kern_proc.c revision 289798
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: stable/10/sys/kern/kern_proc.c 289798 2015-10-23 07:40:43Z avg $");
34
35#include "opt_compat.h"
36#include "opt_ddb.h"
37#include "opt_kdtrace.h"
38#include "opt_ktrace.h"
39#include "opt_kstack_pages.h"
40#include "opt_stack.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/elf.h>
45#include <sys/exec.h>
46#include <sys/kernel.h>
47#include <sys/limits.h>
48#include <sys/lock.h>
49#include <sys/loginclass.h>
50#include <sys/malloc.h>
51#include <sys/mman.h>
52#include <sys/mount.h>
53#include <sys/mutex.h>
54#include <sys/proc.h>
55#include <sys/ptrace.h>
56#include <sys/refcount.h>
57#include <sys/resourcevar.h>
58#include <sys/rwlock.h>
59#include <sys/sbuf.h>
60#include <sys/sysent.h>
61#include <sys/sched.h>
62#include <sys/smp.h>
63#include <sys/stack.h>
64#include <sys/stat.h>
65#include <sys/sysctl.h>
66#include <sys/filedesc.h>
67#include <sys/tty.h>
68#include <sys/signalvar.h>
69#include <sys/sdt.h>
70#include <sys/sx.h>
71#include <sys/user.h>
72#include <sys/jail.h>
73#include <sys/vnode.h>
74#include <sys/eventhandler.h>
75
76#ifdef DDB
77#include <ddb/ddb.h>
78#endif
79
80#include <vm/vm.h>
81#include <vm/vm_param.h>
82#include <vm/vm_extern.h>
83#include <vm/pmap.h>
84#include <vm/vm_map.h>
85#include <vm/vm_object.h>
86#include <vm/vm_page.h>
87#include <vm/uma.h>
88
89#ifdef COMPAT_FREEBSD32
90#include <compat/freebsd32/freebsd32.h>
91#include <compat/freebsd32/freebsd32_util.h>
92#endif
93
94SDT_PROVIDER_DEFINE(proc);
95SDT_PROBE_DEFINE4(proc, kernel, ctor, entry, "struct proc *", "int",
96    "void *", "int");
97SDT_PROBE_DEFINE4(proc, kernel, ctor, return, "struct proc *", "int",
98    "void *", "int");
99SDT_PROBE_DEFINE4(proc, kernel, dtor, entry, "struct proc *", "int",
100    "void *", "struct thread *");
101SDT_PROBE_DEFINE3(proc, kernel, dtor, return, "struct proc *", "int",
102    "void *");
103SDT_PROBE_DEFINE3(proc, kernel, init, entry, "struct proc *", "int",
104    "int");
105SDT_PROBE_DEFINE3(proc, kernel, init, return, "struct proc *", "int",
106    "int");
107
108MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
109MALLOC_DEFINE(M_SESSION, "session", "session header");
110static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
111MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
112
113static void doenterpgrp(struct proc *, struct pgrp *);
114static void orphanpg(struct pgrp *pg);
115static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
116static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
117static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
118    int preferthread);
119static void pgadjustjobc(struct pgrp *pgrp, int entering);
120static void pgdelete(struct pgrp *);
121static int proc_ctor(void *mem, int size, void *arg, int flags);
122static void proc_dtor(void *mem, int size, void *arg);
123static int proc_init(void *mem, int size, int flags);
124static void proc_fini(void *mem, int size);
125static void pargs_free(struct pargs *pa);
126static struct proc *zpfind_locked(pid_t pid);
127
128/*
129 * Other process lists
130 */
131struct pidhashhead *pidhashtbl;
132u_long pidhash;
133struct pgrphashhead *pgrphashtbl;
134u_long pgrphash;
135struct proclist allproc;
136struct proclist zombproc;
137struct sx allproc_lock;
138struct sx proctree_lock;
139struct mtx ppeers_lock;
140uma_zone_t proc_zone;
141
142int kstack_pages = KSTACK_PAGES;
143SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
144    "Kernel stack size in pages");
145static int vmmap_skip_res_cnt = 0;
146SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
147    &vmmap_skip_res_cnt, 0,
148    "Skip calculation of the pages resident count in kern.proc.vmmap");
149
150CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
151#ifdef COMPAT_FREEBSD32
152CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
153#endif
154
155/*
156 * Initialize global process hashing structures.
157 */
158void
159procinit()
160{
161
162	sx_init(&allproc_lock, "allproc");
163	sx_init(&proctree_lock, "proctree");
164	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
165	LIST_INIT(&allproc);
166	LIST_INIT(&zombproc);
167	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
168	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
169	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
170	    proc_ctor, proc_dtor, proc_init, proc_fini,
171	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
172	uihashinit();
173}
174
175/*
176 * Prepare a proc for use.
177 */
178static int
179proc_ctor(void *mem, int size, void *arg, int flags)
180{
181	struct proc *p;
182
183	p = (struct proc *)mem;
184	SDT_PROBE4(proc, kernel, ctor , entry, p, size, arg, flags);
185	EVENTHANDLER_INVOKE(process_ctor, p);
186	SDT_PROBE4(proc, kernel, ctor , return, p, size, arg, flags);
187	return (0);
188}
189
190/*
191 * Reclaim a proc after use.
192 */
193static void
194proc_dtor(void *mem, int size, void *arg)
195{
196	struct proc *p;
197	struct thread *td;
198
199	/* INVARIANTS checks go here */
200	p = (struct proc *)mem;
201	td = FIRST_THREAD_IN_PROC(p);
202	SDT_PROBE4(proc, kernel, dtor, entry, p, size, arg, td);
203	if (td != NULL) {
204#ifdef INVARIANTS
205		KASSERT((p->p_numthreads == 1),
206		    ("bad number of threads in exiting process"));
207		KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
208#endif
209		/* Free all OSD associated to this thread. */
210		osd_thread_exit(td);
211	}
212	EVENTHANDLER_INVOKE(process_dtor, p);
213	if (p->p_ksi != NULL)
214		KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
215	SDT_PROBE3(proc, kernel, dtor, return, p, size, arg);
216}
217
218/*
219 * Initialize type-stable parts of a proc (when newly created).
220 */
221static int
222proc_init(void *mem, int size, int flags)
223{
224	struct proc *p;
225
226	p = (struct proc *)mem;
227	SDT_PROBE3(proc, kernel, init, entry, p, size, flags);
228	p->p_sched = (struct p_sched *)&p[1];
229	bzero(&p->p_mtx, sizeof(struct mtx));
230	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
231	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE);
232	cv_init(&p->p_pwait, "ppwait");
233	cv_init(&p->p_dbgwait, "dbgwait");
234	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
235	EVENTHANDLER_INVOKE(process_init, p);
236	p->p_stats = pstats_alloc();
237	SDT_PROBE3(proc, kernel, init, return, p, size, flags);
238	return (0);
239}
240
241/*
242 * UMA should ensure that this function is never called.
243 * Freeing a proc structure would violate type stability.
244 */
245static void
246proc_fini(void *mem, int size)
247{
248#ifdef notnow
249	struct proc *p;
250
251	p = (struct proc *)mem;
252	EVENTHANDLER_INVOKE(process_fini, p);
253	pstats_free(p->p_stats);
254	thread_free(FIRST_THREAD_IN_PROC(p));
255	mtx_destroy(&p->p_mtx);
256	if (p->p_ksi != NULL)
257		ksiginfo_free(p->p_ksi);
258#else
259	panic("proc reclaimed");
260#endif
261}
262
263/*
264 * Is p an inferior of the current process?
265 */
266int
267inferior(struct proc *p)
268{
269
270	sx_assert(&proctree_lock, SX_LOCKED);
271	PROC_LOCK_ASSERT(p, MA_OWNED);
272	for (; p != curproc; p = proc_realparent(p)) {
273		if (p->p_pid == 0)
274			return (0);
275	}
276	return (1);
277}
278
279struct proc *
280pfind_locked(pid_t pid)
281{
282	struct proc *p;
283
284	sx_assert(&allproc_lock, SX_LOCKED);
285	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
286		if (p->p_pid == pid) {
287			PROC_LOCK(p);
288			if (p->p_state == PRS_NEW) {
289				PROC_UNLOCK(p);
290				p = NULL;
291			}
292			break;
293		}
294	}
295	return (p);
296}
297
298/*
299 * Locate a process by number; return only "live" processes -- i.e., neither
300 * zombies nor newly born but incompletely initialized processes.  By not
301 * returning processes in the PRS_NEW state, we allow callers to avoid
302 * testing for that condition to avoid dereferencing p_ucred, et al.
303 */
304struct proc *
305pfind(pid_t pid)
306{
307	struct proc *p;
308
309	sx_slock(&allproc_lock);
310	p = pfind_locked(pid);
311	sx_sunlock(&allproc_lock);
312	return (p);
313}
314
315static struct proc *
316pfind_tid_locked(pid_t tid)
317{
318	struct proc *p;
319	struct thread *td;
320
321	sx_assert(&allproc_lock, SX_LOCKED);
322	FOREACH_PROC_IN_SYSTEM(p) {
323		PROC_LOCK(p);
324		if (p->p_state == PRS_NEW) {
325			PROC_UNLOCK(p);
326			continue;
327		}
328		FOREACH_THREAD_IN_PROC(p, td) {
329			if (td->td_tid == tid)
330				goto found;
331		}
332		PROC_UNLOCK(p);
333	}
334found:
335	return (p);
336}
337
338/*
339 * Locate a process group by number.
340 * The caller must hold proctree_lock.
341 */
342struct pgrp *
343pgfind(pgid)
344	register pid_t pgid;
345{
346	register struct pgrp *pgrp;
347
348	sx_assert(&proctree_lock, SX_LOCKED);
349
350	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
351		if (pgrp->pg_id == pgid) {
352			PGRP_LOCK(pgrp);
353			return (pgrp);
354		}
355	}
356	return (NULL);
357}
358
359/*
360 * Locate process and do additional manipulations, depending on flags.
361 */
362int
363pget(pid_t pid, int flags, struct proc **pp)
364{
365	struct proc *p;
366	int error;
367
368	sx_slock(&allproc_lock);
369	if (pid <= PID_MAX) {
370		p = pfind_locked(pid);
371		if (p == NULL && (flags & PGET_NOTWEXIT) == 0)
372			p = zpfind_locked(pid);
373	} else if ((flags & PGET_NOTID) == 0) {
374		p = pfind_tid_locked(pid);
375	} else {
376		p = NULL;
377	}
378	sx_sunlock(&allproc_lock);
379	if (p == NULL)
380		return (ESRCH);
381	if ((flags & PGET_CANSEE) != 0) {
382		error = p_cansee(curthread, p);
383		if (error != 0)
384			goto errout;
385	}
386	if ((flags & PGET_CANDEBUG) != 0) {
387		error = p_candebug(curthread, p);
388		if (error != 0)
389			goto errout;
390	}
391	if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
392		error = EPERM;
393		goto errout;
394	}
395	if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
396		error = ESRCH;
397		goto errout;
398	}
399	if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
400		/*
401		 * XXXRW: Not clear ESRCH is the right error during proc
402		 * execve().
403		 */
404		error = ESRCH;
405		goto errout;
406	}
407	if ((flags & PGET_HOLD) != 0) {
408		_PHOLD(p);
409		PROC_UNLOCK(p);
410	}
411	*pp = p;
412	return (0);
413errout:
414	PROC_UNLOCK(p);
415	return (error);
416}
417
418/*
419 * Create a new process group.
420 * pgid must be equal to the pid of p.
421 * Begin a new session if required.
