kern_proc.c revision 276272
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: stable/10/sys/kern/kern_proc.c 276272 2014-12-27 00:55:14Z kib $");
34
35#include "opt_compat.h"
36#include "opt_ddb.h"
37#include "opt_kdtrace.h"
38#include "opt_ktrace.h"
39#include "opt_kstack_pages.h"
40#include "opt_stack.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/elf.h>
45#include <sys/exec.h>
46#include <sys/kernel.h>
47#include <sys/limits.h>
48#include <sys/lock.h>
49#include <sys/loginclass.h>
50#include <sys/malloc.h>
51#include <sys/mman.h>
52#include <sys/mount.h>
53#include <sys/mutex.h>
54#include <sys/proc.h>
55#include <sys/ptrace.h>
56#include <sys/refcount.h>
57#include <sys/resourcevar.h>
58#include <sys/rwlock.h>
59#include <sys/sbuf.h>
60#include <sys/sysent.h>
61#include <sys/sched.h>
62#include <sys/smp.h>
63#include <sys/stack.h>
64#include <sys/stat.h>
65#include <sys/sysctl.h>
66#include <sys/filedesc.h>
67#include <sys/tty.h>
68#include <sys/signalvar.h>
69#include <sys/sdt.h>
70#include <sys/sx.h>
71#include <sys/user.h>
72#include <sys/jail.h>
73#include <sys/vnode.h>
74#include <sys/eventhandler.h>
75
76#ifdef DDB
77#include <ddb/ddb.h>
78#endif
79
80#include <vm/vm.h>
81#include <vm/vm_param.h>
82#include <vm/vm_extern.h>
83#include <vm/pmap.h>
84#include <vm/vm_map.h>
85#include <vm/vm_object.h>
86#include <vm/vm_page.h>
87#include <vm/uma.h>
88
89#ifdef COMPAT_FREEBSD32
90#include <compat/freebsd32/freebsd32.h>
91#include <compat/freebsd32/freebsd32_util.h>
92#endif
93
94SDT_PROVIDER_DEFINE(proc);
95SDT_PROBE_DEFINE4(proc, kernel, ctor, entry, "struct proc *", "int",
96    "void *", "int");
97SDT_PROBE_DEFINE4(proc, kernel, ctor, return, "struct proc *", "int",
98    "void *", "int");
99SDT_PROBE_DEFINE4(proc, kernel, dtor, entry, "struct proc *", "int",
100    "void *", "struct thread *");
101SDT_PROBE_DEFINE3(proc, kernel, dtor, return, "struct proc *", "int",
102    "void *");
103SDT_PROBE_DEFINE3(proc, kernel, init, entry, "struct proc *", "int",
104    "int");
105SDT_PROBE_DEFINE3(proc, kernel, init, return, "struct proc *", "int",
106    "int");
107
108MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
109MALLOC_DEFINE(M_SESSION, "session", "session header");
110static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
111MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
112
113static void doenterpgrp(struct proc *, struct pgrp *);
114static void orphanpg(struct pgrp *pg);
115static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
116static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
117static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
118    int preferthread);
119static void pgadjustjobc(struct pgrp *pgrp, int entering);
120static void pgdelete(struct pgrp *);
121static int proc_ctor(void *mem, int size, void *arg, int flags);
122static void proc_dtor(void *mem, int size, void *arg);
123static int proc_init(void *mem, int size, int flags);
124static void proc_fini(void *mem, int size);
125static void pargs_free(struct pargs *pa);
126static struct proc *zpfind_locked(pid_t pid);
127
128/*
129 * Other process lists
130 */
131struct pidhashhead *pidhashtbl;
132u_long pidhash;
133struct pgrphashhead *pgrphashtbl;
134u_long pgrphash;
135struct proclist allproc;
136struct proclist zombproc;
137struct sx allproc_lock;
138struct sx proctree_lock;
139struct mtx ppeers_lock;
140uma_zone_t proc_zone;
141
142int kstack_pages = KSTACK_PAGES;
143SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
144    "Kernel stack size in pages");
145static int vmmap_skip_res_cnt = 0;
146SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
147    &vmmap_skip_res_cnt, 0,
148    "Skip calculation of the pages resident count in kern.proc.vmmap");
149
150CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
151#ifdef COMPAT_FREEBSD32
152CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
153#endif
154
155/*
156 * Initialize global process hashing structures.
157 */
158void
159procinit()
160{
161
162	sx_init(&allproc_lock, "allproc");
163	sx_init(&proctree_lock, "proctree");
164	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
165	LIST_INIT(&allproc);
166	LIST_INIT(&zombproc);
167	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
168	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
169	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
170	    proc_ctor, proc_dtor, proc_init, proc_fini,
171	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
172	uihashinit();
173}
174
175/*
176 * Prepare a proc for use.
177 */
178static int
179proc_ctor(void *mem, int size, void *arg, int flags)
180{
181	struct proc *p;
182
183	p = (struct proc *)mem;
184	SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0);
185	EVENTHANDLER_INVOKE(process_ctor, p);
186	SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0);
187	return (0);
188}
189
190/*
191 * Reclaim a proc after use.
192 */
193static void
194proc_dtor(void *mem, int size, void *arg)
195{
196	struct proc *p;
197	struct thread *td;
198
199	/* INVARIANTS checks go here */
200	p = (struct proc *)mem;
201	td = FIRST_THREAD_IN_PROC(p);
202	SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0);
203	if (td != NULL) {
204#ifdef INVARIANTS
205		KASSERT((p->p_numthreads == 1),
206		    ("bad number of threads in exiting process"));
207		KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
208#endif
209		/* Free all OSD associated to this thread. */
210		osd_thread_exit(td);
211	}
212	EVENTHANDLER_INVOKE(process_dtor, p);
213	if (p->p_ksi != NULL)
214		KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
215	SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0);
216}
217
218/*
219 * Initialize type-stable parts of a proc (when newly created).
220 */
221static int
222proc_init(void *mem, int size, int flags)
223{
224	struct proc *p;
225
226	p = (struct proc *)mem;
227	SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0);
228	p->p_sched = (struct p_sched *)&p[1];
229	bzero(&p->p_mtx, sizeof(struct mtx));
230	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
231	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE);
232	cv_init(&p->p_pwait, "ppwait");
233	cv_init(&p->p_dbgwait, "dbgwait");
234	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
235	EVENTHANDLER_INVOKE(process_init, p);
236	p->p_stats = pstats_alloc();
237	SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0);
238	return (0);
239}
240
241/*
242 * UMA should ensure that this function is never called.
243 * Freeing a proc structure would violate type stability.
244 */
245static void
246proc_fini(void *mem, int size)
247{
248#ifdef notnow
249	struct proc *p;
250
251	p = (struct proc *)mem;
252	EVENTHANDLER_INVOKE(process_fini, p);
253	pstats_free(p->p_stats);
254	thread_free(FIRST_THREAD_IN_PROC(p));
255	mtx_destroy(&p->p_mtx);
256	if (p->p_ksi != NULL)
257		ksiginfo_free(p->p_ksi);
258#else
259	panic("proc reclaimed");
260#endif
261}
262
263/*
264 * Is p an inferior of the current process?
265 */
266int
267inferior(struct proc *p)
268{
269
270	sx_assert(&proctree_lock, SX_LOCKED);
271	PROC_LOCK_ASSERT(p, MA_OWNED);
272	for (; p != curproc; p = proc_realparent(p)) {
273		if (p->p_pid == 0)
274			return (0);
275	}
276	return (1);
277}
278
279struct proc *
280pfind_locked(pid_t pid)
281{
282	struct proc *p;
283
284	sx_assert(&allproc_lock, SX_LOCKED);
285	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
286		if (p->p_pid == pid) {
287			PROC_LOCK(p);
288			if (p->p_state == PRS_NEW) {
289				PROC_UNLOCK(p);
290				p = NULL;
291			}
292			break;
293		}
294	}
295	return (p);
296}
297
298/*
299 * Locate a process by number; return only "live" processes -- i.e., neither
300 * zombies nor newly born but incompletely initialized processes.  By not
301 * returning processes in the PRS_NEW state, we allow callers to avoid
302 * testing for that condition to avoid dereferencing p_ucred, et al.
303 */
304struct proc *
305pfind(pid_t pid)
306{
307	struct proc *p;
308
309	sx_slock(&allproc_lock);
310	p = pfind_locked(pid);
311	sx_sunlock(&allproc_lock);
312	return (p);
313}
314
315static struct proc *
316pfind_tid_locked(pid_t tid)
317{
318	struct proc *p;
319	struct thread *td;
320
321	sx_assert(&allproc_lock, SX_LOCKED);
322	FOREACH_PROC_IN_SYSTEM(p) {
323		PROC_LOCK(p);
324		if (p->p_state == PRS_NEW) {
325			PROC_UNLOCK(p);
326			continue;
327		}
328		FOREACH_THREAD_IN_PROC(p, td) {
329			if (td->td_tid == tid)
330				goto found;
331		}
332		PROC_UNLOCK(p);
333	}
334found:
335	return (p);
336}
337
338/*
339 * Locate a process group by number.
340 * The caller must hold proctree_lock.
341 */
342struct pgrp *
343pgfind(pgid)
344	register pid_t pgid;
345{
346	register struct pgrp *pgrp;
347
348	sx_assert(&proctree_lock, SX_LOCKED);
349
350	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
351		if (pgrp->pg_id == pgid) {
352			PGRP_LOCK(pgrp);
353			return (pgrp);
354		}
355	}
356	return (NULL);
357}
358
359/*
360 * Locate process and do additional manipulations, depending on flags.
361 */
362int
363pget(pid_t pid, int flags, struct proc **pp)
364{
365	struct proc *p;
366	int error;
367
368	sx_slock(&allproc_lock);
369	if (pid <= PID_MAX) {
370		p = pfind_locked(pid);
371		if (p == NULL && (flags & PGET_NOTWEXIT) == 0)
372			p = zpfind_locked(pid);
373	} else if ((flags & PGET_NOTID) == 0) {
374		p = pfind_tid_locked(pid);
375	} else {
376		p = NULL;
377	}
378	sx_sunlock(&allproc_lock);
379	if (p == NULL)
380		return (ESRCH);
381	if ((flags & PGET_CANSEE) != 0) {
382		error = p_cansee(curthread, p);
383		if (error != 0)
384			goto errout;
385	}
386	if ((flags & PGET_CANDEBUG) != 0) {
387		error = p_candebug(curthread, p);
388		if (error != 0)
389			goto errout;
390	}
391	if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
392		error = EPERM;
393		goto errout;
394	}
395	if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
396		error = ESRCH;
397		goto errout;
398	}
399	if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
400		/*
401		 * XXXRW: Not clear ESRCH is the right error during proc
402		 * execve().
403		 */
404		error = ESRCH;
405		goto errout;
406	}
407	if ((flags & PGET_HOLD) != 0) {
408		_PHOLD(p);
409		PROC_UNLOCK(p);
410	}
411	*pp = p;
412	return (0);
413errout:
414	PROC_UNLOCK(p);
415	return (error);
416}
417
418/*
419 * Create a new process group.
420 * pgid must be equal to the pid of p.
421 * Begin a new session if required.
