0;
2076		freepath = NULL;
2077		fullpath = "";
2078		if (lobj) {
2079			vp = NULL;
2080			switch (lobj->type) {
2081			case OBJT_DEFAULT:
2082				kve->kve_type = KVME_TYPE_DEFAULT;
2083				break;
2084			case OBJT_VNODE:
2085				kve->kve_type = KVME_TYPE_VNODE;
2086				vp = lobj->handle;
2087				vref(vp);
2088				break;
2089			case OBJT_SWAP:
2090				if ((lobj->flags & OBJ_TMPFS_NODE) != 0) {
2091					kve->kve_type = KVME_TYPE_VNODE;
2092					if ((lobj->flags & OBJ_TMPFS) != 0) {
2093						vp = lobj->un_pager.swp.swp_tmpfs;
2094						vref(vp);
2095					}
2096				} else {
2097					kve->kve_type = KVME_TYPE_SWAP;
2098				}
2099				break;
2100			case OBJT_DEVICE:
2101				kve->kve_type = KVME_TYPE_DEVICE;
2102				break;
2103			case OBJT_PHYS:
2104				kve->kve_type = KVME_TYPE_PHYS;
2105				break;
2106			case OBJT_DEAD:
2107				kve->kve_type = KVME_TYPE_DEAD;
2108				break;
2109			case OBJT_SG:
2110				kve->kve_type = KVME_TYPE_SG;
2111				break;
2112			default:
2113				kve->kve_type = KVME_TYPE_UNKNOWN;
2114				break;
2115			}
2116			if (lobj != obj)
2117				VM_OBJECT_RUNLOCK(lobj);
2118
2119			kve->kve_ref_count = obj->ref_count;
2120			kve->kve_shadow_count = obj->shadow_count;
2121			VM_OBJECT_RUNLOCK(obj);
2122			if (vp != NULL) {
2123				vn_fullpath(curthread, vp, &fullpath,
2124				    &freepath);
2125				cred = curthread->td_ucred;
2126				vn_lock(vp, LK_SHARED | LK_RETRY);
2127				if (VOP_GETATTR(vp, &va, cred) == 0) {
2128					kve->kve_fileid = va.va_fileid;
2129					kve->kve_fsid = va.va_fsid;
2130				}
2131				vput(vp);
2132			}
2133		} else {
2134			kve->kve_type = KVME_TYPE_NONE;
2135			kve->kve_ref_count = 0;
2136			kve->kve_shadow_count = 0;
2137		}
2138
2139		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2140		if (freepath != NULL)
2141			free(freepath, M_TEMP);
2142
2143		error = SYSCTL_OUT(req, kve, sizeof(*kve));
2144		vm_map_lock_read(map);
2145		if (error)
2146			break;
2147		if (last_timestamp != map->timestamp) {
2148			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2149			entry = tmp_entry;
2150		}
2151	}
2152	vm_map_unlock_read(map);
2153	vmspace_free(vm);
2154	PRELE(p);
2155	free(kve, M_TEMP);
2156	return (error);
2157}
2158#endif	/* COMPAT_FREEBSD7 */
2159
2160#ifdef KINFO_VMENTRY_SIZE
2161CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2162#endif
2163
2164static void
2165kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
2166    struct kinfo_vmentry *kve)
2167{
2168	vm_object_t obj, tobj;
2169	vm_page_t m, m_adv;
2170	vm_offset_t addr;
2171	vm_paddr_t locked_pa;
2172	vm_pindex_t pi, pi_adv, pindex;
2173
2174	locked_pa = 0;
2175	obj = entry->object.vm_object;
2176	addr = entry->start;
2177	m_adv = NULL;
2178	pi = OFF_TO_IDX(entry->offset);
2179	for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
2180		if (m_adv != NULL) {
2181			m = m_adv;
2182		} else {
2183			pi_adv = OFF_TO_IDX(entry->end - addr);
2184			pindex = pi;
2185			for (tobj = obj;; tobj = tobj->backing_object) {
2186				m = vm_page_find_least(tobj, pindex);
2187				if (m != NULL) {
2188					if (m->pindex == pindex)
2189						break;
2190					if (pi_adv > m->pindex - pindex) {
2191						pi_adv = m->pindex - pindex;
2192						m_adv = m;
2193					}
2194				}
2195				if (tobj->backing_object == NULL)
2196					goto next;
2197				pindex += OFF_TO_IDX(tobj->
2198				    backing_object_offset);
2199			}
2200		}
2201		m_adv = NULL;
2202		if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
2203		    (addr & (pagesizes[1] - 1)) == 0 &&
2204		    (pmap_mincore(map->pmap, addr, &locked_pa) &
2205		    MINCORE_SUPER) != 0) {
2206			kve->kve_flags |= KVME_FLAG_SUPER;
2207			pi_adv = OFF_TO_IDX(pagesizes[1]);
2208		} else {
2209			/*
2210			 * We do not test the found page on validity.
