kern_proc.c revision 294283
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: stable/10/sys/kern/kern_proc.c 294283 2016-01-18 18:27:21Z jhb $");
34
35#include "opt_compat.h"
36#include "opt_ddb.h"
37#include "opt_kdtrace.h"
38#include "opt_ktrace.h"
39#include "opt_kstack_pages.h"
40#include "opt_stack.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/elf.h>
45#include <sys/exec.h>
46#include <sys/kernel.h>
47#include <sys/limits.h>
48#include <sys/lock.h>
49#include <sys/loginclass.h>
50#include <sys/malloc.h>
51#include <sys/mman.h>
52#include <sys/mount.h>
53#include <sys/mutex.h>
54#include <sys/proc.h>
55#include <sys/ptrace.h>
56#include <sys/refcount.h>
57#include <sys/resourcevar.h>
58#include <sys/rwlock.h>
59#include <sys/sbuf.h>
60#include <sys/sysent.h>
61#include <sys/sched.h>
62#include <sys/smp.h>
63#include <sys/stack.h>
64#include <sys/stat.h>
65#include <sys/sysctl.h>
66#include <sys/filedesc.h>
67#include <sys/tty.h>
68#include <sys/signalvar.h>
69#include <sys/sdt.h>
70#include <sys/sx.h>
71#include <sys/user.h>
72#include <sys/jail.h>
73#include <sys/vnode.h>
74#include <sys/eventhandler.h>
75
76#ifdef DDB
77#include <ddb/ddb.h>
78#endif
79
80#include <vm/vm.h>
81#include <vm/vm_param.h>
82#include <vm/vm_extern.h>
83#include <vm/pmap.h>
84#include <vm/vm_map.h>
85#include <vm/vm_object.h>
86#include <vm/vm_page.h>
87#include <vm/uma.h>
88
89#ifdef COMPAT_FREEBSD32
90#include <compat/freebsd32/freebsd32.h>
91#include <compat/freebsd32/freebsd32_util.h>
92#endif
93
94SDT_PROVIDER_DEFINE(proc);
95SDT_PROBE_DEFINE4(proc, kernel, ctor, entry, "struct proc *", "int",
96    "void *", "int");
97SDT_PROBE_DEFINE4(proc, kernel, ctor, return, "struct proc *", "int",
98    "void *", "int");
99SDT_PROBE_DEFINE4(proc, kernel, dtor, entry, "struct proc *", "int",
100    "void *", "struct thread *");
101SDT_PROBE_DEFINE3(proc, kernel, dtor, return, "struct proc *", "int",
102    "void *");
103SDT_PROBE_DEFINE3(proc, kernel, init, entry, "struct proc *", "int",
104    "int");
105SDT_PROBE_DEFINE3(proc, kernel, init, return, "struct proc *", "int",
106    "int");
107
108MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
109MALLOC_DEFINE(M_SESSION, "session", "session header");
110static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
111MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
112
113static void doenterpgrp(struct proc *, struct pgrp *);
114static void orphanpg(struct pgrp *pg);
115static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
116static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
117static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
118    int preferthread);
119static void pgadjustjobc(struct pgrp *pgrp, int entering);
120static void pgdelete(struct pgrp *);
121static int proc_ctor(void *mem, int size, void *arg, int flags);
122static void proc_dtor(void *mem, int size, void *arg);
123static int proc_init(void *mem, int size, int flags);
124static void proc_fini(void *mem, int size);
125static void pargs_free(struct pargs *pa);
126static struct proc *zpfind_locked(pid_t pid);
127
128/*
129 * Other process lists
130 */
131struct pidhashhead *pidhashtbl;
132u_long pidhash;
133struct pgrphashhead *pgrphashtbl;
134u_long pgrphash;
135struct proclist allproc;
136struct proclist zombproc;
137struct sx allproc_lock;
138struct sx proctree_lock;
139struct mtx ppeers_lock;
140uma_zone_t proc_zone;
141
142/*
143 * The offset of various fields in struct proc and struct thread.
144 * These are used by kernel debuggers to enumerate kernel threads and
145 * processes.
146 */
147const int proc_off_p_pid = offsetof(struct proc, p_pid);
148const int proc_off_p_comm = offsetof(struct proc, p_comm);
149const int proc_off_p_list = offsetof(struct proc, p_list);
150const int proc_off_p_threads = offsetof(struct proc, p_threads);
151const int thread_off_td_tid = offsetof(struct thread, td_tid);
152const int thread_off_td_name = offsetof(struct thread, td_name);
153const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu);
154const int thread_off_td_pcb = offsetof(struct thread, td_pcb);
155const int thread_off_td_plist = offsetof(struct thread, td_plist);
156
157int kstack_pages = KSTACK_PAGES;
158SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
159    "Kernel stack size in pages");
160static int vmmap_skip_res_cnt = 0;
161SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
162    &vmmap_skip_res_cnt, 0,
163    "Skip calculation of the pages resident count in kern.proc.vmmap");
164
165CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
166#ifdef COMPAT_FREEBSD32
167CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
168#endif
169
170/*
171 * Initialize global process hashing structures.
172 */
173void
174procinit()
175{
176
177	sx_init(&allproc_lock, "allproc");
178	sx_init(&proctree_lock, "proctree");
179	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
180	LIST_INIT(&allproc);
181	LIST_INIT(&zombproc);
182	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
183	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
184	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
185	    proc_ctor, proc_dtor, proc_init, proc_fini,
186	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
187	uihashinit();
188}
189
190/*
191 * Prepare a proc for use.
192 */
193static int
194proc_ctor(void *mem, int size, void *arg, int flags)
195{
196	struct proc *p;
197
198	p = (struct proc *)mem;
199	SDT_PROBE4(proc, kernel, ctor , entry, p, size, arg, flags);
200	EVENTHANDLER_INVOKE(process_ctor, p);
201	SDT_PROBE4(proc, kernel, ctor , return, p, size, arg, flags);
202	return (0);
203}
204
205/*
206 * Reclaim a proc after use.
207 */
208static void
209proc_dtor(void *mem, int size, void *arg)
210{
211	struct proc *p;
212	struct thread *td;
213
214	/* INVARIANTS checks go here */
215	p = (struct proc *)mem;
216	td = FIRST_THREAD_IN_PROC(p);
217	SDT_PROBE4(proc, kernel, dtor, entry, p, size, arg, td);
218	if (td != NULL) {
219#ifdef INVARIANTS
220		KASSERT((p->p_numthreads == 1),
221		    ("bad number of threads in exiting process"));
222		KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
223#endif
224		/* Free all OSD associated to this thread. */
225		osd_thread_exit(td);
226	}
227	EVENTHANDLER_INVOKE(process_dtor, p);
228	if (p->p_ksi != NULL)
229		KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
230	SDT_PROBE3(proc, kernel, dtor, return, p, size, arg);
231}
232
233/*
234 * Initialize type-stable parts of a proc (when newly created).
235 */
236static int
237proc_init(void *mem, int size, int flags)
238{
239	struct proc *p;
240
241	p = (struct proc *)mem;
242	SDT_PROBE3(proc, kernel, init, entry, p, size, flags);
243	p->p_sched = (struct p_sched *)&p[1];
244	bzero(&p->p_mtx, sizeof(struct mtx));
245	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
246	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE);
247	cv_init(&p->p_pwait, "ppwait");
248	cv_init(&p->p_dbgwait, "dbgwait");
249	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
250	EVENTHANDLER_INVOKE(process_init, p);
251	p->p_stats = pstats_alloc();
252	p->p_pgrp = NULL;
253	SDT_PROBE3(proc, kernel, init, return, p, size, flags);
254	return (0);
255}
256
257/*
258 * UMA should ensure that this function is never called.
259 * Freeing a proc structure would violate type stability.
260 */
261static void
262proc_fini(void *mem, int size)
263{
264#ifdef notnow
265	struct proc *p;
266
267	p = (struct proc *)mem;
268	EVENTHANDLER_INVOKE(process_fini, p);
269	pstats_free(p->p_stats);
270	thread_free(FIRST_THREAD_IN_PROC(p));
271	mtx_destroy(&p->p_mtx);
272	if (p->p_ksi != NULL)
273		ksiginfo_free(p->p_ksi);
274#else
275	panic("proc reclaimed");
276#endif
277}
278
279/*
280 * Is p an inferior of the current process?
281 */
282int
283inferior(struct proc *p)
284{
285
286	sx_assert(&proctree_lock, SX_LOCKED);
287	PROC_LOCK_ASSERT(p, MA_OWNED);
288	for (; p != curproc; p = proc_realparent(p)) {
289		if (p->p_pid == 0)
290			return (0);
291	}
292	return (1);
293}
294
295struct proc *
296pfind_locked(pid_t pid)
297{
298	struct proc *p;
299
300	sx_assert(&allproc_lock, SX_LOCKED);
301	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
302		if (p->p_pid == pid) {
303			PROC_LOCK(p);
304			if (p->p_state == PRS_NEW) {
305				PROC_UNLOCK(p);
306				p = NULL;
307			}
308			break;
309		}
310	}
311	return (p);
312}
313
314/*
315 * Locate a process by number; return only "live" processes -- i.e., neither
316 * zombies nor newly born but incompletely initialized processes.  By not
317 * returning processes in the PRS_NEW state, we allow callers to avoid
318 * testing for that condition to avoid dereferencing p_ucred, et al.
319 */
320struct proc *
321pfind(pid_t pid)
322{
323	struct proc *p;
324
325	sx_slock(&allproc_lock);
326	p = pfind_locked(pid);
327	sx_sunlock(&allproc_lock);
328	return (p);
329}
330
331static struct proc *
332pfind_tid_locked(pid_t tid)
333{
334	struct proc *p;
335	struct thread *td;
336
337	sx_assert(&allproc_lock, SX_LOCKED);
338	FOREACH_PROC_IN_SYSTEM(p) {
339		PROC_LOCK(p);
340		if (p->p_state == PRS_NEW) {
341			PROC_UNLOCK(p);
342			continue;
343		}
344		FOREACH_THREAD_IN_PROC(p, td) {
345			if (td->td_tid == tid)
346				goto found;
347		}
348		PROC_UNLOCK(p);
349	}
350found:
351	return (p);
352}
353
354/*
355 * Locate a process group by number.
356 * The caller must hold proctree_lock.
357 */
358struct pgrp *
359pgfind(pgid)
360	register pid_t pgid;
361{
362	register struct pgrp *pgrp;
363
364	sx_assert(&proctree_lock, SX_LOCKED);
365
366	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
367		if (pgrp->pg_id == pgid) {
368			PGRP_LOCK(pgrp);
369			return (pgrp);
370		}
371	}
372	return (NULL);
373}
374
375/*
376 * Locate process and do additional manipulations, depending on flags.
377 */
378int
379pget(pid_t pid, int flags, struct proc **pp)
380{
381	struct proc *p;
382	int error;
383
384	sx_slock(&allproc_lock);
385	if (pid <= PID_MAX) {
386		p = pfind_locked(pid);
387		if (p == NULL && (flags & PGET_NOTWEXIT) == 0)
388			p = zpfind_locked(pid);
389	} else if ((flags & PGET_NOTID) == 0) {
390		p = pfind_tid_locked(pid);
391	} else {
392		p = NULL;
393	}
394	sx_sunlock(&allproc_lock);
395	if (p == NULL)
396		return (ESRCH);
397	if ((flags & PGET_CANSEE) != 0) {
398		error = p_cansee(curthread, p);
399		if (error != 0)
400			goto errout;
401	}
402	if ((flags & PGET_CANDEBUG) != 0) {
403		error = p_candebug(curthread, p);
404		if (error != 0)
405			goto errout;
406	}
407	if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
408		error = EPERM;
409		goto errout;
410	}
411	if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
412		error = ESRCH;
413		goto errout;
414	}
415	if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
416		/*
417		 * XXXRW: Not clear ESRCH is the right error during proc
418		 * execve().
