vdev_queue.c revision 305273
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 */
30
31#include <sys/zfs_context.h>
32#include <sys/vdev_impl.h>
33#include <sys/spa_impl.h>
34#include <sys/zio.h>
35#include <sys/avl.h>
36#include <sys/dsl_pool.h>
37
38/*
39 * ZFS I/O Scheduler
40 * ---------------
41 *
42 * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios.  The
43 * I/O scheduler determines when and in what order those operations are
44 * issued.  The I/O scheduler divides operations into six I/O classes
45 * prioritized in the following order: sync read, sync write, async read,
46 * async write, scrub/resilver and trim.  Each queue defines the minimum and
47 * maximum number of concurrent operations that may be issued to the device.
48 * In addition, the device has an aggregate maximum. Note that the sum of the
49 * per-queue minimums must not exceed the aggregate maximum, and if the
50 * aggregate maximum is equal to or greater than the sum of the per-queue
51 * maximums, the per-queue minimum has no effect.
52 *
53 * For many physical devices, throughput increases with the number of
54 * concurrent operations, but latency typically suffers. Further, physical
55 * devices typically have a limit at which more concurrent operations have no
56 * effect on throughput or can actually cause it to decrease.
57 *
58 * The scheduler selects the next operation to issue by first looking for an
59 * I/O class whose minimum has not been satisfied. Once all are satisfied and
60 * the aggregate maximum has not been hit, the scheduler looks for classes
61 * whose maximum has not been satisfied. Iteration through the I/O classes is
62 * done in the order specified above. No further operations are issued if the
63 * aggregate maximum number of concurrent operations has been hit or if there
64 * are no operations queued for an I/O class that has not hit its maximum.
65 * Every time an I/O is queued or an operation completes, the I/O scheduler
66 * looks for new operations to issue.
67 *
68 * All I/O classes have a fixed maximum number of outstanding operations
69 * except for the async write class. Asynchronous writes represent the data
70 * that is committed to stable storage during the syncing stage for
71 * transaction groups (see txg.c). Transaction groups enter the syncing state
72 * periodically so the number of queued async writes will quickly burst up and
73 * then bleed down to zero. Rather than servicing them as quickly as possible,
74 * the I/O scheduler changes the maximum number of active async write I/Os
75 * according to the amount of dirty data in the pool (see dsl_pool.c). Since
76 * both throughput and latency typically increase with the number of
77 * concurrent operations issued to physical devices, reducing the burstiness
78 * in the number of concurrent operations also stabilizes the response time of
79 * operations from other -- and in particular synchronous -- queues. In broad
80 * strokes, the I/O scheduler will issue more concurrent operations from the
81 * async write queue as there's more dirty data in the pool.
82 *
83 * Async Writes
84 *
85 * The number of concurrent operations issued for the async write I/O class
86 * follows a piece-wise linear function defined by a few adjustable points.
87 *
88 *        |                   o---------| <-- zfs_vdev_async_write_max_active
89 *   ^    |                  /^         |
90 *   |    |                 / |         |
91 * active |                /  |         |
92 *  I/O   |               /   |         |
93 * count  |              /    |         |
94 *        |             /     |         |
95 *        |------------o      |         | <-- zfs_vdev_async_write_min_active
96 *       0|____________^______|_________|
97 *        0%           |      |       100% of zfs_dirty_data_max
98 *                     |      |
99 *                     |      `-- zfs_vdev_async_write_active_max_dirty_percent
100 *                     `--------- zfs_vdev_async_write_active_min_dirty_percent
101 *
102 * Until the amount of dirty data exceeds a minimum percentage of the dirty
103 * data allowed in the pool, the I/O scheduler will limit the number of
104 * concurrent operations to the minimum. As that threshold is crossed, the
105 * number of concurrent operations issued increases linearly to the maximum at
106 * the specified maximum percentage of the dirty data allowed in the pool.
107 *
108 * Ideally, the amount of dirty data on a busy pool will stay in the sloped
109 * part of the function between zfs_vdev_async_write_active_min_dirty_percent
110 * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
111 * maximum percentage, this indicates that the rate of incoming data is
112 * greater than the rate that the backend storage can handle. In this case, we
113 * must further throttle incoming writes (see dmu_tx_delay() for details).