422 */
423int
424enterpgrp(p, pgid, pgrp, sess)
425	register struct proc *p;
426	pid_t pgid;
427	struct pgrp *pgrp;
428	struct session *sess;
429{
430
431	sx_assert(&proctree_lock, SX_XLOCKED);
432
433	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
434	KASSERT(p->p_pid == pgid,
435	    ("enterpgrp: new pgrp and pid != pgid"));
436	KASSERT(pgfind(pgid) == NULL,
437	    ("enterpgrp: pgrp with pgid exists"));
438	KASSERT(!SESS_LEADER(p),
439	    ("enterpgrp: session leader attempted setpgrp"));
440
441	mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
442
443	if (sess != NULL) {
444		/*
445		 * new session
446		 */
447		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
448		PROC_LOCK(p);
449		p->p_flag &= ~P_CONTROLT;
450		PROC_UNLOCK(p);
451		PGRP_LOCK(pgrp);
452		sess->s_leader = p;
453		sess->s_sid = p->p_pid;
454		refcount_init(&sess->s_count, 1);
455		sess->s_ttyvp = NULL;
456		sess->s_ttydp = NULL;
457		sess->s_ttyp = NULL;
458		bcopy(p->p_session->s_login, sess->s_login,
459			    sizeof(sess->s_login));
460		pgrp->pg_session = sess;
461		KASSERT(p == curproc,
462		    ("enterpgrp: mksession and p != curproc"));
463	} else {
464		pgrp->pg_session = p->p_session;
465		sess_hold(pgrp->pg_session);
466		PGRP_LOCK(pgrp);
467	}
468	pgrp->pg_id = pgid;
469	LIST_INIT(&pgrp->pg_members);
470
471	/*
472	 * As we have an exclusive lock of proctree_lock,
473	 * this should not deadlock.
474	 */
475	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
476	pgrp->pg_jobc = 0;
477	SLIST_INIT(&pgrp->pg_sigiolst);
478	PGRP_UNLOCK(pgrp);
479
480	doenterpgrp(p, pgrp);
481
482	return (0);
483}
484
485/*
486 * Move p to an existing process group
487 */
488int
489enterthispgrp(p, pgrp)
490	register struct proc *p;
491	struct pgrp *pgrp;
492{
493
494	sx_assert(&proctree_lock, SX_XLOCKED);
495	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
496	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
497	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
498	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
499	KASSERT(pgrp->pg_session == p->p_session,
500		("%s: pgrp's session %p, p->p_session %p.\n",
501		__func__,
502		pgrp->pg_session,
503		p->p_session));
504	KASSERT(pgrp != p->p_pgrp,
505		("%s: p belongs to pgrp.", __func__));
506
507	doenterpgrp(p, pgrp);
508
509	return (0);
510}
511
512/*
513 * Move p to a process group
514 */
515static void
516doenterpgrp(p, pgrp)
517	struct proc *p;
518	struct pgrp *pgrp;
519{
520	struct pgrp *savepgrp;
521
522	sx_assert(&proctree_lock, SX_XLOCKED);
523	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
524	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
525	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
526	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
527
528	savepgrp = p->p_pgrp;
529
530	/*
531	 * Adjust eligibility of affected pgrps to participate in job control.
532	 * Increment eligibility counts before decrementing, otherwise we
533	 * could reach 0 spuriously during the first call.
534	 */
535	fixjobc(p, pgrp, 1);
536	fixjobc(p, p->p_pgrp, 0);
537
538	PGRP_LOCK(pgrp);
539	PGRP_LOCK(savepgrp);
540	PROC_LOCK(p);
541	LIST_REMOVE(p, p_pglist);
542	p->p_pgrp = pgrp;
543	PROC_UNLOCK(p);
544	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
545	PGRP_UNLOCK(savepgrp);
546	PGRP_UNLOCK(pgrp);
547	if (LIST_EMPTY(&savepgrp->pg_members))
548		pgdelete(savepgrp);
549}
550
551/*
552 * remove process from process group
553 */
554int
555leavepgrp(p)
556	register struct proc *p;
557{
558	struct pgrp *savepgrp;
559
560	sx_assert(&proctree_lock, SX_XLOCKED);
561	savepgrp = p->p_pgrp;
562	PGRP_LOCK(savepgrp);
563	PROC_LOCK(p);
564	LIST_REMOVE(p, p_pglist);
565	p->p_pgrp = NULL;
566	PROC_UNLOCK(p);
567	PGRP_UNLOCK(savepgrp);
568	if (LIST_EMPTY(&savepgrp->pg_members))
569		pgdelete(savepgrp);
570	return (0);
571}
572
573/*
574 * delete a process group
575 */
576static void
577pgdelete(pgrp)
578	register struct pgrp *pgrp;
579{
580	struct session *savesess;
581	struct tty *tp;
582
583	sx_assert(&proctree_lock, SX_XLOCKED);
584	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
585	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
586
587	/*
588	 * Reset any sigio structures pointing to us as a result of
589	 * F_SETOWN with our pgid.
590	 */
591	funsetownlst(&pgrp->pg_sigiolst);
592
593	PGRP_LOCK(pgrp);
594	tp = pgrp->pg_session->s_ttyp;
595	LIST_REMOVE(pgrp, pg_hash);
596	savesess = pgrp->pg_session;
597	PGRP_UNLOCK(pgrp);
598
599	/* Remove the reference to the pgrp before deallocating it. */
600	if (tp != NULL) {
601		tty_lock(tp);
602		tty_rel_pgrp(tp, pgrp);
603	}
604
605	mtx_destroy(&pgrp->pg_mtx);
606	free(pgrp, M_PGRP);
607	sess_release(savesess);
608}
609
610static void
611pgadjustjobc(pgrp, entering)
612	struct pgrp *pgrp;
613	int entering;
614{
615
616	PGRP_LOCK(pgrp);
617	if (entering)
618		pgrp->pg_jobc++;
619	else {
620		--pgrp->pg_jobc;
621		if (pgrp->pg_jobc == 0)
622			orphanpg(pgrp);
623	}
624	PGRP_UNLOCK(pgrp);
625}
626
627/*
628 * Adjust pgrp jobc counters when specified process changes process group.
629 * We count the number of processes in each process group that "qualify"
630 * the group for terminal job control (those with a parent in a different
631 * process group of the same session).  If that count reaches zero, the
632 * process group becomes orphaned.  Check both the specified process'
633 * process group and that of its children.
634 * entering == 0 => p is leaving specified group.
635 * entering == 1 => p is entering specified group.
636 */
637void
638fixjobc(p, pgrp, entering)
639	register struct proc *p;
640	register struct pgrp *pgrp;
641	int entering;
642{
643	register struct pgrp *hispgrp;
644	register struct session *mysession;
645
646	sx_assert(&proctree_lock, SX_LOCKED);
647	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
648	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
649	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
650
651	/*
652	 * Check p's parent to see whether p qualifies its own process
653	 * group; if so, adjust count for p's process group.
654	 */
655	mysession = pgrp->pg_session;
656	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
657	    hispgrp->pg_session == mysession)
658		pgadjustjobc(pgrp, entering);
659
660	/*
661	 * Check this process' children to see whether they qualify
662	 * their process groups; if so, adjust counts for children's
663	 * process groups.
664	 */
665	LIST_FOREACH(p, &p->p_children, p_sibling) {
666		hispgrp = p->p_pgrp;
667		if (hispgrp == pgrp ||
668		    hispgrp->pg_session != mysession)
669			continue;
670		PROC_LOCK(p);
671		if (p->p_state == PRS_ZOMBIE) {
672			PROC_UNLOCK(p);
673			continue;
674		}
675		PROC_UNLOCK(p);
676		pgadjustjobc(hispgrp, entering);
677	}
678}
679
680/*
681 * A process group has become orphaned;
682 * if there are any stopped processes in the group,
683 * hang-up all process in that group.
684 */
685static void
686orphanpg(pg)
687	struct pgrp *pg;
688{
689	register struct proc *p;
690
691	PGRP_LOCK_ASSERT(pg, MA_OWNED);
692
693	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
694		PROC_LOCK(p);
695		if (P_SHOULDSTOP(p)) {
696			PROC_UNLOCK(p);
697			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
698				PROC_LOCK(p);
699				kern_psignal(p, SIGHUP);
700				kern_psignal(p, SIGCONT);
701				PROC_UNLOCK(p);
702			}
703			return;
704		}
705		PROC_UNLOCK(p);
706	}
707}
708
709void
710sess_hold(struct session *s)
711{
712
713	refcount_acquire(&s->s_count);
714}
715
716void
717sess_release(struct session *s)
718{
719
720	if (refcount_release(&s->s_count)) {
721		if (s->s_ttyp != NULL) {
722			tty_lock(s->s_ttyp);
723			tty_rel_sess(s->s_ttyp, s);
724		}
725		mtx_destroy(&s->s_mtx);
726		free(s, M_SESSION);
727	}
728}
729
730#ifdef DDB
731
732DB_SHOW_COMMAND(pgrpdump, pgrpdump)
733{
734	register struct pgrp *pgrp;
735	register struct proc *p;
736	register int i;
737
738	for (i = 0; i <= pgrphash; i++) {
739		if (!LIST_EMPTY(&pgrphashtbl[i])) {
740			printf("\tindx %d\n", i);
741			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
742				printf(
743			"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
744				    (void *)pgrp, (long)pgrp->pg_id,
745				    (void *)pgrp->pg_session,
746				    pgrp->pg_session->s_count,
747				    (void *)LIST_FIRST(&pgrp->pg_members));
748				LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
749					printf("\t\tpid %ld addr %p pgrp %p\n",
750					    (long)p->p_pid, (void *)p,
751					    (void *)p->p_pgrp);
752				}
753			}
754		}
755	}
756}
757#endif /* DDB */
758
759/*
760 * Calculate the kinfo_proc members which contain process-wide
761 * informations.
762 * Must be called with the target process locked.
763 */
764static void
765fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
766{
767	struct thread *td;
768
769	PROC_LOCK_ASSERT(p, MA_OWNED);
770
771	kp->ki_estcpu = 0;
772	kp->ki_pctcpu = 0;
773	FOREACH_THREAD_IN_PROC(p, td) {
774		thread_lock(td);
775		kp->ki_pctcpu += sched_pctcpu(td);
776		kp->ki_estcpu += td->td_estcpu;
777		thread_unlock(td);
778	}
779}
780
781/*
782 * Clear kinfo_proc and fill in any information that is common
783 * to all threads in the process.
784 * Must be called with the target process locked.
