1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 */
30
31#include <sys/zfs_context.h>
32#include <sys/vdev_impl.h>
33#include <sys/spa_impl.h>
34#include <sys/zio.h>
35#include <sys/avl.h>
36#include <sys/dsl_pool.h>
37#include <sys/metaslab_impl.h>
38
39/*
40 * ZFS I/O Scheduler
41 * ---------------
42 *
43 * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios.  The
44 * I/O scheduler determines when and in what order those operations are
45 * issued.  The I/O scheduler divides operations into six I/O classes
46 * prioritized in the following order: sync read, sync write, async read,
47 * async write, scrub/resilver and trim.  Each queue defines the minimum and
48 * maximum number of concurrent operations that may be issued to the device.
49 * In addition, the device has an aggregate maximum. Note that the sum of the
50 * per-queue minimums must not exceed the aggregate maximum, and if the
51 * aggregate maximum is equal to or greater than the sum of the per-queue
52 * maximums, the per-queue minimum has no effect.
53 *
54 * For many physical devices, throughput increases with the number of
55 * concurrent operations, but latency typically suffers. Further, physical
56 * devices typically have a limit at which more concurrent operations have no
57 * effect on throughput or can actually cause it to decrease.
58 *
59 * The scheduler selects the next operation to issue by first looking for an
60 * I/O class whose minimum has not been satisfied. Once all are satisfied and
61 * the aggregate maximum has not been hit, the scheduler looks for classes
62 * whose maximum has not been satisfied. Iteration through the I/O classes is
63 * done in the order specified above. No further operations are issued if the
64 * aggregate maximum number of concurrent operations has been hit or if there
65 * are no operations queued for an I/O class that has not hit its maximum.
66 * Every time an I/O is queued or an operation completes, the I/O scheduler
67 * looks for new operations to issue.
68 *
69 * All I/O classes have a fixed maximum number of outstanding operations
70 * except for the async write class. Asynchronous writes represent the data
71 * that is committed to stable storage during the syncing stage for
72 * transaction groups (see txg.c). Transaction groups enter the syncing state
73 * periodically so the number of queued async writes will quickly burst up and
74 * then bleed down to zero. Rather than servicing them as quickly as possible,
75 * the I/O scheduler changes the maximum number of active async write I/Os
76 * according to the amount of dirty data in the pool (see dsl_pool.c). Since
77 * both throughput and latency typically increase with the number of
78 * concurrent operations issued to physical devices, reducing the burstiness
79 * in the number of concurrent operations also stabilizes the response time of
80 * operations from other -- and in particular synchronous -- queues. In broad
81 * strokes, the I/O scheduler will issue more concurrent operations from the
82 * async write queue as there's more dirty data in the pool.
83 *
84 * Async Writes
85 *
86 * The number of concurrent operations issued for the async write I/O class
87 * follows a piece-wise linear function defined by a few adjustable points.
88 *
89 *        |                   o---------| <-- zfs_vdev_async_write_max_active
90 *   ^    |                  /^         |
91 *   |    |                 / |         |
92 * active |                /  |         |
93 *  I/O   |               /   |         |
94 * count  |              /    |         |
95 *        |             /     |         |
96 *        |------------o      |         | <-- zfs_vdev_async_write_min_active
97 *       0|____________^______|_________|
98 *        0%           |      |       100% of zfs_dirty_data_max
99 *                     |      |
100 *                     |      `-- zfs_vdev_async_write_active_max_dirty_percent
101 *                     `--------- zfs_vdev_async_write_active_min_dirty_percent
102 *
103 * Until the amount of dirty data exceeds a minimum percentage of the dirty
104 * data allowed in the pool, the I/O scheduler will limit the number of
105 * concurrent operations to the minimum. As that threshold is crossed, the
106 * number of concurrent operations issued increases linearly to the maximum at
107 * the specified maximum percentage of the dirty data allowed in the pool.
108 *
109 * Ideally, the amount of dirty data on a busy pool will stay in the sloped
110 * part of the function between zfs_vdev_async_write_active_min_dirty_percent
111 * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
112 * maximum percentage, this indicates that the rate of incoming data is
113 * greater than the rate that the backend storage can handle. In this case, we
114 * must further throttle incoming writes (see dmu_tx_delay() for details).