2211			 * Either the page is busy and being paged in,
2212			 * or it was invalidated.  The first case
2213			 * should be counted as resident, the second
2214			 * is not so clear; we do account both.
2215			 */
2216			pi_adv = 1;
2217		}
2218		kve->kve_resident += pi_adv;
2219next:;
2220	}
2221	PA_UNLOCK_COND(locked_pa);
2222}
2223
2224/*
2225 * Must be called with the process locked and will return unlocked.
2226 */
2227int
2228kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
2229{
2230	vm_map_entry_t entry, tmp_entry;
2231	struct vattr va;
2232	vm_map_t map;
2233	vm_object_t obj, tobj, lobj;
2234	char *fullpath, *freepath;
2235	struct kinfo_vmentry *kve;
2236	struct ucred *cred;
2237	struct vnode *vp;
2238	struct vmspace *vm;
2239	vm_offset_t addr;
2240	unsigned int last_timestamp;
2241	int error;
2242
2243	PROC_LOCK_ASSERT(p, MA_OWNED);
2244
2245	_PHOLD(p);
2246	PROC_UNLOCK(p);
2247	vm = vmspace_acquire_ref(p);
2248	if (vm == NULL) {
2249		PRELE(p);
2250		return (ESRCH);
2251	}
2252	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO);
2253
2254	error = 0;
2255	map = &vm->vm_map;
2256	vm_map_lock_read(map);
2257	for (entry = map->header.next; entry != &map->header;
2258	    entry = entry->next) {
2259		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2260			continue;
2261
2262		addr = entry->end;
2263		bzero(kve, sizeof(*kve));
2264		obj = entry->object.vm_object;
2265		if (obj != NULL) {
2266			for (tobj = obj; tobj != NULL;
2267			    tobj = tobj->backing_object) {
2268				VM_OBJECT_RLOCK(tobj);
2269				lobj = tobj;
2270			}
2271			if (obj->backing_object == NULL)
2272				kve->kve_private_resident =
2273				    obj->resident_page_count;
2274			if (!vmmap_skip_res_cnt)
2275				kern_proc_vmmap_resident(map, entry, kve);
2276			for (tobj = obj; tobj != NULL;
2277			    tobj = tobj->backing_object) {
2278				if (tobj != obj && tobj != lobj)
2279					VM_OBJECT_RUNLOCK(tobj);
2280			}
2281		} else {
2282			lobj = NULL;
2283		}
2284
2285		kve->kve_start = entry->start;
2286		kve->kve_end = entry->end;
2287		kve->kve_offset = entry->offset;
2288
2289		if (entry->protection & VM_PROT_READ)
2290			kve->kve_protection |= KVME_PROT_READ;
2291		if (entry->protection & VM_PROT_WRITE)
2292			kve->kve_protection |= KVME_PROT_WRITE;
2293		if (entry->protection & VM_PROT_EXECUTE)
2294			kve->kve_protection |= KVME_PROT_EXEC;
2295
2296		if (entry->eflags & MAP_ENTRY_COW)
2297			kve->kve_flags |= KVME_FLAG_COW;
2298		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2299			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2300		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2301			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2302		if (entry->eflags & MAP_ENTRY_GROWS_UP)
2303			kve->kve_flags |= KVME_FLAG_GROWS_UP;
2304		if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
2305			kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
2306
2307		last_timestamp = map->timestamp;
2308		vm_map_unlock_read(map);
2309
2310		freepath = NULL;
2311		fullpath = "";
2312		if (lobj != NULL) {
2313			vp = NULL;
2314			switch (lobj->type) {
2315			case OBJT_DEFAULT:
2316				kve->kve_type = KVME_TYPE_DEFAULT;
2317				break;
2318			case OBJT_VNODE:
2319				kve->kve_type = KVME_TYPE_VNODE;
2320				vp = lobj->handle;
2321				vref(vp);
2322				break;
2323			case OBJT_SWAP:
2324				if ((lobj->flags & OBJ_TMPFS_NODE) != 0) {
2325					kve->kve_type = KVME_TYPE_VNODE;
