1/*
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $FreeBSD$
18 */
19#include "opt_ah.h"
20
21#include "ah.h"
22#include "ah_internal.h"
23#include "ah_devid.h"
24
25#include "ar5212/ar5212.h"
26#include "ar5212/ar5212reg.h"
27#include "ar5212/ar5212phy.h"
28
29#include "ah_eeprom_v3.h"
30
31/* Additional Time delay to wait after activiting the Base band */
32#define BASE_ACTIVATE_DELAY	100	/* 100 usec */
33#define PLL_SETTLE_DELAY	300	/* 300 usec */
34
35static HAL_BOOL ar5212SetResetReg(struct ath_hal *, uint32_t resetMask);
36/* NB: public for 5312 use */
37HAL_BOOL	ar5212IsSpurChannel(struct ath_hal *,
38		    const struct ieee80211_channel *);
39HAL_BOOL	ar5212ChannelChange(struct ath_hal *,
40		    const struct ieee80211_channel *);
41int16_t		ar5212GetNf(struct ath_hal *, struct ieee80211_channel *);
42HAL_BOOL	ar5212SetBoardValues(struct ath_hal *,
43		    const struct ieee80211_channel *);
44void		ar5212SetDeltaSlope(struct ath_hal *,
45		    const struct ieee80211_channel *);
46HAL_BOOL	ar5212SetTransmitPower(struct ath_hal *ah,
47		   const struct ieee80211_channel *chan, uint16_t *rfXpdGain);
48static HAL_BOOL ar5212SetRateTable(struct ath_hal *,
49		   const struct ieee80211_channel *, int16_t tpcScaleReduction,
50		   int16_t powerLimit,
51		   HAL_BOOL commit, int16_t *minPower, int16_t *maxPower);
52static void ar5212CorrectGainDelta(struct ath_hal *, int twiceOfdmCckDelta);
53static void ar5212GetTargetPowers(struct ath_hal *,
54		   const struct ieee80211_channel *,
55		   const TRGT_POWER_INFO *pPowerInfo, uint16_t numChannels,
56		   TRGT_POWER_INFO *pNewPower);
57static uint16_t ar5212GetMaxEdgePower(uint16_t channel,
58		   const RD_EDGES_POWER  *pRdEdgesPower);
59void		ar5212SetRateDurationTable(struct ath_hal *,
60		    const struct ieee80211_channel *);
61void		ar5212SetIFSTiming(struct ath_hal *,
62		    const struct ieee80211_channel *);
63
64/* NB: public for RF backend use */
65void		ar5212GetLowerUpperValues(uint16_t value,
66		   uint16_t *pList, uint16_t listSize,
67		   uint16_t *pLowerValue, uint16_t *pUpperValue);
68void		ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
69		   uint32_t numBits, uint32_t firstBit, uint32_t column);
70
71static int
72write_common(struct ath_hal *ah, const HAL_INI_ARRAY *ia,
73	HAL_BOOL bChannelChange, int writes)
74{
75#define IS_NO_RESET_TIMER_ADDR(x)                      \
76    ( (((x) >= AR_BEACON) && ((x) <= AR_CFP_DUR)) || \
77      (((x) >= AR_SLEEP1) && ((x) <= AR_SLEEP3)))
78#define	V(r, c)	(ia)->data[((r)*(ia)->cols) + (c)]
79	int r;
80
81	/* Write Common Array Parameters */
82	for (r = 0; r < ia->rows; r++) {
83		uint32_t reg = V(r, 0);
84		/* XXX timer/beacon setup registers? */
85		/* On channel change, don't reset the PCU registers */
86		if (!(bChannelChange && IS_NO_RESET_TIMER_ADDR(reg))) {
87			OS_REG_WRITE(ah, reg, V(r, 1));
88			DMA_YIELD(writes);
89		}
90	}
91	return writes;
92#undef IS_NO_RESET_TIMER_ADDR
93#undef V
94}
95
96#define IS_DISABLE_FAST_ADC_CHAN(x) (((x) == 2462) || ((x) == 2467))
97
98/*
99 * XXX NDIS 5.x code had MAX_RESET_WAIT set to 2000 for AP code
100 * and 10 for Client code
101 */
102#define	MAX_RESET_WAIT			10
103
104#define	TX_QUEUEPEND_CHECK		1
105#define	TX_ENABLE_CHECK			2
106#define	RX_ENABLE_CHECK			4
107
108/*
109 * Places the device in and out of reset and then places sane
110 * values in the registers based on EEPROM config, initialization
111 * vectors (as determined by the mode), and station configuration
112 *
113 * bChannelChange is used to preserve DMA/PCU registers across
114 * a HW Reset during channel change.
115 */
116HAL_BOOL
117ar5212Reset(struct ath_hal *ah, HAL_OPMODE opmode,
118	struct ieee80211_channel *chan,
119	HAL_BOOL bChannelChange, HAL_STATUS *status)
120{
121#define	N(a)	(sizeof (a) / sizeof (a[0]))
122#define	FAIL(_code)	do { ecode = _code; goto bad; } while (0)
123	struct ath_hal_5212 *ahp = AH5212(ah);
124	HAL_CHANNEL_INTERNAL *ichan = AH_NULL;
125	const HAL_EEPROM *ee;
126	uint32_t softLedCfg, softLedState;
127	uint32_t saveFrameSeqCount, saveDefAntenna, saveLedState;
128	uint32_t macStaId1, synthDelay, txFrm2TxDStart;
129	uint16_t rfXpdGain[MAX_NUM_PDGAINS_PER_CHANNEL];
130	int16_t cckOfdmPwrDelta = 0;
131	u_int modesIndex, freqIndex;
132	HAL_STATUS ecode;
133	int i, regWrites;
134	uint32_t testReg, powerVal;
135	int8_t twiceAntennaGain, twiceAntennaReduction;
136	uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
137	HAL_BOOL isBmode = AH_FALSE;
138
139	HALASSERT(ah->ah_magic == AR5212_MAGIC);
140	ee = AH_PRIVATE(ah)->ah_eeprom;
141
142	OS_MARK(ah, AH_MARK_RESET, bChannelChange);
143
144	/* Bring out of sleep mode */
145	if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
146		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
147		    __func__);
148		FAIL(HAL_EIO);
149	}
150
151	/*
152	 * Map public channel to private.
153	 */
154	ichan = ath_hal_checkchannel(ah, chan);
155	if (ichan == AH_NULL)
156		FAIL(HAL_EINVAL);
157	switch (opmode) {
158	case HAL_M_STA:
159	case HAL_M_IBSS:
160	case HAL_M_HOSTAP:
161	case HAL_M_MONITOR:
162		break;
163	default:
164		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
165		    __func__, opmode);
166		FAIL(HAL_EINVAL);
167		break;
168	}
169	HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3);
170
171	SAVE_CCK(ah, chan, isBmode);
172
173	/* Preserve certain DMA hardware registers on a channel change */
174	if (bChannelChange) {
175		/*
176		 * On Venice, the TSF is almost preserved across a reset;
177		 * it requires doubling writes to the RESET_TSF
178		 * bit in the AR_BEACON register; it also has the quirk
179		 * of the TSF going back in time on the station (station
180		 * latches onto the last beacon's tsf during a reset 50%
181		 * of the times); the latter is not a problem for adhoc
182		 * stations since as long as the TSF is behind, it will
183		 * get resynchronized on receiving the next beacon; the
184		 * TSF going backwards in time could be a problem for the
185		 * sleep operation (supported on infrastructure stations
186		 * only) - the best and most general fix for this situation
187		 * is to resynchronize the various sleep/beacon timers on
188		 * the receipt of the next beacon i.e. when the TSF itself
189		 * gets resynchronized to the AP's TSF - power save is
190		 * needed to be temporarily disabled until that time
191		 *
192		 * Need to save the sequence number to restore it after
193		 * the reset!
194		 */
195		saveFrameSeqCount = OS_REG_READ(ah, AR_D_SEQNUM);
196	} else
197		saveFrameSeqCount = 0;		/* NB: silence compiler */
198
199	/* Blank the channel survey statistics */
200	OS_MEMZERO(&ahp->ah_chansurvey, sizeof(ahp->ah_chansurvey));
201#if 0
202	/*
203	 * XXX disable for now; this appears to sometimes cause OFDM
204	 * XXX timing error floods when ani is enabled and bg scanning
205	 * XXX kicks in
206	 */
207	/* If the channel change is across the same mode - perform a fast channel change */
208	if (IS_2413(ah) || IS_5413(ah)) {
209		/*
210		 * Fast channel change can only be used when:
211		 *  -channel change requested - so it's not the initial reset.
212		 *  -it's not a change to the current channel -
213		 *	often called when switching modes on a channel
214		 *  -the modes of the previous and requested channel are the
215		 *	same
216		 * XXX opmode shouldn't change either?
217		 */
218		if (bChannelChange &&
219		    (AH_PRIVATE(ah)->ah_curchan != AH_NULL) &&
220		    (chan->ic_freq != AH_PRIVATE(ah)->ah_curchan->ic_freq) &&
221		    ((chan->ic_flags & IEEE80211_CHAN_ALLTURBO) ==
222		     (AH_PRIVATE(ah)->ah_curchan->ic_flags & IEEE80211_CHAN_ALLTURBO))) {
223			if (ar5212ChannelChange(ah, chan)) {
224				/* If ChannelChange completed - skip the rest of reset */
225				/* XXX ani? */
226				goto done;
227			}
228		}
229	}
230#endif
231	/*
232	 * Preserve the antenna on a channel change
233	 */
234	saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
235	if (saveDefAntenna == 0)		/* XXX magic constants */
236		saveDefAntenna = 1;
237
238	/* Save hardware flag before chip reset clears the register */
239	macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
240		(AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
241
242	/* Save led state from pci config register */
243	saveLedState = OS_REG_READ(ah, AR_PCICFG) &
244		(AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK |
245		 AR_PCICFG_LEDSLOW);
246	softLedCfg = OS_REG_READ(ah, AR_GPIOCR);
247	softLedState = OS_REG_READ(ah, AR_GPIODO);
248
249	ar5212RestoreClock(ah, opmode);		/* move to refclk operation */
250
251	/*
252	 * Adjust gain parameters before reset if
253	 * there's an outstanding gain updated.
254	 */
255	(void) ar5212GetRfgain(ah);
256
257	if (!ar5212ChipReset(ah, chan)) {
258		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
259		FAIL(HAL_EIO);
260	}
261
262	/* Setup the indices for the next set of register array writes */
263	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
264		freqIndex  = 2;
265		if (IEEE80211_IS_CHAN_108G(chan))
266			modesIndex = 5;
267		else if (IEEE80211_IS_CHAN_G(chan))
268			modesIndex = 4;
269		else if (IEEE80211_IS_CHAN_B(chan))
270			modesIndex = 3;
271		else {
272			HALDEBUG(ah, HAL_DEBUG_ANY,
273			    "%s: invalid channel %u/0x%x\n",
274			    __func__, chan->ic_freq, chan->ic_flags);
275			FAIL(HAL_EINVAL);
276		}
277	} else {
278		freqIndex  = 1;
279		if (IEEE80211_IS_CHAN_TURBO(chan))
280			modesIndex = 2;
281		else if (IEEE80211_IS_CHAN_A(chan))
282			modesIndex = 1;
283		else {
284			HALDEBUG(ah, HAL_DEBUG_ANY,
285			    "%s: invalid channel %u/0x%x\n",
286			    __func__, chan->ic_freq, chan->ic_flags);
287			FAIL(HAL_EINVAL);
288		}
289	}
290
291	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
292
293	/* Set correct Baseband to analog shift setting to access analog chips. */
294	OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);
295
296	regWrites = ath_hal_ini_write(ah, &ahp->ah_ini_modes, modesIndex, 0);
297	regWrites = write_common(ah, &ahp->ah_ini_common, bChannelChange,
298		regWrites);
299#ifdef AH_RXCFG_SDMAMW_4BYTES
300	/*
301	 * Nala doesn't work with 128 byte bursts on pb42(hydra) (ar71xx),
302	 * use 4 instead.  Enabling it on all platforms would hurt performance,
303	 * so we only enable it on the ones that are affected by it.
304	 */
305	OS_REG_WRITE(ah, AR_RXCFG, 0);
306#endif
307	ahp->ah_rfHal->writeRegs(ah, modesIndex, freqIndex, regWrites);
308
309	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
310
311	if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) {
312		ar5212SetIFSTiming(ah, chan);
313		if (IS_5413(ah)) {
314			/*
315			 * Force window_length for 1/2 and 1/4 rate channels,
316			 * the ini file sets this to zero otherwise.