114 */
115
116/*
117 * The maximum number of I/Os active to each device.  Ideally, this will be >=
118 * the sum of each queue's max_active.  It must be at least the sum of each
119 * queue's min_active.
120 */
121uint32_t zfs_vdev_max_active = 1000;
122
123/*
124 * Per-queue limits on the number of I/Os active to each device.  If the
125 * sum of the queue's max_active is < zfs_vdev_max_active, then the
126 * min_active comes into play.  We will send min_active from each queue,
127 * and then select from queues in the order defined by zio_priority_t.
128 *
129 * In general, smaller max_active's will lead to lower latency of synchronous
130 * operations.  Larger max_active's may lead to higher overall throughput,
131 * depending on underlying storage.
132 *
133 * The ratio of the queues' max_actives determines the balance of performance
134 * between reads, writes, and scrubs.  E.g., increasing
135 * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
136 * more quickly, but reads and writes to have higher latency and lower
137 * throughput.
138 */
139uint32_t zfs_vdev_sync_read_min_active = 10;
140uint32_t zfs_vdev_sync_read_max_active = 10;
141uint32_t zfs_vdev_sync_write_min_active = 10;
142uint32_t zfs_vdev_sync_write_max_active = 10;
143uint32_t zfs_vdev_async_read_min_active = 1;
144uint32_t zfs_vdev_async_read_max_active = 3;
145uint32_t zfs_vdev_async_write_min_active = 1;
146uint32_t zfs_vdev_async_write_max_active = 10;
147uint32_t zfs_vdev_scrub_min_active = 1;
148uint32_t zfs_vdev_scrub_max_active = 2;
149uint32_t zfs_vdev_trim_min_active = 1;
150/*
151 * TRIM max active is large in comparison to the other values due to the fact
152 * that TRIM IOs are coalesced at the device layer. This value is set such
153 * that a typical SSD can process the queued IOs in a single request.
154 */
155uint32_t zfs_vdev_trim_max_active = 64;
156
157
158/*
159 * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
160 * dirty data, use zfs_vdev_async_write_min_active.  When it has more than
161 * zfs_vdev_async_write_active_max_dirty_percent, use
162 * zfs_vdev_async_write_max_active. The value is linearly interpolated
163 * between min and max.
164 */
165int zfs_vdev_async_write_active_min_dirty_percent = 30;
166int zfs_vdev_async_write_active_max_dirty_percent = 60;
167
168/*
169 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
170 * For read I/Os, we also aggregate across small adjacency gaps; for writes
171 * we include spans of optional I/Os to aid aggregation at the disk even when
172 * they aren't able to help us aggregate at this level.
173 */
174int zfs_vdev_aggregation_limit = SPA_OLD_MAXBLOCKSIZE;
175int zfs_vdev_read_gap_limit = 32 << 10;
176int zfs_vdev_write_gap_limit = 4 << 10;
177
178#ifdef __FreeBSD__
179#ifdef _KERNEL
180SYSCTL_DECL(_vfs_zfs_vdev);
181
182TUNABLE_INT("vfs.zfs.vdev.async_write_active_min_dirty_percent",
183    &zfs_vdev_async_write_active_min_dirty_percent);
184static int sysctl_zfs_async_write_active_min_dirty_percent(SYSCTL_HANDLER_ARGS);
185SYSCTL_PROC(_vfs_zfs_vdev, OID_AUTO, async_write_active_min_dirty_percent,
186    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
187    sysctl_zfs_async_write_active_min_dirty_percent, "I",
188    "Percentage of async write dirty data below which "
189    "async_write_min_active is used.");
190
191TUNABLE_INT("vfs.zfs.vdev.async_write_active_max_dirty_percent",
192    &zfs_vdev_async_write_active_max_dirty_percent);
193static int sysctl_zfs_async_write_active_max_dirty_percent(SYSCTL_HANDLER_ARGS);
194SYSCTL_PROC(_vfs_zfs_vdev, OID_AUTO, async_write_active_max_dirty_percent,