785 */
786static void
787fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
788{
789	struct thread *td0;
790	struct tty *tp;
791	struct session *sp;
792	struct ucred *cred;
793	struct sigacts *ps;
794
795	PROC_LOCK_ASSERT(p, MA_OWNED);
796	bzero(kp, sizeof(*kp));
797
798	kp->ki_structsize = sizeof(*kp);
799	kp->ki_paddr = p;
800	kp->ki_addr =/* p->p_addr; */0; /* XXX */
801	kp->ki_args = p->p_args;
802	kp->ki_textvp = p->p_textvp;
803#ifdef KTRACE
804	kp->ki_tracep = p->p_tracevp;
805	kp->ki_traceflag = p->p_traceflag;
806#endif
807	kp->ki_fd = p->p_fd;
808	kp->ki_vmspace = p->p_vmspace;
809	kp->ki_flag = p->p_flag;
810	kp->ki_flag2 = p->p_flag2;
811	cred = p->p_ucred;
812	if (cred) {
813		kp->ki_uid = cred->cr_uid;
814		kp->ki_ruid = cred->cr_ruid;
815		kp->ki_svuid = cred->cr_svuid;
816		kp->ki_cr_flags = 0;
817		if (cred->cr_flags & CRED_FLAG_CAPMODE)
818			kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
819		/* XXX bde doesn't like KI_NGROUPS */
820		if (cred->cr_ngroups > KI_NGROUPS) {
821			kp->ki_ngroups = KI_NGROUPS;
822			kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
823		} else
824			kp->ki_ngroups = cred->cr_ngroups;
825		bcopy(cred->cr_groups, kp->ki_groups,
826		    kp->ki_ngroups * sizeof(gid_t));
827		kp->ki_rgid = cred->cr_rgid;
828		kp->ki_svgid = cred->cr_svgid;
829		/* If jailed(cred), emulate the old P_JAILED flag. */
830		if (jailed(cred)) {
831			kp->ki_flag |= P_JAILED;
832			/* If inside the jail, use 0 as a jail ID. */
833			if (cred->cr_prison != curthread->td_ucred->cr_prison)
834				kp->ki_jid = cred->cr_prison->pr_id;
835		}
836		strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
837		    sizeof(kp->ki_loginclass));
838	}
839	ps = p->p_sigacts;
840	if (ps) {
841		mtx_lock(&ps->ps_mtx);
842		kp->ki_sigignore = ps->ps_sigignore;
843		kp->ki_sigcatch = ps->ps_sigcatch;
844		mtx_unlock(&ps->ps_mtx);
845	}
846	if (p->p_state != PRS_NEW &&
847	    p->p_state != PRS_ZOMBIE &&
848	    p->p_vmspace != NULL) {
849		struct vmspace *vm = p->p_vmspace;
850
851		kp->ki_size = vm->vm_map.size;
852		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
853		FOREACH_THREAD_IN_PROC(p, td0) {
854			if (!TD_IS_SWAPPED(td0))
855				kp->ki_rssize += td0->td_kstack_pages;
856		}
857		kp->ki_swrss = vm->vm_swrss;
858		kp->ki_tsize = vm->vm_tsize;
859		kp->ki_dsize = vm->vm_dsize;
860		kp->ki_ssize = vm->vm_ssize;
861	} else if (p->p_state == PRS_ZOMBIE)
862		kp->ki_stat = SZOMB;
863	if (kp->ki_flag & P_INMEM)
864		kp->ki_sflag = PS_INMEM;
865	else
866		kp->ki_sflag = 0;
867	/* Calculate legacy swtime as seconds since 'swtick'. */
868	kp->ki_swtime = (ticks - p->p_swtick) / hz;
869	kp->ki_pid = p->p_pid;
870	kp->ki_nice = p->p_nice;
871	kp->ki_fibnum = p->p_fibnum;
872	kp->ki_start = p->p_stats->p_start;
873	timevaladd(&kp->ki_start, &boottime);
874	PROC_SLOCK(p);
875	rufetch(p, &kp->ki_rusage);
876	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
877	calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
878	PROC_SUNLOCK(p);
879	calccru(p, &kp->ki_childutime, &kp->ki_childstime);
880	/* Some callers want child times in a single value. */
881	kp->ki_childtime = kp->ki_childstime;
882	timevaladd(&kp->ki_childtime, &kp->ki_childutime);
883
884	FOREACH_THREAD_IN_PROC(p, td0)
885		kp->ki_cow += td0->td_cow;
886
887	tp = NULL;
888	if (p->p_pgrp) {
889		kp->ki_pgid = p->p_pgrp->pg_id;
890		kp->ki_jobc = p->p_pgrp->pg_jobc;
891		sp = p->p_pgrp->pg_session;
892
893		if (sp != NULL) {
894			kp->ki_sid = sp->s_sid;
895			SESS_LOCK(sp);
896			strlcpy(kp->ki_login, sp->s_login,
897			    sizeof(kp->ki_login));
898			if (sp->s_ttyvp)
899				kp->ki_kiflag |= KI_CTTY;
900			if (SESS_LEADER(p))
901				kp->ki_kiflag |= KI_SLEADER;
902			/* XXX proctree_lock */
903			tp = sp->s_ttyp;
904			SESS_UNLOCK(sp);
905		}
906	}
907	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
908		kp->ki_tdev = tty_udev(tp);
909		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
910		if (tp->t_session)
911			kp->ki_tsid = tp->t_session->s_sid;
912	} else
913		kp->ki_tdev = NODEV;
914	if (p->p_comm[0] != '\0')
915		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
916	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
917	    p->p_sysent->sv_name[0] != '\0')
918		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
919	kp->ki_siglist = p->p_siglist;
920	kp->ki_xstat = p->p_xstat;
921	kp->ki_acflag = p->p_acflag;
922	kp->ki_lock = p->p_lock;
923	if (p->p_pptr)
924		kp->ki_ppid = p->p_pptr->p_pid;
925}
926
927/*
928 * Fill in information that is thread specific.  Must be called with
929 * target process locked.  If 'preferthread' is set, overwrite certain
930 * process-related fields that are maintained for both threads and
931 * processes.
932 */
933static void
934fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
935{
936	struct proc *p;
937
938	p = td->td_proc;
939	kp->ki_tdaddr = td;
940	PROC_LOCK_ASSERT(p, MA_OWNED);
941
942	if (preferthread)
943		PROC_SLOCK(p);
944	thread_lock(td);
945	if (td->td_wmesg != NULL)
946		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
947	else
948		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
949	strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname));
950	if (TD_ON_LOCK(td)) {
951		kp->ki_kiflag |= KI_LOCKBLOCK;
952		strlcpy(kp->ki_lockname, td->td_lockname,
953		    sizeof(kp->ki_lockname));
954	} else {
955		kp->ki_kiflag &= ~KI_LOCKBLOCK;
956		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
957	}
958
959	if (p->p_state == PRS_NORMAL) { /* approximate. */
960		if (TD_ON_RUNQ(td) ||
961		    TD_CAN_RUN(td) ||
962		    TD_IS_RUNNING(td)) {
963			kp->ki_stat = SRUN;
964		} else if (P_SHOULDSTOP(p)) {
965			kp->ki_stat = SSTOP;
966		} else if (TD_IS_SLEEPING(td)) {
967			kp->ki_stat = SSLEEP;
968		} else if (TD_ON_LOCK(td)) {
969			kp->ki_stat = SLOCK;
970		} else {
971			kp->ki_stat = SWAIT;
972		}
973	} else if (p->p_state == PRS_ZOMBIE) {
974		kp->ki_stat = SZOMB;
975	} else {
976		kp->ki_stat = SIDL;
977	}
978
979	/* Things in the thread */
980	kp->ki_wchan = td->td_wchan;
981	kp->ki_pri.pri_level = td->td_priority;
982	kp->ki_pri.pri_native = td->td_base_pri;
983	kp->ki_lastcpu = td->td_lastcpu;
984	kp->ki_oncpu = td->td_oncpu;
985	kp->ki_tdflags = td->td_flags;
986	kp->ki_tid = td->td_tid;
987	kp->ki_numthreads = p->p_numthreads;
988	kp->ki_pcb = td->td_pcb;
989	kp->ki_kstack = (void *)td->td_kstack;
990	kp->ki_slptime = (ticks - td->td_slptick) / hz;
991	kp->ki_pri.pri_class = td->td_pri_class;
992	kp->ki_pri.pri_user = td->td_user_pri;
993
994	if (preferthread) {
995		rufetchtd(td, &kp->ki_rusage);
996		kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
997		kp->ki_pctcpu = sched_pctcpu(td);
998		kp->ki_estcpu = td->td_estcpu;
999		kp->ki_cow = td->td_cow;
1000	}
1001
1002	/* We can't get this anymore but ps etc never used it anyway. */
1003	kp->ki_rqindex = 0;
1004
1005	if (preferthread)
1006		kp->ki_siglist = td->td_siglist;
1007	kp->ki_sigmask = td->td_sigmask;
1008	thread_unlock(td);
1009	if (preferthread)
1010		PROC_SUNLOCK(p);
1011}
1012
1013/*
1014 * Fill in a kinfo_proc structure for the specified process.
1015 * Must be called with the target process locked.
1016 */
1017void
1018fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
1019{
1020
1021	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1022
1023	fill_kinfo_proc_only(p, kp);
1024	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
1025	fill_kinfo_aggregate(p, kp);
1026}
1027
1028struct pstats *
1029pstats_alloc(void)
1030{
1031
1032	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
1033}
1034
1035/*
1036 * Copy parts of p_stats; zero the rest of p_stats (statistics).
1037 */
1038void
1039pstats_fork(struct pstats *src, struct pstats *dst)
1040{
1041
1042	bzero(&dst->pstat_startzero,
1043	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
1044	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
1045	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
1046}
1047
1048void
1049pstats_free(struct pstats *ps)
1050{
1051
1052	free(ps, M_SUBPROC);
1053}
1054
1055static struct proc *
1056zpfind_locked(pid_t pid)
1057{
1058	struct proc *p;
1059
1060	sx_assert(&allproc_lock, SX_LOCKED);
1061	LIST_FOREACH(p, &zombproc, p_list) {
1062		if (p->p_pid == pid) {
1063			PROC_LOCK(p);
1064			break;
1065		}
1066	}
1067	return (p);
1068}
1069
1070/*
1071 * Locate a zombie process by number
1072 */
1073struct proc *
1074zpfind(pid_t pid)
1075{
1076	struct proc *p;
1077
1078	sx_slock(&allproc_lock);
1079	p = zpfind_locked(pid);
1080	sx_sunlock(&allproc_lock);
1081	return (p);
1082}
1083
1084#ifdef COMPAT_FREEBSD32
1085
1086/*
1087 * This function is typically used to copy out the kernel address, so
1088 * it can be replaced by assignment of zero.