317			 */
318			OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
319				AR_PHY_FRAME_CTL_WINLEN, 3);
320		}
321	}
322
323	/* Overwrite INI values for revised chipsets */
324	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2) {
325		/* ADC_CTL */
326		OS_REG_WRITE(ah, AR_PHY_ADC_CTL,
327			SM(2, AR_PHY_ADC_CTL_OFF_INBUFGAIN) |
328			SM(2, AR_PHY_ADC_CTL_ON_INBUFGAIN) |
329			AR_PHY_ADC_CTL_OFF_PWDDAC |
330			AR_PHY_ADC_CTL_OFF_PWDADC);
331
332		/* TX_PWR_ADJ */
333		if (ichan->channel == 2484) {
334			cckOfdmPwrDelta = SCALE_OC_DELTA(
335			    ee->ee_cckOfdmPwrDelta -
336			    ee->ee_scaledCh14FilterCckDelta);
337		} else {
338			cckOfdmPwrDelta = SCALE_OC_DELTA(
339			    ee->ee_cckOfdmPwrDelta);
340		}
341
342		if (IEEE80211_IS_CHAN_G(chan)) {
343		    OS_REG_WRITE(ah, AR_PHY_TXPWRADJ,
344			SM((ee->ee_cckOfdmPwrDelta*-1),
345			    AR_PHY_TXPWRADJ_CCK_GAIN_DELTA) |
346			SM((cckOfdmPwrDelta*-1),
347			    AR_PHY_TXPWRADJ_CCK_PCDAC_INDEX));
348		} else {
349			OS_REG_WRITE(ah, AR_PHY_TXPWRADJ, 0);
350		}
351
352		/* Add barker RSSI thresh enable as disabled */
353		OS_REG_CLR_BIT(ah, AR_PHY_DAG_CTRLCCK,
354			AR_PHY_DAG_CTRLCCK_EN_RSSI_THR);
355		OS_REG_RMW_FIELD(ah, AR_PHY_DAG_CTRLCCK,
356			AR_PHY_DAG_CTRLCCK_RSSI_THR, 2);
357
358		/* Set the mute mask to the correct default */
359		OS_REG_WRITE(ah, AR_SEQ_MASK, 0x0000000F);
360	}
361
362	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_3) {
363		/* Clear reg to alllow RX_CLEAR line debug */
364		OS_REG_WRITE(ah, AR_PHY_BLUETOOTH,  0);
365	}
366	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_4) {
367#ifdef notyet
368		/* Enable burst prefetch for the data queues */
369		OS_REG_RMW_FIELD(ah, AR_D_FPCTL, ... );
370		/* Enable double-buffering */
371		OS_REG_CLR_BIT(ah, AR_TXCFG, AR_TXCFG_DBL_BUF_DIS);
372#endif
373	}
374
375	/* Set ADC/DAC select values */
376	OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
377
378	if (IS_5413(ah) || IS_2417(ah)) {
379		uint32_t newReg = 1;
380		if (IS_DISABLE_FAST_ADC_CHAN(ichan->channel))
381			newReg = 0;
382		/* As it's a clock changing register, only write when the value needs to be changed */
383		if (OS_REG_READ(ah, AR_PHY_FAST_ADC) != newReg)
384			OS_REG_WRITE(ah, AR_PHY_FAST_ADC, newReg);
385	}
386
387	/* Setup the transmit power values. */
388	if (!ar5212SetTransmitPower(ah, chan, rfXpdGain)) {
389		HALDEBUG(ah, HAL_DEBUG_ANY,
390		    "%s: error init'ing transmit power\n", __func__);
391		FAIL(HAL_EIO);
392	}
393
394	/* Write the analog registers */
395	if (!ahp->ah_rfHal->setRfRegs(ah, chan, modesIndex, rfXpdGain)) {
396		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: ar5212SetRfRegs failed\n",
397		    __func__);
398		FAIL(HAL_EIO);
399	}
400
401	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
402	if (IEEE80211_IS_CHAN_OFDM(chan)) {
403		if (IS_5413(ah) ||
404		    AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3)
405			ar5212SetSpurMitigation(ah, chan);
406		ar5212SetDeltaSlope(ah, chan);
407	}
408
409	/* Setup board specific options for EEPROM version 3 */
410	if (!ar5212SetBoardValues(ah, chan)) {
411		HALDEBUG(ah, HAL_DEBUG_ANY,
412		    "%s: error setting board options\n", __func__);
413		FAIL(HAL_EIO);
414	}
415
416	/* Restore certain DMA hardware registers on a channel change */
417	if (bChannelChange)
418		OS_REG_WRITE(ah, AR_D_SEQNUM, saveFrameSeqCount);
419
420	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
421
422	OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
423	OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
424		| macStaId1
425		| AR_STA_ID1_RTS_USE_DEF
426		| ahp->ah_staId1Defaults
427	);
428	ar5212SetOperatingMode(ah, opmode);
429
430	/* Set Venice BSSID mask according to current state */
431	OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
432	OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
433
434	/* Restore previous led state */
435	OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | saveLedState);
436
437	/* Restore soft Led state to GPIO */
438	OS_REG_WRITE(ah, AR_GPIOCR, softLedCfg);
439	OS_REG_WRITE(ah, AR_GPIODO, softLedState);
440
441	/* Restore previous antenna */
442	OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
443
444	/* then our BSSID and associate id */
445	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
446	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
447	    (ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S);
448
449	/* Restore bmiss rssi & count thresholds */
450	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
451
452	OS_REG_WRITE(ah, AR_ISR, ~0);		/* cleared on write */
453
454	if (!ar5212SetChannel(ah, chan))
455		FAIL(HAL_EIO);
456
457	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
458
459	ar5212SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
460
461	ar5212SetRateDurationTable(ah, chan);
462
463	/* Set Tx frame start to tx data start delay */
464	if (IS_RAD5112_ANY(ah) &&
465	    (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan))) {
466		txFrm2TxDStart =
467			IEEE80211_IS_CHAN_HALF(chan) ?
468					TX_FRAME_D_START_HALF_RATE:
469					TX_FRAME_D_START_QUARTER_RATE;
470		OS_REG_RMW_FIELD(ah, AR_PHY_TX_CTL,
471			AR_PHY_TX_FRAME_TO_TX_DATA_START, txFrm2TxDStart);
472	}
473
474	/*
475	 * Setup fast diversity.
476	 * Fast diversity can be enabled or disabled via regadd.txt.
477	 * Default is enabled.
478	 * For reference,
479	 *    Disable: reg        val
480	 *             0x00009860 0x00009d18 (if 11a / 11g, else no change)
481	 *             0x00009970 0x192bb514
482	 *             0x0000a208 0xd03e4648
483	 *
484	 *    Enable:  0x00009860 0x00009d10 (if 11a / 11g, else no change)
485	 *             0x00009970 0x192fb514
486	 *             0x0000a208 0xd03e6788
487	 */
488
489	/* XXX Setup pre PHY ENABLE EAR additions */
490	/*
491	 * Wait for the frequency synth to settle (synth goes on
492	 * via AR_PHY_ACTIVE_EN).  Read the phy active delay register.
493	 * Value is in 100ns increments.
494	 */
495	synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
496	if (IEEE80211_IS_CHAN_B(chan)) {
497		synthDelay = (4 * synthDelay) / 22;
498	} else {
499		synthDelay /= 10;
500	}
501
502	/* Activate the PHY (includes baseband activate and synthesizer on) */
503	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
504
505	/*
506	 * There is an issue if the AP starts the calibration before
507	 * the base band timeout completes.  This could result in the
508	 * rx_clear false triggering.  As a workaround we add delay an
509	 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
510	 * does not happen.
511	 */
512	if (IEEE80211_IS_CHAN_HALF(chan)) {
513		OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
514	} else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
515		OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
516	} else {
517		OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
518	}
519
520	/*
521	 * The udelay method is not reliable with notebooks.
522	 * Need to check to see if the baseband is ready
523	 */
524	testReg = OS_REG_READ(ah, AR_PHY_TESTCTRL);
525	/* Selects the Tx hold */
526	OS_REG_WRITE(ah, AR_PHY_TESTCTRL, AR_PHY_TESTCTRL_TXHOLD);
527	i = 0;
528	while ((i++ < 20) &&
529	       (OS_REG_READ(ah, 0x9c24) & 0x10)) /* test if baseband not ready */		OS_DELAY(200);
530	OS_REG_WRITE(ah, AR_PHY_TESTCTRL, testReg);
531
532	/* Calibrate the AGC and start a NF calculation */
533	OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
534		  OS_REG_READ(ah, AR_PHY_AGC_CONTROL)
535		| AR_PHY_AGC_CONTROL_CAL
536		| AR_PHY_AGC_CONTROL_NF);
537
538	if (!IEEE80211_IS_CHAN_B(chan) && ahp->ah_bIQCalibration != IQ_CAL_DONE) {
539		/* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
540		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
541			AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
542			INIT_IQCAL_LOG_COUNT_MAX);
543		OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
544			AR_PHY_TIMING_CTRL4_DO_IQCAL);
545		ahp->ah_bIQCalibration = IQ_CAL_RUNNING;
546	} else
547		ahp->ah_bIQCalibration = IQ_CAL_INACTIVE;
548
549	/* Setup compression registers */
550	ar5212SetCompRegs(ah);
551
552	/* Set 1:1 QCU to DCU mapping for all queues */
553	for (i = 0; i < AR_NUM_DCU; i++)
554		OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
555
556	ahp->ah_intrTxqs = 0;
557	for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
558		ar5212ResetTxQueue(ah, i);
559
560	/*
561	 * Setup interrupt handling.  Note that ar5212ResetTxQueue
562	 * manipulates the secondary IMR's as queues are enabled
563	 * and disabled.  This is done with RMW ops to insure the
564	 * settings we make here are preserved.
565	 */
566	ahp->ah_maskReg = AR_IMR_TXOK | AR_IMR_TXERR | AR_IMR_TXURN
567			| AR_IMR_RXOK | AR_IMR_RXERR | AR_IMR_RXORN
568			| AR_IMR_HIUERR
569			;
570	if (opmode == HAL_M_HOSTAP)
571		ahp->ah_maskReg |= AR_IMR_MIB;
572	OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
573	/* Enable bus errors that are OR'd to set the HIUERR bit */
574	OS_REG_WRITE(ah, AR_IMR_S2,
575		OS_REG_READ(ah, AR_IMR_S2)
576		| AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR);
577
578	if (AH_PRIVATE(ah)->ah_rfkillEnabled)
579		ar5212EnableRfKill(ah);
580
581	if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0)) {
582		HALDEBUG(ah, HAL_DEBUG_ANY,
583		    "%s: offset calibration failed to complete in 1ms;"
584		    " noisy environment?\n", __func__);
585	}
586
587	/*
588	 * Set clocks back to 32kHz if they had been using refClk, then
589	 * use an external 32kHz crystal when sleeping, if one exists.
590	 */
591	ar5212SetupClock(ah, opmode);
592
593	/*
594	 * Writing to AR_BEACON will start timers. Hence it should
595	 * be the last register to be written. Do not reset tsf, do
596	 * not enable beacons at this point, but preserve other values
597	 * like beaconInterval.
598	 */
599	OS_REG_WRITE(ah, AR_BEACON,
600		(OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF)));
601
602	/* XXX Setup post reset EAR additions */
603
604	/* QoS support */
605	if (AH_PRIVATE(ah)->ah_macVersion > AR_SREV_VERSION_VENICE ||
606	    (AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_VENICE &&
607	     AH_PRIVATE(ah)->ah_macRev >= AR_SREV_GRIFFIN_LITE)) {
608		OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa);	/* XXX magic */
609		OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210);	/* XXX magic */
610	}
611
612	/* Turn on NOACK Support for QoS packets */
613	OS_REG_WRITE(ah, AR_NOACK,
614		SM(2, AR_NOACK_2BIT_VALUE) |
615		SM(5, AR_NOACK_BIT_OFFSET) |
616		SM(0, AR_NOACK_BYTE_OFFSET));
617
618	/* Get Antenna Gain reduction */
619	if (IEEE80211_IS_CHAN_5GHZ(chan)) {
620		ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_5, &twiceAntennaGain);
621	} else {
622		ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_2, &twiceAntennaGain);
623	}
624	twiceAntennaReduction =
625		ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
626
627	/* TPC for self-generated frames */
628
629	ackTpcPow = MS(ahp->ah_macTPC, AR_TPC_ACK);
630	if ((ackTpcPow-ahp->ah_txPowerIndexOffset) > chan->ic_maxpower)
631		ackTpcPow = chan->ic_maxpower+ahp->ah_txPowerIndexOffset;
632
633	if (ackTpcPow > (2*chan->ic_maxregpower - twiceAntennaReduction))
634		ackTpcPow = (2*chan->ic_maxregpower - twiceAntennaReduction)
635			+ ahp->ah_txPowerIndexOffset;
636
637	ctsTpcPow = MS(ahp->ah_macTPC, AR_TPC_CTS);
638	if ((ctsTpcPow-ahp->ah_txPowerIndexOffset) > chan->ic_maxpower)
639		ctsTpcPow = chan->ic_maxpower+ahp->ah_txPowerIndexOffset;
640
641	if (ctsTpcPow > (2*chan->ic_maxregpower - twiceAntennaReduction))
642		ctsTpcPow = (2*chan->ic_maxregpower - twiceAntennaReduction)
643			+ ahp->ah_txPowerIndexOffset;
644
645	chirpTpcPow = MS(ahp->ah_macTPC, AR_TPC_CHIRP);
646	if ((chirpTpcPow-ahp->ah_txPowerIndexOffset) > chan->ic_maxpower)
647		chirpTpcPow = chan->ic_maxpower+ahp->ah_txPowerIndexOffset;
648
649	if (chirpTpcPow > (2*chan->ic_maxregpower - twiceAntennaReduction))
650		chirpTpcPow = (2*chan->ic_maxregpower - twiceAntennaReduction)
651			+ ahp->ah_txPowerIndexOffset;
652
653	if (ackTpcPow > 63)
654		ackTpcPow = 63;
655	if (ctsTpcPow > 63)
656		ctsTpcPow = 63;
657	if (chirpTpcPow > 63)
658		chirpTpcPow = 63;
659
660	powerVal = SM(ackTpcPow, AR_TPC_ACK) |
661		SM(ctsTpcPow, AR_TPC_CTS) |
662		SM(chirpTpcPow, AR_TPC_CHIRP);
663
664	OS_REG_WRITE(ah, AR_TPC, powerVal);
665
666	/* Restore user-specified settings */
667	if (ahp->ah_miscMode != 0)
668		OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
669	if (ahp->ah_sifstime != (u_int) -1)
670		ar5212SetSifsTime(ah, ahp->ah_sifstime);
671	if (ahp->ah_slottime != (u_int) -1)
672		ar5212SetSlotTime(ah, ahp->ah_slottime);
673	if (ahp->ah_acktimeout != (u_int) -1)
674		ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
675	if (ahp->ah_ctstimeout != (u_int) -1)
676		ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
677	if (AH_PRIVATE(ah)->ah_diagreg != 0)
678		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
679
680	AH_PRIVATE(ah)->ah_opmode = opmode;	/* record operating mode */
681#if 0
682done:
683#endif
684	if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan))
685		chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
686
687	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
688
689	RESTORE_CCK(ah, chan, isBmode);
690
691	OS_MARK(ah, AH_MARK_RESET_DONE, 0);
692
693	return AH_TRUE;
694bad:
695	RESTORE_CCK(ah, chan, isBmode);
696
697	OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
698	if (status != AH_NULL)
699		*status = ecode;
700	return AH_FALSE;
701#undef FAIL
702#undef N
703}
704
705/*
706 * Call the rf backend to change the channel.
707 */
708HAL_BOOL
709ar5212SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
710{
711	struct ath_hal_5212 *ahp = AH5212(ah);
712
713	/* Change the synth */
714	if (!ahp->ah_rfHal->setChannel(ah, chan))
715		return AH_FALSE;
716	return AH_TRUE;
717}
718
719/*
720 * This channel change evaluates whether the selected hardware can
721 * perform a synthesizer-only channel change (no reset).  If the
722 * TX is not stopped, or the RFBus cannot be granted in the given
723 * time, the function returns false as a reset is necessary
724 */
725HAL_BOOL
726ar5212ChannelChange(struct ath_hal *ah, const struct ieee80211_channel *chan)
727{
728	uint32_t       ulCount;
729	uint32_t   data, synthDelay, qnum;
730	uint16_t   rfXpdGain[MAX_NUM_PDGAINS_PER_CHANNEL];
731	HAL_BOOL    txStopped = AH_TRUE;
732	HAL_CHANNEL_INTERNAL *ichan;
733
734	/*
735	 * Map public channel to private.