419		 */
420		error = ESRCH;
421		goto errout;
422	}
423	if ((flags & PGET_HOLD) != 0) {
424		_PHOLD(p);
425		PROC_UNLOCK(p);
426	}
427	*pp = p;
428	return (0);
429errout:
430	PROC_UNLOCK(p);
431	return (error);
432}
433
434/*
435 * Create a new process group.
436 * pgid must be equal to the pid of p.
437 * Begin a new session if required.
438 */
439int
440enterpgrp(p, pgid, pgrp, sess)
441	register struct proc *p;
442	pid_t pgid;
443	struct pgrp *pgrp;
444	struct session *sess;
445{
446
447	sx_assert(&proctree_lock, SX_XLOCKED);
448
449	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
450	KASSERT(p->p_pid == pgid,
451	    ("enterpgrp: new pgrp and pid != pgid"));
452	KASSERT(pgfind(pgid) == NULL,
453	    ("enterpgrp: pgrp with pgid exists"));
454	KASSERT(!SESS_LEADER(p),
455	    ("enterpgrp: session leader attempted setpgrp"));
456
457	mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
458
459	if (sess != NULL) {
460		/*
461		 * new session
462		 */
463		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
464		PROC_LOCK(p);
465		p->p_flag &= ~P_CONTROLT;
466		PROC_UNLOCK(p);
467		PGRP_LOCK(pgrp);
468		sess->s_leader = p;
469		sess->s_sid = p->p_pid;
470		refcount_init(&sess->s_count, 1);
471		sess->s_ttyvp = NULL;
472		sess->s_ttydp = NULL;
473		sess->s_ttyp = NULL;
474		bcopy(p->p_session->s_login, sess->s_login,
475			    sizeof(sess->s_login));
476		pgrp->pg_session = sess;
477		KASSERT(p == curproc,
478		    ("enterpgrp: mksession and p != curproc"));
479	} else {
480		pgrp->pg_session = p->p_session;
481		sess_hold(pgrp->pg_session);
482		PGRP_LOCK(pgrp);
483	}
484	pgrp->pg_id = pgid;
485	LIST_INIT(&pgrp->pg_members);
486
487	/*
488	 * As we have an exclusive lock of proctree_lock,
489	 * this should not deadlock.
490	 */
491	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
492	pgrp->pg_jobc = 0;
493	SLIST_INIT(&pgrp->pg_sigiolst);
494	PGRP_UNLOCK(pgrp);
495
496	doenterpgrp(p, pgrp);
497
498	return (0);
499}
500
501/*
502 * Move p to an existing process group
503 */
504int
505enterthispgrp(p, pgrp)
506	register struct proc *p;
507	struct pgrp *pgrp;
508{
509
510	sx_assert(&proctree_lock, SX_XLOCKED);
511	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
512	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
513	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
514	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
515	KASSERT(pgrp->pg_session == p->p_session,
516		("%s: pgrp's session %p, p->p_session %p.\n",
517		__func__,
518		pgrp->pg_session,
519		p->p_session));
520	KASSERT(pgrp != p->p_pgrp,
521		("%s: p belongs to pgrp.", __func__));
522
523	doenterpgrp(p, pgrp);
524
525	return (0);
526}
527
528/*
529 * Move p to a process group
530 */
531static void
532doenterpgrp(p, pgrp)
533	struct proc *p;
534	struct pgrp *pgrp;
535{
536	struct pgrp *savepgrp;
537
538	sx_assert(&proctree_lock, SX_XLOCKED);
539	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
540	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
541	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
542	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
543
544	savepgrp = p->p_pgrp;
545
546	/*
547	 * Adjust eligibility of affected pgrps to participate in job control.
548	 * Increment eligibility counts before decrementing, otherwise we
549	 * could reach 0 spuriously during the first call.
550	 */
551	fixjobc(p, pgrp, 1);
552	fixjobc(p, p->p_pgrp, 0);
553
554	PGRP_LOCK(pgrp);
555	PGRP_LOCK(savepgrp);
556	PROC_LOCK(p);
557	LIST_REMOVE(p, p_pglist);
558	p->p_pgrp = pgrp;
559	PROC_UNLOCK(p);
560	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
561	PGRP_UNLOCK(savepgrp);
562	PGRP_UNLOCK(pgrp);
563	if (LIST_EMPTY(&savepgrp->pg_members))
564		pgdelete(savepgrp);
565}
566
567/*
568 * remove process from process group
569 */
570int
571leavepgrp(p)
572	register struct proc *p;
573{
574	struct pgrp *savepgrp;
575
576	sx_assert(&proctree_lock, SX_XLOCKED);
577	savepgrp = p->p_pgrp;
578	PGRP_LOCK(savepgrp);
579	PROC_LOCK(p);
580	LIST_REMOVE(p, p_pglist);
581	p->p_pgrp = NULL;
582	PROC_UNLOCK(p);
583	PGRP_UNLOCK(savepgrp);
584	if (LIST_EMPTY(&savepgrp->pg_members))
585		pgdelete(savepgrp);
586	return (0);
587}
588
589/*
590 * delete a process group
591 */
592static void
593pgdelete(pgrp)
594	register struct pgrp *pgrp;
595{
596	struct session *savesess;
597	struct tty *tp;
598
599	sx_assert(&proctree_lock, SX_XLOCKED);
600	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
601	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
602
603	/*
604	 * Reset any sigio structures pointing to us as a result of
605	 * F_SETOWN with our pgid.
606	 */
607	funsetownlst(&pgrp->pg_sigiolst);
608
609	PGRP_LOCK(pgrp);
610	tp = pgrp->pg_session->s_ttyp;
611	LIST_REMOVE(pgrp, pg_hash);
612	savesess = pgrp->pg_session;
613	PGRP_UNLOCK(pgrp);
614
615	/* Remove the reference to the pgrp before deallocating it. */
616	if (tp != NULL) {
617		tty_lock(tp);
618		tty_rel_pgrp(tp, pgrp);
619	}
620
621	mtx_destroy(&pgrp->pg_mtx);
622	free(pgrp, M_PGRP);
623	sess_release(savesess);
624}
625
626static void
627pgadjustjobc(pgrp, entering)
628	struct pgrp *pgrp;
629	int entering;
630{
631
632	PGRP_LOCK(pgrp);
633	if (entering)
634		pgrp->pg_jobc++;
635	else {
636		--pgrp->pg_jobc;
637		if (pgrp->pg_jobc == 0)
638			orphanpg(pgrp);
639	}
640	PGRP_UNLOCK(pgrp);
641}
642
643/*
644 * Adjust pgrp jobc counters when specified process changes process group.
645 * We count the number of processes in each process group that "qualify"
646 * the group for terminal job control (those with a parent in a different
647 * process group of the same session).  If that count reaches zero, the
648 * process group becomes orphaned.  Check both the specified process'
649 * process group and that of its children.
650 * entering == 0 => p is leaving specified group.
651 * entering == 1 => p is entering specified group.
652 */
653void
654fixjobc(p, pgrp, entering)
655	register struct proc *p;
656	register struct pgrp *pgrp;
657	int entering;
658{
659	register struct pgrp *hispgrp;
660	register struct session *mysession;
661
662	sx_assert(&proctree_lock, SX_LOCKED);
663	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
664	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
665	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
666
667	/*
668	 * Check p's parent to see whether p qualifies its own process
669	 * group; if so, adjust count for p's process group.
670	 */
671	mysession = pgrp->pg_session;
672	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
673	    hispgrp->pg_session == mysession)
674		pgadjustjobc(pgrp, entering);
675
676	/*
677	 * Check this process' children to see whether they qualify
678	 * their process groups; if so, adjust counts for children's
679	 * process groups.
680	 */
681	LIST_FOREACH(p, &p->p_children, p_sibling) {
682		hispgrp = p->p_pgrp;
683		if (hispgrp == pgrp ||
684		    hispgrp->pg_session != mysession)
685			continue;
686		PROC_LOCK(p);
687		if (p->p_state == PRS_ZOMBIE) {
688			PROC_UNLOCK(p);
689			continue;
690		}
691		PROC_UNLOCK(p);
692		pgadjustjobc(hispgrp, entering);
693	}
694}
695
696/*
697 * A process group has become orphaned;
698 * if there are any stopped processes in the group,
699 * hang-up all process in that group.
700 */
701static void
702orphanpg(pg)
703	struct pgrp *pg;
704{
705	register struct proc *p;
706
707	PGRP_LOCK_ASSERT(pg, MA_OWNED);
708
709	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
710		PROC_LOCK(p);
711		if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
712			PROC_UNLOCK(p);
713			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
714				PROC_LOCK(p);
715				kern_psignal(p, SIGHUP);
716				kern_psignal(p, SIGCONT);
717				PROC_UNLOCK(p);
718			}
719			return;
720		}
721		PROC_UNLOCK(p);
722	}
723}
724
725void
726sess_hold(struct session *s)
727{
728
729	refcount_acquire(&s->s_count);
730}
731
732void
733sess_release(struct session *s)
734{
735
736	if (refcount_release(&s->s_count)) {
737		if (s->s_ttyp != NULL) {
738			tty_lock(s->s_ttyp);
739			tty_rel_sess(s->s_ttyp, s);
740		}
741		mtx_destroy(&s->s_mtx);
742		free(s, M_SESSION);
743	}
744}
745
746#ifdef DDB
747
748DB_SHOW_COMMAND(pgrpdump, pgrpdump)
749{
750	register struct pgrp *pgrp;
751	register struct proc *p;
752	register int i;
753
754	for (i = 0; i <= pgrphash; i++) {
755		if (!LIST_EMPTY(&pgrphashtbl[i])) {
756			printf("\tindx %d\n", i);
757			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
758				printf(
759			"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
760				    (void *)pgrp, (long)pgrp->pg_id,
761				    (void *)pgrp->pg_session,
762				    pgrp->pg_session->s_count,
763				    (void *)LIST_FIRST(&pgrp->pg_members));
764				LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
765					printf("\t\tpid %ld addr %p pgrp %p\n",
766					    (long)p->p_pid, (void *)p,
767					    (void *)p->p_pgrp);
768				}
769			}
770		}
771	}
772}
773#endif /* DDB */
774
775/*
776 * Calculate the kinfo_proc members which contain process-wide
777 * informations.
778 * Must be called with the target process locked.
779 */
780static void
781fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
782{
783	struct thread *td;
784
785	PROC_LOCK_ASSERT(p, MA_OWNED);
786
787	kp->ki_estcpu = 0;
788	kp->ki_pctcpu = 0;
789	FOREACH_THREAD_IN_PROC(p, td) {
790		thread_lock(td);
791		kp->ki_pctcpu += sched_pctcpu(td);
792		kp->ki_estcpu += td->td_estcpu;
793		thread_unlock(td);
794	}
795}
796
797/*
798 * Clear kinfo_proc and fill in any information that is common
799 * to all threads in the process.
800 * Must be called with the target process locked.
