1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 */
27
28#include <sys/zio.h>
29#include <sys/spa.h>
30#include <sys/dmu.h>
31#include <sys/zfs_context.h>
32#include <sys/zap.h>
33#include <sys/refcount.h>
34#include <sys/zap_impl.h>
35#include <sys/zap_leaf.h>
36#include <sys/avl.h>
37#include <sys/arc.h>
38#include <sys/dmu_objset.h>
39
40#ifdef _KERNEL
41#include <sys/sunddi.h>
42#endif
43
44extern inline mzap_phys_t *zap_m_phys(zap_t *zap);
45
46static int mzap_upgrade(zap_t **zapp,
47    void *tag, dmu_tx_t *tx, zap_flags_t flags);
48
49uint64_t
50zap_getflags(zap_t *zap)
51{
52	if (zap->zap_ismicro)
53		return (0);
54	return (zap_f_phys(zap)->zap_flags);
55}
56
57int
58zap_hashbits(zap_t *zap)
59{
60	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
61		return (48);
62	else
63		return (28);
64}
65
66uint32_t
67zap_maxcd(zap_t *zap)
68{
69	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
70		return ((1<<16)-1);
71	else
72		return (-1U);
73}
74
75static uint64_t
76zap_hash(zap_name_t *zn)
77{
78	zap_t *zap = zn->zn_zap;
79	uint64_t h = 0;
80
81	if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
82		ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
83		h = *(uint64_t *)zn->zn_key_orig;
84	} else {
85		h = zap->zap_salt;
86		ASSERT(h != 0);
87		ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
88
89		if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
90			int i;
91			const uint64_t *wp = zn->zn_key_norm;
92
93			ASSERT(zn->zn_key_intlen == 8);
94			for (i = 0; i < zn->zn_key_norm_numints; wp++, i++) {
95				int j;
96				uint64_t word = *wp;
97
98				for (j = 0; j < zn->zn_key_intlen; j++) {
99					h = (h >> 8) ^
100					    zfs_crc64_table[(h ^ word) & 0xFF];
101					word >>= NBBY;
102				}
103			}
104		} else {
105			int i, len;
106			const uint8_t *cp = zn->zn_key_norm;
107
108			/*
109			 * We previously stored the terminating null on
110			 * disk, but didn't hash it, so we need to
111			 * continue to not hash it.  (The
112			 * zn_key_*_numints includes the terminating
113			 * null for non-binary keys.)
114			 */
115			len = zn->zn_key_norm_numints - 1;
116
117			ASSERT(zn->zn_key_intlen == 1);
118			for (i = 0; i < len; cp++, i++) {
119				h = (h >> 8) ^
120				    zfs_crc64_table[(h ^ *cp) & 0xFF];
121			}
122		}
123	}
124	/*
125	 * Don't use all 64 bits, since we need some in the cookie for
126	 * the collision differentiator.  We MUST use the high bits,
127	 * since those are the ones that we first pay attention to when
128	 * chosing the bucket.
129	 */
130	h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
131
132	return (h);
133}
134
135static int
136zap_normalize(zap_t *zap, const char *name, char *namenorm)
137{
138	size_t inlen, outlen;
139	int err;
140
141	ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
142
143	inlen = strlen(name) + 1;
144	outlen = ZAP_MAXNAMELEN;
145
146	err = 0;
147	(void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
148	    zap->zap_normflags | U8_TEXTPREP_IGNORE_NULL |
149	    U8_TEXTPREP_IGNORE_INVALID, U8_UNICODE_LATEST, &err);
150
151	return (err);
152}
153
154boolean_t
155zap_match(zap_name_t *zn, const char *matchname)
156{
157	ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
158
159	if (zn->zn_matchtype == MT_FIRST) {
160		char norm[ZAP_MAXNAMELEN];
161
162		if (zap_normalize(zn->zn_zap, matchname, norm) != 0)
163			return (B_FALSE);
164
165		return (strcmp(zn->zn_key_norm, norm) == 0);
166	} else {
167		/* MT_BEST or MT_EXACT */
168		return (strcmp(zn->zn_key_orig, matchname) == 0);
169	}
170}
171
172void
173zap_name_free(zap_name_t *zn)
174{
175	kmem_free(zn, sizeof (zap_name_t));
176}
177
178zap_name_t *
179zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt)
180{
181	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
182
183	zn->zn_zap = zap;
184	zn->zn_key_intlen = sizeof (*key);
185	zn->zn_key_orig = key;
186	zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
187	zn->zn_matchtype = mt;
188	if (zap->zap_normflags) {
189		if (zap_normalize(zap, key, zn->zn_normbuf) != 0) {
190			zap_name_free(zn);
191			return (NULL);
192		}
193		zn->zn_key_norm = zn->zn_normbuf;
194		zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
195	} else {
196		if (mt != MT_EXACT) {
197			zap_name_free(zn);
198			return (NULL);
199		}
200		zn->zn_key_norm = zn->zn_key_orig;
201		zn->zn_key_norm_numints = zn->zn_key_orig_numints;
202	}
203
204	zn->zn_hash = zap_hash(zn);
205	return (zn);
206}
207
208zap_name_t *
209zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
210{
211	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
212
213	ASSERT(zap->zap_normflags == 0);
214	zn->zn_zap = zap;
215	zn->zn_key_intlen = sizeof (*key);
216	zn->zn_key_orig = zn->zn_key_norm = key;
217	zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
218	zn->zn_matchtype = MT_EXACT;
219
220	zn->zn_hash = zap_hash(zn);
221	return (zn);
222}
223
224static void
225mzap_byteswap(mzap_phys_t *buf, size_t size)
226{
227	int i, max;
228	buf->mz_block_type = BSWAP_64(buf->mz_block_type);
229	buf->mz_salt = BSWAP_64(buf->mz_salt);
230	buf->mz_normflags = BSWAP_64(buf->mz_normflags);
231	max = (size / MZAP_ENT_LEN) - 1;
232	for (i = 0; i < max; i++) {
233		buf->mz_chunk[i].mze_value =
234		    BSWAP_64(buf->mz_chunk[i].mze_value);
235		buf->mz_chunk[i].mze_cd =
236		    BSWAP_32(buf->mz_chunk[i].mze_cd);
237	}
238}
239
240void
241zap_byteswap(void *buf, size_t size)
242{
243	uint64_t block_type;
244