2326					if ((lobj->flags & OBJ_TMPFS) != 0) {
2327						vp = lobj->un_pager.swp.swp_tmpfs;
2328						vref(vp);
2329					}
2330				} else {
2331					kve->kve_type = KVME_TYPE_SWAP;
2332				}
2333				break;
2334			case OBJT_DEVICE:
2335				kve->kve_type = KVME_TYPE_DEVICE;
2336				break;
2337			case OBJT_PHYS:
2338				kve->kve_type = KVME_TYPE_PHYS;
2339				break;
2340			case OBJT_DEAD:
2341				kve->kve_type = KVME_TYPE_DEAD;
2342				break;
2343			case OBJT_SG:
2344				kve->kve_type = KVME_TYPE_SG;
2345				break;
2346			case OBJT_MGTDEVICE:
2347				kve->kve_type = KVME_TYPE_MGTDEVICE;
2348				break;
2349			default:
2350				kve->kve_type = KVME_TYPE_UNKNOWN;
2351				break;
2352			}
2353			if (lobj != obj)
2354				VM_OBJECT_RUNLOCK(lobj);
2355
2356			kve->kve_ref_count = obj->ref_count;
2357			kve->kve_shadow_count = obj->shadow_count;
2358			VM_OBJECT_RUNLOCK(obj);
2359			if (vp != NULL) {
2360				vn_fullpath(curthread, vp, &fullpath,
2361				    &freepath);
2362				kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
2363				cred = curthread->td_ucred;
2364				vn_lock(vp, LK_SHARED | LK_RETRY);
2365				if (VOP_GETATTR(vp, &va, cred) == 0) {
2366					kve->kve_vn_fileid = va.va_fileid;
2367					kve->kve_vn_fsid = va.va_fsid;
2368					kve->kve_vn_mode =
2369					    MAKEIMODE(va.va_type, va.va_mode);
2370					kve->kve_vn_size = va.va_size;
2371					kve->kve_vn_rdev = va.va_rdev;
2372					kve->kve_status = KF_ATTR_VALID;
2373				}
2374				vput(vp);
2375			}
2376		} else {
2377			kve->kve_type = KVME_TYPE_NONE;
2378			kve->kve_ref_count = 0;
2379			kve->kve_shadow_count = 0;
2380		}
2381
2382		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2383		if (freepath != NULL)
2384			free(freepath, M_TEMP);
2385
2386		/* Pack record size down */
2387		if ((flags & KERN_VMMAP_PACK_KINFO) != 0)
2388			kve->kve_structsize =
2389			    offsetof(struct kinfo_vmentry, kve_path) +
2390			    strlen(kve->kve_path) + 1;
2391		else
2392			kve->kve_structsize = sizeof(*kve);
2393		kve->kve_structsize = roundup(kve->kve_structsize,
2394		    sizeof(uint64_t));
2395
2396		/* Halt filling and truncate rather than exceeding maxlen */
2397		if (maxlen != -1 && maxlen < kve->kve_structsize) {
2398			error = 0;
2399			vm_map_lock_read(map);
2400			break;
2401		} else if (maxlen != -1)
2402			maxlen -= kve->kve_structsize;
2403
2404		if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
2405			error = ENOMEM;
2406		vm_map_lock_read(map);
2407		if (error != 0)
2408			break;
2409		if (last_timestamp != map->timestamp) {
2410			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2411			entry = tmp_entry;
2412		}
2413	}
2414	vm_map_unlock_read(map);
2415	vmspace_free(vm);
2416	PRELE(p);
2417	free(kve, M_TEMP);
2418	return (error);
2419}
2420
2421static int
2422sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
2423{
2424	struct proc *p;
2425	struct sbuf sb;
2426	int error, error2, *name;
2427
2428	name = (int *)arg1;
2429	sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
2430	error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
2431	if (error != 0) {
2432		sbuf_delete(&sb);
2433		return (error);
2434	}
2435	error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO);
2436	error2 = sbuf_finish(&sb);
2437	sbuf_delete(&sb);
2438	return (error != 0 ? error : error2);
2439}
2440
2441#if defined(STACK) || defined(DDB)
2442static int
2443sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