1089 */
1090static inline uint32_t
1091ptr32_trim(void *ptr)
1092{
1093	uintptr_t uptr;
1094
1095	uptr = (uintptr_t)ptr;
1096	return ((uptr > UINT_MAX) ? 0 : uptr);
1097}
1098
1099#define PTRTRIM_CP(src,dst,fld) \
1100	do { (dst).fld = ptr32_trim((src).fld); } while (0)
1101
1102static void
1103freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
1104{
1105	int i;
1106
1107	bzero(ki32, sizeof(struct kinfo_proc32));
1108	ki32->ki_structsize = sizeof(struct kinfo_proc32);
1109	CP(*ki, *ki32, ki_layout);
1110	PTRTRIM_CP(*ki, *ki32, ki_args);
1111	PTRTRIM_CP(*ki, *ki32, ki_paddr);
1112	PTRTRIM_CP(*ki, *ki32, ki_addr);
1113	PTRTRIM_CP(*ki, *ki32, ki_tracep);
1114	PTRTRIM_CP(*ki, *ki32, ki_textvp);
1115	PTRTRIM_CP(*ki, *ki32, ki_fd);
1116	PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1117	PTRTRIM_CP(*ki, *ki32, ki_wchan);
1118	CP(*ki, *ki32, ki_pid);
1119	CP(*ki, *ki32, ki_ppid);
1120	CP(*ki, *ki32, ki_pgid);
1121	CP(*ki, *ki32, ki_tpgid);
1122	CP(*ki, *ki32, ki_sid);
1123	CP(*ki, *ki32, ki_tsid);
1124	CP(*ki, *ki32, ki_jobc);
1125	CP(*ki, *ki32, ki_tdev);
1126	CP(*ki, *ki32, ki_siglist);
1127	CP(*ki, *ki32, ki_sigmask);
1128	CP(*ki, *ki32, ki_sigignore);
1129	CP(*ki, *ki32, ki_sigcatch);
1130	CP(*ki, *ki32, ki_uid);
1131	CP(*ki, *ki32, ki_ruid);
1132	CP(*ki, *ki32, ki_svuid);
1133	CP(*ki, *ki32, ki_rgid);
1134	CP(*ki, *ki32, ki_svgid);
1135	CP(*ki, *ki32, ki_ngroups);
1136	for (i = 0; i < KI_NGROUPS; i++)
1137		CP(*ki, *ki32, ki_groups[i]);
1138	CP(*ki, *ki32, ki_size);
1139	CP(*ki, *ki32, ki_rssize);
1140	CP(*ki, *ki32, ki_swrss);
1141	CP(*ki, *ki32, ki_tsize);
1142	CP(*ki, *ki32, ki_dsize);
1143	CP(*ki, *ki32, ki_ssize);
1144	CP(*ki, *ki32, ki_xstat);
1145	CP(*ki, *ki32, ki_acflag);
1146	CP(*ki, *ki32, ki_pctcpu);
1147	CP(*ki, *ki32, ki_estcpu);
1148	CP(*ki, *ki32, ki_slptime);
1149	CP(*ki, *ki32, ki_swtime);
1150	CP(*ki, *ki32, ki_cow);
1151	CP(*ki, *ki32, ki_runtime);
1152	TV_CP(*ki, *ki32, ki_start);
1153	TV_CP(*ki, *ki32, ki_childtime);
1154	CP(*ki, *ki32, ki_flag);
1155	CP(*ki, *ki32, ki_kiflag);
1156	CP(*ki, *ki32, ki_traceflag);
1157	CP(*ki, *ki32, ki_stat);
1158	CP(*ki, *ki32, ki_nice);
1159	CP(*ki, *ki32, ki_lock);
1160	CP(*ki, *ki32, ki_rqindex);
1161	CP(*ki, *ki32, ki_oncpu);
1162	CP(*ki, *ki32, ki_lastcpu);
1163	bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
1164	bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1165	bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1166	bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1167	bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1168	bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1169	bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
1170	CP(*ki, *ki32, ki_flag2);
1171	CP(*ki, *ki32, ki_fibnum);
1172	CP(*ki, *ki32, ki_cr_flags);
1173	CP(*ki, *ki32, ki_jid);
1174	CP(*ki, *ki32, ki_numthreads);
1175	CP(*ki, *ki32, ki_tid);
1176	CP(*ki, *ki32, ki_pri);
1177	freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1178	freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1179	PTRTRIM_CP(*ki, *ki32, ki_pcb);
1180	PTRTRIM_CP(*ki, *ki32, ki_kstack);
1181	PTRTRIM_CP(*ki, *ki32, ki_udata);
1182	CP(*ki, *ki32, ki_sflag);
1183	CP(*ki, *ki32, ki_tdflags);
1184}
1185#endif
1186
1187int
1188kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
1189{
1190	struct thread *td;
1191	struct kinfo_proc ki;
1192#ifdef COMPAT_FREEBSD32
1193	struct kinfo_proc32 ki32;
1194#endif
1195	int error;
1196
1197	PROC_LOCK_ASSERT(p, MA_OWNED);
1198	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1199
1200	error = 0;
1201	fill_kinfo_proc(p, &ki);
1202	if ((flags & KERN_PROC_NOTHREADS) != 0) {
1203#ifdef COMPAT_FREEBSD32
1204		if ((flags & KERN_PROC_MASK32) != 0) {
1205			freebsd32_kinfo_proc_out(&ki, &ki32);
1206			error = sbuf_bcat(sb, &ki32, sizeof(ki32));
1207		} else
1208#endif
1209			error = sbuf_bcat(sb, &ki, sizeof(ki));
1210	} else {
1211		FOREACH_THREAD_IN_PROC(p, td) {
1212			fill_kinfo_thread(td, &ki, 1);
1213#ifdef COMPAT_FREEBSD32
1214			if ((flags & KERN_PROC_MASK32) != 0) {
1215				freebsd32_kinfo_proc_out(&ki, &ki32);
1216				error = sbuf_bcat(sb, &ki32, sizeof(ki32));
1217			} else
1218#endif
1219				error = sbuf_bcat(sb, &ki, sizeof(ki));
1220			if (error)
1221				break;
1222		}
1223	}
1224	PROC_UNLOCK(p);
1225	return (error);
1226}
1227
1228static int
1229sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags,
1230    int doingzomb)
1231{
1232	struct sbuf sb;
1233	struct kinfo_proc ki;
1234	struct proc *np;
1235	int error, error2;
1236	pid_t pid;
1237
1238	pid = p->p_pid;
1239	sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
1240	error = kern_proc_out(p, &sb, flags);
1241	error2 = sbuf_finish(&sb);
1242	sbuf_delete(&sb);
1243	if (error != 0)
1244		return (error);
1245	else if (error2 != 0)
1246		return (error2);
1247	if (doingzomb)
1248		np = zpfind(pid);
1249	else {
1250		if (pid == 0)
1251			return (0);
1252		np = pfind(pid);
1253	}
1254	if (np == NULL)
1255		return (ESRCH);
1256	if (np != p) {
1257		PROC_UNLOCK(np);
1258		return (ESRCH);
1259	}
1260	PROC_UNLOCK(np);
1261	return (0);
1262}
1263
1264static int
1265sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1266{
1267	int *name = (int *)arg1;
1268	u_int namelen = arg2;
1269	struct proc *p;
1270	int flags, doingzomb, oid_number;
1271	int error = 0;
1272
1273	oid_number = oidp->oid_number;
1274	if (oid_number != KERN_PROC_ALL &&
1275	    (oid_number & KERN_PROC_INC_THREAD) == 0)
1276		flags = KERN_PROC_NOTHREADS;
1277	else {
1278		flags = 0;
1279		oid_number &= ~KERN_PROC_INC_THREAD;
1280	}
1281#ifdef COMPAT_FREEBSD32
1282	if (req->flags & SCTL_MASK32)
1283		flags |= KERN_PROC_MASK32;
1284#endif
1285	if (oid_number == KERN_PROC_PID) {
1286		if (namelen != 1)
1287			return (EINVAL);
1288		error = sysctl_wire_old_buffer(req, 0);
1289		if (error)
1290			return (error);
1291		error = pget((pid_t)name[0], PGET_CANSEE, &p);
1292		if (error != 0)
1293			return (error);
1294		error = sysctl_out_proc(p, req, flags, 0);
1295		return (error);
1296	}
1297
1298	switch (oid_number) {
1299	case KERN_PROC_ALL:
1300		if (namelen != 0)
1301			return (EINVAL);
1302		break;
1303	case KERN_PROC_PROC:
1304		if (namelen != 0 && namelen != 1)
1305			return (EINVAL);
1306		break;
1307	default:
1308		if (namelen != 1)
1309			return (EINVAL);
1310		break;
1311	}
1312
1313	if (!req->oldptr) {
1314		/* overestimate by 5 procs */
1315		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1316		if (error)
1317			return (error);
1318	}
1319	error = sysctl_wire_old_buffer(req, 0);
1320	if (error != 0)
1321		return (error);
1322	sx_slock(&allproc_lock);
1323	for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
1324		if (!doingzomb)
1325			p = LIST_FIRST(&allproc);
1326		else
1327			p = LIST_FIRST(&zombproc);
1328		for (; p != 0; p = LIST_NEXT(p, p_list)) {
1329			/*
1330			 * Skip embryonic processes.
1331			 */
1332			PROC_LOCK(p);
1333			if (p->p_state == PRS_NEW) {
1334				PROC_UNLOCK(p);
1335				continue;
1336			}
1337			KASSERT(p->p_ucred != NULL,
1338			    ("process credential is NULL for non-NEW proc"));
1339			/*
1340			 * Show a user only appropriate processes.
1341			 */
1342			if (p_cansee(curthread, p)) {
1343				PROC_UNLOCK(p);
1344				continue;
1345			}
1346			/*
1347			 * TODO - make more efficient (see notes below).
1348			 * do by session.
1349			 */
1350			switch (oid_number) {
1351
1352			case KERN_PROC_GID:
1353				if (p->p_ucred->cr_gid != (gid_t)name[0]) {
1354					PROC_UNLOCK(p);
1355					continue;
1356				}
1357				break;
1358
1359			case KERN_PROC_PGRP:
1360				/* could do this by traversing pgrp */
1361				if (p->p_pgrp == NULL ||
1362				    p->p_pgrp->pg_id != (pid_t)name[0]) {
1363					PROC_UNLOCK(p);
1364					continue;
1365				}
1366				break;
1367
1368			case KERN_PROC_RGID:
1369				if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
1370					PROC_UNLOCK(p);
1371					continue;
1372				}
1373				break;
1374
1375			case KERN_PROC_SESSION:
1376				if (p->p_session == NULL ||
1377				    p->p_session->s_sid != (pid_t)name[0]) {
1378					PROC_UNLOCK(p);
1379					continue;
1380				}
1381				break;
1382
1383			case KERN_PROC_TTY:
1384				if ((p->p_flag & P_CONTROLT) == 0 ||
1385				    p->p_session == NULL) {
1386					PROC_UNLOCK(p);
1387					continue;
1388				}
1389				/* XXX proctree_lock */
1390				SESS_LOCK(p->p_session);
1391				if (p->p_session->s_ttyp == NULL ||
1392				    tty_udev(p->p_session->s_ttyp) !=
1393				    (dev_t)name[0]) {
1394					SESS_UNLOCK(p->p_session);
1395					PROC_UNLOCK(p);
1396					continue;
1397				}
1398				SESS_UNLOCK(p->p_session);
1399				break;
1400
1401			case KERN_PROC_UID:
1402				if (p->p_ucred->cr_uid != (uid_t)name[0]) {
1403					PROC_UNLOCK(p);
1404					continue;
1405				}
1406				break;
1407
1408			case KERN_PROC_RUID:
1409				if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
1410					PROC_UNLOCK(p);
1411					continue;
1412				}
1413				break;
1414
1415			case KERN_PROC_PROC:
1416				break;
1417
1418			default:
1419				break;
1420
1421			}
1422
1423			error = sysctl_out_proc(p, req, flags, doingzomb);
1424			if (error) {
1425				sx_sunlock(&allproc_lock);
1426				return (error);
1427			}
1428		}
1429	}
1430	sx_sunlock(&allproc_lock);
1431	return (0);
1432}
1433
1434struct pargs *
1435pargs_alloc(int len)
1436{
1437	struct pargs *pa;
1438
1439	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1440		M_WAITOK);
1441	refcount_init(&pa->ar_ref, 1);
1442	pa->ar_length = len;
1443	return (pa);
1444}
1445
1446static void
1447pargs_free(struct pargs *pa)
1448{
1449
1450	free(pa, M_PARGS);
1451}
1452
1453void
1454pargs_hold(struct pargs *pa)
1455{
1456
1457	if (pa == NULL)
1458		return;
1459	refcount_acquire(&pa->ar_ref);
1460}
1461
1462void
1463pargs_drop(struct pargs *pa)
1464{
1465
1466	if (pa == NULL)
1467		return;
1468	if (refcount_release(&pa->ar_ref))
1469		pargs_free(pa);
1470}
1471
1472static int
1473proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf,
1474    size_t len)
1475{
1476	struct iovec iov;
1477	struct uio uio;
1478
1479	iov.iov_base = (caddr_t)buf;
1480	iov.iov_len = len;
1481	uio.uio_iov = &iov;
1482	uio.uio_iovcnt = 1;
1483	uio.uio_offset = offset;
1484	uio.uio_resid = (ssize_t)len;
1485	uio.uio_segflg = UIO_SYSSPACE;
1486	uio.uio_rw = UIO_READ;
1487	uio.uio_td = td;
1488
1489	return (proc_rwmem(p, &uio));
1490}
1491
1492static int
1493proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
1494    size_t len)
1495{
1496	size_t i;
1497	int error;
1498
1499	error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len);
1500	/*
1501	 * Reading the chunk may validly return EFAULT if the string is shorter
1502	 * than the chunk and is aligned at the end of the page, assuming the
1503	 * next page is not mapped.  So if EFAULT is returned do a fallback to
1504	 * one byte read loop.