195    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
196    sysctl_zfs_async_write_active_max_dirty_percent, "I",
197    "Percentage of async write dirty data above which "
198    "async_write_max_active is used.");
199
200TUNABLE_INT("vfs.zfs.vdev.max_active", &zfs_vdev_max_active);
201SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, max_active, CTLFLAG_RWTUN,
202    &zfs_vdev_max_active, 0,
203    "The maximum number of I/Os of all types active for each device.");
204
205#define ZFS_VDEV_QUEUE_KNOB_MIN(name)					\
206TUNABLE_INT("vfs.zfs.vdev." #name "_min_active",			\
207    &zfs_vdev_ ## name ## _min_active);					\
208SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, name ## _min_active,		\
209    CTLFLAG_RWTUN, &zfs_vdev_ ## name ## _min_active, 0,		\
210    "Initial number of I/O requests of type " #name			\
211    " active for each device");
212
213#define ZFS_VDEV_QUEUE_KNOB_MAX(name)					\
214TUNABLE_INT("vfs.zfs.vdev." #name "_max_active",			\
215    &zfs_vdev_ ## name ## _max_active);					\
216SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, name ## _max_active,		\
217    CTLFLAG_RWTUN, &zfs_vdev_ ## name ## _max_active, 0,		\
218    "Maximum number of I/O requests of type " #name			\
219    " active for each device");
220
221ZFS_VDEV_QUEUE_KNOB_MIN(sync_read);
222ZFS_VDEV_QUEUE_KNOB_MAX(sync_read);
223ZFS_VDEV_QUEUE_KNOB_MIN(sync_write);
224ZFS_VDEV_QUEUE_KNOB_MAX(sync_write);
225ZFS_VDEV_QUEUE_KNOB_MIN(async_read);
226ZFS_VDEV_QUEUE_KNOB_MAX(async_read);
227ZFS_VDEV_QUEUE_KNOB_MIN(async_write);
228ZFS_VDEV_QUEUE_KNOB_MAX(async_write);
229ZFS_VDEV_QUEUE_KNOB_MIN(scrub);
230ZFS_VDEV_QUEUE_KNOB_MAX(scrub);
231ZFS_VDEV_QUEUE_KNOB_MIN(trim);
232ZFS_VDEV_QUEUE_KNOB_MAX(trim);
233
234#undef ZFS_VDEV_QUEUE_KNOB
235
236TUNABLE_INT("vfs.zfs.vdev.aggregation_limit", &zfs_vdev_aggregation_limit);
237SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, aggregation_limit, CTLFLAG_RWTUN,
238    &zfs_vdev_aggregation_limit, 0,
239    "I/O requests are aggregated up to this size");
240TUNABLE_INT("vfs.zfs.vdev.read_gap_limit", &zfs_vdev_read_gap_limit);
241SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, read_gap_limit, CTLFLAG_RWTUN,
242    &zfs_vdev_read_gap_limit, 0,
243    "Acceptable gap between two reads being aggregated");
244TUNABLE_INT("vfs.zfs.vdev.write_gap_limit", &zfs_vdev_write_gap_limit);
245SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, write_gap_limit, CTLFLAG_RWTUN,
246    &zfs_vdev_write_gap_limit, 0,
247    "Acceptable gap between two writes being aggregated");
248
249static int
250sysctl_zfs_async_write_active_min_dirty_percent(SYSCTL_HANDLER_ARGS)
251{
252	int val, err;
253
254	val = zfs_vdev_async_write_active_min_dirty_percent;
255	err = sysctl_handle_int(oidp, &val, 0, req);
256	if (err != 0 || req->newptr == NULL)
257		return (err);
258
259	if (val < 0 || val > 100 ||
260	    val >= zfs_vdev_async_write_active_max_dirty_percent)
261		return (EINVAL);
262
263	zfs_vdev_async_write_active_min_dirty_percent = val;
264
265	return (0);
266}
267
268static int
269sysctl_zfs_async_write_active_max_dirty_percent(SYSCTL_HANDLER_ARGS)
270{
271	int val, err;
272
273	val = zfs_vdev_async_write_active_max_dirty_percent;
274	err = sysctl_handle_int(oidp, &val, 0, req);
275	if (err != 0 || req->newptr == NULL)
276		return (err);
277
278	if (val < 0 || val > 100 ||
279	    val <= zfs_vdev_async_write_active_min_dirty_percent)
280		return (EINVAL);
281
282	zfs_vdev_async_write_active_max_dirty_percent = val;
283
284	return (0);
285}
286#endif