115 */
116
117/*
118 * The maximum number of I/Os active to each device.  Ideally, this will be >=
119 * the sum of each queue's max_active.  It must be at least the sum of each
120 * queue's min_active.
121 */
122uint32_t zfs_vdev_max_active = 1000;
123
124/*
125 * Per-queue limits on the number of I/Os active to each device.  If the
126 * sum of the queue's max_active is < zfs_vdev_max_active, then the
127 * min_active comes into play.  We will send min_active from each queue,
128 * and then select from queues in the order defined by zio_priority_t.
129 *
130 * In general, smaller max_active's will lead to lower latency of synchronous
131 * operations.  Larger max_active's may lead to higher overall throughput,
132 * depending on underlying storage.
133 *
134 * The ratio of the queues' max_actives determines the balance of performance
135 * between reads, writes, and scrubs.  E.g., increasing
136 * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
137 * more quickly, but reads and writes to have higher latency and lower
138 * throughput.
139 */
140uint32_t zfs_vdev_sync_read_min_active = 10;
141uint32_t zfs_vdev_sync_read_max_active = 10;
142uint32_t zfs_vdev_sync_write_min_active = 10;
143uint32_t zfs_vdev_sync_write_max_active = 10;
144uint32_t zfs_vdev_async_read_min_active = 1;
145uint32_t zfs_vdev_async_read_max_active = 3;
146uint32_t zfs_vdev_async_write_min_active = 1;
147uint32_t zfs_vdev_async_write_max_active = 10;
148uint32_t zfs_vdev_scrub_min_active = 1;
149uint32_t zfs_vdev_scrub_max_active = 2;
150uint32_t zfs_vdev_trim_min_active = 1;
151/*
152 * TRIM max active is large in comparison to the other values due to the fact
153 * that TRIM IOs are coalesced at the device layer. This value is set such
154 * that a typical SSD can process the queued IOs in a single request.
155 */
156uint32_t zfs_vdev_trim_max_active = 64;
157
158
159/*
160 * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
161 * dirty data, use zfs_vdev_async_write_min_active.  When it has more than
162 * zfs_vdev_async_write_active_max_dirty_percent, use
163 * zfs_vdev_async_write_max_active. The value is linearly interpolated
164 * between min and max.
165 */
166int zfs_vdev_async_write_active_min_dirty_percent = 30;
167int zfs_vdev_async_write_active_max_dirty_percent = 60;
168
169/*
170 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
171 * For read I/Os, we also aggregate across small adjacency gaps; for writes
172 * we include spans of optional I/Os to aid aggregation at the disk even when
173 * they aren't able to help us aggregate at this level.
174 */
175int zfs_vdev_aggregation_limit = SPA_OLD_MAXBLOCKSIZE;
176int zfs_vdev_read_gap_limit = 32 << 10;
177int zfs_vdev_write_gap_limit = 4 << 10;
178
179/*
180 * Define the queue depth percentage for each top-level. This percentage is
181 * used in conjunction with zfs_vdev_async_max_active to determine how many
182 * allocations a specific top-level vdev should handle. Once the queue depth
183 * reaches zfs_vdev_queue_depth_pct * zfs_vdev_async_write_max_active / 100
184 * then allocator will stop allocating blocks on that top-level device.
185 * The default kernel setting is 1000% which will yield 100 allocations per
186 * device. For userland testing, the default setting is 300% which equates
187 * to 30 allocations per device.