736	 */
737	ichan = ath_hal_checkchannel(ah, chan);
738
739	/* TX must be stopped or RF Bus grant will not work */
740	for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
741		if (ar5212NumTxPending(ah, qnum)) {
742			txStopped = AH_FALSE;
743			break;
744		}
745	}
746	if (!txStopped)
747		return AH_FALSE;
748
749	/* Kill last Baseband Rx Frame */
750	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST); /* Request analog bus grant */
751	for (ulCount = 0; ulCount < 100; ulCount++) {
752		if (OS_REG_READ(ah, AR_PHY_RFBUS_GNT))
753			break;
754		OS_DELAY(5);
755	}
756	if (ulCount >= 100)
757		return AH_FALSE;
758
759	/* Change the synth */
760	if (!ar5212SetChannel(ah, chan))
761		return AH_FALSE;
762
763	/*
764	 * Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN).
765	 * Read the phy active delay register. Value is in 100ns increments.
766	 */
767	data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
768	if (IEEE80211_IS_CHAN_B(chan)) {
769		synthDelay = (4 * data) / 22;
770	} else {
771		synthDelay = data / 10;
772	}
773	OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
774
775	/* Setup the transmit power values. */
776	if (!ar5212SetTransmitPower(ah, chan, rfXpdGain)) {
777		HALDEBUG(ah, HAL_DEBUG_ANY,
778		    "%s: error init'ing transmit power\n", __func__);
779		return AH_FALSE;
780	}
781
782	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
783	if (IEEE80211_IS_CHAN_OFDM(chan)) {
784		if (IS_5413(ah) ||
785		    AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3)
786			ar5212SetSpurMitigation(ah, chan);
787		ar5212SetDeltaSlope(ah, chan);
788	}
789
790	/* Release the RFBus Grant */
791	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
792
793	/* Start Noise Floor Cal */
794	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
795	return AH_TRUE;
796}
797
798void
799ar5212SetOperatingMode(struct ath_hal *ah, int opmode)
800{
801	uint32_t val;
802
803	val = OS_REG_READ(ah, AR_STA_ID1);
804	val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
805	switch (opmode) {
806	case HAL_M_HOSTAP:
807		OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
808					| AR_STA_ID1_KSRCH_MODE);
809		OS_REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
810		break;
811	case HAL_M_IBSS:
812		OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
813					| AR_STA_ID1_KSRCH_MODE);
814		OS_REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
815		break;
816	case HAL_M_STA:
817	case HAL_M_MONITOR:
818		OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
819		break;
820	}
821}
822
823/*
824 * Places the PHY and Radio chips into reset.  A full reset
825 * must be called to leave this state.  The PCI/MAC/PCU are
826 * not placed into reset as we must receive interrupt to
827 * re-enable the hardware.
828 */
829HAL_BOOL
830ar5212PhyDisable(struct ath_hal *ah)
831{
832	return ar5212SetResetReg(ah, AR_RC_BB);
833}
834
835/*
836 * Places all of hardware into reset
837 */
838HAL_BOOL
839ar5212Disable(struct ath_hal *ah)
840{
841	if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
842		return AH_FALSE;
843	/*
844	 * Reset the HW - PCI must be reset after the rest of the
845	 * device has been reset.
846	 */
847	return ar5212SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI);
848}
849
850/*
851 * Places the hardware into reset and then pulls it out of reset
852 *
853 * TODO: Only write the PLL if we're changing to or from CCK mode
854 *
855 * WARNING: The order of the PLL and mode registers must be correct.
856 */
857HAL_BOOL
858ar5212ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan)
859{
860
861	OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0);
862
863	/*
864	 * Reset the HW - PCI must be reset after the rest of the
865	 * device has been reset
866	 */
867	if (!ar5212SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
868		return AH_FALSE;
869
870	/* Bring out of sleep mode (AGAIN) */
871	if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
872		return AH_FALSE;
873
874	/* Clear warm reset register */
875	if (!ar5212SetResetReg(ah, 0))
876		return AH_FALSE;
877
878	/*
879	 * Perform warm reset before the mode/PLL/turbo registers
880	 * are changed in order to deactivate the radio.  Mode changes
881	 * with an active radio can result in corrupted shifts to the
882	 * radio device.
883	 */
884
885	/*
886	 * Set CCK and Turbo modes correctly.
887	 */
888	if (chan != AH_NULL) {		/* NB: can be null during attach */
889		uint32_t rfMode, phyPLL = 0, curPhyPLL, turbo;
890
891		if (IS_5413(ah)) {	/* NB: =>'s 5424 also */
892			rfMode = AR_PHY_MODE_AR5112;
893			if (IEEE80211_IS_CHAN_HALF(chan))
894				rfMode |= AR_PHY_MODE_HALF;
895			else if (IEEE80211_IS_CHAN_QUARTER(chan))
896				rfMode |= AR_PHY_MODE_QUARTER;
897
898			if (IEEE80211_IS_CHAN_CCK(chan))
899				phyPLL = AR_PHY_PLL_CTL_44_5112;
900			else
901				phyPLL = AR_PHY_PLL_CTL_40_5413;
902		} else if (IS_RAD5111(ah)) {
903			rfMode = AR_PHY_MODE_AR5111;
904			if (IEEE80211_IS_CHAN_CCK(chan))
905				phyPLL = AR_PHY_PLL_CTL_44;
906			else
907				phyPLL = AR_PHY_PLL_CTL_40;
908			if (IEEE80211_IS_CHAN_HALF(chan))
909				phyPLL = AR_PHY_PLL_CTL_HALF;
910			else if (IEEE80211_IS_CHAN_QUARTER(chan))
911				phyPLL = AR_PHY_PLL_CTL_QUARTER;
912		} else {		/* 5112, 2413, 2316, 2317 */
913			rfMode = AR_PHY_MODE_AR5112;
914			if (IEEE80211_IS_CHAN_CCK(chan))
915				phyPLL = AR_PHY_PLL_CTL_44_5112;
916			else
917				phyPLL = AR_PHY_PLL_CTL_40_5112;
918			if (IEEE80211_IS_CHAN_HALF(chan))
919				phyPLL |= AR_PHY_PLL_CTL_HALF;
920			else if (IEEE80211_IS_CHAN_QUARTER(chan))
921				phyPLL |= AR_PHY_PLL_CTL_QUARTER;
922		}
923		if (IEEE80211_IS_CHAN_G(chan))
924			rfMode |= AR_PHY_MODE_DYNAMIC;
925		else if (IEEE80211_IS_CHAN_OFDM(chan))
926			rfMode |= AR_PHY_MODE_OFDM;
927		else
928			rfMode |= AR_PHY_MODE_CCK;
929		if (IEEE80211_IS_CHAN_5GHZ(chan))
930			rfMode |= AR_PHY_MODE_RF5GHZ;
931		else
932			rfMode |= AR_PHY_MODE_RF2GHZ;
933		turbo = IEEE80211_IS_CHAN_TURBO(chan) ?
934			(AR_PHY_FC_TURBO_MODE | AR_PHY_FC_TURBO_SHORT) : 0;
935		curPhyPLL = OS_REG_READ(ah, AR_PHY_PLL_CTL);
936		/*
937		 * PLL, Mode, and Turbo values must be written in the correct
938		 * order to ensure:
939		 * - The PLL cannot be set to 44 unless the CCK or DYNAMIC
940		 *   mode bit is set
941		 * - Turbo cannot be set at the same time as CCK or DYNAMIC
942		 */
943		if (IEEE80211_IS_CHAN_CCK(chan)) {
944			OS_REG_WRITE(ah, AR_PHY_TURBO, turbo);
945			OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
946			if (curPhyPLL != phyPLL) {
947				OS_REG_WRITE(ah,  AR_PHY_PLL_CTL,  phyPLL);
948				/* Wait for the PLL to settle */
949				OS_DELAY(PLL_SETTLE_DELAY);
950			}
951		} else {
952			if (curPhyPLL != phyPLL) {
953				OS_REG_WRITE(ah,  AR_PHY_PLL_CTL,  phyPLL);
954				/* Wait for the PLL to settle */
955				OS_DELAY(PLL_SETTLE_DELAY);
956			}
957			OS_REG_WRITE(ah, AR_PHY_TURBO, turbo);
958			OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
959		}
960	}
961	return AH_TRUE;
962}
963
964/*
965 * Recalibrate the lower PHY chips to account for temperature/environment
966 * changes.
967 */
968HAL_BOOL
969ar5212PerCalibrationN(struct ath_hal *ah,
970	struct ieee80211_channel *chan,
971	u_int chainMask, HAL_BOOL longCal, HAL_BOOL *isCalDone)
972{
973#define IQ_CAL_TRIES    10
974	struct ath_hal_5212 *ahp = AH5212(ah);
975	HAL_CHANNEL_INTERNAL *ichan;
976	int32_t qCoff, qCoffDenom;
977	int32_t iqCorrMeas, iCoff, iCoffDenom;
978	uint32_t powerMeasQ, powerMeasI;
979	HAL_BOOL isBmode = AH_FALSE;
980
981	OS_MARK(ah, AH_MARK_PERCAL, chan->ic_freq);
982	*isCalDone = AH_FALSE;
983	ichan = ath_hal_checkchannel(ah, chan);
984	if (ichan == AH_NULL) {
985		HALDEBUG(ah, HAL_DEBUG_ANY,
986		    "%s: invalid channel %u/0x%x; no mapping\n",
987		    __func__, chan->ic_freq, chan->ic_flags);
988		return AH_FALSE;
989	}
990	SAVE_CCK(ah, chan, isBmode);
991
992	if (ahp->ah_bIQCalibration == IQ_CAL_DONE ||
993	    ahp->ah_bIQCalibration == IQ_CAL_INACTIVE)
994		*isCalDone = AH_TRUE;
995
996	/* IQ calibration in progress. Check to see if it has finished. */
997	if (ahp->ah_bIQCalibration == IQ_CAL_RUNNING &&
998	    !(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_DO_IQCAL)) {
999		int i;
1000
1001		/* IQ Calibration has finished. */
1002		ahp->ah_bIQCalibration = IQ_CAL_INACTIVE;
1003		*isCalDone = AH_TRUE;
1004
1005		/* workaround for misgated IQ Cal results */
1006		i = 0;
1007		do {
1008			/* Read calibration results. */
1009			powerMeasI = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_I);
1010			powerMeasQ = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_Q);
1011			iqCorrMeas = OS_REG_READ(ah, AR_PHY_IQCAL_RES_IQ_CORR_MEAS);
1012			if (powerMeasI && powerMeasQ)
1013				break;
1014			/* Do we really need this??? */
1015			OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
1016			    AR_PHY_TIMING_CTRL4_DO_IQCAL);
1017		} while (++i < IQ_CAL_TRIES);
1018
1019		HALDEBUG(ah, HAL_DEBUG_PERCAL,
1020		    "%s: IQ cal finished: %d tries\n", __func__, i);
1021		HALDEBUG(ah, HAL_DEBUG_PERCAL,
1022		    "%s: powerMeasI %u powerMeasQ %u iqCorrMeas %d\n",
1023		    __func__, powerMeasI, powerMeasQ, iqCorrMeas);
1024
1025		/*
1026		 * Prescale these values to remove 64-bit operation
1027		 * requirement at the loss of a little precision.
1028		 */
1029		iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128;
1030		qCoffDenom = powerMeasQ / 128;
1031
1032		/* Protect against divide-by-0 and loss of sign bits. */
1033		if (iCoffDenom != 0 && qCoffDenom >= 2) {
1034			iCoff = (int8_t)(-iqCorrMeas) / iCoffDenom;
1035			/* IQCORR_Q_I_COFF is a signed 6 bit number */
1036			if (iCoff < -32) {
1037				iCoff = -32;
1038			} else if (iCoff > 31) {
1039				iCoff = 31;
1040			}
1041
1042			/* IQCORR_Q_Q_COFF is a signed 5 bit number */
1043			qCoff = (powerMeasI / qCoffDenom) - 128;
1044			if (qCoff < -16) {
1045				qCoff = -16;
1046			} else if (qCoff > 15) {
1047				qCoff = 15;
1048			}
1049
1050			HALDEBUG(ah, HAL_DEBUG_PERCAL,
1051			    "%s: iCoff %d qCoff %d\n", __func__, iCoff, qCoff);
1052
1053			/* Write values and enable correction */
1054			OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1055				AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, iCoff);
1056			OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1057				AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, qCoff);
1058			OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
1059				AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
1060
1061			ahp->ah_bIQCalibration = IQ_CAL_DONE;
1062			ichan->privFlags |= CHANNEL_IQVALID;
1063			ichan->iCoff = iCoff;
1064			ichan->qCoff = qCoff;
1065		}
1066	} else if (!IEEE80211_IS_CHAN_B(chan) &&
1067	    ahp->ah_bIQCalibration == IQ_CAL_DONE &&
1068	    (ichan->privFlags & CHANNEL_IQVALID) == 0) {
1069		/*
1070		 * Start IQ calibration if configured channel has changed.
1071		 * Use a magic number of 15 based on default value.
1072		 */
1073		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1074			AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
1075			INIT_IQCAL_LOG_COUNT_MAX);
1076		OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
1077			AR_PHY_TIMING_CTRL4_DO_IQCAL);
1078		ahp->ah_bIQCalibration = IQ_CAL_RUNNING;
1079	}
1080	/* XXX EAR */
1081
1082	if (longCal) {
1083		/* Check noise floor results */
1084		ar5212GetNf(ah, chan);
1085		if (!IEEE80211_IS_CHAN_CWINT(chan)) {
1086			/* Perform cal for 5Ghz channels and any OFDM on 5112 */
1087			if (IEEE80211_IS_CHAN_5GHZ(chan) ||
1088			    (IS_RAD5112(ah) && IEEE80211_IS_CHAN_OFDM(chan)))
1089				ar5212RequestRfgain(ah);
1090		}
1091	}
1092	RESTORE_CCK(ah, chan, isBmode);
1093
1094	return AH_TRUE;
1095#undef IQ_CAL_TRIES
1096}
1097
1098HAL_BOOL
1099ar5212PerCalibration(struct ath_hal *ah,  struct ieee80211_channel *chan,
1100	HAL_BOOL *isIQdone)
1101{
1102	return ar5212PerCalibrationN(ah, chan, 0x1, AH_TRUE, isIQdone);
1103}
1104
1105HAL_BOOL
1106ar5212ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan)
1107{
1108	HAL_CHANNEL_INTERNAL *ichan;
1109
1110	ichan = ath_hal_checkchannel(ah, chan);
1111	if (ichan == AH_NULL) {
1112		HALDEBUG(ah, HAL_DEBUG_ANY,
1113		    "%s: invalid channel %u/0x%x; no mapping\n",
1114		    __func__, chan->ic_freq, chan->ic_flags);
1115		return AH_FALSE;
1116	}
1117	ichan->privFlags &= ~CHANNEL_IQVALID;
1118	return AH_TRUE;
1119}
1120
1121/**************************************************************
1122 * ar5212MacStop
1123 *
1124 * Disables all active QCUs and ensure that the mac is in a
1125 * quiessence state.