1505	 */
1506	if (error == EFAULT) {
1507		for (i = 0; i < len; i++, buf++, sptr++) {
1508			error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1);
1509			if (error != 0)
1510				return (error);
1511			if (*buf == '\0')
1512				break;
1513		}
1514		error = 0;
1515	}
1516	return (error);
1517}
1518
1519#define PROC_AUXV_MAX	256	/* Safety limit on auxv size. */
1520
1521enum proc_vector_type {
1522	PROC_ARG,
1523	PROC_ENV,
1524	PROC_AUX,
1525};
1526
1527#ifdef COMPAT_FREEBSD32
1528static int
1529get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
1530    size_t *vsizep, enum proc_vector_type type)
1531{
1532	struct freebsd32_ps_strings pss;
1533	Elf32_Auxinfo aux;
1534	vm_offset_t vptr, ptr;
1535	uint32_t *proc_vector32;
1536	char **proc_vector;
1537	size_t vsize, size;
1538	int i, error;
1539
1540	error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
1541	    &pss, sizeof(pss));
1542	if (error != 0)
1543		return (error);
1544	switch (type) {
1545	case PROC_ARG:
1546		vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
1547		vsize = pss.ps_nargvstr;
1548		if (vsize > ARG_MAX)
1549			return (ENOEXEC);
1550		size = vsize * sizeof(int32_t);
1551		break;
1552	case PROC_ENV:
1553		vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
1554		vsize = pss.ps_nenvstr;
1555		if (vsize > ARG_MAX)
1556			return (ENOEXEC);
1557		size = vsize * sizeof(int32_t);
1558		break;
1559	case PROC_AUX:
1560		vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
1561		    (pss.ps_nenvstr + 1) * sizeof(int32_t);
1562		if (vptr % 4 != 0)
1563			return (ENOEXEC);
1564		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1565			error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
1566			if (error != 0)
1567				return (error);
1568			if (aux.a_type == AT_NULL)
1569				break;
1570			ptr += sizeof(aux);
1571		}
1572		if (aux.a_type != AT_NULL)
1573			return (ENOEXEC);
1574		vsize = i + 1;
1575		size = vsize * sizeof(aux);
1576		break;
1577	default:
1578		KASSERT(0, ("Wrong proc vector type: %d", type));
1579		return (EINVAL);
1580	}
1581	proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
1582	error = proc_read_mem(td, p, vptr, proc_vector32, size);
1583	if (error != 0)
1584		goto done;
1585	if (type == PROC_AUX) {
1586		*proc_vectorp = (char **)proc_vector32;
1587		*vsizep = vsize;
1588		return (0);
1589	}
1590	proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
1591	for (i = 0; i < (int)vsize; i++)
1592		proc_vector[i] = PTRIN(proc_vector32[i]);
1593	*proc_vectorp = proc_vector;
1594	*vsizep = vsize;
1595done:
1596	free(proc_vector32, M_TEMP);
1597	return (error);
1598}
1599#endif
1600
1601static int
1602get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
1603    size_t *vsizep, enum proc_vector_type type)
1604{
1605	struct ps_strings pss;
1606	Elf_Auxinfo aux;
1607	vm_offset_t vptr, ptr;
1608	char **proc_vector;
1609	size_t vsize, size;
1610	int error, i;
1611
1612#ifdef COMPAT_FREEBSD32
1613	if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1614		return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
1615#endif
1616	error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
1617	    &pss, sizeof(pss));
1618	if (error != 0)
1619		return (error);
1620	switch (type) {
1621	case PROC_ARG:
1622		vptr = (vm_offset_t)pss.ps_argvstr;
1623		vsize = pss.ps_nargvstr;
1624		if (vsize > ARG_MAX)
1625			return (ENOEXEC);
1626		size = vsize * sizeof(char *);
1627		break;
1628	case PROC_ENV:
1629		vptr = (vm_offset_t)pss.ps_envstr;
1630		vsize = pss.ps_nenvstr;
1631		if (vsize > ARG_MAX)
1632			return (ENOEXEC);
1633		size = vsize * sizeof(char *);
1634		break;
1635	case PROC_AUX:
1636		/*
1637		 * The aux array is just above env array on the stack. Check
1638		 * that the address is naturally aligned.
1639		 */
1640		vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
1641		    * sizeof(char *);
1642#if __ELF_WORD_SIZE == 64
1643		if (vptr % sizeof(uint64_t) != 0)
1644#else
1645		if (vptr % sizeof(uint32_t) != 0)
1646#endif
1647			return (ENOEXEC);
1648		/*
1649		 * We count the array size reading the aux vectors from the
1650		 * stack until AT_NULL vector is returned.  So (to keep the code
1651		 * simple) we read the process stack twice: the first time here
1652		 * to find the size and the second time when copying the vectors
1653		 * to the allocated proc_vector.
1654		 */
1655		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1656			error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
1657			if (error != 0)
1658				return (error);
1659			if (aux.a_type == AT_NULL)
1660				break;
1661			ptr += sizeof(aux);
1662		}
1663		/*
1664		 * If the PROC_AUXV_MAX entries are iterated over, and we have
1665		 * not reached AT_NULL, it is most likely we are reading wrong
1666		 * data: either the process doesn't have auxv array or data has
1667		 * been modified. Return the error in this case.
1668		 */
1669		if (aux.a_type != AT_NULL)
1670			return (ENOEXEC);
1671		vsize = i + 1;
1672		size = vsize * sizeof(aux);
1673		break;
1674	default:
1675		KASSERT(0, ("Wrong proc vector type: %d", type));
1676		return (EINVAL); /* In case we are built without INVARIANTS. */
1677	}
1678	proc_vector = malloc(size, M_TEMP, M_WAITOK);
1679	if (proc_vector == NULL)
1680		return (ENOMEM);
1681	error = proc_read_mem(td, p, vptr, proc_vector, size);
1682	if (error != 0) {
1683		free(proc_vector, M_TEMP);
1684		return (error);
1685	}
1686	*proc_vectorp = proc_vector;
1687	*vsizep = vsize;
1688
1689	return (0);
1690}
1691
1692#define GET_PS_STRINGS_CHUNK_SZ	256	/* Chunk size (bytes) for ps_strings operations. */
1693
1694static int
1695get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
1696    enum proc_vector_type type)
1697{
1698	size_t done, len, nchr, vsize;
1699	int error, i;
1700	char **proc_vector, *sptr;
1701	char pss_string[GET_PS_STRINGS_CHUNK_SZ];
1702
1703	PROC_ASSERT_HELD(p);
1704
1705	/*
1706	 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
1707	 */
1708	nchr = 2 * (PATH_MAX + ARG_MAX);
1709
1710	error = get_proc_vector(td, p, &proc_vector, &vsize, type);
1711	if (error != 0)
1712		return (error);
1713	for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
1714		/*
1715		 * The program may have scribbled into its argv array, e.g. to
1716		 * remove some arguments.  If that has happened, break out
1717		 * before trying to read from NULL.
1718		 */
1719		if (proc_vector[i] == NULL)
1720			break;
1721		for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
1722			error = proc_read_string(td, p, sptr, pss_string,
1723			    sizeof(pss_string));
1724			if (error != 0)
1725				goto done;
1726			len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
1727			if (done + len >= nchr)
1728				len = nchr - done - 1;
1729			sbuf_bcat(sb, pss_string, len);
1730			if (len != GET_PS_STRINGS_CHUNK_SZ)
1731				break;
1732			done += GET_PS_STRINGS_CHUNK_SZ;
1733		}
1734		sbuf_bcat(sb, "", 1);
1735		done += len + 1;
1736	}
1737done:
1738	free(proc_vector, M_TEMP);
1739	return (error);
1740}
1741
1742int
1743proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
1744{
1745
1746	return (get_ps_strings(curthread, p, sb, PROC_ARG));
1747}
1748
1749int
1750proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
1751{
1752
1753	return (get_ps_strings(curthread, p, sb, PROC_ENV));
1754}
1755
1756int
1757proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
1758{
1759	size_t vsize, size;
1760	char **auxv;
1761	int error;
1762
1763	error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
1764	if (error == 0) {
1765#ifdef COMPAT_FREEBSD32
1766		if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1767			size = vsize * sizeof(Elf32_Auxinfo);
1768		else
1769#endif
1770			size = vsize * sizeof(Elf_Auxinfo);
1771		error = sbuf_bcat(sb, auxv, size);
1772		free(auxv, M_TEMP);
1773	}
1774	return (error);
1775}
1776
1777/*
1778 * This sysctl allows a process to retrieve the argument list or process
1779 * title for another process without groping around in the address space
1780 * of the other process.  It also allow a process to set its own "process
1781 * title to a string of its own choice.
1782 */
1783static int
1784sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1785{
1786	int *name = (int *)arg1;
1787	u_int namelen = arg2;
1788	struct pargs *newpa, *pa;
1789	struct proc *p;
1790	struct sbuf sb;
1791	int flags, error = 0, error2;
1792
1793	if (namelen != 1)
1794		return (EINVAL);
1795
1796	flags = PGET_CANSEE;
1797	if (req->newptr != NULL)
1798		flags |= PGET_ISCURRENT;
1799	error = pget((pid_t)name[0], flags, &p);
1800	if (error)
1801		return (error);
1802
1803	pa = p->p_args;
1804	if (pa != NULL) {
1805		pargs_hold(pa);
1806		PROC_UNLOCK(p);
1807		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1808		pargs_drop(pa);
1809	} else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
1810		_PHOLD(p);
1811		PROC_UNLOCK(p);
1812		sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1813		error = proc_getargv(curthread, p, &sb);
1814		error2 = sbuf_finish(&sb);
1815		PRELE(p);
1816		sbuf_delete(&sb);
1817		if (error == 0 && error2 != 0)
1818			error = error2;
1819	} else {
1820		PROC_UNLOCK(p);
1821	}
1822	if (error != 0 || req->newptr == NULL)
1823		return (error);
1824
1825	if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
1826		return (ENOMEM);
1827	newpa = pargs_alloc(req->newlen);
1828	error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
1829	if (error != 0) {
1830		pargs_free(newpa);
1831		return (error);
1832	}
1833	PROC_LOCK(p);
1834	pa = p->p_args;
1835	p->p_args = newpa;
1836	PROC_UNLOCK(p);
1837	pargs_drop(pa);
1838	return (0);
1839}
1840
1841/*
1842 * This sysctl allows a process to retrieve environment of another process.
1843 */
1844static int
1845sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
1846{
1847	int *name = (int *)arg1;
1848	u_int namelen = arg2;
1849	struct proc *p;
1850	struct sbuf sb;
1851	int error, error2;
1852
1853	if (namelen != 1)
1854		return (EINVAL);
1855
1856	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1857	if (error != 0)
1858		return (error);
1859	if ((p->p_flag & P_SYSTEM) != 0) {
1860		PRELE(p);
1861		return (0);
1862	}
1863
1864	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1865	error = proc_getenvv(curthread, p, &sb);
1866	error2 = sbuf_finish(&sb);
1867	PRELE(p);
1868	sbuf_delete(&sb);
1869	return (error != 0 ? error : error2);
1870}
1871
1872/*
1873 * This sysctl allows a process to retrieve ELF auxiliary vector of
1874 * another process.