245	block_type = *(uint64_t *)buf;
246
247	if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
248		/* ASSERT(magic == ZAP_LEAF_MAGIC); */
249		mzap_byteswap(buf, size);
250	} else {
251		fzap_byteswap(buf, size);
252	}
253}
254
255static int
256mze_compare(const void *arg1, const void *arg2)
257{
258	const mzap_ent_t *mze1 = arg1;
259	const mzap_ent_t *mze2 = arg2;
260
261	if (mze1->mze_hash > mze2->mze_hash)
262		return (+1);
263	if (mze1->mze_hash < mze2->mze_hash)
264		return (-1);
265	if (mze1->mze_cd > mze2->mze_cd)
266		return (+1);
267	if (mze1->mze_cd < mze2->mze_cd)
268		return (-1);
269	return (0);
270}
271
272static int
273mze_insert(zap_t *zap, int chunkid, uint64_t hash)
274{
275	mzap_ent_t *mze;
276	avl_index_t idx;
277
278	ASSERT(zap->zap_ismicro);
279	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
280
281	mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
282	mze->mze_chunkid = chunkid;
283	mze->mze_hash = hash;
284	mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd;
285	ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0);
286	if (avl_find(&zap->zap_m.zap_avl, mze, &idx) != NULL) {
287		kmem_free(mze, sizeof (mzap_ent_t));
288		return (EEXIST);
289	}
290	avl_insert(&zap->zap_m.zap_avl, mze, idx);
291	return (0);
292}
293
294static mzap_ent_t *
295mze_find(zap_name_t *zn)
296{
297	mzap_ent_t mze_tofind;
298	mzap_ent_t *mze;
299	avl_index_t idx;
300	avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl;
301
302	ASSERT(zn->zn_zap->zap_ismicro);
303	ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
304
305	mze_tofind.mze_hash = zn->zn_hash;
306	mze_tofind.mze_cd = 0;
307
308again:
309	mze = avl_find(avl, &mze_tofind, &idx);
310	if (mze == NULL)
311		mze = avl_nearest(avl, idx, AVL_AFTER);
312	for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) {
313		ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
314		if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
315			return (mze);
316	}
317	if (zn->zn_matchtype == MT_BEST) {
318		zn->zn_matchtype = MT_FIRST;
319		goto again;
320	}
321	return (NULL);
322}
323
324static uint32_t
325mze_find_unused_cd(zap_t *zap, uint64_t hash)
326{
327	mzap_ent_t mze_tofind;
328	mzap_ent_t *mze;
329	avl_index_t idx;
330	avl_tree_t *avl = &zap->zap_m.zap_avl;
331	uint32_t cd;
332
333	ASSERT(zap->zap_ismicro);
334	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
335
336	mze_tofind.mze_hash = hash;
337	mze_tofind.mze_cd = 0;
338
339	cd = 0;
340	for (mze = avl_find(avl, &mze_tofind, &idx);
341	    mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
342		if (mze->mze_cd != cd)
343			break;
344		cd++;
345	}
346
347	return (cd);
348}
349
350static void
351mze_remove(zap_t *zap, mzap_ent_t *mze)
352{
353	ASSERT(zap->zap_ismicro);
354	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
355
356	avl_remove(&zap->zap_m.zap_avl, mze);
357	kmem_free(mze, sizeof (mzap_ent_t));
358}
359
360static void
361mze_destroy(zap_t *zap)
362{
363	mzap_ent_t *mze;
364	void *avlcookie = NULL;
365
366	while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie))
367		kmem_free(mze, sizeof (mzap_ent_t));
368	avl_destroy(&zap->zap_m.zap_avl);
369}
370
371static zap_t *
372mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
373{
374	zap_t *winner;
375	zap_t *zap;
376	int i;
377
378	ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
379
380	zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
381	rw_init(&zap->zap_rwlock, 0, 0, 0);
382	rw_enter(&zap->zap_rwlock, RW_WRITER);
383	zap->zap_objset = os;
384	zap->zap_object = obj;
385	zap->zap_dbuf = db;
386
387	if (*(uint64_t *)db->db_data != ZBT_MICRO) {
388		mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0);
389		zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1;
390	} else {
391		zap->zap_ismicro = TRUE;
392	}
393
394	/*
395	 * Make sure that zap_ismicro is set before we let others see
396	 * it, because zap_lockdir() checks zap_ismicro without the lock
397	 * held.
398	 */
399	dmu_buf_init_user(&zap->zap_dbu, zap_evict, &zap->zap_dbuf);
400	winner = dmu_buf_set_user(db, &zap->zap_dbu);
401
402	if (winner != NULL) {
403		rw_exit(&zap->zap_rwlock);
404		rw_destroy(&zap->zap_rwlock);
405		if (!zap->zap_ismicro)
406			mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
407		kmem_free(zap, sizeof (zap_t));
408		return (winner);
409	}
410
411	if (zap->zap_ismicro) {
412		zap->zap_salt = zap_m_phys(zap)->mz_salt;
413		zap->zap_normflags = zap_m_phys(zap)->mz_normflags;
414		zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
415		avl_create(&zap->zap_m.zap_avl, mze_compare,
416		    sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
417
418		for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
419			mzap_ent_phys_t *mze =
420			    &zap_m_phys(zap)->mz_chunk[i];
421			if (mze->mze_name[0]) {
422				zap_name_t *zn;
423
424				zn = zap_name_alloc(zap, mze->mze_name,
425				    MT_EXACT);
426				if (mze_insert(zap, i, zn->zn_hash) == 0)
427					zap->zap_m.zap_num_entries++;
428				else {
429					printf("ZFS WARNING: Duplicated ZAP "
430					    "entry detected (%s).\n",
431					    mze->mze_name);
432				}
433				zap_name_free(zn);
434			}
435		}
436	} else {
437		zap->zap_salt = zap_f_phys(zap)->zap_salt;
438		zap->zap_normflags = zap_f_phys(zap)->zap_normflags;
439
440		ASSERT3U(sizeof (struct zap_leaf_header), ==,
441		    2*ZAP_LEAF_CHUNKSIZE);
442
443		/*
444		 * The embedded pointer table should not overlap the
445		 * other members.