287#endif
288
289int
290vdev_queue_offset_compare(const void *x1, const void *x2)
291{
292	const zio_t *z1 = x1;
293	const zio_t *z2 = x2;
294
295	if (z1->io_offset < z2->io_offset)
296		return (-1);
297	if (z1->io_offset > z2->io_offset)
298		return (1);
299
300	if (z1 < z2)
301		return (-1);
302	if (z1 > z2)
303		return (1);
304
305	return (0);
306}
307
308static inline avl_tree_t *
309vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p)
310{
311	return (&vq->vq_class[p].vqc_queued_tree);
312}
313
314static inline avl_tree_t *
315vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t)
316{
317	if (t == ZIO_TYPE_READ)
318		return (&vq->vq_read_offset_tree);
319	else if (t == ZIO_TYPE_WRITE)
320		return (&vq->vq_write_offset_tree);
321	else
322		return (NULL);
323}
324
325int
326vdev_queue_timestamp_compare(const void *x1, const void *x2)
327{
328	const zio_t *z1 = x1;
329	const zio_t *z2 = x2;
330
331	if (z1->io_timestamp < z2->io_timestamp)
332		return (-1);
333	if (z1->io_timestamp > z2->io_timestamp)
334		return (1);
335
336	if (z1->io_offset < z2->io_offset)
337		return (-1);
338	if (z1->io_offset > z2->io_offset)
339		return (1);
340
341	if (z1 < z2)
342		return (-1);
343	if (z1 > z2)
344		return (1);
345
346	return (0);
347}
348
349void
350vdev_queue_init(vdev_t *vd)
351{
352	vdev_queue_t *vq = &vd->vdev_queue;
353
354	mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
355	vq->vq_vdev = vd;
356
357	avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
358	    sizeof (zio_t), offsetof(struct zio, io_queue_node));
359	avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ),
360	    vdev_queue_offset_compare, sizeof (zio_t),
361	    offsetof(struct zio, io_offset_node));
362	avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE),
363	    vdev_queue_offset_compare, sizeof (zio_t),
364	    offsetof(struct zio, io_offset_node));
365
366	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
367		int (*compfn) (const void *, const void *);
368
369		/*
370		 * The synchronous i/o queues are dispatched in FIFO rather
371		 * than LBA order.  This provides more consistent latency for
372		 * these i/os.
373		 */
374		if (p == ZIO_PRIORITY_SYNC_READ || p == ZIO_PRIORITY_SYNC_WRITE)
375			compfn = vdev_queue_timestamp_compare;
376		else
377			compfn = vdev_queue_offset_compare;
378
379		avl_create(vdev_queue_class_tree(vq, p), compfn,
380		    sizeof (zio_t), offsetof(struct zio, io_queue_node));
381	}
382
383	vq->vq_lastoffset = 0;
384}
385
386void
387vdev_queue_fini(vdev_t *vd)
388{
389	vdev_queue_t *vq = &vd->vdev_queue;
390
391	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
392		avl_destroy(vdev_queue_class_tree(vq, p));
393	avl_destroy(&vq->vq_active_tree);
394	avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ));
395	avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE));
396
397	mutex_destroy(&vq->vq_lock);
398}
399
400static void
401vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
402{
403	spa_t *spa = zio->io_spa;
404	avl_tree_t *qtt;
405	ASSERT(MUTEX_HELD(&vq->vq_lock));
406	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
407	avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
408	qtt = vdev_queue_type_tree(vq, zio->io_type);
409	if (qtt)
410		avl_add(qtt, zio);
411
412#ifdef illumos
413	mutex_enter(&spa->spa_iokstat_lock);
414	spa->spa_queue_stats[zio->io_priority].spa_queued++;
415	if (spa->spa_iokstat != NULL)
416		kstat_waitq_enter(spa->spa_iokstat->ks_data);
417	mutex_exit(&spa->spa_iokstat_lock);
418#endif
419}
420
421static void
422vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