1875 */
1876static int
1877sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
1878{
1879	int *name = (int *)arg1;
1880	u_int namelen = arg2;
1881	struct proc *p;
1882	struct sbuf sb;
1883	int error, error2;
1884
1885	if (namelen != 1)
1886		return (EINVAL);
1887
1888	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1889	if (error != 0)
1890		return (error);
1891	if ((p->p_flag & P_SYSTEM) != 0) {
1892		PRELE(p);
1893		return (0);
1894	}
1895	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1896	error = proc_getauxv(curthread, p, &sb);
1897	error2 = sbuf_finish(&sb);
1898	PRELE(p);
1899	sbuf_delete(&sb);
1900	return (error != 0 ? error : error2);
1901}
1902
1903/*
1904 * This sysctl allows a process to retrieve the path of the executable for
1905 * itself or another process.
1906 */
1907static int
1908sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
1909{
1910	pid_t *pidp = (pid_t *)arg1;
1911	unsigned int arglen = arg2;
1912	struct proc *p;
1913	struct vnode *vp;
1914	char *retbuf, *freebuf;
1915	int error;
1916
1917	if (arglen != 1)
1918		return (EINVAL);
1919	if (*pidp == -1) {	/* -1 means this process */
1920		p = req->td->td_proc;
1921	} else {
1922		error = pget(*pidp, PGET_CANSEE, &p);
1923		if (error != 0)
1924			return (error);
1925	}
1926
1927	vp = p->p_textvp;
1928	if (vp == NULL) {
1929		if (*pidp != -1)
1930			PROC_UNLOCK(p);
1931		return (0);
1932	}
1933	vref(vp);
1934	if (*pidp != -1)
1935		PROC_UNLOCK(p);
1936	error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
1937	vrele(vp);
1938	if (error)
1939		return (error);
1940	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
1941	free(freebuf, M_TEMP);
1942	return (error);
1943}
1944
1945static int
1946sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
1947{
1948	struct proc *p;
1949	char *sv_name;
1950	int *name;
1951	int namelen;
1952	int error;
1953
1954	namelen = arg2;
1955	if (namelen != 1)
1956		return (EINVAL);
1957
1958	name = (int *)arg1;
1959	error = pget((pid_t)name[0], PGET_CANSEE, &p);
1960	if (error != 0)
1961		return (error);
1962	sv_name = p->p_sysent->sv_name;
1963	PROC_UNLOCK(p);
1964	return (sysctl_handle_string(oidp, sv_name, 0, req));
1965}
1966
1967#ifdef KINFO_OVMENTRY_SIZE
1968CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
1969#endif
1970
1971#ifdef COMPAT_FREEBSD7
1972static int
1973sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
1974{
1975	vm_map_entry_t entry, tmp_entry;
1976	unsigned int last_timestamp;
1977	char *fullpath, *freepath;
1978	struct kinfo_ovmentry *kve;
1979	struct vattr va;
1980	struct ucred *cred;
1981	int error, *name;
1982	struct vnode *vp;
1983	struct proc *p;
1984	vm_map_t map;
1985	struct vmspace *vm;
1986
1987	name = (int *)arg1;
1988	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1989	if (error != 0)
1990		return (error);
1991	vm = vmspace_acquire_ref(p);
1992	if (vm == NULL) {
1993		PRELE(p);
1994		return (ESRCH);
1995	}
1996	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
1997
1998	map = &vm->vm_map;
1999	vm_map_lock_read(map);
2000	for (entry = map->header.next; entry != &map->header;
2001	    entry = entry->next) {
2002		vm_object_t obj, tobj, lobj;
2003		vm_offset_t addr;
2004
2005		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2006			continue;
2007
2008		bzero(kve, sizeof(*kve));
2009		kve->kve_structsize = sizeof(*kve);
2010
2011		kve->kve_private_resident = 0;
2012		obj = entry->object.vm_object;
2013		if (obj != NULL) {
2014			VM_OBJECT_RLOCK(obj);
2015			if (obj->shadow_count == 1)
2016				kve->kve_private_resident =
2017				    obj->resident_page_count;
2018		}
2019		kve->kve_resident = 0;
2020		addr = entry->start;
2021		while (addr < entry->end) {
2022			if (pmap_extract(map->pmap, addr))
2023				kve->kve_resident++;
2024			addr += PAGE_SIZE;
2025		}
2026
2027		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
2028			if (tobj != obj)
2029				VM_OBJECT_RLOCK(tobj);
2030			if (lobj != obj)
2031				VM_OBJECT_RUNLOCK(lobj);
2032			lobj = tobj;
2033		}
2034
2035		kve->kve_start = (void*)entry->start;
2036		kve->kve_end = (void*)entry->end;
2037		kve->kve_offset = (off_t)entry->offset;
2038
2039		if (entry->protection & VM_PROT_READ)
2040			kve->kve_protection |= KVME_PROT_READ;
2041		if (entry->protection & VM_PROT_WRITE)
2042			kve->kve_protection |= KVME_PROT_WRITE;
2043		if (entry->protection & VM_PROT_EXECUTE)
2044			kve->kve_protection |= KVME_PROT_EXEC;
2045
2046		if (entry->eflags & MAP_ENTRY_COW)
2047			kve->kve_flags |= KVME_FLAG_COW;
2048		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2049			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2050		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2051			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2052
2053		last_timestamp = map->timestamp;
2054		vm_map_unlock_read(map);
2055
2056		kve->kve_fileid = 0;
2057		kve->kve_fsid = 0;
2058		freepath = NULL;
2059		fullpath = "";
2060		if (lobj) {
2061			vp = NULL;
2062			switch (lobj->type) {
2063			case OBJT_DEFAULT:
2064				kve->kve_type = KVME_TYPE_DEFAULT;
2065				break;
2066			case OBJT_VNODE:
2067				kve->kve_type = KVME_TYPE_VNODE;
2068				vp = lobj->handle;
2069				vref(vp);
2070				break;
2071			case OBJT_SWAP:
2072				kve->kve_type = KVME_TYPE_SWAP;
2073				break;
2074			case OBJT_DEVICE:
2075				kve->kve_type = KVME_TYPE_DEVICE;
2076				break;
2077			case OBJT_PHYS:
2078				kve->kve_type = KVME_TYPE_PHYS;
2079				break;
2080			case OBJT_DEAD:
2081				kve->kve_type = KVME_TYPE_DEAD;
2082				break;
2083			case OBJT_SG:
2084				kve->kve_type = KVME_TYPE_SG;
2085				break;
2086			default:
2087				kve->kve_type = KVME_TYPE_UNKNOWN;
2088				break;
2089			}
2090			if (lobj != obj)
2091				VM_OBJECT_RUNLOCK(lobj);
2092
2093			kve->kve_ref_count = obj->ref_count;
2094			kve->kve_shadow_count = obj->shadow_count;
2095			VM_OBJECT_RUNLOCK(obj);
2096			if (vp != NULL) {
2097				vn_fullpath(curthread, vp, &fullpath,
2098				    &freepath);
2099				cred = curthread->td_ucred;
2100				vn_lock(vp, LK_SHARED | LK_RETRY);
2101				if (VOP_GETATTR(vp, &va, cred) == 0) {
2102					kve->kve_fileid = va.va_fileid;
2103					kve->kve_fsid = va.va_fsid;
2104				}
2105				vput(vp);
2106			}
2107		} else {
2108			kve->kve_type = KVME_TYPE_NONE;
2109			kve->kve_ref_count = 0;
2110			kve->kve_shadow_count = 0;
2111		}
2112
2113		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2114		if (freepath != NULL)
2115			free(freepath, M_TEMP);
2116
2117		error = SYSCTL_OUT(req, kve, sizeof(*kve));
2118		vm_map_lock_read(map);
2119		if (error)
2120			break;
2121		if (last_timestamp != map->timestamp) {
2122			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2123			entry = tmp_entry;
2124		}
2125	}
2126	vm_map_unlock_read(map);
2127	vmspace_free(vm);
2128	PRELE(p);
2129	free(kve, M_TEMP);
2130	return (error);
2131}
2132#endif	/* COMPAT_FREEBSD7 */
2133
2134#ifdef KINFO_VMENTRY_SIZE
2135CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2136#endif
2137
2138static void
2139kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
2140    struct kinfo_vmentry *kve)
2141{
2142	vm_object_t obj, tobj;
2143	vm_page_t m, m_adv;
2144	vm_offset_t addr;
2145	vm_paddr_t locked_pa;
2146	vm_pindex_t pi, pi_adv, pindex;
2147
2148	locked_pa = 0;
2149	obj = entry->object.vm_object;
2150	addr = entry->start;
2151	m_adv = NULL;
2152	pi = OFF_TO_IDX(entry->offset);
2153	for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
2154		if (m_adv != NULL) {
2155			m = m_adv;
2156		} else {
2157			pi_adv = OFF_TO_IDX(entry->end - addr);
2158			pindex = pi;
2159			for (tobj = obj;; tobj = tobj->backing_object) {
2160				m = vm_page_find_least(tobj, pindex);
2161				if (m != NULL) {
2162					if (m->pindex == pindex)
2163						break;
2164					if (pi_adv > m->pindex - pindex) {
2165						pi_adv = m->pindex - pindex;
2166						m_adv = m;
2167					}
2168				}
2169				if (tobj->backing_object == NULL)
2170					goto next;
2171				pindex += OFF_TO_IDX(tobj->
2172				    backing_object_offset);
2173			}
2174		}
2175		m_adv = NULL;
2176		if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
2177		    (addr & (pagesizes[1] - 1)) == 0 &&
2178		    (pmap_mincore(map->pmap, addr, &locked_pa) &
2179		    MINCORE_SUPER) != 0) {
2180			kve->kve_flags |= KVME_FLAG_SUPER;
2181			pi_adv = OFF_TO_IDX(pagesizes[1]);
2182		} else {
2183			/*
2184			 * We do not test the found page on validity.
2185			 * Either the page is busy and being paged in,
2186			 * or it was invalidated.  The first case
2187			 * should be counted as resident, the second
2188			 * is not so clear; we do account both.
2189			 */
2190			pi_adv = 1;
2191		}
2192		kve->kve_resident += pi_adv;
2193next:;
2194	}
2195	PA_UNLOCK_COND(locked_pa);
2196}
2197
2198/*
2199 * Must be called with the process locked and will return unlocked.