446		 */
447		ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
448		    &zap_f_phys(zap)->zap_salt);
449
450		/*
451		 * The embedded pointer table should end at the end of
452		 * the block
453		 */
454		ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
455		    1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
456		    (uintptr_t)zap_f_phys(zap), ==,
457		    zap->zap_dbuf->db_size);
458	}
459	rw_exit(&zap->zap_rwlock);
460	return (zap);
461}
462
463static int
464zap_lockdir_impl(dmu_buf_t *db, void *tag, dmu_tx_t *tx,
465    krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
466{
467	zap_t *zap;
468	krw_t lt;
469
470	ASSERT0(db->db_offset);
471	objset_t *os = dmu_buf_get_objset(db);
472	uint64_t obj = db->db_object;
473
474	*zapp = NULL;
475
476#ifdef ZFS_DEBUG
477	{
478		dmu_object_info_t doi;
479		dmu_object_info_from_db(db, &doi);
480		ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
481	}
482#endif
483
484	zap = dmu_buf_get_user(db);
485	if (zap == NULL)
486		zap = mzap_open(os, obj, db);
487
488	/*
489	 * We're checking zap_ismicro without the lock held, in order to
490	 * tell what type of lock we want.  Once we have some sort of
491	 * lock, see if it really is the right type.  In practice this
492	 * can only be different if it was upgraded from micro to fat,
493	 * and micro wanted WRITER but fat only needs READER.
494	 */
495	lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
496	rw_enter(&zap->zap_rwlock, lt);
497	if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
498		/* it was upgraded, now we only need reader */
499		ASSERT(lt == RW_WRITER);
500		ASSERT(RW_READER ==
501		    (!zap->zap_ismicro && fatreader) ? RW_READER : lti);
502		rw_downgrade(&zap->zap_rwlock);
503		lt = RW_READER;
504	}
505
506	zap->zap_objset = os;
507
508	if (lt == RW_WRITER)
509		dmu_buf_will_dirty(db, tx);
510
511	ASSERT3P(zap->zap_dbuf, ==, db);
512
513	ASSERT(!zap->zap_ismicro ||
514	    zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
515	if (zap->zap_ismicro && tx && adding &&
516	    zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
517		uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
518		if (newsz > MZAP_MAX_BLKSZ) {
519			dprintf("upgrading obj %llu: num_entries=%u\n",
520			    obj, zap->zap_m.zap_num_entries);
521			*zapp = zap;
522			int err = mzap_upgrade(zapp, tag, tx, 0);
523			if (err != 0)
524				rw_exit(&zap->zap_rwlock);
525			return (err);
526		}
527		VERIFY0(dmu_object_set_blocksize(os, obj, newsz, 0, tx));
528		zap->zap_m.zap_num_chunks =
529		    db->db_size / MZAP_ENT_LEN - 1;
530	}
531
532	*zapp = zap;
533	return (0);
534}
535
536static int
537zap_lockdir_by_dnode(dnode_t *dn, dmu_tx_t *tx,
538    krw_t lti, boolean_t fatreader, boolean_t adding, void *tag, zap_t **zapp)
539{
540	dmu_buf_t *db;
541	int err;
542
543	err = dmu_buf_hold_by_dnode(dn, 0, tag, &db, DMU_READ_NO_PREFETCH);
544	if (err != 0) {
545		return (err);
546	}
547	err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp);
548	if (err != 0) {
549		dmu_buf_rele(db, tag);
550	}
551	return (err);
552}
553
554int
555zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
556    krw_t lti, boolean_t fatreader, boolean_t adding, void *tag, zap_t **zapp)
557{
558	dmu_buf_t *db;
559	int err;
560
561	err = dmu_buf_hold(os, obj, 0, tag, &db, DMU_READ_NO_PREFETCH);
562	if (err != 0)
563		return (err);
564	err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp);
565	if (err != 0)
566		dmu_buf_rele(db, tag);
567	return (err);
568}
569
570void
571zap_unlockdir(zap_t *zap, void *tag)
572{
573	rw_exit(&zap->zap_rwlock);
574	dmu_buf_rele(zap->zap_dbuf, tag);
575}
576
577static int
578mzap_upgrade(zap_t **zapp, void *tag, dmu_tx_t *tx, zap_flags_t flags)
579{
580	mzap_phys_t *mzp;
581	int i, sz, nchunks;
582	int err = 0;
583	zap_t *zap = *zapp;
584
585	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
586
587	sz = zap->zap_dbuf->db_size;
588	mzp = zio_buf_alloc(sz);
589	bcopy(zap->zap_dbuf->db_data, mzp, sz);
590	nchunks = zap->zap_m.zap_num_chunks;
591
592	if (!flags) {
593		err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
594		    1ULL << fzap_default_block_shift, 0, tx);
595		if (err) {
596			zio_buf_free(mzp, sz);
597			return (err);
598		}
599	}
600
601	dprintf("upgrading obj=%llu with %u chunks\n",
602	    zap->zap_object, nchunks);
603	/* XXX destroy the avl later, so we can use the stored hash value */
604	mze_destroy(zap);
605
606	fzap_upgrade(zap, tx, flags);
607
608	for (i = 0; i < nchunks; i++) {
609		mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
610		zap_name_t *zn;
611		if (mze->mze_name[0] == 0)
612			continue;
613		dprintf("adding %s=%llu\n",
614		    mze->mze_name, mze->mze_value);
615		zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT);
616		err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd,
617		    tag, tx);