2444{
2445	struct kinfo_kstack *kkstp;
2446	int error, i, *name, numthreads;
2447	lwpid_t *lwpidarray;
2448	struct thread *td;
2449	struct stack *st;
2450	struct sbuf sb;
2451	struct proc *p;
2452
2453	name = (int *)arg1;
2454	error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
2455	if (error != 0)
2456		return (error);
2457
2458	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
2459	st = stack_create();
2460
2461	lwpidarray = NULL;
2462	PROC_LOCK(p);
2463	do {
2464		if (lwpidarray != NULL) {
2465			free(lwpidarray, M_TEMP);
2466			lwpidarray = NULL;
2467		}
2468		numthreads = p->p_numthreads;
2469		PROC_UNLOCK(p);
2470		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
2471		    M_WAITOK | M_ZERO);
2472		PROC_LOCK(p);
2473	} while (numthreads < p->p_numthreads);
2474
2475	/*
2476	 * XXXRW: During the below loop, execve(2) and countless other sorts
2477	 * of changes could have taken place.  Should we check to see if the
2478	 * vmspace has been replaced, or the like, in order to prevent
2479	 * giving a snapshot that spans, say, execve(2), with some threads
2480	 * before and some after?  Among other things, the credentials could
2481	 * have changed, in which case the right to extract debug info might
2482	 * no longer be assured.
2483	 */
2484	i = 0;
2485	FOREACH_THREAD_IN_PROC(p, td) {
2486		KASSERT(i < numthreads,
2487		    ("sysctl_kern_proc_kstack: numthreads"));
2488		lwpidarray[i] = td->td_tid;
2489		i++;
2490	}
2491	numthreads = i;
2492	for (i = 0; i < numthreads; i++) {
2493		td = thread_find(p, lwpidarray[i]);
2494		if (td == NULL) {
2495			continue;
2496		}
2497		bzero(kkstp, sizeof(*kkstp));
2498		(void)sbuf_new(&sb, kkstp->kkst_trace,
2499		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
2500		thread_lock(td);
2501		kkstp->kkst_tid = td->td_tid;
2502		if (TD_IS_SWAPPED(td))
2503			kkstp->kkst_state = KKST_STATE_SWAPPED;
2504		else if (TD_IS_RUNNING(td))
2505			kkstp->kkst_state = KKST_STATE_RUNNING;
2506		else {
2507			kkstp->kkst_state = KKST_STATE_STACKOK;
2508			stack_save_td(st, td);
2509		}
2510		thread_unlock(td);
2511		PROC_UNLOCK(p);
2512		stack_sbuf_print(&sb, st);
2513		sbuf_finish(&sb);
2514		sbuf_delete(&sb);
2515		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
2516		PROC_LOCK(p);
2517		if (error)
2518			break;
2519	}
2520	_PRELE(p);
2521	PROC_UNLOCK(p);
2522	if (lwpidarray != NULL)
2523		free(lwpidarray, M_TEMP);
2524	stack_destroy(st);
2525	free(kkstp, M_TEMP);
2526	return (error);
2527}
2528#endif
2529
2530/*
2531 * This sysctl allows a process to retrieve the full list of groups from
2532 * itself or another process.
2533 */
2534static int
2535sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
2536{
2537	pid_t *pidp = (pid_t *)arg1;
2538	unsigned int arglen = arg2;
2539	struct proc *p;
2540	struct ucred *cred;
2541	int error;
2542
2543	if (arglen != 1)
2544		return (EINVAL);
2545	if (*pidp == -1) {	/* -1 means this process */
2546		p = req->td->td_proc;
2547	} else {
2548		error = pget(*pidp, PGET_CANSEE, &p);
2549		if (error != 0)
2550			return (error);
2551	}
2552
2553	cred = crhold(p->p_ucred);
2554	if (*pidp != -1)
2555		PROC_UNLOCK(p);
2556
2557	error = SYSCTL_OUT(req, cred->cr_groups,
2558	    cred->cr_ngroups * sizeof(gid_t));
2559	crfree(cred);
2560	return (error);
2561}
2562
2563/*
2564 * This sysctl allows a process to retrieve or/and set the resource limit for
2565 * another process.