801 */
802static void
803fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
804{
805	struct thread *td0;
806	struct tty *tp;
807	struct session *sp;
808	struct ucred *cred;
809	struct sigacts *ps;
810
811	PROC_LOCK_ASSERT(p, MA_OWNED);
812	bzero(kp, sizeof(*kp));
813
814	kp->ki_structsize = sizeof(*kp);
815	kp->ki_paddr = p;
816	kp->ki_addr =/* p->p_addr; */0; /* XXX */
817	kp->ki_args = p->p_args;
818	kp->ki_textvp = p->p_textvp;
819#ifdef KTRACE
820	kp->ki_tracep = p->p_tracevp;
821	kp->ki_traceflag = p->p_traceflag;
822#endif
823	kp->ki_fd = p->p_fd;
824	kp->ki_vmspace = p->p_vmspace;
825	kp->ki_flag = p->p_flag;
826	kp->ki_flag2 = p->p_flag2;
827	cred = p->p_ucred;
828	if (cred) {
829		kp->ki_uid = cred->cr_uid;
830		kp->ki_ruid = cred->cr_ruid;
831		kp->ki_svuid = cred->cr_svuid;
832		kp->ki_cr_flags = 0;
833		if (cred->cr_flags & CRED_FLAG_CAPMODE)
834			kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
835		/* XXX bde doesn't like KI_NGROUPS */
836		if (cred->cr_ngroups > KI_NGROUPS) {
837			kp->ki_ngroups = KI_NGROUPS;
838			kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
839		} else
840			kp->ki_ngroups = cred->cr_ngroups;
841		bcopy(cred->cr_groups, kp->ki_groups,
842		    kp->ki_ngroups * sizeof(gid_t));
843		kp->ki_rgid = cred->cr_rgid;
844		kp->ki_svgid = cred->cr_svgid;
845		/* If jailed(cred), emulate the old P_JAILED flag. */
846		if (jailed(cred)) {
847			kp->ki_flag |= P_JAILED;
848			/* If inside the jail, use 0 as a jail ID. */
849			if (cred->cr_prison != curthread->td_ucred->cr_prison)
850				kp->ki_jid = cred->cr_prison->pr_id;
851		}
852		strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
853		    sizeof(kp->ki_loginclass));
854	}
855	ps = p->p_sigacts;
856	if (ps) {
857		mtx_lock(&ps->ps_mtx);
858		kp->ki_sigignore = ps->ps_sigignore;
859		kp->ki_sigcatch = ps->ps_sigcatch;
860		mtx_unlock(&ps->ps_mtx);
861	}
862	if (p->p_state != PRS_NEW &&
863	    p->p_state != PRS_ZOMBIE &&
864	    p->p_vmspace != NULL) {
865		struct vmspace *vm = p->p_vmspace;
866
867		kp->ki_size = vm->vm_map.size;
868		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
869		FOREACH_THREAD_IN_PROC(p, td0) {
870			if (!TD_IS_SWAPPED(td0))
871				kp->ki_rssize += td0->td_kstack_pages;
872		}
873		kp->ki_swrss = vm->vm_swrss;
874		kp->ki_tsize = vm->vm_tsize;
875		kp->ki_dsize = vm->vm_dsize;
876		kp->ki_ssize = vm->vm_ssize;
877	} else if (p->p_state == PRS_ZOMBIE)
878		kp->ki_stat = SZOMB;
879	if (kp->ki_flag & P_INMEM)
880		kp->ki_sflag = PS_INMEM;
881	else
882		kp->ki_sflag = 0;
883	/* Calculate legacy swtime as seconds since 'swtick'. */
884	kp->ki_swtime = (ticks - p->p_swtick) / hz;
885	kp->ki_pid = p->p_pid;
886	kp->ki_nice = p->p_nice;
887	kp->ki_fibnum = p->p_fibnum;
888	kp->ki_start = p->p_stats->p_start;
889	timevaladd(&kp->ki_start, &boottime);
890	PROC_STATLOCK(p);
891	rufetch(p, &kp->ki_rusage);
892	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
893	calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
894	PROC_STATUNLOCK(p);
895	calccru(p, &kp->ki_childutime, &kp->ki_childstime);
896	/* Some callers want child times in a single value. */
897	kp->ki_childtime = kp->ki_childstime;
898	timevaladd(&kp->ki_childtime, &kp->ki_childutime);
899
900	FOREACH_THREAD_IN_PROC(p, td0)
901		kp->ki_cow += td0->td_cow;
902
903	tp = NULL;
904	if (p->p_pgrp) {
905		kp->ki_pgid = p->p_pgrp->pg_id;
906		kp->ki_jobc = p->p_pgrp->pg_jobc;
907		sp = p->p_pgrp->pg_session;
908
909		if (sp != NULL) {
910			kp->ki_sid = sp->s_sid;
911			SESS_LOCK(sp);
912			strlcpy(kp->ki_login, sp->s_login,
913			    sizeof(kp->ki_login));
914			if (sp->s_ttyvp)
915				kp->ki_kiflag |= KI_CTTY;
916			if (SESS_LEADER(p))
917				kp->ki_kiflag |= KI_SLEADER;
918			/* XXX proctree_lock */
919			tp = sp->s_ttyp;
920			SESS_UNLOCK(sp);
921		}
922	}
923	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
924		kp->ki_tdev = tty_udev(tp);
925		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
926		if (tp->t_session)
927			kp->ki_tsid = tp->t_session->s_sid;
928	} else
929		kp->ki_tdev = NODEV;
930	if (p->p_comm[0] != '\0')
931		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
932	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
933	    p->p_sysent->sv_name[0] != '\0')
934		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
935	kp->ki_siglist = p->p_siglist;
936	kp->ki_xstat = p->p_xstat;
937	kp->ki_acflag = p->p_acflag;
938	kp->ki_lock = p->p_lock;
939	if (p->p_pptr)
940		kp->ki_ppid = p->p_pptr->p_pid;
941}
942
943/*
944 * Fill in information that is thread specific.  Must be called with
945 * target process locked.  If 'preferthread' is set, overwrite certain
946 * process-related fields that are maintained for both threads and
947 * processes.
948 */
949static void
950fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
951{
952	struct proc *p;
953
954	p = td->td_proc;
955	kp->ki_tdaddr = td;
956	PROC_LOCK_ASSERT(p, MA_OWNED);
957
958	if (preferthread)
959		PROC_STATLOCK(p);
960	thread_lock(td);
961	if (td->td_wmesg != NULL)
962		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
963	else
964		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
965	strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname));
966	if (TD_ON_LOCK(td)) {
967		kp->ki_kiflag |= KI_LOCKBLOCK;
968		strlcpy(kp->ki_lockname, td->td_lockname,
969		    sizeof(kp->ki_lockname));
970	} else {
971		kp->ki_kiflag &= ~KI_LOCKBLOCK;
972		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
973	}
974
975	if (p->p_state == PRS_NORMAL) { /* approximate. */
976		if (TD_ON_RUNQ(td) ||
977		    TD_CAN_RUN(td) ||
978		    TD_IS_RUNNING(td)) {
979			kp->ki_stat = SRUN;
980		} else if (P_SHOULDSTOP(p)) {
981			kp->ki_stat = SSTOP;
982		} else if (TD_IS_SLEEPING(td)) {
983			kp->ki_stat = SSLEEP;
984		} else if (TD_ON_LOCK(td)) {
985			kp->ki_stat = SLOCK;
986		} else {
987			kp->ki_stat = SWAIT;
988		}
989	} else if (p->p_state == PRS_ZOMBIE) {
990		kp->ki_stat = SZOMB;
991	} else {
992		kp->ki_stat = SIDL;
993	}
994
995	/* Things in the thread */
996	kp->ki_wchan = td->td_wchan;
997	kp->ki_pri.pri_level = td->td_priority;
998	kp->ki_pri.pri_native = td->td_base_pri;
999	kp->ki_lastcpu = td->td_lastcpu;
1000	kp->ki_oncpu = td->td_oncpu;
1001	kp->ki_tdflags = td->td_flags;
1002	kp->ki_tid = td->td_tid;
1003	kp->ki_numthreads = p->p_numthreads;
1004	kp->ki_pcb = td->td_pcb;
1005	kp->ki_kstack = (void *)td->td_kstack;
1006	kp->ki_slptime = (ticks - td->td_slptick) / hz;
1007	kp->ki_pri.pri_class = td->td_pri_class;
1008	kp->ki_pri.pri_user = td->td_user_pri;
1009
1010	if (preferthread) {
1011		rufetchtd(td, &kp->ki_rusage);
1012		kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
1013		kp->ki_pctcpu = sched_pctcpu(td);
1014		kp->ki_estcpu = td->td_estcpu;
1015		kp->ki_cow = td->td_cow;
1016	}
1017
1018	/* We can't get this anymore but ps etc never used it anyway. */
1019	kp->ki_rqindex = 0;
1020
1021	if (preferthread)
1022		kp->ki_siglist = td->td_siglist;
1023	kp->ki_sigmask = td->td_sigmask;
1024	thread_unlock(td);
1025	if (preferthread)
1026		PROC_STATUNLOCK(p);
1027}
1028
1029/*
1030 * Fill in a kinfo_proc structure for the specified process.
1031 * Must be called with the target process locked.
1032 */
1033void
1034fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
1035{
1036
1037	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1038
1039	fill_kinfo_proc_only(p, kp);
1040	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
1041	fill_kinfo_aggregate(p, kp);
1042}
1043
1044struct pstats *
1045pstats_alloc(void)
1046{
1047
1048	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
1049}
1050
1051/*
1052 * Copy parts of p_stats; zero the rest of p_stats (statistics).
1053 */
1054void
1055pstats_fork(struct pstats *src, struct pstats *dst)
1056{
1057
1058	bzero(&dst->pstat_startzero,
1059	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
1060	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
1061	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
1062}
1063
1064void
1065pstats_free(struct pstats *ps)
1066{
1067
1068	free(ps, M_SUBPROC);
1069}
1070
1071static struct proc *
1072zpfind_locked(pid_t pid)
1073{
1074	struct proc *p;
1075
1076	sx_assert(&allproc_lock, SX_LOCKED);
1077	LIST_FOREACH(p, &zombproc, p_list) {
1078		if (p->p_pid == pid) {
1079			PROC_LOCK(p);
1080			break;
1081		}
1082	}
1083	return (p);
1084}
1085
1086/*
1087 * Locate a zombie process by number
1088 */
1089struct proc *
1090zpfind(pid_t pid)
1091{
1092	struct proc *p;
1093
1094	sx_slock(&allproc_lock);
1095	p = zpfind_locked(pid);
1096	sx_sunlock(&allproc_lock);
1097	return (p);
1098}
1099
1100#ifdef COMPAT_FREEBSD32
1101
1102/*
1103 * This function is typically used to copy out the kernel address, so
1104 * it can be replaced by assignment of zero.