618		zap = zn->zn_zap;	/* fzap_add_cd() may change zap */
619		zap_name_free(zn);
620		if (err)
621			break;
622	}
623	zio_buf_free(mzp, sz);
624	*zapp = zap;
625	return (err);
626}
627
628void
629mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags,
630    dmu_tx_t *tx)
631{
632	dmu_buf_t *db;
633	mzap_phys_t *zp;
634
635	VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
636
637#ifdef ZFS_DEBUG
638	{
639		dmu_object_info_t doi;
640		dmu_object_info_from_db(db, &doi);
641		ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
642	}
643#endif
644
645	dmu_buf_will_dirty(db, tx);
646	zp = db->db_data;
647	zp->mz_block_type = ZBT_MICRO;
648	zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL;
649	zp->mz_normflags = normflags;
650	dmu_buf_rele(db, FTAG);
651
652	if (flags != 0) {
653		zap_t *zap;
654		/* Only fat zap supports flags; upgrade immediately. */
655		VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER,
656		    B_FALSE, B_FALSE, FTAG, &zap));
657		VERIFY3U(0, ==, mzap_upgrade(&zap, FTAG, tx, flags));
658		zap_unlockdir(zap, FTAG);
659	}
660}
661
662int
663zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
664    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
665{
666	return (zap_create_claim_norm(os, obj,
667	    0, ot, bonustype, bonuslen, tx));
668}
669
670int
671zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
672    dmu_object_type_t ot,
673    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
674{
675	int err;
676
677	err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx);
678	if (err != 0)
679		return (err);
680	mzap_create_impl(os, obj, normflags, 0, tx);
681	return (0);
682}
683
684uint64_t
685zap_create(objset_t *os, dmu_object_type_t ot,
686    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
687{
688	return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
689}
690
691uint64_t
692zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
693    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
694{
695	uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
696
697	mzap_create_impl(os, obj, normflags, 0, tx);
698	return (obj);
699}
700
701uint64_t
702zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
703    dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
704    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
705{
706	uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
707
708	ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT &&
709	    leaf_blockshift <= SPA_OLD_MAXBLOCKSHIFT &&
710	    indirect_blockshift >= SPA_MINBLOCKSHIFT &&
711	    indirect_blockshift <= SPA_OLD_MAXBLOCKSHIFT);
712
713	VERIFY(dmu_object_set_blocksize(os, obj,
714	    1ULL << leaf_blockshift, indirect_blockshift, tx) == 0);
715
716	mzap_create_impl(os, obj, normflags, flags, tx);
717	return (obj);
718}
719
720int
721zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
722{
723	/*
724	 * dmu_object_free will free the object number and free the
725	 * data.  Freeing the data will cause our pageout function to be
726	 * called, which will destroy our data (zap_leaf_t's and zap_t).
727	 */
728
729	return (dmu_object_free(os, zapobj, tx));
730}
731
732void
733zap_evict(void *dbu)
734{
735	zap_t *zap = dbu;
736
737	rw_destroy(&zap->zap_rwlock);
738
739	if (zap->zap_ismicro)
740		mze_destroy(zap);
741	else
742		mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
743
744	kmem_free(zap, sizeof (zap_t));
745}
746
747int
748zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
749{
750	zap_t *zap;
751	int err;
752
753	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
754	if (err)
755		return (err);
756	if (!zap->zap_ismicro) {
757		err = fzap_count(zap, count);
758	} else {
759		*count = zap->zap_m.zap_num_entries;
760	}
761	zap_unlockdir(zap, FTAG);
762	return (err);
763}
764
765/*
766 * zn may be NULL; if not specified, it will be computed if needed.
767 * See also the comment above zap_entry_normalization_conflict().
768 */
769static boolean_t
770mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze)
771{
772	mzap_ent_t *other;
773	int direction = AVL_BEFORE;
774	boolean_t allocdzn = B_FALSE;
775
776	if (zap->zap_normflags == 0)
777		return (B_FALSE);
778
779again:
780	for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction);
781	    other && other->mze_hash == mze->mze_hash;
782	    other = avl_walk(&zap->zap_m.zap_avl, other, direction)) {
783
784		if (zn == NULL) {
785			zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name,
786			    MT_FIRST);
787			allocdzn = B_TRUE;
788		}
789		if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
790			if (allocdzn)
791				zap_name_free(zn);
792			return (B_TRUE);
793		}
794	}
795
796	if (direction == AVL_BEFORE) {
797		direction = AVL_AFTER;
798		goto again;
799	}
800
801	if (allocdzn)
802		zap_name_free(zn);
803	return (B_FALSE);
804}
805
806/*
807 * Routines for manipulating attributes.