1126 */
1127static HAL_BOOL
1128ar5212MacStop(struct ath_hal *ah)
1129{
1130	HAL_BOOL     status;
1131	uint32_t    count;
1132	uint32_t    pendFrameCount;
1133	uint32_t    macStateFlag;
1134	uint32_t    queue;
1135
1136	status = AH_FALSE;
1137
1138	/* Disable Rx Operation ***********************************/
1139	OS_REG_SET_BIT(ah, AR_CR, AR_CR_RXD);
1140
1141	/* Disable TX Operation ***********************************/
1142#ifdef NOT_YET
1143	ar5212SetTxdpInvalid(ah);
1144#endif
1145	OS_REG_SET_BIT(ah, AR_Q_TXD, AR_Q_TXD_M);
1146
1147	/* Polling operation for completion of disable ************/
1148	macStateFlag = TX_ENABLE_CHECK | RX_ENABLE_CHECK;
1149
1150	for (count = 0; count < MAX_RESET_WAIT; count++) {
1151		if (macStateFlag & RX_ENABLE_CHECK) {
1152			if (!OS_REG_IS_BIT_SET(ah, AR_CR, AR_CR_RXE)) {
1153				macStateFlag &= ~RX_ENABLE_CHECK;
1154			}
1155		}
1156
1157		if (macStateFlag & TX_ENABLE_CHECK) {
1158			if (!OS_REG_IS_BIT_SET(ah, AR_Q_TXE, AR_Q_TXE_M)) {
1159				macStateFlag &= ~TX_ENABLE_CHECK;
1160				macStateFlag |= TX_QUEUEPEND_CHECK;
1161			}
1162		}
1163		if (macStateFlag & TX_QUEUEPEND_CHECK) {
1164			pendFrameCount = 0;
1165			for (queue = 0; queue < AR_NUM_DCU; queue++) {
1166				pendFrameCount += OS_REG_READ(ah,
1167				    AR_Q0_STS + (queue * 4)) &
1168				    AR_Q_STS_PEND_FR_CNT;
1169			}
1170			if (pendFrameCount == 0) {
1171				macStateFlag &= ~TX_QUEUEPEND_CHECK;
1172			}
1173		}
1174		if (macStateFlag == 0) {
1175			status = AH_TRUE;
1176			break;
1177		}
1178		OS_DELAY(50);
1179	}
1180
1181	if (status != AH_TRUE) {
1182		HALDEBUG(ah, HAL_DEBUG_RESET,
1183		    "%s:Failed to stop the MAC state 0x%x\n",
1184		    __func__, macStateFlag);
1185	}
1186
1187	return status;
1188}
1189
1190
1191/*
1192 * Write the given reset bit mask into the reset register
1193 */
1194static HAL_BOOL
1195ar5212SetResetReg(struct ath_hal *ah, uint32_t resetMask)
1196{
1197	uint32_t mask = resetMask ? resetMask : ~0;
1198	HAL_BOOL rt;
1199
1200	/* Never reset the PCIE core */
1201	if (AH_PRIVATE(ah)->ah_ispcie) {
1202		resetMask &= ~AR_RC_PCI;
1203	}
1204
1205	if (resetMask & (AR_RC_MAC | AR_RC_PCI)) {
1206		/*
1207		 * To ensure that the driver can reset the
1208		 * MAC, wake up the chip
1209		 */
1210		rt = ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE);
1211
1212		if (rt != AH_TRUE) {
1213			return rt;
1214		}
1215
1216		/*
1217		 * Disable interrupts
1218		 */
1219		OS_REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
1220		OS_REG_READ(ah, AR_IER);
1221
1222		if (ar5212MacStop(ah) != AH_TRUE) {
1223			/*
1224			 * Failed to stop the MAC gracefully; let's be more forceful then
1225			 */
1226
1227			/* need some delay before flush any pending MMR writes */
1228			OS_DELAY(15);
1229			OS_REG_READ(ah, AR_RXDP);
1230
1231			resetMask |= AR_RC_MAC | AR_RC_BB;
1232			/* _Never_ reset PCI Express core */
1233			if (! AH_PRIVATE(ah)->ah_ispcie) {
1234				resetMask |= AR_RC_PCI;
1235			}
1236#if 0
1237			/*
1238			 * Flush the park address of the PCI controller
1239			*/
1240			/* Read PCI slot information less than Hainan revision */
1241			if (AH_PRIVATE(ah)->ah_bustype == HAL_BUS_TYPE_PCI) {
1242				if (!IS_5112_REV5_UP(ah)) {
1243#define PCI_COMMON_CONFIG_STATUS    0x06
1244					u_int32_t    i;
1245					u_int16_t    reg16;
1246
1247					for (i = 0; i < 32; i++) {
1248						ath_hal_read_pci_config_space(ah,
1249						    PCI_COMMON_CONFIG_STATUS,
1250						    &reg16, sizeof(reg16));
1251					}
1252				}
1253#undef PCI_COMMON_CONFIG_STATUS
1254			}
1255#endif
1256		} else {
1257			/*
1258			 * MAC stopped gracefully; no need to warm-reset the PCI bus
1259			 */
1260
1261			resetMask &= ~AR_RC_PCI;
1262
1263			/* need some delay before flush any pending MMR writes */
1264			OS_DELAY(15);
1265			OS_REG_READ(ah, AR_RXDP);
1266		}
1267	}
1268
1269	(void) OS_REG_READ(ah, AR_RXDP);/* flush any pending MMR writes */
1270	OS_REG_WRITE(ah, AR_RC, resetMask);
1271	OS_DELAY(15);			/* need to wait at least 128 clocks
1272					   when reseting PCI before read */
1273	mask &= (AR_RC_MAC | AR_RC_BB);
1274	resetMask &= (AR_RC_MAC | AR_RC_BB);
1275	rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
1276        if ((resetMask & AR_RC_MAC) == 0) {
1277		if (isBigEndian()) {
1278			/*
1279			 * Set CFG, little-endian for descriptor accesses.
1280			 */
1281			mask = INIT_CONFIG_STATUS | AR_CFG_SWRD;
1282#ifndef AH_NEED_DESC_SWAP
1283			mask |= AR_CFG_SWTD;
1284#endif
1285			OS_REG_WRITE(ah, AR_CFG, mask);
1286		} else
1287			OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
1288		if (ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
1289			(void) OS_REG_READ(ah, AR_ISR_RAC);
1290	}
1291
1292	/* track PHY power state so we don't try to r/w BB registers */
1293	AH5212(ah)->ah_phyPowerOn = ((resetMask & AR_RC_BB) == 0);
1294	return rt;
1295}
1296
1297int16_t
1298ar5212GetNoiseFloor(struct ath_hal *ah)
1299{
1300	int16_t nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
1301	if (nf & 0x100)
1302		nf = 0 - ((nf ^ 0x1ff) + 1);
1303	return nf;
1304}
1305
1306static HAL_BOOL
1307getNoiseFloorThresh(struct ath_hal *ah, const struct ieee80211_channel *chan,
1308	int16_t *nft)
1309{
1310	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1311
1312	HALASSERT(ah->ah_magic == AR5212_MAGIC);
1313
1314	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1315	case IEEE80211_CHAN_A:
1316		*nft = ee->ee_noiseFloorThresh[headerInfo11A];
1317		break;
1318	case IEEE80211_CHAN_B:
1319		*nft = ee->ee_noiseFloorThresh[headerInfo11B];
1320		break;
1321	case IEEE80211_CHAN_G:
1322	case IEEE80211_CHAN_PUREG:	/* NB: really 108G */
1323		*nft = ee->ee_noiseFloorThresh[headerInfo11G];
1324		break;
1325	default:
1326		HALDEBUG(ah, HAL_DEBUG_ANY,
1327		    "%s: invalid channel flags %u/0x%x\n",
1328		    __func__, chan->ic_freq, chan->ic_flags);
1329		return AH_FALSE;
1330	}
1331	return AH_TRUE;
1332}
1333
1334/*
1335 * Setup the noise floor cal history buffer.
1336 */
1337void
1338ar5212InitNfCalHistBuffer(struct ath_hal *ah)
1339{
1340	struct ath_hal_5212 *ahp = AH5212(ah);
1341	int i;
1342
1343	ahp->ah_nfCalHist.first_run = 1;
1344	ahp->ah_nfCalHist.currIndex = 0;
1345	ahp->ah_nfCalHist.privNF = AR5212_CCA_MAX_GOOD_VALUE;
1346	ahp->ah_nfCalHist.invalidNFcount = AR512_NF_CAL_HIST_MAX;
1347	for (i = 0; i < AR512_NF_CAL_HIST_MAX; i ++)
1348		ahp->ah_nfCalHist.nfCalBuffer[i] = AR5212_CCA_MAX_GOOD_VALUE;
1349}
1350
1351/*
1352 * Add a noise floor value to the ring buffer.
1353 */
1354static __inline void
1355updateNFHistBuff(struct ar5212NfCalHist *h, int16_t nf)
1356{
1357 	h->nfCalBuffer[h->currIndex] = nf;
1358     	if (++h->currIndex >= AR512_NF_CAL_HIST_MAX)
1359		h->currIndex = 0;
1360}
1361
1362/*
1363 * Return the median noise floor value in the ring buffer.
1364 */
1365int16_t
1366ar5212GetNfHistMid(const int16_t calData[AR512_NF_CAL_HIST_MAX])
1367{
1368	int16_t sort[AR512_NF_CAL_HIST_MAX];
1369	int i, j;
1370
1371	OS_MEMCPY(sort, calData, AR512_NF_CAL_HIST_MAX*sizeof(int16_t));
1372	for (i = 0; i < AR512_NF_CAL_HIST_MAX-1; i ++) {
1373		for (j = 1; j < AR512_NF_CAL_HIST_MAX-i; j ++) {
1374			if (sort[j] > sort[j-1]) {
1375				int16_t nf = sort[j];
1376				sort[j] = sort[j-1];
1377				sort[j-1] = nf;
1378			}
1379		}
1380	}
1381	return sort[(AR512_NF_CAL_HIST_MAX-1)>>1];
1382}
1383
1384/*
1385 * Read the NF and check it against the noise floor threshhold
1386 */
1387int16_t
1388ar5212GetNf(struct ath_hal *ah, struct ieee80211_channel *chan)
1389{
1390	struct ath_hal_5212 *ahp = AH5212(ah);
1391	struct ar5212NfCalHist *h = &ahp->ah_nfCalHist;
1392	HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
1393	int16_t nf, nfThresh;
1394 	int32_t val;
1395
1396	if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
1397		HALDEBUG(ah, HAL_DEBUG_ANY,
1398		    "%s: NF did not complete in calibration window\n", __func__);
1399		ichan->rawNoiseFloor = h->privNF;	/* most recent value */
1400		return ichan->rawNoiseFloor;
1401	}
1402
1403	/*
1404	 * Finished NF cal, check against threshold.
1405	 */
1406	nf = ar5212GetNoiseFloor(ah);
1407	if (getNoiseFloorThresh(ah, chan, &nfThresh)) {
1408		if (nf > nfThresh) {
1409			HALDEBUG(ah, HAL_DEBUG_ANY,
1410			    "%s: noise floor failed detected; detected %u, "
1411			    "threshold %u\n", __func__, nf, nfThresh);
1412			/*
1413			 * NB: Don't discriminate 2.4 vs 5Ghz, if this
1414			 *     happens it indicates a problem regardless
1415			 *     of the band.
1416			 */
1417			chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
1418			nf = 0;
1419		}
1420	} else
1421		nf = 0;
1422
1423	/*
1424	 * Pass through histogram and write median value as
1425	 * calculated from the accrued window.  We require a
1426	 * full window of in-range values to be seen before we
1427	 * start using the history.