423{
424	spa_t *spa = zio->io_spa;
425	avl_tree_t *qtt;
426	ASSERT(MUTEX_HELD(&vq->vq_lock));
427	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
428	avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
429	qtt = vdev_queue_type_tree(vq, zio->io_type);
430	if (qtt)
431		avl_remove(qtt, zio);
432
433#ifdef illumos
434	mutex_enter(&spa->spa_iokstat_lock);
435	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0);
436	spa->spa_queue_stats[zio->io_priority].spa_queued--;
437	if (spa->spa_iokstat != NULL)
438		kstat_waitq_exit(spa->spa_iokstat->ks_data);
439	mutex_exit(&spa->spa_iokstat_lock);
440#endif
441}
442
443static void
444vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
445{
446	spa_t *spa = zio->io_spa;
447	ASSERT(MUTEX_HELD(&vq->vq_lock));
448	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
449	vq->vq_class[zio->io_priority].vqc_active++;
450	avl_add(&vq->vq_active_tree, zio);
451
452#ifdef illumos
453	mutex_enter(&spa->spa_iokstat_lock);
454	spa->spa_queue_stats[zio->io_priority].spa_active++;
455	if (spa->spa_iokstat != NULL)
456		kstat_runq_enter(spa->spa_iokstat->ks_data);
457	mutex_exit(&spa->spa_iokstat_lock);
458#endif
459}
460
461static void
462vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
463{
464	spa_t *spa = zio->io_spa;
465	ASSERT(MUTEX_HELD(&vq->vq_lock));
466	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
467	vq->vq_class[zio->io_priority].vqc_active--;
468	avl_remove(&vq->vq_active_tree, zio);
469
470#ifdef illumos
471	mutex_enter(&spa->spa_iokstat_lock);
472	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0);
473	spa->spa_queue_stats[zio->io_priority].spa_active--;
474	if (spa->spa_iokstat != NULL) {
475		kstat_io_t *ksio = spa->spa_iokstat->ks_data;
476
477		kstat_runq_exit(spa->spa_iokstat->ks_data);
478		if (zio->io_type == ZIO_TYPE_READ) {
479			ksio->reads++;
480			ksio->nread += zio->io_size;
481		} else if (zio->io_type == ZIO_TYPE_WRITE) {
482			ksio->writes++;
483			ksio->nwritten += zio->io_size;
484		}
485	}
486	mutex_exit(&spa->spa_iokstat_lock);
487#endif
488}
489
490static void
491vdev_queue_agg_io_done(zio_t *aio)
492{
493	if (aio->io_type == ZIO_TYPE_READ) {
494		zio_t *pio;
495		while ((pio = zio_walk_parents(aio)) != NULL) {
496			bcopy((char *)aio->io_data + (pio->io_offset -
497			    aio->io_offset), pio->io_data, pio->io_size);
498		}
499	}
500
501	zio_buf_free(aio->io_data, aio->io_size);
502}
503
504static int
505vdev_queue_class_min_active(zio_priority_t p)
506{
507	switch (p) {
508	case ZIO_PRIORITY_SYNC_READ:
509		return (zfs_vdev_sync_read_min_active);
510	case ZIO_PRIORITY_SYNC_WRITE:
511		return (zfs_vdev_sync_write_min_active);
512	case ZIO_PRIORITY_ASYNC_READ:
513		return (zfs_vdev_async_read_min_active);
514	case ZIO_PRIORITY_ASYNC_WRITE:
515		return (zfs_vdev_async_write_min_active);
516	case ZIO_PRIORITY_SCRUB:
517		return (zfs_vdev_scrub_min_active);
518	case ZIO_PRIORITY_TRIM:
519		return (zfs_vdev_trim_min_active);
520	default:
521		panic("invalid priority %u", p);
522		return (0);
523	}
524}
525
526static __noinline int
527vdev_queue_max_async_writes(spa_t *spa)
528{
529	int writes;
530	uint64_t dirty = spa->spa_dsl_pool->dp_dirty_total;
531	uint64_t min_bytes = zfs_dirty_data_max *
532	    zfs_vdev_async_write_active_min_dirty_percent / 100;
533	uint64_t max_bytes = zfs_dirty_data_max *
534	    zfs_vdev_async_write_active_max_dirty_percent / 100;
535
536	/*
537	 * Sync tasks correspond to interactive user actions. To reduce the
538	 * execution time of those actions we push data out as fast as possible.