1105 */
1106static inline uint32_t
1107ptr32_trim(void *ptr)
1108{
1109	uintptr_t uptr;
1110
1111	uptr = (uintptr_t)ptr;
1112	return ((uptr > UINT_MAX) ? 0 : uptr);
1113}
1114
1115#define PTRTRIM_CP(src,dst,fld) \
1116	do { (dst).fld = ptr32_trim((src).fld); } while (0)
1117
1118static void
1119freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
1120{
1121	int i;
1122
1123	bzero(ki32, sizeof(struct kinfo_proc32));
1124	ki32->ki_structsize = sizeof(struct kinfo_proc32);
1125	CP(*ki, *ki32, ki_layout);
1126	PTRTRIM_CP(*ki, *ki32, ki_args);
1127	PTRTRIM_CP(*ki, *ki32, ki_paddr);
1128	PTRTRIM_CP(*ki, *ki32, ki_addr);
1129	PTRTRIM_CP(*ki, *ki32, ki_tracep);
1130	PTRTRIM_CP(*ki, *ki32, ki_textvp);
1131	PTRTRIM_CP(*ki, *ki32, ki_fd);
1132	PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1133	PTRTRIM_CP(*ki, *ki32, ki_wchan);
1134	CP(*ki, *ki32, ki_pid);
1135	CP(*ki, *ki32, ki_ppid);
1136	CP(*ki, *ki32, ki_pgid);
1137	CP(*ki, *ki32, ki_tpgid);
1138	CP(*ki, *ki32, ki_sid);
1139	CP(*ki, *ki32, ki_tsid);
1140	CP(*ki, *ki32, ki_jobc);
1141	CP(*ki, *ki32, ki_tdev);
1142	CP(*ki, *ki32, ki_siglist);
1143	CP(*ki, *ki32, ki_sigmask);
1144	CP(*ki, *ki32, ki_sigignore);
1145	CP(*ki, *ki32, ki_sigcatch);
1146	CP(*ki, *ki32, ki_uid);
1147	CP(*ki, *ki32, ki_ruid);
1148	CP(*ki, *ki32, ki_svuid);
1149	CP(*ki, *ki32, ki_rgid);
1150	CP(*ki, *ki32, ki_svgid);
1151	CP(*ki, *ki32, ki_ngroups);
1152	for (i = 0; i < KI_NGROUPS; i++)
1153		CP(*ki, *ki32, ki_groups[i]);
1154	CP(*ki, *ki32, ki_size);
1155	CP(*ki, *ki32, ki_rssize);
1156	CP(*ki, *ki32, ki_swrss);
1157	CP(*ki, *ki32, ki_tsize);
1158	CP(*ki, *ki32, ki_dsize);
1159	CP(*ki, *ki32, ki_ssize);
1160	CP(*ki, *ki32, ki_xstat);
1161	CP(*ki, *ki32, ki_acflag);
1162	CP(*ki, *ki32, ki_pctcpu);
1163	CP(*ki, *ki32, ki_estcpu);
1164	CP(*ki, *ki32, ki_slptime);
1165	CP(*ki, *ki32, ki_swtime);
1166	CP(*ki, *ki32, ki_cow);
1167	CP(*ki, *ki32, ki_runtime);
1168	TV_CP(*ki, *ki32, ki_start);
1169	TV_CP(*ki, *ki32, ki_childtime);
1170	CP(*ki, *ki32, ki_flag);
1171	CP(*ki, *ki32, ki_kiflag);
1172	CP(*ki, *ki32, ki_traceflag);
1173	CP(*ki, *ki32, ki_stat);
1174	CP(*ki, *ki32, ki_nice);
1175	CP(*ki, *ki32, ki_lock);
1176	CP(*ki, *ki32, ki_rqindex);
1177	CP(*ki, *ki32, ki_oncpu);
1178	CP(*ki, *ki32, ki_lastcpu);
1179	bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
1180	bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1181	bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1182	bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1183	bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1184	bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1185	bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
1186	CP(*ki, *ki32, ki_flag2);
1187	CP(*ki, *ki32, ki_fibnum);
1188	CP(*ki, *ki32, ki_cr_flags);
1189	CP(*ki, *ki32, ki_jid);
1190	CP(*ki, *ki32, ki_numthreads);
1191	CP(*ki, *ki32, ki_tid);
1192	CP(*ki, *ki32, ki_pri);
1193	freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1194	freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1195	PTRTRIM_CP(*ki, *ki32, ki_pcb);
1196	PTRTRIM_CP(*ki, *ki32, ki_kstack);
1197	PTRTRIM_CP(*ki, *ki32, ki_udata);
1198	CP(*ki, *ki32, ki_sflag);
1199	CP(*ki, *ki32, ki_tdflags);
1200}
1201#endif
1202
1203int
1204kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
1205{
1206	struct thread *td;
1207	struct kinfo_proc ki;
1208#ifdef COMPAT_FREEBSD32
1209	struct kinfo_proc32 ki32;
1210#endif
1211	int error;
1212
1213	PROC_LOCK_ASSERT(p, MA_OWNED);
1214	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1215
1216	error = 0;
1217	fill_kinfo_proc(p, &ki);
1218	if ((flags & KERN_PROC_NOTHREADS) != 0) {
1219#ifdef COMPAT_FREEBSD32
1220		if ((flags & KERN_PROC_MASK32) != 0) {
1221			freebsd32_kinfo_proc_out(&ki, &ki32);
1222			if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1223				error = ENOMEM;
1224		} else
1225#endif
1226			if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1227				error = ENOMEM;
1228	} else {
1229		FOREACH_THREAD_IN_PROC(p, td) {
1230			fill_kinfo_thread(td, &ki, 1);
1231#ifdef COMPAT_FREEBSD32
1232			if ((flags & KERN_PROC_MASK32) != 0) {
1233				freebsd32_kinfo_proc_out(&ki, &ki32);
1234				if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1235					error = ENOMEM;
1236			} else
1237#endif
1238				if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1239					error = ENOMEM;
1240			if (error != 0)
1241				break;
1242		}
1243	}
1244	PROC_UNLOCK(p);
1245	return (error);
1246}
1247
1248static int
1249sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags,
1250    int doingzomb)
1251{
1252	struct sbuf sb;
1253	struct kinfo_proc ki;
1254	struct proc *np;
1255	int error, error2;
1256	pid_t pid;
1257
1258	pid = p->p_pid;
1259	sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
1260	error = kern_proc_out(p, &sb, flags);
1261	error2 = sbuf_finish(&sb);
1262	sbuf_delete(&sb);
1263	if (error != 0)
1264		return (error);
1265	else if (error2 != 0)
1266		return (error2);
1267	if (doingzomb)
1268		np = zpfind(pid);
1269	else {
1270		if (pid == 0)
1271			return (0);
1272		np = pfind(pid);
1273	}
1274	if (np == NULL)
1275		return (ESRCH);
1276	if (np != p) {
1277		PROC_UNLOCK(np);
1278		return (ESRCH);
1279	}
1280	PROC_UNLOCK(np);
1281	return (0);
1282}
1283
1284static int
1285sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1286{
1287	int *name = (int *)arg1;
1288	u_int namelen = arg2;
1289	struct proc *p;
1290	int flags, doingzomb, oid_number;
1291	int error = 0;
1292
1293	oid_number = oidp->oid_number;
1294	if (oid_number != KERN_PROC_ALL &&
1295	    (oid_number & KERN_PROC_INC_THREAD) == 0)
1296		flags = KERN_PROC_NOTHREADS;
1297	else {
1298		flags = 0;
1299		oid_number &= ~KERN_PROC_INC_THREAD;
1300	}
1301#ifdef COMPAT_FREEBSD32
1302	if (req->flags & SCTL_MASK32)
1303		flags |= KERN_PROC_MASK32;
1304#endif
1305	if (oid_number == KERN_PROC_PID) {
1306		if (namelen != 1)
1307			return (EINVAL);
1308		error = sysctl_wire_old_buffer(req, 0);
1309		if (error)
1310			return (error);
1311		error = pget((pid_t)name[0], PGET_CANSEE, &p);
1312		if (error != 0)
1313			return (error);
1314		error = sysctl_out_proc(p, req, flags, 0);
1315		return (error);
1316	}
1317
1318	switch (oid_number) {
1319	case KERN_PROC_ALL:
1320		if (namelen != 0)
1321			return (EINVAL);
1322		break;
1323	case KERN_PROC_PROC:
1324		if (namelen != 0 && namelen != 1)
1325			return (EINVAL);
1326		break;
1327	default:
1328		if (namelen != 1)
1329			return (EINVAL);
1330		break;
1331	}
1332
1333	if (!req->oldptr) {
1334		/* overestimate by 5 procs */
1335		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1336		if (error)
1337			return (error);
1338	}
1339	error = sysctl_wire_old_buffer(req, 0);
1340	if (error != 0)
1341		return (error);
1342	sx_slock(&allproc_lock);
1343	for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
1344		if (!doingzomb)
1345			p = LIST_FIRST(&allproc);
1346		else
1347			p = LIST_FIRST(&zombproc);
1348		for (; p != 0; p = LIST_NEXT(p, p_list)) {
1349			/*
1350			 * Skip embryonic processes.
1351			 */
1352			PROC_LOCK(p);
1353			if (p->p_state == PRS_NEW) {
1354				PROC_UNLOCK(p);
1355				continue;
1356			}
1357			KASSERT(p->p_ucred != NULL,
1358			    ("process credential is NULL for non-NEW proc"));
1359			/*
1360			 * Show a user only appropriate processes.
1361			 */
1362			if (p_cansee(curthread, p)) {
1363				PROC_UNLOCK(p);
1364				continue;
1365			}
1366			/*
1367			 * TODO - make more efficient (see notes below).
1368			 * do by session.
1369			 */
1370			switch (oid_number) {
1371
1372			case KERN_PROC_GID:
1373				if (p->p_ucred->cr_gid != (gid_t)name[0]) {
1374					PROC_UNLOCK(p);
1375					continue;
1376				}
1377				break;
1378
1379			case KERN_PROC_PGRP:
1380				/* could do this by traversing pgrp */
1381				if (p->p_pgrp == NULL ||
1382				    p->p_pgrp->pg_id != (pid_t)name[0]) {
1383					PROC_UNLOCK(p);
1384					continue;
1385				}
1386				break;
1387
1388			case KERN_PROC_RGID:
1389				if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
1390					PROC_UNLOCK(p);
1391					continue;
1392				}
1393				break;
1394
1395			case KERN_PROC_SESSION:
1396				if (p->p_session == NULL ||
1397				    p->p_session->s_sid != (pid_t)name[0]) {
1398					PROC_UNLOCK(p);
1399					continue;
1400				}
1401				break;
1402
1403			case KERN_PROC_TTY:
1404				if ((p->p_flag & P_CONTROLT) == 0 ||
1405				    p->p_session == NULL) {
1406					PROC_UNLOCK(p);
1407					continue;
1408				}
1409				/* XXX proctree_lock */
1410				SESS_LOCK(p->p_session);
1411				if (p->p_session->s_ttyp == NULL ||
1412				    tty_udev(p->p_session->s_ttyp) !=
1413				    (dev_t)name[0]) {
1414					SESS_UNLOCK(p->p_session);
1415					PROC_UNLOCK(p);
1416					continue;
1417				}
1418				SESS_UNLOCK(p->p_session);
1419				break;
1420
1421			case KERN_PROC_UID:
1422				if (p->p_ucred->cr_uid != (uid_t)name[0]) {
1423					PROC_UNLOCK(p);
1424					continue;
1425				}
1426				break;
1427
1428			case KERN_PROC_RUID:
1429				if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
1430					PROC_UNLOCK(p);
1431					continue;
1432				}
1433				break;
1434
1435			case KERN_PROC_PROC:
1436				break;
1437
1438			default:
1439				break;
1440
1441			}
1442
1443			error = sysctl_out_proc(p, req, flags, doingzomb);
1444			if (error) {
1445				sx_sunlock(&allproc_lock);
1446				return (error);
1447			}
1448		}
1449	}
1450	sx_sunlock(&allproc_lock);
1451	return (0);
1452}
1453
1454struct pargs *
1455pargs_alloc(int len)
1456{
1457	struct pargs *pa;
1458
1459	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1460		M_WAITOK);
1461	refcount_init(&pa->ar_ref, 1);
1462	pa->ar_length = len;
1463	return (pa);
1464}
1465
1466static void
1467pargs_free(struct pargs *pa)
1468{
1469
1470	free(pa, M_PARGS);
1471}
1472
1473void
1474pargs_hold(struct pargs *pa)
1475{
1476
1477	if (pa == NULL)
1478		return;
1479	refcount_acquire(&pa->ar_ref);
1480}
1481
1482void
1483pargs_drop(struct pargs *pa)
1484{
1485
1486	if (pa == NULL)
1487		return;
1488	if (refcount_release(&pa->ar_ref))
1489		pargs_free(pa);
1490}
1491
1492static int
1493proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf,
1494    size_t len)
1495{
1496	struct iovec iov;
1497	struct uio uio;
1498
1499	iov.iov_base = (caddr_t)buf;
1500	iov.iov_len = len;
1501	uio.uio_iov = &iov;
1502	uio.uio_iovcnt = 1;
1503	uio.uio_offset = offset;
1504	uio.uio_resid = (ssize_t)len;
1505	uio.uio_segflg = UIO_SYSSPACE;
1506	uio.uio_rw = UIO_READ;
1507	uio.uio_td = td;
1508
1509	return (proc_rwmem(p, &uio));
1510}
1511
1512static int
1513proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
1514    size_t len)
1515{
1516	size_t i;
1517	int error;
1518
1519	error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len);
1520	/*
1521	 * Reading the chunk may validly return EFAULT if the string is shorter
1522	 * than the chunk and is aligned at the end of the page, assuming the
1523	 * next page is not mapped.  So if EFAULT is returned do a fallback to
1524	 * one byte read loop.