1428	 */
1429	updateNFHistBuff(h, nf);
1430	if (h->first_run) {
1431		if (nf < AR5212_CCA_MIN_BAD_VALUE ||
1432		    nf > AR5212_CCA_MAX_HIGH_VALUE) {
1433			nf = AR5212_CCA_MAX_GOOD_VALUE;
1434			h->invalidNFcount = AR512_NF_CAL_HIST_MAX;
1435		} else if (--(h->invalidNFcount) == 0) {
1436			h->first_run = 0;
1437			h->privNF = nf = ar5212GetNfHistMid(h->nfCalBuffer);
1438		} else {
1439			nf = AR5212_CCA_MAX_GOOD_VALUE;
1440		}
1441	} else {
1442		h->privNF = nf = ar5212GetNfHistMid(h->nfCalBuffer);
1443	}
1444
1445	val = OS_REG_READ(ah, AR_PHY(25));
1446	val &= 0xFFFFFE00;
1447	val |= (((uint32_t)nf << 1) & 0x1FF);
1448	OS_REG_WRITE(ah, AR_PHY(25), val);
1449	OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
1450	OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
1451	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
1452
1453	if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF, 0)) {
1454#ifdef AH_DEBUG
1455		ath_hal_printf(ah, "%s: AGC not ready AGC_CONTROL 0x%x\n",
1456		    __func__, OS_REG_READ(ah, AR_PHY_AGC_CONTROL));
1457#endif
1458	}
1459
1460	/*
1461	 * Now load a high maxCCAPower value again so that we're
1462	 * not capped by the median we just loaded
1463	 */
1464	val &= 0xFFFFFE00;
1465	val |= (((uint32_t)(-50) << 1) & 0x1FF);
1466	OS_REG_WRITE(ah, AR_PHY(25), val);
1467	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
1468	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
1469	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
1470
1471	return (ichan->rawNoiseFloor = nf);
1472}
1473
1474/*
1475 * Set up compression configuration registers
1476 */
1477void
1478ar5212SetCompRegs(struct ath_hal *ah)
1479{
1480	struct ath_hal_5212 *ahp = AH5212(ah);
1481	int i;
1482
1483        /* Check if h/w supports compression */
1484	if (!AH_PRIVATE(ah)->ah_caps.halCompressSupport)
1485		return;
1486
1487	OS_REG_WRITE(ah, AR_DCCFG, 1);
1488
1489	OS_REG_WRITE(ah, AR_CCFG,
1490		(AR_COMPRESSION_WINDOW_SIZE >> 8) & AR_CCFG_WIN_M);
1491
1492	OS_REG_WRITE(ah, AR_CCFG,
1493		OS_REG_READ(ah, AR_CCFG) | AR_CCFG_MIB_INT_EN);
1494	OS_REG_WRITE(ah, AR_CCUCFG,
1495		AR_CCUCFG_RESET_VAL | AR_CCUCFG_CATCHUP_EN);
1496
1497	OS_REG_WRITE(ah, AR_CPCOVF, 0);
1498
1499	/* reset decompression mask */
1500	for (i = 0; i < HAL_DECOMP_MASK_SIZE; i++) {
1501		OS_REG_WRITE(ah, AR_DCM_A, i);
1502		OS_REG_WRITE(ah, AR_DCM_D, ahp->ah_decompMask[i]);
1503	}
1504}
1505
1506HAL_BOOL
1507ar5212SetAntennaSwitchInternal(struct ath_hal *ah, HAL_ANT_SETTING settings,
1508	const struct ieee80211_channel *chan)
1509{
1510#define	ANT_SWITCH_TABLE1	AR_PHY(88)
1511#define	ANT_SWITCH_TABLE2	AR_PHY(89)
1512	struct ath_hal_5212 *ahp = AH5212(ah);
1513	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1514	uint32_t antSwitchA, antSwitchB;
1515	int ix;
1516
1517	HALASSERT(ah->ah_magic == AR5212_MAGIC);
1518	HALASSERT(ahp->ah_phyPowerOn);
1519
1520	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1521	case IEEE80211_CHAN_A:
1522		ix = 0;
1523		break;
1524	case IEEE80211_CHAN_G:
1525	case IEEE80211_CHAN_PUREG:		/* NB: 108G */
1526		ix = 2;
1527		break;
1528	case IEEE80211_CHAN_B:
1529		if (IS_2425(ah) || IS_2417(ah)) {
1530			/* NB: Nala/Swan: 11b is handled using 11g */
1531			ix = 2;
1532		} else
1533			ix = 1;
1534		break;
1535	default:
1536		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1537		    __func__, chan->ic_flags);
1538		return AH_FALSE;
1539	}
1540
1541	antSwitchA =  ee->ee_antennaControl[1][ix]
1542		   | (ee->ee_antennaControl[2][ix] << 6)
1543		   | (ee->ee_antennaControl[3][ix] << 12)
1544		   | (ee->ee_antennaControl[4][ix] << 18)
1545		   | (ee->ee_antennaControl[5][ix] << 24)
1546		   ;
1547	antSwitchB =  ee->ee_antennaControl[6][ix]
1548		   | (ee->ee_antennaControl[7][ix] << 6)
1549		   | (ee->ee_antennaControl[8][ix] << 12)
1550		   | (ee->ee_antennaControl[9][ix] << 18)
1551		   | (ee->ee_antennaControl[10][ix] << 24)
1552		   ;
1553	/*
1554	 * For fixed antenna, give the same setting for both switch banks
1555	 */
1556	switch (settings) {
1557	case HAL_ANT_FIXED_A:
1558		antSwitchB = antSwitchA;
1559		break;
1560	case HAL_ANT_FIXED_B:
1561		antSwitchA = antSwitchB;
1562		break;
1563	case HAL_ANT_VARIABLE:
1564		break;
1565	default:
1566		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad antenna setting %u\n",
1567		    __func__, settings);
1568		return AH_FALSE;
1569	}
1570	if (antSwitchB == antSwitchA) {
1571		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
1572		    "%s: Setting fast diversity off.\n", __func__);
1573		OS_REG_CLR_BIT(ah,AR_PHY_CCK_DETECT,
1574			       AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
1575		ahp->ah_diversity = AH_FALSE;
1576	} else {
1577		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
1578		    "%s: Setting fast diversity on.\n", __func__);
1579		OS_REG_SET_BIT(ah,AR_PHY_CCK_DETECT,
1580			       AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
1581		ahp->ah_diversity = AH_TRUE;
1582	}
1583	ahp->ah_antControl = settings;
1584
1585	OS_REG_WRITE(ah, ANT_SWITCH_TABLE1, antSwitchA);
1586	OS_REG_WRITE(ah, ANT_SWITCH_TABLE2, antSwitchB);
1587
1588	return AH_TRUE;
1589#undef ANT_SWITCH_TABLE2
1590#undef ANT_SWITCH_TABLE1
1591}
1592
1593HAL_BOOL
1594ar5212IsSpurChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
1595{
1596	uint16_t freq = ath_hal_gethwchannel(ah, chan);
1597	uint32_t clockFreq =
1598	    ((IS_5413(ah) || IS_RAD5112_ANY(ah) || IS_2417(ah)) ? 40 : 32);
1599	return ( ((freq % clockFreq) != 0)
1600              && (((freq % clockFreq) < 10)
1601             || (((freq) % clockFreq) > 22)) );
1602}
1603
1604/*
1605 * Read EEPROM header info and program the device for correct operation
1606 * given the channel value.
1607 */
1608HAL_BOOL
1609ar5212SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
1610{
1611#define NO_FALSE_DETECT_BACKOFF   2
1612#define CB22_FALSE_DETECT_BACKOFF 6
1613#define	AR_PHY_BIS(_ah, _reg, _mask, _val) \
1614	OS_REG_WRITE(_ah, AR_PHY(_reg), \
1615		(OS_REG_READ(_ah, AR_PHY(_reg)) & _mask) | (_val));
1616	struct ath_hal_5212 *ahp = AH5212(ah);
1617	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1618	int arrayMode, falseDectectBackoff;
1619	int is2GHz = IEEE80211_IS_CHAN_2GHZ(chan);
1620	HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
1621	int8_t adcDesiredSize, pgaDesiredSize;
1622	uint16_t switchSettling, txrxAtten, rxtxMargin;
1623	int iCoff, qCoff;
1624
1625	HALASSERT(ah->ah_magic == AR5212_MAGIC);
1626
1627	switch (chan->ic_flags & IEEE80211_CHAN_ALLTURBOFULL) {
1628	case IEEE80211_CHAN_A:
1629	case IEEE80211_CHAN_ST:
1630		arrayMode = headerInfo11A;
1631		if (!IS_RAD5112_ANY(ah) && !IS_2413(ah) && !IS_5413(ah))
1632			OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
1633				AR_PHY_FRAME_CTL_TX_CLIP,
1634				ahp->ah_gainValues.currStep->paramVal[GP_TXCLIP]);
1635		break;
1636	case IEEE80211_CHAN_B:
1637		arrayMode = headerInfo11B;
1638		break;
1639	case IEEE80211_CHAN_G:
1640	case IEEE80211_CHAN_108G:
1641		arrayMode = headerInfo11G;
1642		break;
1643	default:
1644		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1645		    __func__, chan->ic_flags);
1646		return AH_FALSE;
1647	}
1648
1649	/* Set the antenna register(s) correctly for the chip revision */
1650	AR_PHY_BIS(ah, 68, 0xFFFFFC06,
1651		(ee->ee_antennaControl[0][arrayMode] << 4) | 0x1);
1652
1653	ar5212SetAntennaSwitchInternal(ah, ahp->ah_antControl, chan);
1654
1655	/* Set the Noise Floor Thresh on ar5211 devices */
1656	OS_REG_WRITE(ah, AR_PHY(90),
1657		(ee->ee_noiseFloorThresh[arrayMode] & 0x1FF)
1658		| (1 << 9));
1659
1660	if (ee->ee_version >= AR_EEPROM_VER5_0 && IEEE80211_IS_CHAN_TURBO(chan)) {
1661		switchSettling = ee->ee_switchSettlingTurbo[is2GHz];
1662		adcDesiredSize = ee->ee_adcDesiredSizeTurbo[is2GHz];
1663		pgaDesiredSize = ee->ee_pgaDesiredSizeTurbo[is2GHz];
1664		txrxAtten = ee->ee_txrxAttenTurbo[is2GHz];
1665		rxtxMargin = ee->ee_rxtxMarginTurbo[is2GHz];
1666	} else {
1667		switchSettling = ee->ee_switchSettling[arrayMode];
1668		adcDesiredSize = ee->ee_adcDesiredSize[arrayMode];
1669		pgaDesiredSize = ee->ee_pgaDesiredSize[is2GHz];
1670		txrxAtten = ee->ee_txrxAtten[is2GHz];
1671		rxtxMargin = ee->ee_rxtxMargin[is2GHz];
1672	}
1673
1674	OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1675			 AR_PHY_SETTLING_SWITCH, switchSettling);
1676	OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
1677			 AR_PHY_DESIRED_SZ_ADC, adcDesiredSize);
1678	OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
1679			 AR_PHY_DESIRED_SZ_PGA, pgaDesiredSize);
1680	OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
1681			 AR_PHY_RXGAIN_TXRX_ATTEN, txrxAtten);
1682	OS_REG_WRITE(ah, AR_PHY(13),
1683		(ee->ee_txEndToXPAOff[arrayMode] << 24)
1684		| (ee->ee_txEndToXPAOff[arrayMode] << 16)
1685		| (ee->ee_txFrameToXPAOn[arrayMode] << 8)
1686		| ee->ee_txFrameToXPAOn[arrayMode]);
1687	AR_PHY_BIS(ah, 10, 0xFFFF00FF,
1688		ee->ee_txEndToXLNAOn[arrayMode] << 8);
1689	AR_PHY_BIS(ah, 25, 0xFFF80FFF,
1690		(ee->ee_thresh62[arrayMode] << 12) & 0x7F000);
1691
1692	/*
1693	 * False detect backoff - suspected 32 MHz spur causes false
1694	 * detects in OFDM, causing Tx Hangs.  Decrease weak signal
1695	 * sensitivity for this card.
1696	 */
1697	falseDectectBackoff = NO_FALSE_DETECT_BACKOFF;
1698	if (ee->ee_version < AR_EEPROM_VER3_3) {
1699		/* XXX magic number */
1700		if (AH_PRIVATE(ah)->ah_subvendorid == 0x1022 &&
1701		    IEEE80211_IS_CHAN_OFDM(chan))
1702			falseDectectBackoff += CB22_FALSE_DETECT_BACKOFF;
1703	} else {
1704		if (ar5212IsSpurChannel(ah, chan))
1705			falseDectectBackoff += ee->ee_falseDetectBackoff[arrayMode];
1706	}
1707	AR_PHY_BIS(ah, 73, 0xFFFFFF01, (falseDectectBackoff << 1) & 0xFE);
1708
1709	if (ichan->privFlags & CHANNEL_IQVALID) {
1710		iCoff = ichan->iCoff;
1711		qCoff = ichan->qCoff;
1712	} else {
1713		iCoff = ee->ee_iqCalI[is2GHz];
1714		qCoff = ee->ee_iqCalQ[is2GHz];
1715	}
1716
1717	/* write previous IQ results */
1718	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1719		AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, iCoff);
1720	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1721		AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, qCoff);
1722	OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
1723		AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
1724
1725	if (ee->ee_version >= AR_EEPROM_VER4_1) {
1726		if (!IEEE80211_IS_CHAN_108G(chan) || ee->ee_version >= AR_EEPROM_VER5_0)
1727			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
1728				AR_PHY_GAIN_2GHZ_RXTX_MARGIN, rxtxMargin);
1729	}
1730	if (ee->ee_version >= AR_EEPROM_VER5_1) {
1731		/* for now always disabled */
1732		OS_REG_WRITE(ah,  AR_PHY_HEAVY_CLIP_ENABLE,  0);
1733	}
1734
1735	return AH_TRUE;
1736#undef AR_PHY_BIS
1737#undef NO_FALSE_DETECT_BACKOFF
1738#undef CB22_FALSE_DETECT_BACKOFF
1739}
1740
1741/*
1742 * Apply Spur Immunity to Boards that require it.
1743 * Applies only to OFDM RX operation.