422 */
423int
424enterpgrp(p, pgid, pgrp, sess)
425	register struct proc *p;
426	pid_t pgid;
427	struct pgrp *pgrp;
428	struct session *sess;
429{
430
431	sx_assert(&proctree_lock, SX_XLOCKED);
432
433	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
434	KASSERT(p->p_pid == pgid,
435	    ("enterpgrp: new pgrp and pid != pgid"));
436	KASSERT(pgfind(pgid) == NULL,
437	    ("enterpgrp: pgrp with pgid exists"));
438	KASSERT(!SESS_LEADER(p),
439	    ("enterpgrp: session leader attempted setpgrp"));
440
441	mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
442
443	if (sess != NULL) {
444		/*
445		 * new session
446		 */
447		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
448		PROC_LOCK(p);
449		p->p_flag &= ~P_CONTROLT;
450		PROC_UNLOCK(p);
451		PGRP_LOCK(pgrp);
452		sess->s_leader = p;
453		sess->s_sid = p->p_pid;
454		refcount_init(&sess->s_count, 1);
455		sess->s_ttyvp = NULL;
456		sess->s_ttydp = NULL;
457		sess->s_ttyp = NULL;
458		bcopy(p->p_session->s_login, sess->s_login,
459			    sizeof(sess->s_login));
460		pgrp->pg_session = sess;
461		KASSERT(p == curproc,
462		    ("enterpgrp: mksession and p != curproc"));
463	} else {
464		pgrp->pg_session = p->p_session;
465		sess_hold(pgrp->pg_session);
466		PGRP_LOCK(pgrp);
467	}
468	pgrp->pg_id = pgid;
469	LIST_INIT(&pgrp->pg_members);
470
471	/*
472	 * As we have an exclusive lock of proctree_lock,
473	 * this should not deadlock.
474	 */
475	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
476	pgrp->pg_jobc = 0;
477	SLIST_INIT(&pgrp->pg_sigiolst);
478	PGRP_UNLOCK(pgrp);
479
480	doenterpgrp(p, pgrp);
481
482	return (0);
483}
484
485/*
486 * Move p to an existing process group
487 */
488int
489enterthispgrp(p, pgrp)
490	register struct proc *p;
491	struct pgrp *pgrp;
492{
493
494	sx_assert(&proctree_lock, SX_XLOCKED);
495	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
496	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
497	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
498	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
499	KASSERT(pgrp->pg_session == p->p_session,
500		("%s: pgrp's session %p, p->p_session %p.\n",
501		__func__,
502		pgrp->pg_session,
503		p->p_session));
504	KASSERT(pgrp != p->p_pgrp,
505		("%s: p belongs to pgrp.", __func__));
506
507	doenterpgrp(p, pgrp);
508
509	return (0);
510}
511
512/*
513 * Move p to a process group
514 */
515static void
516doenterpgrp(p, pgrp)
517	struct proc *p;
518	struct pgrp *pgrp;
519{
520	struct pgrp *savepgrp;
521
522	sx_assert(&proctree_lock, SX_XLOCKED);
523	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
524	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
525	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
526	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
527
528	savepgrp = p->p_pgrp;
529
530	/*
531	 * Adjust eligibility of affected pgrps to participate in job control.
532	 * Increment eligibility counts before decrementing, otherwise we
533	 * could reach 0 spuriously during the first call.
534	 */
535	fixjobc(p, pgrp, 1);
536	fixjobc(p, p->p_pgrp, 0);
537
538	PGRP_LOCK(pgrp);
539	PGRP_LOCK(savepgrp);
540	PROC_LOCK(p);
541	LIST_REMOVE(p, p_pglist);
542	p->p_pgrp = pgrp;
543	PROC_UNLOCK(p);
544	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
545	PGRP_UNLOCK(savepgrp);
546	PGRP_UNLOCK(pgrp);
547	if (LIST_EMPTY(&savepgrp->pg_members))
548		pgdelete(savepgrp);
549}
550
551/*
552 * remove process from process group
553 */
554int
555leavepgrp(p)
556	register struct proc *p;
557{
558	struct pgrp *savepgrp;
559
560	sx_assert(&proctree_lock, SX_XLOCKED);
561	savepgrp = p->p_pgrp;
562	PGRP_LOCK(savepgrp);
563	PROC_LOCK(p);
564	LIST_REMOVE(p, p_pglist);
565	p->p_pgrp = NULL;
566	PROC_UNLOCK(p);
567	PGRP_UNLOCK(savepgrp);
568	if (LIST_EMPTY(&savepgrp->pg_members))
569		pgdelete(savepgrp);
570	return (0);
571}
572
573/*
574 * delete a process group
575 */
576static void
577pgdelete(pgrp)
578	register struct pgrp *pgrp;
579{
580	struct session *savesess;
581	struct tty *tp;
582
583	sx_assert(&proctree_lock, SX_XLOCKED);
584	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
585	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
586
587	/*
588	 * Reset any sigio structures pointing to us as a result of
589	 * F_SETOWN with our pgid.
590	 */
591	funsetownlst(&pgrp->pg_sigiolst);
592
593	PGRP_LOCK(pgrp);
594	tp = pgrp->pg_session->s_ttyp;
595	LIST_REMOVE(pgrp, pg_hash);
596	savesess = pgrp->pg_session;
597	PGRP_UNLOCK(pgrp);
598
599	/* Remove the reference to the pgrp before deallocating it. */
600	if (tp != NULL) {
601		tty_lock(tp);
602		tty_rel_pgrp(tp, pgrp);
603	}
604
605	mtx_destroy(&pgrp->pg_mtx);
606	free(pgrp, M_PGRP);
607	sess_release(savesess);
608}
609
610static void
611pgadjustjobc(pgrp, entering)
612	struct pgrp *pgrp;
613	int entering;
614{
615
616	PGRP_LOCK(pgrp);
617	if (entering)
618		pgrp->pg_jobc++;
619	else {
620		--pgrp->pg_jobc;
621		if (pgrp->pg_jobc == 0)
622			orphanpg(pgrp);
623	}
624	PGRP_UNLOCK(pgrp);
625}
626
627/*
628 * Adjust pgrp jobc counters when specified process changes process group.
629 * We count the number of processes in each process group that "qualify"
630 * the group for terminal job control (those with a parent in a different
631 * process group of the same session).  If that count reaches zero, the
632 * process group becomes orphaned.  Check both the specified process'
633 * process group and that of its children.
634 * entering == 0 => p is leaving specified group.
635 * entering == 1 => p is entering specified group.
636 */
637void
638fixjobc(p, pgrp, entering)
639	register struct proc *p;
640	register struct pgrp *pgrp;
641	int entering;
642{
643	register struct pgrp *hispgrp;
644	register struct session *mysession;
645
646	sx_assert(&proctree_lock, SX_LOCKED);
647	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
648	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
649	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
650
651	/*
652	 * Check p's parent to see whether p qualifies its own process
653	 * group; if so, adjust count for p's process group.
654	 */
655	mysession = pgrp->pg_session;
656	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
657	    hispgrp->pg_session == mysession)
658		pgadjustjobc(pgrp, entering);
659
660	/*
661	 * Check this process' children to see whether they qualify
662	 * their process groups; if so, adjust counts for children's
663	 * process groups.
664	 */
665	LIST_FOREACH(p, &p->p_children, p_sibling) {
666		hispgrp = p->p_pgrp;
667		if (hispgrp == pgrp ||
668		    hispgrp->pg_session != mysession)
669			continue;
670		PROC_LOCK(p);
671		if (p->p_state == PRS_ZOMBIE) {
672			PROC_UNLOCK(p);
673			continue;
674		}
675		PROC_UNLOCK(p);
676		pgadjustjobc(hispgrp, entering);
677	}
678}
679
680/*
681 * A process group has become orphaned;
682 * if there are any stopped processes in the group,
683 * hang-up all process in that group.
684 */
685static void
686orphanpg(pg)
687	struct pgrp *pg;
688{
689	register struct proc *p;
690
691	PGRP_LOCK_ASSERT(pg, MA_OWNED);
692
693	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
694		PROC_LOCK(p);
695		if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
696			PROC_UNLOCK(p);
697			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
698				PROC_LOCK(p);
699				kern_psignal(p, SIGHUP);
700				kern_psignal(p, SIGCONT);
701				PROC_UNLOCK(p);
702			}
703			return;
704		}
705		PROC_UNLOCK(p);
706	}
707}
708
709void
710sess_hold(struct session *s)
711{
712
713	refcount_acquire(&s->s_count);
714}
715
716void
717sess_release(struct session *s)
718{
719
720	if (refcount_release(&s->s_count)) {
721		if (s->s_ttyp != NULL) {
722			tty_lock(s->s_ttyp);
723			tty_rel_sess(s->s_ttyp, s);
724		}
725		mtx_destroy(&s->s_mtx);
726		free(s, M_SESSION);
727	}
728}
729
730#ifdef DDB
731
732DB_SHOW_COMMAND(pgrpdump, pgrpdump)
733{
734	register struct pgrp *pgrp;
735	register struct proc *p;
736	register int i;
737
738	for (i = 0; i <= pgrphash; i++) {
739		if (!LIST_EMPTY(&pgrphashtbl[i])) {
740			printf("\tindx %d\n", i);
741			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
742				printf(
743			"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
744				    (void *)pgrp, (long)pgrp->pg_id,
745				    (void *)pgrp->pg_session,
746				    pgrp->pg_session->s_count,
747				    (void *)LIST_FIRST(&pgrp->pg_members));
748				LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
749					printf("\t\tpid %ld addr %p pgrp %p\n",
750					    (long)p->p_pid, (void *)p,
751					    (void *)p->p_pgrp);
752				}
753			}
754		}
755	}
756}
757#endif /* DDB */
758
759/*
760 * Calculate the kinfo_proc members which contain process-wide
761 * informations.
762 * Must be called with the target process locked.
763 */
764static void
765fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
766{
767	struct thread *td;
768
769	PROC_LOCK_ASSERT(p, MA_OWNED);
770
771	kp->ki_estcpu = 0;
772	kp->ki_pctcpu = 0;
773	FOREACH_THREAD_IN_PROC(p, td) {
774		thread_lock(td);
775		kp->ki_pctcpu += sched_pctcpu(td);
776		kp->ki_estcpu += td->td_estcpu;
777		thread_unlock(td);
778	}
779}
780
781/*
782 * Clear kinfo_proc and fill in any information that is common
783 * to all threads in the process.
784 * Must be called with the target process locked.