1525	 */
1526	if (error == EFAULT) {
1527		for (i = 0; i < len; i++, buf++, sptr++) {
1528			error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1);
1529			if (error != 0)
1530				return (error);
1531			if (*buf == '\0')
1532				break;
1533		}
1534		error = 0;
1535	}
1536	return (error);
1537}
1538
1539#define PROC_AUXV_MAX	256	/* Safety limit on auxv size. */
1540
1541enum proc_vector_type {
1542	PROC_ARG,
1543	PROC_ENV,
1544	PROC_AUX,
1545};
1546
1547#ifdef COMPAT_FREEBSD32
1548static int
1549get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
1550    size_t *vsizep, enum proc_vector_type type)
1551{
1552	struct freebsd32_ps_strings pss;
1553	Elf32_Auxinfo aux;
1554	vm_offset_t vptr, ptr;
1555	uint32_t *proc_vector32;
1556	char **proc_vector;
1557	size_t vsize, size;
1558	int i, error;
1559
1560	error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
1561	    &pss, sizeof(pss));
1562	if (error != 0)
1563		return (error);
1564	switch (type) {
1565	case PROC_ARG:
1566		vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
1567		vsize = pss.ps_nargvstr;
1568		if (vsize > ARG_MAX)
1569			return (ENOEXEC);
1570		size = vsize * sizeof(int32_t);
1571		break;
1572	case PROC_ENV:
1573		vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
1574		vsize = pss.ps_nenvstr;
1575		if (vsize > ARG_MAX)
1576			return (ENOEXEC);
1577		size = vsize * sizeof(int32_t);
1578		break;
1579	case PROC_AUX:
1580		vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
1581		    (pss.ps_nenvstr + 1) * sizeof(int32_t);
1582		if (vptr % 4 != 0)
1583			return (ENOEXEC);
1584		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1585			error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
1586			if (error != 0)
1587				return (error);
1588			if (aux.a_type == AT_NULL)
1589				break;
1590			ptr += sizeof(aux);
1591		}
1592		if (aux.a_type != AT_NULL)
1593			return (ENOEXEC);
1594		vsize = i + 1;
1595		size = vsize * sizeof(aux);
1596		break;
1597	default:
1598		KASSERT(0, ("Wrong proc vector type: %d", type));
1599		return (EINVAL);
1600	}
1601	proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
1602	error = proc_read_mem(td, p, vptr, proc_vector32, size);
1603	if (error != 0)
1604		goto done;
1605	if (type == PROC_AUX) {
1606		*proc_vectorp = (char **)proc_vector32;
1607		*vsizep = vsize;
1608		return (0);
1609	}
1610	proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
1611	for (i = 0; i < (int)vsize; i++)
1612		proc_vector[i] = PTRIN(proc_vector32[i]);
1613	*proc_vectorp = proc_vector;
1614	*vsizep = vsize;
1615done:
1616	free(proc_vector32, M_TEMP);
1617	return (error);
1618}
1619#endif
1620
1621static int
1622get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
1623    size_t *vsizep, enum proc_vector_type type)
1624{
1625	struct ps_strings pss;
1626	Elf_Auxinfo aux;
1627	vm_offset_t vptr, ptr;
1628	char **proc_vector;
1629	size_t vsize, size;
1630	int error, i;
1631
1632#ifdef COMPAT_FREEBSD32
1633	if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1634		return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
1635#endif
1636	error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
1637	    &pss, sizeof(pss));
1638	if (error != 0)
1639		return (error);
1640	switch (type) {
1641	case PROC_ARG:
1642		vptr = (vm_offset_t)pss.ps_argvstr;
1643		vsize = pss.ps_nargvstr;
1644		if (vsize > ARG_MAX)
1645			return (ENOEXEC);
1646		size = vsize * sizeof(char *);
1647		break;
1648	case PROC_ENV:
1649		vptr = (vm_offset_t)pss.ps_envstr;
1650		vsize = pss.ps_nenvstr;
1651		if (vsize > ARG_MAX)
1652			return (ENOEXEC);
1653		size = vsize * sizeof(char *);
1654		break;
1655	case PROC_AUX:
1656		/*
1657		 * The aux array is just above env array on the stack. Check
1658		 * that the address is naturally aligned.
1659		 */
1660		vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
1661		    * sizeof(char *);
1662#if __ELF_WORD_SIZE == 64
1663		if (vptr % sizeof(uint64_t) != 0)
1664#else
1665		if (vptr % sizeof(uint32_t) != 0)
1666#endif
1667			return (ENOEXEC);
1668		/*
1669		 * We count the array size reading the aux vectors from the
1670		 * stack until AT_NULL vector is returned.  So (to keep the code
1671		 * simple) we read the process stack twice: the first time here
1672		 * to find the size and the second time when copying the vectors
1673		 * to the allocated proc_vector.
1674		 */
1675		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1676			error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
1677			if (error != 0)
1678				return (error);
1679			if (aux.a_type == AT_NULL)
1680				break;
1681			ptr += sizeof(aux);
1682		}
1683		/*
1684		 * If the PROC_AUXV_MAX entries are iterated over, and we have
1685		 * not reached AT_NULL, it is most likely we are reading wrong
1686		 * data: either the process doesn't have auxv array or data has
1687		 * been modified. Return the error in this case.
1688		 */
1689		if (aux.a_type != AT_NULL)
1690			return (ENOEXEC);
1691		vsize = i + 1;
1692		size = vsize * sizeof(aux);
1693		break;
1694	default:
1695		KASSERT(0, ("Wrong proc vector type: %d", type));
1696		return (EINVAL); /* In case we are built without INVARIANTS. */
1697	}
1698	proc_vector = malloc(size, M_TEMP, M_WAITOK);
1699	if (proc_vector == NULL)
1700		return (ENOMEM);
1701	error = proc_read_mem(td, p, vptr, proc_vector, size);
1702	if (error != 0) {
1703		free(proc_vector, M_TEMP);
1704		return (error);
1705	}
1706	*proc_vectorp = proc_vector;
1707	*vsizep = vsize;
1708
1709	return (0);
1710}
1711
1712#define GET_PS_STRINGS_CHUNK_SZ	256	/* Chunk size (bytes) for ps_strings operations. */
1713
1714static int
1715get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
1716    enum proc_vector_type type)
1717{
1718	size_t done, len, nchr, vsize;
1719	int error, i;
1720	char **proc_vector, *sptr;
1721	char pss_string[GET_PS_STRINGS_CHUNK_SZ];
1722
1723	PROC_ASSERT_HELD(p);
1724
1725	/*
1726	 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
1727	 */
1728	nchr = 2 * (PATH_MAX + ARG_MAX);
1729
1730	error = get_proc_vector(td, p, &proc_vector, &vsize, type);
1731	if (error != 0)
1732		return (error);
1733	for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
1734		/*
1735		 * The program may have scribbled into its argv array, e.g. to
1736		 * remove some arguments.  If that has happened, break out
1737		 * before trying to read from NULL.
1738		 */
1739		if (proc_vector[i] == NULL)
1740			break;
1741		for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
1742			error = proc_read_string(td, p, sptr, pss_string,
1743			    sizeof(pss_string));
1744			if (error != 0)
1745				goto done;
1746			len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
1747			if (done + len >= nchr)
1748				len = nchr - done - 1;
1749			sbuf_bcat(sb, pss_string, len);
1750			if (len != GET_PS_STRINGS_CHUNK_SZ)
1751				break;
1752			done += GET_PS_STRINGS_CHUNK_SZ;
1753		}
1754		sbuf_bcat(sb, "", 1);
1755		done += len + 1;
1756	}
1757done:
1758	free(proc_vector, M_TEMP);
1759	return (error);
1760}
1761
1762int
1763proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
1764{
1765
1766	return (get_ps_strings(curthread, p, sb, PROC_ARG));
1767}
1768
1769int
1770proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
1771{
1772
1773	return (get_ps_strings(curthread, p, sb, PROC_ENV));
1774}
1775
1776int
1777proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
1778{
1779	size_t vsize, size;
1780	char **auxv;
1781	int error;
1782
1783	error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
1784	if (error == 0) {
1785#ifdef COMPAT_FREEBSD32
1786		if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1787			size = vsize * sizeof(Elf32_Auxinfo);
1788		else
1789#endif
1790			size = vsize * sizeof(Elf_Auxinfo);
1791		if (sbuf_bcat(sb, auxv, size) != 0)
1792			error = ENOMEM;
1793		free(auxv, M_TEMP);
1794	}
1795	return (error);
1796}
1797
1798/*
1799 * This sysctl allows a process to retrieve the argument list or process
1800 * title for another process without groping around in the address space
1801 * of the other process.  It also allow a process to set its own "process
1802 * title to a string of its own choice.
1803 */
1804static int
1805sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1806{
1807	int *name = (int *)arg1;
1808	u_int namelen = arg2;
1809	struct pargs *newpa, *pa;
1810	struct proc *p;
1811	struct sbuf sb;
1812	int flags, error = 0, error2;
1813
1814	if (namelen != 1)
1815		return (EINVAL);
1816
1817	flags = PGET_CANSEE;
1818	if (req->newptr != NULL)
1819		flags |= PGET_ISCURRENT;
1820	error = pget((pid_t)name[0], flags, &p);
1821	if (error)
1822		return (error);
1823
1824	pa = p->p_args;
1825	if (pa != NULL) {
1826		pargs_hold(pa);
1827		PROC_UNLOCK(p);
1828		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1829		pargs_drop(pa);
1830	} else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
1831		_PHOLD(p);
1832		PROC_UNLOCK(p);
1833		sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1834		error = proc_getargv(curthread, p, &sb);
1835		error2 = sbuf_finish(&sb);
1836		PRELE(p);
1837		sbuf_delete(&sb);
1838		if (error == 0 && error2 != 0)
1839			error = error2;
1840	} else {
1841		PROC_UNLOCK(p);
1842	}
1843	if (error != 0 || req->newptr == NULL)
1844		return (error);
1845
1846	if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
1847		return (ENOMEM);
1848	newpa = pargs_alloc(req->newlen);
1849	error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
1850	if (error != 0) {
1851		pargs_free(newpa);
1852		return (error);
1853	}
1854	PROC_LOCK(p);
1855	pa = p->p_args;
1856	p->p_args = newpa;
1857	PROC_UNLOCK(p);
1858	pargs_drop(pa);
1859	return (0);
1860}
1861
1862/*
1863 * This sysctl allows a process to retrieve environment of another process.
1864 */
1865static int
1866sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
1867{
1868	int *name = (int *)arg1;
1869	u_int namelen = arg2;
1870	struct proc *p;
1871	struct sbuf sb;
1872	int error, error2;
1873
1874	if (namelen != 1)
1875		return (EINVAL);
1876
1877	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1878	if (error != 0)
1879		return (error);
1880	if ((p->p_flag & P_SYSTEM) != 0) {
1881		PRELE(p);
1882		return (0);
1883	}
1884
1885	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1886	error = proc_getenvv(curthread, p, &sb);
1887	error2 = sbuf_finish(&sb);
1888	PRELE(p);
1889	sbuf_delete(&sb);
1890	return (error != 0 ? error : error2);
1891}
1892
1893/*
1894 * This sysctl allows a process to retrieve ELF auxiliary vector of
1895 * another process.