539	 */
540	if (spa_has_pending_synctask(spa)) {
541		return (zfs_vdev_async_write_max_active);
542	}
543
544	if (dirty < min_bytes)
545		return (zfs_vdev_async_write_min_active);
546	if (dirty > max_bytes)
547		return (zfs_vdev_async_write_max_active);
548
549	/*
550	 * linear interpolation:
551	 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
552	 * move right by min_bytes
553	 * move up by min_writes
554	 */
555	writes = (dirty - min_bytes) *
556	    (zfs_vdev_async_write_max_active -
557	    zfs_vdev_async_write_min_active) /
558	    (max_bytes - min_bytes) +
559	    zfs_vdev_async_write_min_active;
560	ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
561	ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
562	return (writes);
563}
564
565static int
566vdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
567{
568	switch (p) {
569	case ZIO_PRIORITY_SYNC_READ:
570		return (zfs_vdev_sync_read_max_active);
571	case ZIO_PRIORITY_SYNC_WRITE:
572		return (zfs_vdev_sync_write_max_active);
573	case ZIO_PRIORITY_ASYNC_READ:
574		return (zfs_vdev_async_read_max_active);
575	case ZIO_PRIORITY_ASYNC_WRITE:
576		return (vdev_queue_max_async_writes(spa));
577	case ZIO_PRIORITY_SCRUB:
578		return (zfs_vdev_scrub_max_active);
579	case ZIO_PRIORITY_TRIM:
580		return (zfs_vdev_trim_max_active);
581	default:
582		panic("invalid priority %u", p);
583		return (0);
584	}
585}
586
587/*
588 * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
589 * there is no eligible class.
590 */
591static zio_priority_t
592vdev_queue_class_to_issue(vdev_queue_t *vq)
593{
594	spa_t *spa = vq->vq_vdev->vdev_spa;
595	zio_priority_t p;
596
597	ASSERT(MUTEX_HELD(&vq->vq_lock));
598
599	if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
600		return (ZIO_PRIORITY_NUM_QUEUEABLE);
601
602	/* find a queue that has not reached its minimum # outstanding i/os */
603	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
604		if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
605		    vq->vq_class[p].vqc_active <
606		    vdev_queue_class_min_active(p))
607			return (p);
608	}
609
610	/*
611	 * If we haven't found a queue, look for one that hasn't reached its
612	 * maximum # outstanding i/os.
613	 */
614	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
615		if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
616		    vq->vq_class[p].vqc_active <
617		    vdev_queue_class_max_active(spa, p))
618			return (p);
619	}
620
621	/* No eligible queued i/os */
622	return (ZIO_PRIORITY_NUM_QUEUEABLE);
623}
624
625/*
626 * Compute the range spanned by two i/os, which is the endpoint of the last
627 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
628 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
629 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
630 */
631#define	IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
632#define	IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
633
634static zio_t *
635vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
636{
637	zio_t *first, *last, *aio, *dio, *mandatory, *nio;
638	uint64_t maxgap = 0;
639	uint64_t size;
640	boolean_t stretch;
641	avl_tree_t *t;
642	enum zio_flag flags;
643
644	ASSERT(MUTEX_HELD(&vq->vq_lock));
645
646	if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE)
647		return (NULL);
648
649	first = last = zio;
650
651	if (zio->io_type == ZIO_TYPE_READ)
652		maxgap = zfs_vdev_read_gap_limit;
653
654	/*
655	 * We can aggregate I/Os that are sufficiently adjacent and of
656	 * the same flavor, as expressed by the AGG_INHERIT flags.
657	 * The latter requirement is necessary so that certain
658	 * attributes of the I/O, such as whether it's a normal I/O
659	 * or a scrub/resilver, can be preserved in the aggregate.