188 */
189#ifdef _KERNEL
190int zfs_vdev_queue_depth_pct = 1000;
191#else
192int zfs_vdev_queue_depth_pct = 300;
193#endif
194
195
196#ifdef __FreeBSD__
197#ifdef _KERNEL
198SYSCTL_DECL(_vfs_zfs_vdev);
199
200TUNABLE_INT("vfs.zfs.vdev.async_write_active_min_dirty_percent",
201    &zfs_vdev_async_write_active_min_dirty_percent);
202static int sysctl_zfs_async_write_active_min_dirty_percent(SYSCTL_HANDLER_ARGS);
203SYSCTL_PROC(_vfs_zfs_vdev, OID_AUTO, async_write_active_min_dirty_percent,
204    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
205    sysctl_zfs_async_write_active_min_dirty_percent, "I",
206    "Percentage of async write dirty data below which "
207    "async_write_min_active is used.");
208
209TUNABLE_INT("vfs.zfs.vdev.async_write_active_max_dirty_percent",
210    &zfs_vdev_async_write_active_max_dirty_percent);
211static int sysctl_zfs_async_write_active_max_dirty_percent(SYSCTL_HANDLER_ARGS);
212SYSCTL_PROC(_vfs_zfs_vdev, OID_AUTO, async_write_active_max_dirty_percent,
213    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
214    sysctl_zfs_async_write_active_max_dirty_percent, "I",
215    "Percentage of async write dirty data above which "
216    "async_write_max_active is used.");
217
218TUNABLE_INT("vfs.zfs.vdev.max_active", &zfs_vdev_max_active);
219SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, max_active, CTLFLAG_RWTUN,
220    &zfs_vdev_max_active, 0,
221    "The maximum number of I/Os of all types active for each device.");
222
223#define ZFS_VDEV_QUEUE_KNOB_MIN(name)					\
224TUNABLE_INT("vfs.zfs.vdev." #name "_min_active",			\
225    &zfs_vdev_ ## name ## _min_active);					\
226SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, name ## _min_active,		\
227    CTLFLAG_RWTUN, &zfs_vdev_ ## name ## _min_active, 0,		\
228    "Initial number of I/O requests of type " #name			\
229    " active for each device");
230
231#define ZFS_VDEV_QUEUE_KNOB_MAX(name)					\
232TUNABLE_INT("vfs.zfs.vdev." #name "_max_active",			\
233    &zfs_vdev_ ## name ## _max_active);					\
234SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, name ## _max_active,		\
235    CTLFLAG_RWTUN, &zfs_vdev_ ## name ## _max_active, 0,		\
236    "Maximum number of I/O requests of type " #name			\
237    " active for each device");
238
239ZFS_VDEV_QUEUE_KNOB_MIN(sync_read);
240ZFS_VDEV_QUEUE_KNOB_MAX(sync_read);
241ZFS_VDEV_QUEUE_KNOB_MIN(sync_write);
242ZFS_VDEV_QUEUE_KNOB_MAX(sync_write);
243ZFS_VDEV_QUEUE_KNOB_MIN(async_read);
244ZFS_VDEV_QUEUE_KNOB_MAX(async_read);
245ZFS_VDEV_QUEUE_KNOB_MIN(async_write);
246ZFS_VDEV_QUEUE_KNOB_MAX(async_write);
247ZFS_VDEV_QUEUE_KNOB_MIN(scrub);
248ZFS_VDEV_QUEUE_KNOB_MAX(scrub);
249ZFS_VDEV_QUEUE_KNOB_MIN(trim);
250ZFS_VDEV_QUEUE_KNOB_MAX(trim);
251
252#undef ZFS_VDEV_QUEUE_KNOB
253
254TUNABLE_INT("vfs.zfs.vdev.aggregation_limit", &zfs_vdev_aggregation_limit);
255SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, aggregation_limit, CTLFLAG_RWTUN,
256    &zfs_vdev_aggregation_limit, 0,
257    "I/O requests are aggregated up to this size");
258TUNABLE_INT("vfs.zfs.vdev.read_gap_limit", &zfs_vdev_read_gap_limit);
259SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, read_gap_limit, CTLFLAG_RWTUN,
260    &zfs_vdev_read_gap_limit, 0,
261    "Acceptable gap between two reads being aggregated");
262TUNABLE_INT("vfs.zfs.vdev.write_gap_limit", &zfs_vdev_write_gap_limit);
263SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, write_gap_limit, CTLFLAG_RWTUN,