785 */
786static void
787fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
788{
789	struct thread *td0;
790	struct tty *tp;
791	struct session *sp;
792	struct ucred *cred;
793	struct sigacts *ps;
794
795	PROC_LOCK_ASSERT(p, MA_OWNED);
796	bzero(kp, sizeof(*kp));
797
798	kp->ki_structsize = sizeof(*kp);
799	kp->ki_paddr = p;
800	kp->ki_addr =/* p->p_addr; */0; /* XXX */
801	kp->ki_args = p->p_args;
802	kp->ki_textvp = p->p_textvp;
803#ifdef KTRACE
804	kp->ki_tracep = p->p_tracevp;
805	kp->ki_traceflag = p->p_traceflag;
806#endif
807	kp->ki_fd = p->p_fd;
808	kp->ki_vmspace = p->p_vmspace;
809	kp->ki_flag = p->p_flag;
810	kp->ki_flag2 = p->p_flag2;
811	cred = p->p_ucred;
812	if (cred) {
813		kp->ki_uid = cred->cr_uid;
814		kp->ki_ruid = cred->cr_ruid;
815		kp->ki_svuid = cred->cr_svuid;
816		kp->ki_cr_flags = 0;
817		if (cred->cr_flags & CRED_FLAG_CAPMODE)
818			kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
819		/* XXX bde doesn't like KI_NGROUPS */
820		if (cred->cr_ngroups > KI_NGROUPS) {
821			kp->ki_ngroups = KI_NGROUPS;
822			kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
823		} else
824			kp->ki_ngroups = cred->cr_ngroups;
825		bcopy(cred->cr_groups, kp->ki_groups,
826		    kp->ki_ngroups * sizeof(gid_t));
827		kp->ki_rgid = cred->cr_rgid;
828		kp->ki_svgid = cred->cr_svgid;
829		/* If jailed(cred), emulate the old P_JAILED flag. */
830		if (jailed(cred)) {
831			kp->ki_flag |= P_JAILED;
832			/* If inside the jail, use 0 as a jail ID. */
833			if (cred->cr_prison != curthread->td_ucred->cr_prison)
834				kp->ki_jid = cred->cr_prison->pr_id;
835		}
836		strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
837		    sizeof(kp->ki_loginclass));
838	}
839	ps = p->p_sigacts;
840	if (ps) {
841		mtx_lock(&ps->ps_mtx);
842		kp->ki_sigignore = ps->ps_sigignore;
843		kp->ki_sigcatch = ps->ps_sigcatch;
844		mtx_unlock(&ps->ps_mtx);
845	}
846	if (p->p_state != PRS_NEW &&
847	    p->p_state != PRS_ZOMBIE &&
848	    p->p_vmspace != NULL) {
849		struct vmspace *vm = p->p_vmspace;
850
851		kp->ki_size = vm->vm_map.size;
852		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
853		FOREACH_THREAD_IN_PROC(p, td0) {
854			if (!TD_IS_SWAPPED(td0))
855				kp->ki_rssize += td0->td_kstack_pages;
856		}
857		kp->ki_swrss = vm->vm_swrss;
858		kp->ki_tsize = vm->vm_tsize;
859		kp->ki_dsize = vm->vm_dsize;
860		kp->ki_ssize = vm->vm_ssize;
861	} else if (p->p_state == PRS_ZOMBIE)
862		kp->ki_stat = SZOMB;
863	if (kp->ki_flag & P_INMEM)
864		kp->ki_sflag = PS_INMEM;
865	else
866		kp->ki_sflag = 0;
867	/* Calculate legacy swtime as seconds since 'swtick'. */
868	kp->ki_swtime = (ticks - p->p_swtick) / hz;
869	kp->ki_pid = p->p_pid;
870	kp->ki_nice = p->p_nice;
871	kp->ki_fibnum = p->p_fibnum;
872	kp->ki_start = p->p_stats->p_start;
873	timevaladd(&kp->ki_start, &boottime);
874	PROC_SLOCK(p);
875	rufetch(p, &kp->ki_rusage);
876	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
877	calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
878	PROC_SUNLOCK(p);
879	calccru(p, &kp->ki_childutime, &kp->ki_childstime);
880	/* Some callers want child times in a single value. */
881	kp->ki_childtime = kp->ki_childstime;
882	timevaladd(&kp->ki_childtime, &kp->ki_childutime);
883
884	FOREACH_THREAD_IN_PROC(p, td0)
885		kp->ki_cow += td0->td_cow;
886
887	tp = NULL;
888	if (p->p_pgrp) {
889		kp->ki_pgid = p->p_pgrp->pg_id;
890		kp->ki_jobc = p->p_pgrp->pg_jobc;
891		sp = p->p_pgrp->pg_session;
892
893		if (sp != NULL) {
894			kp->ki_sid = sp->s_sid;
895			SESS_LOCK(sp);
896			strlcpy(kp->ki_login, sp->s_login,
897			    sizeof(kp->ki_login));
898			if (sp->s_ttyvp)
899				kp->ki_kiflag |= KI_CTTY;
900			if (SESS_LEADER(p))
901				kp->ki_kiflag |= KI_SLEADER;
902			/* XXX proctree_lock */
903			tp = sp->s_ttyp;
904			SESS_UNLOCK(sp);
905		}
906	}
907	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
908		kp->ki_tdev = tty_udev(tp);
909		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
910		if (tp->t_session)
911			kp->ki_tsid = tp->t_session->s_sid;
912	} else
913		kp->ki_tdev = NODEV;
914	if (p->p_comm[0] != '\0')
915		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
916	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
917	    p->p_sysent->sv_name[0] != '\0')
918		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
919	kp->ki_siglist = p->p_siglist;
920	kp->ki_xstat = p->p_xstat;
921	kp->ki_acflag = p->p_acflag;
922	kp->ki_lock = p->p_lock;
923	if (p->p_pptr)
924		kp->ki_ppid = p->p_pptr->p_pid;
925}
926
927/*
928 * Fill in information that is thread specific.  Must be called with
929 * target process locked.  If 'preferthread' is set, overwrite certain
930 * process-related fields that are maintained for both threads and
931 * processes.
932 */
933static void
934fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
935{
936	struct proc *p;
937
938	p = td->td_proc;
939	kp->ki_tdaddr = td;
940	PROC_LOCK_ASSERT(p, MA_OWNED);
941
942	if (preferthread)
943		PROC_SLOCK(p);
944	thread_lock(td);
945	if (td->td_wmesg != NULL)
946		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
947	else
948		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
949	strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname));
950	if (TD_ON_LOCK(td)) {
951		kp->ki_kiflag |= KI_LOCKBLOCK;
952		strlcpy(kp->ki_lockname, td->td_lockname,
953		    sizeof(kp->ki_lockname));
954	} else {
955		kp->ki_kiflag &= ~KI_LOCKBLOCK;
956		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
957	}
958
959	if (p->p_state == PRS_NORMAL) { /* approximate. */
960		if (TD_ON_RUNQ(td) ||
961		    TD_CAN_RUN(td) ||
962		    TD_IS_RUNNING(td)) {
963			kp->ki_stat = SRUN;
964		} else if (P_SHOULDSTOP(p)) {
965			kp->ki_stat = SSTOP;
966		} else if (TD_IS_SLEEPING(td)) {
967			kp->ki_stat = SSLEEP;
968		} else if (TD_ON_LOCK(td)) {
969			kp->ki_stat = SLOCK;
970		} else {
971			kp->ki_stat = SWAIT;
972		}
973	} else if (p->p_state == PRS_ZOMBIE) {
974		kp->ki_stat = SZOMB;
975	} else {
976		kp->ki_stat = SIDL;
977	}
978
979	/* Things in the thread */
980	kp->ki_wchan = td->td_wchan;
981	kp->ki_pri.pri_level = td->td_priority;
982	kp->ki_pri.pri_native = td->td_base_pri;
983	kp->ki_lastcpu = td->td_lastcpu;
984	kp->ki_oncpu = td->td_oncpu;
985	kp->ki_tdflags = td->td_flags;
986	kp->ki_tid = td->td_tid;
987	kp->ki_numthreads = p->p_numthreads;
988	kp->ki_pcb = td->td_pcb;
989	kp->ki_kstack = (void *)td->td_kstack;
990	kp->ki_slptime = (ticks - td->td_slptick) / hz;
991	kp->ki_pri.pri_class = td->td_pri_class;
992	kp->ki_pri.pri_user = td->td_user_pri;
993
994	if (preferthread) {
995		rufetchtd(td, &kp->ki_rusage);
996		kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
997		kp->ki_pctcpu = sched_pctcpu(td);
998		kp->ki_estcpu = td->td_estcpu;
999		kp->ki_cow = td->td_cow;
1000	}
1001
1002	/* We can't get this anymore but ps etc never used it anyway. */
1003	kp->ki_rqindex = 0;
1004
1005	if (preferthread)
1006		kp->ki_siglist = td->td_siglist;
1007	kp->ki_sigmask = td->td_sigmask;
1008	thread_unlock(td);
1009	if (preferthread)
1010		PROC_SUNLOCK(p);
1011}
1012
1013/*
1014 * Fill in a kinfo_proc structure for the specified process.
1015 * Must be called with the target process locked.
1016 */
1017void
1018fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
1019{
1020
1021	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1022
1023	fill_kinfo_proc_only(p, kp);
1024	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
1025	fill_kinfo_aggregate(p, kp);
1026}
1027
1028struct pstats *
1029pstats_alloc(void)
1030{
1031
1032	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
1033}
1034
1035/*
1036 * Copy parts of p_stats; zero the rest of p_stats (statistics).
1037 */
1038void
1039pstats_fork(struct pstats *src, struct pstats *dst)
1040{
1041
1042	bzero(&dst->pstat_startzero,
1043	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
1044	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
1045	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
1046}
1047
1048void
1049pstats_free(struct pstats *ps)
1050{
1051
1052	free(ps, M_SUBPROC);
1053}
1054
1055static struct proc *
1056zpfind_locked(pid_t pid)
1057{
1058	struct proc *p;
1059
1060	sx_assert(&allproc_lock, SX_LOCKED);
1061	LIST_FOREACH(p, &zombproc, p_list) {
1062		if (p->p_pid == pid) {
1063			PROC_LOCK(p);
1064			break;
1065		}
1066	}
1067	return (p);
1068}
1069
1070/*
1071 * Locate a zombie process by number
1072 */
1073struct proc *
1074zpfind(pid_t pid)
1075{
1076	struct proc *p;
1077
1078	sx_slock(&allproc_lock);
1079	p = zpfind_locked(pid);
1080	sx_sunlock(&allproc_lock);
1081	return (p);
1082}
1083
1084#ifdef COMPAT_FREEBSD32
1085
1086/*
1087 * This function is typically used to copy out the kernel address, so
1088 * it can be replaced by assignment of zero.