1896 */
1897static int
1898sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
1899{
1900	int *name = (int *)arg1;
1901	u_int namelen = arg2;
1902	struct proc *p;
1903	struct sbuf sb;
1904	int error, error2;
1905
1906	if (namelen != 1)
1907		return (EINVAL);
1908
1909	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1910	if (error != 0)
1911		return (error);
1912	if ((p->p_flag & P_SYSTEM) != 0) {
1913		PRELE(p);
1914		return (0);
1915	}
1916	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1917	error = proc_getauxv(curthread, p, &sb);
1918	error2 = sbuf_finish(&sb);
1919	PRELE(p);
1920	sbuf_delete(&sb);
1921	return (error != 0 ? error : error2);
1922}
1923
1924/*
1925 * This sysctl allows a process to retrieve the path of the executable for
1926 * itself or another process.
1927 */
1928static int
1929sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
1930{
1931	pid_t *pidp = (pid_t *)arg1;
1932	unsigned int arglen = arg2;
1933	struct proc *p;
1934	struct vnode *vp;
1935	char *retbuf, *freebuf;
1936	int error;
1937
1938	if (arglen != 1)
1939		return (EINVAL);
1940	if (*pidp == -1) {	/* -1 means this process */
1941		p = req->td->td_proc;
1942	} else {
1943		error = pget(*pidp, PGET_CANSEE, &p);
1944		if (error != 0)
1945			return (error);
1946	}
1947
1948	vp = p->p_textvp;
1949	if (vp == NULL) {
1950		if (*pidp != -1)
1951			PROC_UNLOCK(p);
1952		return (0);
1953	}
1954	vref(vp);
1955	if (*pidp != -1)
1956		PROC_UNLOCK(p);
1957	error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
1958	vrele(vp);
1959	if (error)
1960		return (error);
1961	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
1962	free(freebuf, M_TEMP);
1963	return (error);
1964}
1965
1966static int
1967sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
1968{
1969	struct proc *p;
1970	char *sv_name;
1971	int *name;
1972	int namelen;
1973	int error;
1974
1975	namelen = arg2;
1976	if (namelen != 1)
1977		return (EINVAL);
1978
1979	name = (int *)arg1;
1980	error = pget((pid_t)name[0], PGET_CANSEE, &p);
1981	if (error != 0)
1982		return (error);
1983	sv_name = p->p_sysent->sv_name;
1984	PROC_UNLOCK(p);
1985	return (sysctl_handle_string(oidp, sv_name, 0, req));
1986}
1987
1988#ifdef KINFO_OVMENTRY_SIZE
1989CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
1990#endif
1991
1992#ifdef COMPAT_FREEBSD7
1993static int
1994sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
1995{
1996	vm_map_entry_t entry, tmp_entry;
1997	unsigned int last_timestamp;
1998	char *fullpath, *freepath;
1999	struct kinfo_ovmentry *kve;
2000	struct vattr va;
2001	struct ucred *cred;
2002	int error, *name;
2003	struct vnode *vp;
2004	struct proc *p;
2005	vm_map_t map;
2006	struct vmspace *vm;
2007
2008	name = (int *)arg1;
2009	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2010	if (error != 0)
2011		return (error);
2012	vm = vmspace_acquire_ref(p);
2013	if (vm == NULL) {
2014		PRELE(p);
2015		return (ESRCH);
2016	}
2017	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
2018
2019	map = &vm->vm_map;
2020	vm_map_lock_read(map);
2021	for (entry = map->header.next; entry != &map->header;
2022	    entry = entry->next) {
2023		vm_object_t obj, tobj, lobj;
2024		vm_offset_t addr;
2025
2026		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2027			continue;
2028
2029		bzero(kve, sizeof(*kve));
2030		kve->kve_structsize = sizeof(*kve);
2031
2032		kve->kve_private_resident = 0;
2033		obj = entry->object.vm_object;
2034		if (obj != NULL) {
2035			VM_OBJECT_RLOCK(obj);
2036			if (obj->shadow_count == 1)
2037				kve->kve_private_resident =
2038				    obj->resident_page_count;
2039		}
2040		kve->kve_resident = 0;
2041		addr = entry->start;
2042		while (addr < entry->end) {
2043			if (pmap_extract(map->pmap, addr))
2044				kve->kve_resident++;
2045			addr += PAGE_SIZE;
2046		}
2047
2048		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
2049			if (tobj != obj)
2050				VM_OBJECT_RLOCK(tobj);
2051			if (lobj != obj)
2052				VM_OBJECT_RUNLOCK(lobj);
2053			lobj = tobj;
2054		}
2055
2056		kve->kve_start = (void*)entry->start;
2057		kve->kve_end = (void*)entry->end;
2058		kve->kve_offset = (off_t)entry->offset;
2059
2060		if (entry->protection & VM_PROT_READ)
2061			kve->kve_protection |= KVME_PROT_READ;
2062		if (entry->protection & VM_PROT_WRITE)
2063			kve->kve_protection |= KVME_PROT_WRITE;
2064		if (entry->protection & VM_PROT_EXECUTE)
2065			kve->kve_protection |= KVME_PROT_EXEC;
2066
2067		if (entry->eflags & MAP_ENTRY_COW)
2068			kve->kve_flags |= KVME_FLAG_COW;
2069		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2070			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2071		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2072			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2073
2074		last_timestamp = map->timestamp;
2075		vm_map_unlock_read(map);
2076
2077		kve->kve_fileid = 0;
2078		kve->kve_fsid = 0;
2079		freepath = NULL;
2080		fullpath = "";
2081		if (lobj) {
2082			vp = NULL;
2083			switch (lobj->type) {
2084			case OBJT_DEFAULT:
2085				kve->kve_type = KVME_TYPE_DEFAULT;
2086				break;
2087			case OBJT_VNODE:
2088				kve->kve_type = KVME_TYPE_VNODE;
2089				vp = lobj->handle;
2090				vref(vp);
2091				break;
2092			case OBJT_SWAP:
2093				if ((lobj->flags & OBJ_TMPFS_NODE) != 0) {
2094					kve->kve_type = KVME_TYPE_VNODE;
2095					if ((lobj->flags & OBJ_TMPFS) != 0) {
2096						vp = lobj->un_pager.swp.swp_tmpfs;
2097						vref(vp);
2098					}
2099				} else {
2100					kve->kve_type = KVME_TYPE_SWAP;
2101				}
2102				break;
2103			case OBJT_DEVICE:
2104				kve->kve_type = KVME_TYPE_DEVICE;
2105				break;
2106			case OBJT_PHYS:
2107				kve->kve_type = KVME_TYPE_PHYS;
2108				break;
2109			case OBJT_DEAD:
2110				kve->kve_type = KVME_TYPE_DEAD;
2111				break;
2112			case OBJT_SG:
2113				kve->kve_type = KVME_TYPE_SG;
2114				break;
2115			default:
2116				kve->kve_type = KVME_TYPE_UNKNOWN;
2117				break;
2118			}
2119			if (lobj != obj)
2120				VM_OBJECT_RUNLOCK(lobj);
2121
2122			kve->kve_ref_count = obj->ref_count;
2123			kve->kve_shadow_count = obj->shadow_count;
2124			VM_OBJECT_RUNLOCK(obj);
2125			if (vp != NULL) {
2126				vn_fullpath(curthread, vp, &fullpath,
2127				    &freepath);
2128				cred = curthread->td_ucred;
2129				vn_lock(vp, LK_SHARED | LK_RETRY);
2130				if (VOP_GETATTR(vp, &va, cred) == 0) {
2131					kve->kve_fileid = va.va_fileid;
2132					kve->kve_fsid = va.va_fsid;
2133				}
2134				vput(vp);
2135			}
2136		} else {
2137			kve->kve_type = KVME_TYPE_NONE;
2138			kve->kve_ref_count = 0;
2139			kve->kve_shadow_count = 0;
2140		}
2141
2142		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2143		if (freepath != NULL)
2144			free(freepath, M_TEMP);
2145
2146		error = SYSCTL_OUT(req, kve, sizeof(*kve));
2147		vm_map_lock_read(map);
2148		if (error)
2149			break;
2150		if (last_timestamp != map->timestamp) {
2151			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2152			entry = tmp_entry;
2153		}
2154	}
2155	vm_map_unlock_read(map);
2156	vmspace_free(vm);
2157	PRELE(p);
2158	free(kve, M_TEMP);
2159	return (error);
2160}
2161#endif	/* COMPAT_FREEBSD7 */
2162
2163#ifdef KINFO_VMENTRY_SIZE
2164CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2165#endif
2166
2167static void
2168kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
2169    struct kinfo_vmentry *kve)
2170{
2171	vm_object_t obj, tobj;
2172	vm_page_t m, m_adv;
2173	vm_offset_t addr;
2174	vm_paddr_t locked_pa;
2175	vm_pindex_t pi, pi_adv, pindex;
2176
2177	locked_pa = 0;
2178	obj = entry->object.vm_object;
2179	addr = entry->start;
2180	m_adv = NULL;
2181	pi = OFF_TO_IDX(entry->offset);
2182	for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
2183		if (m_adv != NULL) {
2184			m = m_adv;
2185		} else {
2186			pi_adv = OFF_TO_IDX(entry->end - addr);
2187			pindex = pi;
2188			for (tobj = obj;; tobj = tobj->backing_object) {
2189				m = vm_page_find_least(tobj, pindex);
2190				if (m != NULL) {
2191					if (m->pindex == pindex)
2192						break;
2193					if (pi_adv > m->pindex - pindex) {
2194						pi_adv = m->pindex - pindex;
2195						m_adv = m;
2196					}
2197				}
2198				if (tobj->backing_object == NULL)
2199					goto next;
2200				pindex += OFF_TO_IDX(tobj->
2201				    backing_object_offset);
2202			}
2203		}
2204		m_adv = NULL;
2205		if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
2206		    (addr & (pagesizes[1] - 1)) == 0 &&
2207		    (pmap_mincore(map->pmap, addr, &locked_pa) &
2208		    MINCORE_SUPER) != 0) {
2209			kve->kve_flags |= KVME_FLAG_SUPER;
2210			pi_adv = OFF_TO_IDX(pagesizes[1]);
2211		} else {
2212			/*
2213			 * We do not test the found page on validity.
2214			 * Either the page is busy and being paged in,
2215			 * or it was invalidated.  The first case
2216			 * should be counted as resident, the second
2217			 * is not so clear; we do account both.
2218			 */
2219			pi_adv = 1;
2220		}
2221		kve->kve_resident += pi_adv;
2222next:;
2223	}
2224	PA_UNLOCK_COND(locked_pa);
2225}
2226
2227/*
2228 * Must be called with the process locked and will return unlocked.