660	 * We can include optional I/Os, but don't allow them
661	 * to begin a range as they add no benefit in that situation.
662	 */
663
664	/*
665	 * We keep track of the last non-optional I/O.
666	 */
667	mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
668
669	/*
670	 * Walk backwards through sufficiently contiguous I/Os
671	 * recording the last non-option I/O.
672	 */
673	flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
674	t = vdev_queue_type_tree(vq, zio->io_type);
675	while (t != NULL && (dio = AVL_PREV(t, first)) != NULL &&
676	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
677	    IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit &&
678	    IO_GAP(dio, first) <= maxgap) {
679		first = dio;
680		if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
681			mandatory = first;
682	}
683
684	/*
685	 * Skip any initial optional I/Os.
686	 */
687	while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
688		first = AVL_NEXT(t, first);
689		ASSERT(first != NULL);
690	}
691
692	/*
693	 * Walk forward through sufficiently contiguous I/Os.
694	 */
695	while ((dio = AVL_NEXT(t, last)) != NULL &&
696	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
697	    IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit &&
698	    IO_GAP(last, dio) <= maxgap) {
699		last = dio;
700		if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
701			mandatory = last;
702	}
703
704	/*
705	 * Now that we've established the range of the I/O aggregation
706	 * we must decide what to do with trailing optional I/Os.
707	 * For reads, there's nothing to do. While we are unable to
708	 * aggregate further, it's possible that a trailing optional
709	 * I/O would allow the underlying device to aggregate with
710	 * subsequent I/Os. We must therefore determine if the next
711	 * non-optional I/O is close enough to make aggregation
712	 * worthwhile.
713	 */
714	stretch = B_FALSE;
715	if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
716		zio_t *nio = last;
717		while ((dio = AVL_NEXT(t, nio)) != NULL &&
718		    IO_GAP(nio, dio) == 0 &&
719		    IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
720			nio = dio;
721			if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
722				stretch = B_TRUE;
723				break;
724			}
725		}
726	}
727
728	if (stretch) {
729		/* This may be a no-op. */
730		dio = AVL_NEXT(t, last);
731		dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
732	} else {
733		while (last != mandatory && last != first) {
734			ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
735			last = AVL_PREV(t, last);
736			ASSERT(last != NULL);
737		}
738	}
739
740	if (first == last)
741		return (NULL);
742
743	size = IO_SPAN(first, last);
744	ASSERT3U(size, <=, zfs_vdev_aggregation_limit);
745
746	aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
747	    zio_buf_alloc(size), size, first->io_type, zio->io_priority,
748	    flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
749	    vdev_queue_agg_io_done, NULL);
750	aio->io_timestamp = first->io_timestamp;
751
752	nio = first;
753	do {
754		dio = nio;
755		nio = AVL_NEXT(t, dio);
756		ASSERT3U(dio->io_type, ==, aio->io_type);
757
758		if (dio->io_flags & ZIO_FLAG_NODATA) {
759			ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
760			bzero((char *)aio->io_data + (dio->io_offset -
761			    aio->io_offset), dio->io_size);
762		} else if (dio->io_type == ZIO_TYPE_WRITE) {
763			bcopy(dio->io_data, (char *)aio->io_data +
764			    (dio->io_offset - aio->io_offset),
765			    dio->io_size);
766		}
767
768		zio_add_child(dio, aio);
769		vdev_queue_io_remove(vq, dio);
770		zio_vdev_io_bypass(dio);
771		zio_execute(dio);
772	} while (dio != last);
773
774	return (aio);
775}
776
777static zio_t *
778vdev_queue_io_to_issue(vdev_queue_t *vq)
779{
780	zio_t *zio, *aio;
781	zio_priority_t p;
782	avl_index_t idx;
783	avl_tree_t *tree;
784	zio_t search;
785
786again:
787	ASSERT(MUTEX_HELD(&vq->vq_lock));
788
789	p = vdev_queue_class_to_issue(vq);
790
791	if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
792		/* No eligible queued i/os */
793		return (NULL);
794	}
795
796	/*
797	 * For LBA-ordered queues (async / scrub), issue the i/o which follows
798	 * the most recently issued i/o in LBA (offset) order.