264    &zfs_vdev_write_gap_limit, 0,
265    "Acceptable gap between two writes being aggregated");
266SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, queue_depth_pct, CTLFLAG_RWTUN,
267    &zfs_vdev_queue_depth_pct, 0,
268    "Queue depth percentage for each top-level");
269
270static int
271sysctl_zfs_async_write_active_min_dirty_percent(SYSCTL_HANDLER_ARGS)
272{
273	int val, err;
274
275	val = zfs_vdev_async_write_active_min_dirty_percent;
276	err = sysctl_handle_int(oidp, &val, 0, req);
277	if (err != 0 || req->newptr == NULL)
278		return (err);
279
280	if (val < 0 || val > 100 ||
281	    val >= zfs_vdev_async_write_active_max_dirty_percent)
282		return (EINVAL);
283
284	zfs_vdev_async_write_active_min_dirty_percent = val;
285
286	return (0);
287}
288
289static int
290sysctl_zfs_async_write_active_max_dirty_percent(SYSCTL_HANDLER_ARGS)
291{
292	int val, err;
293
294	val = zfs_vdev_async_write_active_max_dirty_percent;
295	err = sysctl_handle_int(oidp, &val, 0, req);
296	if (err != 0 || req->newptr == NULL)
297		return (err);
298
299	if (val < 0 || val > 100 ||
300	    val <= zfs_vdev_async_write_active_min_dirty_percent)
301		return (EINVAL);
302
303	zfs_vdev_async_write_active_max_dirty_percent = val;
304
305	return (0);
306}
307#endif
308#endif
309
310int
311vdev_queue_offset_compare(const void *x1, const void *x2)
312{
313	const zio_t *z1 = x1;
314	const zio_t *z2 = x2;
315
316	if (z1->io_offset < z2->io_offset)
317		return (-1);
318	if (z1->io_offset > z2->io_offset)
319		return (1);
320
321	if (z1 < z2)
322		return (-1);
323	if (z1 > z2)
324		return (1);
325
326	return (0);
327}
328
329static inline avl_tree_t *
330vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p)
331{
332	return (&vq->vq_class[p].vqc_queued_tree);
333}
334
335static inline avl_tree_t *
336vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t)
337{
338	if (t == ZIO_TYPE_READ)
339		return (&vq->vq_read_offset_tree);
340	else if (t == ZIO_TYPE_WRITE)
341		return (&vq->vq_write_offset_tree);
342	else
343		return (NULL);
344}
345
346int
347vdev_queue_timestamp_compare(const void *x1, const void *x2)
348{
349	const zio_t *z1 = x1;
350	const zio_t *z2 = x2;
351
352	if (z1->io_timestamp < z2->io_timestamp)
353		return (-1);
354	if (z1->io_timestamp > z2->io_timestamp)
355		return (1);
356
357	if (z1->io_offset < z2->io_offset)
358		return (-1);
359	if (z1->io_offset > z2->io_offset)
360		return (1);
361
362	if (z1 < z2)
363		return (-1);
364	if (z1 > z2)
365		return (1);
366
367	return (0);
368}
369
370void
371vdev_queue_init(vdev_t *vd)
372{
373	vdev_queue_t *vq = &vd->vdev_queue;
374
375	mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
376	vq->vq_vdev = vd;
377
378	avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
379	    sizeof (zio_t), offsetof(struct zio, io_queue_node));
380	avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ),
381	    vdev_queue_offset_compare, sizeof (zio_t),
382	    offsetof(struct zio, io_offset_node));
383	avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE),
384	    vdev_queue_offset_compare, sizeof (zio_t),
385	    offsetof(struct zio, io_offset_node));
386
387	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
388		int (*compfn) (const void *, const void *);
389
390		/*
391		 * The synchronous i/o queues are dispatched in FIFO rather
392		 * than LBA order.  This provides more consistent latency for
393		 * these i/os.