2229 */
2230int
2231kern_proc_vmmap_out(struct proc *p, struct sbuf *sb)
2232{
2233	vm_map_entry_t entry, tmp_entry;
2234	struct vattr va;
2235	vm_map_t map;
2236	vm_object_t obj, tobj, lobj;
2237	char *fullpath, *freepath;
2238	struct kinfo_vmentry *kve;
2239	struct ucred *cred;
2240	struct vnode *vp;
2241	struct vmspace *vm;
2242	vm_offset_t addr;
2243	unsigned int last_timestamp;
2244	int error;
2245
2246	PROC_LOCK_ASSERT(p, MA_OWNED);
2247
2248	_PHOLD(p);
2249	PROC_UNLOCK(p);
2250	vm = vmspace_acquire_ref(p);
2251	if (vm == NULL) {
2252		PRELE(p);
2253		return (ESRCH);
2254	}
2255	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
2256
2257	error = 0;
2258	map = &vm->vm_map;
2259	vm_map_lock_read(map);
2260	for (entry = map->header.next; entry != &map->header;
2261	    entry = entry->next) {
2262		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2263			continue;
2264
2265		addr = entry->end;
2266		bzero(kve, sizeof(*kve));
2267		obj = entry->object.vm_object;
2268		if (obj != NULL) {
2269			for (tobj = obj; tobj != NULL;
2270			    tobj = tobj->backing_object) {
2271				VM_OBJECT_RLOCK(tobj);
2272				lobj = tobj;
2273			}
2274			if (obj->backing_object == NULL)
2275				kve->kve_private_resident =
2276				    obj->resident_page_count;
2277			if (!vmmap_skip_res_cnt)
2278				kern_proc_vmmap_resident(map, entry, kve);
2279			for (tobj = obj; tobj != NULL;
2280			    tobj = tobj->backing_object) {
2281				if (tobj != obj && tobj != lobj)
2282					VM_OBJECT_RUNLOCK(tobj);
2283			}
2284		} else {
2285			lobj = NULL;
2286		}
2287
2288		kve->kve_start = entry->start;
2289		kve->kve_end = entry->end;
2290		kve->kve_offset = entry->offset;
2291
2292		if (entry->protection & VM_PROT_READ)
2293			kve->kve_protection |= KVME_PROT_READ;
2294		if (entry->protection & VM_PROT_WRITE)
2295			kve->kve_protection |= KVME_PROT_WRITE;
2296		if (entry->protection & VM_PROT_EXECUTE)
2297			kve->kve_protection |= KVME_PROT_EXEC;
2298
2299		if (entry->eflags & MAP_ENTRY_COW)
2300			kve->kve_flags |= KVME_FLAG_COW;
2301		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2302			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2303		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2304			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2305		if (entry->eflags & MAP_ENTRY_GROWS_UP)
2306			kve->kve_flags |= KVME_FLAG_GROWS_UP;
2307		if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
2308			kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
2309
2310		last_timestamp = map->timestamp;
2311		vm_map_unlock_read(map);
2312
2313		freepath = NULL;
2314		fullpath = "";
2315		if (lobj != NULL) {
2316			vp = NULL;
2317			switch (lobj->type) {
2318			case OBJT_DEFAULT:
2319				kve->kve_type = KVME_TYPE_DEFAULT;
2320				break;
2321			case OBJT_VNODE:
2322				kve->kve_type = KVME_TYPE_VNODE;
2323				vp = lobj->handle;
2324				vref(vp);
2325				break;
2326			case OBJT_SWAP:
2327				if ((lobj->flags & OBJ_TMPFS_NODE) != 0) {
2328					kve->kve_type = KVME_TYPE_VNODE;
2329					if ((lobj->flags & OBJ_TMPFS) != 0) {
2330						vp = lobj->un_pager.swp.swp_tmpfs;
2331						vref(vp);
2332					}
2333				} else {
2334					kve->kve_type = KVME_TYPE_SWAP;
2335				}
2336				break;
2337			case OBJT_DEVICE:
2338				kve->kve_type = KVME_TYPE_DEVICE;
2339				break;
2340			case OBJT_PHYS:
2341				kve->kve_type = KVME_TYPE_PHYS;
2342				break;
2343			case OBJT_DEAD:
2344				kve->kve_type = KVME_TYPE_DEAD;
2345				break;
2346			case OBJT_SG:
2347				kve->kve_type = KVME_TYPE_SG;
2348				break;
2349			case OBJT_MGTDEVICE:
2350				kve->kve_type = KVME_TYPE_MGTDEVICE;
2351				break;
2352			default:
2353				kve->kve_type = KVME_TYPE_UNKNOWN;
2354				break;
2355			}
2356			if (lobj != obj)
2357				VM_OBJECT_RUNLOCK(lobj);
2358
2359			kve->kve_ref_count = obj->ref_count;
2360			kve->kve_shadow_count = obj->shadow_count;
2361			VM_OBJECT_RUNLOCK(obj);
2362			if (vp != NULL) {
2363				vn_fullpath(curthread, vp, &fullpath,
2364				    &freepath);
2365				kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
2366				cred = curthread->td_ucred;
2367				vn_lock(vp, LK_SHARED | LK_RETRY);
2368				if (VOP_GETATTR(vp, &va, cred) == 0) {
2369					kve->kve_vn_fileid = va.va_fileid;
2370					kve->kve_vn_fsid = va.va_fsid;
2371					kve->kve_vn_mode =
2372					    MAKEIMODE(va.va_type, va.va_mode);
2373					kve->kve_vn_size = va.va_size;
2374					kve->kve_vn_rdev = va.va_rdev;
2375					kve->kve_status = KF_ATTR_VALID;
2376				}
2377				vput(vp);
2378			}
2379		} else {
2380			kve->kve_type = KVME_TYPE_NONE;
2381			kve->kve_ref_count = 0;
2382			kve->kve_shadow_count = 0;
2383		}
2384
2385		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2386		if (freepath != NULL)
2387			free(freepath, M_TEMP);
2388
2389		/* Pack record size down */
2390		kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) +
2391		    strlen(kve->kve_path) + 1;
2392		kve->kve_structsize = roundup(kve->kve_structsize,
2393		    sizeof(uint64_t));
2394		if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
2395			error = ENOMEM;
2396		vm_map_lock_read(map);
2397		if (error != 0)
2398			break;
2399		if (last_timestamp != map->timestamp) {
2400			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2401			entry = tmp_entry;
2402		}
2403	}
2404	vm_map_unlock_read(map);
2405	vmspace_free(vm);
2406	PRELE(p);
2407	free(kve, M_TEMP);
2408	return (error);
2409}
2410
2411static int
2412sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
2413{
2414	struct proc *p;
2415	struct sbuf sb;
2416	int error, error2, *name;
2417
2418	name = (int *)arg1;
2419	sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
2420	error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
2421	if (error != 0) {
2422		sbuf_delete(&sb);
2423		return (error);
2424	}
2425	error = kern_proc_vmmap_out(p, &sb);
2426	error2 = sbuf_finish(&sb);
2427	sbuf_delete(&sb);
2428	return (error != 0 ? error : error2);
2429}
2430
2431#if defined(STACK) || defined(DDB)
2432static int
2433sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
2434{
2435	struct kinfo_kstack *kkstp;
2436	int error, i, *name, numthreads;
2437	lwpid_t *lwpidarray;
2438	struct thread *td;
2439	struct stack *st;
2440	struct sbuf sb;
2441	struct proc *p;
2442
2443	name = (int *)arg1;
2444	error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
2445	if (error != 0)
2446		return (error);
2447
2448	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
2449	st = stack_create();
2450
2451	lwpidarray = NULL;
2452	numthreads = 0;
2453	PROC_LOCK(p);
2454repeat:
2455	if (numthreads < p->p_numthreads) {
2456		if (lwpidarray != NULL) {
2457			free(lwpidarray, M_TEMP);
2458			lwpidarray = NULL;
2459		}
2460		numthreads = p->p_numthreads;
2461		PROC_UNLOCK(p);
2462		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
2463		    M_WAITOK | M_ZERO);
2464		PROC_LOCK(p);
2465		goto repeat;
2466	}
2467	i = 0;
2468
2469	/*
2470	 * XXXRW: During the below loop, execve(2) and countless other sorts
2471	 * of changes could have taken place.  Should we check to see if the
2472	 * vmspace has been replaced, or the like, in order to prevent
2473	 * giving a snapshot that spans, say, execve(2), with some threads
2474	 * before and some after?  Among other things, the credentials could
2475	 * have changed, in which case the right to extract debug info might
2476	 * no longer be assured.
2477	 */
2478	FOREACH_THREAD_IN_PROC(p, td) {
2479		KASSERT(i < numthreads,
2480		    ("sysctl_kern_proc_kstack: numthreads"));
2481		lwpidarray[i] = td->td_tid;
2482		i++;
2483	}
2484	numthreads = i;
2485	for (i = 0; i < numthreads; i++) {
2486		td = thread_find(p, lwpidarray[i]);
2487		if (td == NULL) {
2488			continue;
2489		}
2490		bzero(kkstp, sizeof(*kkstp));
2491		(void)sbuf_new(&sb, kkstp->kkst_trace,
2492		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
2493		thread_lock(td);
2494		kkstp->kkst_tid = td->td_tid;
2495		if (TD_IS_SWAPPED(td))
2496			kkstp->kkst_state = KKST_STATE_SWAPPED;
2497		else if (TD_IS_RUNNING(td))
2498			kkstp->kkst_state = KKST_STATE_RUNNING;
2499		else {
2500			kkstp->kkst_state = KKST_STATE_STACKOK;
2501			stack_save_td(st, td);
2502		}
2503		thread_unlock(td);
2504		PROC_UNLOCK(p);
2505		stack_sbuf_print(&sb, st);
2506		sbuf_finish(&sb);
2507		sbuf_delete(&sb);
2508		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
2509		PROC_LOCK(p);
2510		if (error)
2511			break;
2512	}
2513	_PRELE(p);
2514	PROC_UNLOCK(p);
2515	if (lwpidarray != NULL)
2516		free(lwpidarray, M_TEMP);
2517	stack_destroy(st);
2518	free(kkstp, M_TEMP);
2519	return (error);
2520}
2521#endif
2522
2523/*
2524 * This sysctl allows a process to retrieve the full list of groups from
2525 * itself or another process.
2526 */
2527static int
2528sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
2529{
2530	pid_t *pidp = (pid_t *)arg1;
2531	unsigned int arglen = arg2;
2532	struct proc *p;
2533	struct ucred *cred;
2534	int error;
2535
2536	if (arglen != 1)
2537		return (EINVAL);
2538	if (*pidp == -1) {	/* -1 means this process */
2539		p = req->td->td_proc;
2540	} else {
2541		error = pget(*pidp, PGET_CANSEE, &p);
2542		if (error != 0)
2543			return (error);
2544	}
2545
2546	cred = crhold(p->p_ucred);
2547	if (*pidp != -1)
2548		PROC_UNLOCK(p);
2549
2550	error = SYSCTL_OUT(req, cred->cr_groups,
2551	    cred->cr_ngroups * sizeof(gid_t));
2552	crfree(cred);
2553	return (error);
2554}
2555
2556/*
2557 * This sysctl allows a process to retrieve or/and set the resource limit for
2558 * another process.
2559 */
2560static int
2561sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
2562{
2563	int *name = (int *)arg1;
2564	u_int namelen = arg2;
2565	struct rlimit rlim;
2566	struct proc *p;
2567	u_int which;
2568	int flags, error;
2569
2570	if (namelen != 2)
2571		return (EINVAL);
2572
2573	which = (u_int)name[1];
2574	if (which >= RLIM_NLIMITS)
2575		return (EINVAL);
2576
2577	if (req->newptr != NULL && req->newlen != sizeof(rlim))
2578		return (EINVAL);
2579
2580	flags = PGET_HOLD | PGET_NOTWEXIT;
2581	if (req->newptr != NULL)
2582		flags |= PGET_CANDEBUG;
2583	else
2584		flags |= PGET_CANSEE;
2585	error = pget((pid_t)name[0], flags, &p);
2586	if (error != 0)
2587		return (error);
2588
2589	/*
2590	 * Retrieve limit.
2591	 */
2592	if (req->oldptr != NULL) {
2593		PROC_LOCK(p);
2594		lim_rlimit(p, which, &rlim);
2595		PROC_UNLOCK(p);
2596	}
2597	error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
2598	if (error != 0)
2599		goto errout;
2600
2601	/*
2602	 * Set limit.
2603	 */
2604	if (req->newptr != NULL) {
2605		error = SYSCTL_IN(req, &rlim, sizeof(rlim));
2606		if (error == 0)
2607			error = kern_proc_setrlimit(curthread, p, which, &rlim);
2608	}
2609
2610errout:
2611	PRELE(p);
2612	return (error);
2613}
2614
2615/*
2616 * This sysctl allows a process to retrieve ps_strings structure location of
2617 * another process.