808 */
809
810int
811zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
812    uint64_t integer_size, uint64_t num_integers, void *buf)
813{
814	return (zap_lookup_norm(os, zapobj, name, integer_size,
815	    num_integers, buf, MT_EXACT, NULL, 0, NULL));
816}
817
818static int
819zap_lookup_impl(zap_t *zap, const char *name,
820    uint64_t integer_size, uint64_t num_integers, void *buf,
821    matchtype_t mt, char *realname, int rn_len,
822    boolean_t *ncp)
823{
824	int err = 0;
825	mzap_ent_t *mze;
826	zap_name_t *zn;
827
828	zn = zap_name_alloc(zap, name, mt);
829	if (zn == NULL)
830		return (SET_ERROR(ENOTSUP));
831
832	if (!zap->zap_ismicro) {
833		err = fzap_lookup(zn, integer_size, num_integers, buf,
834		    realname, rn_len, ncp);
835	} else {
836		mze = mze_find(zn);
837		if (mze == NULL) {
838			err = SET_ERROR(ENOENT);
839		} else {
840			if (num_integers < 1) {
841				err = SET_ERROR(EOVERFLOW);
842			} else if (integer_size != 8) {
843				err = SET_ERROR(EINVAL);
844			} else {
845				*(uint64_t *)buf =
846				    MZE_PHYS(zap, mze)->mze_value;
847				(void) strlcpy(realname,
848				    MZE_PHYS(zap, mze)->mze_name, rn_len);
849				if (ncp) {
850					*ncp = mzap_normalization_conflict(zap,
851					    zn, mze);
852				}
853			}
854		}
855	}
856	zap_name_free(zn);
857	return (err);
858}
859
860int
861zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
862    uint64_t integer_size, uint64_t num_integers, void *buf,
863    matchtype_t mt, char *realname, int rn_len,
864    boolean_t *ncp)
865{
866	zap_t *zap;
867	int err;
868
869	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
870	if (err != 0)
871		return (err);
872	err = zap_lookup_impl(zap, name, integer_size,
873	    num_integers, buf, mt, realname, rn_len, ncp);
874	zap_unlockdir(zap, FTAG);
875	return (err);
876}
877
878int
879zap_lookup_by_dnode(dnode_t *dn, const char *name,
880    uint64_t integer_size, uint64_t num_integers, void *buf)
881{
882	return (zap_lookup_norm_by_dnode(dn, name, integer_size,
883	    num_integers, buf, MT_EXACT, NULL, 0, NULL));
884}
885
886int
887zap_lookup_norm_by_dnode(dnode_t *dn, const char *name,
888    uint64_t integer_size, uint64_t num_integers, void *buf,
889    matchtype_t mt, char *realname, int rn_len,
890    boolean_t *ncp)
891{
892	zap_t *zap;
893	int err;
894
895	err = zap_lockdir_by_dnode(dn, NULL, RW_READER, TRUE, FALSE,
896	    FTAG, &zap);
897	if (err != 0)
898		return (err);
899	err = zap_lookup_impl(zap, name, integer_size,
900	    num_integers, buf, mt, realname, rn_len, ncp);
901	zap_unlockdir(zap, FTAG);
902	return (err);
903}
904
905int
906zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
907    int key_numints)
908{
909	zap_t *zap;
910	int err;
911	zap_name_t *zn;
912
913	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
914	if (err)
915		return (err);
916	zn = zap_name_alloc_uint64(zap, key, key_numints);
917	if (zn == NULL) {
918		zap_unlockdir(zap, FTAG);
919		return (SET_ERROR(ENOTSUP));
920	}
921
922	fzap_prefetch(zn);
923	zap_name_free(zn);
924	zap_unlockdir(zap, FTAG);
925	return (err);
926}
927
928int
929zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
930    int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
931{
932	zap_t *zap;
933	int err;
934	zap_name_t *zn;
935
936	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
937	if (err)
938		return (err);
939	zn = zap_name_alloc_uint64(zap, key, key_numints);
940	if (zn == NULL) {
941		zap_unlockdir(zap, FTAG);
942		return (SET_ERROR(ENOTSUP));
943	}
944
945	err = fzap_lookup(zn, integer_size, num_integers, buf,
946	    NULL, 0, NULL);
947	zap_name_free(zn);
948	zap_unlockdir(zap, FTAG);
949	return (err);
950}
951
952int
953zap_contains(objset_t *os, uint64_t zapobj, const char *name)
954{
955	int err = zap_lookup_norm(os, zapobj, name, 0,
956	    0, NULL, MT_EXACT, NULL, 0, NULL);
957	if (err == EOVERFLOW || err == EINVAL)
958		err = 0; /* found, but skipped reading the value */
959	return (err);
960}
961
962int
963zap_length(objset_t *os, uint64_t zapobj, const char *name,
964    uint64_t *integer_size, uint64_t *num_integers)
965{
966	zap_t *zap;
967	int err;
968	mzap_ent_t *mze;
969	zap_name_t *zn;
970
971	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
972	if (err)
973		return (err);
974	zn = zap_name_alloc(zap, name, MT_EXACT);
975	if (zn == NULL) {
976		zap_unlockdir(zap, FTAG);
977		return (SET_ERROR(ENOTSUP));
978	}
979	if (!zap->zap_ismicro) {
980		err = fzap_length(zn, integer_size, num_integers);
981	} else {
982		mze = mze_find(zn);
983		if (mze == NULL) {
984			err = SET_ERROR(ENOENT);
985		} else {
986			if (integer_size)
987				*integer_size = 8;
988			if (num_integers)
989				*num_integers = 1;
990		}
991	}
992	zap_name_free(zn);
993	zap_unlockdir(zap, FTAG);
994	return (err);
995}
996
997int
998zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
999    int key_numints, uint64_t *integer_size, uint64_t *num_integers)
1000{
1001	zap_t *zap;
1002	int err;
1003	zap_name_t *zn;
1004