394		 */
395		if (p == ZIO_PRIORITY_SYNC_READ || p == ZIO_PRIORITY_SYNC_WRITE)
396			compfn = vdev_queue_timestamp_compare;
397		else
398			compfn = vdev_queue_offset_compare;
399
400		avl_create(vdev_queue_class_tree(vq, p), compfn,
401		    sizeof (zio_t), offsetof(struct zio, io_queue_node));
402	}
403
404	vq->vq_lastoffset = 0;
405}
406
407void
408vdev_queue_fini(vdev_t *vd)
409{
410	vdev_queue_t *vq = &vd->vdev_queue;
411
412	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
413		avl_destroy(vdev_queue_class_tree(vq, p));
414	avl_destroy(&vq->vq_active_tree);
415	avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ));
416	avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE));
417
418	mutex_destroy(&vq->vq_lock);
419}
420
421static void
422vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
423{
424	spa_t *spa = zio->io_spa;
425	avl_tree_t *qtt;
426
427	ASSERT(MUTEX_HELD(&vq->vq_lock));
428	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
429	avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
430	qtt = vdev_queue_type_tree(vq, zio->io_type);
431	if (qtt)
432		avl_add(qtt, zio);
433
434#ifdef illumos
435	mutex_enter(&spa->spa_iokstat_lock);
436	spa->spa_queue_stats[zio->io_priority].spa_queued++;
437	if (spa->spa_iokstat != NULL)
438		kstat_waitq_enter(spa->spa_iokstat->ks_data);
439	mutex_exit(&spa->spa_iokstat_lock);
440#endif
441}
442
443static void
444vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
445{
446	spa_t *spa = zio->io_spa;
447	avl_tree_t *qtt;
448
449	ASSERT(MUTEX_HELD(&vq->vq_lock));
450	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
451	avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
452	qtt = vdev_queue_type_tree(vq, zio->io_type);
453	if (qtt)
454		avl_remove(qtt, zio);
455
456#ifdef illumos
457	mutex_enter(&spa->spa_iokstat_lock);
458	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0);
459	spa->spa_queue_stats[zio->io_priority].spa_queued--;
460	if (spa->spa_iokstat != NULL)
461		kstat_waitq_exit(spa->spa_iokstat->ks_data);
462	mutex_exit(&spa->spa_iokstat_lock);
463#endif
464}
465
466static void
467vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
468{
469	spa_t *spa = zio->io_spa;
470	ASSERT(MUTEX_HELD(&vq->vq_lock));
471	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
472	vq->vq_class[zio->io_priority].vqc_active++;
473	avl_add(&vq->vq_active_tree, zio);
474
475#ifdef illumos
476	mutex_enter(&spa->spa_iokstat_lock);
477	spa->spa_queue_stats[zio->io_priority].spa_active++;
478	if (spa->spa_iokstat != NULL)
479		kstat_runq_enter(spa->spa_iokstat->ks_data);
480	mutex_exit(&spa->spa_iokstat_lock);
481#endif
482}
483
484static void
485vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
486{
487	spa_t *spa = zio->io_spa;
488	ASSERT(MUTEX_HELD(&vq->vq_lock));
489	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
490	vq->vq_class[zio->io_priority].vqc_active--;
491	avl_remove(&vq->vq_active_tree, zio);
492
493#ifdef illumos
494	mutex_enter(&spa->spa_iokstat_lock);
495	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0);
496	spa->spa_queue_stats[zio->io_priority].spa_active--;
497	if (spa->spa_iokstat != NULL) {
498		kstat_io_t *ksio = spa->spa_iokstat->ks_data;
499
500		kstat_runq_exit(spa->spa_iokstat->ks_data);
501		if (zio->io_type == ZIO_TYPE_READ) {
502			ksio->reads++;
503			ksio->nread += zio->io_size;
504		} else if (zio->io_type == ZIO_TYPE_WRITE) {
505			ksio->writes++;
506			ksio->nwritten += zio->io_size;
507		}
508	}
509	mutex_exit(&spa->spa_iokstat_lock);
510#endif
511}
512
513static void
514vdev_queue_agg_io_done(zio_t *aio)
515{
516	if (aio->io_type == ZIO_TYPE_READ) {
517		zio_t *pio;
518		zio_link_t *zl = NULL;
519		while ((pio = zio_walk_parents(aio, &zl)) != NULL) {
520			bcopy((char *)aio->io_data + (pio->io_offset -
521			    aio->io_offset), pio->io_data, pio->io_size);
522		}
523	}
524
525	zio_buf_free(aio->io_data, aio->io_size);
526}
527
528static int
529vdev_queue_class_min_active(zio_priority_t p)
530{
531	switch (p) {
532	case ZIO_PRIORITY_SYNC_READ:
533		return (zfs_vdev_sync_read_min_active);
534	case ZIO_PRIORITY_SYNC_WRITE:
535		return (zfs_vdev_sync_write_min_active);
536	case ZIO_PRIORITY_ASYNC_READ:
537		return (zfs_vdev_async_read_min_active);
538	case ZIO_PRIORITY_ASYNC_WRITE:
539		return (zfs_vdev_async_write_min_active);
540	case ZIO_PRIORITY_SCRUB:
541		return (zfs_vdev_scrub_min_active);
542	case ZIO_PRIORITY_TRIM:
543		return (zfs_vdev_trim_min_active);
544	default:
545		panic("invalid priority %u", p);
546		return (0);
547	}
548}
549
550static __noinline int
551vdev_queue_max_async_writes(spa_t *spa)
552{
553	int writes;
554	uint64_t dirty = spa->spa_dsl_pool->dp_dirty_total;
555	uint64_t min_bytes = zfs_dirty_data_max *
556	    zfs_vdev_async_write_active_min_dirty_percent / 100;
557	uint64_t max_bytes = zfs_dirty_data_max *
558	    zfs_vdev_async_write_active_max_dirty_percent / 100;
559
560	/*
561	 * Sync tasks correspond to interactive user actions. To reduce the
562	 * execution time of those actions we push data out as fast as possible.