2618 */
2619static int
2620sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
2621{
2622	int *name = (int *)arg1;
2623	u_int namelen = arg2;
2624	struct proc *p;
2625	vm_offset_t ps_strings;
2626	int error;
2627#ifdef COMPAT_FREEBSD32
2628	uint32_t ps_strings32;
2629#endif
2630
2631	if (namelen != 1)
2632		return (EINVAL);
2633
2634	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2635	if (error != 0)
2636		return (error);
2637#ifdef COMPAT_FREEBSD32
2638	if ((req->flags & SCTL_MASK32) != 0) {
2639		/*
2640		 * We return 0 if the 32 bit emulation request is for a 64 bit
2641		 * process.
2642		 */
2643		ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
2644		    PTROUT(p->p_sysent->sv_psstrings) : 0;
2645		PROC_UNLOCK(p);
2646		error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
2647		return (error);
2648	}
2649#endif
2650	ps_strings = p->p_sysent->sv_psstrings;
2651	PROC_UNLOCK(p);
2652	error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
2653	return (error);
2654}
2655
2656/*
2657 * This sysctl allows a process to retrieve umask of another process.
2658 */
2659static int
2660sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
2661{
2662	int *name = (int *)arg1;
2663	u_int namelen = arg2;
2664	struct proc *p;
2665	int error;
2666	u_short fd_cmask;
2667
2668	if (namelen != 1)
2669		return (EINVAL);
2670
2671	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2672	if (error != 0)
2673		return (error);
2674
2675	FILEDESC_SLOCK(p->p_fd);
2676	fd_cmask = p->p_fd->fd_cmask;
2677	FILEDESC_SUNLOCK(p->p_fd);
2678	PRELE(p);
2679	error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask));
2680	return (error);
2681}
2682
2683/*
2684 * This sysctl allows a process to set and retrieve binary osreldate of
2685 * another process.
2686 */
2687static int
2688sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
2689{
2690	int *name = (int *)arg1;
2691	u_int namelen = arg2;
2692	struct proc *p;
2693	int flags, error, osrel;
2694
2695	if (namelen != 1)
2696		return (EINVAL);
2697
2698	if (req->newptr != NULL && req->newlen != sizeof(osrel))
2699		return (EINVAL);
2700
2701	flags = PGET_HOLD | PGET_NOTWEXIT;
2702	if (req->newptr != NULL)
2703		flags |= PGET_CANDEBUG;
2704	else
2705		flags |= PGET_CANSEE;
2706	error = pget((pid_t)name[0], flags, &p);
2707	if (error != 0)
2708		return (error);
2709
2710	error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
2711	if (error != 0)
2712		goto errout;
2713
2714	if (req->newptr != NULL) {
2715		error = SYSCTL_IN(req, &osrel, sizeof(osrel));
2716		if (error != 0)
2717			goto errout;
2718		if (osrel < 0) {
2719			error = EINVAL;
2720			goto errout;
2721		}
2722		p->p_osrel = osrel;
2723	}
2724errout:
2725	PRELE(p);
2726	return (error);
2727}
2728
2729static int
2730sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
2731{
2732	int *name = (int *)arg1;
2733	u_int namelen = arg2;
2734	struct proc *p;
2735	struct kinfo_sigtramp kst;
2736	const struct sysentvec *sv;
2737	int error;
2738#ifdef COMPAT_FREEBSD32
2739	struct kinfo_sigtramp32 kst32;
2740#endif
2741
2742	if (namelen != 1)
2743		return (EINVAL);
2744
2745	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2746	if (error != 0)
2747		return (error);
2748	sv = p->p_sysent;
2749#ifdef COMPAT_FREEBSD32
2750	if ((req->flags & SCTL_MASK32) != 0) {
2751		bzero(&kst32, sizeof(kst32));
2752		if (SV_PROC_FLAG(p, SV_ILP32)) {
2753			if (sv->sv_sigcode_base != 0) {
2754				kst32.ksigtramp_start = sv->sv_sigcode_base;
2755				kst32.ksigtramp_end = sv->sv_sigcode_base +
2756				    *sv->sv_szsigcode;
2757			} else {
2758				kst32.ksigtramp_start = sv->sv_psstrings -
2759				    *sv->sv_szsigcode;
2760				kst32.ksigtramp_end = sv->sv_psstrings;
2761			}
2762		}
2763		PROC_UNLOCK(p);
2764		error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
2765		return (error);
2766	}
2767#endif
2768	bzero(&kst, sizeof(kst));
2769	if (sv->sv_sigcode_base != 0) {
2770		kst.ksigtramp_start = (char *)sv->sv_sigcode_base;
2771		kst.ksigtramp_end = (char *)sv->sv_sigcode_base +
2772		    *sv->sv_szsigcode;
2773	} else {
2774		kst.ksigtramp_start = (char *)sv->sv_psstrings -
2775		    *sv->sv_szsigcode;
2776		kst.ksigtramp_end = (char *)sv->sv_psstrings;
2777	}
2778	PROC_UNLOCK(p);
2779	error = SYSCTL_OUT(req, &kst, sizeof(kst));
2780	return (error);
2781}
2782
2783SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
2784
2785SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
2786	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
2787	"Return entire process table");
2788
2789static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2790	sysctl_kern_proc, "Process table");
2791
2792static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
2793	sysctl_kern_proc, "Process table");
2794
2795static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2796	sysctl_kern_proc, "Process table");
2797
2798static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
2799	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2800
2801static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
2802	sysctl_kern_proc, "Process table");
2803
2804static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2805	sysctl_kern_proc, "Process table");
2806
2807static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2808	sysctl_kern_proc, "Process table");
2809
2810static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2811	sysctl_kern_proc, "Process table");
2812
2813static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
2814	sysctl_kern_proc, "Return process table, no threads");
2815
2816static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
2817	CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
2818	sysctl_kern_proc_args, "Process argument list");
2819
2820static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
2821	sysctl_kern_proc_env, "Process environment");
2822
2823static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
2824	CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
2825
2826static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
2827	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
2828
2829static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
2830	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
2831	"Process syscall vector name (ABI type)");
2832
2833static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
2834	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2835
2836static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
2837	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2838
2839static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
2840	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2841
2842static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
2843	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2844
2845static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
2846	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2847
2848static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
2849	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2850
2851static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
2852	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2853
2854static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
2855	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2856
2857static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
2858	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
2859	"Return process table, no threads");
2860
2861#ifdef COMPAT_FREEBSD7
2862static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
2863	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
2864#endif
2865
2866static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
2867	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
2868
2869#if defined(STACK) || defined(DDB)
2870static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
2871	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
2872#endif
2873
2874static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
2875	CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
2876
2877static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
2878	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
2879	"Process resource limits");
2880
2881static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
2882	CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
2883	"Process ps_strings location");
2884
2885static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
2886	CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
2887
2888static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
2889	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
2890	"Process binary osreldate");
2891
2892static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
2893	CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
2894	"Process signal trampoline location");
2895
2896int allproc_gen;
2897
2898void
2899stop_all_proc(void)
2900{
2901	struct proc *cp, *p;
2902	int r, gen;
2903	bool restart, seen_stopped, seen_exiting, stopped_some;
2904
2905	cp = curproc;
2906	/*
2907	 * stop_all_proc() assumes that all process which have
2908	 * usermode must be stopped, except current process, for
2909	 * obvious reasons.  Since other threads in the process
2910	 * establishing global stop could unstop something, disable
2911	 * calls from multithreaded processes as precaution.  The
2912	 * service must not be user-callable anyway.
2913	 */
2914	KASSERT((cp->p_flag & P_HADTHREADS) == 0 ||
2915	    (cp->p_flag & P_KTHREAD) != 0, ("mt stop_all_proc"));
2916
2917allproc_loop:
2918	sx_xlock(&allproc_lock);
2919	gen = allproc_gen;
2920	seen_exiting = seen_stopped = stopped_some = restart = false;
2921	LIST_REMOVE(cp, p_list);
2922	LIST_INSERT_HEAD(&allproc, cp, p_list);
2923	for (;;) {
2924		p = LIST_NEXT(cp, p_list);
2925		if (p == NULL)
2926			break;
2927		LIST_REMOVE(cp, p_list);
2928		LIST_INSERT_AFTER(p, cp, p_list);
2929		PROC_LOCK(p);
2930		if ((p->p_flag & (P_KTHREAD | P_SYSTEM |
2931		    P_TOTAL_STOP)) != 0) {
2932			PROC_UNLOCK(p);
2933			continue;
2934		}
2935		if ((p->p_flag & P_WEXIT) != 0) {
2936			seen_exiting = true;
2937			PROC_UNLOCK(p);
2938			continue;
2939		}
2940		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
2941			/*
2942			 * Stopped processes are tolerated when there
2943			 * are no other processes which might continue
2944			 * them.  P_STOPPED_SINGLE but not
2945			 * P_TOTAL_STOP process still has at least one
2946			 * thread running.
2947			 */
2948			seen_stopped = true;
2949			PROC_UNLOCK(p);
2950			continue;
2951		}
2952		_PHOLD(p);
2953		sx_xunlock(&allproc_lock);
2954		r = thread_single(p, SINGLE_ALLPROC);
2955		if (r != 0)
2956			restart = true;
2957		else
2958			stopped_some = true;
2959		_PRELE(p);
2960		PROC_UNLOCK(p);
2961		sx_xlock(&allproc_lock);
2962	}
2963	/* Catch forked children we did not see in iteration. */
2964	if (gen != allproc_gen)
2965		restart = true;
2966	sx_xunlock(&allproc_lock);
2967	if (restart || stopped_some || seen_exiting || seen_stopped) {
2968		kern_yield(PRI_USER);
2969		goto allproc_loop;
2970	}
2971}
2972
2973void
2974resume_all_proc(void)
2975{
2976	struct proc *cp, *p;
2977
2978	cp = curproc;
2979	sx_xlock(&allproc_lock);
2980	LIST_REMOVE(cp, p_list);
2981	LIST_INSERT_HEAD(&allproc, cp, p_list);
2982	for (;;) {
2983		p = LIST_NEXT(cp, p_list);
2984		if (p == NULL)
2985			break;
2986		LIST_REMOVE(cp, p_list);
2987		LIST_INSERT_AFTER(p, cp, p_list);
2988		PROC_LOCK(p);
2989		if ((p->p_flag & P_TOTAL_STOP) != 0) {
2990			sx_xunlock(&allproc_lock);
2991			_PHOLD(p);
2992			thread_single_end(p, SINGLE_ALLPROC);
2993			_PRELE(p);
2994			PROC_UNLOCK(p);
2995			sx_xlock(&allproc_lock);
2996		} else {
2997			PROC_UNLOCK(p);
2998		}
2999	}
3000	sx_xunlock(&allproc_lock);
3001}
3002
3003#define	TOTAL_STOP_DEBUG	1
3004#ifdef TOTAL_STOP_DEBUG
3005volatile static int ap_resume;
3006#include <sys/mount.h>
3007
3008static int
3009sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
3010{
3011	int error, val;
3012
3013	val = 0;
3014	ap_resume = 0;
3015	error = sysctl_handle_int(oidp, &val, 0, req);
3016	if (error != 0 || req->newptr == NULL)
3017		return (error);
3018	if (val != 0) {
3019		stop_all_proc();
3020		syncer_suspend();
3021		while (ap_resume == 0)
3022			;
3023		syncer_resume();
3024		resume_all_proc();
3025	}
3026	return (0);
3027}
3028
3029SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
3030    CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
3031    sysctl_debug_stop_all_proc, "I",
3032    "");
3033#endif
3034