1089 */
1090static inline uint32_t
1091ptr32_trim(void *ptr)
1092{
1093	uintptr_t uptr;
1094
1095	uptr = (uintptr_t)ptr;
1096	return ((uptr > UINT_MAX) ? 0 : uptr);
1097}
1098
1099#define PTRTRIM_CP(src,dst,fld) \
1100	do { (dst).fld = ptr32_trim((src).fld); } while (0)
1101
1102static void
1103freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
1104{
1105	int i;
1106
1107	bzero(ki32, sizeof(struct kinfo_proc32));
1108	ki32->ki_structsize = sizeof(struct kinfo_proc32);
1109	CP(*ki, *ki32, ki_layout);
1110	PTRTRIM_CP(*ki, *ki32, ki_args);
1111	PTRTRIM_CP(*ki, *ki32, ki_paddr);
1112	PTRTRIM_CP(*ki, *ki32, ki_addr);
1113	PTRTRIM_CP(*ki, *ki32, ki_tracep);
1114	PTRTRIM_CP(*ki, *ki32, ki_textvp);
1115	PTRTRIM_CP(*ki, *ki32, ki_fd);
1116	PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1117	PTRTRIM_CP(*ki, *ki32, ki_wchan);
1118	CP(*ki, *ki32, ki_pid);
1119	CP(*ki, *ki32, ki_ppid);
1120	CP(*ki, *ki32, ki_pgid);
1121	CP(*ki, *ki32, ki_tpgid);
1122	CP(*ki, *ki32, ki_sid);
1123	CP(*ki, *ki32, ki_tsid);
1124	CP(*ki, *ki32, ki_jobc);
1125	CP(*ki, *ki32, ki_tdev);
1126	CP(*ki, *ki32, ki_siglist);
1127	CP(*ki, *ki32, ki_sigmask);
1128	CP(*ki, *ki32, ki_sigignore);
1129	CP(*ki, *ki32, ki_sigcatch);
1130	CP(*ki, *ki32, ki_uid);
1131	CP(*ki, *ki32, ki_ruid);
1132	CP(*ki, *ki32, ki_svuid);
1133	CP(*ki, *ki32, ki_rgid);
1134	CP(*ki, *ki32, ki_svgid);
1135	CP(*ki, *ki32, ki_ngroups);
1136	for (i = 0; i < KI_NGROUPS; i++)
1137		CP(*ki, *ki32, ki_groups[i]);
1138	CP(*ki, *ki32, ki_size);
1139	CP(*ki, *ki32, ki_rssize);
1140	CP(*ki, *ki32, ki_swrss);
1141	CP(*ki, *ki32, ki_tsize);
1142	CP(*ki, *ki32, ki_dsize);
1143	CP(*ki, *ki32, ki_ssize);
1144	CP(*ki, *ki32, ki_xstat);
1145	CP(*ki, *ki32, ki_acflag);
1146	CP(*ki, *ki32, ki_pctcpu);
1147	CP(*ki, *ki32, ki_estcpu);
1148	CP(*ki, *ki32, ki_slptime);
1149	CP(*ki, *ki32, ki_swtime);
1150	CP(*ki, *ki32, ki_cow);
1151	CP(*ki, *ki32, ki_runtime);
1152	TV_CP(*ki, *ki32, ki_start);
1153	TV_CP(*ki, *ki32, ki_childtime);
1154	CP(*ki, *ki32, ki_flag);
1155	CP(*ki, *ki32, ki_kiflag);
1156	CP(*ki, *ki32, ki_traceflag);
1157	CP(*ki, *ki32, ki_stat);
1158	CP(*ki, *ki32, ki_nice);
1159	CP(*ki, *ki32, ki_lock);
1160	CP(*ki, *ki32, ki_rqindex);
1161	CP(*ki, *ki32, ki_oncpu);
1162	CP(*ki, *ki32, ki_lastcpu);
1163	bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
1164	bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1165	bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1166	bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1167	bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1168	bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1169	bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
1170	CP(*ki, *ki32, ki_flag2);
1171	CP(*ki, *ki32, ki_fibnum);
1172	CP(*ki, *ki32, ki_cr_flags);
1173	CP(*ki, *ki32, ki_jid);
1174	CP(*ki, *ki32, ki_numthreads);
1175	CP(*ki, *ki32, ki_tid);
1176	CP(*ki, *ki32, ki_pri);
1177	freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1178	freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1179	PTRTRIM_CP(*ki, *ki32, ki_pcb);
1180	PTRTRIM_CP(*ki, *ki32, ki_kstack);
1181	PTRTRIM_CP(*ki, *ki32, ki_udata);
1182	CP(*ki, *ki32, ki_sflag);
1183	CP(*ki, *ki32, ki_tdflags);
1184}
1185#endif
1186
1187int
1188kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
1189{
1190	struct thread *td;
1191	struct kinfo_proc ki;
1192#ifdef COMPAT_FREEBSD32
1193	struct kinfo_proc32 ki32;
1194#endif
1195	int error;
1196
1197	PROC_LOCK_ASSERT(p, MA_OWNED);
1198	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1199
1200	error = 0;
1201	fill_kinfo_proc(p, &ki);
1202	if ((flags & KERN_PROC_NOTHREADS) != 0) {
1203#ifdef COMPAT_FREEBSD32
1204		if ((flags & KERN_PROC_MASK32) != 0) {
1205			freebsd32_kinfo_proc_out(&ki, &ki32);
1206			if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1207				error = ENOMEM;
1208		} else
1209#endif
1210			if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1211				error = ENOMEM;
1212	} else {
1213		FOREACH_THREAD_IN_PROC(p, td) {
1214			fill_kinfo_thread(td, &ki, 1);
1215#ifdef COMPAT_FREEBSD32
1216			if ((flags & KERN_PROC_MASK32) != 0) {
1217				freebsd32_kinfo_proc_out(&ki, &ki32);
1218				if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1219					error = ENOMEM;
1220			} else
1221#endif
1222				if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1223					error = ENOMEM;
1224			if (error != 0)
1225				break;
1226		}
1227	}
1228	PROC_UNLOCK(p);
1229	return (error);
1230}
1231
1232static int
1233sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags,
1234    int doingzomb)
1235{
1236	struct sbuf sb;
1237	struct kinfo_proc ki;
1238	struct proc *np;
1239	int error, error2;
1240	pid_t pid;
1241
1242	pid = p->p_pid;
1243	sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
1244	error = kern_proc_out(p, &sb, flags);
1245	error2 = sbuf_finish(&sb);
1246	sbuf_delete(&sb);
1247	if (error != 0)
1248		return (error);
1249	else if (error2 != 0)
1250		return (error2);
1251	if (doingzomb)
1252		np = zpfind(pid);
1253	else {
1254		if (pid == 0)
1255			return (0);
1256		np = pfind(pid);
1257	}
1258	if (np == NULL)
1259		return (ESRCH);
1260	if (np != p) {
1261		PROC_UNLOCK(np);
1262		return (ESRCH);
1263	}
1264	PROC_UNLOCK(np);
1265	return (0);
1266}
1267
1268static int
1269sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1270{
1271	int *name = (int *)arg1;
1272	u_int namelen = arg2;
1273	struct proc *p;
1274	int flags, doingzomb, oid_number;
1275	int error = 0;
1276
1277	oid_number = oidp->oid_number;
1278	if (oid_number != KERN_PROC_ALL &&
1279	    (oid_number & KERN_PROC_INC_THREAD) == 0)
1280		flags = KERN_PROC_NOTHREADS;
1281	else {
1282		flags = 0;
1283		oid_number &= ~KERN_PROC_INC_THREAD;
1284	}
1285#ifdef COMPAT_FREEBSD32
1286	if (req->flags & SCTL_MASK32)
1287		flags |= KERN_PROC_MASK32;
1288#endif
1289	if (oid_number == KERN_PROC_PID) {
1290		if (namelen != 1)
1291			return (EINVAL);
1292		error = sysctl_wire_old_buffer(req, 0);
1293		if (error)
1294			return (error);
1295		error = pget((pid_t)name[0], PGET_CANSEE, &p);
1296		if (error != 0)
1297			return (error);
1298		error = sysctl_out_proc(p, req, flags, 0);
1299		return (error);
1300	}
1301
1302	switch (oid_number) {
1303	case KERN_PROC_ALL:
1304		if (namelen != 0)
1305			return (EINVAL);
1306		break;
1307	case KERN_PROC_PROC:
1308		if (namelen != 0 && namelen != 1)
1309			return (EINVAL);
1310		break;
1311	default:
1312		if (namelen != 1)
1313			return (EINVAL);
1314		break;
1315	}
1316
1317	if (!req->oldptr) {
1318		/* overestimate by 5 procs */
1319		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1320		if (error)
1321			return (error);
1322	}
1323	error = sysctl_wire_old_buffer(req, 0);
1324	if (error != 0)
1325		return (error);
1326	sx_slock(&allproc_lock);
1327	for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
1328		if (!doingzomb)
1329			p = LIST_FIRST(&allproc);
1330		else
1331			p = LIST_FIRST(&zombproc);
1332		for (; p != 0; p = LIST_NEXT(p, p_list)) {
1333			/*
1334			 * Skip embryonic processes.
1335			 */
1336			PROC_LOCK(p);
1337			if (p->p_state == PRS_NEW) {
1338				PROC_UNLOCK(p);
1339				continue;
1340			}
1341			KASSERT(p->p_ucred != NULL,
1342			    ("process credential is NULL for non-NEW proc"));
1343			/*
1344			 * Show a user only appropriate processes.
1345			 */
1346			if (p_cansee(curthread, p)) {
1347				PROC_UNLOCK(p);
1348				continue;
1349			}
1350			/*
1351			 * TODO - make more efficient (see notes below).
1352			 * do by session.
1353			 */
1354			switch (oid_number) {
1355
1356			case KERN_PROC_GID:
1357				if (p->p_ucred->cr_gid != (gid_t)name[0]) {
1358					PROC_UNLOCK(p);
1359					continue;
1360				}
1361				break;
1362
1363			case KERN_PROC_PGRP:
1364				/* could do this by traversing pgrp */
1365				if (p->p_pgrp == NULL ||
1366				    p->p_pgrp->pg_id != (pid_t)name[0]) {
1367					PROC_UNLOCK(p);
1368					continue;
1369				}
1370				break;
1371
1372			case KERN_PROC_RGID:
1373				if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
1374					PROC_UNLOCK(p);
1375					continue;
1376				}
1377				break;
1378
1379			case KERN_PROC_SESSION:
1380				if (p->p_session == NULL ||
1381				    p->p_session->s_sid != (pid_t)name[0]) {
1382					PROC_UNLOCK(p);
1383					continue;
1384				}
1385				break;
1386
1387			case KERN_PROC_TTY:
1388				if ((p->p_flag & P_CONTROLT) == 0 ||
1389				    p->p_session == NULL) {
1390					PROC_UNLOCK(p);
1391					continue;
1392				}
1393				/* XXX proctree_lock */
1394				SESS_LOCK(p->p_session);
1395				if (p->p_session->s_ttyp == NULL ||
1396				    tty_udev(p->p_session->s_ttyp) !=
1397				    (dev_t)name[0]) {
1398					SESS_UNLOCK(p->p_session);
1399					PROC_UNLOCK(p);
1400					continue;
1401				}
1402				SESS_UNLOCK(p->p_session);
1403				break;
1404
1405			case KERN_PROC_UID:
1406				if (p->p_ucred->cr_uid != (uid_t)name[0]) {
1407					PROC_UNLOCK(p);
1408					continue;
1409				}
1410				break;
1411
1412			case KERN_PROC_RUID:
1413				if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
1414					PROC_UNLOCK(p);
1415					continue;
1416				}
1417				break;
1418
1419			case KERN_PROC_PROC:
1420				break;
1421
1422			default:
1423				break;
1424
1425			}
1426
1427			error = sysctl_out_proc(p, req, flags, doingzomb);
1428			if (error) {
1429				sx_sunlock(&allproc_lock);
1430				return (error);
1431			}
1432		}
1433	}
1434	sx_sunlock(&allproc_lock);
1435	return (0);
1436}
1437
1438struct pargs *
1439pargs_alloc(int len)
1440{
1441	struct pargs *pa;
1442
1443	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1444		M_WAITOK);
1445	refcount_init(&pa->ar_ref, 1);
1446	pa->ar_length = len;
1447	return (pa);
1448}
1449
1450static void
1451pargs_free(struct pargs *pa)
1452{
1453
1454	free(pa, M_PARGS);
1455}
1456
1457void
1458pargs_hold(struct pargs *pa)
1459{
1460
1461	if (pa == NULL)
1462		return;
1463	refcount_acquire(&pa->ar_ref);
1464}
1465
1466void
1467pargs_drop(struct pargs *pa)
1468{
1469
1470	if (pa == NULL)
1471		return;
1472	if (refcount_release(&pa->ar_ref))
1473		pargs_free(pa);
1474}
1475
1476static int
1477proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf,
1478    size_t len)
1479{
1480	struct iovec iov;
1481	struct uio uio;
1482
1483	iov.iov_base = (caddr_t)buf;
1484	iov.iov_len = len;
1485	uio.uio_iov = &iov;
1486	uio.uio_iovcnt = 1;
1487	uio.uio_offset = offset;
1488	uio.uio_resid = (ssize_t)len;
1489	uio.uio_segflg = UIO_SYSSPACE;
1490	uio.uio_rw = UIO_READ;
1491	uio.uio_td = td;
1492
1493	return (proc_rwmem(p, &uio));
1494}
1495
1496static int
1497proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
1498    size_t len)
1499{
1500	size_t i;
1501	int error;
1502
1503	error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len);
1504	/*
1505	 * Reading the chunk may validly return EFAULT if the string is shorter
1506	 * than the chunk and is aligned at the end of the page, assuming the
1507	 * next page is not mapped.  So if EFAULT is returned do a fallback to
1508	 * one byte read loop.