1005	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1006	if (err)
1007		return (err);
1008	zn = zap_name_alloc_uint64(zap, key, key_numints);
1009	if (zn == NULL) {
1010		zap_unlockdir(zap, FTAG);
1011		return (SET_ERROR(ENOTSUP));
1012	}
1013	err = fzap_length(zn, integer_size, num_integers);
1014	zap_name_free(zn);
1015	zap_unlockdir(zap, FTAG);
1016	return (err);
1017}
1018
1019static void
1020mzap_addent(zap_name_t *zn, uint64_t value)
1021{
1022	int i;
1023	zap_t *zap = zn->zn_zap;
1024	int start = zap->zap_m.zap_alloc_next;
1025	uint32_t cd;
1026
1027	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
1028
1029#ifdef ZFS_DEBUG
1030	for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
1031		mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
1032		ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
1033	}
1034#endif
1035
1036	cd = mze_find_unused_cd(zap, zn->zn_hash);
1037	/* given the limited size of the microzap, this can't happen */
1038	ASSERT(cd < zap_maxcd(zap));
1039
1040again:
1041	for (i = start; i < zap->zap_m.zap_num_chunks; i++) {
1042		mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
1043		if (mze->mze_name[0] == 0) {
1044			mze->mze_value = value;
1045			mze->mze_cd = cd;
1046			(void) strcpy(mze->mze_name, zn->zn_key_orig);
1047			zap->zap_m.zap_num_entries++;
1048			zap->zap_m.zap_alloc_next = i+1;
1049			if (zap->zap_m.zap_alloc_next ==
1050			    zap->zap_m.zap_num_chunks)
1051				zap->zap_m.zap_alloc_next = 0;
1052			VERIFY(0 == mze_insert(zap, i, zn->zn_hash));
1053			return;
1054		}
1055	}
1056	if (start != 0) {
1057		start = 0;
1058		goto again;
1059	}
1060	ASSERT(!"out of entries!");
1061}
1062
1063int
1064zap_add(objset_t *os, uint64_t zapobj, const char *key,
1065    int integer_size, uint64_t num_integers,
1066    const void *val, dmu_tx_t *tx)
1067{
1068	zap_t *zap;
1069	int err;
1070	mzap_ent_t *mze;
1071	const uint64_t *intval = val;
1072	zap_name_t *zn;
1073
1074	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1075	if (err)
1076		return (err);
1077	zn = zap_name_alloc(zap, key, MT_EXACT);
1078	if (zn == NULL) {
1079		zap_unlockdir(zap, FTAG);
1080		return (SET_ERROR(ENOTSUP));
1081	}
1082	if (!zap->zap_ismicro) {
1083		err = fzap_add(zn, integer_size, num_integers, val, FTAG, tx);
1084		zap = zn->zn_zap;	/* fzap_add() may change zap */
1085	} else if (integer_size != 8 || num_integers != 1 ||
1086	    strlen(key) >= MZAP_NAME_LEN) {
1087		err = mzap_upgrade(&zn->zn_zap, FTAG, tx, 0);
1088		if (err == 0) {
1089			err = fzap_add(zn, integer_size, num_integers, val,
1090			    FTAG, tx);
1091		}
1092		zap = zn->zn_zap;	/* fzap_add() may change zap */
1093	} else {
1094		mze = mze_find(zn);
1095		if (mze != NULL) {
1096			err = SET_ERROR(EEXIST);
1097		} else {
1098			mzap_addent(zn, *intval);
1099		}
1100	}
1101	ASSERT(zap == zn->zn_zap);
1102	zap_name_free(zn);
1103	if (zap != NULL)	/* may be NULL if fzap_add() failed */
1104		zap_unlockdir(zap, FTAG);
1105	return (err);
1106}
1107
1108int
1109zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1110    int key_numints, int integer_size, uint64_t num_integers,
1111    const void *val, dmu_tx_t *tx)
1112{
1113	zap_t *zap;
1114	int err;
1115	zap_name_t *zn;
1116
1117	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1118	if (err)
1119		return (err);
1120	zn = zap_name_alloc_uint64(zap, key, key_numints);
1121	if (zn == NULL) {
1122		zap_unlockdir(zap, FTAG);
1123		return (SET_ERROR(ENOTSUP));
1124	}
1125	err = fzap_add(zn, integer_size, num_integers, val, FTAG, tx);
1126	zap = zn->zn_zap;	/* fzap_add() may change zap */
1127	zap_name_free(zn);
1128	if (zap != NULL)	/* may be NULL if fzap_add() failed */
1129		zap_unlockdir(zap, FTAG);
1130	return (err);
1131}
1132
1133int
1134zap_update(objset_t *os, uint64_t zapobj, const char *name,
1135    int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1136{
1137	zap_t *zap;
1138	mzap_ent_t *mze;
1139	uint64_t oldval;
1140	const uint64_t *intval = val;
1141	zap_name_t *zn;
1142	int err;
1143
1144#ifdef ZFS_DEBUG
1145	/*
1146	 * If there is an old value, it shouldn't change across the
1147	 * lockdir (eg, due to bprewrite's xlation).
1148	 */
1149	if (integer_size == 8 && num_integers == 1)
1150		(void) zap_lookup(os, zapobj, name, 8, 1, &oldval);
1151#endif
1152
1153	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1154	if (err)
1155		return (err);
1156	zn = zap_name_alloc(zap, name, MT_EXACT);
1157	if (zn == NULL) {
1158		zap_unlockdir(zap, FTAG);
1159		return (SET_ERROR(ENOTSUP));
1160	}
1161	if (!zap->zap_ismicro) {
1162		err = fzap_update(zn, integer_size, num_integers, val,
1163		    FTAG, tx);
1164		zap = zn->zn_zap;	/* fzap_update() may change zap */
1165	} else if (integer_size != 8 || num_integers != 1 ||
1166	    strlen(name) >= MZAP_NAME_LEN) {
1167		dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1168		    zapobj, integer_size, num_integers, name);
1169		err = mzap_upgrade(&zn->zn_zap, FTAG, tx, 0);
1170		if (err == 0) {
1171			err = fzap_update(zn, integer_size, num_integers,