2566 */
2567static int
2568sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
2569{
2570	int *name = (int *)arg1;
2571	u_int namelen = arg2;
2572	struct rlimit rlim;
2573	struct proc *p;
2574	u_int which;
2575	int flags, error;
2576
2577	if (namelen != 2)
2578		return (EINVAL);
2579
2580	which = (u_int)name[1];
2581	if (which >= RLIM_NLIMITS)
2582		return (EINVAL);
2583
2584	if (req->newptr != NULL && req->newlen != sizeof(rlim))
2585		return (EINVAL);
2586
2587	flags = PGET_HOLD | PGET_NOTWEXIT;
2588	if (req->newptr != NULL)
2589		flags |= PGET_CANDEBUG;
2590	else
2591		flags |= PGET_CANSEE;
2592	error = pget((pid_t)name[0], flags, &p);
2593	if (error != 0)
2594		return (error);
2595
2596	/*
2597	 * Retrieve limit.
2598	 */
2599	if (req->oldptr != NULL) {
2600		PROC_LOCK(p);
2601		lim_rlimit(p, which, &rlim);
2602		PROC_UNLOCK(p);
2603	}
2604	error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
2605	if (error != 0)
2606		goto errout;
2607
2608	/*
2609	 * Set limit.
2610	 */
2611	if (req->newptr != NULL) {
2612		error = SYSCTL_IN(req, &rlim, sizeof(rlim));
2613		if (error == 0)
2614			error = kern_proc_setrlimit(curthread, p, which, &rlim);
2615	}
2616
2617errout:
2618	PRELE(p);
2619	return (error);
2620}
2621
2622/*
2623 * This sysctl allows a process to retrieve ps_strings structure location of
2624 * another process.
2625 */
2626static int
2627sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
2628{
2629	int *name = (int *)arg1;
2630	u_int namelen = arg2;
2631	struct proc *p;
2632	vm_offset_t ps_strings;
2633	int error;
2634#ifdef COMPAT_FREEBSD32
2635	uint32_t ps_strings32;
2636#endif
2637
2638	if (namelen != 1)
2639		return (EINVAL);
2640
2641	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2642	if (error != 0)
2643		return (error);
2644#ifdef COMPAT_FREEBSD32
2645	if ((req->flags & SCTL_MASK32) != 0) {
2646		/*
2647		 * We return 0 if the 32 bit emulation request is for a 64 bit
2648		 * process.
2649		 */
2650		ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
2651		    PTROUT(p->p_sysent->sv_psstrings) : 0;
2652		PROC_UNLOCK(p);
2653		error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
2654		return (error);
2655	}
2656#endif
2657	ps_strings = p->p_sysent->sv_psstrings;
2658	PROC_UNLOCK(p);
2659	error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
2660	return (error);
2661}
2662
2663/*
2664 * This sysctl allows a process to retrieve umask of another process.
2665 */
2666static int
2667sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
2668{
2669	int *name = (int *)arg1;
2670	u_int namelen = arg2;
2671	struct proc *p;
2672	int error;
2673	u_short fd_cmask;
2674
2675	if (namelen != 1)
2676		return (EINVAL);
2677
2678	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2679	if (error != 0)
2680		return (error);
2681
2682	FILEDESC_SLOCK(p->p_fd);
2683	fd_cmask = p->p_fd->fd_cmask;
2684	FILEDESC_SUNLOCK(p->p_fd);
2685	PRELE(p);
2686	error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask));
2687	return (error);
2688}
2689
2690/*
2691 * This sysctl allows a process to set and retrieve binary osreldate of
2692 * another process.