1509	 */
1510	if (error == EFAULT) {
1511		for (i = 0; i < len; i++, buf++, sptr++) {
1512			error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1);
1513			if (error != 0)
1514				return (error);
1515			if (*buf == '\0')
1516				break;
1517		}
1518		error = 0;
1519	}
1520	return (error);
1521}
1522
1523#define PROC_AUXV_MAX	256	/* Safety limit on auxv size. */
1524
1525enum proc_vector_type {
1526	PROC_ARG,
1527	PROC_ENV,
1528	PROC_AUX,
1529};
1530
1531#ifdef COMPAT_FREEBSD32
1532static int
1533get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
1534    size_t *vsizep, enum proc_vector_type type)
1535{
1536	struct freebsd32_ps_strings pss;
1537	Elf32_Auxinfo aux;
1538	vm_offset_t vptr, ptr;
1539	uint32_t *proc_vector32;
1540	char **proc_vector;
1541	size_t vsize, size;
1542	int i, error;
1543
1544	error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
1545	    &pss, sizeof(pss));
1546	if (error != 0)
1547		return (error);
1548	switch (type) {
1549	case PROC_ARG:
1550		vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
1551		vsize = pss.ps_nargvstr;
1552		if (vsize > ARG_MAX)
1553			return (ENOEXEC);
1554		size = vsize * sizeof(int32_t);
1555		break;
1556	case PROC_ENV:
1557		vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
1558		vsize = pss.ps_nenvstr;
1559		if (vsize > ARG_MAX)
1560			return (ENOEXEC);
1561		size = vsize * sizeof(int32_t);
1562		break;
1563	case PROC_AUX:
1564		vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
1565		    (pss.ps_nenvstr + 1) * sizeof(int32_t);
1566		if (vptr % 4 != 0)
1567			return (ENOEXEC);
1568		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1569			error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
1570			if (error != 0)
1571				return (error);
1572			if (aux.a_type == AT_NULL)
1573				break;
1574			ptr += sizeof(aux);
1575		}
1576		if (aux.a_type != AT_NULL)
1577			return (ENOEXEC);
1578		vsize = i + 1;
1579		size = vsize * sizeof(aux);
1580		break;
1581	default:
1582		KASSERT(0, ("Wrong proc vector type: %d", type));
1583		return (EINVAL);
1584	}
1585	proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
1586	error = proc_read_mem(td, p, vptr, proc_vector32, size);
1587	if (error != 0)
1588		goto done;
1589	if (type == PROC_AUX) {
1590		*proc_vectorp = (char **)proc_vector32;
1591		*vsizep = vsize;
1592		return (0);
1593	}
1594	proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
1595	for (i = 0; i < (int)vsize; i++)
1596		proc_vector[i] = PTRIN(proc_vector32[i]);
1597	*proc_vectorp = proc_vector;
1598	*vsizep = vsize;
1599done:
1600	free(proc_vector32, M_TEMP);
1601	return (error);
1602}
1603#endif
1604
1605static int
1606get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
1607    size_t *vsizep, enum proc_vector_type type)
1608{
1609	struct ps_strings pss;
1610	Elf_Auxinfo aux;
1611	vm_offset_t vptr, ptr;
1612	char **proc_vector;
1613	size_t vsize, size;
1614	int error, i;
1615
1616#ifdef COMPAT_FREEBSD32
1617	if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1618		return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
1619#endif
1620	error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
1621	    &pss, sizeof(pss));
1622	if (error != 0)
1623		return (error);
1624	switch (type) {
1625	case PROC_ARG:
1626		vptr = (vm_offset_t)pss.ps_argvstr;
1627		vsize = pss.ps_nargvstr;
1628		if (vsize > ARG_MAX)
1629			return (ENOEXEC);
1630		size = vsize * sizeof(char *);
1631		break;
1632	case PROC_ENV:
1633		vptr = (vm_offset_t)pss.ps_envstr;
1634		vsize = pss.ps_nenvstr;
1635		if (vsize > ARG_MAX)
1636			return (ENOEXEC);
1637		size = vsize * sizeof(char *);
1638		break;
1639	case PROC_AUX:
1640		/*
1641		 * The aux array is just above env array on the stack. Check
1642		 * that the address is naturally aligned.
1643		 */
1644		vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
1645		    * sizeof(char *);
1646#if __ELF_WORD_SIZE == 64
1647		if (vptr % sizeof(uint64_t) != 0)
1648#else
1649		if (vptr % sizeof(uint32_t) != 0)
1650#endif
1651			return (ENOEXEC);
1652		/*
1653		 * We count the array size reading the aux vectors from the
1654		 * stack until AT_NULL vector is returned.  So (to keep the code
1655		 * simple) we read the process stack twice: the first time here
1656		 * to find the size and the second time when copying the vectors
1657		 * to the allocated proc_vector.
1658		 */
1659		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1660			error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
1661			if (error != 0)
1662				return (error);
1663			if (aux.a_type == AT_NULL)
1664				break;
1665			ptr += sizeof(aux);
1666		}
1667		/*
1668		 * If the PROC_AUXV_MAX entries are iterated over, and we have
1669		 * not reached AT_NULL, it is most likely we are reading wrong
1670		 * data: either the process doesn't have auxv array or data has
1671		 * been modified. Return the error in this case.
1672		 */
1673		if (aux.a_type != AT_NULL)
1674			return (ENOEXEC);
1675		vsize = i + 1;
1676		size = vsize * sizeof(aux);
1677		break;
1678	default:
1679		KASSERT(0, ("Wrong proc vector type: %d", type));
1680		return (EINVAL); /* In case we are built without INVARIANTS. */
1681	}
1682	proc_vector = malloc(size, M_TEMP, M_WAITOK);
1683	if (proc_vector == NULL)
1684		return (ENOMEM);
1685	error = proc_read_mem(td, p, vptr, proc_vector, size);
1686	if (error != 0) {
1687		free(proc_vector, M_TEMP);
1688		return (error);
1689	}
1690	*proc_vectorp = proc_vector;
1691	*vsizep = vsize;
1692
1693	return (0);
1694}
1695
1696#define GET_PS_STRINGS_CHUNK_SZ	256	/* Chunk size (bytes) for ps_strings operations. */
1697
1698static int
1699get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
1700    enum proc_vector_type type)
1701{
1702	size_t done, len, nchr, vsize;
1703	int error, i;
1704	char **proc_vector, *sptr;
1705	char pss_string[GET_PS_STRINGS_CHUNK_SZ];
1706
1707	PROC_ASSERT_HELD(p);
1708
1709	/*
1710	 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
1711	 */
1712	nchr = 2 * (PATH_MAX + ARG_MAX);
1713
1714	error = get_proc_vector(td, p, &proc_vector, &vsize, type);
1715	if (error != 0)
1716		return (error);
1717	for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
1718		/*
1719		 * The program may have scribbled into its argv array, e.g. to
1720		 * remove some arguments.  If that has happened, break out
1721		 * before trying to read from NULL.
1722		 */
1723		if (proc_vector[i] == NULL)
1724			break;
1725		for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
1726			error = proc_read_string(td, p, sptr, pss_string,
1727			    sizeof(pss_string));
1728			if (error != 0)
1729				goto done;
1730			len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
1731			if (done + len >= nchr)
1732				len = nchr - done - 1;
1733			sbuf_bcat(sb, pss_string, len);
1734			if (len != GET_PS_STRINGS_CHUNK_SZ)
1735				break;
1736			done += GET_PS_STRINGS_CHUNK_SZ;
1737		}
1738		sbuf_bcat(sb, "", 1);
1739		done += len + 1;
1740	}
1741done:
1742	free(proc_vector, M_TEMP);
1743	return (error);
1744}
1745
1746int
1747proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
1748{
1749
1750	return (get_ps_strings(curthread, p, sb, PROC_ARG));
1751}
1752
1753int
1754proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
1755{
1756
1757	return (get_ps_strings(curthread, p, sb, PROC_ENV));
1758}
1759
1760int
1761proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
1762{
1763	size_t vsize, size;
1764	char **auxv;
1765	int error;
1766
1767	error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
1768	if (error == 0) {
1769#ifdef COMPAT_FREEBSD32
1770		if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1771			size = vsize * sizeof(Elf32_Auxinfo);
1772		else
1773#endif
1774			size = vsize * sizeof(Elf_Auxinfo);
1775		if (sbuf_bcat(sb, auxv, size) != 0)
1776			error = ENOMEM;
1777		free(auxv, M_TEMP);
1778	}
1779	return (error);
1780}
1781
1782/*
1783 * This sysctl allows a process to retrieve the argument list or process
1784 * title for another process without groping around in the address space
1785 * of the other process.  It also allow a process to set its own "process
1786 * title to a string of its own choice.
1787 */
1788static int
1789sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1790{
1791	int *name = (int *)arg1;
1792	u_int namelen = arg2;
1793	struct pargs *newpa, *pa;
1794	struct proc *p;
1795	struct sbuf sb;
1796	int flags, error = 0, error2;
1797
1798	if (namelen != 1)
1799		return (EINVAL);
1800
1801	flags = PGET_CANSEE;
1802	if (req->newptr != NULL)
1803		flags |= PGET_ISCURRENT;
1804	error = pget((pid_t)name[0], flags, &p);
1805	if (error)
1806		return (error);
1807
1808	pa = p->p_args;
1809	if (pa != NULL) {
1810		pargs_hold(pa);
1811		PROC_UNLOCK(p);
1812		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1813		pargs_drop(pa);
1814	} else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
1815		_PHOLD(p);
1816		PROC_UNLOCK(p);
1817		sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1818		error = proc_getargv(curthread, p, &sb);
1819		error2 = sbuf_finish(&sb);
1820		PRELE(p);
1821		sbuf_delete(&sb);
1822		if (error == 0 && error2 != 0)
1823			error = error2;
1824	} else {
1825		PROC_UNLOCK(p);
1826	}
1827	if (error != 0 || req->newptr == NULL)
1828		return (error);
1829
1830	if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
1831		return (ENOMEM);
1832	newpa = pargs_alloc(req->newlen);
1833	error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
1834	if (error != 0) {
1835		pargs_free(newpa);
1836		return (error);
1837	}
1838	PROC_LOCK(p);
1839	pa = p->p_args;
1840	p->p_args = newpa;
1841	PROC_UNLOCK(p);
1842	pargs_drop(pa);
1843	return (0);
1844}
1845
1846/*
1847 * This sysctl allows a process to retrieve environment of another process.
1848 */
1849static int
1850sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
1851{
1852	int *name = (int *)arg1;
1853	u_int namelen = arg2;
1854	struct proc *p;
1855	struct sbuf sb;
1856	int error, error2;
1857
1858	if (namelen != 1)
1859		return (EINVAL);
1860
1861	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1862	if (error != 0)
1863		return (error);
1864	if ((p->p_flag & P_SYSTEM) != 0) {
1865		PRELE(p);
1866		return (0);
1867	}
1868
1869	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1870	error = proc_getenvv(curthread, p, &sb);
1871	error2 = sbuf_finish(&sb);
1872	PRELE(p);
1873	sbuf_delete(&sb);
1874	return (error != 0 ? error : error2);
1875}
1876
1877/*
1878 * This sysctl allows a process to retrieve ELF auxiliary vector of
1879 * another process.