563	 */
564	if (spa_has_pending_synctask(spa)) {
565		return (zfs_vdev_async_write_max_active);
566	}
567
568	if (dirty < min_bytes)
569		return (zfs_vdev_async_write_min_active);
570	if (dirty > max_bytes)
571		return (zfs_vdev_async_write_max_active);
572
573	/*
574	 * linear interpolation:
575	 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
576	 * move right by min_bytes
577	 * move up by min_writes
578	 */
579	writes = (dirty - min_bytes) *
580	    (zfs_vdev_async_write_max_active -
581	    zfs_vdev_async_write_min_active) /
582	    (max_bytes - min_bytes) +
583	    zfs_vdev_async_write_min_active;
584	ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
585	ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
586	return (writes);
587}
588
589static int
590vdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
591{
592	switch (p) {
593	case ZIO_PRIORITY_SYNC_READ:
594		return (zfs_vdev_sync_read_max_active);
595	case ZIO_PRIORITY_SYNC_WRITE:
596		return (zfs_vdev_sync_write_max_active);
597	case ZIO_PRIORITY_ASYNC_READ:
598		return (zfs_vdev_async_read_max_active);
599	case ZIO_PRIORITY_ASYNC_WRITE:
600		return (vdev_queue_max_async_writes(spa));
601	case ZIO_PRIORITY_SCRUB:
602		return (zfs_vdev_scrub_max_active);
603	case ZIO_PRIORITY_TRIM:
604		return (zfs_vdev_trim_max_active);
605	default:
606		panic("invalid priority %u", p);
607		return (0);
608	}
609}
610
611/*
612 * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
613 * there is no eligible class.
614 */
615static zio_priority_t
616vdev_queue_class_to_issue(vdev_queue_t *vq)
617{
618	spa_t *spa = vq->vq_vdev->vdev_spa;
619	zio_priority_t p;
620
621	ASSERT(MUTEX_HELD(&vq->vq_lock));
622
623	if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
624		return (ZIO_PRIORITY_NUM_QUEUEABLE);
625
626	/* find a queue that has not reached its minimum # outstanding i/os */
627	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
628		if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
629		    vq->vq_class[p].vqc_active <
630		    vdev_queue_class_min_active(p))
631			return (p);
632	}
633
634	/*
635	 * If we haven't found a queue, look for one that hasn't reached its
636	 * maximum # outstanding i/os.
637	 */
638	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
639		if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
640		    vq->vq_class[p].vqc_active <
641		    vdev_queue_class_max_active(spa, p))
642			return (p);
643	}
644
645	/* No eligible queued i/os */
646	return (ZIO_PRIORITY_NUM_QUEUEABLE);
647}
648
649/*
650 * Compute the range spanned by two i/os, which is the endpoint of the last
651 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
652 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
653 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
654 */
655#define	IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
656#define	IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
657
658static zio_t *
659vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
660{
661	zio_t *first, *last, *aio, *dio, *mandatory, *nio;
662	void *abuf;
663	uint64_t maxgap = 0;
664	uint64_t size;
665	boolean_t stretch;
666	avl_tree_t *t;
667	enum zio_flag flags;
668
669	ASSERT(MUTEX_HELD(&vq->vq_lock));
670
671	if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE)
672		return (NULL);
673
674	first = last = zio;
675
676	if (zio->io_type == ZIO_TYPE_READ)
677		maxgap = zfs_vdev_read_gap_limit;
678
679	/*
680	 * We can aggregate I/Os that are sufficiently adjacent and of
681	 * the same flavor, as expressed by the AGG_INHERIT flags.