1744 */
1745
1746void
1747ar5212SetSpurMitigation(struct ath_hal *ah,
1748	const struct ieee80211_channel *chan)
1749{
1750	uint32_t pilotMask[2] = {0, 0}, binMagMask[4] = {0, 0, 0 , 0};
1751	uint16_t i, finalSpur, curChanAsSpur, binWidth = 0, spurDetectWidth, spurChan;
1752	int32_t spurDeltaPhase = 0, spurFreqSd = 0, spurOffset, binOffsetNumT16, curBinOffset;
1753	int16_t numBinOffsets;
1754	static const uint16_t magMapFor4[4] = {1, 2, 2, 1};
1755	static const uint16_t magMapFor3[3] = {1, 2, 1};
1756	const uint16_t *pMagMap;
1757	HAL_BOOL is2GHz = IEEE80211_IS_CHAN_2GHZ(chan);
1758	HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
1759	uint32_t val;
1760
1761#define CHAN_TO_SPUR(_f, _freq)   ( ((_freq) - ((_f) ? 2300 : 4900)) * 10 )
1762	if (IS_2417(ah)) {
1763		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: no spur mitigation\n",
1764		    __func__);
1765		return;
1766	}
1767
1768	curChanAsSpur = CHAN_TO_SPUR(is2GHz, ichan->channel);
1769
1770	if (ichan->mainSpur) {
1771		/* Pull out the saved spur value */
1772		finalSpur = ichan->mainSpur;
1773	} else {
1774		/*
1775		 * Check if spur immunity should be performed for this channel
1776		 * Should only be performed once per channel and then saved
1777		 */
1778		finalSpur = AR_NO_SPUR;
1779		spurDetectWidth = HAL_SPUR_CHAN_WIDTH;
1780		if (IEEE80211_IS_CHAN_TURBO(chan))
1781			spurDetectWidth *= 2;
1782
1783		/* Decide if any spur affects the current channel */
1784		for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
1785			spurChan = ath_hal_getSpurChan(ah, i, is2GHz);
1786			if (spurChan == AR_NO_SPUR) {
1787				break;
1788			}
1789			if ((curChanAsSpur - spurDetectWidth <= (spurChan & HAL_SPUR_VAL_MASK)) &&
1790			    (curChanAsSpur + spurDetectWidth >= (spurChan & HAL_SPUR_VAL_MASK))) {
1791				finalSpur = spurChan & HAL_SPUR_VAL_MASK;
1792				break;
1793			}
1794		}
1795		/* Save detected spur (or no spur) for this channel */
1796		ichan->mainSpur = finalSpur;
1797	}
1798
1799	/* Write spur immunity data */
1800	if (finalSpur == AR_NO_SPUR) {
1801		/* Disable Spur Immunity Regs if they appear set */
1802		if (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER) {
1803			/* Clear Spur Delta Phase, Spur Freq, and enable bits */
1804			OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_RATE, 0);
1805			val = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4);
1806			val &= ~(AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1807				 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1808				 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1809			OS_REG_WRITE(ah, AR_PHY_MASK_CTL, val);
1810			OS_REG_WRITE(ah, AR_PHY_TIMING11, 0);
1811
1812			/* Clear pilot masks */
1813			OS_REG_WRITE(ah, AR_PHY_TIMING7, 0);
1814			OS_REG_RMW_FIELD(ah, AR_PHY_TIMING8, AR_PHY_TIMING8_PILOT_MASK_2, 0);
1815			OS_REG_WRITE(ah, AR_PHY_TIMING9, 0);
1816			OS_REG_RMW_FIELD(ah, AR_PHY_TIMING10, AR_PHY_TIMING10_PILOT_MASK_2, 0);
1817
1818			/* Clear magnitude masks */
1819			OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, 0);
1820			OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, 0);
1821			OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, 0);
1822			OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_MASK_4, 0);
1823			OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, 0);
1824			OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, 0);
1825			OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, 0);
1826			OS_REG_RMW_FIELD(ah, AR_PHY_BIN_MASK2_4, AR_PHY_BIN_MASK2_4_MASK_4, 0);
1827		}
1828	} else {
1829		spurOffset = finalSpur - curChanAsSpur;
1830		/*
1831		 * Spur calculations:
1832		 * spurDeltaPhase is (spurOffsetIn100KHz / chipFrequencyIn100KHz) << 21
1833		 * spurFreqSd is (spurOffsetIn100KHz / sampleFrequencyIn100KHz) << 11
1834		 */
1835		if (IEEE80211_IS_CHAN_TURBO(chan)) {
1836			/* Chip Frequency & sampleFrequency are 80 MHz */
1837			spurDeltaPhase = (spurOffset << 16) / 25;
1838			spurFreqSd = spurDeltaPhase >> 10;
1839			binWidth = HAL_BIN_WIDTH_TURBO_100HZ;
1840		} else if (IEEE80211_IS_CHAN_G(chan)) {
1841			/* Chip Frequency is 44MHz, sampleFrequency is 40 MHz */
1842			spurFreqSd = (spurOffset << 8) / 55;
1843			spurDeltaPhase = (spurOffset << 17) / 25;
1844			binWidth = HAL_BIN_WIDTH_BASE_100HZ;
1845		} else {
1846			HALASSERT(!IEEE80211_IS_CHAN_B(chan));
1847			/* Chip Frequency & sampleFrequency are 40 MHz */
1848			spurDeltaPhase = (spurOffset << 17) / 25;
1849			spurFreqSd = spurDeltaPhase >> 10;
1850			binWidth = HAL_BIN_WIDTH_BASE_100HZ;
1851		}
1852
1853		/* Compute Pilot Mask */
1854		binOffsetNumT16 = ((spurOffset * 1000) << 4) / binWidth;
1855		/* The spur is on a bin if it's remainder at times 16 is 0 */
1856		if (binOffsetNumT16 & 0xF) {
1857			numBinOffsets = 4;
1858			pMagMap = magMapFor4;
1859		} else {
1860			numBinOffsets = 3;
1861			pMagMap = magMapFor3;
1862		}
1863		for (i = 0; i < numBinOffsets; i++) {
1864			if ((binOffsetNumT16 >> 4) > HAL_MAX_BINS_ALLOWED) {
1865				HALDEBUG(ah, HAL_DEBUG_ANY,
1866				    "Too man bins in spur mitigation\n");
1867				return;
1868			}
1869
1870			/* Get Pilot Mask values */
1871			curBinOffset = (binOffsetNumT16 >> 4) + i + 25;
1872			if ((curBinOffset >= 0) && (curBinOffset <= 32)) {
1873				if (curBinOffset <= 25)
1874					pilotMask[0] |= 1 << curBinOffset;
1875				else if (curBinOffset >= 27)
1876					pilotMask[0] |= 1 << (curBinOffset - 1);
1877			} else if ((curBinOffset >= 33) && (curBinOffset <= 52))
1878				pilotMask[1] |= 1 << (curBinOffset - 33);
1879
1880			/* Get viterbi values */
1881			if ((curBinOffset >= -1) && (curBinOffset <= 14))
1882				binMagMask[0] |= pMagMap[i] << (curBinOffset + 1) * 2;
1883			else if ((curBinOffset >= 15) && (curBinOffset <= 30))
1884				binMagMask[1] |= pMagMap[i] << (curBinOffset - 15) * 2;
1885			else if ((curBinOffset >= 31) && (curBinOffset <= 46))
1886				binMagMask[2] |= pMagMap[i] << (curBinOffset -31) * 2;
1887			else if((curBinOffset >= 47) && (curBinOffset <= 53))
1888				binMagMask[3] |= pMagMap[i] << (curBinOffset -47) * 2;
1889		}
1890
1891		/* Write Spur Delta Phase, Spur Freq, and enable bits */
1892		OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_RATE, 0xFF);
1893		val = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4);
1894		val |= (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1895			AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1896			AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1897		OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4, val);
1898		OS_REG_WRITE(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_IN_AGC |
1899			     SM(spurFreqSd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
1900			     SM(spurDeltaPhase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
1901
1902		/* Write pilot masks */
1903		OS_REG_WRITE(ah, AR_PHY_TIMING7, pilotMask[0]);
1904		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING8, AR_PHY_TIMING8_PILOT_MASK_2, pilotMask[1]);
1905		OS_REG_WRITE(ah, AR_PHY_TIMING9, pilotMask[0]);
1906		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING10, AR_PHY_TIMING10_PILOT_MASK_2, pilotMask[1]);
1907
1908		/* Write magnitude masks */
1909		OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, binMagMask[0]);
1910		OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, binMagMask[1]);
1911		OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, binMagMask[2]);
1912		OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_MASK_4, binMagMask[3]);
1913		OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, binMagMask[0]);
1914		OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, binMagMask[1]);
1915		OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, binMagMask[2]);
1916		OS_REG_RMW_FIELD(ah, AR_PHY_BIN_MASK2_4, AR_PHY_BIN_MASK2_4_MASK_4, binMagMask[3]);
1917	}
1918#undef CHAN_TO_SPUR
1919}
1920
1921
1922/*
1923 * Delta slope coefficient computation.
1924 * Required for OFDM operation.
1925 */
1926void
1927ar5212SetDeltaSlope(struct ath_hal *ah, const struct ieee80211_channel *chan)
1928{
1929#define COEF_SCALE_S 24
1930#define INIT_CLOCKMHZSCALED	0x64000000
1931	uint16_t freq = ath_hal_gethwchannel(ah, chan);
1932	unsigned long coef_scaled, coef_exp, coef_man, ds_coef_exp, ds_coef_man;
1933	unsigned long clockMhzScaled = INIT_CLOCKMHZSCALED;
1934
1935	if (IEEE80211_IS_CHAN_TURBO(chan))
1936		clockMhzScaled *= 2;
1937	/* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
1938	/* scale for selected channel bandwidth */
1939	if (IEEE80211_IS_CHAN_HALF(chan)) {
1940		clockMhzScaled = clockMhzScaled >> 1;
1941	} else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
1942		clockMhzScaled = clockMhzScaled >> 2;
1943	}
1944
1945	/*
1946	 * ALGO -> coef = 1e8/fcarrier*fclock/40;
1947	 * scaled coef to provide precision for this floating calculation
1948	 */
1949	coef_scaled = clockMhzScaled / freq;
1950
1951	/*
1952	 * ALGO -> coef_exp = 14-floor(log2(coef));
1953	 * floor(log2(x)) is the highest set bit position
1954	 */
1955	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1956		if ((coef_scaled >> coef_exp) & 0x1)
1957			break;
1958	/* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
1959	HALASSERT(coef_exp);
1960	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1961
1962	/*
1963	 * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
1964	 * The coefficient is already shifted up for scaling
1965	 */
1966	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1967	ds_coef_man = coef_man >> (COEF_SCALE_S - coef_exp);
1968	ds_coef_exp = coef_exp - 16;
1969
1970	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1971		AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1972	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1973		AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1974#undef INIT_CLOCKMHZSCALED
1975#undef COEF_SCALE_S
1976}
1977
1978/*
1979 * Set a limit on the overall output power.  Used for dynamic
1980 * transmit power control and the like.
1981 *
1982 * NB: limit is in units of 0.5 dbM.
1983 */
1984HAL_BOOL
1985ar5212SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
1986{
1987	/* XXX blech, construct local writable copy */
1988	struct ieee80211_channel dummy = *AH_PRIVATE(ah)->ah_curchan;
1989	uint16_t dummyXpdGains[2];
1990	HAL_BOOL isBmode;
1991
1992	SAVE_CCK(ah, &dummy, isBmode);
1993	AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
1994	return ar5212SetTransmitPower(ah, &dummy, dummyXpdGains);
1995}
1996
1997/*
1998 * Set the transmit power in the baseband for the given
1999 * operating channel and mode.
2000 */
2001HAL_BOOL
2002ar5212SetTransmitPower(struct ath_hal *ah,
2003	const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
2004{
2005#define	POW_OFDM(_r, _s)	(((0 & 1)<< ((_s)+6)) | (((_r) & 0x3f) << (_s)))
2006#define	POW_CCK(_r, _s)		(((_r) & 0x3f) << (_s))
2007#define	N(a)			(sizeof (a) / sizeof (a[0]))
2008	static const uint16_t tpcScaleReductionTable[5] =
2009		{ 0, 3, 6, 9, MAX_RATE_POWER };
2010	struct ath_hal_5212 *ahp = AH5212(ah);
2011	uint16_t freq = ath_hal_gethwchannel(ah, chan);
2012	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
2013	int16_t minPower, maxPower, tpcInDb, powerLimit;
2014	int i;
2015
2016	HALASSERT(ah->ah_magic == AR5212_MAGIC);
2017
2018	OS_MEMZERO(ahp->ah_pcdacTable, ahp->ah_pcdacTableSize);
2019	OS_MEMZERO(ahp->ah_ratesArray, sizeof(ahp->ah_ratesArray));
2020
2021	powerLimit = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
2022	if (powerLimit >= MAX_RATE_POWER || powerLimit == 0)
2023		tpcInDb = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
2024	else
2025		tpcInDb = 0;
2026	if (!ar5212SetRateTable(ah, chan, tpcInDb, powerLimit,
2027				AH_TRUE, &minPower, &maxPower)) {
2028		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set rate table\n",
2029		    __func__);
2030		return AH_FALSE;
2031	}
2032	if (!ahp->ah_rfHal->setPowerTable(ah,
2033		&minPower, &maxPower, chan, rfXpdGain)) {
2034		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
2035		    __func__);
2036		return AH_FALSE;
2037	}
2038
2039	/*
2040	 * Adjust XR power/rate up by 2 dB to account for greater peak
2041	 * to avg ratio - except in newer avg power designs
2042	 */
2043	if (!IS_2413(ah) && !IS_5413(ah))
2044		ahp->ah_ratesArray[15] += 4;
2045	/*
2046	 * txPowerIndexOffset is set by the SetPowerTable() call -
2047	 *  adjust the rate table
2048	 */
2049	for (i = 0; i < N(ahp->ah_ratesArray); i++) {
2050		ahp->ah_ratesArray[i] += ahp->ah_txPowerIndexOffset;
2051		if (ahp->ah_ratesArray[i] > 63)
2052			ahp->ah_ratesArray[i] = 63;
2053	}
2054
2055	if (ee->ee_eepMap < 2) {
2056		/*
2057		 * Correct gain deltas for 5212 G operation -
2058		 * Removed with revised chipset
2059		 */
2060		if (AH_PRIVATE(ah)->ah_phyRev < AR_PHY_CHIP_ID_REV_2 &&
2061		    IEEE80211_IS_CHAN_G(chan)) {
2062			uint16_t cckOfdmPwrDelta;
2063
2064			if (freq == 2484)
2065				cckOfdmPwrDelta = SCALE_OC_DELTA(
2066					ee->ee_cckOfdmPwrDelta -
2067					ee->ee_scaledCh14FilterCckDelta);
2068			else
2069				cckOfdmPwrDelta = SCALE_OC_DELTA(
2070					ee->ee_cckOfdmPwrDelta);
2071			ar5212CorrectGainDelta(ah, cckOfdmPwrDelta);
2072		}
2073		/*
2074		 * Finally, write the power values into the
2075		 * baseband power table
2076		 */
2077		for (i = 0; i < (PWR_TABLE_SIZE/2); i++) {
2078			OS_REG_WRITE(ah, AR_PHY_PCDAC_TX_POWER(i),
2079				 ((((ahp->ah_pcdacTable[2*i + 1] << 8) | 0xff) & 0xffff) << 16)
2080				| (((ahp->ah_pcdacTable[2*i]     << 8) | 0xff) & 0xffff)
2081			);
2082		}
2083	}
2084
2085	/* Write the OFDM power per rate set */
2086	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
2087		POW_OFDM(ahp->ah_ratesArray[3], 24)
2088	      | POW_OFDM(ahp->ah_ratesArray[2], 16)
2089	      | POW_OFDM(ahp->ah_ratesArray[1],  8)
2090	      | POW_OFDM(ahp->ah_ratesArray[0],  0)
2091	);
2092	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
2093		POW_OFDM(ahp->ah_ratesArray[7], 24)
2094	      | POW_OFDM(ahp->ah_ratesArray[6], 16)
2095	      | POW_OFDM(ahp->ah_ratesArray[5],  8)
2096	      | POW_OFDM(ahp->ah_ratesArray[4],  0)
2097	);
2098
2099	/* Write the CCK power per rate set */
2100	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
2101		POW_CCK(ahp->ah_ratesArray[10], 24)
2102	      | POW_CCK(ahp->ah_ratesArray[9],  16)
2103	      | POW_CCK(ahp->ah_ratesArray[15],  8)	/* XR target power */
2104	      | POW_CCK(ahp->ah_ratesArray[8],   0)
2105	);
2106	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
2107		POW_CCK(ahp->ah_ratesArray[14], 24)
2108	      | POW_CCK(ahp->ah_ratesArray[13], 16)
2109	      | POW_CCK(ahp->ah_ratesArray[12],  8)
2110	      | POW_CCK(ahp->ah_ratesArray[11],  0)
2111	);
2112
2113	/*
2114	 * Set max power to 30 dBm and, optionally,
2115	 * enable TPC in tx descriptors.
2116	 */
2117	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER |
2118		(ahp->ah_tpcEnabled ? AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE : 0));
2119
2120	return AH_TRUE;
2121#undef N
2122#undef POW_CCK
2123#undef POW_OFDM
2124}
2125
2126/*
2127 * Sets the transmit power in the baseband for the given
2128 * operating channel and mode.