1880 */
1881static int
1882sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
1883{
1884	int *name = (int *)arg1;
1885	u_int namelen = arg2;
1886	struct proc *p;
1887	struct sbuf sb;
1888	int error, error2;
1889
1890	if (namelen != 1)
1891		return (EINVAL);
1892
1893	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1894	if (error != 0)
1895		return (error);
1896	if ((p->p_flag & P_SYSTEM) != 0) {
1897		PRELE(p);
1898		return (0);
1899	}
1900	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1901	error = proc_getauxv(curthread, p, &sb);
1902	error2 = sbuf_finish(&sb);
1903	PRELE(p);
1904	sbuf_delete(&sb);
1905	return (error != 0 ? error : error2);
1906}
1907
1908/*
1909 * This sysctl allows a process to retrieve the path of the executable for
1910 * itself or another process.
1911 */
1912static int
1913sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
1914{
1915	pid_t *pidp = (pid_t *)arg1;
1916	unsigned int arglen = arg2;
1917	struct proc *p;
1918	struct vnode *vp;
1919	char *retbuf, *freebuf;
1920	int error;
1921
1922	if (arglen != 1)
1923		return (EINVAL);
1924	if (*pidp == -1) {	/* -1 means this process */
1925		p = req->td->td_proc;
1926	} else {
1927		error = pget(*pidp, PGET_CANSEE, &p);
1928		if (error != 0)
1929			return (error);
1930	}
1931
1932	vp = p->p_textvp;
1933	if (vp == NULL) {
1934		if (*pidp != -1)
1935			PROC_UNLOCK(p);
1936		return (0);
1937	}
1938	vref(vp);
1939	if (*pidp != -1)
1940		PROC_UNLOCK(p);
1941	error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
1942	vrele(vp);
1943	if (error)
1944		return (error);
1945	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
1946	free(freebuf, M_TEMP);
1947	return (error);
1948}
1949
1950static int
1951sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
1952{
1953	struct proc *p;
1954	char *sv_name;
1955	int *name;
1956	int namelen;
1957	int error;
1958
1959	namelen = arg2;
1960	if (namelen != 1)
1961		return (EINVAL);
1962
1963	name = (int *)arg1;
1964	error = pget((pid_t)name[0], PGET_CANSEE, &p);
1965	if (error != 0)
1966		return (error);
1967	sv_name = p->p_sysent->sv_name;
1968	PROC_UNLOCK(p);
1969	return (sysctl_handle_string(oidp, sv_name, 0, req));
1970}
1971
1972#ifdef KINFO_OVMENTRY_SIZE
1973CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
1974#endif
1975
1976#ifdef COMPAT_FREEBSD7
1977static int
1978sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
1979{
1980	vm_map_entry_t entry, tmp_entry;
1981	unsigned int last_timestamp;
1982	char *fullpath, *freepath;
1983	struct kinfo_ovmentry *kve;
1984	struct vattr va;
1985	struct ucred *cred;
1986	int error, *name;
1987	struct vnode *vp;
1988	struct proc *p;
1989	vm_map_t map;
1990	struct vmspace *vm;
1991
1992	name = (int *)arg1;
1993	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1994	if (error != 0)
1995		return (error);
1996	vm = vmspace_acquire_ref(p);
1997	if (vm == NULL) {
1998		PRELE(p);
1999		return (ESRCH);
2000	}
2001	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
2002
2003	map = &vm->vm_map;
2004	vm_map_lock_read(map);
2005	for (entry = map->header.next; entry != &map->header;
2006	    entry = entry->next) {
2007		vm_object_t obj, tobj, lobj;
2008		vm_offset_t addr;
2009
2010		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2011			continue;
2012
2013		bzero(kve, sizeof(*kve));
2014		kve->kve_structsize = sizeof(*kve);
2015
2016		kve->kve_private_resident = 0;
2017		obj = entry->object.vm_object;
2018		if (obj != NULL) {
2019			VM_OBJECT_RLOCK(obj);
2020			if (obj->shadow_count == 1)
2021				kve->kve_private_resident =
2022				    obj->resident_page_count;
2023		}
2024		kve->kve_resident = 0;
2025		addr = entry->start;
2026		while (addr < entry->end) {
2027			if (pmap_extract(map->pmap, addr))
2028				kve->kve_resident++;
2029			addr += PAGE_SIZE;
2030		}
2031
2032		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
2033			if (tobj != obj)
2034				VM_OBJECT_RLOCK(tobj);
2035			if (lobj != obj)
2036				VM_OBJECT_RUNLOCK(lobj);
2037			lobj = tobj;
2038		}
2039
2040		kve->kve_start = (void*)entry->start;
2041		kve->kve_end = (void*)entry->end;
2042		kve->kve_offset = (off_t)entry->offset;
2043
2044		if (entry->protection & VM_PROT_READ)
2045			kve->kve_protection |= KVME_PROT_READ;
2046		if (entry->protection & VM_PROT_WRITE)
2047			kve->kve_protection |= KVME_PROT_WRITE;
2048		if (entry->protection & VM_PROT_EXECUTE)
2049			kve->kve_protection |= KVME_PROT_EXEC;
2050
2051		if (entry->eflags & MAP_ENTRY_COW)
2052			kve->kve_flags |= KVME_FLAG_COW;
2053		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2054			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2055		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2056			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2057
2058		last_timestamp = map->timestamp;
2059		vm_map_unlock_read(map);
2060
2061		kve->kve_fileid = 0;
2062		kve->kve_fsid = 0;
2063		freepath = NULL;
2064		fullpath = "";
2065		if (lobj) {
2066			vp = NULL;
2067			switch (lobj->type) {
2068			case OBJT_DEFAULT:
2069				kve->kve_type = KVME_TYPE_DEFAULT;
2070				break;
2071			case OBJT_VNODE:
2072				kve->kve_type = KVME_TYPE_VNODE;
2073				vp = lobj->handle;
2074				vref(vp);
2075				break;
2076			case OBJT_SWAP:
2077				if ((lobj->flags & OBJ_TMPFS_NODE) != 0) {
2078					kve->kve_type = KVME_TYPE_VNODE;
2079					if ((lobj->flags & OBJ_TMPFS) != 0) {
2080						vp = lobj->un_pager.swp.swp_tmpfs;
2081						vref(vp);
2082					}
2083				} else {
2084					kve->kve_type = KVME_TYPE_SWAP;
2085				}
2086				break;
2087			case OBJT_DEVICE:
2088				kve->kve_type = KVME_TYPE_DEVICE;
2089				break;
2090			case OBJT_PHYS:
2091				kve->kve_type = KVME_TYPE_PHYS;
2092				break;
2093			case OBJT_DEAD:
2094				kve->kve_type = KVME_TYPE_DEAD;
2095				break;
2096			case OBJT_SG:
2097				kve->kve_type = KVME_TYPE_SG;
2098				break;
2099			default:
2100				kve->kve_type = KVME_TYPE_UNKNOWN;
2101				break;
2102			}
2103			if (lobj != obj)
2104				VM_OBJECT_RUNLOCK(lobj);
2105
2106			kve->kve_ref_count = obj->ref_count;
2107			kve->kve_shadow_count = obj->shadow_count;
2108			VM_OBJECT_RUNLOCK(obj);
2109			if (vp != NULL) {
2110				vn_fullpath(curthread, vp, &fullpath,
2111				    &freepath);
2112				cred = curthread->td_ucred;
2113				vn_lock(vp, LK_SHARED | LK_RETRY);
2114				if (VOP_GETATTR(vp, &va, cred) == 0) {
2115					kve->kve_fileid = va.va_fileid;
2116					kve->kve_fsid = va.va_fsid;
2117				}
2118				vput(vp);
2119			}
2120		} else {
2121			kve->kve_type = KVME_TYPE_NONE;
2122			kve->kve_ref_count = 0;
2123			kve->kve_shadow_count = 0;
2124		}
2125
2126		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2127		if (freepath != NULL)
2128			free(freepath, M_TEMP);
2129
2130		error = SYSCTL_OUT(req, kve, sizeof(*kve));
2131		vm_map_lock_read(map);
2132		if (error)
2133			break;
2134		if (last_timestamp != map->timestamp) {
2135			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2136			entry = tmp_entry;
2137		}
2138	}
2139	vm_map_unlock_read(map);
2140	vmspace_free(vm);
2141	PRELE(p);
2142	free(kve, M_TEMP);
2143	return (error);
2144}
2145#endif	/* COMPAT_FREEBSD7 */
2146
2147#ifdef KINFO_VMENTRY_SIZE
2148CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2149#endif
2150
2151static void
2152kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
2153    struct kinfo_vmentry *kve)
2154{
2155	vm_object_t obj, tobj;
2156	vm_page_t m, m_adv;
2157	vm_offset_t addr;
2158	vm_paddr_t locked_pa;
2159	vm_pindex_t pi, pi_adv, pindex;
2160
2161	locked_pa = 0;
2162	obj = entry->object.vm_object;
2163	addr = entry->start;
2164	m_adv = NULL;
2165	pi = OFF_TO_IDX(entry->offset);
2166	for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
2167		if (m_adv != NULL) {
2168			m = m_adv;
2169		} else {
2170			pi_adv = OFF_TO_IDX(entry->end - addr);
2171			pindex = pi;
2172			for (tobj = obj;; tobj = tobj->backing_object) {
2173				m = vm_page_find_least(tobj, pindex);
2174				if (m != NULL) {
2175					if (m->pindex == pindex)
2176						break;
2177					if (pi_adv > m->pindex - pindex) {
2178						pi_adv = m->pindex - pindex;
2179						m_adv = m;
2180					}
2181				}
2182				if (tobj->backing_object == NULL)
2183					goto next;
2184				pindex += OFF_TO_IDX(tobj->
2185				    backing_object_offset);
2186			}
2187		}
2188		m_adv = NULL;
2189		if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
2190		    (addr & (pagesizes[1] - 1)) == 0 &&
2191		    (pmap_mincore(map->pmap, addr, &locked_pa) &
2192		    MINCORE_SUPER) != 0) {
2193			kve->kve_flags |= KVME_FLAG_SUPER;
2194			pi_adv = OFF_TO_IDX(pagesizes[1]);
2195		} else {
2196			/*
2197			 * We do not test the found page on validity.
2198			 * Either the page is busy and being paged in,
2199			 * or it was invalidated.  The first case
2200			 * should be counted as resident, the second
2201			 * is not so clear; we do account both.
2202			 */
2203			pi_adv = 1;
2204		}
2205		kve->kve_resident += pi_adv;
2206next:;
2207	}
2208	PA_UNLOCK_COND(locked_pa);
2209}
2210
2211/*
2212 * Must be called with the process locked and will return unlocked.