682	 * The latter requirement is necessary so that certain
683	 * attributes of the I/O, such as whether it's a normal I/O
684	 * or a scrub/resilver, can be preserved in the aggregate.
685	 * We can include optional I/Os, but don't allow them
686	 * to begin a range as they add no benefit in that situation.
687	 */
688
689	/*
690	 * We keep track of the last non-optional I/O.
691	 */
692	mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
693
694	/*
695	 * Walk backwards through sufficiently contiguous I/Os
696	 * recording the last non-option I/O.
697	 */
698	flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
699	t = vdev_queue_type_tree(vq, zio->io_type);
700	while (t != NULL && (dio = AVL_PREV(t, first)) != NULL &&
701	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
702	    IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit &&
703	    IO_GAP(dio, first) <= maxgap) {
704		first = dio;
705		if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
706			mandatory = first;
707	}
708
709	/*
710	 * Skip any initial optional I/Os.
711	 */
712	while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
713		first = AVL_NEXT(t, first);
714		ASSERT(first != NULL);
715	}
716
717	/*
718	 * Walk forward through sufficiently contiguous I/Os.
719	 */
720	while ((dio = AVL_NEXT(t, last)) != NULL &&
721	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
722	    IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit &&
723	    IO_GAP(last, dio) <= maxgap) {
724		last = dio;
725		if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
726			mandatory = last;
727	}
728
729	/*
730	 * Now that we've established the range of the I/O aggregation
731	 * we must decide what to do with trailing optional I/Os.
732	 * For reads, there's nothing to do. While we are unable to
733	 * aggregate further, it's possible that a trailing optional
734	 * I/O would allow the underlying device to aggregate with
735	 * subsequent I/Os. We must therefore determine if the next
736	 * non-optional I/O is close enough to make aggregation
737	 * worthwhile.
738	 */
739	stretch = B_FALSE;
740	if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
741		zio_t *nio = last;
742		while ((dio = AVL_NEXT(t, nio)) != NULL &&
743		    IO_GAP(nio, dio) == 0 &&
744		    IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
745			nio = dio;
746			if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
747				stretch = B_TRUE;
748				break;
749			}
750		}
751	}
752
753	if (stretch) {
754		/* This may be a no-op. */
755		dio = AVL_NEXT(t, last);
756		dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
757	} else {
758		while (last != mandatory && last != first) {
759			ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
760			last = AVL_PREV(t, last);
761			ASSERT(last != NULL);
762		}
763	}
764
765	if (first == last)
766		return (NULL);
767
768	size = IO_SPAN(first, last);
769	ASSERT3U(size, <=, zfs_vdev_aggregation_limit);
770
771	abuf = zio_buf_alloc_nowait(size);
772	if (abuf == NULL)
773		return (NULL);
774
775	aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
776	    abuf, size, first->io_type, zio->io_priority,
777	    flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
778	    vdev_queue_agg_io_done, NULL);
779	aio->io_timestamp = first->io_timestamp;
780
781	nio = first;
782	do {
783		dio = nio;
784		nio = AVL_NEXT(t, dio);
785		ASSERT3U(dio->io_type, ==, aio->io_type);
786
787		if (dio->io_flags & ZIO_FLAG_NODATA) {
788			ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
789			bzero((char *)aio->io_data + (dio->io_offset -
790			    aio->io_offset), dio->io_size);
791		} else if (dio->io_type == ZIO_TYPE_WRITE) {
792			bcopy(dio->io_data, (char *)aio->io_data +
793			    (dio->io_offset - aio->io_offset),
794			    dio->io_size);
795		}
796
797		zio_add_child(dio, aio);
798		vdev_queue_io_remove(vq, dio);
799		zio_vdev_io_bypass(dio);
800		zio_execute(dio);
801	} while (dio != last);
802
803	return (aio);
804}
805
806static zio_t *
807vdev_queue_io_to_issue(vdev_queue_t *vq)
808{
809	zio_t *zio, *aio;
810	zio_priority_t p;
811	avl_index_t idx;
812	avl_tree_t *tree;
813	zio_t search;
814
815again:
816	ASSERT(MUTEX_HELD(&vq->vq_lock));
817
818	p = vdev_queue_class_to_issue(vq);
819
820	if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
821		/* No eligible queued i/os */
822		return (NULL);
823	}
824
825	/*
826	 * For LBA-ordered queues (async / scrub), issue the i/o which follows
827	 * the most recently issued i/o in LBA (offset) order.