2693 */
2694static int
2695sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
2696{
2697	int *name = (int *)arg1;
2698	u_int namelen = arg2;
2699	struct proc *p;
2700	int flags, error, osrel;
2701
2702	if (namelen != 1)
2703		return (EINVAL);
2704
2705	if (req->newptr != NULL && req->newlen != sizeof(osrel))
2706		return (EINVAL);
2707
2708	flags = PGET_HOLD | PGET_NOTWEXIT;
2709	if (req->newptr != NULL)
2710		flags |= PGET_CANDEBUG;
2711	else
2712		flags |= PGET_CANSEE;
2713	error = pget((pid_t)name[0], flags, &p);
2714	if (error != 0)
2715		return (error);
2716
2717	error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
2718	if (error != 0)
2719		goto errout;
2720
2721	if (req->newptr != NULL) {
2722		error = SYSCTL_IN(req, &osrel, sizeof(osrel));
2723		if (error != 0)
2724			goto errout;
2725		if (osrel < 0) {
2726			error = EINVAL;
2727			goto errout;
2728		}
2729		p->p_osrel = osrel;
2730	}
2731errout:
2732	PRELE(p);
2733	return (error);
2734}
2735
2736static int
2737sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
2738{
2739	int *name = (int *)arg1;
2740	u_int namelen = arg2;
2741	struct proc *p;
2742	struct kinfo_sigtramp kst;
2743	const struct sysentvec *sv;
2744	int error;
2745#ifdef COMPAT_FREEBSD32
2746	struct kinfo_sigtramp32 kst32;
2747#endif
2748
2749	if (namelen != 1)
2750		return (EINVAL);
2751
2752	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2753	if (error != 0)
2754		return (error);
2755	sv = p->p_sysent;
2756#ifdef COMPAT_FREEBSD32
2757	if ((req->flags & SCTL_MASK32) != 0) {
2758		bzero(&kst32, sizeof(kst32));
2759		if (SV_PROC_FLAG(p, SV_ILP32)) {
2760			if (sv->sv_sigcode_base != 0) {
2761				kst32.ksigtramp_start = sv->sv_sigcode_base;
2762				kst32.ksigtramp_end = sv->sv_sigcode_base +
2763				    *sv->sv_szsigcode;
2764			} else {
2765				kst32.ksigtramp_start = sv->sv_psstrings -
2766				    *sv->sv_szsigcode;
2767				kst32.ksigtramp_end = sv->sv_psstrings;
2768			}
2769		}
2770		PROC_UNLOCK(p);
2771		error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
2772		return (error);
2773	}
2774#endif
2775	bzero(&kst, sizeof(kst));
2776	if (sv->sv_sigcode_base != 0) {
2777		kst.ksigtramp_start = (char *)sv->sv_sigcode_base;
2778		kst.ksigtramp_end = (char *)sv->sv_sigcode_base +
2779		    *sv->sv_szsigcode;
2780	} else {
2781		kst.ksigtramp_start = (char *)sv->sv_psstrings -
2782		    *sv->sv_szsigcode;
2783		kst.ksigtramp_end = (char *)sv->sv_psstrings;
2784	}
2785	PROC_UNLOCK(p);
2786	error = SYSCTL_OUT(req, &kst, sizeof(kst));
2787	return (error);
2788}
2789
2790SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
2791
2792SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
2793	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
2794	"Return entire process table");
2795
2796static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2797	sysctl_kern_proc, "Process table");
2798
2799static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
2800	sysctl_kern_proc, "Process table");
2801
2802static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2803	sysctl_kern_proc, "Process table");
2804
2805static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
2806	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2807
2808static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
2809	sysctl_kern_proc, "Process table");
2810
2811static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2812	sysctl_kern_proc, "Process table");
2813
2814static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2815	sysctl_kern_proc, "Process table");
2816
2817static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2818	sysctl_kern_proc, "Process table");
2819
2820static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
2821	sysctl_kern_proc, "Return process table, no threads");
2822
2823static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
2824	CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
2825	sysctl_kern_proc_args, "Process argument list");
2826
2827static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
2828	sysctl_kern_proc_env, "Process environment");
2829
2830static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
2831	CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
2832
2833static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
2834	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
2835
2836static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
2837	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
2838	"Process syscall vector name (ABI type)");
2839
2840static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
2841	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2842
2843static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
2844	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2845
2846static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
2847	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2848
2849static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
2850	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2851
2852static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
2853	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2854
2855static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
2856	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2857
2858static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
2859	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2860
2861static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
2862	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2863
2864static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
2865	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
2866	"Return process table, no threads");
2867
2868#ifdef COMPAT_FREEBSD7
2869static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
2870	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
2871#endif
2872
2873static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
2874	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
2875
2876#if defined(STACK) || defined(DDB)
2877static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
2878	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
2879#endif
2880
2881static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
2882	CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
2883
2884static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
2885	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
2886	"Process resource limits");
2887
2888static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
2889	CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
2890	"Process ps_strings location");
2891
2892static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
2893	CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
2894
2895static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
2896	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
2897	"Process binary osreldate");
2898
2899static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
2900	CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
2901	"Process signal trampoline location");
2902
2903int allproc_gen;
2904
2905/*
2906 * stop_all_proc() purpose is to stop all process which have usermode,
2907 * except current process for obvious reasons.  This makes it somewhat
2908 * unreliable when invoked from multithreaded process.  The service
2909 * must not be user-callable anyway.