2129 */
2130static HAL_BOOL
2131ar5212SetRateTable(struct ath_hal *ah, const struct ieee80211_channel *chan,
2132	int16_t tpcScaleReduction, int16_t powerLimit, HAL_BOOL commit,
2133	int16_t *pMinPower, int16_t *pMaxPower)
2134{
2135	struct ath_hal_5212 *ahp = AH5212(ah);
2136	uint16_t freq = ath_hal_gethwchannel(ah, chan);
2137	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
2138	uint16_t *rpow = ahp->ah_ratesArray;
2139	uint16_t twiceMaxEdgePower = MAX_RATE_POWER;
2140	uint16_t twiceMaxEdgePowerCck = MAX_RATE_POWER;
2141	uint16_t twiceMaxRDPower = MAX_RATE_POWER;
2142	int i;
2143	uint8_t cfgCtl;
2144	int8_t twiceAntennaGain, twiceAntennaReduction;
2145	const RD_EDGES_POWER *rep;
2146	TRGT_POWER_INFO targetPowerOfdm, targetPowerCck;
2147	int16_t scaledPower, maxAvailPower = 0;
2148	int16_t r13, r9, r7, r0;
2149
2150	HALASSERT(ah->ah_magic == AR5212_MAGIC);
2151
2152	twiceMaxRDPower = chan->ic_maxregpower * 2;
2153	*pMaxPower = -MAX_RATE_POWER;
2154	*pMinPower = MAX_RATE_POWER;
2155
2156	/* Get conformance test limit maximum for this channel */
2157	cfgCtl = ath_hal_getctl(ah, chan);
2158	for (i = 0; i < ee->ee_numCtls; i++) {
2159		uint16_t twiceMinEdgePower;
2160
2161		if (ee->ee_ctl[i] == 0)
2162			continue;
2163		if (ee->ee_ctl[i] == cfgCtl ||
2164		    cfgCtl == ((ee->ee_ctl[i] & CTL_MODE_M) | SD_NO_CTL)) {
2165			rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
2166			twiceMinEdgePower = ar5212GetMaxEdgePower(freq, rep);
2167			if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
2168				/* Find the minimum of all CTL edge powers that apply to this channel */
2169				twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
2170			} else {
2171				twiceMaxEdgePower = twiceMinEdgePower;
2172				break;
2173			}
2174		}
2175	}
2176
2177	if (IEEE80211_IS_CHAN_G(chan)) {
2178		/* Check for a CCK CTL for 11G CCK powers */
2179		cfgCtl = (cfgCtl & ~CTL_MODE_M) | CTL_11B;
2180		for (i = 0; i < ee->ee_numCtls; i++) {
2181			uint16_t twiceMinEdgePowerCck;
2182
2183			if (ee->ee_ctl[i] == 0)
2184				continue;
2185			if (ee->ee_ctl[i] == cfgCtl ||
2186			    cfgCtl == ((ee->ee_ctl[i] & CTL_MODE_M) | SD_NO_CTL)) {
2187				rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
2188				twiceMinEdgePowerCck = ar5212GetMaxEdgePower(freq, rep);
2189				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
2190					/* Find the minimum of all CTL edge powers that apply to this channel */
2191					twiceMaxEdgePowerCck = AH_MIN(twiceMaxEdgePowerCck, twiceMinEdgePowerCck);
2192				} else {
2193					twiceMaxEdgePowerCck = twiceMinEdgePowerCck;
2194					break;
2195				}
2196			}
2197		}
2198	} else {
2199		/* Set the 11B cck edge power to the one found before */
2200		twiceMaxEdgePowerCck = twiceMaxEdgePower;
2201	}
2202
2203	/* Get Antenna Gain reduction */
2204	if (IEEE80211_IS_CHAN_5GHZ(chan)) {
2205		ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_5, &twiceAntennaGain);
2206	} else {
2207		ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_2, &twiceAntennaGain);
2208	}
2209	twiceAntennaReduction =
2210		ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
2211
2212	if (IEEE80211_IS_CHAN_OFDM(chan)) {
2213		/* Get final OFDM target powers */
2214		if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2215			ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11g,
2216				ee->ee_numTargetPwr_11g, &targetPowerOfdm);
2217		} else {
2218			ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11a,
2219				ee->ee_numTargetPwr_11a, &targetPowerOfdm);
2220		}
2221
2222		/* Get Maximum OFDM power */
2223		/* Minimum of target and edge powers */
2224		scaledPower = AH_MIN(twiceMaxEdgePower,
2225				twiceMaxRDPower - twiceAntennaReduction);
2226
2227		/*
2228		 * If turbo is set, reduce power to keep power
2229		 * consumption under 2 Watts.  Note that we always do
2230		 * this unless specially configured.  Then we limit
2231		 * power only for non-AP operation.
2232		 */
2233		if (IEEE80211_IS_CHAN_TURBO(chan)
2234#ifdef AH_ENABLE_AP_SUPPORT
2235		    && AH_PRIVATE(ah)->ah_opmode != HAL_M_HOSTAP
2236#endif
2237		) {
2238			/*
2239			 * If turbo is set, reduce power to keep power
2240			 * consumption under 2 Watts
2241			 */
2242			if (ee->ee_version >= AR_EEPROM_VER3_1)
2243				scaledPower = AH_MIN(scaledPower,
2244					ee->ee_turbo2WMaxPower5);
2245			/*
2246			 * EEPROM version 4.0 added an additional
2247			 * constraint on 2.4GHz channels.
2248			 */
2249			if (ee->ee_version >= AR_EEPROM_VER4_0 &&
2250			    IEEE80211_IS_CHAN_2GHZ(chan))
2251				scaledPower = AH_MIN(scaledPower,
2252					ee->ee_turbo2WMaxPower2);
2253		}
2254
2255		maxAvailPower = AH_MIN(scaledPower,
2256					targetPowerOfdm.twicePwr6_24);
2257
2258		/* Reduce power by max regulatory domain allowed restrictions */
2259		scaledPower = maxAvailPower - (tpcScaleReduction * 2);
2260		scaledPower = (scaledPower < 0) ? 0 : scaledPower;
2261		scaledPower = AH_MIN(scaledPower, powerLimit);
2262
2263		if (commit) {
2264			/* Set OFDM rates 9, 12, 18, 24 */
2265			r0 = rpow[0] = rpow[1] = rpow[2] = rpow[3] = rpow[4] = scaledPower;
2266
2267			/* Set OFDM rates 36, 48, 54, XR */
2268			rpow[5] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr36);
2269			rpow[6] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr48);
2270			r7 = rpow[7] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr54);
2271
2272			if (ee->ee_version >= AR_EEPROM_VER4_0) {
2273				/* Setup XR target power from EEPROM */
2274				rpow[15] = AH_MIN(scaledPower, IEEE80211_IS_CHAN_2GHZ(chan) ?
2275						  ee->ee_xrTargetPower2 : ee->ee_xrTargetPower5);
2276			} else {
2277				/* XR uses 6mb power */
2278				rpow[15] = rpow[0];
2279			}
2280			ahp->ah_ofdmTxPower = *pMaxPower;
2281
2282		} else {
2283			r0 = scaledPower;
2284			r7 = AH_MIN(r0, targetPowerOfdm.twicePwr54);
2285		}
2286		*pMinPower = r7;
2287		*pMaxPower = r0;
2288
2289		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2290		    "%s: MaxRD: %d TurboMax: %d MaxCTL: %d "
2291		    "TPC_Reduction %d chan=%d (0x%x) maxAvailPower=%d pwr6_24=%d, maxPower=%d\n",
2292		    __func__, twiceMaxRDPower, ee->ee_turbo2WMaxPower5,
2293		    twiceMaxEdgePower, tpcScaleReduction * 2,
2294		    chan->ic_freq, chan->ic_flags,
2295		    maxAvailPower, targetPowerOfdm.twicePwr6_24, *pMaxPower);
2296	}
2297
2298	if (IEEE80211_IS_CHAN_CCK(chan)) {
2299		/* Get final CCK target powers */
2300		ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11b,
2301			ee->ee_numTargetPwr_11b, &targetPowerCck);
2302
2303		/* Reduce power by max regulatory domain allowed restrictions */
2304		scaledPower = AH_MIN(twiceMaxEdgePowerCck,
2305			twiceMaxRDPower - twiceAntennaReduction);
2306		if (maxAvailPower < AH_MIN(scaledPower, targetPowerCck.twicePwr6_24))
2307			maxAvailPower = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24);
2308
2309		/* Reduce power by user selection */
2310		scaledPower = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24) - (tpcScaleReduction * 2);
2311		scaledPower = (scaledPower < 0) ? 0 : scaledPower;
2312		scaledPower = AH_MIN(scaledPower, powerLimit);
2313
2314		if (commit) {
2315			/* Set CCK rates 2L, 2S, 5.5L, 5.5S, 11L, 11S */
2316			rpow[8]  = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24);
2317			r9 = rpow[9]  = AH_MIN(scaledPower, targetPowerCck.twicePwr36);
2318			rpow[10] = rpow[9];
2319			rpow[11] = AH_MIN(scaledPower, targetPowerCck.twicePwr48);
2320			rpow[12] = rpow[11];
2321			r13 = rpow[13] = AH_MIN(scaledPower, targetPowerCck.twicePwr54);
2322			rpow[14] = rpow[13];
2323		} else {
2324			r9 = AH_MIN(scaledPower, targetPowerCck.twicePwr36);
2325			r13 = AH_MIN(scaledPower, targetPowerCck.twicePwr54);
2326		}
2327
2328		/* Set min/max power based off OFDM values or initialization */
2329		if (r13 < *pMinPower)
2330			*pMinPower = r13;
2331		if (r9 > *pMaxPower)
2332			*pMaxPower = r9;
2333
2334		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2335		    "%s: cck: MaxRD: %d MaxCTL: %d "
2336		    "TPC_Reduction %d chan=%d (0x%x) maxAvailPower=%d pwr6_24=%d, maxPower=%d\n",
2337		    __func__, twiceMaxRDPower, twiceMaxEdgePowerCck,
2338		    tpcScaleReduction * 2, chan->ic_freq, chan->ic_flags,
2339		    maxAvailPower, targetPowerCck.twicePwr6_24, *pMaxPower);
2340	}
2341	if (commit) {
2342		ahp->ah_tx6PowerInHalfDbm = *pMaxPower;
2343		AH_PRIVATE(ah)->ah_maxPowerLevel = ahp->ah_tx6PowerInHalfDbm;
2344	}
2345	return AH_TRUE;
2346}
2347
2348HAL_BOOL
2349ar5212GetChipPowerLimits(struct ath_hal *ah, struct ieee80211_channel *chan)
2350{
2351	struct ath_hal_5212 *ahp = AH5212(ah);
2352#if 0
2353	static const uint16_t tpcScaleReductionTable[5] =
2354		{ 0, 3, 6, 9, MAX_RATE_POWER };
2355	int16_t tpcInDb, powerLimit;
2356#endif
2357	int16_t minPower, maxPower;
2358
2359	/*
2360	 * Get Pier table max and min powers.
2361	 */
2362	if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
2363		/* NB: rf code returns 1/4 dBm units, convert */
2364		chan->ic_maxpower = maxPower / 2;
2365		chan->ic_minpower = minPower / 2;
2366	} else {
2367		HALDEBUG(ah, HAL_DEBUG_ANY,
2368		    "%s: no min/max power for %u/0x%x\n",
2369		    __func__, chan->ic_freq, chan->ic_flags);
2370		chan->ic_maxpower = MAX_RATE_POWER;
2371		chan->ic_minpower = 0;
2372	}
2373#if 0
2374	/*
2375	 * Now adjust to reflect any global scale and/or CTL's.
2376	 * (XXX is that correct?)
2377	 */
2378	powerLimit = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
2379	if (powerLimit >= MAX_RATE_POWER || powerLimit == 0)
2380		tpcInDb = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
2381	else
2382		tpcInDb = 0;
2383	if (!ar5212SetRateTable(ah, chan, tpcInDb, powerLimit,
2384				AH_FALSE, &minPower, &maxPower)) {
2385		HALDEBUG(ah, HAL_DEBUG_ANY,
2386		    "%s: unable to find max/min power\n",__func__);
2387		return AH_FALSE;
2388	}
2389	if (maxPower < chan->ic_maxpower)
2390		chan->ic_maxpower = maxPower;
2391	if (minPower < chan->ic_minpower)
2392		chan->ic_minpower = minPower;
2393	HALDEBUG(ah, HAL_DEBUG_RESET,
2394	    "Chan %d: MaxPow = %d MinPow = %d\n",
2395	    chan->ic_freq, chan->ic_maxpower, chans->ic_minpower);
2396#endif
2397	return AH_TRUE;
2398}
2399
2400/*
2401 * Correct for the gain-delta between ofdm and cck mode target
2402 * powers. Write the results to the rate table and the power table.
2403 *
2404 *   Conventions :
2405 *   1. rpow[ii] is the integer value of 2*(desired power
2406 *    for the rate ii in dBm) to provide 0.5dB resolution. rate
2407 *    mapping is as following :
2408 *     [0..7]  --> ofdm 6, 9, .. 48, 54
2409 *     [8..14] --> cck 1L, 2L, 2S, .. 11L, 11S
2410 *     [15]    --> XR (all rates get the same power)
2411 *   2. powv[ii]  is the pcdac corresponding to ii/2 dBm.
2412 */
2413static void
2414ar5212CorrectGainDelta(struct ath_hal *ah, int twiceOfdmCckDelta)
2415{
2416#define	N(_a)	(sizeof(_a) / sizeof(_a[0]))
2417	struct ath_hal_5212 *ahp = AH5212(ah);
2418	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
2419	int16_t ratesIndex[N(ahp->ah_ratesArray)];
2420	uint16_t ii, jj, iter;
2421	int32_t cckIndex;
2422	int16_t gainDeltaAdjust;
2423
2424	HALASSERT(ah->ah_magic == AR5212_MAGIC);
2425
2426	gainDeltaAdjust = ee->ee_cckOfdmGainDelta;
2427
2428	/* make a local copy of desired powers as initial indices */
2429	OS_MEMCPY(ratesIndex, ahp->ah_ratesArray, sizeof(ratesIndex));
2430
2431	/* fix only the CCK indices */
2432	for (ii = 8; ii < 15; ii++) {
2433		/* apply a gain_delta correction of -15 for CCK */
2434		ratesIndex[ii] -= gainDeltaAdjust;
2435
2436		/* Now check for contention with all ofdm target powers */
2437		jj = 0;
2438		iter = 0;
2439		/* indicates not all ofdm rates checked forcontention yet */
2440		while (jj < 16) {
2441			if (ratesIndex[ii] < 0)
2442				ratesIndex[ii] = 0;
2443			if (jj == 8) {		/* skip CCK rates */
2444				jj = 15;
2445				continue;
2446			}
2447			if (ratesIndex[ii] == ahp->ah_ratesArray[jj]) {
2448				if (ahp->ah_ratesArray[jj] == 0)
2449					ratesIndex[ii]++;
2450				else if (iter > 50) {
2451					/*
2452					 * To avoid pathological case of of
2453					 * dm target powers 0 and 0.5dBm
2454					 */
2455					ratesIndex[ii]++;
2456				} else
2457					ratesIndex[ii]--;
2458				/* check with all rates again */
2459				jj = 0;
2460				iter++;
2461			} else
2462				jj++;
2463		}
2464		if (ratesIndex[ii] >= PWR_TABLE_SIZE)
2465			ratesIndex[ii] = PWR_TABLE_SIZE -1;
2466		cckIndex = ahp->ah_ratesArray[ii] - twiceOfdmCckDelta;
2467		if (cckIndex < 0)
2468			cckIndex = 0;
2469
2470		/*
2471		 * Validate that the indexes for the powv are not
2472		 * out of bounds.