828	 *
829	 * For FIFO queues (sync), issue the i/o with the lowest timestamp.
830	 */
831	tree = vdev_queue_class_tree(vq, p);
832	search.io_timestamp = 0;
833	search.io_offset = vq->vq_last_offset + 1;
834	VERIFY3P(avl_find(tree, &search, &idx), ==, NULL);
835	zio = avl_nearest(tree, idx, AVL_AFTER);
836	if (zio == NULL)
837		zio = avl_first(tree);
838	ASSERT3U(zio->io_priority, ==, p);
839
840	aio = vdev_queue_aggregate(vq, zio);
841	if (aio != NULL)
842		zio = aio;
843	else
844		vdev_queue_io_remove(vq, zio);
845
846	/*
847	 * If the I/O is or was optional and therefore has no data, we need to
848	 * simply discard it. We need to drop the vdev queue's lock to avoid a
849	 * deadlock that we could encounter since this I/O will complete
850	 * immediately.
851	 */
852	if (zio->io_flags & ZIO_FLAG_NODATA) {
853		mutex_exit(&vq->vq_lock);
854		zio_vdev_io_bypass(zio);
855		zio_execute(zio);
856		mutex_enter(&vq->vq_lock);
857		goto again;
858	}
859
860	vdev_queue_pending_add(vq, zio);
861	vq->vq_last_offset = zio->io_offset;
862
863	return (zio);
864}
865
866zio_t *
867vdev_queue_io(zio_t *zio)
868{
869	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
870	zio_t *nio;
871
872	if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
873		return (zio);
874
875	/*
876	 * Children i/os inherent their parent's priority, which might
877	 * not match the child's i/o type.  Fix it up here.
878	 */
879	if (zio->io_type == ZIO_TYPE_READ) {
880		if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
881		    zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
882		    zio->io_priority != ZIO_PRIORITY_SCRUB)
883			zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
884	} else if (zio->io_type == ZIO_TYPE_WRITE) {
885		if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
886		    zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE)
887			zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
888	} else {
889		ASSERT(zio->io_type == ZIO_TYPE_FREE);
890		zio->io_priority = ZIO_PRIORITY_TRIM;
891	}
892
893	zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
894
895	mutex_enter(&vq->vq_lock);
896	zio->io_timestamp = gethrtime();
897	vdev_queue_io_add(vq, zio);
898	nio = vdev_queue_io_to_issue(vq);
899	mutex_exit(&vq->vq_lock);
900
901	if (nio == NULL)
902		return (NULL);
903
904	if (nio->io_done == vdev_queue_agg_io_done) {
905		zio_nowait(nio);
906		return (NULL);
907	}
908
909	return (nio);
910}
911
912void
913vdev_queue_io_done(zio_t *zio)
914{
915	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
916	zio_t *nio;
917
918	mutex_enter(&vq->vq_lock);
919
920	vdev_queue_pending_remove(vq, zio);
921
922	vq->vq_io_complete_ts = gethrtime();
923
924	while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
925		mutex_exit(&vq->vq_lock);
926		if (nio->io_done == vdev_queue_agg_io_done) {
927			zio_nowait(nio);
928		} else {
929			zio_vdev_io_reissue(nio);
930			zio_execute(nio);
931		}
932		mutex_enter(&vq->vq_lock);
933	}
934
935	mutex_exit(&vq->vq_lock);
936}
937
938/*
939 * As these three methods are only used for load calculations we're not concerned
940 * if we get an incorrect value on 32bit platforms due to lack of vq_lock mutex
941 * use here, instead we prefer to keep it lock free for performance.
942 */
943int
944vdev_queue_length(vdev_t *vd)
945{
946	return (avl_numnodes(&vd->vdev_queue.vq_active_tree));
947}
948
949uint64_t
950vdev_queue_lastoffset(vdev_t *vd)
951{
952	return (vd->vdev_queue.vq_lastoffset);
953}
954
955void
956vdev_queue_register_lastoffset(vdev_t *vd, zio_t *zio)
957{
958	vd->vdev_queue.vq_lastoffset = zio->io_offset + zio->io_size;
959}
960