2910 */
2911void
2912stop_all_proc(void)
2913{
2914	struct proc *cp, *p;
2915	int r, gen;
2916	bool restart, seen_stopped, seen_exiting, stopped_some;
2917
2918	cp = curproc;
2919allproc_loop:
2920	sx_xlock(&allproc_lock);
2921	gen = allproc_gen;
2922	seen_exiting = seen_stopped = stopped_some = restart = false;
2923	LIST_REMOVE(cp, p_list);
2924	LIST_INSERT_HEAD(&allproc, cp, p_list);
2925	for (;;) {
2926		p = LIST_NEXT(cp, p_list);
2927		if (p == NULL)
2928			break;
2929		LIST_REMOVE(cp, p_list);
2930		LIST_INSERT_AFTER(p, cp, p_list);
2931		PROC_LOCK(p);
2932		if ((p->p_flag & (P_KTHREAD | P_SYSTEM |
2933		    P_TOTAL_STOP)) != 0) {
2934			PROC_UNLOCK(p);
2935			continue;
2936		}
2937		if ((p->p_flag & P_WEXIT) != 0) {
2938			seen_exiting = true;
2939			PROC_UNLOCK(p);
2940			continue;
2941		}
2942		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
2943			/*
2944			 * Stopped processes are tolerated when there
2945			 * are no other processes which might continue
2946			 * them.  P_STOPPED_SINGLE but not
2947			 * P_TOTAL_STOP process still has at least one
2948			 * thread running.
2949			 */
2950			seen_stopped = true;
2951			PROC_UNLOCK(p);
2952			continue;
2953		}
2954		_PHOLD(p);
2955		sx_xunlock(&allproc_lock);
2956		r = thread_single(p, SINGLE_ALLPROC);
2957		if (r != 0)
2958			restart = true;
2959		else
2960			stopped_some = true;
2961		_PRELE(p);
2962		PROC_UNLOCK(p);
2963		sx_xlock(&allproc_lock);
2964	}
2965	/* Catch forked children we did not see in iteration. */
2966	if (gen != allproc_gen)
2967		restart = true;
2968	sx_xunlock(&allproc_lock);
2969	if (restart || stopped_some || seen_exiting || seen_stopped) {
2970		kern_yield(PRI_USER);
2971		goto allproc_loop;
2972	}
2973}
2974
2975void
2976resume_all_proc(void)
2977{
2978	struct proc *cp, *p;
2979
2980	cp = curproc;
2981	sx_xlock(&allproc_lock);
2982	LIST_REMOVE(cp, p_list);
2983	LIST_INSERT_HEAD(&allproc, cp, p_list);
2984	for (;;) {
2985		p = LIST_NEXT(cp, p_list);
2986		if (p == NULL)
2987			break;
2988		LIST_REMOVE(cp, p_list);
2989		LIST_INSERT_AFTER(p, cp, p_list);
2990		PROC_LOCK(p);
2991		if ((p->p_flag & P_TOTAL_STOP) != 0) {
2992			sx_xunlock(&allproc_lock);
2993			_PHOLD(p);
2994			thread_single_end(p, SINGLE_ALLPROC);
2995			_PRELE(p);
2996			PROC_UNLOCK(p);
2997			sx_xlock(&allproc_lock);
2998		} else {
2999			PROC_UNLOCK(p);
3000		}
3001	}
3002	sx_xunlock(&allproc_lock);
3003}
3004
3005/* #define	TOTAL_STOP_DEBUG	1 */
3006#ifdef TOTAL_STOP_DEBUG
3007volatile static int ap_resume;
3008#include <sys/mount.h>
3009
3010static int
3011sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
3012{
3013	int error, val;
3014
3015	val = 0;
3016	ap_resume = 0;
3017	error = sysctl_handle_int(oidp, &val, 0, req);
3018	if (error != 0 || req->newptr == NULL)
3019		return (error);
3020	if (val != 0) {
3021		stop_all_proc();
3022		syncer_suspend();
3023		while (ap_resume == 0)
3024			;
3025		syncer_resume();
3026		resume_all_proc();
3027	}
3028	return (0);
3029}
3030
3031SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
3032    CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
3033    sysctl_debug_stop_all_proc, "I",
3034    "");
3035#endif
3036