799	 *
800	 * For FIFO queues (sync), issue the i/o with the lowest timestamp.
801	 */
802	tree = vdev_queue_class_tree(vq, p);
803	search.io_timestamp = 0;
804	search.io_offset = vq->vq_last_offset + 1;
805	VERIFY3P(avl_find(tree, &search, &idx), ==, NULL);
806	zio = avl_nearest(tree, idx, AVL_AFTER);
807	if (zio == NULL)
808		zio = avl_first(tree);
809	ASSERT3U(zio->io_priority, ==, p);
810
811	aio = vdev_queue_aggregate(vq, zio);
812	if (aio != NULL)
813		zio = aio;
814	else
815		vdev_queue_io_remove(vq, zio);
816
817	/*
818	 * If the I/O is or was optional and therefore has no data, we need to
819	 * simply discard it. We need to drop the vdev queue's lock to avoid a
820	 * deadlock that we could encounter since this I/O will complete
821	 * immediately.
822	 */
823	if (zio->io_flags & ZIO_FLAG_NODATA) {
824		mutex_exit(&vq->vq_lock);
825		zio_vdev_io_bypass(zio);
826		zio_execute(zio);
827		mutex_enter(&vq->vq_lock);
828		goto again;
829	}
830
831	vdev_queue_pending_add(vq, zio);
832	vq->vq_last_offset = zio->io_offset;
833
834	return (zio);
835}
836
837zio_t *
838vdev_queue_io(zio_t *zio)
839{
840	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
841	zio_t *nio;
842
843	if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
844		return (zio);
845
846	/*
847	 * Children i/os inherent their parent's priority, which might
848	 * not match the child's i/o type.  Fix it up here.
849	 */
850	if (zio->io_type == ZIO_TYPE_READ) {
851		if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
852		    zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
853		    zio->io_priority != ZIO_PRIORITY_SCRUB)
854			zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
855	} else if (zio->io_type == ZIO_TYPE_WRITE) {
856		if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
857		    zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE)
858			zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
859	} else {
860		ASSERT(zio->io_type == ZIO_TYPE_FREE);
861		zio->io_priority = ZIO_PRIORITY_TRIM;
862	}
863
864	zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
865
866	mutex_enter(&vq->vq_lock);
867	zio->io_timestamp = gethrtime();
868	vdev_queue_io_add(vq, zio);
869	nio = vdev_queue_io_to_issue(vq);
870	mutex_exit(&vq->vq_lock);
871
872	if (nio == NULL)
873		return (NULL);
874
875	if (nio->io_done == vdev_queue_agg_io_done) {
876		zio_nowait(nio);
877		return (NULL);
878	}
879
880	return (nio);
881}
882
883void
884vdev_queue_io_done(zio_t *zio)
885{
886	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
887	zio_t *nio;
888
889	mutex_enter(&vq->vq_lock);
890
891	vdev_queue_pending_remove(vq, zio);
892
893	vq->vq_io_complete_ts = gethrtime();
894
895	while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
896		mutex_exit(&vq->vq_lock);
897		if (nio->io_done == vdev_queue_agg_io_done) {
898			zio_nowait(nio);
899		} else {
900			zio_vdev_io_reissue(nio);
901			zio_execute(nio);
902		}
903		mutex_enter(&vq->vq_lock);
904	}
905
906	mutex_exit(&vq->vq_lock);
907}
908
909/*
910 * As these three methods are only used for load calculations we're not concerned
911 * if we get an incorrect value on 32bit platforms due to lack of vq_lock mutex
912 * use here, instead we prefer to keep it lock free for performance.
913 */
914int
915vdev_queue_length(vdev_t *vd)
916{
917	return (avl_numnodes(&vd->vdev_queue.vq_active_tree));
918}
919
920uint64_t
921vdev_queue_lastoffset(vdev_t *vd)
922{
923	return (vd->vdev_queue.vq_lastoffset);
924}
925
926void
927vdev_queue_register_lastoffset(vdev_t *vd, zio_t *zio)
928{
929	vd->vdev_queue.vq_lastoffset = zio->io_offset + zio->io_size;
930}
931