2213 */
2214int
2215kern_proc_vmmap_out(struct proc *p, struct sbuf *sb)
2216{
2217	vm_map_entry_t entry, tmp_entry;
2218	struct vattr va;
2219	vm_map_t map;
2220	vm_object_t obj, tobj, lobj;
2221	char *fullpath, *freepath;
2222	struct kinfo_vmentry *kve;
2223	struct ucred *cred;
2224	struct vnode *vp;
2225	struct vmspace *vm;
2226	vm_offset_t addr;
2227	unsigned int last_timestamp;
2228	int error;
2229
2230	PROC_LOCK_ASSERT(p, MA_OWNED);
2231
2232	_PHOLD(p);
2233	PROC_UNLOCK(p);
2234	vm = vmspace_acquire_ref(p);
2235	if (vm == NULL) {
2236		PRELE(p);
2237		return (ESRCH);
2238	}
2239	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
2240
2241	error = 0;
2242	map = &vm->vm_map;
2243	vm_map_lock_read(map);
2244	for (entry = map->header.next; entry != &map->header;
2245	    entry = entry->next) {
2246		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2247			continue;
2248
2249		addr = entry->end;
2250		bzero(kve, sizeof(*kve));
2251		obj = entry->object.vm_object;
2252		if (obj != NULL) {
2253			for (tobj = obj; tobj != NULL;
2254			    tobj = tobj->backing_object) {
2255				VM_OBJECT_RLOCK(tobj);
2256				lobj = tobj;
2257			}
2258			if (obj->backing_object == NULL)
2259				kve->kve_private_resident =
2260				    obj->resident_page_count;
2261			if (!vmmap_skip_res_cnt)
2262				kern_proc_vmmap_resident(map, entry, kve);
2263			for (tobj = obj; tobj != NULL;
2264			    tobj = tobj->backing_object) {
2265				if (tobj != obj && tobj != lobj)
2266					VM_OBJECT_RUNLOCK(tobj);
2267			}
2268		} else {
2269			lobj = NULL;
2270		}
2271
2272		kve->kve_start = entry->start;
2273		kve->kve_end = entry->end;
2274		kve->kve_offset = entry->offset;
2275
2276		if (entry->protection & VM_PROT_READ)
2277			kve->kve_protection |= KVME_PROT_READ;
2278		if (entry->protection & VM_PROT_WRITE)
2279			kve->kve_protection |= KVME_PROT_WRITE;
2280		if (entry->protection & VM_PROT_EXECUTE)
2281			kve->kve_protection |= KVME_PROT_EXEC;
2282
2283		if (entry->eflags & MAP_ENTRY_COW)
2284			kve->kve_flags |= KVME_FLAG_COW;
2285		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2286			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2287		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2288			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2289		if (entry->eflags & MAP_ENTRY_GROWS_UP)
2290			kve->kve_flags |= KVME_FLAG_GROWS_UP;
2291		if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
2292			kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
2293
2294		last_timestamp = map->timestamp;
2295		vm_map_unlock_read(map);
2296
2297		freepath = NULL;
2298		fullpath = "";
2299		if (lobj != NULL) {
2300			vp = NULL;
2301			switch (lobj->type) {
2302			case OBJT_DEFAULT:
2303				kve->kve_type = KVME_TYPE_DEFAULT;
2304				break;
2305			case OBJT_VNODE:
2306				kve->kve_type = KVME_TYPE_VNODE;
2307				vp = lobj->handle;
2308				vref(vp);
2309				break;
2310			case OBJT_SWAP:
2311				if ((lobj->flags & OBJ_TMPFS_NODE) != 0) {
2312					kve->kve_type = KVME_TYPE_VNODE;
2313					if ((lobj->flags & OBJ_TMPFS) != 0) {
2314						vp = lobj->un_pager.swp.swp_tmpfs;
2315						vref(vp);
2316					}
2317				} else {
2318					kve->kve_type = KVME_TYPE_SWAP;
2319				}
2320				break;
2321			case OBJT_DEVICE:
2322				kve->kve_type = KVME_TYPE_DEVICE;
2323				break;
2324			case OBJT_PHYS:
2325				kve->kve_type = KVME_TYPE_PHYS;
2326				break;
2327			case OBJT_DEAD:
2328				kve->kve_type = KVME_TYPE_DEAD;
2329				break;
2330			case OBJT_SG:
2331				kve->kve_type = KVME_TYPE_SG;
2332				break;
2333			case OBJT_MGTDEVICE:
2334				kve->kve_type = KVME_TYPE_MGTDEVICE;
2335				break;
2336			default:
2337				kve->kve_type = KVME_TYPE_UNKNOWN;
2338				break;
2339			}
2340			if (lobj != obj)
2341				VM_OBJECT_RUNLOCK(lobj);
2342
2343			kve->kve_ref_count = obj->ref_count;
2344			kve->kve_shadow_count = obj->shadow_count;
2345			VM_OBJECT_RUNLOCK(obj);
2346			if (vp != NULL) {
2347				vn_fullpath(curthread, vp, &fullpath,
2348				    &freepath);
2349				kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
2350				cred = curthread->td_ucred;
2351				vn_lock(vp, LK_SHARED | LK_RETRY);
2352				if (VOP_GETATTR(vp, &va, cred) == 0) {
2353					kve->kve_vn_fileid = va.va_fileid;
2354					kve->kve_vn_fsid = va.va_fsid;
2355					kve->kve_vn_mode =
2356					    MAKEIMODE(va.va_type, va.va_mode);
2357					kve->kve_vn_size = va.va_size;
2358					kve->kve_vn_rdev = va.va_rdev;
2359					kve->kve_status = KF_ATTR_VALID;
2360				}
2361				vput(vp);
2362			}
2363		} else {
2364			kve->kve_type = KVME_TYPE_NONE;
2365			kve->kve_ref_count = 0;
2366			kve->kve_shadow_count = 0;
2367		}
2368
2369		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2370		if (freepath != NULL)
2371			free(freepath, M_TEMP);
2372
2373		/* Pack record size down */
2374		kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) +
2375		    strlen(kve->kve_path) + 1;
2376		kve->kve_structsize = roundup(kve->kve_structsize,
2377		    sizeof(uint64_t));
2378		if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
2379			error = ENOMEM;
2380		vm_map_lock_read(map);
2381		if (error != 0)
2382			break;
2383		if (last_timestamp != map->timestamp) {
2384			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2385			entry = tmp_entry;
2386		}
2387	}
2388	vm_map_unlock_read(map);
2389	vmspace_free(vm);
2390	PRELE(p);
2391	free(kve, M_TEMP);
2392	return (error);
2393}
2394
2395static int
2396sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
2397{
2398	struct proc *p;
2399	struct sbuf sb;
2400	int error, error2, *name;
2401
2402	name = (int *)arg1;
2403	sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
2404	error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
2405	if (error != 0) {
2406		sbuf_delete(&sb);
2407		return (error);
2408	}
2409	error = kern_proc_vmmap_out(p, &sb);
2410	error2 = sbuf_finish(&sb);
2411	sbuf_delete(&sb);
2412	return (error != 0 ? error : error2);
2413}
2414
2415#if defined(STACK) || defined(DDB)
2416static int
2417sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
2418{
2419	struct kinfo_kstack *kkstp;
2420	int error, i, *name, numthreads;
2421	lwpid_t *lwpidarray;
2422	struct thread *td;
2423	struct stack *st;
2424	struct sbuf sb;
2425	struct proc *p;
2426
2427	name = (int *)arg1;
2428	error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
2429	if (error != 0)
2430		return (error);
2431
2432	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
2433	st = stack_create();
2434
2435	lwpidarray = NULL;
2436	numthreads = 0;
2437	PROC_LOCK(p);
2438repeat:
2439	if (numthreads < p->p_numthreads) {
2440		if (lwpidarray != NULL) {
2441			free(lwpidarray, M_TEMP);
2442			lwpidarray = NULL;
2443		}
2444		numthreads = p->p_numthreads;
2445		PROC_UNLOCK(p);
2446		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
2447		    M_WAITOK | M_ZERO);
2448		PROC_LOCK(p);
2449		goto repeat;
2450	}
2451	i = 0;
2452
2453	/*
2454	 * XXXRW: During the below loop, execve(2) and countless other sorts
2455	 * of changes could have taken place.  Should we check to see if the
2456	 * vmspace has been replaced, or the like, in order to prevent
2457	 * giving a snapshot that spans, say, execve(2), with some threads
2458	 * before and some after?  Among other things, the credentials could
2459	 * have changed, in which case the right to extract debug info might
2460	 * no longer be assured.
2461	 */
2462	FOREACH_THREAD_IN_PROC(p, td) {
2463		KASSERT(i < numthreads,
2464		    ("sysctl_kern_proc_kstack: numthreads"));
2465		lwpidarray[i] = td->td_tid;
2466		i++;
2467	}
2468	numthreads = i;
2469	for (i = 0; i < numthreads; i++) {
2470		td = thread_find(p, lwpidarray[i]);
2471		if (td == NULL) {
2472			continue;
2473		}
2474		bzero(kkstp, sizeof(*kkstp));
2475		(void)sbuf_new(&sb, kkstp->kkst_trace,
2476		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
2477		thread_lock(td);
2478		kkstp->kkst_tid = td->td_tid;
2479		if (TD_IS_SWAPPED(td))
2480			kkstp->kkst_state = KKST_STATE_SWAPPED;
2481		else if (TD_IS_RUNNING(td))
2482			kkstp->kkst_state = KKST_STATE_RUNNING;
2483		else {
2484			kkstp->kkst_state = KKST_STATE_STACKOK;
2485			stack_save_td(st, td);
2486		}
2487		thread_unlock(td);
2488		PROC_UNLOCK(p);
2489		stack_sbuf_print(&sb, st);
2490		sbuf_finish(&sb);
2491		sbuf_delete(&sb);
2492		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
2493		PROC_LOCK(p);
2494		if (error)
2495			break;
2496	}
2497	_PRELE(p);
2498	PROC_UNLOCK(p);
2499	if (lwpidarray != NULL)
2500		free(lwpidarray, M_TEMP);
2501	stack_destroy(st);
2502	free(kkstp, M_TEMP);
2503	return (error);
2504}
2505#endif
2506
2507/*
2508 * This sysctl allows a process to retrieve the full list of groups from
2509 * itself or another process.
2510 */
2511static int
2512sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
2513{
2514	pid_t *pidp = (pid_t *)arg1;
2515	unsigned int arglen = arg2;
2516	struct proc *p;
2517	struct ucred *cred;
2518	int error;
2519
2520	if (arglen != 1)
2521		return (EINVAL);
2522	if (*pidp == -1) {	/* -1 means this process */
2523		p = req->td->td_proc;
2524	} else {
2525		error = pget(*pidp, PGET_CANSEE, &p);
2526		if (error != 0)
2527			return (error);
2528	}
2529
2530	cred = crhold(p->p_ucred);
2531	if (*pidp != -1)
2532		PROC_UNLOCK(p);
2533
2534	error = SYSCTL_OUT(req, cred->cr_groups,
2535	    cred->cr_ngroups * sizeof(gid_t));
2536	crfree(cred);
2537	return (error);
2538}
2539
2540/*
2541 * This sysctl allows a process to retrieve or/and set the resource limit for
2542 * another process.
2543 */
2544static int
2545sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
2546{
2547	int *name = (int *)arg1;
2548	u_int namelen = arg2;
2549	struct rlimit rlim;
2550	struct proc *p;
2551	u_int which;
2552	int flags, error;
2553
2554	if (namelen != 2)
2555		return (EINVAL);
2556
2557	which = (u_int)name[1];
2558	if (which >= RLIM_NLIMITS)
2559		return (EINVAL);
2560
2561	if (req->newptr != NULL && req->newlen != sizeof(rlim))
2562		return (EINVAL);
2563
2564	flags = PGET_HOLD | PGET_NOTWEXIT;
2565	if (req->newptr != NULL)
2566		flags |= PGET_CANDEBUG;
2567	else
2568		flags |= PGET_CANSEE;
2569	error = pget((pid_t)name[0], flags, &p);
2570	if (error != 0)
2571		return (error);
2572
2573	/*
2574	 * Retrieve limit.
2575	 */
2576	if (req->oldptr != NULL) {
2577		PROC_LOCK(p);
2578		lim_rlimit(p, which, &rlim);
2579		PROC_UNLOCK(p);
2580	}
2581	error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
2582	if (error != 0)
2583		goto errout;
2584
2585	/*
2586	 * Set limit.
2587	 */
2588	if (req->newptr != NULL) {
2589		error = SYSCTL_IN(req, &rlim, sizeof(rlim));
2590		if (error == 0)
2591			error = kern_proc_setrlimit(curthread, p, which, &rlim);
2592	}
2593
2594errout:
2595	PRELE(p);
2596	return (error);
2597}
2598
2599/*
2600 * This sysctl allows a process to retrieve ps_strings structure location of
2601 * another process.