2473		 */
2474		HALASSERT(cckIndex < PWR_TABLE_SIZE);
2475		HALASSERT(ratesIndex[ii] < PWR_TABLE_SIZE);
2476		ahp->ah_pcdacTable[ratesIndex[ii]] =
2477			ahp->ah_pcdacTable[cckIndex];
2478	}
2479	/* Override rate per power table with new values */
2480	for (ii = 8; ii < 15; ii++)
2481		ahp->ah_ratesArray[ii] = ratesIndex[ii];
2482#undef N
2483}
2484
2485/*
2486 * Find the maximum conformance test limit for the given channel and CTL info
2487 */
2488static uint16_t
2489ar5212GetMaxEdgePower(uint16_t channel, const RD_EDGES_POWER *pRdEdgesPower)
2490{
2491	/* temp array for holding edge channels */
2492	uint16_t tempChannelList[NUM_EDGES];
2493	uint16_t clo, chi, twiceMaxEdgePower;
2494	int i, numEdges;
2495
2496	/* Get the edge power */
2497	for (i = 0; i < NUM_EDGES; i++) {
2498		if (pRdEdgesPower[i].rdEdge == 0)
2499			break;
2500		tempChannelList[i] = pRdEdgesPower[i].rdEdge;
2501	}
2502	numEdges = i;
2503
2504	ar5212GetLowerUpperValues(channel, tempChannelList,
2505		numEdges, &clo, &chi);
2506	/* Get the index for the lower channel */
2507	for (i = 0; i < numEdges && clo != tempChannelList[i]; i++)
2508		;
2509	/* Is lower channel ever outside the rdEdge? */
2510	HALASSERT(i != numEdges);
2511
2512	if ((clo == chi && clo == channel) || (pRdEdgesPower[i].flag)) {
2513		/*
2514		 * If there's an exact channel match or an inband flag set
2515		 * on the lower channel use the given rdEdgePower
2516		 */
2517		twiceMaxEdgePower = pRdEdgesPower[i].twice_rdEdgePower;
2518		HALASSERT(twiceMaxEdgePower > 0);
2519	} else
2520		twiceMaxEdgePower = MAX_RATE_POWER;
2521	return twiceMaxEdgePower;
2522}
2523
2524/*
2525 * Returns interpolated or the scaled up interpolated value
2526 */
2527static uint16_t
2528interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
2529	uint16_t targetLeft, uint16_t targetRight)
2530{
2531	uint16_t rv;
2532	int16_t lRatio;
2533
2534	/* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
2535	if ((targetLeft * targetRight) == 0)
2536		return 0;
2537
2538	if (srcRight != srcLeft) {
2539		/*
2540		 * Note the ratio always need to be scaled,
2541		 * since it will be a fraction.
2542		 */
2543		lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
2544		if (lRatio < 0) {
2545		    /* Return as Left target if value would be negative */
2546		    rv = targetLeft;
2547		} else if (lRatio > EEP_SCALE) {
2548		    /* Return as Right target if Ratio is greater than 100% (SCALE) */
2549		    rv = targetRight;
2550		} else {
2551			rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
2552					targetLeft) / EEP_SCALE;
2553		}
2554	} else {
2555		rv = targetLeft;
2556	}
2557	return rv;
2558}
2559
2560/*
2561 * Return the four rates of target power for the given target power table
2562 * channel, and number of channels
2563 */
2564static void
2565ar5212GetTargetPowers(struct ath_hal *ah, const struct ieee80211_channel *chan,
2566	const TRGT_POWER_INFO *powInfo,
2567	uint16_t numChannels, TRGT_POWER_INFO *pNewPower)
2568{
2569	uint16_t freq = ath_hal_gethwchannel(ah, chan);
2570	/* temp array for holding target power channels */
2571	uint16_t tempChannelList[NUM_TEST_FREQUENCIES];
2572	uint16_t clo, chi, ixlo, ixhi;
2573	int i;
2574
2575	/* Copy the target powers into the temp channel list */
2576	for (i = 0; i < numChannels; i++)
2577		tempChannelList[i] = powInfo[i].testChannel;
2578
2579	ar5212GetLowerUpperValues(freq, tempChannelList,
2580		numChannels, &clo, &chi);
2581
2582	/* Get the indices for the channel */
2583	ixlo = ixhi = 0;
2584	for (i = 0; i < numChannels; i++) {
2585		if (clo == tempChannelList[i]) {
2586			ixlo = i;
2587		}
2588		if (chi == tempChannelList[i]) {
2589			ixhi = i;
2590			break;
2591		}
2592	}
2593
2594	/*
2595	 * Get the lower and upper channels, target powers,
2596	 * and interpolate between them.
2597	 */
2598	pNewPower->twicePwr6_24 = interpolate(freq, clo, chi,
2599		powInfo[ixlo].twicePwr6_24, powInfo[ixhi].twicePwr6_24);
2600	pNewPower->twicePwr36 = interpolate(freq, clo, chi,
2601		powInfo[ixlo].twicePwr36, powInfo[ixhi].twicePwr36);
2602	pNewPower->twicePwr48 = interpolate(freq, clo, chi,
2603		powInfo[ixlo].twicePwr48, powInfo[ixhi].twicePwr48);
2604	pNewPower->twicePwr54 = interpolate(freq, clo, chi,
2605		powInfo[ixlo].twicePwr54, powInfo[ixhi].twicePwr54);
2606}
2607
2608static uint32_t
2609udiff(uint32_t u, uint32_t v)
2610{
2611	return (u >= v ? u - v : v - u);
2612}
2613
2614/*
2615 * Search a list for a specified value v that is within
2616 * EEP_DELTA of the search values.  Return the closest
2617 * values in the list above and below the desired value.
2618 * EEP_DELTA is a factional value; everything is scaled
2619 * so only integer arithmetic is used.
2620 *
2621 * NB: the input list is assumed to be sorted in ascending order
2622 */
2623void
2624ar5212GetLowerUpperValues(uint16_t v, uint16_t *lp, uint16_t listSize,
2625                          uint16_t *vlo, uint16_t *vhi)
2626{
2627	uint32_t target = v * EEP_SCALE;
2628	uint16_t *ep = lp+listSize;
2629
2630	/*
2631	 * Check first and last elements for out-of-bounds conditions.
2632	 */
2633	if (target < (uint32_t)(lp[0] * EEP_SCALE - EEP_DELTA)) {
2634		*vlo = *vhi = lp[0];
2635		return;
2636	}
2637	if (target > (uint32_t)(ep[-1] * EEP_SCALE + EEP_DELTA)) {
2638		*vlo = *vhi = ep[-1];
2639		return;
2640	}
2641
2642	/* look for value being near or between 2 values in list */
2643	for (; lp < ep; lp++) {
2644		/*
2645		 * If value is close to the current value of the list
2646		 * then target is not between values, it is one of the values
2647		 */
2648		if (udiff(lp[0] * EEP_SCALE, target) < EEP_DELTA) {
2649			*vlo = *vhi = lp[0];
2650			return;
2651		}
2652		/*
2653		 * Look for value being between current value and next value
2654		 * if so return these 2 values
2655		 */
2656		if (target < (uint32_t)(lp[1] * EEP_SCALE - EEP_DELTA)) {
2657			*vlo = lp[0];
2658			*vhi = lp[1];
2659			return;
2660		}
2661	}
2662	HALASSERT(AH_FALSE);		/* should not reach here */
2663}
2664
2665/*
2666 * Perform analog "swizzling" of parameters into their location
2667 *
2668 * NB: used by RF backends
2669 */
2670void
2671ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, uint32_t numBits,
2672                     uint32_t firstBit, uint32_t column)
2673{
2674#define	MAX_ANALOG_START	319		/* XXX */
2675	uint32_t tmp32, mask, arrayEntry, lastBit;
2676	int32_t bitPosition, bitsLeft;
2677
2678	HALASSERT(column <= 3);
2679	HALASSERT(numBits <= 32);
2680	HALASSERT(firstBit + numBits <= MAX_ANALOG_START);
2681
2682	tmp32 = ath_hal_reverseBits(reg32, numBits);
2683	arrayEntry = (firstBit - 1) / 8;
2684	bitPosition = (firstBit - 1) % 8;
2685	bitsLeft = numBits;
2686	while (bitsLeft > 0) {
2687		lastBit = (bitPosition + bitsLeft > 8) ?
2688			8 : bitPosition + bitsLeft;
2689		mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
2690			(column * 8);
2691		rfBuf[arrayEntry] &= ~mask;
2692		rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
2693			(column * 8)) & mask;
2694		bitsLeft -= 8 - bitPosition;
2695		tmp32 = tmp32 >> (8 - bitPosition);
2696		bitPosition = 0;
2697		arrayEntry++;
2698	}
2699#undef MAX_ANALOG_START
2700}
2701
2702/*
2703 * Sets the rate to duration values in MAC - used for multi-
2704 * rate retry.
2705 * The rate duration table needs to cover all valid rate codes;
2706 * the 11g table covers all ofdm rates, while the 11b table
2707 * covers all cck rates => all valid rates get covered between
2708 * these two mode's ratetables!
2709 * But if we're turbo, the ofdm phy is replaced by the turbo phy
2710 * and cck is not valid with turbo => all rates get covered
2711 * by the turbo ratetable only
2712 */
2713void
2714ar5212SetRateDurationTable(struct ath_hal *ah,
2715	const struct ieee80211_channel *chan)
2716{
2717	const HAL_RATE_TABLE *rt;
2718	int i;
2719
2720	/* NB: band doesn't matter for 1/2 and 1/4 rate */
2721	if (IEEE80211_IS_CHAN_HALF(chan)) {
2722		rt = ar5212GetRateTable(ah, HAL_MODE_11A_HALF_RATE);
2723	} else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
2724		rt = ar5212GetRateTable(ah, HAL_MODE_11A_QUARTER_RATE);
2725	} else {
2726		rt = ar5212GetRateTable(ah,
2727			IEEE80211_IS_CHAN_TURBO(chan) ? HAL_MODE_TURBO : HAL_MODE_11G);
2728	}
2729
2730	for (i = 0; i < rt->rateCount; ++i)
2731		OS_REG_WRITE(ah,
2732			AR_RATE_DURATION(rt->info[i].rateCode),
2733			ath_hal_computetxtime(ah, rt,
2734				WLAN_CTRL_FRAME_SIZE,
2735				rt->info[i].controlRate, AH_FALSE));
2736	if (!IEEE80211_IS_CHAN_TURBO(chan)) {
2737		/* 11g Table is used to cover the CCK rates. */
2738		rt = ar5212GetRateTable(ah, HAL_MODE_11G);
2739		for (i = 0; i < rt->rateCount; ++i) {
2740			uint32_t reg = AR_RATE_DURATION(rt->info[i].rateCode);
2741
2742			if (rt->info[i].phy != IEEE80211_T_CCK)
2743				continue;
2744
2745			OS_REG_WRITE(ah, reg,
2746				ath_hal_computetxtime(ah, rt,
2747					WLAN_CTRL_FRAME_SIZE,
2748					rt->info[i].controlRate, AH_FALSE));
2749			/* cck rates have short preamble option also */
2750			if (rt->info[i].shortPreamble) {
2751				reg += rt->info[i].shortPreamble << 2;
2752				OS_REG_WRITE(ah, reg,
2753					ath_hal_computetxtime(ah, rt,
2754						WLAN_CTRL_FRAME_SIZE,
2755						rt->info[i].controlRate,
2756						AH_TRUE));
2757			}
2758		}
2759	}
2760}
2761
2762/* Adjust various register settings based on half/quarter rate clock setting.
2763 * This includes: +USEC, TX/RX latency,
2764 *                + IFS params: slot, eifs, misc etc.
2765 */
2766void
2767ar5212SetIFSTiming(struct ath_hal *ah, const struct ieee80211_channel *chan)
2768{
2769	uint32_t txLat, rxLat, usec, slot, refClock, eifs, init_usec;
2770
2771	HALASSERT(IEEE80211_IS_CHAN_HALF(chan) ||
2772		  IEEE80211_IS_CHAN_QUARTER(chan));
2773
2774	refClock = OS_REG_READ(ah, AR_USEC) & AR_USEC_USEC32;
2775	if (IEEE80211_IS_CHAN_HALF(chan)) {
2776		slot = IFS_SLOT_HALF_RATE;
2777		rxLat = RX_NON_FULL_RATE_LATENCY << AR5212_USEC_RX_LAT_S;
2778		txLat = TX_HALF_RATE_LATENCY << AR5212_USEC_TX_LAT_S;
2779		usec = HALF_RATE_USEC;
2780		eifs = IFS_EIFS_HALF_RATE;
2781		init_usec = INIT_USEC >> 1;
2782	} else { /* quarter rate */
2783		slot = IFS_SLOT_QUARTER_RATE;
2784		rxLat = RX_NON_FULL_RATE_LATENCY << AR5212_USEC_RX_LAT_S;
2785		txLat = TX_QUARTER_RATE_LATENCY << AR5212_USEC_TX_LAT_S;
2786		usec = QUARTER_RATE_USEC;
2787		eifs = IFS_EIFS_QUARTER_RATE;
2788		init_usec = INIT_USEC >> 2;
2789	}
2790
2791	OS_REG_WRITE(ah, AR_USEC, (usec | refClock | txLat | rxLat));
2792	OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
2793	OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
2794	OS_REG_RMW_FIELD(ah, AR_D_GBL_IFS_MISC,
2795				AR_D_GBL_IFS_MISC_USEC_DURATION, init_usec);
2796}
2797