1172			    val, FTAG, tx);
1173		}
1174		zap = zn->zn_zap;	/* fzap_update() may change zap */
1175	} else {
1176		mze = mze_find(zn);
1177		if (mze != NULL) {
1178			ASSERT3U(MZE_PHYS(zap, mze)->mze_value, ==, oldval);
1179			MZE_PHYS(zap, mze)->mze_value = *intval;
1180		} else {
1181			mzap_addent(zn, *intval);
1182		}
1183	}
1184	ASSERT(zap == zn->zn_zap);
1185	zap_name_free(zn);
1186	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1187		zap_unlockdir(zap, FTAG);
1188	return (err);
1189}
1190
1191int
1192zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1193    int key_numints,
1194    int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1195{
1196	zap_t *zap;
1197	zap_name_t *zn;
1198	int err;
1199
1200	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1201	if (err)
1202		return (err);
1203	zn = zap_name_alloc_uint64(zap, key, key_numints);
1204	if (zn == NULL) {
1205		zap_unlockdir(zap, FTAG);
1206		return (SET_ERROR(ENOTSUP));
1207	}
1208	err = fzap_update(zn, integer_size, num_integers, val, FTAG, tx);
1209	zap = zn->zn_zap;	/* fzap_update() may change zap */
1210	zap_name_free(zn);
1211	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1212		zap_unlockdir(zap, FTAG);
1213	return (err);
1214}
1215
1216int
1217zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1218{
1219	return (zap_remove_norm(os, zapobj, name, MT_EXACT, tx));
1220}
1221
1222int
1223zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1224    matchtype_t mt, dmu_tx_t *tx)
1225{
1226	zap_t *zap;
1227	int err;
1228	mzap_ent_t *mze;
1229	zap_name_t *zn;
1230
1231	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1232	if (err)
1233		return (err);
1234	zn = zap_name_alloc(zap, name, mt);
1235	if (zn == NULL) {
1236		zap_unlockdir(zap, FTAG);
1237		return (SET_ERROR(ENOTSUP));
1238	}
1239	if (!zap->zap_ismicro) {
1240		err = fzap_remove(zn, tx);
1241	} else {
1242		mze = mze_find(zn);
1243		if (mze == NULL) {
1244			err = SET_ERROR(ENOENT);
1245		} else {
1246			zap->zap_m.zap_num_entries--;
1247			bzero(&zap_m_phys(zap)->mz_chunk[mze->mze_chunkid],
1248			    sizeof (mzap_ent_phys_t));
1249			mze_remove(zap, mze);
1250		}
1251	}
1252	zap_name_free(zn);
1253	zap_unlockdir(zap, FTAG);
1254	return (err);
1255}
1256
1257int
1258zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1259    int key_numints, dmu_tx_t *tx)
1260{
1261	zap_t *zap;
1262	int err;
1263	zap_name_t *zn;
1264
1265	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1266	if (err)
1267		return (err);
1268	zn = zap_name_alloc_uint64(zap, key, key_numints);
1269	if (zn == NULL) {
1270		zap_unlockdir(zap, FTAG);
1271		return (SET_ERROR(ENOTSUP));
1272	}
1273	err = fzap_remove(zn, tx);
1274	zap_name_free(zn);
1275	zap_unlockdir(zap, FTAG);
1276	return (err);
1277}
1278
1279/*
1280 * Routines for iterating over the attributes.
1281 */
1282
1283void
1284zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1285    uint64_t serialized)
1286{
1287	zc->zc_objset = os;
1288	zc->zc_zap = NULL;
1289	zc->zc_leaf = NULL;
1290	zc->zc_zapobj = zapobj;
1291	zc->zc_serialized = serialized;
1292	zc->zc_hash = 0;
1293	zc->zc_cd = 0;
1294}
1295
1296void
1297zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1298{
1299	zap_cursor_init_serialized(zc, os, zapobj, 0);
1300}
1301
1302void
1303zap_cursor_fini(zap_cursor_t *zc)
1304{
1305	if (zc->zc_zap) {
1306		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1307		zap_unlockdir(zc->zc_zap, NULL);
1308		zc->zc_zap = NULL;
1309	}
1310	if (zc->zc_leaf) {
1311		rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1312		zap_put_leaf(zc->zc_leaf);
1313		zc->zc_leaf = NULL;
1314	}
1315	zc->zc_objset = NULL;
1316}
1317
1318uint64_t
1319zap_cursor_serialize(zap_cursor_t *zc)
1320{
1321	if (zc->zc_hash == -1ULL)
1322		return (-1ULL);
1323	if (zc->zc_zap == NULL)
1324		return (zc->zc_serialized);
1325	ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1326	ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1327
1328	/*
1329	 * We want to keep the high 32 bits of the cursor zero if we can, so
1330	 * that 32-bit programs can access this.  So usually use a small
1331	 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1332	 * of the cursor.
1333	 *
1334	 * [ collision differentiator | zap_hashbits()-bit hash value ]
1335	 */
1336	return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1337	    ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1338}
1339
1340int
1341zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1342{
1343	int err;
1344	avl_index_t idx;
1345	mzap_ent_t mze_tofind;
1346	mzap_ent_t *mze;
1347
1348	if (zc->zc_hash == -1ULL)
1349		return (SET_ERROR(ENOENT));
1350
1351	if (zc->zc_zap == NULL) {
1352		int hb;
1353		err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1354		    RW_READER, TRUE, FALSE, NULL, &zc->zc_zap);
1355		if (err)
1356			return (err);
1357
1358		/*
1359		 * To support zap_cursor_init_serialized, advance, retrieve,
1360		 * we must add to the existing zc_cd, which may already
1361		 * be 1 due to the zap_cursor_advance.