2200 */
2201int
2202kern_proc_vmmap_out(struct proc *p, struct sbuf *sb)
2203{
2204	vm_map_entry_t entry, tmp_entry;
2205	struct vattr va;
2206	vm_map_t map;
2207	vm_object_t obj, tobj, lobj;
2208	char *fullpath, *freepath;
2209	struct kinfo_vmentry *kve;
2210	struct ucred *cred;
2211	struct vnode *vp;
2212	struct vmspace *vm;
2213	vm_offset_t addr;
2214	unsigned int last_timestamp;
2215	int error;
2216
2217	PROC_LOCK_ASSERT(p, MA_OWNED);
2218
2219	_PHOLD(p);
2220	PROC_UNLOCK(p);
2221	vm = vmspace_acquire_ref(p);
2222	if (vm == NULL) {
2223		PRELE(p);
2224		return (ESRCH);
2225	}
2226	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
2227
2228	error = 0;
2229	map = &vm->vm_map;
2230	vm_map_lock_read(map);
2231	for (entry = map->header.next; entry != &map->header;
2232	    entry = entry->next) {
2233		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2234			continue;
2235
2236		addr = entry->end;
2237		bzero(kve, sizeof(*kve));
2238		obj = entry->object.vm_object;
2239		if (obj != NULL) {
2240			for (tobj = obj; tobj != NULL;
2241			    tobj = tobj->backing_object) {
2242				VM_OBJECT_RLOCK(tobj);
2243				lobj = tobj;
2244			}
2245			if (obj->backing_object == NULL)
2246				kve->kve_private_resident =
2247				    obj->resident_page_count;
2248			if (!vmmap_skip_res_cnt)
2249				kern_proc_vmmap_resident(map, entry, kve);
2250			for (tobj = obj; tobj != NULL;
2251			    tobj = tobj->backing_object) {
2252				if (tobj != obj && tobj != lobj)
2253					VM_OBJECT_RUNLOCK(tobj);
2254			}
2255		} else {
2256			lobj = NULL;
2257		}
2258
2259		kve->kve_start = entry->start;
2260		kve->kve_end = entry->end;
2261		kve->kve_offset = entry->offset;
2262
2263		if (entry->protection & VM_PROT_READ)
2264			kve->kve_protection |= KVME_PROT_READ;
2265		if (entry->protection & VM_PROT_WRITE)
2266			kve->kve_protection |= KVME_PROT_WRITE;
2267		if (entry->protection & VM_PROT_EXECUTE)
2268			kve->kve_protection |= KVME_PROT_EXEC;
2269
2270		if (entry->eflags & MAP_ENTRY_COW)
2271			kve->kve_flags |= KVME_FLAG_COW;
2272		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2273			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2274		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2275			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2276		if (entry->eflags & MAP_ENTRY_GROWS_UP)
2277			kve->kve_flags |= KVME_FLAG_GROWS_UP;
2278		if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
2279			kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
2280
2281		last_timestamp = map->timestamp;
2282		vm_map_unlock_read(map);
2283
2284		freepath = NULL;
2285		fullpath = "";
2286		if (lobj != NULL) {
2287			vp = NULL;
2288			switch (lobj->type) {
2289			case OBJT_DEFAULT:
2290				kve->kve_type = KVME_TYPE_DEFAULT;
2291				break;
2292			case OBJT_VNODE:
2293				kve->kve_type = KVME_TYPE_VNODE;
2294				vp = lobj->handle;
2295				vref(vp);
2296				break;
2297			case OBJT_SWAP:
2298				kve->kve_type = KVME_TYPE_SWAP;
2299				break;
2300			case OBJT_DEVICE:
2301				kve->kve_type = KVME_TYPE_DEVICE;
2302				break;
2303			case OBJT_PHYS:
2304				kve->kve_type = KVME_TYPE_PHYS;
2305				break;
2306			case OBJT_DEAD:
2307				kve->kve_type = KVME_TYPE_DEAD;
2308				break;
2309			case OBJT_SG:
2310				kve->kve_type = KVME_TYPE_SG;
2311				break;
2312			case OBJT_MGTDEVICE:
2313				kve->kve_type = KVME_TYPE_MGTDEVICE;
2314				break;
2315			default:
2316				kve->kve_type = KVME_TYPE_UNKNOWN;
2317				break;
2318			}
2319			if (lobj != obj)
2320				VM_OBJECT_RUNLOCK(lobj);
2321
2322			kve->kve_ref_count = obj->ref_count;
2323			kve->kve_shadow_count = obj->shadow_count;
2324			VM_OBJECT_RUNLOCK(obj);
2325			if (vp != NULL) {
2326				vn_fullpath(curthread, vp, &fullpath,
2327				    &freepath);
2328				kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
2329				cred = curthread->td_ucred;
2330				vn_lock(vp, LK_SHARED | LK_RETRY);
2331				if (VOP_GETATTR(vp, &va, cred) == 0) {
2332					kve->kve_vn_fileid = va.va_fileid;
2333					kve->kve_vn_fsid = va.va_fsid;
2334					kve->kve_vn_mode =
2335					    MAKEIMODE(va.va_type, va.va_mode);
2336					kve->kve_vn_size = va.va_size;
2337					kve->kve_vn_rdev = va.va_rdev;
2338					kve->kve_status = KF_ATTR_VALID;
2339				}
2340				vput(vp);
2341			}
2342		} else {
2343			kve->kve_type = KVME_TYPE_NONE;
2344			kve->kve_ref_count = 0;
2345			kve->kve_shadow_count = 0;
2346		}
2347
2348		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2349		if (freepath != NULL)
2350			free(freepath, M_TEMP);
2351
2352		/* Pack record size down */
2353		kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) +
2354		    strlen(kve->kve_path) + 1;
2355		kve->kve_structsize = roundup(kve->kve_structsize,
2356		    sizeof(uint64_t));
2357		error = sbuf_bcat(sb, kve, kve->kve_structsize);
2358		vm_map_lock_read(map);
2359		if (error)
2360			break;
2361		if (last_timestamp != map->timestamp) {
2362			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2363			entry = tmp_entry;
2364		}
2365	}
2366	vm_map_unlock_read(map);
2367	vmspace_free(vm);
2368	PRELE(p);
2369	free(kve, M_TEMP);
2370	return (error);
2371}
2372
2373static int
2374sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
2375{
2376	struct proc *p;
2377	struct sbuf sb;
2378	int error, error2, *name;
2379
2380	name = (int *)arg1;
2381	sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
2382	error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
2383	if (error != 0) {
2384		sbuf_delete(&sb);
2385		return (error);
2386	}
2387	error = kern_proc_vmmap_out(p, &sb);
2388	error2 = sbuf_finish(&sb);
2389	sbuf_delete(&sb);
2390	return (error != 0 ? error : error2);
2391}
2392
2393#if defined(STACK) || defined(DDB)
2394static int
2395sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
2396{
2397	struct kinfo_kstack *kkstp;
2398	int error, i, *name, numthreads;
2399	lwpid_t *lwpidarray;
2400	struct thread *td;
2401	struct stack *st;
2402	struct sbuf sb;
2403	struct proc *p;
2404
2405	name = (int *)arg1;
2406	error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
2407	if (error != 0)
2408		return (error);
2409
2410	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
2411	st = stack_create();
2412
2413	lwpidarray = NULL;
2414	numthreads = 0;
2415	PROC_LOCK(p);
2416repeat:
2417	if (numthreads < p->p_numthreads) {
2418		if (lwpidarray != NULL) {
2419			free(lwpidarray, M_TEMP);
2420			lwpidarray = NULL;
2421		}
2422		numthreads = p->p_numthreads;
2423		PROC_UNLOCK(p);
2424		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
2425		    M_WAITOK | M_ZERO);
2426		PROC_LOCK(p);
2427		goto repeat;
2428	}
2429	i = 0;
2430
2431	/*
2432	 * XXXRW: During the below loop, execve(2) and countless other sorts
2433	 * of changes could have taken place.  Should we check to see if the
2434	 * vmspace has been replaced, or the like, in order to prevent
2435	 * giving a snapshot that spans, say, execve(2), with some threads
2436	 * before and some after?  Among other things, the credentials could
2437	 * have changed, in which case the right to extract debug info might
2438	 * no longer be assured.
2439	 */
2440	FOREACH_THREAD_IN_PROC(p, td) {
2441		KASSERT(i < numthreads,
2442		    ("sysctl_kern_proc_kstack: numthreads"));
2443		lwpidarray[i] = td->td_tid;
2444		i++;
2445	}
2446	numthreads = i;
2447	for (i = 0; i < numthreads; i++) {
2448		td = thread_find(p, lwpidarray[i]);
2449		if (td == NULL) {
2450			continue;
2451		}
2452		bzero(kkstp, sizeof(*kkstp));
2453		(void)sbuf_new(&sb, kkstp->kkst_trace,
2454		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
2455		thread_lock(td);
2456		kkstp->kkst_tid = td->td_tid;
2457		if (TD_IS_SWAPPED(td))
2458			kkstp->kkst_state = KKST_STATE_SWAPPED;
2459		else if (TD_IS_RUNNING(td))
2460			kkstp->kkst_state = KKST_STATE_RUNNING;
2461		else {
2462			kkstp->kkst_state = KKST_STATE_STACKOK;
2463			stack_save_td(st, td);
2464		}
2465		thread_unlock(td);
2466		PROC_UNLOCK(p);
2467		stack_sbuf_print(&sb, st);
2468		sbuf_finish(&sb);
2469		sbuf_delete(&sb);
2470		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
2471		PROC_LOCK(p);
2472		if (error)
2473			break;
2474	}
2475	_PRELE(p);
2476	PROC_UNLOCK(p);
2477	if (lwpidarray != NULL)
2478		free(lwpidarray, M_TEMP);
2479	stack_destroy(st);
2480	free(kkstp, M_TEMP);
2481	return (error);
2482}
2483#endif
2484
2485/*
2486 * This sysctl allows a process to retrieve the full list of groups from
2487 * itself or another process.
2488 */
2489static int
2490sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
2491{
2492	pid_t *pidp = (pid_t *)arg1;
2493	unsigned int arglen = arg2;
2494	struct proc *p;
2495	struct ucred *cred;
2496	int error;
2497
2498	if (arglen != 1)
2499		return (EINVAL);
2500	if (*pidp == -1) {	/* -1 means this process */
2501		p = req->td->td_proc;
2502	} else {
2503		error = pget(*pidp, PGET_CANSEE, &p);
2504		if (error != 0)
2505			return (error);
2506	}
2507
2508	cred = crhold(p->p_ucred);
2509	if (*pidp != -1)
2510		PROC_UNLOCK(p);
2511
2512	error = SYSCTL_OUT(req, cred->cr_groups,
2513	    cred->cr_ngroups * sizeof(gid_t));
2514	crfree(cred);
2515	return (error);
2516}
2517
2518/*
2519 * This sysctl allows a process to retrieve or/and set the resource limit for
2520 * another process.
2521 */
2522static int
2523sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
2524{
2525	int *name = (int *)arg1;
2526	u_int namelen = arg2;
2527	struct rlimit rlim;
2528	struct proc *p;
2529	u_int which;
2530	int flags, error;
2531
2532	if (namelen != 2)
2533		return (EINVAL);
2534
2535	which = (u_int)name[1];
2536	if (which >= RLIM_NLIMITS)
2537		return (EINVAL);
2538
2539	if (req->newptr != NULL && req->newlen != sizeof(rlim))
2540		return (EINVAL);
2541
2542	flags = PGET_HOLD | PGET_NOTWEXIT;
2543	if (req->newptr != NULL)
2544		flags |= PGET_CANDEBUG;
2545	else
2546		flags |= PGET_CANSEE;
2547	error = pget((pid_t)name[0], flags, &p);
2548	if (error != 0)
2549		return (error);
2550
2551	/*
2552	 * Retrieve limit.
2553	 */
2554	if (req->oldptr != NULL) {
2555		PROC_LOCK(p);
2556		lim_rlimit(p, which, &rlim);
2557		PROC_UNLOCK(p);
2558	}
2559	error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
2560	if (error != 0)
2561		goto errout;
2562
2563	/*
2564	 * Set limit.
2565	 */
2566	if (req->newptr != NULL) {
2567		error = SYSCTL_IN(req, &rlim, sizeof(rlim));
2568		if (error == 0)
2569			error = kern_proc_setrlimit(curthread, p, which, &rlim);
2570	}
2571
2572errout:
2573	PRELE(p);
2574	return (error);
2575}
2576
2577/*
2578 * This sysctl allows a process to retrieve ps_strings structure location of
2579 * another process.