2602 */
2603static int
2604sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
2605{
2606	int *name = (int *)arg1;
2607	u_int namelen = arg2;
2608	struct proc *p;
2609	vm_offset_t ps_strings;
2610	int error;
2611#ifdef COMPAT_FREEBSD32
2612	uint32_t ps_strings32;
2613#endif
2614
2615	if (namelen != 1)
2616		return (EINVAL);
2617
2618	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2619	if (error != 0)
2620		return (error);
2621#ifdef COMPAT_FREEBSD32
2622	if ((req->flags & SCTL_MASK32) != 0) {
2623		/*
2624		 * We return 0 if the 32 bit emulation request is for a 64 bit
2625		 * process.
2626		 */
2627		ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
2628		    PTROUT(p->p_sysent->sv_psstrings) : 0;
2629		PROC_UNLOCK(p);
2630		error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
2631		return (error);
2632	}
2633#endif
2634	ps_strings = p->p_sysent->sv_psstrings;
2635	PROC_UNLOCK(p);
2636	error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
2637	return (error);
2638}
2639
2640/*
2641 * This sysctl allows a process to retrieve umask of another process.
2642 */
2643static int
2644sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
2645{
2646	int *name = (int *)arg1;
2647	u_int namelen = arg2;
2648	struct proc *p;
2649	int error;
2650	u_short fd_cmask;
2651
2652	if (namelen != 1)
2653		return (EINVAL);
2654
2655	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2656	if (error != 0)
2657		return (error);
2658
2659	FILEDESC_SLOCK(p->p_fd);
2660	fd_cmask = p->p_fd->fd_cmask;
2661	FILEDESC_SUNLOCK(p->p_fd);
2662	PRELE(p);
2663	error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask));
2664	return (error);
2665}
2666
2667/*
2668 * This sysctl allows a process to set and retrieve binary osreldate of
2669 * another process.
2670 */
2671static int
2672sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
2673{
2674	int *name = (int *)arg1;
2675	u_int namelen = arg2;
2676	struct proc *p;
2677	int flags, error, osrel;
2678
2679	if (namelen != 1)
2680		return (EINVAL);
2681
2682	if (req->newptr != NULL && req->newlen != sizeof(osrel))
2683		return (EINVAL);
2684
2685	flags = PGET_HOLD | PGET_NOTWEXIT;
2686	if (req->newptr != NULL)
2687		flags |= PGET_CANDEBUG;
2688	else
2689		flags |= PGET_CANSEE;
2690	error = pget((pid_t)name[0], flags, &p);
2691	if (error != 0)
2692		return (error);
2693
2694	error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
2695	if (error != 0)
2696		goto errout;
2697
2698	if (req->newptr != NULL) {
2699		error = SYSCTL_IN(req, &osrel, sizeof(osrel));
2700		if (error != 0)
2701			goto errout;
2702		if (osrel < 0) {
2703			error = EINVAL;
2704			goto errout;
2705		}
2706		p->p_osrel = osrel;
2707	}
2708errout:
2709	PRELE(p);
2710	return (error);
2711}
2712
2713static int
2714sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
2715{
2716	int *name = (int *)arg1;
2717	u_int namelen = arg2;
2718	struct proc *p;
2719	struct kinfo_sigtramp kst;
2720	const struct sysentvec *sv;
2721	int error;
2722#ifdef COMPAT_FREEBSD32
2723	struct kinfo_sigtramp32 kst32;
2724#endif
2725
2726	if (namelen != 1)
2727		return (EINVAL);
2728
2729	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2730	if (error != 0)
2731		return (error);
2732	sv = p->p_sysent;
2733#ifdef COMPAT_FREEBSD32
2734	if ((req->flags & SCTL_MASK32) != 0) {
2735		bzero(&kst32, sizeof(kst32));
2736		if (SV_PROC_FLAG(p, SV_ILP32)) {
2737			if (sv->sv_sigcode_base != 0) {
2738				kst32.ksigtramp_start = sv->sv_sigcode_base;
2739				kst32.ksigtramp_end = sv->sv_sigcode_base +
2740				    *sv->sv_szsigcode;
2741			} else {
2742				kst32.ksigtramp_start = sv->sv_psstrings -
2743				    *sv->sv_szsigcode;
2744				kst32.ksigtramp_end = sv->sv_psstrings;
2745			}
2746		}
2747		PROC_UNLOCK(p);
2748		error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
2749		return (error);
2750	}
2751#endif
2752	bzero(&kst, sizeof(kst));
2753	if (sv->sv_sigcode_base != 0) {
2754		kst.ksigtramp_start = (char *)sv->sv_sigcode_base;
2755		kst.ksigtramp_end = (char *)sv->sv_sigcode_base +
2756		    *sv->sv_szsigcode;
2757	} else {
2758		kst.ksigtramp_start = (char *)sv->sv_psstrings -
2759		    *sv->sv_szsigcode;
2760		kst.ksigtramp_end = (char *)sv->sv_psstrings;
2761	}
2762	PROC_UNLOCK(p);
2763	error = SYSCTL_OUT(req, &kst, sizeof(kst));
2764	return (error);
2765}
2766
2767SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
2768
2769SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
2770	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
2771	"Return entire process table");
2772
2773static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2774	sysctl_kern_proc, "Process table");
2775
2776static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
2777	sysctl_kern_proc, "Process table");
2778
2779static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2780	sysctl_kern_proc, "Process table");
2781
2782static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
2783	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2784
2785static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
2786	sysctl_kern_proc, "Process table");
2787
2788static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2789	sysctl_kern_proc, "Process table");
2790
2791static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2792	sysctl_kern_proc, "Process table");
2793
2794static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2795	sysctl_kern_proc, "Process table");
2796
2797static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
2798	sysctl_kern_proc, "Return process table, no threads");
2799
2800static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
2801	CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
2802	sysctl_kern_proc_args, "Process argument list");
2803
2804static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
2805	sysctl_kern_proc_env, "Process environment");
2806
2807static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
2808	CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
2809
2810static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
2811	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
2812
2813static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
2814	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
2815	"Process syscall vector name (ABI type)");
2816
2817static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
2818	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2819
2820static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
2821	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2822
2823static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
2824	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2825
2826static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
2827	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2828
2829static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
2830	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2831
2832static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
2833	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2834
2835static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
2836	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2837
2838static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
2839	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2840
2841static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
2842	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
2843	"Return process table, no threads");
2844
2845#ifdef COMPAT_FREEBSD7
2846static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
2847	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
2848#endif
2849
2850static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
2851	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
2852
2853#if defined(STACK) || defined(DDB)
2854static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
2855	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
2856#endif
2857
2858static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
2859	CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
2860
2861static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
2862	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
2863	"Process resource limits");
2864
2865static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
2866	CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
2867	"Process ps_strings location");
2868
2869static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
2870	CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
2871
2872static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
2873	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
2874	"Process binary osreldate");
2875
2876static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
2877	CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
2878	"Process signal trampoline location");
2879
2880int allproc_gen;
2881
2882void
2883stop_all_proc(void)
2884{
2885	struct proc *cp, *p;
2886	int r, gen;
2887	bool restart, seen_stopped, seen_exiting, stopped_some;
2888
2889	cp = curproc;
2890	/*
2891	 * stop_all_proc() assumes that all process which have
2892	 * usermode must be stopped, except current process, for
2893	 * obvious reasons.  Since other threads in the process
2894	 * establishing global stop could unstop something, disable
2895	 * calls from multithreaded processes as precaution.  The
2896	 * service must not be user-callable anyway.
2897	 */
2898	KASSERT((cp->p_flag & P_HADTHREADS) == 0 ||
2899	    (cp->p_flag & P_KTHREAD) != 0, ("mt stop_all_proc"));
2900
2901allproc_loop:
2902	sx_xlock(&allproc_lock);
2903	gen = allproc_gen;
2904	seen_exiting = seen_stopped = stopped_some = restart = false;
2905	LIST_REMOVE(cp, p_list);
2906	LIST_INSERT_HEAD(&allproc, cp, p_list);
2907	for (;;) {
2908		p = LIST_NEXT(cp, p_list);
2909		if (p == NULL)
2910			break;
2911		LIST_REMOVE(cp, p_list);
2912		LIST_INSERT_AFTER(p, cp, p_list);
2913		PROC_LOCK(p);
2914		if ((p->p_flag & (P_KTHREAD | P_SYSTEM |
2915		    P_TOTAL_STOP)) != 0) {
2916			PROC_UNLOCK(p);
2917			continue;
2918		}
2919		if ((p->p_flag & P_WEXIT) != 0) {
2920			seen_exiting = true;
2921			PROC_UNLOCK(p);
2922			continue;
2923		}
2924		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
2925			/*
2926			 * Stopped processes are tolerated when there
2927			 * are no other processes which might continue
2928			 * them.  P_STOPPED_SINGLE but not
2929			 * P_TOTAL_STOP process still has at least one
2930			 * thread running.
2931			 */
2932			seen_stopped = true;
2933			PROC_UNLOCK(p);
2934			continue;
2935		}
2936		_PHOLD(p);
2937		sx_xunlock(&allproc_lock);
2938		r = thread_single(p, SINGLE_ALLPROC);
2939		if (r != 0)
2940			restart = true;
2941		else
2942			stopped_some = true;
2943		_PRELE(p);
2944		PROC_UNLOCK(p);
2945		sx_xlock(&allproc_lock);
2946	}
2947	/* Catch forked children we did not see in iteration. */
2948	if (gen != allproc_gen)
2949		restart = true;
2950	sx_xunlock(&allproc_lock);
2951	if (restart || stopped_some || seen_exiting || seen_stopped) {
2952		kern_yield(PRI_USER);
2953		goto allproc_loop;
2954	}
2955}
2956
2957void
2958resume_all_proc(void)
2959{
2960	struct proc *cp, *p;
2961
2962	cp = curproc;
2963	sx_xlock(&allproc_lock);
2964	LIST_REMOVE(cp, p_list);
2965	LIST_INSERT_HEAD(&allproc, cp, p_list);
2966	for (;;) {
2967		p = LIST_NEXT(cp, p_list);
2968		if (p == NULL)
2969			break;
2970		LIST_REMOVE(cp, p_list);
2971		LIST_INSERT_AFTER(p, cp, p_list);
2972		PROC_LOCK(p);
2973		if ((p->p_flag & P_TOTAL_STOP) != 0) {
2974			sx_xunlock(&allproc_lock);
2975			_PHOLD(p);
2976			thread_single_end(p, SINGLE_ALLPROC);
2977			_PRELE(p);
2978			PROC_UNLOCK(p);
2979			sx_xlock(&allproc_lock);
2980		} else {
2981			PROC_UNLOCK(p);
2982		}
2983	}
2984	sx_xunlock(&allproc_lock);
2985}
2986
2987#define	TOTAL_STOP_DEBUG	1
2988#ifdef TOTAL_STOP_DEBUG
2989volatile static int ap_resume;
2990#include <sys/mount.h>
2991
2992static int
2993sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
2994{
2995	int error, val;
2996
2997	val = 0;
2998	ap_resume = 0;
2999	error = sysctl_handle_int(oidp, &val, 0, req);
3000	if (error != 0 || req->newptr == NULL)
3001		return (error);
3002	if (val != 0) {
3003		stop_all_proc();
3004		syncer_suspend();
3005		while (ap_resume == 0)
3006			;
3007		syncer_resume();
3008		resume_all_proc();
3009	}
3010	return (0);
3011}
3012
3013SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
3014    CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
3015    sysctl_debug_stop_all_proc, "I",
3016    "");
3017#endif
3018