1362		 */
1363		ASSERT(zc->zc_hash == 0);
1364		hb = zap_hashbits(zc->zc_zap);
1365		zc->zc_hash = zc->zc_serialized << (64 - hb);
1366		zc->zc_cd += zc->zc_serialized >> hb;
1367		if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1368			zc->zc_cd = 0;
1369	} else {
1370		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1371	}
1372	if (!zc->zc_zap->zap_ismicro) {
1373		err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1374	} else {
1375		mze_tofind.mze_hash = zc->zc_hash;
1376		mze_tofind.mze_cd = zc->zc_cd;
1377
1378		mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
1379		if (mze == NULL) {
1380			mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
1381			    idx, AVL_AFTER);
1382		}
1383		if (mze) {
1384			mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
1385			ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
1386			za->za_normalization_conflict =
1387			    mzap_normalization_conflict(zc->zc_zap, NULL, mze);
1388			za->za_integer_length = 8;
1389			za->za_num_integers = 1;
1390			za->za_first_integer = mzep->mze_value;
1391			(void) strcpy(za->za_name, mzep->mze_name);
1392			zc->zc_hash = mze->mze_hash;
1393			zc->zc_cd = mze->mze_cd;
1394			err = 0;
1395		} else {
1396			zc->zc_hash = -1ULL;
1397			err = SET_ERROR(ENOENT);
1398		}
1399	}
1400	rw_exit(&zc->zc_zap->zap_rwlock);
1401	return (err);
1402}
1403
1404void
1405zap_cursor_advance(zap_cursor_t *zc)
1406{
1407	if (zc->zc_hash == -1ULL)
1408		return;
1409	zc->zc_cd++;
1410}
1411
1412int
1413zap_cursor_move_to_key(zap_cursor_t *zc, const char *name, matchtype_t mt)
1414{
1415	int err = 0;
1416	mzap_ent_t *mze;
1417	zap_name_t *zn;
1418
1419	if (zc->zc_zap == NULL) {
1420		err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1421		    RW_READER, TRUE, FALSE, FTAG, &zc->zc_zap);
1422		if (err)
1423			return (err);
1424	} else {
1425		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1426	}
1427
1428	zn = zap_name_alloc(zc->zc_zap, name, mt);
1429	if (zn == NULL) {
1430		rw_exit(&zc->zc_zap->zap_rwlock);
1431		return (SET_ERROR(ENOTSUP));
1432	}
1433
1434	if (!zc->zc_zap->zap_ismicro) {
1435		err = fzap_cursor_move_to_key(zc, zn);
1436	} else {
1437		mze = mze_find(zn);
1438		if (mze == NULL) {
1439			err = SET_ERROR(ENOENT);
1440			goto out;
1441		}
1442		zc->zc_hash = mze->mze_hash;
1443		zc->zc_cd = mze->mze_cd;
1444	}
1445
1446out:
1447	zap_name_free(zn);
1448	rw_exit(&zc->zc_zap->zap_rwlock);
1449	return (err);
1450}
1451
1452int
1453zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1454{
1455	int err;
1456	zap_t *zap;
1457
1458	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1459	if (err)
1460		return (err);
1461
1462	bzero(zs, sizeof (zap_stats_t));
1463
1464	if (zap->zap_ismicro) {
1465		zs->zs_blocksize = zap->zap_dbuf->db_size;
1466		zs->zs_num_entries = zap->zap_m.zap_num_entries;
1467		zs->zs_num_blocks = 1;
1468	} else {
1469		fzap_get_stats(zap, zs);
1470	}
1471	zap_unlockdir(zap, FTAG);
1472	return (0);
1473}
1474
1475int
1476zap_count_write_by_dnode(dnode_t *dn, const char *name, int add,
1477    refcount_t *towrite, refcount_t *tooverwrite)
1478{
1479	zap_t *zap;
1480	int err = 0;
1481
1482	/*
1483	 * Since, we don't have a name, we cannot figure out which blocks will
1484	 * be affected in this operation. So, account for the worst case :
1485	 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
1486	 * - 4 new blocks written if adding:
1487	 *    - 2 blocks for possibly split leaves,
1488	 *    - 2 grown ptrtbl blocks
1489	 *
1490	 * This also accommodates the case where an add operation to a fairly
1491	 * large microzap results in a promotion to fatzap.
1492	 */
1493	if (name == NULL) {
1494		(void) refcount_add_many(towrite,
1495		    (3 + (add ? 4 : 0)) * SPA_OLD_MAXBLOCKSIZE, FTAG);
1496		return (err);
1497	}
1498
1499	/*
1500	 * We lock the zap with adding == FALSE. Because, if we pass
1501	 * the actual value of add, it could trigger a mzap_upgrade().
1502	 * At present we are just evaluating the possibility of this operation
1503	 * and hence we do not want to trigger an upgrade.
1504	 */
1505	err = zap_lockdir_by_dnode(dn, NULL, RW_READER, TRUE, FALSE,
1506	    FTAG, &zap);
1507	if (err != 0)
1508		return (err);
1509
1510	if (!zap->zap_ismicro) {
1511		zap_name_t *zn = zap_name_alloc(zap, name, MT_EXACT);
1512		if (zn) {
1513			err = fzap_count_write(zn, add, towrite,
1514			    tooverwrite);
1515			zap_name_free(zn);
1516		} else {
1517			/*
1518			 * We treat this case as similar to (name == NULL)
1519			 */
1520			(void) refcount_add_many(towrite,
1521			    (3 + (add ? 4 : 0)) * SPA_OLD_MAXBLOCKSIZE, FTAG);
1522		}
1523	} else {
1524		/*
1525		 * We are here if (name != NULL) and this is a micro-zap.
1526		 * We account for the header block depending on whether it
1527		 * is freeable.
1528		 *
1529		 * Incase of an add-operation it is hard to find out
1530		 * if this add will promote this microzap to fatzap.
1531		 * Hence, we consider the worst case and account for the
1532		 * blocks assuming this microzap would be promoted to a
1533		 * fatzap.
1534		 *
1535		 * 1 block overwritten  : header block
1536		 * 4 new blocks written : 2 new split leaf, 2 grown
1537		 *			ptrtbl blocks
1538		 */
1539		if (dmu_buf_freeable(zap->zap_dbuf)) {
1540			(void) refcount_add_many(tooverwrite,
1541			    MZAP_MAX_BLKSZ, FTAG);
1542		} else {
1543			(void) refcount_add_many(towrite,
1544			    MZAP_MAX_BLKSZ, FTAG);
1545		}
1546
1547		if (add) {
1548			(void) refcount_add_many(towrite,
1549			    4 * MZAP_MAX_BLKSZ, FTAG);
1550		}
1551	}
1552
1553	zap_unlockdir(zap, FTAG);
1554	return (err);
1555}
1556