2580 */
2581static int
2582sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
2583{
2584	int *name = (int *)arg1;
2585	u_int namelen = arg2;
2586	struct proc *p;
2587	vm_offset_t ps_strings;
2588	int error;
2589#ifdef COMPAT_FREEBSD32
2590	uint32_t ps_strings32;
2591#endif
2592
2593	if (namelen != 1)
2594		return (EINVAL);
2595
2596	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2597	if (error != 0)
2598		return (error);
2599#ifdef COMPAT_FREEBSD32
2600	if ((req->flags & SCTL_MASK32) != 0) {
2601		/*
2602		 * We return 0 if the 32 bit emulation request is for a 64 bit
2603		 * process.
2604		 */
2605		ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
2606		    PTROUT(p->p_sysent->sv_psstrings) : 0;
2607		PROC_UNLOCK(p);
2608		error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
2609		return (error);
2610	}
2611#endif
2612	ps_strings = p->p_sysent->sv_psstrings;
2613	PROC_UNLOCK(p);
2614	error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
2615	return (error);
2616}
2617
2618/*
2619 * This sysctl allows a process to retrieve umask of another process.
2620 */
2621static int
2622sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
2623{
2624	int *name = (int *)arg1;
2625	u_int namelen = arg2;
2626	struct proc *p;
2627	int error;
2628	u_short fd_cmask;
2629
2630	if (namelen != 1)
2631		return (EINVAL);
2632
2633	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2634	if (error != 0)
2635		return (error);
2636
2637	FILEDESC_SLOCK(p->p_fd);
2638	fd_cmask = p->p_fd->fd_cmask;
2639	FILEDESC_SUNLOCK(p->p_fd);
2640	PRELE(p);
2641	error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask));
2642	return (error);
2643}
2644
2645/*
2646 * This sysctl allows a process to set and retrieve binary osreldate of
2647 * another process.
2648 */
2649static int
2650sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
2651{
2652	int *name = (int *)arg1;
2653	u_int namelen = arg2;
2654	struct proc *p;
2655	int flags, error, osrel;
2656
2657	if (namelen != 1)
2658		return (EINVAL);
2659
2660	if (req->newptr != NULL && req->newlen != sizeof(osrel))
2661		return (EINVAL);
2662
2663	flags = PGET_HOLD | PGET_NOTWEXIT;
2664	if (req->newptr != NULL)
2665		flags |= PGET_CANDEBUG;
2666	else
2667		flags |= PGET_CANSEE;
2668	error = pget((pid_t)name[0], flags, &p);
2669	if (error != 0)
2670		return (error);
2671
2672	error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
2673	if (error != 0)
2674		goto errout;
2675
2676	if (req->newptr != NULL) {
2677		error = SYSCTL_IN(req, &osrel, sizeof(osrel));
2678		if (error != 0)
2679			goto errout;
2680		if (osrel < 0) {
2681			error = EINVAL;
2682			goto errout;
2683		}
2684		p->p_osrel = osrel;
2685	}
2686errout:
2687	PRELE(p);
2688	return (error);
2689}
2690
2691static int
2692sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
2693{
2694	int *name = (int *)arg1;
2695	u_int namelen = arg2;
2696	struct proc *p;
2697	struct kinfo_sigtramp kst;
2698	const struct sysentvec *sv;
2699	int error;
2700#ifdef COMPAT_FREEBSD32
2701	struct kinfo_sigtramp32 kst32;
2702#endif
2703
2704	if (namelen != 1)
2705		return (EINVAL);
2706
2707	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2708	if (error != 0)
2709		return (error);
2710	sv = p->p_sysent;
2711#ifdef COMPAT_FREEBSD32
2712	if ((req->flags & SCTL_MASK32) != 0) {
2713		bzero(&kst32, sizeof(kst32));
2714		if (SV_PROC_FLAG(p, SV_ILP32)) {
2715			if (sv->sv_sigcode_base != 0) {
2716				kst32.ksigtramp_start = sv->sv_sigcode_base;
2717				kst32.ksigtramp_end = sv->sv_sigcode_base +
2718				    *sv->sv_szsigcode;
2719			} else {
2720				kst32.ksigtramp_start = sv->sv_psstrings -
2721				    *sv->sv_szsigcode;
2722				kst32.ksigtramp_end = sv->sv_psstrings;
2723			}
2724		}
2725		PROC_UNLOCK(p);
2726		error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
2727		return (error);
2728	}
2729#endif
2730	bzero(&kst, sizeof(kst));
2731	if (sv->sv_sigcode_base != 0) {
2732		kst.ksigtramp_start = (char *)sv->sv_sigcode_base;
2733		kst.ksigtramp_end = (char *)sv->sv_sigcode_base +
2734		    *sv->sv_szsigcode;
2735	} else {
2736		kst.ksigtramp_start = (char *)sv->sv_psstrings -
2737		    *sv->sv_szsigcode;
2738		kst.ksigtramp_end = (char *)sv->sv_psstrings;
2739	}
2740	PROC_UNLOCK(p);
2741	error = SYSCTL_OUT(req, &kst, sizeof(kst));
2742	return (error);
2743}
2744
2745SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
2746
2747SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
2748	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
2749	"Return entire process table");
2750
2751static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2752	sysctl_kern_proc, "Process table");
2753
2754static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
2755	sysctl_kern_proc, "Process table");
2756
2757static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2758	sysctl_kern_proc, "Process table");
2759
2760static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
2761	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2762
2763static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
2764	sysctl_kern_proc, "Process table");
2765
2766static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2767	sysctl_kern_proc, "Process table");
2768
2769static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2770	sysctl_kern_proc, "Process table");
2771
2772static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2773	sysctl_kern_proc, "Process table");
2774
2775static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
2776	sysctl_kern_proc, "Return process table, no threads");
2777
2778static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
2779	CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
2780	sysctl_kern_proc_args, "Process argument list");
2781
2782static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
2783	sysctl_kern_proc_env, "Process environment");
2784
2785static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
2786	CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
2787
2788static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
2789	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
2790
2791static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
2792	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
2793	"Process syscall vector name (ABI type)");
2794
2795static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
2796	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2797
2798static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
2799	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2800
2801static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
2802	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2803
2804static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
2805	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2806
2807static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
2808	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2809
2810static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
2811	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2812
2813static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
2814	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2815
2816static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
2817	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2818
2819static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
2820	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
2821	"Return process table, no threads");
2822
2823#ifdef COMPAT_FREEBSD7
2824static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
2825	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
2826#endif
2827
2828static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
2829	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
2830
2831#if defined(STACK) || defined(DDB)
2832static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
2833	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
2834#endif
2835
2836static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
2837	CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
2838
2839static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
2840	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
2841	"Process resource limits");
2842
2843static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
2844	CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
2845	"Process ps_strings location");
2846
2847static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
2848	CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
2849
2850static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
2851	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
2852	"Process binary osreldate");
2853
2854static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
2855	CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
2856	"Process signal trampoline location");
2857
2858int allproc_gen;
2859
2860void
2861stop_all_proc(void)
2862{
2863	struct proc *cp, *p;
2864	int r, gen;
2865	bool restart, seen_stopped, seen_exiting, stopped_some;
2866
2867	cp = curproc;
2868	/*
2869	 * stop_all_proc() assumes that all process which have
2870	 * usermode must be stopped, except current process, for
2871	 * obvious reasons.  Since other threads in the process
2872	 * establishing global stop could unstop something, disable
2873	 * calls from multithreaded processes as precaution.  The
2874	 * service must not be user-callable anyway.
2875	 */
2876	KASSERT((cp->p_flag & P_HADTHREADS) == 0 ||
2877	    (cp->p_flag & P_KTHREAD) != 0, ("mt stop_all_proc"));
2878
2879allproc_loop:
2880	sx_xlock(&allproc_lock);
2881	gen = allproc_gen;
2882	seen_exiting = seen_stopped = stopped_some = restart = false;
2883	LIST_REMOVE(cp, p_list);
2884	LIST_INSERT_HEAD(&allproc, cp, p_list);
2885	for (;;) {
2886		p = LIST_NEXT(cp, p_list);
2887		if (p == NULL)
2888			break;
2889		LIST_REMOVE(cp, p_list);
2890		LIST_INSERT_AFTER(p, cp, p_list);
2891		PROC_LOCK(p);
2892		if ((p->p_flag & (P_KTHREAD | P_SYSTEM |
2893		    P_TOTAL_STOP)) != 0) {
2894			PROC_UNLOCK(p);
2895			continue;
2896		}
2897		if ((p->p_flag & P_WEXIT) != 0) {
2898			seen_exiting = true;
2899			PROC_UNLOCK(p);
2900			continue;
2901		}
2902		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
2903			/*
2904			 * Stopped processes are tolerated when there
2905			 * are no other processes which might continue
2906			 * them.  P_STOPPED_SINGLE but not
2907			 * P_TOTAL_STOP process still has at least one
2908			 * thread running.
2909			 */
2910			seen_stopped = true;
2911			PROC_UNLOCK(p);
2912			continue;
2913		}
2914		_PHOLD(p);
2915		sx_xunlock(&allproc_lock);
2916		r = thread_single(p, SINGLE_ALLPROC);
2917		if (r != 0)
2918			restart = true;
2919		else
2920			stopped_some = true;
2921		_PRELE(p);
2922		PROC_UNLOCK(p);
2923		sx_xlock(&allproc_lock);
2924	}
2925	/* Catch forked children we did not see in iteration. */
2926	if (gen != allproc_gen)
2927		restart = true;
2928	sx_xunlock(&allproc_lock);
2929	if (restart || stopped_some || seen_exiting || seen_stopped) {
2930		kern_yield(PRI_USER);
2931		goto allproc_loop;
2932	}
2933}
2934
2935void
2936resume_all_proc(void)
2937{
2938	struct proc *cp, *p;
2939
2940	cp = curproc;
2941	sx_xlock(&allproc_lock);
2942	LIST_REMOVE(cp, p_list);
2943	LIST_INSERT_HEAD(&allproc, cp, p_list);
2944	for (;;) {
2945		p = LIST_NEXT(cp, p_list);
2946		if (p == NULL)
2947			break;
2948		LIST_REMOVE(cp, p_list);
2949		LIST_INSERT_AFTER(p, cp, p_list);
2950		PROC_LOCK(p);
2951		if ((p->p_flag & P_TOTAL_STOP) != 0) {
2952			sx_xunlock(&allproc_lock);
2953			_PHOLD(p);
2954			thread_single_end(p, SINGLE_ALLPROC);
2955			_PRELE(p);
2956			PROC_UNLOCK(p);
2957			sx_xlock(&allproc_lock);
2958		} else {
2959			PROC_UNLOCK(p);
2960		}
2961	}
2962	sx_xunlock(&allproc_lock);
2963}
2964
2965#define	TOTAL_STOP_DEBUG	1
2966#ifdef TOTAL_STOP_DEBUG
2967volatile static int ap_resume;
2968#include <sys/mount.h>
2969
2970static int
2971sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
2972{
2973	int error, val;
2974
2975	val = 0;
2976	ap_resume = 0;
2977	error = sysctl_handle_int(oidp, &val, 0, req);
2978	if (error != 0 || req->newptr == NULL)
2979		return (error);
2980	if (val != 0) {
2981		stop_all_proc();
2982		syncer_suspend();
2983		while (ap_resume == 0)
2984			;
2985		syncer_resume();
2986		resume_all_proc();
2987	}
2988	return (0);
2989}
2990
2991SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
2992    CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
2993    sysctl_debug_stop_all_proc, "I",
2994    "");
2995#endif
2996